Basewide Background Soil Investigation Report

Naval Surface Warfare Center Crane Crane, Indiana

Southern Division Naval Facilities Engineering Command Contract Number N62467-94-D-0888 Contract Task Order 0083

January 2001

DEPARTMENT OF THE NAVY

CRANE DIVISION NAVAL SURFACE WARFARE CENTER 300 HIGHWAY 361 CRANE, INDIANA 47522-5000

IN REPLY REFER TO:

5090 Ser 095/1020

29 JAN 2001

U.S. Environmental Protection Agency, Region V Waste, Pesticides, & Toxics Division Waste Management Branch Illinois, Indiana, and Michigan Section ATTN: Mr. Peter Ramanauskas (DW-8J) 77 West Jackson Blvd. Chicago, IL 60604

Dear Mr. Ramanauskas:

Crane Division, Naval Surface Warfare Center (NAVSURFWARCENDIV Crane) submits two copies of the Basewide Background Soil Investigation **Draft** Report as enclosure (1). This report is complete in that it includes results from the November 1999 and October 2000 sampling efforts. The permit required Certification Statement is provided as enclosure (2).

NAVSURFWARCENDIV Crane point of contact is Mr. Thomas J. Brent, Code 09510, telephone 812-854-6160.

Sincerely,

one the fune

James M. Hunsicker Director, Environmental Protection Department By direction of the Commander

Encl: (1) Basewide Background Soil Investigation Draft-Report (2) Certification Statement

Copy to: ADMINISTRATIVE RECORD SOUTHNAVFACENGCOM (Code 1864) (w/o encl) IDEM (Doug Griffin) TTNUS (Keith Henn) (w/o encl)

TETRA TECH NUS, INC.

661 Andersen Drive - Pittsburgh, Pennsylvania 15220-2745 (412) 921-7090 - FAX (412) 921-4040 - www.tetratech.com

PITT-01-1-047

January 15, 2001

Project Number 0087

Department of the Navy SOUTHNAVFACENGCOM ATTN: William H. Gates (Code 1864) Southern Division, Naval Facilities Engineering Command 2155 Eagle Drive, P.O. Box 190010 North Charleston, South Carolina 29419-9010

Reference: CLEAN Contract Number N62467-94-D-0888 Contract Task Order 0083

Subject: Final Basewide Background Soil Investigation Report Naval Surface Warfare Center Crane Crane, Indiana

Dear Mr. Gates,

Enclosed is one copy of the Final Basewide Background Soil Investigation Report (Revision 1) prepared for the Naval Surface Warfare Center Crane at Crane Indiana. We have incorporated agency comments on the draft report (Revision 0) and the results from the October 2000 supplemental sampling event in this report.

As you requested during our phone conversation on January 12, 2001, I have also sent Tom Brent five copies of the Final Report. Per your request, Mr. Brent will distribute copies of this report to the appropriate agency representatives at the U.S. Environmental Protection Agency and Indiana Department of Environmental Management.

If you have any questions, feel free to call me at (412) 921-8146 or e-mail me at hennk@ttnus.com.

Sincerely,

Keith Ŵ. Henn. P.G. Task Order Manager

KWH/sic Enclosure

c: Tom Brent, NSWC Crane (5 copies) Debbie Wroblewski (cover letter only) Mark Perry/file (1 copy) Tom Johnston (1 copy) TtNUS NSWC Crane Library (1 copy)

Basewide Background Soil Investigation Report

Naval Surface Warfare Center Crane

Crane, Indiana

Southern Division Naval Facilities Engineering Command Contract Number N62467-94-D-0888 Contract Task Order 0083

January 2001

BASEWIDE BACKGROUND SOIL INVESTIGATION REPORT

NAVAL SURFACE WARFARE CENTER CRANE CRANE, INDIANA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to: Southern Division Naval Facilities Engineering Command 2155 Eagle Drive North Charleston, South Carolina 29406

> Submitted by: Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7 Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0083

JANUARY 2001

PREPARED UNDER THE SUPERVISION OF:

KEITH W. HENN, P.G. TASK ORDER MANAGER TETRA TECH NUS, INC. PITTSBURGH, PENNSYLVANIA **APPROVED FOR SUBMITTAL BY:**

obleuch

ÓEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC. PITTSBURGH, PENNSYLVANIA

TABLE OF CONTENTS

SECTIO	<u>NC</u>	Ē	PAGE NO.
ACRO	NYMS		4
EXECU	ITIVE SUN	IMARY	ES-1
1.0		JCTION	1_1
1.0	1.1	PURPOSE OF THE BASEWIDE BACKGROUND SOIL INVESTIGATION	
	1.2	OBJECTIVES OF THE BASEWIDE BACKGROUND SOIL INVESTIGATION.	
2.0	PACKOP	OUND INFORMATION	2.4
2.0	2.1	SITE LOCATION AND DESCRIPTION	
	2.1	PHYSIOGRAPHY AND TOPOGRAPHY	
	2.2	LAND USE CLASSIFICATION	
	2.3 2.4	ECOLOGICAL COMMUNITIES AND HABITAT	
		CLIMATOLOGY AND METEOROLOGY	
	2.5 2.6	HYDROLOGY AND METEOROLOGY	
	-		
	2.7	GEOLOGY	
	2.7.1	General Geology and Stratigraphy	
	2.7.2	Unconsolidated Deposits	
	2.7.3	Bedrock	
	2.8	HYDROGEOLOGY	
	2.9	FACILITY HISTORY	
	2.9.1	General History	
	2.9.2	Past Data Collection Activities	
3.0	METHOD	OLOGY	2.4
3.0	3.1	INTRODUCTION	
	3.1	SUMMARY OF HISTORICAL BACKGROUND EVALUATION	
	3.2 3.3	SAMPLE NETWORK DESIGN AND RATIONALE	
	3.3 3.3.1		
		Determination of Background Areas	
	3.3.2	Description of Background Areas	
	3.3.3	Determination of Minimum Number of Background Samples	
	3.3.4	Field Events and Specific Background Sample Locations	
	3.3.5	Selection of Background Samples for Chemical Analysis	
	3.4	SOIL SAMPLING, ANALYSIS AND FIELD OPERATIONS	
	3.4.1	Background Sampling Locations	
	3.4.2	Sampling and Analysis Procedures	
	3.4.3	Borehole and Sample Logging	
	3.4.4	Sample Identification System	
	3.4.5	Sample Preservation, Shipping, and Handling	
	3.4.6	Chain-of-Custody/Documentation	
	3.4.7	Decontamination of Field Sampling Equipment	
	3.4.8	Investigation-Derived Waste Management	3-13
	3.5	QUALITY ASSURANCE/QUALITY CONTROL SAMPLES AND DETECTION	
	a - /	LIMITS	
	3.5.1	Source Water Blanks	
	3.5.2	Field Duplicates	
	3.5.3	Rinsate Blanks	3-14

TABLE OF CONTENTS (Continued)

SECTION

PAGE NO.

	3.5.4	Trip Blanks	3-14
	3.5.5	Ambient Condition Blanks	3-15
	3.5.6	Matrix Spikes/Laboratory Duplicates	3-15
	3.6	SURVEYING	
	3.7	DATA QUALITY AND VALIDATION	3-15
	3.7.1	General Data Validation Procedures	3-16
	3.7.2	Data Validation Qualifiers	3-16
	3.7.3	Bias (Accuracy) Evaluation	3-18
	3.7.4	Precision Evaluation	
	3.7.5	Attainment of Detection Limits	3-20
	3.7.6	Field Blank Evaluations	3-22
4.0	ΕΛΑΙ ΠΑΙ	FION OF BACKGROUND ANALYTICAL DATA	4-1
	4.1	DATA SET PREPARATION	
	4.2	SOIL TYPE CHARACTERIZATION AND CONSOLIDATION.	
	4.3	MINIMUM DETECTABLE CONCENTRATION DIFFERENCES BETWEEN SITE	2
	ne	AND BACKGROUND DATA	4-5
	4.4	NEED AND COLLECTION OF ADDITIONAL SAMPLES	
5.0		URE FOR USE OF THIS REPORT FOR DATA COMPARISONS	5_1
5.0	5.1	SIMPLIFIED STEPS FOR BACKGROUND COMPARISONS	-
	5.2	DATABASE QUERY FOR RETRIEVAL OF BACKGROUND DATA SETS	
	J.Z		. J-2
6.0	CONCLU	SIONS AND RECOMMENDATIONS	6-1
0.0	6.1	SUMMARY AND CONCLUSIONS	
	6.2	RECOMMENDATIONS	-
	0.2		. 0-2
REFER	ENCES		.R-1

APPENDICES

Α

FIELD FORM	лs
A-1	Multiple Sample Log Sheets
A-2	Chain of Custody Records
A-3	Field Log Book
A-4	Equipment Calibration Log
A-5	Survey Results

- **B** BORING LOGSHEETS
- C ANALYTICAL DATABASE
- D METHODOLOGY AND SUMMARY OF STATISTICAL ANALYSIS
- E HUMAN HEALTH AND ECOLOGICAL RISK-BASED CRITERIA

TABLES

NUMBER

0.4	LICDA/CCC Coll Classifications Dresent at NCM/C Crans	0.40
2-1	USDA/SCS Soll Classifications Present at NSWC Crane	
2-2	Summary Solid Waste Management Units.	
3-1	Summary of Historical Soil Background Data for Metals	
3-2	Background Soil Sample Locations, Background Area 1	
3-3	Background Soil Sample Locations, Background Area 2	
3-4	Background Soil Sample Locations, Background Area 3	
3-5	Sampling Summary for Chemical Analysis, Background Area 1	
3-6	Sampling Summary for Chemical Analysis, Background Area 2	
3-7	Sampling Summary for Chemical Analysis, Background Area 3	
3-8	Summary of Soil Samples Collected for Chemical Analysis	
3-9	Comparison of Field and Laboratory Duplicate Sample Concentrations	
3-10	Tabulation of Reported and Requested Detection Limits and Numbers of Non-Detects	
4-1	Statistical Summary of Analytical Results Complete Background Soil Sample Data Set	
4-2	Statistical Summary of Analytical Results, Soil Group 1 - Loess/Glacial Surface Soil	
4-3	Statistical Summary of Analytical Results, Soil Group 2 - Loess/Glacial Subsurface Soil	4-9
4-4	Statistical Summary of Analytical Results, Soil Group 3 - Alluvial Surface Soil,	
	Mississippian Surface Soil and Pennsylvanian Surface Soil	4-10
4-5	Statistical Summary of Analytical Results, Soil Group 4 - Alluvial Subsurface Silt and	
	Alluvial Subsurface Sand	4-11
4-6	Statistical Summary of Analytical Results, Soil Group 5 - Alluvial Subsurface Clay	4-12
4-7	Statistical Summary of Analytical Results, Soil Group 6 - Mississippian Subsurface	
	Clay and Mississippian Subsurface Sand	4-13
4-8	Statistical Summary of Analytical Results, Soil Group 7 - Mississippian Subsurface Silt	
4-9	Statistical Summary of Analytical Results, Soil Group 8 - Pennsylvanian Subsurface	
	Clay and Pennsylvanian Subsurface Silt.	4-15
4-10	Statistical Summary of Analytical Results, Soil Group 9 - Pennsylvanian Subsurface Sand	
4-11	Minimum Detectable Difference, in mg/kg, between Site and Background Data	
4-12	Minimum Detectable Differences Expressed in Number of Standard Deviations	
4-13	Statistical Differentiation of Soil Types into Soil Groups	
4-14	Completeness by Soil Type	

FIGURES

Completeness by Soil Group......4-21

NUMBER

4-14 4-15

2-1	General Location Map	2-17
2-2	Five-Year Windrose Summary for Indianapolis, Indiana	
2-3	Surface Drainage at Naval Surface Warfare Center	2-21
2-4	Surficial Geology Map and Depositional Environments	2-23
2-5	Stratigraphic Column for Rock Units Encountered at the Naval Surface Warfare Center	2-25
3-1	Location of Naval Surface Warfare Center Crane Division and Background Areas	3-40
3-2	Sampling Location Map, Background Area 1	3-41
3-3	Sampling Location Map, Background Area 2	3-43
3-4	Sampling Location Map, Background Area 3	3-45
3-5	Selection of Samples for Chemical Analysis	3-47
4-1	Differentiation of Soil Types into Soil Groups	4-23

020019/P

PAGE NO.

PAGE NO.

NSWC Crane Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: Table of Contents Page: 4 of 6

ACRONYMS

ABC	Alluvial subsurface clay soil
ABG	Ammunition Burning Grounds
ABL	Alluvial subsurface silt soil
ABS	Alluvial subsurface sand soil
ANOVA	Analysis of Variance
ARARs	Applicable, Relevant, or Appropriate Requirements
Army	U.S. Department of the Army
AS	Alluvial surface soil
ASTM	American Society for Testing of Materials
B&R Environmental	Brown and Root Environmental
B146	Building 146
BA1	Background Area 1
BA2	Background Area 2
BA3	Background Area 3
bgs	below ground surface
CAAA	Crane Army Ammunition Activity
CI	confidence interval
CFR	Code of Federal Regulations
CLEAN	Comprehensive Long-term Environmental Action Navy
СТО	Contract Task Order
DE	depositional environment
DQO	data quality objectives
DR	Demolition Range
EMR	Environmental Monitoring Report
EPA	United States Environmental Protection Agency
FSP	Field Sampling Plan
ft	foot; feet
GIS	geographic information systems
GPS	global positioning system
GRITS/STAT	Ground Water Information Tracking System/Statistics
HASP	Health and Safety Plan
IA	Installation Assessment
IAC	Indiana Administrative Code

NSWC Crane Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: Table of Contents Page: 5 of 6

IAS	Initial Assessment Study
IDEM	Indiana Department of Environmental Management
IDL	instrument detection limit
LBC	Loess/glacial subsurface claysoil
LBL	Loess/glacial subsurface Loess soil
LBS	Loess/glacial subsurface sand soil
LS	Loess/glacial surface soil
MBC	Mississippian residual subsurface clay soil
MBL	Mississippian residual subsurface silt soil
MBS	Mississippian residual subsurface sand soil
MS	Mississippian residual surface sand soil
MSL	mean sea level
NAVFAC	Naval Facilities Engineering Command
Navy	U.S. Department of the Navy
NGVD	National Geodetic Vertical Datum
NOAA	National Oceanographic and Atmospheric Administration
NSWC	Naval Surface Warfare Center
OB	Open Burning
OBP	Old Burn Pit
OD	Open Detonation
ORR	Old Rifle Range
PBC	Pennsylvanian residual subsurface clay soil
PBL	Pennsylvanian residual subsurface silt soil
PBS	Pennsylvanian residual subsurface sand soil
PID	Photo linization detector
PS	Pennsylvanian residual surface soil
PTA	Pyrotechnic Test Areas
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
RCRA	Resource Conservation and Recovery Act
RFI	RCRA facility investigation
RPD	Relative Percent Difference
SDG	Sample Deliver Group
SOP	Standard Operating Procedure
SOUTHNAVFACENGCOM	Southern Division, Naval Facilities Engineering Command
SQL	sample quantitation limit

NSWC Crane Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: Table of Contents Page: 6 of 6

SRBTL	soil risk-based target levels
SVOC	semivolatile organic compound
SWMA	Solid Waste Management Area
SWMU	Solid Waste Management Unit
TtNUS	TetraTech, NUS Inc.
USACE	United States Army Corps of Engineers
USCS	Unified Soil Classification System
USDA/SCS	United States Department of Agriculture/Soil Conservation Service
VOC	volatile organic compounds
WES	Waterways Experiment Station

EXECUTIVE SUMMARY

Tetra Tech NUS, Inc. (TtNUS) was tasked with performing a Basewide Background Soil Investigation for Naval Surface Warfare Center Crane (NSWC Crane), Crane, Indiana by the U.S. Navy (Navy) Southern Division, Naval Facilities Engineering Command (NAVFAC). NSWC Crane is located in the southern portion of Indiana. This investigation establishes a background database for soil for the entire NSWC Crane facility.

The results of this report are intended to support applicable Resource Conservation and Recovery Act (RCRA) Corrective Action requirements and other related environmental investigations conducted at NSWC Crane. One step typically taken when evaluating the risk of inorganic chemicals is a comparison of the chemical concentrations measured in the soil under investigation to their background concentrations. This comparison is made because many inorganic chemicals occur naturally in the environment. Background concentrations are those concentrations that would be observed in the absence of impact from facility operations. Thus, the background data contained herein can be used to differentiate site-related environmental contamination [from known or suspected Solid Waste Management Units (SWMUs), Areas of Concern (AOCs), or other sites at NSWC Crane] from naturally occurring and anthropogenic concentrations prior to U.S. Navy site operations.

The planning for this project conducted in early 1999 was followed by environmental sampling performed in November 1999 and October 2000. Background samples were collected from three background areas representing four different soil depositional environments (DEs). Each of these areas and specific sampling locations within these areas met numerous criteria to ensure that background soil samples represent "true background" areas or areas that have not been affected by past or present NSWC Crane operations. Based upon a sampling strategy, 67 soil samples were collected and analyzed for 27 inorganic (metal) concentrations.

The following conclusions can be drawn from the background investigation field effort, data set, and statistical analyses performed on the background data set:

 The data collected are of sufficient quality to be used for background comparisons of 27 metals in risk assessments, RCRA Facility Investigations, and other environmental investigations conducted at NSWC Crane. The background database should be valid for future comparisons for most soil encountered on the NSWC Crane facility. If exceptions arise, they should be handled on a case-bycase basis.

- Sixteen distinct soil types were represented in the background data set. A sufficient number of samples was collected to characterize background soil for 15 of the 16 soil types. The goal of attaining at least 3 samples was achieved for each of these 15 soil types. This goal was not achieved for the one remaining soil type.
- Statistical analyses supported by geological principles allowed the 16 soil types to be classified into 9 different soil groups. All soil types within each soil group have statistically similar metal concentrations. The goal of attaining at least 5 samples for statistical analysis for each of these soil groups was achieved, except for two soil groups. The goal of supporting a minimum detectable difference between site data and background data was also achieved for all but the same two soil groups. However, one of these two soil groups only marginally fails to meet the two-sigma project objective.
- The background concentrations for several metals exceeded human health and ecological risk-based target levels (SRBTLs) used during planning for this project.
- Because of varying soil types at any given site at NSWC Crane, two to three background (soil group) data sets will be needed for comparisons with site investigation data to determine whether site concentrations exceed background concentrations.
- In the initial sampling effort, insufficient background data were obtained for two of nine soil groups. A supplemental sampling effort seeking additional samples provided enough data to achieve project objectives for one of those two soil groups. For the remaining soil group (Pennsylvania Subsurface Sand, PBS), the background data set is still insufficient to support the intended statistical comparisons with site investigation data. However, it was shown that additional data collection is not warranted, given the infrequency with which that soil group was encountered during sampling.

The following items should be considered when using this data for comparisons with site investigation data:

 This report outlines procedures to be followed when comparing site investigation data to the background data sets (soil groups) presented in this report. Two types of comparisons may be performed. One historic approach used, involves a direct comparison between the site data and the background data's descriptive statistics (minimum, maximum, and average values in a data set as well as the upper tolerance limit [UTL] values). The information for this type of comparison is included in Tables 4-1 through 4-10. A second approach involves a more direct comparison of background and site data distributions using a statistical comparison. The complete data sets used in this type of comparison is held in a database currently managed by Tetra Tech NUS, Inc. See Section 5 for more details on data comparisons.

- Because some metals exceed human health and ecological risk-based target levels and these target levels are updated on a periodic basis, it is important that when the site investigation data are evaluated with respect to background data the current target levels are also considered.
- There may be circumstances where it might be beneficial for SWMU specific background data to be collected to supplement the basewide background soil database. These circumstances may include SWMUs which are affected by contamination from other SWMUs, SWMUs which are believed to be affected by small scale variations in local geology, where a SWMU's metals of potential concern differs from the background data sets, or when the PBS soil type is encountered and a comparison is needed.

1.0 INTRODUCTION

This report presents the results and conclusions of the Basewide Background Soil investigation at the Naval Surface Warfare Center Crane (NSWC Crane), Crane, Indiana. This report has been prepared for the U.S. Department of the Navy (Navy) by Tetra Tech NUS, Inc. (TtNUS) under the Southern Division, Naval Facilities Engineering Command (NAVFAC) contract, Contract Number N62467-94-D-0888, Contract Task Order (CTO) 0083. A copy of this report is maintained at the NSWC Crane Environmental Division office.

This investigation supports applicable Resource Conservation and Recovery Act (RCRA) Corrective Action requirements, including the need for RCRA Facility Investigations (RFIs) and other related environmental investigations to be conducted at the NSWC Crane. The Work Plan (TtNUS, 1999a, TtNUS, 2000b) for this investigation outlines the rationale and procedures for sample collection while the Quality Assurance Project Plan (TtNUS, 1999b) outlines the procedures for collection, analysis, and characterization of background data.

Based on the results of Solid Waste Management Unit (SWMU) investigations, decisions are made concerning risks to humans and ecological receptors that could be exposed to potential contaminants. The risk assessment decision process is performed in a step wise manner. The first step when evaluating the risk of inorganic chemicals often is a comparison of the chemical concentrations measured in site soil to their background concentrations. This comparison is made because many inorganic chemicals occur naturally in the environment. Background concentrations are those concentrations that would be observed in the absence of impact from site operations. In accordance with RCRA (EPA, 1989a) and risk assessment guidance (EPA, 1989b), if the measured site concentrations are not significantly greater than the background concentrations, it may be inferred that an operationally related release of those contaminants has not occurred, and the site investigation is often terminated at that point. If measured concentrations exceed background concentrations, additional assessment may be warranted.

Before comparisons to background concentrations can be performed, a suitable set of background data must be available. The background data must be representative of the background chemical concentrations. This means that samples collected for a background data set must be collected from areas that have not been affected by chemical releases associated with site activities. The background samples must also have similar geologic, chemical, and physical characteristics to those collected at the

CTO 0083

area(s) of investigation (i.e., SWMU) so that a meaningful comparison can be made (EPA, 1995). Soil having these similar characteristics are referred to as soil types.

This report consists of six sections. Section 1.0 is this introduction. Section 2.0 provides a description of the site characteristics and a brief summary of the SWMUs at the facility. Section 3.0 discusses the methodology followed for this investigation. It includes a summary of the data quality objectives, sample network design and rationale, and sampling procedures. Section 4.0 provides an evaluation of the background data collected. Section 5.0 provides a proposed methodology for using the findings of this report for data comparisons in future site investigations. Finally, Section 6.0 discusses the summary, conclusions and recommendations of this report. It is noted that Section 5.0 and 6.0 should be reviewed, at a minimum, when using the findings of this report for data comparisons.

1.1 PURPOSE OF THE BASEWIDE BACKGROUND SOIL INVESTIGATION

Background data sets presented in this report are intended to be the benchmarks to which current and future NSWC Crane SWMU and non-SWMU investigation soil data will be compared. The purpose of these comparisons is to differentiate site-related environmental contamination from naturally occurring and anthropogenic (i.e., prior to U.S. Navy operations) background concentrations of inorganic (i.e., metals) constituents. Consequently, comparability of the soil metals background data to data from these SWMU and non-SWMU investigations is crucial to the success of future projects. The background analytes of interest, the soil types, analytical methods, future land use, risk-based cleanup levels likely to be used in future investigations, methods of comparing data distributions, sampling schemes, and other pertinent considerations have been examined in this investigation. Soil has been classified into soil types with respect to physical characteristics that facilitate comparability among data sets. This critical aspect of the Data Quality Objective (DQO) planning, with rationales for selecting particular soil types, is summarized in Section 3.3.

In a meeting with the EPA Region 5, the Navy, based on input from TtNUS, recommended analyzing background samples for polycyclic aromatic hydrocarbons and pesticides, and possibly volatile organic compounds and polychlorinated biphenyls, to use as verification that samples were collected from background populations. EPA Region 5 recommended, instead, that samples be analyzed for metals only. Accordingly, analyses for the EPA Contract Laboratory Program (CLP) Target Analytic List (TAL) metals, lithium, strontium, thorium, and tin were conducted in accordance with the standard EPA analytical methods.

1.2 OBJECTIVES OF THE BASEWIDE BACKGROUND SOIL INVESTIGATION

The primary objective of this investigation was to collect a sufficient number of soil samples to adequately characterize, according to soil type, the background soil concentrations of a select number of metals at NSWC Crane. The samples should be adequate to enable the detection of a two-sigma concentration difference between data sets (see Section 3.3.3). The soil types for this investigation are derived by various combinations of soil from different depositional environments (DE), grain size, and depth below the ground surface. The following paragraph briefly describes how each of the soil types are derived from the DEs, grain size, and depth while Sections 2.0 and 3.0 describe this in greater detail.

The parent material or the origin of the soil and the manner in which it was deposited largely determines the chemical and mineralogical composition of that soil. The mechanism (e.g., water, wind, glaciers, weathering) from which the soil was formed is referred to herein as the depositional environment (DE) of the soil. Because the soil in each DE is derived from various types of parent material the resulting chemical composition is believed to vary significantly between the soil in each DE. NSWC Crane has been subdivided into four DE classifications: (1) alluvium (stream derived sediments); (2) loess (windblown sediment)/glacial outwash (glacially derived sediments); (3) residual soil derived from Pennsylvanian bedrock/colluvium; and (4) residual soils derived from Mississippian bedrock/colluvium. Within each DE, surface soil and subsurface soil were targeted, because the surface soil's chemical composition is believed to differ significantly from subsurface soil's chemical composition. This physical classification is believed to affect the chemical composition of soil because the parent material of the surface soil is believed, at least in part, to differ from the parent material from the subsurface material. It is also believed that the soil grain size (e.g., clay, silt, and sand) also significantly affects the concentration of inorganics in soil, providing another potential discriminating factor that is not necessarily well correlated to depth. Therefore, grouping of soil grain sizes into gross grain size classifications (e.g., clay, silt, and sand) was necessary to test this expectation. Collectively, all of these physical classifications of soil (i.e. DE, grain size, and depth) have been evaluated in this investigation to determine appropriate soil types for meaningful comparison with site investigation data.

The secondary objective of this investigation was to prepare the background data so that an actual minimum detectable concentration difference between SWMU and background data sets can be computed. The minimum detectable difference was established for various conditions such as different parametric data distributions, and was tailored to the actual data. Assumptions were made (e.g., the number of samples which would be collected) concerning site investigation data sets to permit the preparation of the data for computation of the minimum detectable difference. The comparison between SWMU and background data sets will be completed in each site investigation.

1-3

All reported metal concentrations are "total metal" concentrations (EPA, 1986b). The total metal concentration is herein defined as the sum total of a specific metal that can be dissolved from the native soil matrix by digesting the sample with a hot mineral acid in accordance with SW-836 Method 3050B. Method 3050B is not actually a <u>total</u> digestion technique for most samples in that it will not result in complete dissolution of the soil. Rather, it is a very strong acid digestion that will dissolve most chemical elements that could become environmentally available (EPA, 1986b). Chemical elements bound in silicate structures are not normally dissolved by this method because the acid used will not dissolved silicates. This is acceptable because silicates are not usually mobile in the environment.

This investigation is designed for quantification of metal concentrations in background soils only. The number of samples that might be collected in future investigations for comparison to background data sets is unknown. This lack of information limited the ability to project the minimum number of samples required for this investigation because data set comparisons are influenced by the number of samples in each data set. Consequently, best professional judgment was used in establishing criteria for determining whether enough data of the appropriate type and quality have been collected. Section 3.3 summarizes the rationale for selecting the number of samples for this background investigation.

The decision statement for this investigation is:

Determine if enough data points of adequate quality for each analyte in each soil type have been collected. If enough data of adequate quality have been collected, no more data will be collected; otherwise the need to collect additional data will be considered. If no additional data will be collected, the smallest detectable difference between normally distributed data sets of equal variance will be computed.

2.0 BACKGROUND INFORMATION

This section provides a discussion of the background information and general site characteristics at the NSWC Crane facility. It includes such topics as site location, physiography, topography, land use classification, climatology/meteorology, hydrology, geology, hydrogeology, and site history.

2.1 SITE LOCATION AND DESCRIPTION

NSWC Crane is located in the southern portion of Indiana, approximately 75 miles southwest of Indianapolis, 60 miles northwest of Louisville, Kentucky and immediately east of Burns City and Crane Village, Indiana. NSWC Crane encompasses approximately 62,463 acres or approximately 98 square miles of the northern portion of Martin County and smaller portions of Greene, Daviess, and Lawrence Counties. A location map of the NSWC Crane facility is shown on Figure 2-1.

2.2 PHYSIOGRAPHY AND TOPOGRAPHY

NSWC Crane is in the unglaciated area of the Crawford Uplands Physiographic Province. This province is a rugged, highly vegetated, dissected plateau bounded by the Mitchell Plain Physiographic Province to the east and the Wabash Lowland Physiographic Province to the west (Murphy and Wade, 1995). The Mitchell Plain is a low dissected limestone plateau characterized by sinkholes and karst topographic features. The boundary between the Crawford Upland and the Mitchell Plain is marked by the highly irregular, eastern facing Chester Escarpment. Springs, caverns, caves, and other solution weathering features can be found along this escarpment which runs along the eastern edge of the NSWC Crane facility. The boundary between the Crawford Upland and the Wabash Lowland near the western boundary of NSWC Crane is gradual (Murphy and Wade, 1995).

The overall terrain at the facility is predominantly rolling with moderately incised stream valleys. Few topographically flat areas are found at NSWC Crane. Most of the region is covered by deciduous trees and shrubs. The elevations across Crane range from about 500 feet above mean sea level (AMSL) to about 850 feet AMSL. Man-made Lake Greenwood extends west to east across the northern part of the facility. Topographic relief in the Crawford Upland ranges from 100 to 350 feet. Greater relief exists in the eastern part of NSWC Crane near the Chester Escarpment (Murphy and Wade, 1995). A topographic and surficial geology map of the entire facility has been compiled by Kvale (1992) and Blunck (1995) after U.S. Geological Survey 7.5 minute quadrangle maps (Indian Springs, Scotland, Koleen, Owensburg, Odon, Williams, Loogootee, and Shoals). Portions of this topographic and surficial geology map of the facility.

2.3 LAND USE CLASSIFICATION

NSWC Crane is situated in a rural area of south-central Indiana. The surrounding communities are in transition from an economic base of agriculture, mining, and quarrying to an economy built on manufacturing and service industries. The patterns of settlement, population statistics, and median income are similar throughout the region (B&R Environmental, 1997). Because most of the region is covered by vegetation, the area is classified as rural (B&R Environmental, 1997).

There is no state or local land use planning in the vicinity of NSWC Crane. The only zoning and land use regulations are in the municipalities in the region. None of the municipalities are close enough to have an impact on NSWC Crane. None of the areas adjacent to NSWC Crane are zoned, and zoning is not anticipated in the near future. There are no known land use or community actions under consideration or proposed at this time (B&R Environmental, 1997).

2.4 ECOLOGICAL COMMUNITIES AND HABITAT

A biological characterization of NSWC Crane, including a list of plants and animals found at the facility, is presented in the Installation Assessment (IA; Army, 1978) and the Initial Assessment Study (IAS; NEESA, 1983) and is summarized in the Environmental Monitoring Reports (EMR; Halliburton NUS, 1992a and 1992b). A list of species which may inhabit NSWC Crane and are protected under the U.S. Endangered Species Act, Indiana Department of Natural Resources Heritage Data Center, or the U.S. Fish and Wildlife Service is summarized in the RCRA Facility Permits (EPA, 1995). Other information on the subject is available from the Indiana Department of Natural Resources (1987, 1988).

2.5 CLIMATOLOGY AND METEOROLOGY

NSWC Crane is located in a warm temperate climatic zone. In general, the summers are warm and humid, and winters are mild with occasional short cold periods. The temperature ranges from an average maximum July temperature of 89°F to an average minimum January temperature of 26°F. Precipitation is fairly evenly distributed throughout the year, with the maximum precipitation occurring during the spring and early summer. The average annual precipitation at the facility is 44 inches, consisting of 42 inches of rain and 15 inches of snow. The average humidity ranges from 40 to 90 percent in summer and 60 to 90 percent in winter.

Although the NSWC Crane Open Burning (OB) and Open Detonation (OD) treatment units (e.g., Ammunition Burning Grounds and Demolition Range) have onsite meteorological monitoring stations,

data are collected for wind speed and wind direction only prior to and during treatment events. Therefore, insufficient data are available at the site to generate a climatological summary for the area. As a result, climatological data collected at the Indianapolis International Airport, approximately 65 miles northeast of Crane, were selected to describe the general climatology of the area occupied by the NSWC Crane. Indianapolis was chosen because it is the closest and most representative National Weather Service reporting station (B&R Environmental, 1997a). The wind direction is summarized below, if additional information is needed please refer to the RCRA Air Quality Assessment (B&R Environmental, 1997a).

Long-term climatological records (NOAA, 1988) for the area indicate that the monthly prevailing wind direction is from the southwest quadrant (meaning it predominantly blows to the northeast) from April through December, then shifts to the northwest during January through March. The annual prevailing wind direction for the region is from the southwest quadrant. The annual average wind speed for the area is about 9.6 miles per hour. Figure 2-2 is a wind rose illustrating the wind direction and mean wind speed distribution for the Indianapolis International Airport over the 5-year period, 1985-1989. The least predominant wind directions are from the northeastern and southeastern quadrants. More specifically, Figure 2-2 shows that the wind blew from the southwest quadrant (from due west to due south) approximately 43%, from the northwest quadrant (due north to due west) approximately 31.5%, from the northeast quadrant (due north to due east) approximately 23.5% during this 5 year period. It is noted that the total flow percentage is greater than 100% because the N, S, E, and W "pole" directions each fit into two quadrants.

2.6 HYDROLOGY

The surface drainage at NSWC Crane has formed a dense, dendritic pattern that flows throughout the installation in a general southward or southwestward direction. Seven primary creeks in five drainage basins carry surface water off the installation which eventually drains into the East Fork of the White River and then to the Wabash River to the southwest. Figure 2-3 shows the basins and drainages of NSWC Crane.

Drainage Basin IV consists of Boggs and Turkey Creeks, which are the primary drainageways for the installation and drain the majority of the area. The northern and northwestern sections (Basin I) are drained by Furst Creek, the eastern portion (Basin III) is drained by the Sulphur Creek complex, the extreme eastern portion (Basin II) is drained by Indiana Creek (not shown on Figure 2-3), and the southwestern section (Basin V) is drained by Seed Tick Creek. Also located within the installation are several small ponds and Lake Greenwood, an 800-acre lake in the northwestern portion of the installation.

2.7 GEOLOGY

2.7.1 General Geology and Stratigraphy

The geology at NSWC Crane is generally characterized by thin overburden deposits overlying bedrock. The overburden deposits generally range in depth from the surface down to 65 feet (Nohrstedt, et al., 1998a) below ground surface. These deposits generally consist of two types: Quaternary-age unconsolidated deposits and unconsolidated residual soil derived from the underlying bedrock. Bedrock underlying the Crane facility consists of sedimentary rocks from the Lower Pennsylvanian-age Raccoon Creek Group and the Upper Mississippian-age Stephensport and West Baden Groups. The following subsections describe the unconsolidated deposits and bedrock at NSWC Crane in greater detail.

2.7.2 Unconsolidated Deposits

The Quaternary-age unconsolidated deposits consist of alluvial (stream-derived sediments), colluvial (sediments at the foot of a slope via gravity), and glacial outwash deposits (derived from glaciers) consisting of clay, silt, sand, and gravel; lacustrine deposits (derived from lakes) consisting of clay, silt, and sand; and loess (wind blown deposits) deposits consisting of clay and silt.

Unconsolidated residual soil at NSWC Crane were derived from the underlying sedimentary rocks of the Lower Pennsylvanian Raccoon Creek Group and the Upper Mississippian Stephensport and West Baden Groups. These soils consist of clay, silt, sand, and fragmented and/or partially weathered bedrock. The residual soil derived from Pennsylvanian bedrock/colluvium is referred to hereafter as Pennsylvanian soil. The residual soil derived from Mississipian bedrock/colluvium is referred to hereafter as Mississippian soil.

Using the United States Department of Agriculture (USDA)/ Soil Conservation Service (SCS) soil classification system (McElrath, 1988), the soil at NSWC Crane has been classified into 23 soil series. More specifically, the soil at the 33 Solid Waste Management Units (SWMUs) at the facility has been classified into 15 soil series. Each of these soil series are defined by various soil characteristics (e.g., grain size, erosion, slope, drainage, parent material or depositional source, etc.) specific to the series. Within these soil series various sub-classes or soil map units have been defined. Table 2-1 lists the soil series and map units present throughout the facility and indicates the number of facility SWMUs where these soil series are present. USDA/SCS soil maps for NSWC Crane have been included in Appendix D of the Work Plan (TtNUS, October 1999a).

For the purposes of this study, the USDA/SCS soil classifications at NSWC Crane have been categorized according to their DE. The DE refers to the mechanism and parent material from which a soil was formed. Thus, the DE (more specifically the parent material) determines the chemical and mineralogical composition of the soil (McElrath, 1988). Other factors such as grain size also affect the chemical and mineralogical make-up of a particular soil. The soil at the facility has been subdivided into four DE classifications: (1) alluvium; (2) loess/glacial outwash; (3) residual soils derived from Pennsylvanian bedrock/colluvium; and (4) residual soils derived from Mississippian bedrock/colluvium. The following sections describe each of these DEs and the USDA soil series which are classified within each DE. Table 2-1 illustrates this soil classification.

2.7.2.1 Alluvial Deposits

Alluvial deposits (or alluvium) are defined as material that has been deposited by streams or running water. The Quaternary sequences of alluvium generally correspond to the Bartle, Birds, Bonnie, Burnside, Haymond, Pekin, Wakeland, and Wilbur USDA soil series (McElrath, 1988). Alluvium was mapped by Kvale (1992) where it was found greater than 7 feet thick. These deposits generally were found in major river valleys in the area. Kvale's (1992) classification of alluvium generally corresponds to the Haymond or Wakeland silt loam soil series.

Based upon the background samples collected in alluvial deposits from the investigation, this soil is predominantly silt and sand with some gravel and traces of clay. Most borings encountered refusal before 6 feet indicating that gravel may be more predominant at depth or bedrock may be very shallow in these areas. In one boring (BG3SBA05; see Appendix B), naturally occurring red staining (likely from iron nodules) was evident in the soil samples.

2.7.2.2 Loess/Glacial Deposits

The glacial outwash in Martin County is typically composed of stratified gravel, sand, and silt formed by running water from melting glaciers during the Illinoian Period (McElrath, 1988). The glacial deposits have been classified by McElrath (1988) as Negley, Parke, and Pike USDA soil series. Kvale (1992) however eliminated some Negley soils as glacial deposits. Glacial outwash deposits are found locally only in the northwest corner of the Crane facility.

As the Illinoian glacial ice receded, temporary glacial lakes formed. The fine-grained material deposited in these glacial lakes was carried by wind out of the White River valley and deposited in the adjacent uplands. These thin, uniform silt deposits are referred to as loess deposits. During the late Wisconsinan time, a thin mantle of these loess deposits (ranging from a few inches to several feet thick) were deposited throughout Martin County (McElrath, 1988) and the NSWC Crane facility. Loess deposits are typically fine-grained material, dominated by silt-sized particles. Hosmer soil are examples of relatively thick loess deposits primarily found on ridgetops (Kvale, 1992), where as Zanesville soil are examples where only a thin layer of loess has formed on the surface (McElrath, 1988).

Based upon the background samples collected in this investigation, the loess deposits at NSWC Crane are predominantly clay and silt with traces of fine sand. All borings were able to penetrate to the specified depth of 6 feet below ground surface indicating that bedrock is greater than 6 feet in depth in these areas. In one boring (BG1SBL03; Appendix B) naturally occurring red iron nodules were evident in the soil samples. Incidentally, in this same boring the highest photoionization detector (PID) readings (i.e., 551 ppm) were detected. The cause of these anomously high readings is unknown, although these PID readings could be the result of decomposing organic matter.

As is typical of most glacially derived sediment, glacial deposits at NSWC Crane consist of a wide range of grain sizes (e.g., clay, silt, sand, and gravel). These sorted and unsorted, glacially derived sediments are commonly referred to as glacial outwash and till, respectively, and are found in the northwestern portion of the facility. Most of the borings penetrated to the specified depth of 6 feet bgs. Those that hit refusal at less than 6 feet were likely a result of gravel or boulders.

2.7.2.3 Residual Soil from Bedrock/Colluvium

Most of the soil in Martin County was developed from bedrock residuum (McElrath, 1988). As mentioned in Section 2.7.2 these residual soils developed from the underlying sedimentary rocks of the Lower Pennsylvanian and Upper Mississippian formations. Because the make-up and characteristics of these two bedrock types are significantly different, the residual soils developed are expected to be different. As discussed in Section 2.7.3, the Pennsylvanian bedrock contains black shales, carbonaceous shales, and coal which are expected to have a higher metals content than the "cleaner" shale and limestone encountered in the Mississippian bedrock (Rupp, 1999). Colluvial deposits, which are soil and bedrock fragments that have been moved by gravity and deposited at the base of steep slopes, have been classified with the residual soil because they are expected to have similar characteristics. For the purposes of this investigation, the Pennsylvanian and Mississippian residual soil DEs were not differentiated to their stratigraphic map units (i.e., formations). For example, the Raccoon Creek Formation and the undifferentiated portion of the lower Pennsylvanian were not addressed separately and formations in the Mississippian DE were not addressed separately when evaluating a DE. However,

Mississippian formations were considered in sample selection from the Mississippian residual soil DE (see Section 3.0).

Based upon the background samples collected residual soil predominantly consisted of silty clay and silt with traces of sand. Most borings were able to penetrate to the specified depth of 6 feet bgs indicating that bedrock is deeper than 6 feet in most areas. However in some areas bedrock was encountered with 3 feet of ground surface. One boring in the Pennsylvanian (BG1SBP01) and four borings in the Mississippian residual soil (BG3SBM01, 02, 03, 05; Appendix B) encountered what appeared to be naturally occurring red iron nodules and iron staining.

2.7.3 <u>Bedrock</u>

Bedrock underlying the Crane facility consists of sedimentary rocks from the Lower Pennsylvanian-age and the Upper Mississippian-age bedrock. The Lower Pennsylvanian bedrock (Raccoon Creek Group) at the facility primarily consists of interbedded sandstone, siltstone, shale, and coal with a total thickness varying from 0 to more than 300 feet (Fisher, 1996). The underlying Missisippian-age bedrock consists of limestone, shale and sandstone (Murphy and Wade, 1995 and Palmer, 1969). An unconformity separates the Pennsylvanian from the Mississippian rock units at Crane. The relief of the unconformity between the Pennsylvanian and Mississippian bedrock has been measured to be as much as 100 feet (Kvale, 1992).

Pennsylvanian bedrock are absent in the deepest present day drainage channels (e.g., Sulphur Creek, Turkey Creek) primarily due to erosion. In these locations the Mississippian-age bedrock is exposed. A large number of SWMUs are located on ridges or other topographically high areas, primarily on top of Pennsylvanian bedrock. One exception to this generalization is the Ammunition Burning Ground (ABG) which is located over Mississippian bedrock (Fisher, 1996). The surficial geology of the mappable geologic units at NSWC Crane is shown on Figure 2-4. An outline of the of SWMUs is included as an illustration of the type of surface bedrock material underlying these SWMUs.

The following paragraphs provide a brief description of the geologic formations as described by Palmer (1969), Murphy and Wade (1998) and Kvale (1992). They are presented from youngest (first) to the oldest units. These geologic units are also illustrated on the stratigraphic column illustrated on Figure 2-5.

- <u>Mansfield Formation and Undifferentiated Lower Pennsylvanian</u> (Pennsylvanian Raccoon Creek Group). This unit consists of alternating beds of shales (e.g., black shale and carbonaceous shale), sandstone, mudstone, siltstone, and thin discontinuous coal units.
- b. <u>Glen Dean Limestone, Hardinsburg Formation, Golconda/Haney Limestone, Indian Springs</u> <u>Member, undifferentiated</u> (Mississippian Stephensport Group). This unit consists of limestone (Glen Dean Formation), soft shale and cross-bedded sandstone (Hardinsburg Formation), shaley limestone and limey shales (Golconda/Haney Formation), and dark gray shale (Indian Springs Formation). Thickness of the unit ranges from 60-70 feet. This group is referred to as M6 (Kvale, 1992).
- c. <u>Big Clifty Sandstone member, Big Clifty Formation</u> (Mississippian Stephensport Group). The Big Clifty sandstone is a tan to green-gray, massive to thick-bedded, rippled, fine- to very fine-grained, well sorted, rounded, friable sandstone with occasional shaly partings. Thickness of this unit ranges from 30 to 40 feet. This group is referred to as M5 (Kvale, 1992).
- <u>Beech Creek Limestone Formation</u> (Mississippian Stephensport Group). The Beech Creek Limestone consisted of fossiliferous, hard limestone. Joints in the limestone were sparse to numerous in cores recovered from the 18 well borings penetrating the Beech Creek Formation. The Beech Creek formation displayed moderate to extensive solution-enlarged jointing at another site within NSWC Crane (Hunt, 1988). Thickness of this unit ranges from 20 to 25 feet. This group is referred to as M4 (Kvale, 1992).
- e. <u>Elwren Formation, Reelsville Limestone, Upper Sample Formation, undifferentiated</u> (Mississippian West Baden Group). This unit consists of fine-grained interbedded sandstone and mudstone (Elwren Formation), a thin discontinuous limestone (Reelsville Limestone), and finegrained sandstone (Upper Sample Formation). Thickness of this unit ranges from 65 to 75 feet. This group is referred to as M3 (Kvale, 1992).
- e. <u>Lower Sample Formation, Beaver Bend Limestone, Bethel Formation, undifferentiated</u> (Mississippian West Baden Group). This unit consists of dark greenish gray shale (Lower Sample Formation), fossiliferous limestone (Beaver Bend Limestone), and a calcareous sandstone and shale (Bethel Formation). Thickness of this unit ranges from 50 to 60 feet. This group is referred to as M2 (Kvale, 1992).

CTO 0083

f. <u>Paoli Limestone, Ste. Genevieve, undifferentiated</u> (Mississippian Blue River). This unit consists of oolitic limestone and undifferentiated limestone. Thickness of this unit is at least 35 feet (based upon exposure in Boone Hollow, northeastern corner of the facility). This group is referred to as M1 (Kvale, 1992).

Structurally, NSWC Crane is located on the eastern edge of the Illinois Structural Basin, where the Pennsylvanian and Mississippian age bedrock dips to the west-southwest and southwest at approximately 30 to 35 feet per mile (Dunbar, 1982, p. 10 and Kvale, 1992). Locally, however the dip of the Mississippian bedrock can range from 0 to 15 feet per mile to as much as 100 feet per mile (Sulphur Creek; Kvale, 1992).

2.8 HYDROGEOLOGY

In general, groundwater in the unglaciated portion of southwestern Indiana is present in surficial unconsolidated aquifer(s) and underlying bedrock aquifers consisting of primarily sandstone and limestone. Bedrock aquifers are generally isolated from one another vertically by less permeable shale units. Groundwater enters the aquifers through outcrops and infiltration, and flows by gravity down the dip of the strata or locally in directions controlled by the potentiometric gradient.

Regionally, groundwater flow is expected to conform to the southwestward-dipping bedrock with a gradient approaching the dip. Locally, water-level measurements from wells generally show that groundwater flow direction agreed with local surface drainage. Seasonal fluctuations in the water table are expected to be slight because precipitation is well distributed throughout the year (Murphy, 1994; Murphy and Wade, 1995).

2.9 FACILITY HISTORY

This section contains a brief summary of the general history of NSWC Crane and the Solid Waste Management Units (SWMUs) present at the facility.

2.9.1 <u>General History</u>

The facility was commissioned in 1941 as the Naval Ammunition Depot (NAD) Burns City, to serve as an inland munitions production and storage center for the US Navy. The name of the facility was changed in 1943 to NAD Crane, in 1975 to the Naval Weapons Support Center, and in 1992 to NSWC Crane. The facility was constructed on land publicly acquired under the White River Land Utilization Project (35,000 acres) and land purchased from private ownership (26,830 acres) beginning in 1934. Prior to its

acquisition by the Navy, the land was largely used for timber and agriculture (Poynter, 1999). The Department of Defense (DOD) ammunition procurement responsibility was transferred to the Army in 1977. The Army assumed ordnance production, storage, and related responsibilities under the single service management directive. All environmental activities on the installation remain the responsibility of the Navy.

2.9.2 Past Data Collection Activities

This section includes a brief description of the historic data collection activities conducted at NSWC Crane. The following summary has been generated using reports and supporting documents (submitted by other contractors) provided by NSWC Crane.

The first investigations performed at the NSWC Crane were the IA (Army, 1978) and the IAS (NEESA, 1983). Performed in 1977, the IA consisted of an extensive records search and interviews with former and present employees at NSWC Crane. The purpose of the IA was to investigate potential contaminant releases to the environment from past operations and to determine the potential of these releases to migrate beyond the facility boundaries. The IAS began in April 1981 in response to the Navy Assessment and Control of Installation Pollutants (NACIP) Program and was completed in May 1983 by the Naval Energy and Environmental Support Agency (NEESA) with assistance from the Ordnance Environmental Support Agency and the United States Army Corps of Engineers (USACE) Waterways Experiment Station (WES). The intent of the IAS was to identify and assess sites posing a potential threat to human health and the environment from past hazardous materials operations. Although none of the sites investigated were determined to represent immediate human health or environmental threats, 14 sites were recommended for further study to evaluate potential long-term impacts.

Based on these investigations and others (submitted by other contractors), 33 SWMUs have been identified at NSWC Crane (EPA, 1995). Table 2-2 lists each SWMU and briefly summarizes the Solid Waste Management Area (SWMA) classification, processes, and presumed metals (only) of potential concern at each of these SWMUs. Figure 2-4 illustrates the location and identification of each of these SWMUs.

2.9.2.1 Air Quality Assessment

Based on the predominant wind direction at NSWC Crane (Section 2.5) the southwest quadrant of the facility is less likely to have received fallout from airborne contaminant releases from the OB/OD (e.g., Ammunition Burning Grounds, Old Rifle Range, and Demolition Range) operations. Based on the

predominant wind direction this area also is less likely to experience any potential contaminants from the Field Testing Ranges (Pyrotechnic Test Area, Annex, and Rocket Range [SWMU 19/00]) which are located to the east.

The RCRA Air Quality Assessment Report (B&R Environmental, 1997a) assessed the effects of airborne particulates from OB/OD (e.g., Ammunition Burning Grounds, Old Rifle Range, and Demolition Range) activities on the surrounding areas. This report however did not determine the maximum distance of impact on the surrounding areas from particulates released from OB/OD activities. Areas at the greatest distance downgradient (downwind) from these areas are least likely to be affected by any airborne releases.

The Old Open Burn Pit (SWMU 05/03) may have released particulates during the daily open burning of refuse. Activities at this site were discontinued in 1972. Based on the prevailing wind direction (Section 2.5), areas to the west of the Old Burn Pit are less likely to have been affected by airborne particulates released from this area than are areas to the east.

The Crane Army Ammunition Activity (CAAA) QA/QC Test Area (SWMU 20/00), which is located in the center of the NSWC Facility (see Figure 2-4) also may be a source for airborne particulates. At this site, flare testing was conducted which produced a lot of smoke (there are even signs in the area of operation which warn that the visibility on the road may be obscured by smoke; Brent, 1999). Although no longer in operation, the Building 146 incinerator (SWMU 16/16) was also a source for airborne emissions. This site is located in the north-central portion of the NSWC facility (Figure 2-4).

NSWC Crane Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: 2 Page 12 of 23

This page intentionally left blank.

USDA/SCS SOIL CLASSIFICATIONS PRESENT AT NSWC CRANE⁽¹⁾ NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 1 OF 2

				Soil Classi	fication ⁽²⁾	Soil Class	ification ⁽³⁾		· .	
Depositional Environment	Soil Series	Soil Type	Present at # of SWMUs	Surface Soil ⁽⁴⁾	Subsurface Soil ⁽⁵⁾	Surface Soil ⁽⁴⁾	Subsurface Soil ⁽⁵⁾	Description	Location	Type of Deposition (McElrath, 1988)
Alluvium	Bartle	Ва	0	silt loam	silt loam to silty clay loam	CL, CL- ML	CL, CL- ML	0 to 2 percent slopes, gently sloping, deep, poorly drained	lowlands	Lake plains & stream terraces
	Birds	Bk	2	silt loam	silt loam	CL	CL	frequently flooded, nearly level, deep, poorly drained; on broad bottom land.	lowlands	Alluvium derived from loess uplands
	Bonnie	Во	0	silt loam	silt loam	CL	CL	0 to 2 percent slopes, gently sloping, deep, poorly drained	lowlands	Alluvium derived from loess uplands
					loam to channery			occassionally flooded, nearly level, deep, well		Alluvium derived from sandstone,
	Burnside	Bu	4	loam	loam	CL	GC, SM, GM	drained; on flood plains frequently flooded, nearly level, deep, well drained;	flood plains	siltstone, and shale
	Haymond	Hđ	3	silt loam	silt loam	ML	ML, SM	on bottom land	lowlands	Silty alluvium
	Thaymond			Sirt iouri	silt loam to silty		,			
	Pekin	PeB	0	silt loam	clay loam	CL-ML		2 to 6 percent slopes, deep, well drained	outwash terraces	Loess and underlying alluvium
	Wakeland	Wa	4	silt loam	silt loam	ML	ML	frequently flooded, nearly level, deep, somewhat poorly drained	flood plains	Silty alluvium derived from loess uplands
	Wilbur	Wr	ó	silt loarn	silt loam	ML, CL-ML	ML, CL-ML	0 to 2 percent slopes, deep, poorly drained	lowlands	Alluvium derived from loess uplands
-	Hosmer	НоВ	2	silt loam	silt loam to silty clay loam	ML, ML-CL, CL	ML, ML-CL, CL	2 to 6 degree slopes, gently sloping, deep, well drained	uplands & ridgetops and on loess-capped lake plains.	Loess
Loess/"	Camden	СаВ	0	silt loam	silt loam,clay loam, sandy loam	CL, ML-CL	ML, CL, SM, SC	1 to 5 percent slopes, deep, well drained	atroom townson	Loess and underlying outwash material
20235/	Califiden	Cab		Sill iQalli	loam, clay loam,	ML, ML-CL,		8 to 35 percent slopes, deep, well drained	stream terraces	Loess capped and underlying
Glacial Outwash	Negley	NeE	2	sift loam to loam	gravely loam	CL		deep, well drained	loess and outwash	outwash material
	Parke	PaC2	1	silt loam	silty clay loam to sandy clay loam	CL-ML	SC, CL	6 to 18 percent slopes	uplands & sideslopes	Loess capped and underlying outwash material
					silt loam to silty					Loess capped and underlying
	Pike	Pk	0	silt loam	clay loam	CL	CL, SC	2 to 6 percent slopes, deep, well drained	outwash terraces	outwash material
Residual Soil from Bedrock	Johnsburg	Jo	0	silt loam	silty clay loam, sil loam, to sandy loam	CL, ML-CL	ML, CL, SM, SC	0 to 2 percent slopes, deep, poorly drained	unlanda	Loess and material weathered
(both	Johnsburg	- 30		Sittoan	shaly silty clay	CL-ML, CL,		6 to 14 percent slopes, moderately steep to steep,	uplands	from SS, siltstone, shale. Excavated areas formerly used
Pennsylvanian &	Udorthents	UhD	1 .	shaly silty clay loam	loam	ML	ML	moderately deep to deep, well drained	uplands	as landfills
Mississippian)/ Colluvium	Udorthents-Pits complex	Up	1	gravelly sand	gravel	GM	GM	NA	uplands	Material left from sandstone guarries and sand pits
	Wellston	WeB	1	silt loam	silt loam, silty clay loam, to channery loam		· · · · · · · · · · · · · · · · · · ·	2 to 6 percent slopes, gently sloping, deep, well drained	ridgetops	Loess and material weathered from SS, siltstone, shale.
					silt loam, silty clay loam, to channery		CL-ML, CL,	6 to 12 percent slopes, eroded, moderately sloping.	ridgetops sideslopes in	Loess and material weathered
		WeC2	5	silt loam	loam	ML	SC, SM-SC	deep, well drained	uplands	from SS, siltstone, shale.

020019/P

.

Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: 2 Page 13 of 23

USDA/SCS SOIL CLASSIFICATIONS PRESENT AT NSWC CRANE⁽¹⁾ NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 2 OF 2

			Present	Soil Classi	fication ⁽²⁾	Soil Class	ification ⁽³⁾			
Depositional		Soil	at # of		Subsurface	Surface	Subsurface			Type of Deposition
Environment	Soil Series		SWMUs	Surface Soil ⁽⁴⁾	Soil ⁽⁵⁾	Soil ⁽⁴⁾	Soil ⁽⁵⁾	Description	Location	(McElrath, 1988)
					silt loam, silty clay					
Residual Soil from					loam, to channery			12 to 18 percent slopes, eroded, steeply sloping,	sideslopes in	Loess and material weathered
Bedrock		WeD2	8	silt loam	loam	ML	SC, SM-SC	deep, well drained	uplands	from SS, siltstone, shale.
	·				silt loam, silty clay					
(both					loam, to channery			12 to 18 percent slopes, severly eroded, steeply	sideslopes in	Loess and material weathered
Pennsylvanian &		WeD3	3	silt loam	loam	ML		sloping, deep, well drained	uplands	from SS, siltstone, shale.
					silt loam, silty clay		CL-ML, CL,		and a state	Loess, colluvium, and material
Mississippian)/					loam, to	 	SC, SM-SC,		sideslopes in	weathered from SS, siltstone,
Colluvium	Wellston-Ebal	WID	0	silt loam	channery loam	ML	CH, GC	10 to 18 percent slopes, deep, well drained	uplands	shale.
					silt loam, silty clay					
·	Wellston-Berks-			silt loam to	loam, to	ML, SC, GM,		18 to 70 percent slopes, moderately to very steep,	sideslopes in	Loess and material weathered
	Gilpin complex	WgG	5	channery silt loam	channery loam	GC	SC, SM-SC	deep, well drained	uplands	from SS, siltstone, shale.
				-14	silt loam, silty clay					
	Wellston-Gilpin	WnE	10	silt loam to	loam, to	ML, SC, GM,		12 to 30 percent slopes, strongly sloping to steep,	sideslopes in	Loess and material weathered
	complex Wellston-	WITE	16	channery silt loam	channery loam	GC	30, 314-30	moderately deep	uplands	from SS, siltstone, shale.
	Udorthents			silt loarn to silty clay	silt clay loam to	ML. CL, CL-		12 to 18 percent slopes, strongly sloping, very	sideslopes in	Loess and material weathered
	complex	WpD ⁽⁶⁾	8	loam	channery loam	ML, OL, OL		shallow to deep	uplands	from SS, siltstone, shale.
	Complex	wpb.	- °		Channely Juan		CL-ML, CL,			nom 35, sitstone, shale.
				silt loam to silty clay	silty loam, to	CL-ML, CL,		2 to 6 percent slopes, gently sloping, deep.	ridgetops in	Loess and material weathered
	Zanesville	ZaB	6	loam	sandy clay loam	ML	GM	moderately to well drained	uplands	from SS, siltstone, shale.
	Zanesvine	200			sandy ciay loan		CL-ML, CL,		ridgetops and	nom 33, sinstone, shale.
				silt loam to silty clay	silty loam, to	CL-ML, CL,		6 to 12 percent slopes, eroded, moderately sloping,	sideslopes in	Loess and material weathered
		ZaC2	7	loam	sandy clay loam	ML ML		deep, moderately to well drained	uplands	from SS, siltstone, shale.
		2002	<u> </u>		carrey chap to an			6 to 12 percent slopes, severally eroded,	ridgetops and	Non Bo, endene, ender
				silt loam to silty clay	silty loam, to	CL-ML, CL,		moderately sloping, deep, moderately to well	sideslopes in	Loess and material weathered
•		ZaC3	2	· loam	sandy clay loam	ML		drained	uplands	from SS, siltstone, shale.
	Zanesville-	Luco			oundy only round		CL-ML, CL,		opiando	
)	Udorthents			silt loam to silty clay	silt loam, silty clav	CL-ML, CL,		2 to 6 percent slopes, gently sloping, moderately to	ridgetops in	Loess and material weathered
	complex	ZnB ⁽⁶⁾	13	loam	loam to loam	ML		well drained	uplands	from SS, siltstone, shale.
							CL-ML, CL,			
			•	silt loam to silty clay	silt loam, silty clav	CL-ML, CL,		6 to 12 percent slopes, gently sloping, moderately to	ridaetops in	Loess and material weathered
		ZnC ⁽⁶⁾	17	loam	loam to loam	ML		well drained	uplands	from SS, siltstone, shale.
Notoo							·		· · · · · · · · · · · · · · · · · · ·	

SWMU - solid waste management units

Notes:

USDA United States Department of Agriculture SCS Soil Conservation Service

Information taken from McElrath (1988).

2 United States Department of Agriculture (USDA) classification system

3 Unified Soil Classification System (USCS), abbreviations are as follows

CL - Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays

ML - Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity

SC - Clayey sands, poorly graded sand-clay mixtures

- SM Silty sands, poorly graded sand-silt mixtures
- GM Silty gravels , poorly graded gravel-sand-silt mixtures
- GC Clayey gravels, poorly graded gravel-sand-clay mixtures.

4 Surface soil is from 0 to 12 inches below ground surface (bgs) based upon classification by McElrath (1988).

5 Subsurface soil is between 12 to 70 inches bgs or to the top of bedrock based upon classification by McElrath (1988).

SS - Sandstone

NA - Not available

6 Soil at areas at the NSWC where a significant amount of construction and earth moving has removed most of the original soil, which has been deposited as fill on building sites.

CTO 0083

SUMMARY SOLID WASTE MANAGEMENT UNITS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 1 OF 2

and an and a set

					Presumed Contaminants of	
SWMU		Abbreviated	Solid Waste Management Area (SWMA)		Potential Concern ⁽⁴⁾	
No.	SWMU Name	Name	Classification	Process	(metals only)	Source
	Mustard Gas Burial			burial of mustard agent, pyrotechnic		
01/12	Grounds	MGBG	Burial Area	mixtures containing radioactive thorium	Strontium and Thorium	Army, 1978 TtNUS, 2000a
				disposal of military smoke dyes (open and	2	
02/11	Dye Burial Grounds	DBG	Burial Area	closed containers) in trenches	NA ²	Army, 1978
				destruction of unwanted materials		
			Full size Trans Mento (oppor	contaminated with explosives, bare explosives, rocket motors, candles, flares,	aluminum, barium, lead,	B&R Environmental, 1997a,
03/10	Ammunition Burning Grounds/Old Jeep Trail	ABG/OJT	Explosive Type Waste (open burning/open detonation)	solvents, detonators, and fuse materials.	manganese, copper, silver, zinc	1997b
03/10	Giounds/Old Seep Hall	ABG/031				1997D
				undefined garbage and trash burial	antimony, arsenic, barium,	
		4		(consisting of wood, paper, construction	beryllium, cadmium, chromium,	Nohrstedt, J.S., et. al,
				material, plaster filled warheads, metal	cobalt, copper, iron, lead,	
04/02	McComish Gorge	McCG	Solid Waste/Debris Landfill Unit	shavings and industrial wastes).	selenium, thallium, and zinc	1998a ³
					antimony, arsenic, barium,	
		Į			beryllium, cadmium, chromium,	
			·	open burning of solid and liquid wastes;	cobalt, copper, iron, lead,	
05/00		0.00		ash/material from burning pushed into gully	mercury, nickel, selenium,	NU
05/03	Old Burn Pit	OBP	Solid Waste/Debris Landfill Unit	north of pit	silver, thallium, and zinc arsenic, aluminum, beryllium,	Albertson et. al, 1998 ³
					copper, lead, manganese,	B&R Environmental, 1997a,
06/09	Demolition Range	DEMO	Explosive Type Waste	open burning/open detonation	nickel, vanadium, zinc	1997b
00/00	Demonition Hange			open barning/open detonation	arsenic, aluminum, barium,	10070
		1		open burning/flashing of explosives, thermal	beryllium, manganese, lead,	
07/09	Old Rifle Range	ORR	Explosive Type Waste/Contamination	destruction of explosive waste	and zinc	B&R Environmental, 1997b
				unlined surface impoundment from		
	Load & Fill Area, Bldg 106	1	Unique Explosive, Dye Type	wastewater generated from Buildings 106	mercury, chromium, zinc, lead,	
08/17	Pond	106P	Waste/Contamination	and 107	cadium,	Halliburton NUS, 1992
		,			arsenic, barium, cadmium,	
	Pesticide Control Area/ R-			pesticide rinsing and container storage;	chromium, lead, mercury,	Nohrstedt, J.S., et. al,
09/03	150-Tank	PCA	Organic Type Waste/Contamination	solvents underground storage tanks	nickel, selenium, and zinc	1998b ³
					antimony, arsenic, barium,	
]			press-loading operation for projectiles and	beryllium, cadmium, chromium,	
				case-filling operation to produce cluster	cobalt, copper, iron, lead,	
10/15	Rockeye	RKT	Explosive Type Waste/Contamination	bombs	nickel, tin, and zinc.	USACE, 1992 ³
1			Unique Explosive, Dye Type			
11/00	Old Storage, B-255	B225	Waste/Contamination	NA	NA	NA
			__	manufactured mines, depth charges, rocket		
12/14	Mine Fill A	MFA	Explosive Type Waste/Contamination	heads, aerial bombs, and projectiles	aluminum	Halliburton NUS, 1992
		1		manufactured mines, depth charges, rocket		
	1	1		heads, aerial bombs, and projectiles -		
10/14	Mar Dal D			currently the site is used for renovation and		
13/14	Mine Fill B	MFB	Explosive Type Waste/Contamination	rework of munition items	none	Halliburton NUS, 1992

020019/P

Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: 2 Page 15 of 23

-i-ə

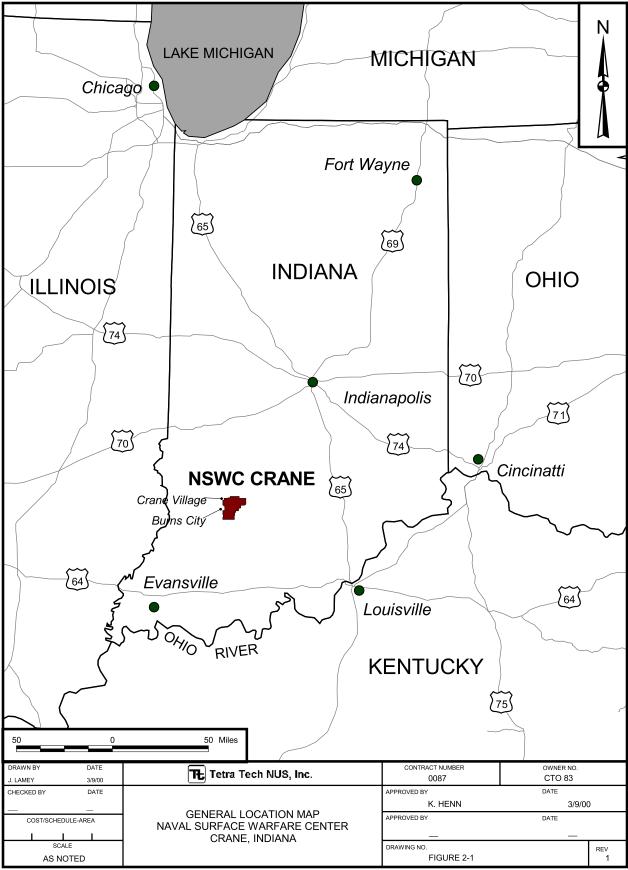
. ; -

SUMMARY SOLID WASTE MANAGEMENT UNITS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 2 OF 2

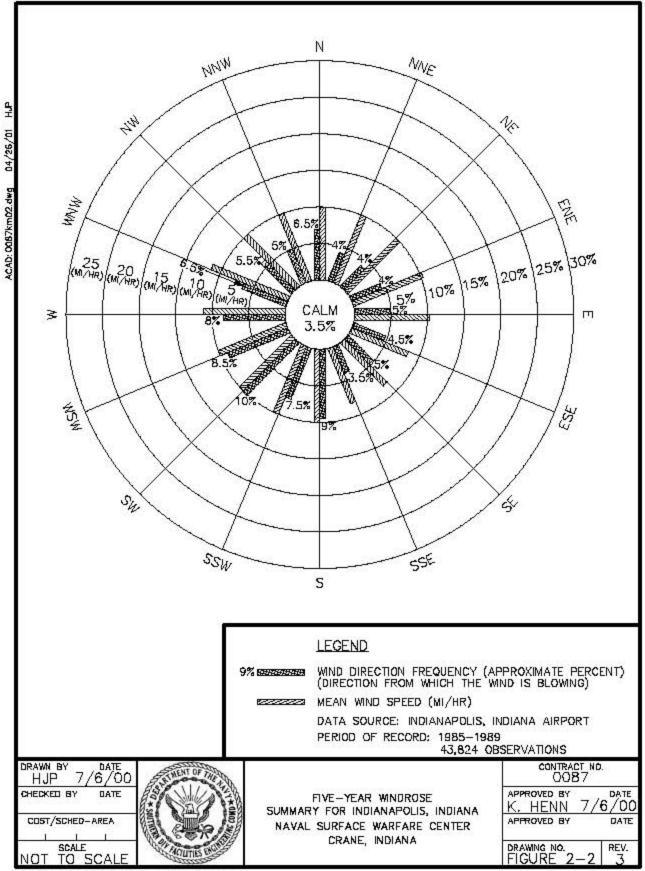
			· · · · · · · · · · · · · · · · · · ·		Presumed Contaminants of	
SWMU		Abbreviated	Solid Waste Management Area (SWMA)		Potential Concern ⁽⁴⁾	
No.	SWMU Name	Name	Classification ¹	Process	(metals only)	Source
			·	receives trash and garbage from production		
				operations and residential and food		
	Sanitary Landfill/Lithium			preparation areas; also the burial of		
14/00	Battery	SLF&LB	Burial Area	neutralized lithium batteries	barium, magnesium, lithium	Halliburton NUS, 1992
					barium, chromium, lead,	
]		asphalt production, steam generation, and	arsenic, barium, cadium,	
15/06	Roads and Grounds Area	R&GA	Solid Waste/Debris Landfill Unit	inert storage	mercury, selenium, silver	Halliburton NUS, 1992
				oil-fed rotary kiln incinerators; currently		
	Cast High Explosive Fill/	1		used for renovation and breakdown of	, barium, cadmium, chromium,	
16/16	Incinerator Bldg 146	B146	Explosive Type Waste/Contamination	munitions	lead, mercury	Halliburton NUS, 1992
17/04	PCB Burial/Pole Yard	<u> </u>	Burial Area	NA	NA	NA
			Unique Explosive, Dye Type	loading of ammunition, storage of paints,		
18/13	Load & Fill Area Buildings	L&FAB	Waste/Contamination	solvents, dyes, inks, wood perservatives,	mercury, chromium, cadmium	Army, 1978; NEESA 1983
	Pyrotechnic Test Area/				lead, aluminum, magnesium,	
	Annex/ Rocket Range/		· ·	functional tests on flares, signals, other	manganese, barium,	
19/00	Impact Area	PTA	Explosive Type Waste/Contamination	marking devices, and Rockeye bomblets	chromium, copper, iron, zinc	Halliburton NUS, 1992
20/00			Explosive Type Waste/Contamination	Flare Testing	chromium and Lead	Army 1978
21/00	DRMO Storage Lot		Heavy Metal Type Waste/Contamination	NA	NA	NA
22/00	Lead Azide		Heavy Metal Type Waste/Contamination	NA	lead	NEESA, 1983
22,00			rioury motal type rideter containing the		arsenic, beryllium, cobalt and	
23/00	Battery Shop	BS	Solid Waste/Debris Landfill Unit	NA	lead	Morrison Knudsen, 1996
24/00	Sludge Drying Beds A	SDBA	Heavy Metal Type Waste/Contamination	NA	NA	NA
24/00	Sludge Drying Beds B	SDBB	Heavy Metal Type Waste/Contamination	NA	<u></u> NA	NA
25/07 D			Solid Waste/Debris Landfill Unit	NA	arsenic, beryllium, cobalt	Morrison Knudsen, 1999
20/07/2		1002 011			arsenic, barium, beryllium,	
26/08 D	Highway 58 Dump Site B	H58DSB	Solid Waste/Debris Landfill Unit	NA	cobalt, and lead	Morrison Knudsen, 1997
27/00	Illuminant Building		Heavy Metal Type Waste/Contamination	NA	NA	NA
			, , , , , , , , , , , , , , , , , , ,			
28/00	Maintenance Shop, B-1820	мз	Organic Type Waste/Contamination	NA	NA	NA
29/07	PCP Dip Tank	PCP	Organic Type Waste/Contamination	NA	NA	NA
	Landfarm (Sludge			sludge application from waste water		
30/00	Application Area)	LF	Heavy Metal Type Waste/Contamination	treatment plant	barium, cadmium, chromium	USACE, 1995
	Compressed Gas Cylinder					
31/00		CGC	Removal of Materials Completed	No Further Action Required ¹		USEPA, 1995
32/00	Tank Farm		Organic Type Waste/Contamination	NA	NA	NA
	Composting Unit					
33/00		COMP	Explosive Type Waste/Contamination	remediation facility	NA	NA

Notes:

-- Not applicable

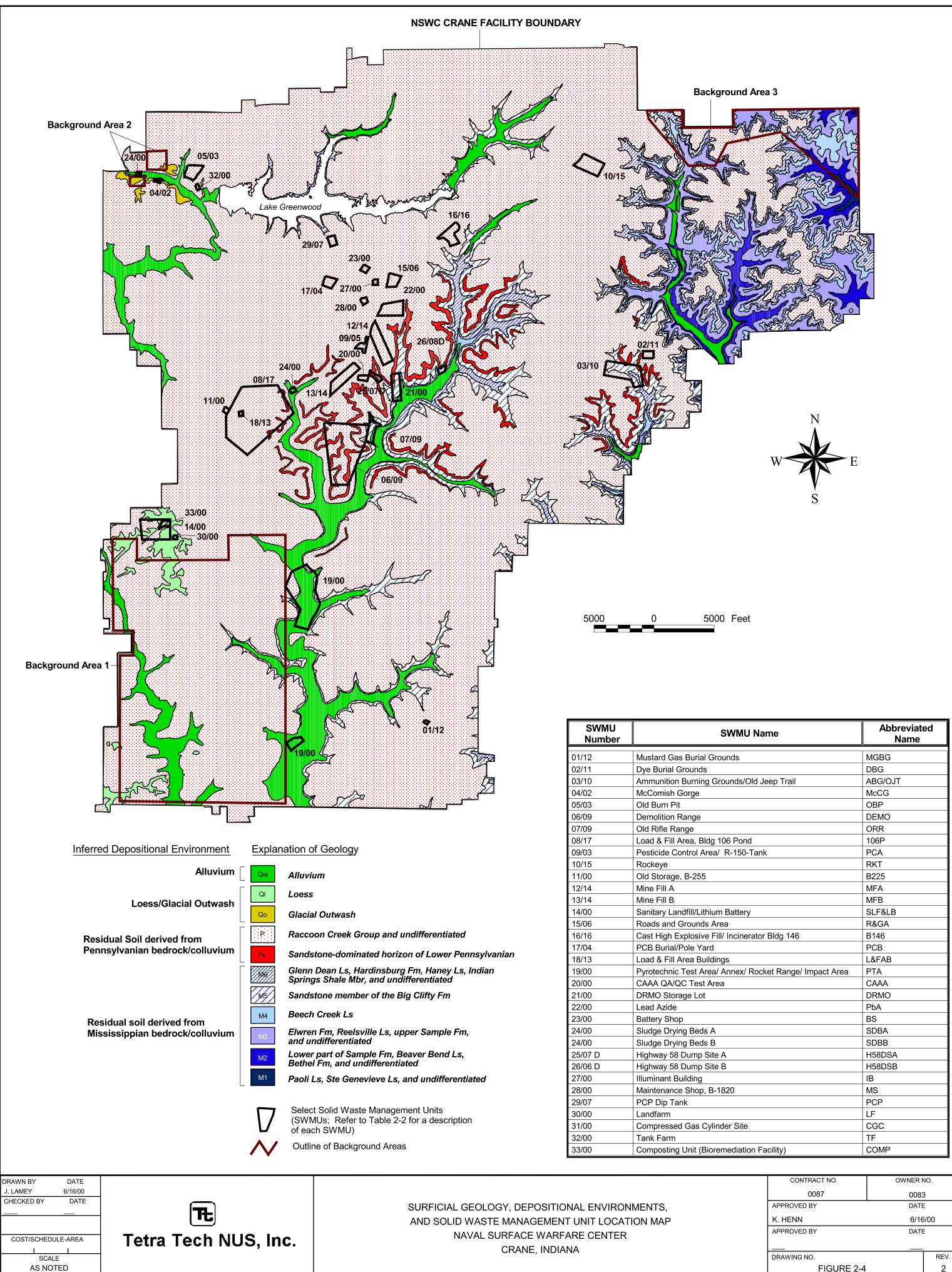

NA Not Available

1 RCRA Permit, USEPA, July, 1995


2 Soil analyses not conducted at site. RCRA cap prevents exposure to contaminated soil.

3 Contaminants of potential concern identified based on comparison of historical data to human health and ecological risk-based criteria.

4 Metals listed are based upon analytical data; also see note 3 where applicable.


P:\GIS\NSWC_CRANE\0087.APR GENERAL LOCATION MAP MJJ 06/26/00

FORM CADD NO. SDIV_AV.DVG - REV 0 - 1/20/98

P:\GIS\NSWC_CRANE\0087.APR JAL 7/6/00 SURFACE DRAINAGE LAYOUT

SWMU Number	SWMU Name	Abbreviated Name
01/12	Mustard Gas Burial Grounds	MGBG
02/11	Dye Burial Grounds	DBG
03/10	Ammunition Burning Grounds/Old Jeep Trail	ABG/OJT
04/02	McComish Gorge	McCG
05/03	Old Burn Pit	OBP
06/09	Demolition Range	DEMO
07/09	Old Rifle Range	ORR
08/17	Load & Fill Area, Bldg 106 Pond	106P
09/03	Pesticide Control Area/ R-150-Tank	PCA
10/15	Rockeye	RKT
11/00	Old Storage, B-255	B225
12/14	Mine Fill A	MFA
13/14	Mine Fill B	MFB
14/00	Sanitary Landfill/Lithium Battery	SLF&LB
15/06	Roads and Grounds Area	R&GA
16/16	Cast High Explosive Fill/ Incinerator Bldg 146	B146
17/04	PCB Burial/Pole Yard	РСВ
18/13	Load & Fill Area Buildings	L&FAB
19/00	Pyrotechnic Test Area/ Annex/ Rocket Range/ Impact Area	PTA
20/00	CAAA QA/QC Test Area	СААА
21/00	DRMO Storage Lot	DRMO
22/00	Lead Azide	PbA
23/00	Battery Shop	BS
24/00	Sludge Drying Beds A	SDBA
24/00	Sludge Drying Beds B	SDBB
25/07 D	Highway 58 Dump Site A	H58DSA
26/06 D	Highway 58 Dump Site B	H58DSB
27/00	Illuminant Building	IB
28/00	Maintenance Shop, B-1820	MS
29/07	PCP Dip Tank	PCP
30/00	Landfarm	LF
31/00	Compressed Gas Cylinder Site	CGC
32/00	Tank Farm	TF
33/00	Composting Unit (Bioremediation Facility)	COMP

CONTRACT NO.	OWNER NO.				
0087	0083 DATE 6/16/00				
APPROVED BY	DATE				
K. HENN	6/16/00				
APPROVED BY	DATE				
DRAWING NO.	REV.				
FIGURE 2-4	2				

P:\GIS\NSWC_CRANE\0087.APR SURFICIAL GEOLOGY-C SIZE 6/16/00 JAL

NSWC Crane Final Basewide Background Soil Investigation Report Revision: 1 Date January 2001 Section: 2 Page 23 of 23

PERIOD	EPOCH	THICKNESS (FEET)	LITHOLOGY	FORMATION	GROUP
PENN- SYL- VANIAN	POTTS- VILLE	 150300		MANSFIELD FM.	"RACCOON CREEK"
		203 0 [·]	=====	GLEN DEAN LS	
		30-40		HARDINSBURG SS.	
	с н	40-50		GOLCONDA LS.	STEPHENS- PORT
	E S T	25-40	=	BIG CLIFTY FM.	
	E	15-25		BEECH CREEK LS.	
	R	20-40		ELWREN FM.	
м		0-5		REELSVILLE LS.	
ł		20-40		SAMPLE FM.	WEST BADEN
S.		10-20		BEAVER BEND LS.	
S I		12-30		BETHEL FM.	
S S		15-20		PAOLI LS.	l
P P I A N	м	100-120		ste. Genevieve ls.	BLUE
	E R M E C	R Image: 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		RIVER	
		90-100		SALEM LS.	
•		50-80		HARRODSBURG LS.	SANDERS
	OSAGE	600-800		MULDRAUGH FM.	BORDEN

Source: Palmer, 1969; Cited in Draft Report, RCRA Facility Investigation Phase II Groundwater Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization SWMU 07/09 Old Rifle Range November 1995-Figure 13 by William L. Murphy and Roy Wade

DRAWN BY J. LAMEY	DATE 4/19/99	Tetra Tech NUS, Inc.	CONTRACT NUMBER 0087	OWNER NO.	
CHECKED BY	DATE	STRATIGRAPHIC COLUMN FOR ROCK UNITS ENCOUNTERED	APPROVED BY	, DATE un <u>3-10-</u> 0	90
COST/SCHEDULE-AREA		AT THE NAVAL SURFACE WARFARE CENTER NAVAL SURFACE WARFARE CENTER	APPROVED BY	DATE	
SCA AS NO		CRANE, INDIANA	DRAWING NO. FIGURE 2-5	,	REV O

PIGISINSWC_CRANE10087.APR 3/9/00 JAL STRATIGRAPHIC COLUMN LAYOUT

3.0 METHODOLOGY

3.1 INTRODUCTION

This section presents a discussion of the historical background sample evaluation, the sampling network rationale, sampling operations, and methods used in the statistical evaluation of the collected background data. All activities were conducted to meet the requirements of the Work Plan and Field Sampling Plan (TtNUS, 1999a) and the Quality Assurance Project Plan (TtNUS, 1999b).

3.2 SUMMARY OF HISTORICAL BACKGROUND EVALUATION

The purpose of this section is to summarize background soil samples collected in previous investigations at the NSWC Crane and establish their value for use in determining basewide background concentrations for metals. A qualitative evaluation of this data was performed in the Work Plan (TtNUS, 1999a). Table 3-1 provides a list of these SWMUs and summarizes details and results of the background evaluation.

None of the historical background data were judged to be useful in the basewide background database. This judgement is based primarily on rejection of some of the data by the EPA (1997), uncertainties regarding data quality, and the concern that some data may have been impacted by site operations, thereby affecting their value to the basewide background database. Although these data are not being used in the basewide database, at a minimum, these data may provide some value as a point of reference at each of the respective SWMU investigations.

3.3 SAMPLE NETWORK DESIGN AND RATIONALE

The sample network design and rationale is briefly summarized in the following section. The EPA DQO (EPA, 1994) process was followed to establish the sample network design. For a detailed discussion of the planning process, refer to Section 4.0 of the Work Plan (TtNUS, 1999a), Work Plan and Field Sampling Plan Addendum (TtNUS, 2000b), and Sections 1.1.1 and 1.4 of the QAPP (TtNUS, 1999b).

3.3.1 Determination of Background Areas

The background areas and specific sampling locations for background sample collection were selected to meet five criteria. Close adherence to these criteria was essential to ensure that the data collected represents "true background" information. The criteria, followed by a brief description are listed below:

- 1. Background areas must be within the NSWC Crane property boundary.
- 2. The background areas and the specific sampling locations within a background area must have a soil composition similar to the soil encountered in the presently defined SWMUs and across the entire NSWC Crane facility. The soil composition in the background areas must have similar geological, chemical, and physical characteristics as the soil encountered in the SWMUs and across the facility to ensure a high degree of data comparability. To achieve this the background areas and specific background sample locations were determined using the classification of soil according to their depositional environment (DE), grain size, and depth. Classification of soil according to its depositional environment was defined in Section 2.7.2. Classification of soil according to its depth and grain size is presented below.

Soil depth was classified as surface or subsurface soil, with surface soil ranging from 0 to 1 foot and subsurface soil ranging from 2 to 6 feet in depth. A surface soil interval of 0 to 1 foot was determined as a compromise between several risk-based conventions that range from 0 to 0.5 feet and 0 to 2 feet bgs. However, it was assumed that background samples from 0 to 1 foot collected in this study will be used when comparing SWMU data within the 0 to 2 foot interval.

Because the location of soil of a specified grain size was not known in advance of sampling, a specific sampling strategy was developed to aid in characterizing grain size in background soil. It was assumed that the surface soils do not differ significantly according to grain size. This assumption was based upon the findings of McElrath (1988) who stated that a thin mantle of loess has been deposited throughout the NSWC Crane facility. Furthermore, the surface soil at the site is predominantly a silt loam (McElrath, 1988). Thus, surface soil samples were not collected according to grain size. The grain size of subsurface soil, however, was collected according to three gross soil grain size classifications: clay, silt, or sand, based upon visual classification in the field by a field geologist using the Unified Soil Classification System (USCS).

3. Background areas must be known or have evidence to suggest that they are unaffected by past or present Navy site activities. To determine this, background areas and specific sample locations were identified using facility operation maps (NAVFAC, 1993 and Explosive Safety Officer, 1997), historic aerial photographs, and interviews with site personnel (Brent, 1999 and Poynter, 1999). These historic aerial photographs were compiled from 1935, 1953, 1958, 1966, 1984, 1998 (Natural Resources Office, 1999) and from 1975-1976 (McElrath, 1988).

To locate specific sampling areas within a given background area an attempt was made to stay:

- Approximately 400 feet from any primary or secondary roads to minimize effects from vehicle emissions.
- Approximately 400 feet from any developed areas related to Navy operations (e.g., buildings, storage facilities), past or present, to minimize impact from Navy operations. Because the potential impact from these areas is unknown, a distance of 400 feet was selected to allow a "buffer zone" between the background sample location and these features.
- 4. Background areas must be upwind from any sites releasing airborne emissions to minimize impact from airborne contamination. The predominant upgradient wind direction was determined from the monthly prevailing wind directions determined for the facility according to the RCRA Air Quality Assessment (B&R Environmental, 1997a) as discussed in Sections 2.5 and 2.9.2.1. Areas with known or suspected contamination from airborne emissions include the Ammunition Burning Grounds (ABG), Old Rifle Range (ORR), Demolition Range (DEMO), Pyrotechnic Test Areas (PTA), Old Burn Pit (OBP) CAAA QA/QC Test Area, and Building 146 (B146) Incinerator.
- 5. Background sample locations must not be downslope from any SWMUs to eliminate contamination from surface runoff. To determine if each background area and specific sampling locations met this criteria, surface drainage patterns were analyzed using regional and local surface water maps and a topographic map of the facility (Kvale, 1992 and Blunck, 1995).

3.3.2 Description of Background Areas

Three general areas were identified that meet the criteria discussed above. Each of these areas is described in the following sections. Figure 3-1 illustrates the location and the extent of these potential background areas. More detailed maps of each area can be found on Figures 3-2, 3-3, and 3-4.

3.3.2.1 Background Area 1

Background Area 1 (BA1) is in the southwest quadrant of the NSWC Crane facility (Figures 3-1 and 3-2). The north boundary of BA1 is to the south of the Sanitary Waste Landfill (SWMU 14/00) and the Landfarm (LF; SWMU 30/00). The western and southern boundaries of BA1 are the western and southern NSWC Crane boundaries, respectively. The eastern boundary of BA1 is an arbitrary north-south line to the west of the Pyrotechnic Test Area, Annex, and Rocket Range (PTA; SWMU 19/00). The eastern boundary was located to minimize any airborne contamination from the PTA.

The soil DEs in this background area are classified as loess, alluvium, and residual soil derived from Pennsylvanian bedrock/colluvium. Additional information regarding the soil characterized from this background area can be found in Section 2.7.

3.3.2.2 Background Area 2

Background Area 2 (BA2) is in the northwest corner of the NSWC Crane facility. It has soil from the glacial outwash DE which is localized in the northwest corner of the facility. BA2 is very localized and is limited to non-impacted areas in this portion of the NSWC Crane facility. The extent of BA2 is defined by the boundaries of the glacial deposits as mapped by McElrath (1988) and Kvale (1992) and the proximity of two SWMUs. Due to the historic and on-going activities in the vicinity of BA2 and the interpretations of the spatial distribution of glacial outwash deposits in this area (McElrath, 1988 and Kvale, 1992), BA2 is divided into two subsections, BA2a and BA2b.

Background Area 2a

BA2a is south of Highway 5 on the elevated area to the southwest of the Sludge Drying Beds B (SWMU 24/00) and Culpepper Branch (Figures 3-1 and 3-3). Culpepper Branch separates SWMU 24/00 from BA2a. The boundaries of BA2a (Figure 3-3) are defined by the boundaries of the glacial outwash deposits as mapped by McElrath (1988; Parke Soil Series) and Kvale (1992). Refer to Section 2.7.2.2 for a more thorough description of the glacial outwash at NSWC Crane. BA2a does not include the soil deposits outside of the specified boundary shown on Figure 3-3 because of potential impacts identified by hummocky terrain and evidence of logging noted during site reconnaissance.

Background Area 2b

BA2b is in the glacial deposits north of Highway 5 and west of the NSWC Crane security fence (Figures 3-1 and 3-3). Although a portion of BA2b is outside the security fence (Figure 3-3) this area is still on Navy property. The boundaries of BA2b are defined by the boundaries of the Negley Soil Series as mapped by McElrath (1988). It is noted that the spatial distribution of glacial outwash as mapped by McElrath (1988) is not shown on Figure 3-3. Refer to Section 2.7.2.2 for a more thorough description of the glacial outwash at NSWC Crane. The southern boundary of BA2b is approximately 200 feet north of Highway 5 and the western boundary is the unnamed stream channel along the western edge of the Negley soil unit. The northern and eastern boundaries are the NSWC Crane security fence.

3.3.2.3 Background Area 3

Background Area 3 (BA3) is in the northeast corner of the NSWC Crane facility (Figures 3-1 and 3-4). This background area has the soil in the alluvium DE and residual soil derived from Pennsylvanian and Mississippian bedrock/colluvium DEs. This area was selected to characterize these soil types (particularly the residual soil from Mississippian bedrock) because, within the facility boundaries, it is the area least likely to receive airborne emissions from the open burning/open detonation areas (OB/OD; e.g., ABG). Sections 2.5 and 2.9.2.1 provide greater detail on the predominant wind direction and airborne releases at the NSWC Crane facility.

The extent of BA3 is defined by the boundaries of the Mississippian bedrock in this area as mapped by Kvale (1992), the facility boundaries, and the area least likely affected by airborne emissions as described above. The southern boundary of BA3 is to the south of Highway 162 (on the western portion), and approximately north of Highway 169 (in the central portion), and of the northwest-southeast trending Boone Hollow (on the eastern portion). This boundary is between 3.5 and 4.25 miles north and northwest of the ABG. The northern and eastern extent is NSWC Crane's northern and eastern boundaries, respectively. The western boundary is defined by the surface exposure of Mississippian bedrock (Kvale, 1992). Rockeye (SWMU 10/15) is located approximately 1.2 miles to the west of the BA3 western boundary. However, Rockeye has no known airborne releases of metals.

3.3.3 Determination of Minimum Number of Background Samples

This section summarizes the statistical considerations incorporated into calculating the required number of samples collected for this background investigation. A more thorough explanation of this subject is available in the Work Plan (TtNUS, 1999a).

Data sets appearing most like background would exhibit statistical population characteristics similar to the background data. Normally distributed data sets (not necessarily a reality) would exhibit similar means and standard deviations. rMore disparate data sets would exhibit more disparate means and/or standard deviations. Increased disparity in data set means would translate to easier discrimination between data set means, all else being equal.

The desired minimum detectable difference between sample means for background and site data was set equal to two standard deviations. Some assumptions were made: (1) normally distributed data sets, (2) equal variances for the data sets being compared, (3) a 5% chance of thinking that site data do not exceed background concentrations when in fact they do exceed background concentrations, (4) a 30%

chance that site data exceed background concentrations when in fact they do not. Evaluation of background data distributions and statistical assumptions are available in Section 4.0.

The two decision error tolerances (assumptions 3 and 4 above) were accounted for in a single computation to yield the number of samples required to achieve the desired level of decision performance:

$$m = n = \frac{\left(z_{1-\alpha} + z_{1-\beta}\right)^2}{2} + \frac{z_{1-\alpha}^2}{4}$$

where m and n are the numbers of samples in the two data sets being compared, and the z's represent statistical z-scores.

With $\infty = 5\%$, it was calculated that collecting three to five samples from each population would limit the tolerance for the more egregious decision error (assumption 3, above) to 5%. The chance of committing the less egregious error (assumption 4 above) would range from 10% (5 samples) to 30% (3 samples) under the same conditions. To protect against loss of samples and the potential of having invalid assumptions, a target of five samples for each soil type would be collected for chemical analysis. With five background samples, five SWMU investigation samples would yield a discriminatory power of 1.18s if the assumptions were valid. This would be well within the original goal of detecting a 2s difference.

3.3.4 Field Events and Specific Background Sample Locations

Two field events were conducted to complete this scope of work. The majority of the sample collection took place during the first field event in November 1999. A supplemental field event in October 2000 was performed to collect additional data for soil types that were encountered infrequently during the first field event. The following two sections (3.3.4.1 and 3.3.4.2) outline the samples collected during each event.

The criteria listed in Section 3.3.1 and below were used to select specific background sample locations in both events. Ideally, samples would have been collected at randomly selected locations but consideration was given to the reality that not all future sampling schemes are likely to follow a simple random sampling design and that irregular topography and operation areas could prevent the implementation of such a sampling design. Sampling locations were selected to provide good spatial coverage of each DE while considering access to the sampling locations. No attempts were made to bias sampling locations for any reason. When selecting the background sampling locations as defined by the

USDA/SCS (see Table 2-1) and at various topographic locations (i.e., lowlands, valleys, sideslopes, and ridgetops).

An attempt was made for the sampling locations to be within a 30 foot radius of the designated location in the Work Plan (TtNUS, 1999a, 2000b; see Section 3.4.1 for additional details). This range is reasonable considering the extent of the USDA soil series according to soil maps of the site (McElrath, 1988).

3.3.4.1 First Field Event

According to the Work Plan (TtNUS, 1999a) samples were taken from ten boreholes within each DE in the first field event. At each of these sample locations surface and subsurface soil samples were taken. Because the alluvium and the loess/glacial outwash DE span two background areas (BG1 and BG3, and BG1 and BG2, respectively) the number of sample locations in each background area was as follows:

- BG Area 1: 20 sampling locations (Figure 3-2, Table 3-2)
- BG Area 2: 5 sampling locations (Figure 3-3, Table 3-3)
- BG Area 3: 15 sampling locations (Figure 3-4, Table 3-4)

3.3.4.2 Supplemental Field Event

Based on evaluations of samples collected during the first field event, it was determined that an insufficient number of samples was collected of two soil types (Pennsylvanian Subsurface Sand, PBS and Alluvial Subsurface Clay, ABC; see Section 4.0). An attempt was made in the supplemental field event to obtain at least four more PBS samples and at least two more ABC samples to meet project goals.

The infrequent occurrence of these soil types in the first event indicated that there was a low probability of finding more of these soil types. Thus, a plan was outlined (TtNUS, 2000b) that ensured that a reasonable minimum effort was expended before concluding that additional sampling was no longer cost effective. The plan was designed such that boreholes were installed the cost of collecting four more PBS or ABC soil samples was periodically re-evaluated by updating the probabilities of finding the desired samples. Thus, sample collection would be terminated when the appropriate number of samples was collected or when collecting the desired number of samples projected was cost prohibitive. The details of how this approach was implemented are described in Appendix D. Please refer to the Work Plan Addendum (TtNUS, 2000) for details on the sampling strategy and rationale. Section 4 discusses the results of the data collected during the supplemental field event.

In summary, a total of three boring sets (PS1, PS2, and PS3) and one boring set (AB1) was completed for the PBS and ABC soil types, respectively in the supplemental field event. Note that there are 5 borings in each boring set so a total of 20 borings were completed for this event. Borings were located in two background areas (BG1 and BG3) as listed below:

- BG Area 1: 16 sampling locations (Figure 3-2, Table 3-2)
- BG Area 3: 4 sampling locations (Figure 3-4, Table 3-4)

3.3.5 Selection of Background Samples for Chemical Analysis

A total of 67 total samples were collected for analytical analysis between the two field events. The following section describes the sample collection procedure.

Tables 3-5, 3-6, and 3-7 tabulate the samples selected for chemical analysis from the BG1, BG2, and BG3, respectively. Table 3-8 tabulates a summary of the total number of samples selected for a given soil type. Table C-1 (Appendix C-1) summarizes all of the samples collected in the field for this background soil investigation. This table presents the depth at which each sample was collected, the gross grain size classification of each sample, and whether the sample was selected for chemical analysis. A review of this table illustrates that the procedures performed in the field followed exactly as discussed above and as outlined in the Work Plan (TtNUS, 1999a).

3.3.5.1 First Field Event

Theoretically, the total number of samples collected in the first field event would have been 200. That is, 1 surface soil sample and 4 subsurface soil samples at a total of 40 soil boring locations. From this pool of samples a maximum of 80 samples could have been sent for chemical analysis. This selection process for chemical analysis can be explained using a schematic diagram (Figure 3-5). The circle represents a given DE from which samples will be collected. Within the DE, five surface samples were collected (regardless of soil grain size), as represented by the top rectangle. Within the same DE, as many as five samples were collected for each gross soil grain size classification (e.g., clay, silt, and sand) from the subsurface, represented by the remaining rectangles. This leads to a possible maximum of 20 samples within each DE, assuming that all grain sizes are encountered in the subsurface in each of the 10 boreholes in a DE. In order to eliminate biasing the number of samples for a given grain size at a specific location, only one subsurface soil sample per grain size per sample location was selected.

Because of the field conditions encountered (boring, refusal, etc.), only 154 samples were collected. From this pool of 154 samples, 65 soil samples (not including quality control/quality assurance samples) were submitted for chemical analysis. The fact that fewer than 200 samples were collected is attributed to two primary factors: (1) In some cases fewer than four subsurface samples of a given grain size were encountered in a given DE, thus fewer than five samples of that grain size were collected. (2) Advancement refusal was met in some boreholes, thus limiting the number of samples collected. These two factors are discussed further in Section 3.4.2.1.

3.3.5.2 Supplemental Field Event

Ideally, at least four more PBS samples and at least two more ABC samples were to be collected in the supplemental field event. However, the infrequent occurrence of these soil types in the field event resulted in the collection of only 2 soil samples representing the ABC soil type and no PBS samples.

As a result, both field events yielded the collection of a minimum of three samples for each soil type with the exception of the PBS. For the PBS soil type only one sample was collected. As a result, the target number of samples (three) was not achieved for the PBS soil type. An evaluation of the impact of this on attaining project objectives is presented in Section 4.0. In summary, the target number of samples was achieved for 15 of 16 soil types.

3.4 SOIL SAMPLING, ANALYSIS AND FIELD OPERATIONS

The planning and rationale for this project was conducted from January through October 1999. The field effort involving background sample collection was performed from November 1 through November 9, 1999. The following section describes the field activities which took place during this field effort.

3.4.1 Background Sampling Locations

The general locations of each of the three background areas are shown on Figure 3-1. Figures 3-2, 3-3, and 3-4 illustrate the location of the sampling points for BG1, BG2, and BG3, respectively. Because of the remote nature of the sampling locations a hand held global positioning system (GPS) was used to navigate to the proposed sampling point locations. The proposed northing and easting coordinates listed in the Work Plan (TtNUS, 1999a, 2000b) were used as a basis for navigation. The actual sampling points in the field were selected within a 30-foot radius of the proposed location. The sample location(s) were moved within this range at the discretion of the TtNUS Field Operations Leader (FOL) if undesirable features were encountered at the proposed sampling point (e.g., bedrock exposed on the surface, surface

drainage patterns, etc.). Only two sampling locations (BG2SBG05 and BG3SBM03) were moved beyond the 30-foot radius of the proposed locations. Both locations were moved approximately 300 feet north from the originally proposed sampling point as a result of GPS navigation.

3.4.2 Sampling and Analysis Procedures

This section discusses the soil sampling methodology used for the basewide background investigation at NSWC Crane.

3.4.2.1 Borehole Advancement

Soil borings were advanced using a hand auger. The hand auger consists of a stainless steel auger bucket and steel rods (each typically 3 feet in length). Commonly referred to as an Iwan sampler, the auger is advanced by turning a "T" handle in a clockwise motion. Samples were taken continuously from the ground surface to a maximum depth of 6 feet below ground surface or until one of the following conditions were met:

- 1. saturated zone was encountered;
- 2. bedrock or weathered bedrock was encountered; or,
- 3. advancement refusal was met by the hand auger.

Condition 1 was not met in any of the boreholes advanced for this project. It is important to note that it was difficult to determine if condition 2 was encountered using the hand auger. If bedrock was encountered advancement refusal usually results. As expected, condition 3 was encountered in many boreholes (see Appendix B). In this circumstance as many as four additional attempts were made at a nearby location at the discretion of the FOL. Samples were extracted from the auger bucket using a disposable polyethelyene trowel and a stainless-steel mixing bowl. Once the borings were advanced to the desired depth and sufficient sample volume was collected, the boreholes were abandoned by backfilling the hole with remaining soil cuttings. Standard operating procedure (SOP) CTO83-1 (TtNUS, Work Plan, 1999a, Appendix B) was followed for the borehole advancement and sample collection process.

3.4.2.2 Surface Sampling

Surface soil samples were collected from the ground surface to a maximum depth of 2 feet (i.e., 0 to 2 feet) during advancement of soil borings. Upon retrieval, all samples obtained were monitored for volatile organic compounds (VOCs) with a photo-ionization detector (PID) and then collected for visual

lithologic classification. The 0 to 1 foot depth interval was collected and placed in sample bottles as defined on Tables 3-5, 3-6, and 3-7. Soil from the 1 to 2 foot depth interval was discarded after visual lithologic classification. All samples were placed in a cooler of ice immediately after collection. SOPs CTO83-2 and CTO83-3 (TtNUS, Work Plan, Appendix B, 1999a) were followed for the proper sample selection and soil handling procedures, respectively. All pertinent field data were recorded in the field logbook and on the soil sample log sheet (included in Appendix A).

3.4.2.3 Subsurface Sampling

Subsurface soil samples were collected in one foot intervals from a depth of 2 feet to a maximum depth of 6 feet below ground surface (e.g., 2-3, 3-4, 4-5, and 5-6). Upon retrieval, all samples were monitored for VOCs with a PID and then collected for visual classification of the lithology. Sample intervals are defined in Tables 3-5, 3-6, and 3-7. All samples were placed in a cooler of ice immediately after collection. SOPs CTO83-2 and CTO83-3 (TtNUS, Work Plan, Appendix B, 1999a) were followed for the proper sample selection and soil handling procedures, respectively. All pertinent field data were recorded in the field logbook and on the soil sample log sheet (included in Appendix A).

3.4.3 Borehole and Sample Logging

A lithologic description of each soil sample and a complete log of each boring was maintained by the TtNUS geologist in accordance with CTO83-4 (TtNUS, 1999a, Appendix B). The pertinent field information and data were recorded on the boring log form, the soil sample logsheet and, where applicable, the field logbook. These completed forms are included in Appendices A and B.

3.4.4 Sample Identification System

This section contains a brief summary of the sample identification system as designated in the Work Plan (TtNUS, 1999a). Refer to the Work Plan for additional details.

Each sample collected was assigned a unique four-segment, alpha-numeric sample tracking number. An example of a soil identification number for a soil sample collected from 0 to 1 foot at sampling location P04 in background area 1 was designated as BG1SBP0401; or a soil sample collected from the 4 to 5 foot interval at sampling location M10 in background area 3 was designated as BG3SBM1005.

Field quality assurance/ quality control (QA/QC) samples were designated with a different coding system. The QC code consists of a two-segment, alpha-numeric code that identifies the sample medium (for duplicates only), QC type, and date. An example for a field duplicate duplicate is as follows: a duplicate of sample BG1SBL0401 obtained on October 3, 1999 would be designated as: BGFD-100399. This allowed duplicates to be submitted as "blind" samples to the analytical laboratory. Chain of custody forms, not received by the analytical laboratory, were used to document duplicate sample locations.

Matrix spike and laboratory duplicate samples were designated on the field documentation forms and sample labels.

3.4.5 <u>Sample Preservation, Shipping, and Handling</u>

Soil samples are subject to physical and chemical changes during storage and therefore require preservation to prevent changes in either the concentration or the physical condition of the constituent(s) requiring analysis. Sample handling includes the field-related considerations connected with the selection of sample containers, preservatives, allowable holding times, and analyses requested. SOP CTO83-3 (TtNUS, 1999a, Appendix B), provides a detailed description of sample handling, packaging, and shipping procedures and requirements required for this sampling plan. This SOP and the procedures in the Work Plan (TtNUS, 1999a) were followed for this investigation.

3.4.6 Chain-of-Custody/Documentation

Sample custody procedures are designed to provide documentation of preparation, handling, storage, and shipping of all samples collected. Integrity of the samples collected during the investigation was the responsibility of identified persons from the time they were collected until they, or their derived data, were incorporated into the final report. Stringent chain-of-custody (COC) procedures described in the Work Plan and SOP CTO83-5 (TtNUS, 1999a, Appendix B) were followed to document sample possession. The completed chain of custody and other field documents have been included in Appendices A and B).

3.4.6.1 Calibration Procedures and Frequency

The PID was the only instrument used in the field. It was calibrated each day before use according to the procedures described in the applicable SOPs. Calibration was documented on an Equipment Calibration Log (Appendix A). During calibration, an appropriate maintenance check was performed on the PID. No damaged or defective parts were identified during the maintenance checks and the PID worked properly throughout the field effort.

3.4.7 Decontamination of Field Sampling Equipment

All nondedicated reusable sampling equipment used for collecting samples was decontaminated both prior to field sampling and between samples. This equipment included stainless-steel hand augers and mixing bowls. The following decontamination steps taken in accordance to SOP CTO83-6 (TtNUS, 1999a, Appendix B) were as follows:

- Potable water rinse
- Liquinox detergent wash
- Potable water rinse
- Deionized water rinse
- Air dry
- Wrap in aluminum foil (if not to be used immediately)

3.4.8 Investigation-Derived Waste Management

Two types of investigation-derived wastes (IDW) were generated during the field investigation: personal protective equipment (PPE) and decontamination water. Excess soil cuttings were returned to the borehole and/or scattered near the borehole. Based on the fact that this is a background investigation and rigorous investigation took place to ensure that these are "clean" areas none of these residues are expected to represent a significant risk to human health or the environment if properly managed. Management of each of these residues is provided below:

<u>PPE</u> - All PPE was contained in single plastic garbage bags and then placed in trash receptacles at the facility.

<u>Decontamination Water</u> – Because the background areas were not expected to have any contamination and were not located near any SWMUs the containerized decontamination fluids were discharged directly to a sanitary sewer at NSWC Crane.

3.5 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES AND DETECTION LIMITS

The purpose of this section is to address the DQOs of field quality, quality assurance/control (QA/QC) samples such as field blanks, field duplicates, rinsate blanks, trip blanks, ambient blanks, and matrix spikes and laboratory duplicates. The QA/QC samples taken are listed on the COC forms and the field logbook (Appendix A) for this investigation. The following sections summarize the purpose and a

description of each of the quality control samples selected. Section 8.0 of the QAPP (TtNUS, 1999b) provides additional information regarding QA/QC samples and analyses.

3.5.1 Source Water Blanks

One source water blank was obtained by sampling the analyte-free water used for decontaminating sampling equipment. Source water blanks were used to determine whether the analyte-free water used for sampling equipment decontamination procedures could have contributed to sample contamination.

3.5.2 Field Duplicates

Soil field duplicates were collected by splitting single samples into two portions collected in the same order as the procedure outlined in SOP CTO83-1 (TtNUS, 1999a). Field duplicates were obtained during a single act of sampling and were used to assess the overall precision of the sampling and analysis methods employed. Both samples of a duplicate pair were collected at a minimum frequency of 1 per every 10 samples. Field duplicates were analyzed for the same parameters in the laboratory and were labeled in order to make the identity of the duplicate sample unknown to the laboratory.

3.5.3 Rinsate Blanks

Equipment rinsate blanks were obtained under representative field conditions by running analyte-free water through sample collection equipment (e.g., hand auger, etc.) after decontamination and then placing it in the appropriate sample containers for analysis. Equipment rinsate blanks were used to assess the effectiveness of decontamination procedures. Equipment rinsate blanks were collected at a frequency of 1 per every 10 samples, with a minimum of 1 per day of sampling, per sampling device/instrument. For pre-cleaned, dedicated, and/or disposable equipment (i.e., disposable plastic trowels, etc.), one rinsate blank was collected and analyzed at a frequency of one per lot or "batch blank" for a specific equipment type. In this case, equipment rinsate blanks were used to assess the cleanliness of pre-cleaned, dedicated, and/or disposable equipment.

3.5.4 <u>Trip Blanks</u>

Trip blanks are organic free water blanks used to detect cross-contamination of samples by VOCs during sample shipment/storage. Because only inorganics (i.e., no VOCs) were analyzed in this investigation, the collection of trip blanks was not performed.

3.5.5 Ambient Condition Blanks

Ambient condition blank samples, consisting of deionized water, are collected in the field to provide a means to assess the quality of the data resulting from field conditions. Ambient blanks are analyzed to check for interfering contaminants that potentially could be present in ambient air at the sampling site (e.g., particulates). Ambient condition blanks were not collected because site conditions did not appear to have any effect on the integrity of the samples collected for this investigation.

3.5.6 Matrix Spikes/Laboratory Duplicates

Matrix spikes (MS) are investigative samples analyzed to provide information about the effect of the sample matrix on the digestion and measurement methodology. Laboratory duplicates are two portions of a sample that are removed from the same sample bottle after mixing the sample. These samples provide information on the analyte concentration variability attributable to the combined effects of sample heterogeneity after mixing, preparation of the sample for analysis, sample storage, and the actual sample analysis. Matrix spike and duplicate samples were collected at a frequency of 1 per 20 samples. No additional sample volume was required for analysis of the matrix spike/lab duplicate.

3.6 SURVEYING

The horizontal locations of all background samples locations were surveyed. A Solo (by Tripod Data Systems, Inc.) global positioning system (GPS) unit was used to identify horizontal locations of each of the background samples. The horizontal locations were surveyed to the Indiana State Plane Coordinates (Indiana West) and referenced to the 1983 North American Datum (NAD83). The Work Plan (TtNUS, 1999a) stated that the sample locations would be surveyed to within the nearest 0.10 foot. Based upon the accuracy limitation of the surveying equipment used, the sample locations were surveyed within ± 1 meter (3.28 feet). Surveying the vertical locations of the background samples was not performed.

3.7 DATA QUALITY AND VALIDATION

All background analytical data were subjected to data validation and an evaluation for data bias and precision. Data validation is an objective systematic process in which analytical data are reviewed to ascertain the validity of the reported results and to identify for the data user some possible limitations of these results. This section summarizes the data validation process and a summary of the bias and precision of the analytical process.

3.7.1 General Data Validation Procedures

Validation of data generated for samples collected at NSWC Crane in support of the background investigation was completed in accordance with the procedures for data validation as outlined in Navy guidance (Navy Installation Restoration Laboratory Quality Assurance Guide, NFESC February 1996). Data validation was performed for all samples analyzed via SW-846 Methods 6010B and 6020. Such data were validated in accordance with the EPA's CLP Functional Guidelines for Inorganic Data Review, as amended for use in EPA Region 5 (EPA, 1993a, 1993b).

The validation process included consideration of the following: compliance to procedural methods, data completeness, holding time compliance, calibrations, field QC and laboratory-generated blanks, blank spikes, matrix spikes, field duplicate precision, lab duplicate precision, ICP serial dilution results, chemical interferences, analyte quantitation, detection limits, and system performance.

Evaluation of laboratory blank analyses aided in the elimination of false positive results that were identified as laboratory artifacts. The overall determination of data utility or reliability was based upon laboratory compliance with specified methods and adherence to QC requirements. According to the validation protocol, significant noncompliances observed during the validation process resulted in a qualification of analytical data. Qualifier flags, which are letters indicating the potential effect of quality control noncompliances on data usability, alert the data user to potentially imprecise or inaccurate results. If noncompliances are serious enough, data are qualified as rejected ("UR" qualifier). No identified qualifications were serious enough to result in rejection of any of these data. However, some noncompliances were identified that resulted in the qualification of some data as estimated ("J" qualifier flag). Qualifier flags are described in more detail in the next section.

The net results of the validation process were summarized in sample delivery group-specific technical reports consisting of a memorandum, a section of qualified analytical results, results as reported by the laboratory, and a supporting documentation section that provided the rationale for changes to and/or qualification of the data. These memoranda provided a detailed explanation of the results of the data validation documentation is currently retained on file by TtNUS.

3.7.2 Data Validation Qualifiers

The qualification of analytical data used during the validation process (i.e., application of U, J, UJ, and UR qualifiers) was conducted as required by the EPA CLP Functional Guidelines. The attachment of the data

qualifiers to analytical results signifies the occurrence of QC noncompliances that have been noted during the course of data validation for this project. The various data qualifiers are defined as follows:

 \underline{U} - Indicates that the chemical was not detected at the numerical detection limit noted. Nondetected results from the laboratory are reported in this manner. This qualifier is added to a positive result if the detected concentration is determined to be attributable to contamination introduced during field sampling or laboratory analysis.

<u>UJ</u> - Indicates that the chemical was not detected. However, the detection limit is considered estimated based on problems encountered during laboratory analysis. The associated numerical detection limit is regarded as inaccurate or imprecise.

 \underline{J} - Indicates that the chemical was detected. However, the associated numerical result is not a precise representation of the amount that is actually present in the sample. The reported quantity is considered to be an estimate. This qualifier is added in place of the laboratory "B" qualifier as a matter of routine to all results between the soil-adjusted IDL and the laboratory reporting limit. This qualifier is added to lithium, strontium, and thorium results that were analyzed a few days after the 180 day holding times expired (see Section 3.7.3 for additional details).

<u>UR</u> - Indicates that the chemical may or may not be present. The nondetected analytical result reported by the laboratory is considered to be unreliable and unusable. This qualifier is applied in cases of gross technical deficiencies (i.e., holding times missed by a factor of two times the specified time limit, or severe calibration noncompliance, and/or extremely low QC recoveries).

The preceding data qualifiers may be categorized as indicative of major problems and minor problems. Major problems are defined as issues that result in the rejection of data, qualified with UR data validation qualifiers. These data are considered invalid and are not used for risk assessment or other decision making. Minor problems are defined as issues resulting in the estimation of data, qualified with the U, J, and UJ data validation qualifiers. A "U" qualifier flag can also mean that no quality control deficiencies have been noted but the analyte concentrations are less than the detection limit. Non-detected analytical results ("U" qualifier flag) and estimated analytical results ("J" qualifier flag) are considered to be suitable for risk assessment and decision making purposes.

3.7.3 Bias (Accuracy) Evaluation

Each of five soil matrix spike samples was analyzed for 21 metals, yielding 105 metal recovery values. The six macronutrient metals are not spiked. Acceptance limits for the spike recoveries are 75% to 125%. Of the 105 analyte recovery values, each of the following percent recoveries was outside of acceptance limits one time (please refer to Appendix C-2 for a description of the sample delivery groups [SDGs]):

- Soil SDG C8301: Cadmium (36%),
- Soil SDG C8308: Lithium (68.5%)
- Soil SDG C8301: Manganese (62.9%),
- Soil SDG C8303: Zinc (74.1%),
- Soil SDG C8304: Vanadium (74.5%)

Manganese and chromium spike values fell outside the recovery limits two times each. The deviant Soil Manganese recoveries were 62.9% (SDG C8301) and 73.1% (SDG C8311). The deviant chromium recoveries were 67.5% chromium (SDG C8305), and 135.2% (SDG C8311). Significant recovery deficit was limited to cadmium (36% recovery in SDG C8301). The other soil matrix spike samples exhibited cadmium recoveries of 92.1% (SDG C8303), 94.1% (SDG C8304), 82.3% (SDG C8305) and 96.6% (SDG C8311). The cadmium concentrations in the SDG C8301 soil samples do not appear to be biased low relative to the cadmium concentrations in the other soil samples. Instead, the poor recovery in this one matrix spike appears to be an artifact of two factors. One factor is the imprecision observed for cadmium (average RPD = 21%, maximum RPD = 40%). The other factor is the spiking level relative to the native analyte concentration. The spiking level only increased the analyte concentration in the soil matrix by a factor of two. The opportunity for obtaining a poor recovery as a result of random fluctuations in the measured chemical concentration under these conditions is significant. On this basis, no corrective action is warranted for the observed 36% cadmium recovery.

Only 21 of the 105 soil matrix spike metal recoveries exceeded 100.0%. This indicates a general negative bias in metal recoveries in the soil analyses. A similar effect was observed for soil laboratory control samples for which only 36 of 105 metal recoveries exhibited a value greater than 100.0%. The apparent bias is within normal bounds (75% to 125%) and does not indicate any problems with the data. The mean matrix spike recovery across all soil sample metals is 89.6% with a standard deviation of 14% (after eliminating a single value of -11.8% for sample BG1SBL0504S). The -11.8% recovery (for manganese in SDG C8305) was eliminated from these computations because the manganese spike increased the native manganese concentration in the sample by less than 25% in that sample. Thus, the

spike amount was overwhelmed by normal analytical uncertainty and invalidates the manganese spike as a control parameter in that sample.

Two aqueous spiked samples were analyzed to yield 54 metal spike recoveries. The recoveries ranged from 94.8% to 111.4% and are well within the 80% to 120% acceptance range. The average percent recovery across all metals is 109%. All but four of the metal recoveries were greater than 100%, indicating a potential overall slight positive bias. A similar effect was observed for the aqueous laboratory control sample. The recoveries across metals for that sample ranged from 88.5% to 117% with an average recovery of 106% and only 4 of 54 metals exhibiting a recovery less than 100%. Cadmium recovery, which was poor (36%) in one soil sample, was 106.1% and 93.8% in the two water sample matrix spikes and was 108% and 102.5% in the aqueous LCSs.

Results for lithium, strontium, and thorium are qualified as estimated in all but the three samples collected most recently because the samples were analyzed for those metals less than 5 days after the holding time had expired. This qualification is required by the data validation rules. However, the qualification is more of a formality to let the data user know that the holding time was expired rather than an indicator of a technical deficiency in the data. One reason for this is that the holding time exceedance (a few days) is small relative to the holding time itself (180 days). Furthermore, chemical and physical properties such as low vapor pressures at sample storage temperatures and a lack of biodegradability indicate that none of the three affected metals would be expected to change concentration, even after decades of storage.

Overall, the percent recovery data for matrix spikes and laboratory control samples was acceptable and well within performance criteria. Furthermore, holding time exceedances (lithium, strontium and thorium only) are not expected to result in any biases.

3.7.4 <u>Precision Evaluation</u>

Precision was measured in terms of relative percent difference (RPD) for field and laboratory duplicate soil samples. The observed RPDs are summarized in Table 3-9. Despite the natural heterogeneity of soil, the observed RPDs are relatively small with a few exceptions. The RPDs for field duplicates range from 0.67% to 80.00% and for laboratory duplicates the RPDs range from 0.0% to 161.28%

A single field duplicate pair for cadmium had a RPD equal to 80.0%. Another duplicate pair, for silver, had a RPD equal to 66.7%. Both of these high RPD values are associated with results near detection limits. The next highest RPD for field duplicates was 36.4%. Most (82%) of field duplicates had RPD values less than 15% across all duplicate samples and all metals, indicating good sampling precision.

A single laboratory duplicate pair for cadmium had a RPD equal to 161%. Another laboratory duplicate pair, for manganese, had a RPD equal to 70.0%The next highest laboratory RPD was 45.8% (arsenic) and a seven other RPD values ranged from 31% to 38% for various metals. The 161% RPD values is associated with a duplicate pair for which the results are near the cadmium detection limit. Eight of these 10 RPD results are associated with the same duplicate sample, indicating either that the selected sample was relatively heterogeneous or that the analytical performance was slightly worse for that sample than other duplicate samples. However, 26 of the 27 metal RPD values are within the 50% acceptance window for that sample. Moreover, most (74%) of the laboratory RPD values across all duplicate samples and all metals are less than 15%. That the RPD values are this small is evidence of good analytical measurement precision.

The overall high degree of precision might be an indication that the soil samples were nearly completely dissolved during sample preparation. This is consistent with relatively high calcium carbonate content that is expected to be found in limestone, the parent material encountered in the residual soil from the Mississippian bedrock/colluvium depositional environment at NSWC Crane.

Soil RPD values for field duplicates and laboratory duplicates were compared by computing the ratios of their respective RPD values. RPD can only be computed if both samples in a duplicate pair yield detectable concentrations of analyte. Therefore, only duplicate sample pairs were compared for which both samples from each pair yielded detectable concentrations. The RPD ratios are summarized in Table 3-9.

The RPD values for field duplicates generally fall within a factor of two of laboratory duplicate RPD values, indicating comparable precision. This is supported in the data for this project in that most of the average Laboratory Duplicate/Field Duplicate ratios are between 0.5 and 2.0 in Table 3-9. For one metal, silver, the average laboratory RPD value is zero, which causes the laboratory to field duplicate ratio to be equal to zero. This is a chance occurrence and does not indicate poor agreement between field and laboratory duplicate precision. Precision values across all metals and all soil samples are generally within expectations and compared well between laboratory and field duplicates. When outside of expectations, individual RPD values can be attributed either to metal concentrations approximating detection limits (where increased measurement uncertainty is normal), or they appear to be spurious results that occur no more frequently than might be expected, given the number of data points.

3.7.5 Attainment of Detection Limits

For each of the following 19 metals, all soil sample results were classified as "detects," with reported concentration values exceeding the detection limits. This includes 67 soil sample results for all metals except lithium, strontium and thorium. Sample BG1SBA0101 was lost at the analytical laboratory before the analyses were completed for the three latter metals, so only 66 soil sample results are available for each of those metals.

- Aluminum
- Arsenic
- Barium
- Calcium
- Chromium
- Cobalt
- Copper
- Iron
- Lead
- Lithium
- Magnesium
- Manganese
- Nickel
- Potassium
- Strontium
- Thallium
- Thorium
- Vanadium
- Zinc

The other eight metals (shown in Table 3-10) each exhibited at least one "non-detect."

For most metals in most soil samples, the planned detection limits (Table 1-1 of the QAPP; TtNUS, 1999b) were achieved. Exceptions are identified in Table 3-10 with an asterisk in the "MINIMUM REPORTED DETECTION LIMIT" column. To achieve the planned limits, some samples originally analyzed using the ICP/AES technique were re-analyzed using the more sensitive ICP/MS technique. This was done according to the plan outlined in the QAPP (TtNUS, 1999b).

For the metals in Table 3-10, the detection limit values are compared for the 67 original samples with the exception of lithium, strontium and thorium in sample BG1SBA0101. Duplicate samples were not included in this tally. Table 3-10 depicts a range of detection limits for each of the eight metals. Most of the minimum reported detection limits approximate the planned detection limits, indicating a good effort by Laucks Laboratory to meet the unusually low limits requested. Several maximum and average detection limits (for antimony, beryllium, selenium, silver, sodium and tin) are significantly greater than the requested limits. As a result, several samples had elevated detection limits for each of those metals. The cause of the elevated detection limits is generally attributed to low levels of laboratory contamination, which was detected in analytical method blanks or calibration blanks. This is not necessarily a surprise, given that the planned limits are less than what are usually reported by the laboratory. Because this is a background investigation, the lower limits were requested in an effort to obtain measurable values for as many metals as reasonably achievable. This indicates that the planned limits have stretched the capabilities of Laucks Laboratory and may not be consistently achievable on a routine basis for the affected metals. This is not viewed as a laboratory deficiency, but as a natural limitation of current analytical technology.

Elevated detection limits for sodium are not viewed as problematic because sodium is not typically a metal of concern in environmental investigations. With the exception of the two soil samples in SDG C8311, silver detection limits in some samples barely exceeded the requested 0.05 mg/kg limit, so those values are also not viewed as problematic. In SDG C8311, the silver detection limits were reported as 0.23 mg/kg, and 0.22 mg/kg and the two soil results were "non-detects." Qualifying the affected silver results as "non-detects" is consistent with data validation guidelines and with the silver concentrations observed across all samples in this project. Elevated detection limits for antimony, beryllium, selenium, and tin are more of an issue because those metals are common target parameters of environmental concern. However, given the apparent technological limitations associated with achieving the planned detection limits for antimony, beryllium, selenium, and tin, there is no plan for attempting to achieve lower detection limits for those metals.

3.7.6 Field Blank Evaluations

In Section 3.7.5, elevated concentrations of metals in method blanks and calibration blanks were discussed. Some source water blanks and equipment rinsate blanks also exhibited detectable concentrations of several metals. The observed concentrations were on the order of the analytical detection limits. The equipment rinsate blanks generally exhibited concentrations similar to the source water blanks, indicating that the equipment decontamination process was not deficient. Those levels of

contamination present in source water and equipment rinsate blanks are orders of magnitude less than any levels that could be responsible for detectable levels of contamination in the soil samples. The potential for cross-contaminating samples is thus negligible at the observed blank concentrations and is not addressed further here. The data validation summaries (Appendix C-2) provide additional detail on this matter, including the observed blank concentrations.

NSWC Crane Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: 3 Page 24 of 47

This page intentionally left blank.

SUMMARY OF HISTORICAL SOIL BACKGROUND DATA FOR METALS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 1 OF 3

SWMU No.	SWMU Name	Abbreviated Name	Soil Background Data Available	Background Sample Identifiers	Validity of Background Samples ^A	Source	Remarks
01/12	Mustard Gas Burial Grounds	MGBG	no		•	1	no data/reports
02/11	Dye Burial Grounds	DBG	no			5	
03/10	Ammunition Burning Grounds/Old Jeep Trail	ABG/OJT	yes		invalid for RA	4, 12	Data rejected by USEPA, 1997
04/02	McCormish Gorge	McCG	no		invalid for RA	6	no valid samples for McComish G.; bgnd samples from OBP used at both sites
05/03	Old Burn Pit	OBP	yes	05/03-01-90, 05/03-02-90, 05/03-03-90	invalid for RA	7	3 samples are located very close to each other; treat as one datum. Data rejected by USEPA, 1997.
06/09	Demolition Range	DEMO	yes	CR95-06SS-A01-01; CR95-06SS-A01-01-AVG; CR95-06SS-A01-01-D; CR95-06SS-A02-01; CR95-06SS-A03-01;	invalid for the basewide background investigation	4	Data questionable due to proximity to nearby road. 1990 and 1993 data rejected by USEPA, 1997. 1995 data is suspect because soil may have been impacted by deposition from DR, and ORR
07/09	Old Rifle Range	ORR	yes	CR95-07SS-A01-01; CR95-07SS-A02-01; CR95-07SS-A03-01;	invalid for the basewide background investigation	4	1990 and 1993 data rejected by USEPA, 1997. 1995 data questionable due to historical land use (Pistol Range) and possibility that soil had been impacted by deposition from the DR, and ORR
08/17	Load & Fill Area, Bldg 106 Pond	106P	no			2	source is most recent available for site
09/03	Pesticide Control Area/ R- 150-Tank	PCA	yes		invalid for RA	8, 9	samples analyzed using an ASTM method (not an EPA method SW- 846). Data rejected by USEPA, 1997
10/15	Rockeye	RKT	yes	BN#1(90), BN#2(90), and BN#3 (90)	invalid for RA	10	no accurate sample location; only BN#2 analyzed for metals. Data rejected by USEPA, 1997.
11/00	Old Storage, B-255	B225	no			1	no data/reports
12/14	Mine Fill A	MFA	no			2	no data
13/14	Mine Fill B	MFB	no			2	no data
14/00	Sanitary Landfill/Lithium Battery	SLF&LB	yes	NSWC-14/00-002	questionable due to uncertainty in data quality	3	validation status uncertain; incomplete target analyte list

SUMMARY OF HISTORICAL SOIL BACKGROUND DATA FOR METALS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 2 OF 3

SWMU		Abbreviated	Soil Background		Validity of Background		
No.	SWMU Name	Name	Data Available	Background Sample Identifiers	Samples ^A	Source	Remarks
15/06	Roads and Grounds Area	R&GA	no			3	source is most recent available for site
16/16	Cast High Explosive Fill/ Incinerator Bldg 146	B146	yes	B-146-BG1a-03140 thru B-146-BG1d-03140; B- 146-BG2a-03140 thru B-146-BG2d-03140; B- 146-BG3a-03140 thru B-146-BG4d-03140; B- 146-BG4a-03140 thru B-146-BG4d-03140;	questionable due to reporting	3	uncertain if dry or wet weight analysis was reported; uncertainty in data quality
17/04	PCB Burial/Pole Yard	PCB	no			1	no data/reports
18/13	Load & Fill Area Buildings	L&FAB	no			1	no data/reports
19/00	Pyrotechnic Test Area/ Annex/ Rocket Range/ Impact Area	OTA or PTA	no			2	source is most recent available for site
20/00	CAAA QA/QC Test Area	CAAA	no			1	no data/reports
21/00	DRMO Storage Lot	DRMO	no			1	no data/reports
22/00	Lead Aside	PbA	no			1	no data/reports
23/00	Battery Shop	BS	no			1	no data/reports
24/00	Sludge Drying Beds A	SDBA	no			1	no data/reports
24/00	Sludge Drying Beds B	SDBB	no			1	no data/reports
25/07 D	Highway 58 Dump Site A	H58DSA	no			1	no data/reports
26/06 D	Highway 58 Dump Site B	H58DSB	no			1	no data/reports
27/00	Illuminant Building	IB	no			1	no data/reports
28/00	Maintenance Shop	MS	no			1	no data/reports
29/07	PCP Dip Tank	PCP	no			1	no data/reports
30/00	Landfarm	LF	no			1	groundwater issue only
31/00	Compressed Gas Cylinder Site	CGC	no			1	no data/reports
32/00	Tank Farm	TF	no			1	no data/reports
33/00	Compositing Unit (Bioremediation Facility)	COMP	yes	BIOF001 through BIOF014	questionable due to possible site contamination	1	Samples were not intended as background and may have been impacted by previous site activities
	Borrow Pit	BP	yes	BP/BF-001 through BP/BF-004, 02/11BP1 and 02/11BP2	questionable due to poor data quality		Several locations; Uncertainty in quality of data; analytical problems; possibility of impact due to site activities

SUMMARY OF HISTORICAL SOIL BACKGROUND DATA FOR METALS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 3 OF 3

					Validity of		
SWMU		Abbreviated	Soil Background		Background		
No.	SWMU Name	Name	Data Available	Background Sample Identifiers	Samples ^A	Source	Remarks

Notes:

A - Although this data is not used in the base-wide database, at a minimum, this data may provide some value as a point of reference at each of the respective SWMU investigations.

Sources:

- 1 Tom Brent, personal communication, December, 1998
- 2 HNUS, August 1992, RFI Phase I, Environmental Montoring Report, SWMUs 19/00, 08/17. 12/14, 13/14, NorthDiv, CTO 15
- 3 HNUS, November 1992, RFI Phase I, Environmental Montoring Report, SWMUs 15/06, 14/10, 16/16, NorthDiv, CTO 15
- 4 TtNUS 1999, Final Current Contamination Conditions Risk Assessment, SWMUs 03/10, 07/09, 06/09
- 5 Murphy and Wade, 1998, RCRA FI Phase III Groundwater Release Char., SWMU 02/11, Dye Burial Grounds, NSWC Crane, Final Report, USACE Waterways Experimental Station.
- 6 Nohrstedt, J.S., et al., 1998, RCRA Facility Investigation Phase II Soils Release Characterization, SWMU 04/02, McCormish Gorge, NSWC Crane, Final Report, USACE WES.
- 7 Albertson et al., September 1998, RCRA Facility Investigation Phase II Soils, SWMU 05/03, Old Burn Pit, NSWC Crane, Final Report, USACE Waterways Experimental Station
- 8 USACE Waterways Experimental Station, Feburary 1992, RCRA Facility Investigation Phase II and Phase III Soils, SWMU 09/05, Pest Control Area/ R150 Tank Site, NSWC Crane
- 9 Analytical Data, SWMU 09/05, Pest Control Area/ R150 Tank Site, NSWC Crane
- 10 Nohrstedt, J.S., et al., September 1998c, RCRA Facility Investigation Plahse II Soil Release Characterizatin, NSWC Crane
- 11 Nohrstedt, J.S., et al., September 1998, RCRA Facility Investigation Phase II Soils Release Characterization, SWMU 10/15, Rockeye Munitions Facility, Final Report, USACE WES
- 12 Rust E&I, July 1997, Environmental Data Assessment Memorandum, SWMUs 03/10, 06/09, and 07/09, NSWC Crane, Draft Report.

BACKGROUND SOIL SAMPLE LOCATIONS BACKGROUND AREA 1 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 1 OF 2

					Crane	Soil Survey			Present	Soil Clas	sification ^(1,3)
Depositional Environment	Sample Tracking Number	Source of Deposition ⁽¹⁾	Topographic Location	General Location	Develop- ment Map #	of Martin County ⁽²⁾ Map #	Soil Series ^(1,3)	Soil Map Units ^(1,3)	at # of SWMU	Surface Soil ⁽⁴⁾	Subsurface Soil ⁽⁵⁾
				FIRST FIELD E	VENT						
Loess/	BG1SBL01	Loess deposits	uplands & ridgetops	west-southwest of Landfill	28	12	Hosmer	HoB	2	silt loam	silt loam to silty clay loam
Glacial Outwash	BG1SBL02	Loess deposits	uplands & ridgetops	south of Landfill	28	12	Hosmer	HoB	2	silt loam	silt loam to silty clay loam
	BG1SBL03	Loess deposits	uplands & ridgetops	southwest corner of base	28	20	Hosmer	HoB	2	silt loam	silt loam to silty clay loam
	BG1SBL04	Loess deposits	uplands & ridgetops	southwest corner of base	12	20	Hosmer	HoB	2	silt loam	silt loam to silty clay loam
	BG1SBL05	Loess deposits	uplands & ridgetops	south of Landfarm southwest of Pyrotechnic	28	12	Hosmer	HoB	2	silt loam	silt loam to silty clay loam
Alluvium	BG1SBA01	Alluvium	lowlands	Test Areal southwest of Pyrotechnic	34	17	Haymond	Hd	3	silt loam	silt loam
	BG1SBA02	Alluvium Alluvium derived from	floodplains & lowlands	Test Areal	34	17	Wilbur	Wr	0	silt loam	silt loam
	BG1SBA03	sandstone, siltstone, and shale	floodplains & lowlands	south of Landfill	33	16	Burnside	Bu	4	loam	loam to channery loam
	BG1SBA04	Silty alluvium derived from loess uplands	floodplains & lowlands	south of Landfill	37	16	Wakeland	Wa	4	silt loam	silt loam
	BG1SBA05	Alluvium material weathered from SS,	lowlands	West of Rocket Range	34	17	Wakeland Wellston-Gilpin	Wa	4	silt loam silt loam to channery silt	silt loam silt loam, silty clay loam, to channery
Residual Soil from Pennsylvanian	BG1SBP01	siltstone, shale.	sideslopes	south of Landfill	28	12	complex	WnE	16	loam	loam
Bedrock/ Colluvium	BG1SBP02	weathered from SS, siltstone, shale.	ridgetop in uplands	East of Landfill	29	13	Zanesville	ZaB	6	silt loam to silty clay loam	silty loam, to sandy clay loam
	BG1SBP03	material weathered from SSs, siltstone, shale.	toe of slope	east of Landfill	29	13	Wellston	WeD2	8	silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP03	Loess and material weathered from SS, siltstone, shale.	sideslope in uplands	southeast of Landfill	29	13	Wellston	WeD2	8	silt loam	silt loam, silty clay loam, to channery loam
		Loess and material weathered from SS,								silt loam to silty	silty loam, to sandy
	BG1SBP05	siltstone, shale. Loess and material weathered from SS,	ridgetop in uplands	southeast of Landfill	33	17	Zanesville Zanesville- Udorthents	ZaB	6	clay loam silt loam to silty	clay loam silt loam, silty clay
	BG1SBP06	siltstone, shale. material weathered from SS,	ridgetop in uplands	south of Landfill	33	16	complex Wellston-Gilpin	ZnC	17	clay loam silt loam to channery silt	loam to loam silt loam, silty clay loam, to channery
	BG1SBP07	siltstone, shale. material weathered from SS,	sideslope	southwest of Annex	34	17	complex	WnE	16	loam	loam silt loam, silty clay loam, to channery
	BG1SBP08	siltstone, shale.	sideslope near ridgetop	Northwest of Rocket Range	34	16	Wellston	WeC2	5	silt loam silt loam to	loam silt loam, silty clay
	BG1SBP09	material weathered from SS, siltstone, shale. material weathered from SS,	toe of slope	West of Rocket Range	37	20	Wellston-Gilpin complex	WnE	16	channery silt loam	loam, to channery loam
	BG1SBP10	siltstone, shale.	toe of slope	West of Rocket Range	37	20	Zanesville	ZaC2	7	silt loam to silty clay loam	silty loam, to sandy clay loam

BACKGROUND SOIL SAMPLE LOCATIONS BACKGROUND AREA 1 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 2 OF 2

					Crane	Soil Survey			Present	Soil Clas	sification ^(1,3)
Depositional Environment	Sample Tracking Number	Source of Deposition ⁽¹⁾	Topographic Location	General Location	Develop- ment Map #	of Martin County ⁽²⁾ Map #	Soil Series ^(1,3)	Soil Map Units ^(1,3)	at # of SWMU	Surface Soil ⁽⁴⁾	Subsurface Soil ⁽⁵⁾
				SUPPLEMENTAL FIE	ELD EVENT						
Alluvium	BG1SBA25 ⁶	Silty alluvium derived from loess uplands	floodplains & lowlands	App. 2500 feet southeast of storage bunker 1360	37	20	Wakeland	Wa	4	silt loam	silt loam
	BG1SBA28 ⁶	Loess and underlying alluvium	outwash terraces	App. 2500 feet southeast of the Rocket Range	38	21	Pekin	PeB	NP	silt loam	silt loam to silty cla loam
	BG1SBA29 ⁶	Alluvium derived from loess uplands	floodplains & lowlands	App. 1000 feet north of storage bunker 1289	34	17	Wilbur	Wr	NP	silt loam	silt loam
	BG1SBA38 ⁶	Alluvium derived from loess uplands	floodplains & lowlands	App. 5500 feet north of the Rocket Range	34	17	Wilbur	Wr	NP	silt loam	silt loam silt loam, silty clay
Residual Soil from	BG1SBP11 ⁸	material weathered from ss, siltstone, shale.	top of slope	West of Pyrotechnic Area	28	13	Wellston	WeD2	8	silt loam	loam, to channery loam
Pennsylvanian Bedrock/ Colluvium	BG1SBP13 ⁹	material weathered from ss, siltstone, shale.	sideslope	Northwest of Pyrotechnic Area	29	13	Wellston	WeD2	8	silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP16 ⁹	material weathered from ss, siltstone, shale.	sideslope	Northwest of Rocket Range	34	17	Wellston-Gilpin complex	WnE	16	silt loam to channery silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP22 ⁸	loess and material weathered from ss, siltstone, shale.	sideslope of ridge	West of Rocket Range	37	16	Zanesville	ZaB	6	silt loam to silty clay loam	silty loam, to sandy clay loam
	BG1SBP37 ⁹	material weathered from ss, siltstone, shale.	ridgetop	Northwest of Rocket Range	34	17	Wellston	WeC2	5	silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP39 ⁷	material weathered from ss, siltstone, shale.	sideslope near ridgetop	Northwest of Rocket Range	33	16	Wellston-Gilpin complex	WnE	16	silt loam to channery silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP40 ⁹	material weathered from ss, siltstone, shale.	sideslope near ridgetop	South of Landfill	28	12	Wellston-Gilpin complex	WnE	16	silt loam to channery silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP42 ⁷	material weathered from ss, siltstone, shale.	sideslope	West of Pyrotechnic Area	29	13	Zanesville	ZaC2	7	silt loam to silty clay loam	silty loam, to sandy clay loam
	BG1SBP43 ⁸	material weathered from ss, siltstone, shale.	ridgetop	Southeast of Landfill	34	13	Wellston	WeD2	8	silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP44 ⁸	material weathered from ss, siltstone, shale.	ridgetop	Southwest of Pyrotechnic Area	34	13	Wellston	WeC2	5	silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP45 ⁷	material weathered from ss, siltstone, shale.	ridgetop	Northwest of Pyrotechnic Area	29	13	Wellston	WeC2	5	silt loam	silt loam, silty clay loam, to channery loam
	BG1SBP50 ⁹	loess and material weathered from ss, siltstone, shale.	sideslope of ridge	Northwest of Pyrotechnic Area	29	13	Zanesville	ZaB	6	silt loam to silty clay loam	silty loam, to sandy clay loam

Notes: SS - sandstone

1 Information taken from McElrath (1988).

2 No depth specified for surface soil samples

3 United States Department of Agriculture (USDA) classification system

4 Surface soil is from 0 to 12 inches below ground surface (bgs) based upon classification by McElrath (1988).

Subsurface soil is between 12 to 70 inches bgs or to the top of bedrock McElrath (1988).
 Boring Set AB1 (see TtNUS, 2000b for more details).
 Boring Set PS1 (see TtNUS, 2000b for more details).
 Boring Set PS2 (see TtNUS, 2000b for more details).
 Boring Set PS3 (see TtNUS, 2000b for more details).

BACKGROUND SOIL SAMPLE LOCATIONS BACKGROUND AREA 2 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

						Soil Survey				Soil Classific	ation ^(1,3)
Depositional Environment	Sample Tracking Number	Source of Deposition ⁽¹⁾	Topo-graphic Location	General Location	Crane Development Map #	of Martin County ⁽²⁾ Map #	Soil Series ^(1,3)	Soil Map Units ^(1,3)	Present at # of SWMUs	Surface Soil ⁽⁴⁾	Subsurface Soil ⁽⁵⁾
Background Are	ea 2a										
Loess/ Glacial Outwash	BG2SBG1	Glacial outwash deposits	sideslopes	south of Hwy 5, West Gate	8	4	Parke	PaC2	1	silt loam	silty clay loam to sandy clay loam
	BG2SBG2	Glacial outwash deposits	sideslopes	south of Hwy 5, West Gate	8	4	Parke	PaC2	2	silt loam	silty clay loam to sandy clay loam
	BG2SBG3	Glacial outwash deposits	sideslopes	south of Hwy 5, West Gate	8	4	Parke	PaC2	3	silt loam	silty clay loam to sandy clay loam
Background Are	a 2b			•		·			·		
Loess/ Glacial Outwash	BG2SBG4	Glacial outwash deposits	sideslopes	north of Hwy 5, West Gate	8	4	Negley	NeE	2	silt loam to loam	loam, clay loam, gravely loam
	BG2SBG5	Glacial outwash	sideslopes	north of Hwy 5, West Gate	8	4	Negley	NeE	2	silt loam to loam	loam, clay loam, gravely loam

Notes:

1 Information taken from McElrath (1988).

2 No depth specified for surface soil samples

United States Department of Agriculture (USDA) classification system
Surface soil is from 0 to 12 inches below ground surface (bgs) based upon classification by McElrath (1988).
Subsurface soil is between 12 to 70 inches bgs or to the top of bedrock based upon classification by McElrath (1988).

BACKGROUND SOIL SAMPLE LOCATIONS BACKGROUND AREA 3 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 1 OF 2

					Crane	Soil Survey			Present	Soil Cla	assification ^(1,3)
Depositional Environment	Sample Tracking Number	Source of Deposition ⁽¹⁾	Topo-graphic Location	General Location	Develop- ment Map #	of Martin County ⁽²⁾ Map #	Soil Series ^(1,3)	Soil Map Units ^{4,5}	at # of SWMU	Surface Soil ⁽⁴⁾	Subsurface Soil ⁽⁵⁾
				FIRST FIELD EV	ENT						
				Upper Sulphur Creek;							
Alluvium	BG3SBA01	Alluvium derived from SS, siltstone, and shale	floodplain & Iowlands	northwest of intersection btwn JT-9 & H-162	12	3	Burnside	Bu	4	loam	loam to channery loam
	BG3SBA02	Alluvium derived from SS, siltstone, and shale	floodplain & Iowlands	Upper Sulphur Creek; northwest of intersection btwn JT-9 & H-163	12	3	Burnside	Bu	4	loam	loam to channery loam
		Alluvium derived from SS,	floodplain &								loam to channery
	BG3SBA03	siltstone, and shale	lowlands	southwest of PT-9	6	3	Burnside	Bu	4	loam	loam
	00000404	Alluvium derived from SS,	floodplain &	Boone Hollow; west of PT-		0	Duranida	Du		la a se	loam to channery
	BG3SBA04	siltstone, and shale Alluvium derived from SS,	lowlands floodplain &	10A Boone Hollow; west of PT-	14	3	Burnside	Bu	4	loam	loam loam to channery
	BG3SBA05	siltstone, and shale	lowlands	10A	14	3	Burnside	Bu	4	loam	loam
		material weathered from		East of Roberts Cemetary,			Wellston-				silt loam, silty clay loam, to
Residual Soil from	BG3SBM01	(M6) SS, siltstone, shale.	sideslope	along PT-8	5	3	Ebal	WID	NP	silt loam	channery loam
Mississippian Bedrock/		material weathered from		East of Roberts Cemetary,	_	_				silt loam to silty clay	silty loam, to
Colluvium	BG3SBM02	(M6) SS, siltstone, shale.	sideslope	along PT-8	5	3	Zanesville	ZaC3	2	loam	sandy clay loam
	DCOCDMOD	material weathered from	sidesland	West of JT-9; Northeast of	12	3	Wellston- Berks-Gilpin	WeC	6	silt loam to channery	clay loam, to
	BG3SBM03	(M5) SS, siltstone, shale.	sideslope	Bunker #1583	13	3	complex	WgG	0	silt loam silt loam to	channery loam
	BG3SBM04	material weathered from (M5) SS, siltstone, shale.	sideslope	N.east of JT-10 & JT-10A intersection	6	3	Zanesville	ZaC2	7	silty clay loam	silty loam, to sandy clay loam
	DCCCDINIC4		sidesiope	Intersection	0	5	Zanesville	2002	1	Ioam	silty clay loam,
	BG3SBM05	material weathered from (M5) SS, siltstone, shale.	ridgetop	North of JT-10A	14	3	Johnsburg	Jo	NP	silt loam	silt loam, to sandy loam
		material weathered from	sideslope/lowlan	East of JT-9; north of intersection btwn JT-9 & H			Wellston- Berks-Gilpin			silt loam to channery	silt loam, silty clay loam, to
	BG3SBM06	(M4) SS, siltstone, shale.	d	162	13	3	complex	WgG	5	silt loam	channery loam
	BG3SBM07	material weathered from (M5) SS, siltstone, shale.	ridgetop	South of JT-10A	14	3	Zanesville	ZaB	6	silt loam to silty clay loam	silty loam, to sandy clay loam
	BG3SBM08	material weathered from (M3) SS, siltstone, shale.	sideslope/lowlan	400 feet south of PT-9	6	3	Wellston- Ebal	WID	NP	silt loam	silt loam, silty clay loam, to channery loam
			-		Ŭ	<u> </u>	Wellston-			silt loam to	silt loam, silty
	BG3SBM09	material weathered from (M3) SS, siltstone, shale.	sideslope	800 feet South of JT-10A	13	3	Berks-Gilpin complex	WgG	5	channery silt loam	clay loam, to channery loam
		material weathered from	sideslope/lowlan				Wellston- Berks-Gilpin		_	silt loam to channery	clay loam, to
	BG3SBM10	(M2) SS, siltstone, shale.	d	400 feet West of PT-10A	14	3	complex	WgG	5	silt loam	channery loam

BACKGROUND SOIL SAMPLE LOCATIONS BACKGROUND AREA 3 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 2 OF 2

					Crane	Soil Survey			Present	Soil Cla	assification ^(1,3)
Depositional Environment	Sample Tracking Number	Source of Deposition ⁽¹⁾	Topo-graphic Location	General Location	Develop- ment Map #	of Martin County ⁽²⁾ Map #	Soil Series ^(1,3)	Soil Map Units ^{4,5}	at # of SWMU	Surface Soil ⁽⁴⁾	Subsurface Soil ⁽⁵⁾
		· · · ·		SUPPLEMENTAL FIEL						•	
Alluvium	BG3SBA07 ⁶	Alluviuim derived from sandstone, siltstone, and shale	fllodplain and lowlands	Upper Suilfur Creek: northwest intersection btwn JT-9 & H-162	12	3	Burnside	Bu	4	loam	loam to channery loam
Residual Soil from	BG3SBP01 ⁷	Loess and material weathered from ss, siltstone, shale	ridgetop	East of JT-10 and JT-10A intersection	6	3	Zanesville	ZaC2	7	silt loam to silty clay loam	silty loam to sandy clay loam
Pennsylvanian Bedrock/ Colluvium	BG3SBP08 ⁸	Loess and material weathered from ss, siltstone, shale	sideslope	App. 1600 feet southest of JT-9 and PT-8 intersection		3	Wellston- Berks-Gilpin Complex	WqG	5	silt loam to channery silt loam	
	BG3SBP09 ⁷	Loess, colluvium, and material weathered from ss, siltstone, shale	sideslope	App. 1600 feet west of JT- 9 and PT-8 intersection		3	Wellston-Ebal	WID	NP	silt loam	silt loam,silty clay loam to channery loam

Notes:

ScienceSubsurface soil is between 12 to 70 inches bgs or to the top of bedrock McElrath (1988).1Information taken from McElrath (1988).Boring Set AB1 (see TtNUS, 2000b for more details).2No depth specified for surface soil samplesForming Set PS1 (see TtNUS, 2000b for more details).3United States Department of Agriculture (USDA) classification systemBoring Set PS2 (see TtNUS, 2000b for more details).4Surface soil is from 0 to 12 inches below ground surface (bgs) based upon classification by McElrath (1988).Boring Set PS3 (see TtNUS, 2000b for more details).

SAMPLING SUMMARY FOR CHEMICAL ANALYSIS BACKGROUND AREA 1 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Depositional	Background Sample	Background Sample	Depth	Analysis of TAL metals + Tin, Lithium, Strontium, and
Environment	Location	Name	(feet-bgs)	Thorium ⁽¹⁾
		First Field Event	t	
Loess/	BG1SBL01	BG1SBL0101	0-1	X
Glacial		BG1SBL0103	2-3	X
Outwash		BG1SBL0105	4-5	X
	BG1SBL03	BG1SBL0305	4-5	X
	BG1SBL04	BG1SBL0403	2-3	X
		BG1SBL0405	4-5	X
	BG1SBL05	BG1SBL0501	0-1	X
		BG1SBL0504	3-4	X
		BG1SBL0506	5-6	X
Alluvium	BG1SBA01	BG1SBA0101	0-1	X
		BG1SBA0104	3-4	X
	BG1SBA03	BG1SBA0306	5-6	X
	BG1SBA04	BG1SBA0401	0-1	X
		BG1SBA0405	4-5	X
	BG1SBA05	BG1SBA0503	2-3	X
		BG1SBA0504	3-4	X
Residual Soil	BG1SBP01	BG1SBP0103	2-3	X
from	BG1SBP02	BG1SBP0204	3-4	X
Pennsylvanian		BG1SBP0206	5-6	X
Bedrock/	BG1SBP03	BG1SBP0305	4-5	X
Colluvium	BG1SBP04	BG1SBP0401	0-1	X
		BG1SBP0406	5-6	X
	BG1SBP05	BG1SBP0505	4-5	X
	BG1SBP06	BG1SBP0601	0-1	X
	20102100	BG1SBP0603	2-3	X
	BG1SBP07	BG1SBP0701	0-1	X
	BG1SBP08	BG1SBP0801	0-1	X
	DO TODI OU	BG1SBP0804	3-4	X
		BG1SBP0806	5-6	X
	BG1SBP09	BG1SBP0901	0-1	X
	BG1SBP10	BG1SBP1004	3-4	X
		Supplement Field E		X
Alluvium	BG1SBA25	BG1SBA250203	2-3	X
	BG1SBA28	BG1SBA280304	3-4	X

Notes:

1 See Section 3.3.5 for a description of the process of selecting samples for chemical analysis.

SAMPLING SUMMARY FOR CHEMICAL ANALYSIS BACKGROUND AREA 2 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Depositional Environment	Background Sample Location	Background Sample Name	Depth (feet-bgs)	Analysis of TAL metals + Tin, Lithium, Strontium, and Thorium ⁽¹⁾
Loess/	BG2SBG01	BG2SBG0101	0-1	X
Glacial		BG2SBG0104	3-4	X
Outwash	BG2SBG02	BG2SBG0201	0-1	X
		BG2SBG0203	2-3	X
		BG2SBG0206	5-6	X
	BG2SBG03	BG2SBG0303	2-3	X
	BG2SBG04	BG2SBG0401	0-1	X
		BG2SBG0404	3-4	X
	BG2SBG0503	BG2SBG0503	2-3	X

Notes:

1 See Section 3.3.5 for a description of the process of selecting samples for chemical analysis.

SAMPLING SUMMARY FOR CHEMICAL ANALYSIS BACKGROUND AREA 3 NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Depositional	Background Sample	Background Sample	Depth	Analysis of TAL metals + Tin, Lithium, Strontium, and Thorium ⁽¹⁾
Environment	Location	Name	(feet-bgs)	and Inorium '
		First Field Event		
Alluvium	BG3SBA01	BG3SBA0101	0-1	X
	BG3SBA02	BG3SBA0203	2-3	Х
	BG3SBA03	BG3SBA0301	0-1	Х
	BG3SBA04	BG3SBA0403	2-3	X
		BG3SBA0404	3-4	X
	BG3SBA05	BG3SBA0501	0-1	X
		BG3SBA0504	3-4	X
		BG3SBA0506	5-6	X
Residual Soil	BG3SBM02	BG3SBM0201	0-1	Х
from		BG3SBM0203	2-3	Х
Mississippian		BG3SBM0206	5-6	Х
Bedrock/	BG3SBM03	BG3SBM0305	4-5	Х
Colluvium	BG3SBM04	BG3SBM0401	0-1	Х
		BG3SBM0404	3-4	Х
		BG3SBM0406	5-6	Х
	BG3SBM05	BG3SBM0504	3-4	X
	BG3SBM06	BG3SBM0601	0-1	X
		BG3SBM0604	3-4	Х
	BG3SBM07	BG3SBM0701	0-1	Х
		BG3SBM0704	3-4	X
		BG3SBM0706	5-6	X
	BG3SBM08	BG3SBM0801	0-1	X
		BG3SBM0803	2-3	X
	BG3SBM09	BG3SBM0904	3-4	X
	BG3SBM10	BG3SBM1003	2-3	X
	S	upplement Field Event		
No samples were	collected			

Notes:

1 See Section 3.3.5 for a description of the process of selecting samples for chemical analysis.

SUMMARY OF SOIL SAMPLES COLLECTED FOR CHEMICAL ANALYSIS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

	Surface or Subsurface	Gross Grain Size	Number of Samples Sent for
Depositional Environment	Soil	Classification	Chemical Analysis
ALLUVIUM	SS		5
ALLUVIUM	SB	CLAY	3
ALLUVIUM	SB	SAND	4
ALLUVIUM	SB	SILT	5
LOESS/GLACIAL	SS		5
LOESS/GLACIAL	SB	CLAY	5
LOESS/GLACIAL	SB	SAND	3
LOESS/GLACIAL	SB	SILT	5
MISSISSIPPIAN	SS		5
MISSISSIPPIAN	SB	CLAY	4
MISSISSIPPIAN	SB	SAND	3
MISSISSIPPIAN	SB	SILT	5
PENNSYLVANIAN	SS		5
PENNSYLVANIAN	SB	CLAY	4
PENNSYLVANIAN	SB	SAND	1
PENNSYLVANIAN	SB	SILT	5
Total Number of S	amples Sent for (Chemical Analysis	67

Notes:

SS - surface soil

SB - subsurface soil

COMPARISON OF FIELD AND LABORATORY DUPLICATE SAMPLE CONCENTRATIONS BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 1 OF 2

Metal (units of mg/kg)	Laboratory Duplicate AVG%RPD	Laboratory Duplicate MAX%RPD	Number of Laboratory Duplicate Pairs with 2 Detects	Field Duplicate AVG%RPD	Field Duplicate MAX%RPD	Number of Field Duplicate Pairs with 2 Detects	Ratio (Lab Duplicate AVG%RPD) / (Field Duplicate AVG%RPD)
ALUMINUM	7.84	20.2	4	7.27	17.22	8	1.08
ANTIMONY	NA	NA	0	NA	NA	0	NA
ARSENIC	13.48	45.84	4	13.32	24.00	8	1.01
BARIUM	11.28	22.36	4	6.82	21.28	8	1.65
BERYLLIUM	3.16	3.16	1	5.81	10.26	2	0.54
CADMIUM	85.60	161.28	2	43.53	80.00	2	1.97
CALCIUM	7.00	9.80	4	7.44	14.24	8	0.94
CHROMIUM	16.08	36.36	4	11.98	22.03	8	1.34
COBALT	18.04	31.04	4	9.38	20.59	8	1.92
COPPER	6.16	11.68	4	7.73	18.02	8	0.80
IRON	16.92	35.48	4	9.38	27.57	8	1.80
LEAD	14.08	38.44	4	8.60	21.80	8	1.64
MAGNESIUM	3.60	7.00	4	5.72	11.29	8	0.63
MANGANESE	30.56	70.60	4	15.28	36.37	8	2.00
MERCURY	NA	NA	0	9.09	4.55	2	NA
NICKEL	7.88	14.20	4	6.07	15.38	8	1.30
POTASSIUM	7.92	26.28	4	8.74	17.25	8	0.91
SELENIUM	21.64	26.88	2	NA	NA	0	NA
SILVER	0.00	0.00	1	33.33	66.67	2	0.00
SODIUM	0.84	0.80	1	5.64	7.07	3	0.15
THALLIUM	15.36	35.28	4	10.42	21.28	8	1.47

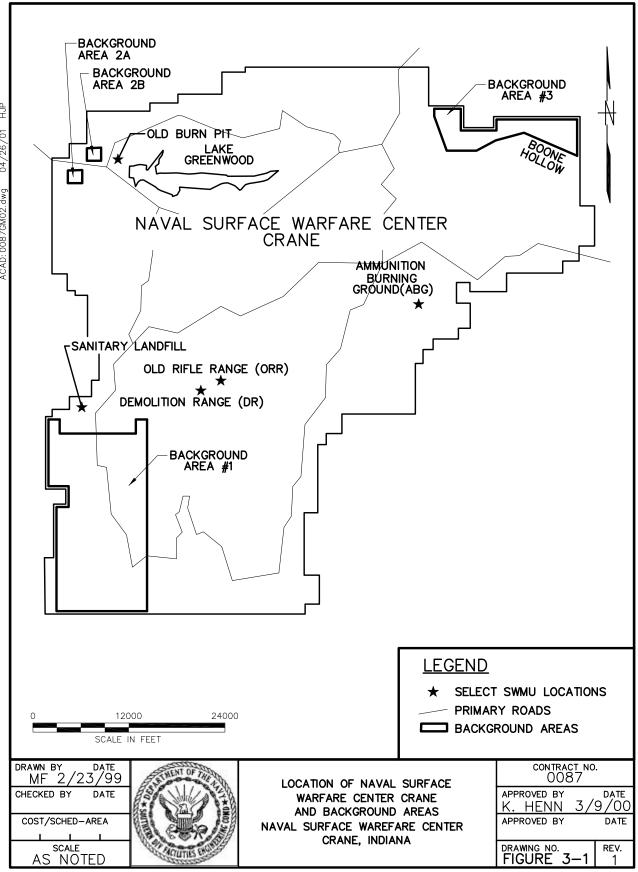
COMPARISON OF FIELD AND LABORATORY DUPLICATE SAMPLE CONCENTRATIONS **BASEWIDE BACKGROUND INVESTIGATION REPORT** NAVAL SURFACE WARFARE CENTER CRANE, INDIANA PAGE 2 OF 2

Metal (units of mg/kg)	Duplicate	Duplicate	Number of Laboratory Duplicate Pairs with 2 Detects	Field Duplicate AVG%RPD	Duplicate	Number of Field Duplicate Pairs with 2 Detects	Ratio (Lab Duplicate AVG%RPD) / (Field Duplicate AVG%RPD)
TIN	NA	NA	0	NA	NA	0	NA
VANADIUM	11.00	34.40	4	5.88	11.11	8	1.87
ZINC	6.64	12.28	4	5.78	16.04	7	1.15
Average RPD (all metals)	14.52			10.79			1.35

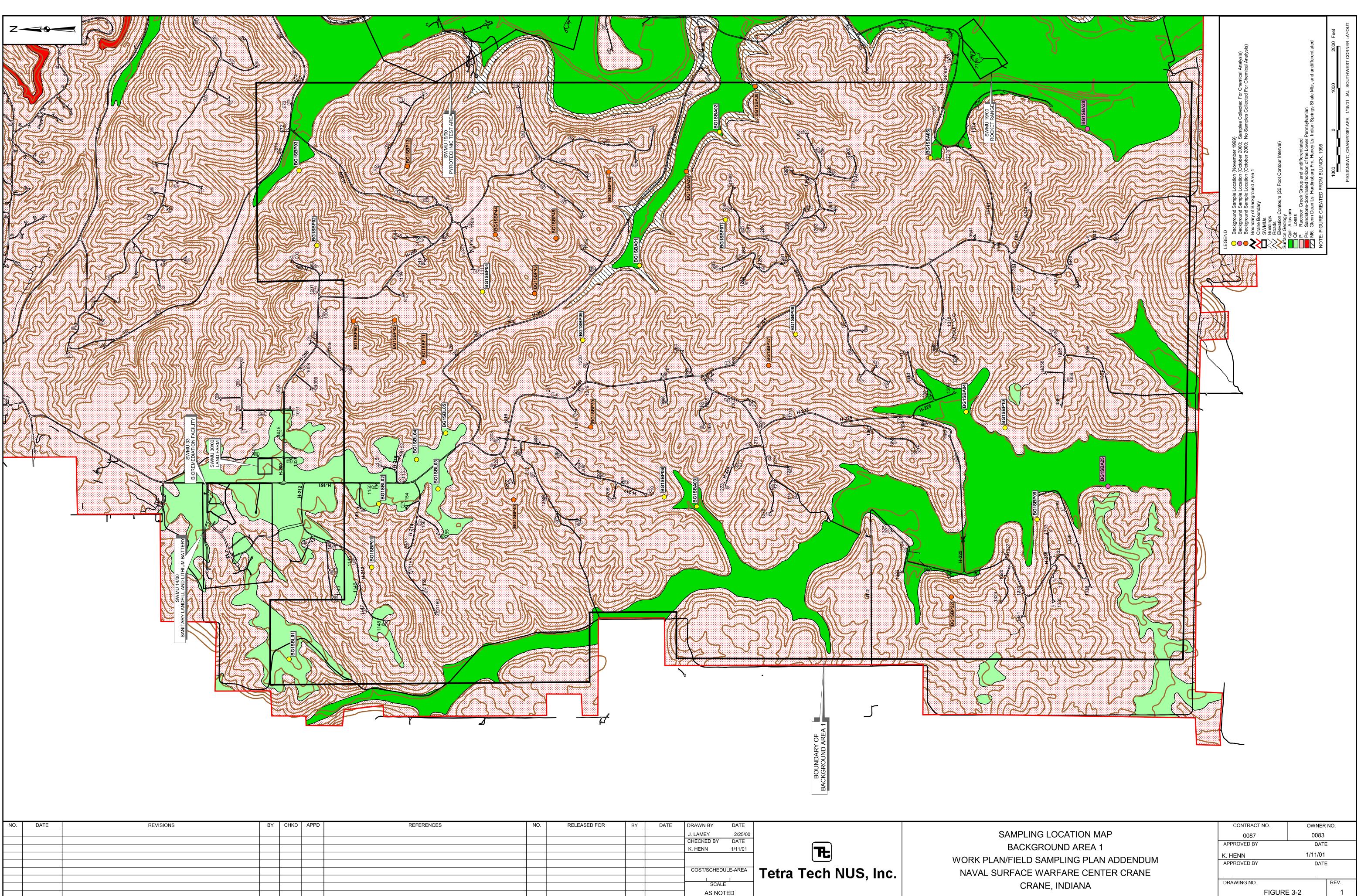
Notes:

AVG - average

RPd - relative percent difference MAX - maximum


NA - Not available

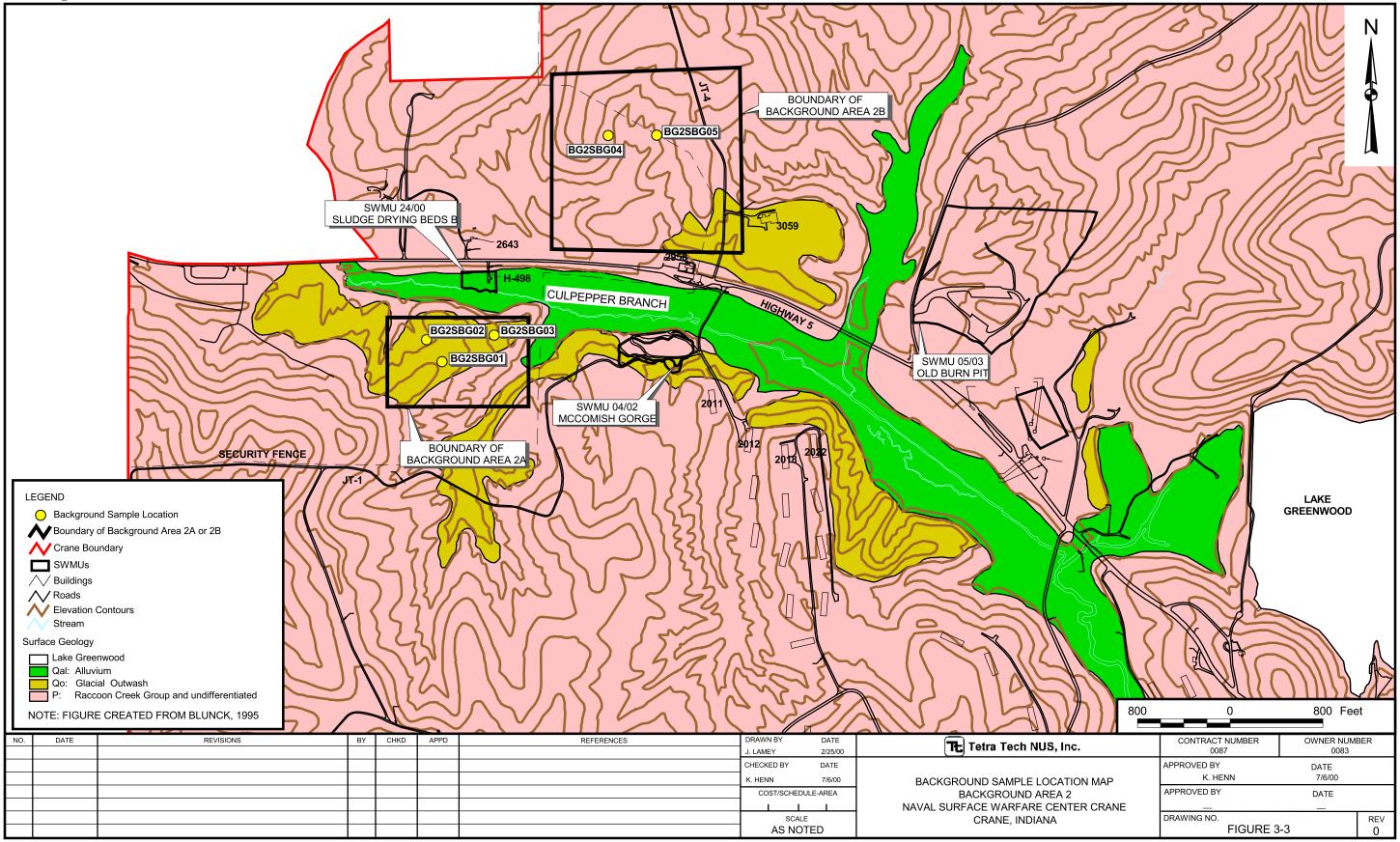
TABULATION OF REPORTED AND REQUESTED DETECTION LIMITS AND NUMBERS OF NON-DETECTS BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

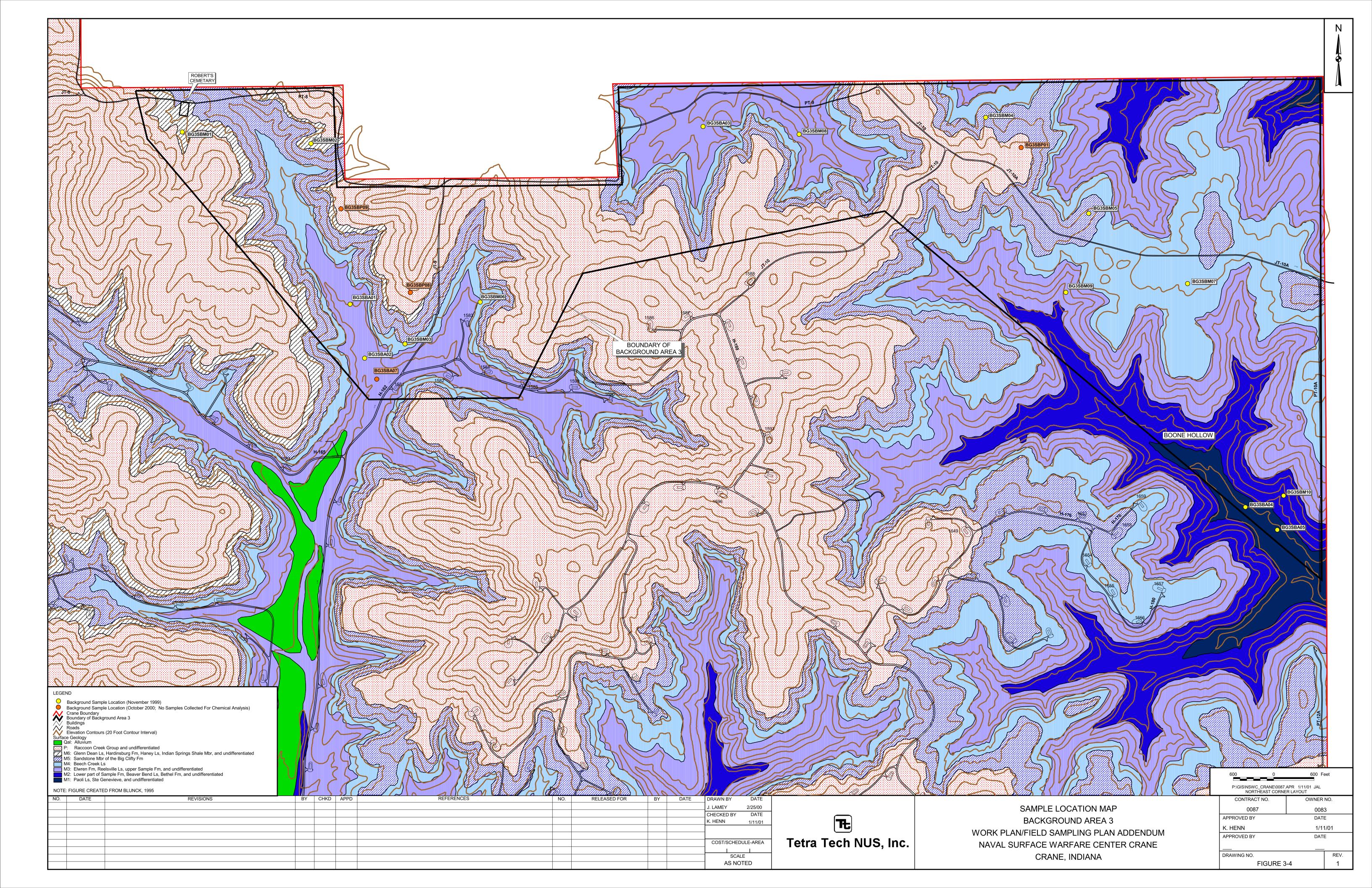

Metal	Minimum Reported Detection Limit (mg/kg)	Maximum Reported Detection Limit (mg/kg)	Average Reported Detection Limit (mg/kg)	Number of Non- Detects	Planned Detection Limit (mg/kg)
ANTIMONY	0.20*	5.5	0.77	59	0.15
BERYLLIUM	0.18*	1.4	0.64	53	0.15
CADMIUM	0.04	0.33	0.14	33	0.5
MERCURY	0.04	0.05	0.05	50	0.07
SELENIUM	0.23*	1.3	0.54	52	0.15
SILVER	0.04	0.23	0.07	19	0.05
SODIUM	2	125	3.3	35	2.6
TIN	0.38*	1.3	0.64	67	0.10

Notes:

* - Reported minimum detection limit exceeds the requested detection limit.

FORM CADD NO. SDIV_AV.DWG - REV 0 - 1/20/98




4	Tetra Tech NUS ,	Inc.	

ACE WARFARE CENTER CRAI
CRANE, INDIANA


CONTRACTINO.	OWNER NO.
0087	0083
APPROVED BY	DATE
K. HENN	1/11/01
APPROVED BY	DATE
DRAWING NO.	REV.
FIGURE	E 3-2 1

P:\GIS\NSWC_CRANE\0087.APR 7/6/00 JAL NORTHWEST BH LAYOUT

NSWC Crane Final Basewide Background Soil Investigation Report Bevision: 1 Date: January 2001 Section: 3 Page 47 of 47

PIGISINSWC_CRANE10087 APR 3/9/00 JAL SELECTION OF SAMPLES FOR CHEMICAL ANALYSIS

4.0 EVALUATION OF BACKGROUND ANALYTICAL DATA

A total of 16 soil types were anticipated to potentially exist within the background areas based upon various combinations of DE, depth, and grain size. The rationale for the development and description of each of these soil types has been presented in Sections 1, 2, and 3. Each of these 16 soil types are listed below:

- 1. Mississippian surface soil (MS)
- 2. Pennsylvanian surface soil (PS)
- 3. Alluvium surface soil (AS)
- 4. Loess/Glacial surface soil (LS)
- 5. Mississippian sand subsurface soil (MBS)
- 6. Mississippian silt subsurface soil (MBL)
- 7. Mississippian clay subsurface soil (MBC)
- 8. Pennsylvanian sand subsurface soil (PBS)
- 9. Pennsylvanian silt subsurface soil (PBL)
- 10. Pennsylvanian clay subsurface soil (PBC)
- 11. Alluvium sand subsurface soil (ABS)
- 12. Alluvium silt subsurface soil (ABL)
- 13. Alluvium clay subsurface soil (ABC)
- 14. Loess/Glacial sand subsurface soil (LBS)
- 15. Loess/Glacial silt subsurface soil (LBS)
- 16. Loess/Glacial clay subsurface soil (LBC)

All of the soil types were encountered in the NSWC Crane background areas. However, as noted in Section 3.3.5 two soil types were encountered less frequently than expected. Statistical analysis of the data is explained in the following sections and a discussion of the impact of detecting a small number of samples in certain soil type is also discussed.

4.1 DATA SET PREPARATION

Field logs were inspected to verify that the correct samples had been collected and that the samples had been correctly identified according to the procedures outlined in the Work Plan (TtNUS, 1999a). This QA/QC check on the field procedures and on sample collection and identification represents a verification

of having attained the project goals, as presented in Section 1.0 and in the Work Plan and QAPP (TtNUS, 1999a, 1999b).

The data were validated according to the QAPP (TtNUS, 1999b) to determine whether the laboratory analytical process functioned as intended. A summary of overall data quality was then compiled to indicate whether biases or unexpectedly large imprecision had been observed. Detection limits were also reviewed to determine whether detection limit goals had been achieved. These summaries are presented in Section 3.7

4.2 SOIL TYPE CHARACTERIZATION AND CONSOLIDATION

Following the data validation and overall data quality evaluation, statistical analyses were undertaken to characterize the data sets and to test for differences among soil types. The methodology for statistical analyses is discussed in Appendix D-1. Statistical results from this analysis including plots and tables have been included in Appendix D-2. The statistical analyses began by generating a summary of analytical results (Table 4-1) which presents an overview of all of the analytical data and descriptive statistics. This table indicates the number of times each analyte was detected, the range of detected values, average value, and location of maximum detection. Also included in Table 4-1 are upper tolerance limits (UTLs) that may be used as points of reference representing the upper ends of the data sets, and soil risk-based target levels (SRBTLs) that provide perspective on the computed UTLs. The methodology for computing the UTLs is presented in Section 5.0 and Appendix D-1. The SRBTLs have been included as a point of reference to the background concentrations. The frequency or number of background samples detected that exceed the SRBTLs was also included in these tables. The SRBTLs are based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. These risk-based criteria were current as of the date of the approved QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

Histograms were constructed and Shapiro-Wilk Tests of Normality (methodology outlined in Appendix D-1) were performed on each of the 27 metals in each of the 16 soil types. Both the data and the log transformed data were used to determine whether their underlying distributions were best categorized as normal or lognormal. Probability plots were then generated for each metal in each soil type. An example of a probability plot with its corresponding histograms is presented in Appendix D-2. The log transformed data were used for lognormal distributions and the untransformed data were used for normal distributions. A 95% confidence ellipse was delineated on each plot to distinguish statistical outliers. Statistical outliers were defined as results which fell outside the 95% confidence ellipse. The intent was to inspect statistical outliers to determine whether a physical cause could be assigned for their "outlier" status. However, no

outliers were identified at the 5% significance level in any data set. This could be due, in part, to the small sizes of the data sets. However, because geological similarities were considered when establishing the soil types the data were expected to cluster well.

The statistical data set comparisons were conducted in three phases. The first phase followed the initial round of sampling and incorporated data for all metals except lithium, strontium and thorium (24 metals in all). The reason for this is that the latter three metals were not part of the originally planned analyte list (i.e., these three metals were analyzed at a later time). The second statistical analysis was a repeat of the first analysis, but included lithium, strontium, and thorium for a total of 27 metals. The lithium, strontium and thorium analyses were conducted on the originally acquired soil samples (from round one). A second round of sampling was later conducted in an effort to acquire at least two more samples of each of the PBS and ABC soil types. Only two more ABC samples were acquired. After the second round of sampling to collect two more ABC samples, 54 additional metal results from analysis of the two ABC samples were incorporated into the data sets. Each of the ABC samples collected during the second sampling round were analyzed for all 27 metals in the same analysis effort. The data analyses are described in detail in Appendix D-3. A summary of these analyses is described below.

The initial data analysis (24 metals) yielded nine distinct soil groups as depicted in Figure 4-1. Each soil group comprises soil types of similar metal concentrations. Similar soil types were collected into soil groups where there were two or less statistically significant differences in concentrations. That is, soil groups were differentiated by having at least three metals with statistically significant differences in concentration. Soil types ABC and PBS were not combined with any other soil type because only one sample was available for each of those soil types. Due to lack of sufficient data the data set comparisons conducted on the other data sets could not be performed on these two single-sample data sets. The infrequency of encountering the ABC and PBS soil types during the field investigation (tabulated in Table C-1, Appendix C-1) explains why each soil type was represented by only one sample. Unable to conduct the usual statistical comparisons, confidence interval tests (see Appendix D-3) were performed to test whether these soil types are unique. The tests indicated that they are unique relative to the other soil groups. Statistical summary data for the individual soil groups are presented in Tables 4-2 through 4-10 (inclusion of lithium, strontium and thorium is explained below).

A review of geological considerations generally supported the identified soil groupings with some minor surprises (see Appendix D-3). For example, all surface soils from the four DEs were expected to group together, yet the alluvium surface soil appears to be chemically different from the other three surface soil types. The statistical differences were significant enough for the alluvial surface soil not to be combined with the other surface soil types into a single group even though the geology was not entirely expected to

4-3

have been different. Another example is that all of the subsurface residual soil from Mississippian bedrock was expected to be statistically similar, however the differences were significant enough to warrant the separation of silt from the clay and sand soil types in the Mississippian DE.

The primary goal of this investigation was to establish soil groups that would permit site investigators to detect a difference of two standard deviations (two-*sigma*) or less between site data and background data. This criterion was necessarily established without knowing how large would be the value of *sigma*. The minimum detectable differences between site and background data sets have been computed for each combination of the nine soil groups and the 27 metals (the inclusion of lithium, strontium and thorium is explained below). Table 4-11 presents the minimum detectable differences in units of mg/kg and Table 4-12 presents the equivalent data in units of standard deviation. Minimum detectable differences between data sets and applicable assumptions are discussed in detail in Section 4.3.

After adding lithium, strontium and thorium to the data sets, the statistical analyses were repeated. The analyses yielded only seven distinct soil groups (Table 4-13) instead of the original nine groups (Figure 4-1). The three additional metals themselves did not cause the regroupings. Instead, a change in the criterion used to differentiate among soil groups caused the regroupings. That is, the 5% significance level was also used when the number of metals was increased to 27 (from 24). With 27 metals the number of allowable differences among metals of similar soil types changed from 2 to 3 (see Appendix D-3). This change in criterion was judged not to be as significant a differentiating factor in the soil groupings as differences among DEs. That is, the seven soil groupings could not be explained geologically (see Appendix D-3) whereas the nine soil groupings appears to be more reasonable. Consequently, the newly generated seven soil groups were rejected in favor of the original nine soil groupings. Lithium, strontium and thorium were thus included in Tables 4-2 through 4-12. Figure 4-1 represents the nine soil groupings that are designated as the NSWC Crane background soil groups for use in site investigations.

The final statistical analysis conducted to incorporate the additional two ABC soil samples confirmed the results of the initial statistical analysis and geologic interpretations. That is, the ABC soil group is unique relative to the other soil groups and the originally selected nine soil groups adequately represent all soils likely to be encountered at NSWC Crane.

Figure 4-1 represents some practical factors that must be considered when planning to use the background data for site data comparisons. Within a DE a maximum of three soil groups exists. Thus, for any SWMU that lies entirely within a single DE, no more than three background data sets will be needed for comparisons with site data. For each DE two of the soil groups exist solely because of differences between surface and subsurface soil. Encountering soil from the ABC and PBS happened

infrequently during this investigation so it is relatively unlikely that site investigation samples will belong to those soil groups. Consequently, only two background data sets will likely be needed for background comparisons in the alluvial and Pennsylvanian DEs.

4.3 MINIMUM DETECTABLE CONCENTRATION DIFFERENCES BETWEEN SITE AND BACKGROUND DATA

The minimum detectable concentration differences between site and background data for each metal in each background soil group (except PBS) are presented in Table 4-11. When computing these differences, actual data values were used for the background data set. Because the investigative data sets have not been collected some assumptions were made about these future investigative data sets. Those assumptions, with pertinent conditions associated with the background data sets, are:

- five samples exist in the investigative data set;
- investigative concentration variance equal to twice the background concentration variance;
- false positive error rate, α , equal to 5%; and
- a number of samples in the background data set equal to those presented in Figure 4-1.

The first two assumptions may be conservative assumptions but they provided a useful perspective. The α value of 5% was established in the Work Plan (1999a).

With α values and variances established, it was possible to compute minimum detectable concentration differences without specifying false negative error rates, β . Establishing β is not straightforward under these circumstances. It requires an iterative computational approach that was not deemed beneficial because the computed values already were based on some assumptions. Neglecting β is consistent with the approach taken in the EPA guidance for data quality assessment (Section 3.3.1.2 of EPA, 1998). Furthermore, Section 4.2.3 of the Work Plan shows that the planned number of samples to be collected (i.e., 3 to 5) corresponds to the β values ranging from 10% to 30% under the planning assumptions of this project. Given the actual computed minimum detectable differences the actual β values are probably less than 10% in most cases.

The minimum detectable concentration differences presented in Table 4-11 were translated into standard deviation, *sigma*, by dividing the values in Table 4-11 by the corresponding background set standard deviation. If the data for a given soil group were lognormally distributed (refer to Tables 4-2 through 4-10) a lognormal transformation was used in these calculations. The translated values are presented in Table

4-12. This translation allows a direct comparison of the data distributions to the project goal of attaining a two-sigma difference or less between background and investigative data sets for each metal. All but one (ABC) of the entries in Table 4-12 are less than or equal to 1.20 *sigma*. The ABC soil group has a value of 2.15 *sigma*. This indicates that it should be possible to detect a difference between investigative and background data sets that is less than or equal to 1.20 *sigma*, except ABC soil group, if the assumptions described above are valid.

If the investigative data set has a variance that is greater than the assumed variance, discrimination between background and investigative data sets will be more difficult. Conversely, data set discrimination will be facilitated by a lesser variance. Changing the alpha specification will also alter the ability to discriminate between data sets. A larger alpha value will facilitate discrimination, but at a lesser confidence level; while a lesser alpha value will make discrimination more difficult, but at a greater confidence level.

It must be understood that assumptions concerning investigative data set distributions were made here in order to generate the values in Tables 4-11 and 4-12. If these assumptions are different from actual values observed in future investigations, the actual values should be used to compute minimum detectable differences applicable to the investigation.

4.4 NEED AND COLLECTION OF ADDITIONAL SAMPLES

As noted in Section 4.3, soil from the ABC and PBS soil types were encountered infrequently during this investigation. Tables 4-14 and 4-15 present completeness tabulations for soil samples categorized by soil type and soil group, respectively. Although several soil types are not represented by at least five samples, the consolidation of soil types into soil groups generally mitigated this problem. However, only three samples were obtained for the ABC soil group and only one sample was obtained for the PBS soil group, even after a second round of sampling. This poses a potential problem in that statistical comparisons of background and site data cannot be performed for the PBS soil group. In addition, as discussed in Section 4.3, the PBS soil group minimum detectable difference in units of standard deviations is 2.15 *sigma*. This is a marginal deviation from the project objective of two-*sigma* or less and is a consequence of the relative unavailability of the ABC soil type. It is recommended that six or more samples be collected of the ABC soil type during site investigations, if feasible. Professional judgment should be used when conducting PBC background soil comparisons. Alternative, if a localized area rich in PBS soil is encountered at a SWMU, it might be worthwhile to collect background soil samples nearby for comparison.

TABLE 4-1 STATISTICAL SUMMARY OF ANALYTICAL RESULTS COMPLETE BACKGROUND SOIL SAMPLE DATA SET BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	67/67	0/67	5,020	17,400	11,290	11,100	BG1SBP0801	NORMAL	17,400	75,000
ANTIMONY	8/67	8/67	0.49	11.3	0.86	4.36	BG1SBP0505	LOGNORMAL	2.88	0.1423
ARSENIC	67/67	67/67	1.1	10.2	5.28	5.20	BG3SBM0701	NORMAL	9.60	0.38
BARIUM	67/67	67/67	24.8	155	69.7	68.8	BG1SBL0101	LOGNORMAL	147	1.04
BERYLLIUM	14/67	14/67	0.3	0.82	0.36	0.47	BG2SBG0401-MAX	LOGNORMAL	0.85	0.10
CADMIUM	34/67	28/67	0.05	3.6	0.36	0.62	BG3SBM0201	LOGNORMAL	2.05	0.18095
CALCIUM	66/67	0/67	53.6	35,300	997	1,010	BG3SBM0601	LOGNORMAL	3,350	NA
CHROMIUM	67/67	67/67	7.7	30.6	16.4	16.1	BG3SBM0604	LOGNORMAL	29.1	0.4
COBALT	67/67	67/67	1.8	27.1	8.70	8.62	BG3SBM0701	LOGNORMAL	21.7	0.14033
COPPER	67/67	67/67	3.5	23.8	10.2	10.0	BG1SBP0305	LOGNORMAL	21.4	0.3132
IRON	67/67	17/67	7,140	40,800	18,100	17,800	BG1SBP0305	LOGNORMAL	34,500	22,000
LEAD	67/67	67/67	6.4	21.5	11.9	11.7	BG1SBA0101	LOGNORMAL	19.7	0.45053
LITHIUM	66/66	0/66	7.8	46.6	16.1	15.7	BG1SBP0305	LOGNORMAL	29.4	1,500
MAGNESIUM	67/67	0/67	496	2,870	1,410	1,390	BG1SBP0204	LOGNORMAL	3,060	NA
MANGANESE	67/67	0/67	23.2	3,040	599	590	BG3SBM0701	LOGNORMAL	3,270	3,100
MERCURY	17/67	17/67	0.04	0.14	0.033	0.062	BG1SBP0103	LOGNORMAL	0.072	0.0079
NICKEL	67/67	63/67	4.6	23.7	11.9	11.7	BG1SBP0305	NORMAL	18.7	7
POTASSIUM	67/67	0/67	280	1,650	856	833	BG1SBA280304	NORMAL	1,370	NA
SELENIUM	15/67	15/67	0.28	0.88	0.33	0.53	BG1SBP0206	LOGNORMAL	0.83	0.02765
SILVER	48/67	0/67	0.04	0.11	0.049	0.055	BG1SBP0401	LOGNORMAL	0.10	2
SODIUM	32/67	0/67	3.7	205	33.0	56.2	BG1SBP0406-MAX	LOGNORMAL	232	NA
STRONTIUM	66/66	0/67	4.2	63.2	12.3	12.1	BG3SBM0601	LOGNORMAL	25.3	45,000
THALLIUM	66/67	66/67	0.05	0.31	0.18	0.18	BG1SBL0101	NORMAL	0.29	0.04
TIN	0/67	0/67	NA	NA	0.32 (3)	NA	NA	NA	NA	7.62
THORIUM	66/66	0/66	4.1	11.7	7.24	7.11	BG1SBP0305	LOGNORMAL	10.9	NA
VANADIUM	67/67	67/67	14.1	48.5	26.5	26.2	BG1SBP0206	LOGNORMAL	45.8	1.59
ZINC	50/67	50/67	9.4	60.2	28.1	32.0	BG3SBM0701	NORMAL	54.0	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

TABLE 4-2 STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 1 - LOESS/GLACIAL SURFACE SOIL BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	5/5	0/5	7,940	14,300	11,900	11,900	BG2SBG0101	NORMAL	22,800	75,000
ANTIMONY	0/5	0/5	NA	NA	0.23 (3)	NA	NA	NA	NA	0.1423
ARSENIC	5/5	5/5	3.6	6.8	5.24	5.24	BG1SBL0101	NORMAL	10.61	0.38
BARIUM	5/5	5/5	90.8	155	119	119	BG1SBL0101	LOGNORMAL	262	1.04
BERYLLIUM	4/5	4/5	0.48	0.74	0.61	0.62	BG2SBG0401-MAX	NORMAL	1.03	0.10
CADMIUM	0/5	0/5	NA	NA	0.05 (3)	NA	NA	NA	NA	0.18095
CALCIUM	5/5	0/5	345	1,040	574	574	BG2SBG0401-MAX	LOGNORMAL	3,070	NA
CHROMIUM	5/5	5/5	9.8	15.1	13.3	13.3	BG2SBG0101	NORMAL	22.2	0.4
COBALT	5/5	5/5	9.3	17.1	14.1	14.1	BG1SBL0101	NORMAL	27.4	0.14033
COPPER	5/5	5/5	6.5	11.3	9.00	9.00	BG2SBG0101	NORMAL	17.7	0.3132
IRON	5/5	0/5	10,100	17,400	14,200	14,200	BG2SBG0101	NORMAL	27,100	22,000
LEAD	5/5	5/5	12	17.1	14.6	14.6	BG1SBL0101	NORMAL	23.0	0.45053
LITHIUM	5/5	0/5	10	14.5	12.8	12.8	BG1SBL0501	NORMAL	19.9	1,500
MAGNESIUM	5/5	0/5	1,030	1,810	1,350	1,350	BG2SBG0101	LOGNORMAL	3,120	NA
MANGANESE	5/5	0/5	936	1,960	1,440	1,440	BG1SBL0101	LOGNORMAL	5,450	3,100
MERCURY	2/5	2/5	0.05	0.06	0.037	0.055	BG2SBG0401-MAX	NORMAL	0.108	0.0079
NICKEL	5/5	5/5	11	17.4	15.0	15.0	BG1SBL0101	NORMAL	26.2	7
POTASSIUM	5/5	0/5	525	1,250	896	896	BG2SBG0101	NORMAL	2,000	NA
SELENIUM	0/5	0/5	NA	NA	0.33 (3)	NA	NA	NA	NA	0.02765
SILVER	1/5	0/5	0.05	0.05	0.031	0.050	BG1SBL0101	LOGNORMAL	0.11	2
SODIUM	2/5	0/5	7.2	17.8	11.1	12.5	BG1SBL0501	LOGNORMAL	56	NA
STRONTIUM	5/5	0/5	9.7	17.3	12.9	12.9	BG2SBG0401-MAX	LOGNORMAL	32.7	45,000
THALLIUM	5/5	5/5	0.22	0.31	0.27	0.27	BG1SBL0101	NORMAL	0.41	0.04
TIN	0/5	0/5	NA	NA	0.28 (3)	NA	NA	NA	NA	7.62
THORIUM	5/5	0/5	6.4	8.7	7.42	7.42	BG1SBL0501	LOGNORMAL	12.2	NA
VANADIUM	5/5	5/5	19	32.2	26.8	26.8	BG2SBG0101	NORMAL	49.7	1.59
ZINC	3/5	3/5	29.7	49.6	32.3	39.2	BG2SBG0101	LOGNORMAL	135.2	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

TABLE 4-3 STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 2 - LOESS/GLACIAL SUBSURFACE SOIL BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	13/13	0/13	7,570	16,600	12,900	12,900	BG1SBL0506	NORMAL	19,700	75,000
ANTIMONY	1/13	1/13	10.8	10.8	1.18	10.8	BG1SBL0506	LOGNORMAL	10.1	0.1423
ARSENIC	13/13	13/13	1.1	6	4.15	4.15	BG2SBG0503	NORMAL	8.57	0.38
BARIUM	13/13	13/13	41.7	94.4	60.8	60.8	BG1SBL0305	LOGNORMAL	126	1.04
BERYLLIUM	7/13	7/13	0.3	0.69	0.29	0.41	BG1SBL0506	LOGNORMAL	1.32	0.10
CADMIUM	0/13	0/13	NA	NA	0.05 (3)	NA	NA	NA	NA	0.18095
CALCIUM	13/13	0/13	122	710	404	404	BG1SBL0305	NORMAL	884	NA
CHROMIUM	13/13	13/13	9.2	25.5	18.0	18.0	BG1SBL0506	NORMAL	32.3	0.4
COBALT	13/13	13/13	1.8	9.2	4.98	4.98	BG2SBG0404	LOGNORMAL	14.7	0.14033
COPPER	13/13	13/13	4.3	16.4	10.3	10.3	BG1SBL0103	NORMAL	21.0	0.3132
IRON	13/13	3/13	7,140	27,700	18,100	18,100	BG1SBL0506	NORMAL	33,500	22,000
LEAD	13/13	13/13	6.9	11.7	9.60	9.60	BG1SBL0506, BG1SBL0504-MAX	NORMAL	13.6	0.45053
LITHIUM	13/13	0/13	9.2	28.1	14.6	14.6	BG1SBL0506	LOGNORMAL	31.2	1,500
MAGNESIUM	13/13	0/13	760	2,350	1,550	1,550	BG1SBL0103	NORMAL	2,890	NA
MANGANESE	13/13	0/13	23.2	376	165	165	BG2SBG0104	LOGNORMAL	1,100	3,100
MERCURY	2/13	2/13	0.05	0.07	0.028	0.060	BG1SBL0403	LOGNORMAL	0.073	0.0079
NICKEL	13/13	11/13	4.9	13.1	9.80	9.80	BG2SBG0104	NORMAL	16.5	7
POTASSIUM	13/13	0/13	425	1,240	745	745	BG1SBL0103	LOGNORMAL	1,640	NA
SELENIUM	0/13	0/13	NA	NA	0.16 (3)	NA	NA	NA	NA	0.02765
SILVER	3/13	0/13	0.04	0.05	0.028	0.043	BG1SBL0105	LOGNORMAL	0.059	2
SODIUM	7/13	0/13	54.1	153	63.5	106	BG1SBL0506	NORMAL	208	NA
STRONTIUM	13/13	0/13	8	17	11.8	11.8	BG1SBL0305, BG1SBL0506	LOGNORMAL	23.2	45,000
THALLIUM	13/13	13/13	0.13	0.27	0.18	0.18	BG2SBG0206	LOGNORMAL	0.32	0.04
TIN	0/13	0/13	NA	NA	0.32 (3)	NA	NA	NA	NA	7.62
THORIUM	13/13	0/13	5.2	9.1	7.24	7.24	BG1SBL0506	NORMAL	10.7	NA
VANADIUM	13/13	13/13	17.1	42.4	28.5	28.5	BG1SBL0506	NORMAL	47.3	1.59
ZINC	6/13	6/13	13.6	35.3	18.9	24.0	BG2SBG0503	LOGNORMAL	54.9	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

TABLE 4-4 STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 3 - ALLUVIAL, MISSISSIPPIAN, AND PENNSYLVANIAN SURFACE SOIL BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	15/15	0/15	6,770	17,400	10,238	10,238	BG1SBP0801	LOGNORMAL	19,900	75,000
ANTIMONY	2/15	2/15	1.4	5.6	0.83	3.50	BG3SBM0401	LOGNORMAL	6.9	0.1423
ARSENIC	15/15	15/15	2.4	10.2	6.11	6.11	BG3SBM0701	NORMAL	11.83	0.38
BARIUM	15/15	15/15	46.1	153	89.0	89.0	BG3SBM0601	LOGNORMAL	211	1.04
BERYLLIUM	1/15	1/15	0.49	0.49	0.40	0.49	BG3SBA0101-MAX	LOGNORMAL	0.93	0.10
CADMIUM	10/15	9/15	0.1	3.6	0.63	0.88	BG3SBM0201	LOGNORMAL	6.05	0.18095
CALCIUM	14/15	0/15	115	35,300	2,730	2,920	BG3SBM0601	LOGNORMAL	55,200	NA
CHROMIUM	15/15	15/15	8.5	21.7	14.6	14.6	BG1SBA0101	LOGNORMAL	28.7	0.4
COBALT	15/15	15/15	6	27.1	12.9	12.9	BG3SBM0701	LOGNORMAL	32.4	0.14033
COPPER	15/15	15/15	5.4	17.1	8.85	8.85	BG1SBP0801	LOGNORMAL	17.6	0.3132
IRON	15/15	2/15	10,700	36,200	16,800	16,800	BG1SBA0101	LOGNORMAL	37,400	22,000
LEAD	15/15	15/15	9.4	21.5	15.0	15.0	BG1SBA0101	LOGNORMAL	27.0	0.45053
LITHIUM	14/14	0/14	9.1	29.9	14.8	14.8	BG1SBP0901	LOGNORMAL	30.0	1,500
MAGNESIUM	15/15	0/15	620	2,250	1,200	1,200	BG1SBP0801	LOGNORMAL	2,800	NA
MANGANESE	15/15	0/15	268	3,040	1,140	1,140	BG3SBM0701	LOGNORMAL	5,700	3,100
MERCURY	7/15	7/15	0.04	0.07	0.037	0.051	BG1SBP0601-MAX	NORMAL	0.077	0.0079
NICKEL	15/15	15/15	9.2	20	13.4	13.4	BG1SBA0101	LOGNORMAL	22.1	7
POTASSIUM	15/15	0/15	418	1,490	847	847	BG1SBP0801	LOGNORMAL	1,970	NA
SELENIUM	5/15	5/15	0.51	0.64	0.48	0.58	BG1SBP0901	NORMAL	0.81	0.02765
SILVER	15/15	0/15	0.05	0.11	0.065	0.065	BG1SBP0401	LOGNORMAL	0.130	2
SODIUM	6/15	0/15	9.4	23.7	8.11	15.6	BG3SBM0601	NORMAL	28	NA
STRONTIUM	14/14	0/14	7.4	63.2	14.3	14.3	BG3SBM0601	LOGNORMAL	46.4	45,000
THALLIUM	15/15	15/15	0.1	0.27	0.19	0.19	BG1SBP0601-MAX	NORMAL	0.31	0.04
TIN	0/15	0/15	NA	NA	0.36 (3)	NA	NA	NA	NA	7.62
THORIUM	14/14	0/14	5.3	8.5	6.86	6.86	BG1SBP0801	LOGNORMAL	10.2	NA
VANADIUM	15/15	15/15	17.1	40	25.4	25.4	BG1SBP0801	LOGNORMAL	51.2	1.59
ZINC	14/15	14/15	24.4	60.2	37.0	38.6	BG3SBM0701	NORMAL	65.6	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit. This value was used for statistical analysis when no detections were encountered.

TABLE 4-5 STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 4 - ALLUVIAL SUBSURFACE SILT AND SAND BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	9/9	0/9	12,200	8,550	8,550	BG3SBA0404	LOGNORMAL	15,100	75,000
ANTIMONY	0/9	0/9	NA	0.34 (3)	NA	NA	NA	NA	0.1423
ARSENIC	9/9	9/9	10	5.27	5.27	BG1SBA0504	LOGNORMAL	16.58	0.38
BARIUM	9/9	9/9	83.4	56.1	56.1	BG3SBA0203	LOGNORMAL	94	1.04
BERYLLIUM	0/9	0/9	NA	0.33 (3)	NA	NA	NA	NA	0.10
CADMIUM	0/9	0/9	NA	0.09 (3)	NA	NA	NA	NA	0.18095
CALCIUM	9/9	0/9	817	426	426	BG3SBA0404	NORMAL	991	NA
CHROMIUM	9/9	9/9	19.6	13.2	13.2	BG1SBA0504	LOGNORMAL	26.1	0.4
COBALT	9/9	9/9	18	9.10	9.10	BG1SBA0504	LOGNORMAL	21.8	0.14033
COPPER	9/9	9/9	9.9	7.31	7.31	BG1SBA0504	LOGNORMAL	10.5	0.3132
IRON	9/9	1/9	29,400	16,100	16,100	BG1SBA0504	LOGNORMAL	36,200	22,000
LEAD	9/9	9/9	14.5	10.2	10.2	BG1SBA0504	LOGNORMAL	16.2	0.45053
LITHIUM	9/9	0/9	17.1	13.1	13.1	BG1SBA0503	LOGNORMAL	24.3	1,500
MAGNESIUM	9/9	0/9	1,230	848	848	BG3SBA0404	LOGNORMAL	1,870	NA
MANGANESE	9/9	0/9	1,090	638	638	BG1SBA0504	NORMAL	1,300	3,100
MERCURY	1/9	1/9	0.11	0.033	0.11	BG1SBA0104	LOGNORMAL	0.114	0.0079
NICKEL	9/9	9/9	13.1	10.1	10.1	BG1SBA0504	LOGNORMAL	14.6	7
POTASSIUM	9/9	0/9	1,020	682	682	BG3SBA0404	LOGNORMAL	1,220	NA
SELENIUM	0/9	0/9	NA	0.25 (3)	NA	NA	NA	NA	0.02765
SILVER	9/9	0/9	0.05	0.048	0.048	7 LOCATIONS	LOGNORMAL	0.062	2
SODIUM	3/9	0/9	5.2	2.40	4.40	BG3SBA0203	LOGNORMAL	12	NA
STRONTIUM	9/9	0/9	10.6	7.94	7.94	BG3SBA0504	NORMAL	12.4	45,000
THALLIUM	9/9	9/9	0.19	0.14	0.14	BG3SBA0504	LOGNORMAL	0.22	0.04
TIN	0/9	0/9	NA	0.26	NA	NA	NA	NA	7.62
THORIUM	9/9	0/9	6.3	5.69	5.69	BG1SBA0503, BG1SBA0504	NORMAL	8.08	NA
VANADIUM	9/9	9/9	26.9	20.8	20.8	BG3SBA0404	LOGNORMAL	31.7	1.59
ZINC	2/9	2/9	26.5	15.2	24.4	BG3SBA0203	LOGNORMAL	33.0	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

TABLE 4-6 STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 5 - ALLUVIAL SUBSURFACE CLAY BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	3/3	0/3	7,870	16,700	12,190	12,190	BG1SBA250203-MAX	NORMAL	46,000	75,000
ANTIMONY	1/3	1/3	0.49	0.49	0.30	0.49	BG1SBA250203-MAX	LOGNORMAL	14.8	0.1423
ARSENIC	3/3	3/3	2.8	5.9	4.77	4.77	BG1SBA250203-MAX	NORMAL	17.9	0.38
BARIUM	3/3	3/3	36.9	80.4	65.3	65.3	BG1SBA250203-MAX	NORMAL	253	1.04
BERYLLIUM	2/3	3/3	0.54	0.82	0.56	0.68	BG1SBA250203-MAX	LOGNORMAL	18.2	0.10
CADMIUM	3/3	2/3	0.15	0.44	0.31	0.31	BG1SBA250203-MAX	NORMAL	1.43	0.18095
CALCIUM	3/3	0/3	108	406	276	276	BG1SBA0405	NORMAL	1,440	NA
CHROMIUM	3/3	3/3	10.5	20.9	16.2	16.2	BG1SBA280304	NORMAL	56.7	0.4
COBALT	3/3	3/3	2.2	7.5	4.97	4.97	BG1SBA250203-MAX	NORMAL	25.3	0.14033
COPPER	3/3	3/3	6.5	10.3	8.93	8.93	BG1SBA250203-MAX	NORMAL	25.1	0.3132
IRON	3/3	2/3	9,680	28,900	20,427	20,427	BG1SBA280304	NORMAL	95,500	22,000
LEAD	3/3	3/3	7.8	13.1	10.3	10.3	BG1SBA250203-MAX	LOGNORMAL	73.5	0.45053
LITHIUM	3/3	0/3	17.4	27.9	22.0	22.0	BG1SBA280304	LOGNORMAL	134	1,500
MAGNESIUM	3/3	0/3	755	1,470	1,043	1,043	BG1SBA250203-MAX	LOGNORMAL	14,000	NA
MANGANESE	3/3	0/3	86.4	1030	540	540	BG1SBA250203-MAX	NORMAL	4,160	3,100
MERCURY	1/3	3/3	0.04	0.04	0.030	0.04	BG1SBA250203-MAX	LOGNORMAL	0.23	0.0079
NICKEL	3/3	3/3	9.5	13	11.6	11.6	BG1SBA250203-MAX	NORMAL	26.0	7
POTASSIUM	3/3	0/3	640	1650	1,243	1,243	BG1SBA280304	NORMAL	5,320	NA
SELENIUM	1/3	3/3	0.75	0.75	0.40	0.75	BG1SBA0405	LOGNORMAL	69.0	0.02765
SILVER	1/3	0/3	0.05	0.05	0.092	0.050	BG1SBA0405	NORMAL	0.37	2
SODIUM	2/3	0/3	80.3	97.8	63.48	89.05	BG1SBA280304	NORMAL	409	NA
STRONTIUM	3/3	0/3	11.6	12.8	12.20	12.20	BG1SBA250203-MAX	NORMAL	16.8	45,000
THALLIUM	2/3	3/3	0.15	0.27	0.18	0.21	BG1SBA250203-MAX	LOGNORMAL	5.40	0.04
TIN	0/3	0/3	NA	NA	0.22 (3)	NA	NA	NA	NA	7.62
THORIUM	3/3	0/3	6.9	9	8.20	8.20	BG1SBA280304	NORMAL	16.9	NA
VANADIUM	3/3	3/3	16.7	26.3	21.0	21.0	BG1SBA250203-MAX	LOGNORMAL	119	1.59
ZINC	3/3	3/3	25.4	42.9	32.5	32.5	BG1SBA250203-MAX	LOGNORMAL	254	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

TABLE 4-7 STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 6 - MISSISSIPPIAN SUBSURFACE CLAY AND SAND BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	7/7	0/7	5,020	17,000	10,600	10,600	BG3SBM0206	NORMAL	24,000	75,000
ANTIMONY	3/7	3/7	1.2	2.9	0.88	1.77	BG3SBM0404	LOGNORMAL	27.6	0.1423
ARSENIC	7/7	7/7	2	6.3	4.21	4.21	BG3SBM1003	NORMAL	10.5	0.38
BARIUM	7/7	7/7	27	87.9	53.2	53.2	BG3SBM0206	NORMAL	123	1.04
BERYLLIUM	0/7	0/7	NA	NA	0.24 (3)	NA	NA	NA	NA	0.10
CADMIUM	7/7	6/7	0.06	2.8	0.65	0.65	BG3SBM0803-MAX	LOGNORMAL	17.5	0.18095
CALCIUM	7/7	0/7	92.6	1260	404	404	BG3SBM0206	LOGNORMAL	5,270	NA
CHROMIUM	7/7	7/7	10.9	25.1	16.4	16.4	BG3SBM0206	LOGNORMAL	39.4	0.4
COBALT	7/7	7/7	3.3	8.2	5.10	5.10	BG3SBM0206	LOGNORMAL	13.6	0.14033
COPPER	7/7	7/7	3.5	12.9	9.06	9.06	BG3SBM0504, BG3SBM1003	LOGNORMAL	49.6	0.3132
IRON	7/7	1/7	8,850	26,400	15,900	15,900	BG3SBM0206	LOGNORMAL	57,200	22,000
LEAD	7/7	7/7	6.4	12.1	9.04	9.04	BG3SBM1003	LOGNORMAL	19.0	0.45053
LITHIUM	7/7	0/7	7.8	30.6	15.9	15.9	BG3SBM0206	LOGNORMAL	64.2	1,500
MAGNESIUM	7/7	0/7	496	2,070	1,520	1,520	BG3SBM0206	NORMAL	3,500	NA
MANGANESE	7/7	0/7	35.3	266	150	150	BG3SBM0406, BG3SBM1003	LOGNORMAL	1,420	3,100
MERCURY	0/7	0/7	NA	NA	0.023 (3)	NA	NA	NA	NA	0.0079
NICKEL	7/7	6/7	4.6	14.7	10.5	10.5	BG3SBM0206	NORMAL	21.1	7
POTASSIUM	7/7	0/7	280	1270	862	862	BG3SBM0206	NORMAL	1,900	NA
SELENIUM	0/7	0/7	NA	NA	0.27 (3)	NA	NA	NA	NA	0.02765
SILVER	5/7	0/7	0.05	0.05	0.044	0.050	5 LOCATIONS	LOGNORMAL	0.12	2
SODIUM	3/7	0/7	7.8	182	47.7	103	BG3SBM0206	LOGNORMAL	5,460	NA
STRONTIUM	7/7	0/7	4.2	25.7	12.4	12.4	BG3SBM0206	LOGNORMAL	86.6	45,000
THALLIUM	7/7	7/7	0.05	0.21	0.13	0.13	BG3SBM1003	NORMAL	0.34	0.04
TIN	0/7	0/7	NA	NA	0.34 (3)	NA	NA	NA	NA	7.62
THORIUM	7/7	0/7	4.1	10	6.79	6.79	BG3SBM0206	LOGNORMAL	17.7	NA
VANADIUM	7/7	7/7	14.1	33	24.2	24.2	BG3SBM0206	NORMAL	50.3	1.59
ZINC	7/7	7/7	9.4	36.2	21.4	21.4	BG3SBM1003	LOGNORMAL	105	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 7 - MISSISSIPPIAN SUBSURFACE SILT BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	5/5	0/5	10,100	15,600	12,700	12,700	BG3SBM0203	LOGNORMAL	26,200	75,000
ANTIMONY	0/5	0/5	NA	NA	0.34 (3)	NA	NA	NA	NA	0.1423
ARSENIC	5/5	5/5	6.5	9	7.72	7.72	BG3SBM0203	NORMAL	12.4	0.38
BARIUM	5/5	5/5	41.8	116	67.3	67.3	BG3SBM0604	LOGNORMAL	303	1.04
BERYLLIUM	0/5	0/5	NA	NA	0.31 (3)	NA	NA	NA	NA	0.10
CADMIUM	5/5	5/5	0.25	2.1	0.97	0.97	BG3SBM0704	LOGNORMAL	19.6	0.18095
CALCIUM	5/5	0/5	131	5320	1,240	1,240	BG3SBM0604	LOGNORMAL	222,000	NA
CHROMIUM	5/5	5/5	17.2	30.6	21.7	21.7	BG3SBM0604	LOGNORMAL	54.9	0.4
COBALT	5/5	5/5	6.4	11.8	7.66	7.66	BG3SBM0604	LOGNORMAL	22.2	0.14033
COPPER	5/5	5/5	7.5	19.7	14.3	14.3	BG3SBM0904	NORMAL	35.7	0.3132
IRON	5/5	3/5	20,100	25,400	22,200	22,200	BG3SBM0203	LOGNORMAL	32,100	22,000
LEAD	5/5	5/5	10.9	15.4	13.5	13.5	BG3SBM0604	NORMAL	21.0	0.45053
LITHIUM	5/5	0/5	14.8	20.8	17.9	17.9	BG3SBM0203	LOGNORMAL	34.5	1,500
MAGNESIUM	5/5	0/5	1,210	2,590	1,950	1,950	BG3SBM0203	LOGNORMAL	7,770	NA
MANGANESE	5/5	0/5	192	1410	500	500	BG3SBM0604	LOGNORMAL	9,500	3,100
MERCURY	3/5	3/5	0.05	0.06	0.043	0.057	BG3SBM0203, BG3SBM0305	NORMAL	0.12	0.0079
NICKEL	5/5	5/5	9.8	17.3	13.5	13.5	BG3SBM0604	NORMAL	25.4	7
POTASSIUM	5/5	0/5	851	1330	1,100	1,100	BG3SBM0604	NORMAL	1,880	NA
SELENIUM	0/5	0/5	NA	NA	0.25 (3)	NA	NA	NA	NA	0.02765
SILVER	5/5	0/5	0.05	0.05	0.050	0.050	5 LOCATIONS	LOGNORMAL	0.05	2
SODIUM	3/5	0/5	9.1	22.9	17.4	18.0	BG3SBM0305	NORMAL	53	NA
STRONTIUM	5/5	0/5	8.5	16.3	14.3	14.3	BG3SBM0203	NORMAL	28.2	45,000
							BG3SBM0203, BG3SBM0704,			
THALLIUM	5/5	5/5	0.1	0.21	0.18	0.18	BG3SBM0904	NORMAL	0.39	0.04
TIN	0/5	0/5	NA	NA	0.34 (3)	NA	NA	NA	NA	7.62
THORIUM	5/5	0/5	6.9	9.4	8.28	8.28	BG3SBM0203	NORMAL	12.4	NA
VANADIUM	5/5	5/5	26.1	37.7	31.8	31.8	BG3SBM0203	NORMAL	50.7	1.59
ZINC	5/5	5/5	28.5	47.7	38.0	38.0	BG3SBM0203	LOGNORMAL	98	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 8 - PENNSYLVANIAN SUBSURFACE CLAY AND SILT BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	9/9	0/9	9,070	16,200	13,019	13,019	BG1SBP0206	NORMAL	20,600	75,000
ANTIMONY	1/9	1/9	11.3	11.3	1.83	11.30	BG1SBP0505	LOGNORMAL	40.3	0.1423
ARSENIC	9/9	9/9	1.4	8.5	5.51	5.51	BG1SBP0204	NORMAL	12.5	0.38
BARIUM	9/9	9/9	25.1	83.4	57.0	57.0	BG1SBP0505	NORMAL	115	1.04
BERYLLIUM	0/9	0/9	NA	NA	0.36 (3)	NA	NA	NA	NA	0.10
CADMIUM	8/9	6/9	0.05	0.64	0.26	0.28	BG1SBP0206	NORMAL	0.8	0.18095
CALCIUM	9/9	0/9	85.2	970	470	470	BG1SBP0505	LOGNORMAL	4,640	NA
CHROMIUM	9/9	9/9	14.2	27.1	19.9	19.9	BG1SBP0206	NORMAL	33.0	0.4
COBALT	9/9	9/9	5.2	12.5	8.32	8.32	BG1SBP0206	LOGNORMAL	21.2	0.14033
COPPER	9/9	9/9	11	23.8	15.3	15.3	BG1SBP0305	LOGNORMAL	33.3	0.3132
IRON	9/9	5/9	14,800	40,800	24,422	24,422	BG1SBP0305	LOGNORMAL	60,200	22,000
LEAD	9/9	9/9	8.6	15.2	11.8	11.8	BG1SBP0603	NORMAL	19.6	0.45053
LITHIUM	9/9	0/9	13.7	46.6	23.2	23.2	BG1SBP0305	LOGNORMAL	80.0	1,500
MAGNESIUM	9/9	0/9	1,100	2,870	1,958	1,958	BG1SBP0204	NORMAL	3,410	NA
MANGANESE	9/9	0/9	29	457	263	263	BG1SBP0804	NORMAL	704	3,100
MERCURY	1/9	1/9	0.14	0.14	0.037	0.140	BG1SBP0103	LOGNORMAL	0.18	0.0079
NICKEL	9/9	9/9	10	23.7	13.6	13.6	BG1SBP0305	LOGNORMAL	29.6	7
POTASSIUM	9/9	0/9	718	1290	974	974	BG1SBP0204, BG1SBP0305	LOGNORMAL	1,890	NA
SELENIUM	8/9	8/9	0.37	0.88	0.47	0.51	BG1SBP0206	NORMAL	1.07	0.02765
SILVER	8/9	0/9	0.05	0.1	0.053	0.056	BG1SBP0206	LOGNORMAL	0.14	2
SODIUM	6/9	0/9	10	205	64.0	79.1	BG1SBP0406-MAX	LOGNORMAL	1,070	NA
STRONTIUM	9/9	0/9	10	20.3	13.8	13.8	BG1SBP0406-MAX	LOGNORMAL	30.9	45,000
THALLIUM	9/9	0/9	0.14	0.25	0.20	0.20	BG1SBP0204, BG1SBP0206	LOGNORMAL	0.33	0.04
TIN	0/9	0/9	NA	NA	0.35 (3)	NA	NA	NA	NA	7.62
THORIUM	9/9	9/9	7.1	11.7	9.02	9.02	BG1SBP0305	NORMAL	14.9	NA
VANADIUM	9/9	9/9	20.9	48.5	33.2	33.2	BG1SBP0206	LOGNORMAL	69.1	1.59
ZINC	9/9	9/9	24.3	58.2	37.1	37.1	BG1SBP0305	LOGNORMAL	83.3	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

TABLE 4-10 STATISTICAL SUMMARY OF ANALYTICAL RESULTS SOIL GROUP 9 - PENNSYLVANIAN SUBSURFACE SAND BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Metal	Frequency of	Frequency of	Minimum	Maximum	Average of	Average of	Location of	Distribution	95% Upper	Soil Risk Based
(mg/kg)	Detection	Exceedance (2)	Detection	Detection	All Results	Positive Detections	Maximum	of Data	Tolerance Limit	Target Level (1)
ALUMINUM	1/1	0/1	5,430	5,430	5,430	5,430	BG1SBP0806	NA	NA	75,000
ANTIMONY	0/1	0/1	NA	NA	0.38 (3)	NA	NA	NA	NA	0.1423
ARSENIC	1/1	1/1	2.9	2.9	2.90	2.90	BG1SBP0806	NA	NA	0.38
BARIUM	1/1	1/1	24.8	24.8	24.8	24.8	BG1SBP0806	NA	NA	1.04
BERYLLIUM	0/1	0/1	NA	NA	0.14 (3)	NA	NA	NA	NA	0.10
CADMIUM	1/1	0/1	0.14	0.14	0.14	0.14	BG1SBP0806	NA	NA	0.18095
CALCIUM	1/1	0/1	53.6	53.6	54	54	BG1SBP0806	NA	NA	NA
CHROMIUM	1/1	1/1	7.7	7.7	7.7	7.7	BG1SBP0806	NA	NA	0.4
COBALT	1/1	1/1	8.8	8.8	8.80	8.80	BG1SBP0806	NA	NA	0.14033
COPPER	1/1	1/1	5.6	5.6	5.6	5.6	BG1SBP0806	NA	NA	0.3132
IRON	1/1	0/1	11,300	11,300	11,300	11,300	BG1SBP0806	NA	NA	22,000
LEAD	1/1	1/1	11.7	11.7	11.7	11.7	BG1SBP0806	NA	NA	0.45053
LITHIUM	1/1	0/1	8.6	8.6	8.6	8.6	BG1SBP0806	NA	NA	1,500
MAGNESIUM	1/1	0/1	654	654	654	654	BG1SBP0806	NA	NA	NA
MANGANESE	1/1	0/1	327	327	327	327	BG1SBP0806	NA	NA	3,100
MERCURY	0/1	0/1	NA	NA	0.02 (3)	NA	NA	NA	NA	0.0079
NICKEL	1/1	0/1	4.6	4.6	4.6	4.6	BG1SBP0806	NA	NA	7
POTASSIUM	1/1	0/1	353	353	353	353	BG1SBP0806	NA	NA	NA
SELENIUM	1/1	1/1	0.28	0.28	0.28	0.28	BG1SBP0806	NA	NA	0.02765
SILVER	1/1	0/1	0.05	0.05	0.050	0.050	BG1SBP0806	NA	NA	2
SODIUM	0/1	0/1	NA	NA	1.15 (3)	NA	NA	NA	NA	NA
STRONTIUM	1/1	0/1	5.4	5.4	5.4	5.4	BG1SBP0806	NA	NA	45,000
THALLIUM	1/1	1/1	0.09	0.09	0.09	0.09	BG1SBP0806	NA	NA	0.04
TIN	0/1	0/1	NA	NA	0.22	NA	NA	NA	NA	7.62
THORIUM	1/1	0/1	4.9	4.9	4.90	4.90	BG1SBP0806	NA	NA	NA
VANADIUM	1/1	1/1	14.1	14.1	14.1	14.1	BG1SBP0806	NA	NA	1.59
ZINC	1/1	1/1	11.4	11.4	11.4	11.4	BG1SBP0806	NA	NA	6.62

Notes:

NA - Not available

Concentrations which exceed soil risk-based target levels are bolded.

1 - Value is based on human health and ecological risk-based criteria as presented in Appendix E, Table E-1. This risked-based criteria was current

as of the QAPP (1999b). It is important to note that this information is updated by the appropriate regulatory agencies on a periodic basis.

2 - Exceedances are defined as detected values above the SRBTL.

3 - This value is the average of all detected and non-detected values. Non-detected values were represented by using one half the detection limit.

MINIMUM DETECTABLE DIFFERENCE, IN mg/kg, BETWEEN SITE AND BACKGROUND DATA BASEWIDE BACKGROUND REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

SOIL GROUP (1)	Soil Group 1	Soil Group 2	Soil Group 3	Soil Group 4	Soil Group 5	Soil Group 6	Soil Group 7	Soil Group 8
SOIL TYPES(2)	LS	LBC/LBL/LBS	AS/MS/PS	ABL/ABS	ABC	MBC/MBS	MBL	PBC/PBL
METAL (mg/kg)								
ALUMINUM	3,054	2,967	3,490	1,996	9,477	4,302	2,633	2,589
ANTIMONY	0.03	3.37	1.68	0.25	0.36	1.10	0.10	3.78
ARSENIC	1.50	1.91	2.57	2.65	3.67	2.00	1.32	2.39
BARIUM	27.2	20.9	38.7	12.7	52.7	22.3	33.4	20.0
BERYLLIUM	0.12	0.20	0.16	0.09	0.53	0.16	0.19	0.14
CADMIUM	0.05	0.05	1.07	0.05	0.31	1.05	0.81	0.20
CALCIUM	321	207	10,814	220	327	434	2,683	347
CHROMIUM	2.48	6.14	4.54	3.96	11.33	5.00	6.26	4.47
COBALT	3.74	2.33	6.13	3.92	5.70	1.80	2.73	2.86
COPPER	2.42	4.60	3.35	1.16	4.53	4.44	5.99	4.57
IRON	3,593	6,662	7,779	6,122	21,043	6,724	2,360	8,316
LEAD	2.33	1.74	4.15	2.04	5.70	2.20	2.11	2.67
LITHIUM	1.98	5.96	6.02	2.87	11.52	8.03	3.30	11.51
MAGNESIUM	336	575	512	276	810	634	734	497
MANGANESE	536	130	896	258	1,014	98	601	151
MERCURY	0.02	0.02	0.02	0.03	0.02	0.003	0.02	0.04
NICKEL	3.11	2.88	3.18	1.58	4.02	3.40	3.33	4.39
POTASSIUM	308	261	352	165	1,143	331	218	233
SELENIUM	0.12	0.05	0.15	0.07	0.65	0.12	0.09	0.21
SILVER	0.01	0.01	0.02	0.005	0.078	0.01	7.7E-10	0.02
SODIUM	5.40	62.49	8.97	1.69	96.8	79.0	9.98	71.2
STRONTIUM	3.50	3.73	17.07	1.54	1.29	7.77	3.89	4.19
THALLIUM	0.04	0.05	0.05	0.03	0.18	0.07	0.06	0.05
THORIUM	1.06	1.47	1.27	0.82	0.00	2.10	1.16	1.61
TIN	0.03	0.07	0.13	0.04	2.44	0.16	0.06	0.07
VANADIUM	6.41	8.11	8.83	3.49	10.49	8.36	5.30	8.58
ZINC	13.8	9.91	12.8	5.64	19.8	11.1	10.3	11.3

Notes:

1 - No statistical analysis was done for soil groups 5 and 9 because only one sample is in this data set.

2 - Collective soil types within a soil group (see Figure 4-1 for additional information)

MINIMUM DETECTABLE DIFFERENCES EXPRESSED IN NUMBER OF STANDARD DEVIATIONS BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

SOIL GROUP (1)	Soil Group 1	Soil Group 2	Soil Group 3	Soil Group 4	Soil Group 5	Soil Group 6	Soil Group 7	Soil Group 8
SOIL TYPES(2)	LS	LBC/LBL/LBS	AS/MS/PS	ABL/ABS	ABC	MBC/MBS	MBL	PBC/PBL
METAL (mg/kg)								
ALUMINUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
ANTIMONY	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
ARSENIC	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
BARIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
BERYLLIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
CADMIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
CALCIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
CHROMIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
COBALT	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
COPPER	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
IRON	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
LEAD	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
LITHIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
MAGNESIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
MANGANESE	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
MERCURY	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
NICKEL	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
POTASSIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
SELENIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
SILVER	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
SODIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
STRONTIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
THALLIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
THORIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
TIN	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
VANADIUM	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04
ZINC	1.18	1.15	1.20	1.04	2.15	1.09	1.18	1.04

Notes:

BOLD indicates above goal level of 2 standard deviations

1 - No statistical analysis was done for soil group 9 because only one sample is in this data set.

2 - Collective soil types within a soil group (see Figure 4-1 for additional information)

STATISTICAL DIFFERENTIATION OF SOIL TYPES INTO SOIL GROUPS¹ BASEWIDE BACKGROUND SOIL INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

		DEPOSITIONAL EN	IVIRONMENT	
	LOESS/GLACIAL Soil	Residual soil from MISSISSIPPIAN Bedrock	Residual Soil from PENNSYLVANIAN Bedrock	ALLUVIAL Soil
SURFACE	LS	MS	PS	AS
SUBSURFACE CLAY	LBC	MBC	PBC	ABC
SUBSURFACE SILT	LBL	MBL	PBL	ABL
SUBSURFACE SAND	LBS	MBS	PBS	ABS

Notes:

1. Soil groups determined based upon statistical analysis alone. See Figure 4-1 for an illustration of final soil groups based upon a complete analysis.

= soil group determined based upon statitical analysis alone.

Letters are interpreted as follows:

First Letter:

	A - Alluvial Soil	
	L - Loess/Glacial (Loess/Glacial outwash deposits)	
	M - Mississippian Soil (residual soil from Mississippian	bedrock/colluvium)
	P - Pennsylvanian Soil (residual soil from Pennsylvania	an bedrock/colluvium)
Second Letter:		
	B - Subsurface Soil	S - Surface Soil
Third Letter:		
	C - Clay	S - Sand
	L - Silt	

COMPLETENESS BY SOIL TYPE* BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

ALUMINUM 60 100 80 100 100 100 100 80 100 20 11 ANTIMONY 60 100 80 100 100 100 100 60 100 80 100 20 11 ARSENIC 60 100 80 100 100 100 60 100 80 100 80 100 20 11 BARIUM 60 100 80 100 100 100 60 100 80 100 80 100 20 11 BARIUM 60 100 80 100 100 60 100 80 100 20 11 BARIUM 60 100 80 100 100 100 80 100 80 100 20 11 CADIUM 60 100 80 100 100 100 80 100 80 100								'PE	DIL TY	SC								
ANTIMONY 60 100 80 100 100 60 100 80 100 20 11 ARSENIC 60 100 80 100 100 100 60 100 80 100 20 11 BARIUM 60 100 80 100 100 60 100 80 100 80 100 20 11 BARIUM 60 100 80 100 100 100 60 100 80 100 80 100 20 11 CADMIUM 60 100 80 100 100 100 60 100 80 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 80 100 80	S ABC	PS	PBS	PBL	PBC	MS	MBS	MBL	MBC	LS	LBS	LBL	LBC	AS	ABS	ABL	ABC	METAL
ARSENIC 60 100 80 100 100 60 100 80 100 60 100 80 100 20 11 BARIUM 60 100 80 100 100 100 60 100 80 100 60 100 80 100 20 11 BERYLLIUM 60 100 80 100 100 100 60 100 80 100 20 11 CADMIUM 60 100 80 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 60 100 80 100 20 11 COBALT 60 100 80 100 100 100 60 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	ALUMINUM
BARIUM 60 100 80 100 100 100 100 80 100 80 100 20 11 BERYLLIUM 60 100 80 100 100 100 100 80 100 80 100 20 11 CADMIUM 60 100 80 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 60 100 80 100 20 11 CABALT 60 100 80 100 100 60 100 80 100 20 11 IRON 60 100 80 100 100 60 100 80 100 20 11 LEAD	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	ANTIMONY
BERYLLIUM 60 100 80 100 100 60 100 80 100 60 100 80 100 20 11 CADMIUM 60 100 80 100 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 60 100 80 100 20 11 COBALT 60 100 80 100 100 60 100 80 100 80 100 20 11 IRON 60 100 80 100 100 60 100 80 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	ARSENIC
CADMIUM 60 100 80 100 100 100 60 100 80 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 60 100 80 100 20 11 CALCIUM 60 100 80 100 100 100 60 100 80 100 20 11 COBALT 60 100 80 100 100 60 100 80 100 20 11 IRON 60 100 80 100 100 60 100 80 100 80 100 20 10 LEAD 60 100 80 100 100 60 100 80 <td< td=""><td>00 100</td><td>100</td><td>20</td><td>100</td><td>80</td><td>100</td><td>60</td><td>100</td><td>80</td><td>100</td><td>60</td><td>100</td><td>100</td><td>100</td><td>80</td><td>100</td><td>60</td><td>BARIUM</td></td<>	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	BARIUM
CALCIUM 60 100 80 100 100 100 100 80 100 60 100 80 100 20 100 CHROMIUM 60 100 80 100 100 100 100 80 100 60 100 80 100 20 10 COBALT 60 100 80 100 100 100 60 100 80 100 20 10 COPPER 60 100 80 100 100 100 60 100 80 100 20 10 IRON 60 100 80 100 100 60 100 80 100 20 10 LEAD 60 100 80 100 100 60 100 80 100 20 10 MAGNESIUM 60 100 80 100 100 60 100 80 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	BERYLLIUM
CHROMIUM 60 100 80 100 100 100 80 100 80 100 80 100 20 110 COBALT 60 100 80 100 100 100 100 80 100 60 100 80 100 80 100 20 10 COBALT 60 100 80 100 100 100 60 100 80 100 80 100 20 10 COPPER 60 100 80 100 100 100 60 100 80 100 80 100 20 10 LEAD 60 100 80 100 100 60 100 80 100 80 100 20 10 LITHIUM 60 100 80 100 100 60 100 80 100 20 10 MAGNESIUM 60 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	CADMIUM
COBALT 60 100 80 100 100 100 60 100 80 100 20 11 COPPER 60 100 80 100 100 100 60 100 80 100 20 10 IRON 60 100 80 100 100 100 60 100 80 100 20 10 LEAD 60 100 80 100 100 60 100 80 100 20 10 LITHIUM 60 100 80 100 100 60 100 80 100 20 10 MAGNESIUM 60 100 80 100 100 60 100 80 100 20 10 MAGNESIUM 60 100 80 100 100 100 60 100 80 100 20 10 MARGNESIUM 60 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	CALCIUM
COPPER 60 100 80 100 100 100 100 80 100 60 100 80 100 20 100 IRON 60 100 80 100 100 100 100 80 100 80 100 80 100 20 10 LEAD 60 100 80 100 100 100 60 100 80 100 80 100 20 10 LITHIUM 60 100 80 100 100 100 60 100 80 100 20 10 MAGNESIUM 60 100 80 100 100 100 60 100 80 100 20 10 MAGNESIUM 60 100 80 100 100 100 80 100 20 10 MAGNESIUM 60 100 80 100 100 100 80	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	CHROMIUM
IRON 60 100 80 100 100 100 60 100 60 100 80 100 20 100 LEAD 60 100 80 100 100 100 60 100 80 100 20 100 LITHIUM 60 100 80 100 100 60 100 80 100 20 100 MAGNESIUM 60 100 80 100 100 60 100 80 100 20 100 MAGNESIUM 60 100 80 100 100 60 100 80 100 20 10 MAGNESE 60 100 80 100 100 60 100 80 100 20 10 MAGNESE 60 100 80 100 100 60 100 80 100 20 10 MERCURY 60 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	COBALT
LEAD 60 100 80 100 100 100 60 100 80 100 80 100 20 100 100 80 100 20	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	COPPER
LITHIUM 60 100 80 80 100 100 60 100 80 100 20 100 80 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 MAGNESIUM 60 100 80 100 100 100 60 100 80 100 20 10 MANGANESE 60 100 80 100 100 100 60 100 80 100 20 10 MARGANESE 60 100 80 100 100 100 60 100 80 100 20 10 MERCURY 60 100 80 100 100 100 60 100 80 100 20 10 NICKEL 60 100 80 100 100 100 60	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	IRON
MAGNESIUM 60 100 80 100 100 100 60 100 80 100 80 100 20 10 MANGANESE 60 100 80 100 100 100 60 100 80 100 20 10 MERCURY 60 100 80 100 100 100 60 100 80 100 20 10 MERCURY 60 100 80 100 100 100 60 100 80 100 20 10 NICKEL 60 100 80 100 100 60 100 80 100 20 10 POTASSIUM 60 100 80 100 100 60 100 80 100 20 10 SELENIUM 60 100 80 100 100 100 60 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	LEAD
MANGANESE 60 100 80 100 100 100 60 100 80 100 80 100 20 100 MERCURY 60 100 80 100 100 100 60 100 80 100 80 100 20 10 MERCURY 60 100 80 100 100 100 60 100 80 100 20 10 NICKEL 60 100 80 100 100 100 60 100 80 100 20 10 POTASSIUM 60 100 80 100 100 60 100 80 100 20 10 SELENIUM 60 100 80 100 100 100 60 100 80 100 20 10 SILVER 60 100 80 100 100 60 100 80 100 20	00 100	100	20	100	80	100	60	100	80	100	60	100	100	80	80	100	60	LITHIUM
MERCURY 60 100 80 100 100 100 60 100 80 100 80 100 20 100 NICKEL 60 100 80 100 100 100 60 100 80 100 20 10 POTASSIUM 60 100 80 100 100 100 60 100 80 100 20 10 POTASSIUM 60 100 80 100 100 100 60 100 80 100 20 10 SELENIUM 60 100 80 100 100 60 100 80 100 20 10 SILVER 60 100 80 100 100 100 60 100 80 100 20 10 STRONTIUM 60 100 80 100 100 60 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	MAGNESIUM
NICKEL 60 100 80 100 100 100 60 100 80 100 80 100 20 100 POTASSIUM 60 100 80 100 100 100 60 100 80 100 20 10 POTASSIUM 60 100 80 100 100 100 60 100 80 100 20 10 SELENIUM 60 100 80 100 100 100 60 100 80 100 20 10 SILVER 60 100 80 100 100 60 100 80 100 20 10 STRONTIUM 60 100 80 100 100 60 100 80 100 20 10 SODIUM 60 100 80 100 100 60 100 80 100 20 10 THALLIUM </td <td>00 100</td> <td>100</td> <td>20</td> <td>100</td> <td>80</td> <td>100</td> <td>60</td> <td>100</td> <td>80</td> <td>100</td> <td>60</td> <td>100</td> <td>100</td> <td>100</td> <td>80</td> <td>100</td> <td>60</td> <td>MANGANESE</td>	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	MANGANESE
POTASSIUM 60 100 80 100 100 100 60 100 80 100 80 100 20 100 SELENIUM 60 100 80 100 100 100 60 100 80 100 20 10 SELENIUM 60 100 80 100 100 100 60 100 80 100 20 10 SILVER 60 100 80 100 100 100 60 100 80 100 20 10 STRONTIUM 60 100 80 100 100 60 100 80 100 20 10 SODIUM 60 100 80 100 100 60 100 80 100 20 10 SODIUM 60 100 80 100 100 60 100 80 100 20 10 THALLIUM <td>00 100</td> <td>100</td> <td>20</td> <td>100</td> <td>80</td> <td>100</td> <td>60</td> <td>100</td> <td>80</td> <td>100</td> <td>60</td> <td>100</td> <td>100</td> <td>100</td> <td>80</td> <td>100</td> <td>60</td> <td>MERCURY</td>	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	MERCURY
SELENIUM 60 100 80 100 100 100 60 100 80 100 60 100 80 100 20 10 SILVER 60 100 80 100 100 100 60 100 80 100 20 10 STRONTIUM 60 100 80 100 100 100 60 100 80 100 20 10 STRONTIUM 60 100 80 100 100 100 60 100 80 100 20 10 SODIUM 60 100 80 100 100 60 100 80 100 20 10 THALLIUM 60 100 80 100 100 60 100 80 100 20 10 THORIUM 60 100 80 100 100 60 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	NICKEL
SILVER 60 100 80 100 100 100 60 100 80 100 80 100 20 100 STRONTIUM 60 100 80 100 100 100 60 100 80 100 20 100 STRONTIUM 60 100 80 100 100 60 100 80 100 20 100 SODIUM 60 100 80 100 100 60 100 80 100 20 100 THALLIUM 60 100 80 100 100 60 100 80 100 20 100 THORIUM 60 100 80 100 100 60 100 80 100 20 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	POTASSIUM
STRONTIUM 60 100 80 100 100 60 100 80 100 60 100 80 100 20 10 SODIUM 60 100 80 100 100 60 100 80 100 20 10 SODIUM 60 100 80 100 100 60 100 80 100 20 10 THALLIUM 60 100 80 100 100 60 100 80 100 20 10 THORIUM 60 100 80 100 100 60 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	SELENIUM
SODIUM 60 100 80 100 100 60 100 80 100 20 100 THALLIUM 60 100 80 100 100 60 100 80 100 20 100 THALLIUM 60 100 80 100 100 60 100 80 100 20 100 THORIUM 60 100 80 100 100 60 100 80 100 20 100	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	SILVER
THALLIUM 60 100 80 100 100 100 60 100 80 100 20 10 THORIUM 60 100 80 100 100 60 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	STRONTIUM
THORIUM 60 100 80 80 100 100 60 100 80 100 60 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	80	80	100	60	SODIUM
	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	THALLIUM
	00 100	100	20	100	80	100	60	100	80	100	60	100	100	80	80	100	60	THORIUM
TIN 60 100 80 100 100 100 60 100 80 100 60 100 80 100 80 100 80 100 20 14	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	TIN
VANADIUM 60 100 80 100 100 100 60 100 80 100 60 100 80 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	VANADIUM
ZINC 60 100 80 100 100 100 60 100 80 100 60 100 80 100 80 100 20 10	00 100	100	20	100	80	100	60	100	80	100	60	100	100	100	80	100	60	ZINC

Notes:

* Completeness = (No. data points collected)/(No. data points desired)

Combining soil types into soil groups mitigates the failure to acquire 5 samles of each soil type

** Cost benefit analysis showed that the limited availability of these soil types rendered continued search cost-prohibitive.

COMPLETENESS BY SOIL GROUP* BASEWIDE BACKGROUND INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

	SOIL GROUP								
	1	2	3	4	5	6	7	8	9
METAL	LS	LBC/LBL/LBS	AS/MS/PS	ABL/ABS	ABC**	MBC/MBS	MBL	PBC/PBL	PBS**
ALUMINUM	100	260	300	180	60	140	100	180	20
ANTIMONY	100	260	300	180	60	140	100	180	20
ARSENIC	100	260	300	180	60	140	100	180	20
BARIUM	100	260	300	180	60	140	100	180	20
BERYLLIUM	100	260	300	180	60	140	100	180	20
CADMIUM	100	260	300	180	60	140	100	180	20
CALCIUM	100	260	300	180	60	140	100	180	20
CHROMIUM	100	260	300	180	60	140	100	180	20
COBALT	100	260	300	180	60	140	100	180	20
COPPER	100	260	300	180	60	140	100	180	20
IRON	100	260	300	180	60	140	100	180	20
LEAD	100	260	300	180	60	140	100	180	20
LITHIUM	100	260	280	180	60	140	100	180	20
MAGNESIUM	100	260	300	180	60	140	100	180	20
MANGANESE	100	260	300	180	60	140	100	180	20
MERCURY	100	260	300	180	60	140	100	180	20
NICKEL	100	260	300	180	60	140	100	180	20
POTASSIUM	100	260	300	180	60	140	100	180	20
SELENIUM	100	260	300	180	60	140	100	180	20
SILVER	100	260	300	180	60	140	100	180	20
STRONTIUM	100	260	300	180	60	140	100	180	20
SODIUM	100	260	280	180	60	140	100	180	20
THALLIUM	100	260	300	180	60	140	100	180	20
THORIUM	100	260	280	180	60	140	100	180	20
TIN	100	260	300	180	60	140	100	180	20
VANADIUM	100	260	300	180	60	140	100	180	20
ZINC	100	260	300	180	60	140	100	180	20

* Completeness = (No. data points collected)/(No. data points desired) = (No. data points collected)/5

** Cost benefit analysis showed that the limited availability of these soil types rendered continued search for them prohibitive

Additional background samples or more than 5 site samples may be collected for ech site investigation to offset this condition

NSWC Crane Final Basewide Background Soil Investigation Report Revision: 1 Date: January 2001 Section: 4 Page 22 of 23

This page intentionally left blank.

P:\GIS\NSWC_CRANE\0087.APR 7/6/00 JAL DIFFERENTIATION OF SOIL TYPES

	DEPOSITIONAL ENVIRONMENT				
	LOESS/GLACIAL Soil	ALLUVIAL Soil	Residual soil from MISSISSIPPIAN Bedrock	Residual Soil from PENNSYLVANIAN Bedrock	
SURFACE	LS	AS	MS	PS	
SUBSURFACE CLAY	LBC	ABC	MBC	PBC	
SUBSURFACE SILT	LBL	ABL	MBL	PBL	
SUBSURFACE SAND	LBS	ABS	MBS	PBS	

	Soil Types within		Total Number of
	Soil Group &		Samples Collected
Soil Group	Representative	Soil Group	& Analyzed in Soil
Number	Color	Description	Group
Sector Sector Sector		Loess/Glacial	
1	LS	Surface Soil	5
	Contraction of the second	Loess/Glacial	
2	LBC/LBL/LBS	Subsurface Soil	13
		All Surface Soil	alar dari
		(except	
3	AS/MS/PS	Loess/Glacial)	15
		Alluvial Silt and	
		Sand Subsurface	
4	ABL/ABS	Soil (except Clay)	9
		Alluvial Subsurface	
5	ABC	Clay	3
	的思想 就能是自	Mississippian	
		Subsurface Soil	a in anti-
6	MBC/MBS	(except Silt)	7
		Mississippian	
7	MBL	Subsurface Silt	5
		Pennsylvanian	
		Clay and Silt	
		Subsurface soil	
8	PBC/PBL	(except Sand)	9
		Pennsylvanian	
9	PBS	Subsurface Sand	1

		9	FBG Cubballabe					
Notes:	Abbrevial	ions are as follows:						
110100.	First Lette		A - Alluviat Soil M - Mississippian Soil (residual soil from Mississippian bedrock/colluvium)					
	I NOT LOT		L - Loess/Glacial (deposits) P - Pennsylvanian Soil (residual soil from Pennsylvanian bedrock/colluvium)					
	Second L							
	Third Let		S - Sand L - S	Silt				
				CONTRACT NUMBER	OWNER NO.			
DRAWN BY	DATE	TE Tetra Tech NUS, Inc.		0087	0083			
K. HENN	7/6/00			APPROVED BY	DATE			
CHECKED BY	DATE			K. HENN	7/6/0	0		
		FINAL DIFFERENTIATION OF SOIL TYPES INTO SOIL GROUPS				10		
COST/SCHEDULE	AREA			APPROVED BY	DATE			
1		NAVAL SURFACE WARF						
SCALE		CRANE DIVISION		DRAWING NO.		REV		
AS NOTED				FIGURE 4-1	The second second	0		

5.0 PROCEDURE FOR USE OF THIS REPORT FOR DATA COMPARISONS

This section provides a proposed methodology for using the background data contained herein for data comparisons in future site investigations. Two types of data comparisons may be performed. One approach, used historically, involves a direct comparison between the site data and the background data's descriptive statistics (i.e., minimum, maximum, average, 95% upper tolerance limit or 95% UTL values). The information for this type of comparison is included in Tables 4-1 through 4-10. The 95% UTL indicates that the background samples concentrations are below limits 95 percent of the time. Exceedances of this value suggest that the concentration is not from the same distribution as the background concentration. Therefore, the exceedance would be statistically significant (see Appendix D-1 for additional details on the calculation of the 95% UTL). It is noted that the 95% UTL calculated for a data set may exceed the maximum reported concentration. It is sometimes assumed that if a data set contains less than five data points, the maximum detected concentration is used in place of a 95% UTL.

A second approach involves a more rigorous statistical comparison as directed by project specific guidelines. The information for this type of comparison is in a database currently managed by Tetra Tech NUS, Inc.

Section 5.1 contains simplified steps which should be followed to select the appropriate background soil group data sets for comparisons with site investigation data. Section 5.2 illustrates the steps necessary to retrieve a background data set from the TtNUS database to be used in the second data comparison approach listed above.

5.1 SIMPLIFIED STEPS FOR BACKGROUND COMPARISONS

The following steps should be followed to select the appropriate background soil group data sets for data comparisons:

- 1. Collect site investigation data.
- Identify the DE(s) present at the SWMU or other area of investigation. To identify the DE(s) refer to Figure 2-4 which illustrates the surface geology and DEs present at the NSWC Crane facility and Section 2.7.2. Other interpretations of the soil encountered at NSWC Crane may also be found in the USDA/SCS report by McElrath (1998).

- 3. Determine what soil groups are present at the SWMU based upon the selected DE(s) and the field data (i.e., soil sample depth and grain size by field interpretation) collected at the site. The soil groups for the NSWC Crane facility are defined in Section 4.0 of this report.
- 4. Consult with a qualified geologist to confirm that steps 2 and 3 have been performed correctly.
- 5. Identify the appropriate data set for the soil groups present at the SWMU from the background database (see Section 5.2 for this procedure). Begin comparison(s) of SWMU investigation data with background soil group data sets based upon project specific requirements.
- 6. Determine appropriate (current) risk-based screening levels for the site under investigation.
- 7. Take appropriate action(s) based upon site to background data comparisons and the appropriate screening levels.

5.2 DATABASE QUERY FOR RETRIEVAL OF BACKGROUND DATA SETS

The procedure listed below provides the steps necessary to retrieve a background data set from the database for site investigation and background data comparisons. The database is currently managed and maintained by TtNUS using Microsoft FoxPro® software.

This FoxPro[®] SQL example query illustrates the selection of background data for the Loess/Glacial surface soil data set from the NSWC Crane master database. Note that FoxPro[®] commands are case sensitive when performing data searches:

- 1. SET DEFAULT TO P:\SDIV\7141_010\
- 2. SELECT * FROM SAMPLE_DATA WHERE ALLTRIM(SOIL_TYPE) == "LS" AND ALLTRIM(QC_TYPE) == "NM" AND ALLTRIM(SACODE) <> "DUP" INTO TABLE LS_SAM ORDER BY LOCATION, NSAMPLE
- 3. SELECT * FROM ANALYTIC_RESULTS WHERE NSAMPLE IN (SELECT NSAMPLE FROM LS_SAM) INTO TABLE AS_RES ORDER BY NSAMPLE, PARAMETER

As a result of this query, table "LS_SAM" should contain 5 samples or records as shown below. Each of the 5 samples in table "LS_SAM" should contain 24 metals resulting in a total of 120 records (i.e., 24 metals x 5 samples):

- BG1SBL0101
- BG1SBL0501
- BG2SBG0101
- BG2SBG0201
- BG2SBG0401-MAX
- 4. The background soil group data set is now ready for comparisons with site investigation data based upon project specific requirements.

Note: To retrieve the data sets for other soil groups, the soil group "codes" illustrated on Figure 4-1 should be input in place of the "LS" soil group "code" in the example shown above.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY AND CONCLUSIONS

The Basewide Background Investigation achieved the objective of establishing an inorganics (i.e., metals) basewide background database for the NSWC Crane facility. The background database includes analytical data for surface soil and subsurface soil for the entire facility. The background database will be used in current and future environmental investigations to differentiate site-related environmental contamination from naturally occurring and anthropogenic (i.e., prior to U.S. Navy site operations) concentrations.

Following are summaries and major conclusions of this report:

- Background sample collection was distributed across three background areas. Each of these areas
 and sampling locations inside these areas met numerous criteria established to ensure that
 background soil samples represent "true background" areas or areas that have not been affected by
 past or present NSWC Crane operations.
- The data collected are of sufficient quality to be used for background comparisons in risk assessments, RCRA Facility Investigations, and other environmental investigations conducted at NSWC Crane. The background database is valid for future comparisons to suspected SWMUs anywhere on the NSWC Crane facility. All background sample data have been validated in accordance with EPA Region V guidelines.
- A total of 16 soil types were represented by various combinations of soil from different DEs, grain sizes, and depths below the ground surface.
- A sufficient number of samples were collected to characterize background soil for 15 of the 16 soil types. The goal of attaining a minimum of 3 samples for each of these 15 soil types was achieved. This goal was not achieved for only one soil type (residual soil derived from Pennsylvanian bedrock/colluvium, PBS).
- Statistical analyses supported by geological principles allowed the 16 soil types to be classified into 9 different soil groups. All soil types within a given soil group have similar inorganic concentrations. The goal of attaining a minimum of 5 samples for statistical analysis for each of these soil groups was

achieved, except for soil group 5 (alluvial subsurface clay soil) and soil group 9 (residual soil derived from Pennsylvanian bedrock/colluvium). Only 3 samples were collected for soil group 5 and only one sample was collected for soil group 9.

- In general, the background soil concentrations between the surface and subsurface soil, and between subsurface soil across different DEs are not the same. However, concentrations in surface soil across multiple DEs and the subsurface soil within a given DE are similar.
- The background concentrations for several metals exceeded human health and ecological risk-based target levels (i.e., risk-based screening levels) used during planning for this project.
- The overall project goal of achieving a minimum detectable difference of two-*sigma* or less between background and investigative data sets has been achieved, assuming that the assumptions used in planning this project (see Section 4.3) are valid. Even if the assumptions are not completely valid, most of the minimum detectable differences were significantly less than the two-*sigma* limit, thus differences between data sets should be detectable within a comfortable level of confidence.
- Within a DE, a maximum of three soil groups exists. Thus, for any SWMU that lies entirely within a single DE, no more than three background data sets will be needed for comparisons with site investigation data to determine whether site metal concentrations exceed background concentrations. Within each DE two of the soil groups exist solely because of differences between surface and subsurface soil.
- Because only one sample was encountered for the residual soil derived from Pennsylvanian bedrock/colluvium soil type, and the analytical results from this soil sample were not similar to the other soil types, there is no background data set for this soil type/group. Based upon the decision rule in the Work Plan (TtNUS, 2000b), sampling for this soil type was terminated at the end of the supplemental field event because additional sampling was shown to have been cost-prohibitive based upon a probability-cost analysis. Based upon infrequency of encountering this soil type there is a low probability of encountering it during site environmental investigations

6.2 **RECOMMENDATIONS**

The following recommendations are provided for additional consideration:

- The procedures outlined in Section 5 of this report should be followed when comparing site investigation data to the background data sets presented in this report.
- Because some metals exceed human health and ecological risk-based target levels and these target levels are updated on a periodic basis, it is important that when the site investigation data are evaluated with respected to background data the current target levels are also considered.
- There may be circumstances where it is beneficial for SWMU specific background data to be collected to supplement the basewide background soil database. The following are possible circumstances for which this may be valuable:
 - SMWUs that have open burning/open detonation operations on site or are affected by adjacent site operations may benefit from SWMU specific background concentrations, as these values will provide a localized point of reference. This item specifically refers to SWMUs which are downwind from other SWMUs which may have released airborne contaminants. An example where this may apply is at the DRMO Storage Lot (SWMU 21/00) which is downwind of the Demolition Range (06/09). In this case it is recommended that SWMU specific background is collected at SWMU 21/00 as a frame of reference to determine whether contaminants encountered at SWMU 21/00 are a SWMU specific issue or a result of contamination released from SWMU 06/09.
 - A SMWU located in an area where the local geology may affect the local background concentrations. For example, the Lower Pennsylvanian bedrock (and likely residual soil) which consists locally of thin black shale, carbonaceous shale and coal beds. These localized beds may contain elevated concentrations of naturally occurring inorganics (e.g., chromium, arsenic). As a result, residual soil in this localized geological environment may have abnormally high inorganic background concentrations where collection of SWMU specific background concentrations may provide some added value. If the site investigation data collected is significantly outside the bounds of the data in this report, then additional background data may need to be collected, based upon the consulting geologist's opinion, to determine if locally weathering bedrock affected the results.
 - For SWMUs where the analyte list of metal contaminants of potential concern differs from the analyte list used in this background investigation additional background data may need to be collected.

- For SWMUs where the PBS soil type/soil group is encountered during site investigations and a background data set is needed for comparison.

REFERENCES

Albertson et. al, September 1998, RCRA Facility Investigation Phase II Soils, SWMU 05/03, Old Burn Pit, NSWC Crane, Technical Report GL98-24, Final Report, US Army Corps of Engineers, Waterways Experiment Station.

Army, Department of, March 1978, Installation Assessment of the NSWC Crane, Record of Evaluation Report No. 117, Aberdeen Proving Ground, Maryland.

Blunck, 1995, Earth Resources Geographic Information System (GIS) for NSWC-Crane, Indiana Geological Survey and Indiana University, Final Report.

Brent, T. February 9, 1999, personal communication, Environmental Management Office, Naval Surface Warfare Center Crane.

Brown & Root Environmental, October 1997a, RCRA Air Quality Assessment of the Ammunition Burning Ground, Old Rifle Range, and Demolition Ground, Naval Surface Warfare Center, Crane Division, Crane, Indiana.

Brown & Root Environmental, November 1997b, Draft Current Contamination Conditions Risk Assessment, SWMUs 03/10 Ammunition Burning Grounds, 07/09 Old Rifle Range, 06/09 Demolition Range, Volumes I, II, and III, Navy Northern Division.

Dunbar, Joseph B., 1982. Hydrogeologic Investigation of Waste Disposal Sites at the Naval Weapons Support Center, Crane, Indiana. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

Explosive Safety Officer, September 1997, NSWC Crane Map with Hunting Zones and Restricted Areas, Naval Surface Warfare Center Crane, Department of the Navy.

Fisher, A.T., 1996, The Hydrogeologic Properties and Sedimentary Facies Relations of Shallow Pennsylvanian Bedrock Aquifers: Well tests, Lithologic Descriptions, and Gamma-ray Logs, NSWC Crane, Indiana Geological Survey and Indiana University, Open File Report 96-3.

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Company, New York, NY.

Halliburton NUS, August 1992a, RFI Phase I, Environmental Monitoring Report, SWMUs 19/00, 08/17. 12/14, 13/14, Navy Northern Division, CTO 15.

Halliburton NUS, November 1992b, RFI Phase I, Environmental Monitoring Report, SWMUs 15/06, 14/10, 16/16, NorthDiv, CTO 15.

Hunt, R.W., 1988. Geology and Hydrogeology of the Ammunition Burning Ground, Crane Naval Weapons Support Center. Technical Report GL-88-27, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.

Indiana Department of Natural Resources, 1997, An inventory of natural areas and rare plant species at the Naval Weapons Support Center Crane, Indiana, (prepared by Jacquart, E. M. and LeBlanc, C.)

Indiana Department of Natural Resources, 1998, An inventory of natural areas and rare plant species at the Naval Weapons Support Center Crane, Indiana.

Kvale, E.P., 1992, Report on the Surface Geological Mapping of Crane Naval Surface Warfare Center, Crane Indiana, Indiana University, OpenFile Report 92-10 (with enclosures).

McElrath, G., Jr., 1988, Soil Survey of Martin County, Indiana, Soil Conservation Service, United States Department of Agriculture.

Morrison Knudsen Corporation, September 5, 1996, Draft Interim Measures Report, SWMU 23/00, Battery Shop, Contract #N62467-93-D.

Morrison Knudsen Corporation, 1999, Interim Measures Report, SWMU 25/07D. Highway 58 Dump Site A.

Morrison Knudsen Corporation, 1997, Interim Measures Report, SWMU 26/08D, Highway 58 Dump Site B.

Murphy, W.L., and R. Wade, 1994. Draft Report, RCRA Facility Investigation, Phase II Groundwater Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization, SWMU 07/09 Old Rifle Range, Naval Surface Warfare Center, Crane, Indiana. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

Murphy, W.L., 1994. Final Report, RCRA Facility Investigation, Phase III Groundwater Release Characterization, SWMU 03/10 Ammunition Burning Ground. Technical Report GL-94-15, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

Murphy, W.L., and R. Wade, 1998. Final Report, RCRA Facility Investigation, Phase II Groundwater Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization, SWMU 07/09 Old Rifle Range, Naval Surface Warfare Center, Crane, Indiana. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

Natural Resources Office, 1999, collection of aerial photographs (July, 1935; 1953; July-August, 1958, August-October, 1966; October, 1984; October, 1998) Naval Surface Warfare Center Crane.

Naval Facilities Engineering Command, 1993, General Development Maps, Naval Surface Warfare Center Crane, Department of the Navy.

NEESA, (Naval Energy and Environmental Support Activity), May 1983. Initial Assessment Study of Naval Weapons Support Center Crane, Indiana. Port Hueneme, CA.

NFESC, 1996, Navy Installation Restoration Laboratory Quality Assurance Guide, NFESC Interim Guidance Document, Naval Facilities Engineering Services Command, February 1996.

Nohrstedt, J.S., et. al, September 1998a, RCRA Facility Investigation Phase II Soils Release Characterization, SWMU 04/02, McComish Gorge, NSWC Crane, Technical Report GL98-21, Final Report, U.S. Army Corps of Engineers, Waterways Experimental Station.

Nohrstedt, J.S., et. al, September 1998b, RCRA Facility Investigation Phase II and Phase III Soils, SWMU 09/05, Pest Control Area/ R150 Tank Site, Technical Report GL98-22, NSWC Crane, U.S. Army Corps of Engineers, Waterways Experimental Station.

Nohrstedt, J.S., September 1998c, Final Report: RCRA Facility Investigation Phase II Soils Release Characterization, SWMU 10/15, Rockeye, Naval Surface Warfare Center, Crane, Indiana, Technical Report GL-98-26.

Palmer, A.N., 1969. A Hydrologic Study of Indiana Karst. Ph.D. Thesis, Indiana University, Indiana.

Perry and Smith, 1958 as cited in Murphy, W.L. and R. Wade, 1998. Final Report, RCRA Facility Investigation, Phase II Groundwater Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization, SWMU 07/09 Old Rifle Range, Naval Surface Warfare Center, Crane, Indiana. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.

Poynter, D, February 9, 1999, personal communication, Natural Resources Office Naval Surface Warfare Center Crane.

Rupp, J., February 1999, personal communication, Indiana Geological Survey.

Rust Environment & Infrastructure, July 1997, Environmental Data Assessment Memorandum, NAVSURFWARCENDIV, Crane, Indiana.

Southwest Division and EFA WEST of Naval Facilities Engineering Command, Sept. 1998, Procedural Guidance for Statistically Analyzing Environmental Background Data

Tetra Tech NUS, 1997. RCRA Air Quality Assessment at the Ammunition Burning Grounds, Old Rifle Range, and Demolition Ground, NSWC Crane.

Tetra Tech NUS, 1999. Current Contamination Conditions Risk Assessment, SWMUs 03/10, 07/09, 06/09 NSWC Crane, Final Report, Vol. I, II, III.

Tetra Tech NUS, 1999a. Work Plan (including Field Sampling Plan and Health & Safety Plan, Base-wide Background Soil Investigation, NSWC Crane.

Tetra Tech NUS, 1999b. Quality Assurance Project Plan, Base-wide Background Soil Investigation, NSWC Crane.

Tetra Tech NUS, 2000a, Draft QAPP for the Mustard Gas Burial Grounds, NSWC Crane.

Tetra Tech NUS, 2000b, Work Plan and Field Sampling Plan Addendum for Basewide Background Soil Investigation, NSWC Crane.

U.S. Army Corps of Engineers, Waterways Experimental Station, September 1998, RCRA Facility Investigation Phase II Soil, SWMU 10/15, Rockeye, NSWC Crane, Technical Report GL-98-26.

U.S. Army Corps of Engineers, Waterways Experimental Station, January 1995, Work Plan for RCRA Facility Investigation, Groundwater Release Assessment, SWMU 30/00 Land/Sludge Application Site, NSWC Crane.

U.S. EPA (Environmental Protection Agency), 1993a. Region 5 Standard Operating Procedure for Validation of CLP Organic Data. U.S. EPA Region 5 Environmental Sciences Division, Central Regional Laboratory, Chicago, IL, August 1993.

U.S. EPA (Environmental Protection Agency), 1993b. Region 5 Standard Operating Procedure for Validation of CLP Inorganic Data. U.S. EPA Region 5 Environmental Sciences Division, Central Regional Laboratory, Chicago, IL, September 1993.

U.S. EPA (Environmental Protection Agency), September 1994, Guidance for the Data Quality Objectives Process , EPA QA/G-4, EPA/600/R-96/055.

U.S. EPA (Environmental Protection Agency), July 1995, Draft RCRA Facility Permit for NSWC Crane, U.S. EPA Identification Number IN5 170 023 498, Region V, Chicago Illinois.

U.S. EPA (Environmental Protection Agency), December 1995, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, EPA/540-5-96/500

U.S. EPA (Environmental Protection Agency), 1998, Guidance for Data Quality Assessment, EPA QA/G-9, EPA/600/R-96-084, U.S. Environmental Protection Agency, Office of Research and Development.

U.S. EPA (Environmental Protection Agency), 1999, Final RCRA Facility Permit for NSWC Crane, Region V, Chicago Illinois.

U.S. EPA (Environmental Protection Agency), 1997, Internal Memorandum to Carol Witt-Smith from Allen A. Debus, RCRA QAPP Coordinator, Historical Data Review for U.S. Navy Crane - 5 Laboratories (Southwest, Enseco, Anacon, Synergie, WES), June 24.

R-5

APPENDIX A

FIELD FORMS

- A-1 MULTIPLE SAMPLE LOG SHEETS
- A-2 CHAIN-OF-CUSTODY RECORDS
- A-3 FIELD LOG BOOK
- A-4 EQUIPMENT CALIBRATION LOG
- A-5 SURVEY RESULTS

FIRST FIELD EVENT

ł.

MULTIPLE SAMPLE LOG SHEET

ľ	SURFACE SOIL
Î	SUBSURFACE SOIL
	[] other

[] SEDIMENT [] LAGOON / POND

SIGNATURE(S): Botton Yun

PAGE_1 OF_1

PROJECT NAME: PROTECT NUMBER:	•	NSWC C								AN	ALYS	LOCA	TION	BGISKLOI
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BGISBLOIDI	HA	0-1	11/8 /99	1305	51	L	6	(¥					SILT SOME CLAY
BLISGLOID3	HA		11/8/99			L	J	l	r					SILT SOME CLAY TRU FOL SAND BL CLAY SOME SILT DL MOT, TRUFUL SAND SILT W/SOME BL CLAY DA MOT.
BGISBLDIOY	HÀ		11/8/99	1		L	Gi	1	×					SILT W/SOME BLCLAY DR MOT.
BGISBLOIDS	HA	T	11/8/99			L	61	1	x					SILT W/SOME BLCLAY DR MOT.
	HA		11/ /99											
	НА		11/ /99											
	НА	<u> </u>	11/ /99											
· · · · · · · · · · · · · · · · · · ·	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99					· · ·						
<u> </u>	HA		11/ /99											
	HA		11/ /99											
and a second	HA	<u> </u>	11/ /99											
REMARKS: Only 4 sample		n du		auge,	~ ~e	Fural	@ 5	F 7.		Lauck	s Labo	-		COC No.:
IA - Hand Auger										Seattle	e, Was	shingto	n 🕺	·

Tetra Tech NUS, Inc.		() SURI	FACE S	E SAN CE SOIL CE SOIL		() S () L			sig ND	NATUF	PAGE_ (OF /		
PROJECT NAME: PROTECT NUMBER:		NSWC C	and a second			-		LOCAT				BENSBLOL	
					·			I		ANA	LYSES		
SAMPLE No.	SAMPLE METHOD	DEPTH (Fl.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (M)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
Baisbuddon	HA	0-1	11/ 8/99	1410	SN	2	G	1	x				SILT TR CLAY TR VEGR SAND
Baisblodoz	HA		11/8/99	1		L	G	1	×				SILT TR CLAY TR VFGR SAND TR OR YGRAY MOT: BL CLAY SOME SILT TR VFGR SAND
BUISBLODDY	HA		11/ 8/99		SN	L	G	1	×				4
Baisblodos	HA		11/8/99	1	SN	2	G	1	X				SHET SOME BL CLAY SOME FOR SAND
BBISBLOLOG	HA			1436		4	G	(X				4
	НА		11/ /99										
	HA		11/ /99										
	НА		11/ /99	1									
	НА		11/ /99	1								ł	
	HA		11/ /99										
	НА	1	11/ /99										
	НА		11/ /99										
	HA		11/ /99										
	НА	1	11/ /99										
REMARKS:											RY: Laborate , Washin	-	COC No.:

Tetra Tech NUS, Inc.		N SURI	FACE S	OIL CE SOIL	IPLEI	[] S [] L	EDIMI AGOO	ENT	OND	SIGN	ATUR	PAGE <u>1</u> OF <u>1</u> NE(S): DE(S):		
PROJECT NAME: PROTECT NUMBER:		NSWC C 0087 CT		_		<u>-</u> .			· ·	AN	IALYS	LOC/	ATION	BGISBLO3
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
Baisbiozoi	НА	6-1	11/ 8/99	०५०८	SN	L	6	1	X					SILT TH CLAY
6615610303	HA	2-3	11/8/99	0912										SILTY BL CLAY TR FOR SAMA
BUISBLOSCY	HA	3-4	11/ § /99	<i>Γ</i> 170										
BGISBLOSOS	HA	u-5	11/ 8/99	0425										
6615610306	HA	5-6	11/ & /99	6932	\checkmark	L		J.	4				ļ	BE CLAY SOME SILT
	HA		11/ /99											1
	HA		11/ /99											
	HA		11/ /99									· .		
	HA		11/ /99									مہ		P
	HA		11/ /99					-						、 、
	HA		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
REMARKS:									LABO	RATO	RY:			COC No.:
HA - Hand Auger						×		<u>.</u>				oratory shingto		

-

-

Tetra Tech NUS, Inc.	MULTIPLE SAMPLE LOG SHEET									ATUR	PAGE / OF (RE(S): <u>Sotten</u> Yel			
PROJECT NAME: PROTECT NUMBER:		NSWC (0087 CT							LOCA	ATION	Baisbloy			
· .									ļ	AN	ALYS	ES		·
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (1)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BGISBLOYOI	HA	0-1	11/ 8/99	1000	SN	L	6	1	¢					SILT TR CLAY
Baisblayoz	HA	2-3	11/8/99	1006	s~	٢	G	1	×					SILT TR CLAY OR MOT. SILTY BUCKAY TREAL SAND
Bensbloudy	НА	3-4	11/8 /99	1014	SN	٢	تع	(×					
B615BL0405	HA	4-5	11/8/99	(018	SN	٢	G	1	x					CLAYLY SILT ON MOT TREGASAND
BGISBLOYDL	HA	5-6	11/ & /99	1025	Siv	L	<u>ه</u>	1	x					CLAYIY SILT OLMOT TREGASAND BL CLAY ENNE SILT
·	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99										•	
	HA		11/ /99											
	HA		11/ /99											· · · · · · · · · · · · · · · · · · ·
	НА		11/ /99											
	HA		11/ /99											
EMARKS:				-					LABO)RY: (s Lab	oralory	,	COC No.:
HA - Hand A'											le, Wa			

Tetra Tech NUS, Inc.				N SUR	FACE SURFA	SOIL CE SOIL		E T ENT N / PC	OND	SIGN	atur	E(S): 80-	the y	Pi ZeiO	AGI		
PROJECT NAME: PROTECT NUMBER:		NSWC (0087 CT		<u> </u>		-				AN	VALYS	LOCA	TION	Ben s	BLOS		
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					<i>.</i>	SOIL DES	CRIPTION	
6GISBLOSOI	HA	0-1	11/8/99	0800	SN	L	G	(ĸ					SILT TH	CLAY	- <u></u>	
Baisbeuros	HA	2-3	11/ 8/99	0810	SN	٤	6	1	×					CLAYIN			G.A
BGISBLOSO4 (Dup+ms(msn))	HA	3-4	11/~ /99	09 i 8	511		Ge	3	X .					1			
Baisblosds	HA	4-5	11/ & /99	0830	Sri	<u>ر</u>	6		×						/		
BUBBLOSON	HA	5-6	11/ 8/99	0538	SN	L	6	1	×					BL CLAY	- Some si	LT	,
·	HA		11/ /99														
· · · · · · · · · · · · · · · · · · ·	НА		11/ /99														
	HA		11/ /99														
· ·	HA		11/ /99									امہ					
	НА		11/ /99													- 1 ⁴ . 2	
· · · · ·	HA		11/ /99					_									
	HA		11/ /99			_											
	HA		11/ /99														
	HA		11/ /99														

SURFACE SOIL
SUBSURFACE SOIL
[] other

[] SEDIMENT	SIGNATI
[] LAGOON / PON	D

URE(S): Sport u. Yel

COC No.:

LABORATORY:

PROJECT NAME: PROTECT NUMBER:		NSWC C			<u></u>						LOC	ATION	BOISBAOI
		0007 01	0.00	•						ANA	LYSES		
SAMPLE No.	SAMPLE METHOD	DEPTH (Fl.)	DATE	TIME	SAMPLED BY	CONCENTRATION (JLOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BOISBADIOI	НА	0-1	11/4 /99	1425	SN	L	6	/	ĸ				SILT TR VEGLSAND
Baisbaoios	НА	I	11/ 4/99	12(34	SN	L	6	1	x				SILT TR VEGLSAND GRANZL/ROCK FRAGS SILT SOME CLAY TR FER SAND
Baiss Adio4	НА			1450		L	6	1	×				
	HA		11/ /99										
	HA		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	HA		11/ /99										
	НА	Ι	11/ /99										
······································	НА		11/ /99										
	НА		11/ /99										
	HA		11/ /99										

REMARKS: Only 3 Samples takin due to refusal. O-1 + 2-3 FT samples taken from original borehole; 3-4 FT Sample TAKEN from third borehole. Laucks Laboratory Seattle, Washington HA - Hand Auger

PROJECT NAME:

MULTIPLE SAMPLE LOG SHEET

PAGE / OF /

l	SURFACE SOIL
Î	SUBSURFACE SOIL
	[] OTHER

NSWC Crane

[] SEDIMENT [] LAGOON/POND	SIGNATURE(S): a

LOCATION:

	Ð
361	SBADY2

SIGNATURE(S): Some a. Yu.O

		6aD	
BGI	SBAD	12	

PROTECT NUMBER:		0087 CT	O 83	-						_				
· ·								ANALYSES						
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (1)LOW (MH10H	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BCHSBACK BGISBADDOI	НА	0-1	11/ 4/99	1545		L	6	1	×					Some GRANEL / RUCK FRACS. Clayey sill TR VFGL SAND
·	HA		11/ /99					ļ						
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	НА		11/ /99							-				
	НА		11/ /99											
	НА		11/ /99											
	HA		11/_/99											
	НА		11/ /99											· · · ·
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
REMARKS: Only surface san * This point was Samples taken = 1 HA - Hand Auger	ph t not	sken (logg- from d	ed into	refusi the street	н. GPJ ст в	eal .				Lauck	DRY: (s Labo (e, Was			COC No.:

	SURFACE SOIL
Ĩ	SUBSURFACE SOIL
	[] other

[] SEDIMENT [] LAGOON / POND

SIGNATURE(S): Site a. Ye.

PROJECT NAME: PROTECT NUMBER:		NSWC 0	and the second se		<u>-</u>				r		•			BGISBA	05
· ·									ļ	AN	ALYSE	<u>-S</u>			
SAMPLE No.	SAMPLE METHOD	DEPTH (F1.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					sc	AL DESCRIPTION
BGISBADZOI	HA	0-1	11/5/99	1440	SN	L	6	1	x					V FGA SANI	some silt
BG15BA0303	НА	9-3	11/5/99	1448	5~	2	6	1	×					SILT SOME	VFGR SAND
BGISB AD3 04	HA	3-4	11/ 5799	1454	SN	L	4	1	x						
BGISBA0305	HA	45	11/5-/99	1459	Ś	4	G	1	x						Some Or Stain
BGIISBAD306 (MS/MSD)	HA	5-6	11/5/99	1505	Sa	L	G	2	×						
	HA		11/ /99												·
	HA		11/ /99										<u></u>		
	HA		11/ /99												
	HA		11/ /99												
	HA		11/ /99											· ·	
	HA		11/ /99				ļ								
	HA		11/ /99	ļ				ļ							
	HA		11/ /99					ļ	<u> </u>						
	HA		11/ /99					L						 	
REMARKS: Sample location ≈ 5, Shample BG15BA03Q	$FF = \int_{0}^{0} f = \int_{0}^{0} \int_{0}$	for de lected	g stream	n beck S(MSD	- -				LABC		RY: (s Labo le, Was			COC No.:	

SURFACE SOIL
SUBSURFACE SOIL
[] OTHER

NSWC Crane

[] SEDIMENT [] LAGOON/POND	SIGNATURE(S):	Ĺ

PAGE_ OF_/ For Neil

В LOCATION:

GI	SBAOY	
----	-------	--

GI	SBADY	

PROJECT NAME: PROTECT NUMBER:

ROTECT NUMBER:		0087 CT	0.00	-						AN	ALYSE	S	
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (1)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BGISBAOYOI	HA	0-1	11/5/99	0825	SN	L	6	l	X				SILTY CLAY THE VEEL SAND
BUISGAOYON	HA	2-3	11/5/99	0835	SN	L	G	(X				
BEISTAULION	НА		11/ 99</td <td>0840</td> <td>SN</td> <td>L</td> <td>6</td> <td>ι</td> <td>×</td> <td></td> <td></td> <td></td> <td>Dringe MOTELING. CLAY SOME SILT. THE UFER SAND</td>	0840	SN	L	6	ι	×				Dringe MOTELING. CLAY SOME SILT. THE UFER SAND
Baisbaouos	НА		1	0847		L	6	1	×				
BGISBAOU06	HA	1	1	0854	5~	L	6	1	×				
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
<u> </u>	НА		11/ /99										
<u></u>	HA		11/ /99										
	НА		11/ /99										·
MARKS: Sample location	1.1 2 5	FT: fr	our dru	stre	einn (Sect.				RATOI Laucks	RY: s Labor	atory	COC No.:
- Hand Auger										Seattle	, Wasł	nington	

Tetra Tech NUS, Inc.		•		i Suri	FACE S	OIL CE SOIL	IPLE I	()S ()L	SHEE Edime Agoo	INT	OND	SIGN	TURI	PAGE (OF / _
PROJECT NAME: PROTECT NUMBER:		NSWC 0 0087 CT		<u></u>				÷		AN	ALYS	LOCA Es	tion:	BGISBAOS
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (1)LOW (1-1)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BGISGAOSOI	HA	0-1	11/ 4/99	1640	SN	L	6	1	x	-				SILTY UFGA SAND
BEISGAOSOS	НА	2-3	11/ 1/99	1649	SN	L	G	1	×					SILT W/ TR YFGRSAND
Baisbroso4	НА	3-4	11/ √/99	1655	s~	٤	Ģ	1	×					Some ROCK FRAS
	HA		11/ /99											
	HA		11/ /99			· · ·					-			
	HA		11/ /99											
	НА		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
<u> </u>	НА		11/ /99											
	НА		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
REMARKS: Only 3 Samples = 15 PT. from	baller - dry	due stree	to ref	usel. Kvery	Sen	ple la ky),	ocx Ets.	~ .		RATO Lauck		oratory		COC №.:
HA - Hand Aurer									L	Seattle	e, Wa	shingto	n	

_

PAGE_/ OF_/

i	SURFACE SOIL
	SUBSURFACE SOIL
	[] other

0	SEDIMENT
Û	LAGOON / POND

SIGNATURE(S): Fore M.O

LOCAT

	2
ION:	BGISBPOI

PROJECT NAME:		NSWC C				-						LOCA	TION	BGNSBPOI
PROTECT NUMBER:		0087 CT	0 83	-				•		AN	ALYS	ES		
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BGISSPOIOI	HA	0-1	11/6/99	1005	SN	L	G	1	x					Ster Some cany
BGISBPOIDS	HA	2-3	11/6/99	21012	5~	L	6	1	×					SAT of BLOCKY Clay
BGNSBPOL04	НА	3.4	11/6/99	1018	SN	L	6	1	×					SILT Ly BLOCKY CLAY TH FEASAND
Baisbroios	HA	44.5	11/6/99	1025	لىرى	L	6	1	4					SAT W/ BLOCKY Clay RED STAIN TE NOAD. SILT W/ BLOCKY CLAY TR FEA SATD Race FRAGS ARD STAIN. SILT W/ BLOCKY CLAY TR VFEA SAMD
	HA		11/ /99											
	НА		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	HA	4 <u>-</u>	11/ /99											
	HA		11/ /99											
	HA		11/ /99		1									
	HA	1	11/ /99	1							1			
	HA	 	11/ /99	1	1									

HA	11/ /99						· ·
REMARKS: Only if sumples to	Ken due to auger	- refusal.	LABC	DRATORY:			COC No.:
				Laucks La	boratory		
HA - Hand Auger			 	Seattle, W	ashingto	n	

	SURFACE SOIL
Ï	SUBSURFACE SOIL
	[] OTHER

[] SEDIMENT [] LAGOON / POND

SIGNATURE(S): Fort ... Ver

LOCATION:

Seattle, Washington

Jensspor

PAGE_1OF_1

PROJECT NAME:		NSWC C	and the second			-						LOCA	TION:	PAISPOL
PROTECT NUMBER:		0087 CT	0 83	-						۸N	ALYS	ES		
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BEISBRODOI	НА	0-1	11/6/99	1055	SN	L	6	1	x					SILT SOME CLAY
Balsbrodos	НА		11/6 /99	1105	SN	2	6	1	· x					BL CLAY SOME SILT OR MOT.
BEISBROLUY	НА	3-4	11/ 6/99	1112	SN	Ĺ	6	(x					
BENISBROLUY BENISBROLOS	НА		11/ 6/99		5~	L	6	(×					SILT SOME BL CLAY ON MOT. ROCK FRAGS V TRYFGA SAND
BGISBPOJOL	НА		11/ 6/99	1	Su	-2	6	1	x					· · · · · · · · · · · · · · · · · · ·
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА	1	11/ /99				-							
	НА	1	11/ /99											
	НА		11/ /99											
	НА		11/ /99											
REMARKS:									LÁBC	ORATO)RY:			COC No.:
· ·									1	Laud	ks Lab	oratory	V I	

HA - Hand Auger

PAGE_/_OF_/

SURFACE SOIL
SUBSURFACE SOIL
[] OTHER

0	SEDIMENT
D	LAGOON / POND

SIGNATURE(S): Source Juip

PROJECT NAME: PROTECT NUMBER:		NSWC C 0087 CT		.		•			[AN	ALYS	LOCA Es	TION	BGISBP03
SAMPLE No.	SAMPLE METHOD	DEPTH (FL.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
Baisbpozoi	НА	0-1	11/6/99	1425		L	6	(x					SKT VEGASAND TH CLAY O.L. MOT. TAVEGALSAND
BGISBP0303	НА		11/ 6/99			L	G	1	×					O.L. MOT. The VEGAL SAND & CLAY SOME SILT THE ROCK FRANCES
			11/6/99			L	G	I	x					BL CLAY SOME SILT THE ROCK FRANCE
Baisblosoy Baisblosos	HA		11/6/99			L	G	1	ĸ					
BGISPROZOD	HA		11 <i>1 © 1</i> 99			L	6	(X					
	НА	T	11/ /99											
······································	HA		11/ /99										-	
	НА		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
REMARKS: 6615/590301 faka- takan from 14 HA-Hand Auger	from	origini ring	(borin	rg. A	11 05	her Si	-yo le	1		Lauck	RY: s Labo e, Was	-		COC No.:

Tetra Tech NUS, Inc.				SURI	FACE S	OIL CE SOIL		[] S [] L		INT	SIG ND	NATUF	PAGE_L C
ROJECT NAME: ROTECT NUMBER:		NSWC C										ATION	BGISBPOU
			1	1					ļ	AN	ALYSES	1 -	
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BGISSPOYOI	HA	0-1	11/6/99	1315	s~	L	G	. 1	x				SILT Some BL CLM
BGISBPOYOS	HA	2-3	11/6/99	1323	SN	L	G	1	ĸ			-	SILT SOME BE CLAY
BGISBPOYOU	HA	3-4	11/6/99	7251	SN	L	6	\	\times				SILT SOME BL CLAY THE FEALSA
BG15690405	НА		11/6/99			L	G	<u> (</u>	X				AL CLAY SOME SILT THE FEAL SAME
BGISGPO406 (Dup)	HA	1	11/ 6/99			2	G	(×				
	HA		11/ /99								- 200 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
	HA		11/ /99								<u> </u>		
	HA		11/ /99										
	НА		11/ /99									·	
<u> </u>	НА		11/ /99										
	НА		11/ /99									-	λ.
	HA		11/ /99										
	HA		11/ /99										
	НА		11/ /99										· · · · · · · · · · · · · · · · · · ·
EMARKS:			-						LABC	RATO	RY: s Laborate	ory	COC No.:

PAGE_1 OF__

[] Sediment [] Lagoon/Pond

SIGNATURE(S): South Yes

		NSWC C				•						LOCATI	ON:	Banspeos	·			
PROTECT NUMBER:		0087 01	0.63	•					ANALYSES									
SAMPLE No.	SAMPLE METHOD	DEPTH (F1.)	DATE	TIME	SAMPLED BY CONCENTRATION (1)LOW (H)HIGH (2) GRAB (3) GRAB										ESCRIPTION			
Baisbposol	HA	0-1	11/ 5/99	1614	SN		6	1	×					SILT SOME C	LAN OF MOTTUNE			
BOISPOSO3	НА	2-3	11/ \$7/99	(62)	5~	L	G	C.	x				/	BLOCKY CLAY	Some SILT			
BGISBPOSOL	HA	3-4	11/5/99	(629	SN	L	6	١	×									
BGISBEOSOS	HA	45	11/5/99	1637	SN	2	6	`	×					TH FAR SAND	Some fock Fracs			
Baisbrosob	НА			1642	SN	L	6	1	X			· .			, <u> </u>			
	HA		11/ /99															
	HA		11/ /99										·					
	HA	[11/ /99															
	HA		11/ /99															
	HA		11/ /99															
	HA		11/ /99															
	НА		11/ /99												······			
	HA		11/ /99															
	HA		11/ /99															
REMARKS: HA - Hand Auger										RATO Laucks Seattle	s Labo	ratory hington	C	OC №.:				

Tetra Tech NUS, Inc.

PAGE / OF /

	SURFACE SOIL
Ì	SUBSURFACE SOIL
	[] other

[] SEDIMENT [] LAGOON / POND

SIGNATURE(S): Rott ... You

LOCATION:

<u>_</u>

ZG	56	DOL	Ð
1-20-1	20	P 06	<u>A</u>

PROJECT NAME: PROTECT NUMBER:

0087 CTO 83

NSWC Crane

		0007 01		-				5 T		AN	ALYS	ES		1
SAMPLE No.	SAMPLE METHOD	DEPTH (FL.)	DATE	JIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BGISBPOLOI (DUP)	HA	0-1	11/5/99	1		L.	6	2	×					SILAY CLAY THE VEGA SAND WEATWINED BOOKER FRACES.
BGISBPODOZ	НА	3-3	11/5/99	1335	รม	4	6	۱,	$\boldsymbol{\times}$					WEATHARD BRIDROCK FRACS. SILT Some CLMY TR VFGR Stars
	HA		11/ /99											/
	HA		11/ /99											· ·
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99										<u></u>	
······································	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	HA		1 1/ /99											·
MARKS: Only 2 samples to BGISBPOBOI Ner I-Hand Amer ID BG FD1105	.ken den 5 a du 19901.	e to a plicate	uger re associa	fusal bel v	. 34 sith	rface : it. 0	sample	- K.		Lauck	s Labo	oratory shingto		COC No.:

· _ _ . _ . _ . _ . ĝ

PAGE_1 OF___

	SURFACE SOIL
[]	SUBSURFACE SOIL
	[] OTHER

SEDIMENT	
LAGOON / POND	

0 0

SIGNATURE(S):	Fort	L. Yler

PROJECT NAME: PROTECT NUMBER:		NSWC C		-		-						-		<u>BG136907</u>
SAMPLE No.	SAMPLE METHOD	DEPTH (Fl.)	DATE	TIME	SAMPLED BY	CONCENTRATION (J)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin		IALYS			SOIL DESCRIPTION
BEISBROIDI	HA	0-1	11/5/99	1056	5~	L	G	1	x					VEGR SAND SOME SILT ; ACC FRASS.
	HA		11/ /99											
	HA		11/ /99											· ·
	HA		11/ /99	·										
	НА		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	НА		11/ /99											· · · · · · · · · · · · · · · · · · ·
<u></u>	HA		11/ /99											· · · · · · · · · · · · · · · · · · ·
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
REMARKS: Only surface sample	teken i	at thi	is loce ti	on d	ne t	p auger	- refus	al.	LABO	RATO	RY:			COC No.:
REMARKS: Only surface sample Steep ravine into a	i drein	inge su	scle at	this	locat	ر . ۱۵۰۰				Lauck	s Labo	oratory		
HA - Hand Auger										Seattle	e, Was	shingto	n	

Tetra Tech NUS, Inc.				i suri	FACE S	OIL CE SOIL		() S () L	EDIME AGOOI	NT	ND	SIGN	TURI	PAGE OF L E(S): Sort Ye
PROJECT NAME: PROTECT NUMBER:		NSWC C			<u> </u>								TION:	<u>BGI \$\$P 08</u>
· ·		T	1	r							ALYS	-5		
SAMPLE No.	SAMPLE METHOD	DEPTH (FL.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (M)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BENSEPOBOI	НА	0-1	11/6/99	Gas	S	L	6	1	x					SILT SOME CLAY TRY FOR SAND
Barsbfo803	НА		11/6/99	0912	5~1	L	C.	١.	×					
BOISB POSO 4	НА	3-4	11/ 6/99	0916	SN	<u> </u>	6	(×					The Feat Som D
BONISBADEOS	HA	4-5	11/ 6/99	0922	S~	L	G,	(×					FOR SAMO SOME SILT SOME POCK FRANS
8615690606	HA	5.5.5	11/6/99	र्वाउँः	SN	<u>َ</u>	6	1	×					More Pock Frences
	HA		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	HA		11/ /99									••		
	HA		11/ /99											
	НА		11/ /99											
	HA		11/ /99	ļ										
	НА		11/ /99											
	HA		11/ /99											
REMARKS:		•			·					Lauck	s Lab	oratory	,	COC No.:
HA - Hand 1									L	Seattl	e, Wa	shingt	on	

}. . . .

				MUL	TIPL	E SAM	NPLE	LOG	SHEE	T	·		PAGE
Tetra Tech NUS, Inc.				I SUR SUB	FACE SURFA	Soil ICE Soil IER] S] L	Bedime Agooi	nt N/Pon	Sigi D	VATURE	(S): Fost L. YUO
PROJECT NAME: PROTECT NUMBER:		NSWC (0087 CT		-		-						ATION:	BGISKPOG
	1	<u></u>	1	1		-					LYSES		<u>.</u>
SAMPLE No.	SAMPLE METHOD	DEPTH (FL.)	DATE	TIME	SAMPLED BY	CONCENTRATION (1)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BUSBPOGOI	HA	0-1	11/6/99	080.7	SN	L	G	(x				CLAYTY SILT Some ROCK FRACE
·	НА		11/ /99		<u> </u>	ļ							
•	НА		11/ /99										·····
	HA		11/ /99							· .			· · ·
	HA	ļ	11/ /99			ļ							·
	HA		11/ /99		ļ	ļ							
······································	НА	· ·	11/ /99		 	ļ							
	HA		11/ /99						 			$\left \right $	
	HA	. 	11/ /99										
	HA		11/ /99			<u> </u>							n
·	HA	ļ	11/ /99								<u> </u>		
	HA		11/ /99						 				
	НА		11/ /99										
EMARKS: Only one sample) attempted - Rock exposed at	HA		11/ /99	. '	ļ								

Tetra Tech NUS, Inc.		MULTIPLE SAMP							EDIME AGOO	NT	ND	SIGN	ATURI	PAGEOF_(E(S): Sett Ye
PROJECT NAME: PROTECT NUMBER:		NSWC (0087 CT	and the second design of the s							AN	ALYS	LOCA	TION	BGISBPIO
SAMPLE No.	SAMPLE METHOD	DEPTH (FL)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin			-		SOIL DESCRIPTION
BGISBPIDON	НА	0-1	11/5/99	0917	SN	L	6	l	x					SILTY CLAY VEGL SAND
B6-15BP1003	НА	2-3	11/ ≤ /99	09.15	SV	L	6	1	x					SILT Some CLAY SOME VEGASAND
Baisbridg	НА	3-4	11/5/99	0943	รุง	L	6	1	x					Rock FRACS SILT SOME CLAY SOME FOR SAND
	НА		11/ /99											
	НА		11/ /99			*								
	НА	1	11/ /99											
	НА		11/ /99											
	НА	<u> </u>	11/ /99											
	HA		11/ /99	<u> </u>										
			1											
	HA		11/ /99						 					
~	HA	<u> </u>	11/ /99								├			
	HA		11/ /99								·			
	HA	<u> </u>	11/ /99						 					
REMARKS: Only 3 samples attempted with the original, be HA-Hand A or third boring	HA teken BGI	due SBPIO and	11/ 199 6 augu 01 a-d BGISC	1 66150 581000	fusal. \$100 1 con	Three 3 comi ming	te boring fi	1. 1955 10m th	LABC	Lauch	(s Lab	oratory		COC No.:

. .

(
Tetra Tech NUS, Inc.		FACES	SOIL	NPLE	[] 5		ENT	9 ND	PAGE_/ SIGNATURE(S): South Yun					
PROJECT NAME: PROTECT NUMBER:		NSWC C 0087 CT		- <u></u> -						ANA	I ALYSE		TION: <u>BGBS</u> B	601
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				S	DIL DESCRIPTION
BG258G0101	HA	0-1	11/7/99	ohao	SN	L	G	(x				SILTY CLAY TR	JF6% Songl.
8625660103	HA	2-3	11/ 7/99	0408	52	L	6	۱	K				1	
Ba25560104	HA	3-4	11/ 7/99	0914	SN	Ĺ	6	1	X					
BUDSAGLIOS	HA	4-5	11/ 7/99	0919	SN	L	6	1	×	н н			FUL SAND	Some cury + SILT
BB28BG010L	HA	5-6	11/ 7/99	09.25	S~	L	61	(×				1 1	LILT TRICLAY
	HA		11/ /99			1.1								/
	НА		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
·	НА		11/ /99								-+			
	HA		11/ /99	<u> </u>										
	HA	 	11/ /99		ļ									
	HA	 	11/ /99											······
	HA		11/ /99	<u> </u>										
REMARKS:									LABO	RATOR	IY:		COC No.:	
										Laucks		-		
HA - Hand Auger										Seattle,	Wasł	hingto	n	

Tetra Tech NUS, Inc.	MULTIPLE SAMPLE LOG SHEET SURFACE SOIL SUBSURFACE SOIL [] CTHER SUBSURFACE SOIL [] CTHER [] SEDIMENT [] LAGOON/POND [] OTHER									PAGE_1 OF_1 SIGNATURE(S): South Muss				
PROJECT NAME: PROTECT NUMBER:		NSWC (0087 CT	and the second se				•				LOCA	TION	N: BGIJS6GO2	
SAMPLE No.	SAMPLE METHOD	DEPTH (Fl.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin		ALYS			SOIL DESCRIPTION
BG256G0201	HA	0-1	11/ 7/99	0943	SN	L	· (51	١	×					SILT TRY FOR SAND
BG25660203	НА	Q-3	11/7/99	0446	SN	L	(91	(¥		ļ	. 		OR Mor
BarsBoodoy	HA	3-4	11/7/99	0954	SN	L	G	(X			ļ		Min NODS-
BA25660205	HA	4-5	11/7/99	1000	SN	L	G	1	x					SILE SOME GAMY BE CLARY SOME VEEN SATED
BG25660206	НА	5-6	11/ 7/99	1007	SN	L	6	1	×		ļ	 		BL CLAY ON MOT. TH SILT TH VE FOR SAND
	НА		11/ /99								ļ	 		
	HA		11/ /99											
	HA_		11/ /99							·	_			
	HA		11/ /99	L										
· · · · ·	HA		11/ /99											
	НА		11/ /99											
	HA		11/ /99	ļ								ļ		
	HA		11/ /99											
	HA		11/ /99									<u> </u>		
EMARKS:									1	Lauc	ks Lab			COC No.:
IA - Hand /				•		·			I	Seal	le, Wa	sinngt		· · · · · · · · ·

Tetra Tech NUS, Inc.				MULTIPLE SAMPLE LOG				n s	EDIMEN AGOON	sigi ID	PAG SIGNATURE(S): Scotter. Yun		
PROJECT NAME: PROTECT NUMBER:		NSWC 0 0087 CT					LOCATION ANALYSES			ATION	N: BG256G03		
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BG255G0301	HA	0-1	11/7/99	0805	SN		G	1	x				For savoy silt The Chay
BG125BG10303 (DUP)	НА	T		0815		L	6	A	×				FOR SAND TE LOUR FRAGE SS
BODS BG 0304	НА		11/7/99	0620		L.	G	(×				L
BG25660305	HA	4-5	11/7/99	0977	SN	L	6		ĸ				TH OR STRIN FOR SAND TH SILT TRADE A
BGJSBG0306	НА	5-6	11/ 7/99	0833	รง	L	G	1	×				L
	HA	-	11/ /99										
	НА		11/ /99										·
	НА		11/ /99										
	HA		11/ /99										
	НА		11/ /99										:
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	HA		11/ /99										

Tetra Tech NUS, Inc.	MULTIPLE SAMPLE LOG SHEET SURFACE SOIL [] SEDIMENT S SUBSURFACE SOIL [] LAGOON / POND [] OTHER											PAGE_ RE(S): Scott L. Yle_)	_ OF 		
ROJECT NAME: ROTECT NUMBER:		NSWC C 0087 CT		-						ANA	LYSE		TION	1 <u>BadSBG04</u>	
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION	
BGJSOGOUDI (DUP)	HA	0-1	11/ ר /99	1417	SN	L	G	Dx 2	×					Clayery silt	
8625860403	НА	2-3	11/7 /99	1427	รุณ	L	G	Sy 1	×					Clongery Silt FENDOS. ROCK FRACE SILT Some CLAY SOME FOR SAME	<u>}</u>
BG2SBG0404	HA	3.3.4	11/ 7/99	1445	รง	Ĺ	4	1	×						
	HA		11/ /99												
	HA		11/ /99												
	HA		11/ /99											· · · · · · · · · · · · · · · · · · ·	-
	HA		11/ /99												
	НА		11/ /99												
ана на продел сталини на	НА		11/ /99									مد			
	НА		11/ /99												
	НА		11/ /99							·			·		
· · · · · · · · · · · · · · · · · · ·	HA	·	11/ /99												
	HA		11/ /99	1			-								
	HA	<u>}</u>	11/ /99												
EMARKS: BG2SBG0401 has Sample # BG Only 3 samples A-Hand Aur Samples wer FT sample	a du FD110 teken d	1990) Inc 60	c GSSOC	refus	n (.) Iporiu	The O-				RATOF Laucks Seattle	Labo			COC No.:	

•---

Tetra Tech NUS, Inc.				SUR	FACE S SURFA	E SAN Soil Ce Soil Ier		[] S [] L	SEDIM	ent	OND	SIGN	atuf	PAC RE(S): Sever Ne
PROJECT NAME: PROTECT NUMBER:		NSWC (0087 CT				- .							ATION	N: BGJSBGOS
<u> </u>		1		<u> </u>		I		<u> </u>			VALYS	ES	<u> </u>	
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BG2SBG10501	HA	0-1	11/7/99	1305	SN	L	Gi	1	x					SILTY CLAY OR TINT
8025860505	HA		11/7/99	1315	้รณ์	L	G	(×					FGA SAND SOME SILT ROCK
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99									مہ		
·····	HA		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
<u></u>	HA		11/ /99											
REMARKS: Only & Samples were taken fr in very close HA-Hand Auger evidence of a	HA		11/ /99											

Tetra Tech NUS, Inc.			PAGE OF I OF I										
PROJECT NAME: PROTECT NUMBER:		NSWC 0		_		-			r			OCATIO	ION: BG35BA01
	1	1	1	1		1		l .			LYSE	3	
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BB3SBA0101	HA	0-1	11/ ン/99	1533	Ks	L	6	(X				Sills w for send
BG35BA0103	НА	2-3	11/ス/99	1540	SN	L	6	١	ĸ				Silt w for sand - rock frogr.
	HA		11/ /99										
, <u>19</u>	НА		11/ /99										
	НА	1	11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	HA		11/ /99										
······································	HA		11/ /99										
	HA		11/ /99										······································
	HA		11/ /99										
	HA		11/ /99										
<u> </u>	HA	 	11/ /99										
<u>10 </u>	HA		11/ /99										
REMARKS: Duplice Le Semple - BGFD - 110299-01 HA-Hand Ar	te Ken o	< β6 4 QC <	3584010	1 - D	inplie	ate n	um be.	-		RATOR Laucks Seattle,	Labor		COC No.:

Tetra Tech NUS, Inc.				E(S): Sott ~ Jred										
Project Name: Protect Number:		NSWC C		-		- '			-			LOCA	TION:	BG35BA02
· · · ·	_				T	1	1	T			LYSE	<u>s</u>		
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
B635840201	НА	0-1	11/2/99	1415	KS	L	G	1	×					Silk true send
BOSSBADDOZ	НА		11/ <i>入/</i> 99			L	6	١	×					Vfgr sand some silt roc
B6358A0204	HA	1	11/ 2/99		1	L	6	1 -	×					Silk trace sand Vfgr sand some silt; roc Vfgr sand rock frags
BG3SBA0205			11/ J/99			L	6	l	x					V
	HA		11/ /99											
	HA	· ·	11/ /99											
	HA		11/ /99		1									
	HA		11/ /99											
	HA	· .	11/ /99				1					بر		
	HA		11/ /99		1									
	HA		11/ /99											
	HA		11/ /99	1										
	HA		11/ /99											
	HA	-	11/ /99											
REMARKS: Only four samp		Ken du		fuse (ct	Ц.5	F7.			RATOF Laucks		ratory		COC No.:

Tetra Tech NUS, Inc.		E SAN OIL CE SOIL ER		[] S [] L/		E T Int N / PO	ND	SIGN	TURE	PAGE OF ! E(S):				
PROJECT NAME: PROTECT NUMBER:		NSWC C 0087 CT		_		-				AN	ALYS		tion:	BOBSBAUS
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
Besseruson	HA	0-1	11/ 3/99	CF 15	۲S	L	Ġ	1	٤.					Org. silt will to for same
	HA		11/ /99	ļ										
	HA		11/ /99	ļ	ļ									
	HA		11/ /99	ļ										
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HÅ		11/ /99											
	HA		11/ /99									م ب		
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA	1	11/ /99											
	НА		11/ /99		1									
REMARKS: Only one (1) sen	ne t	x ken d	dur.	_ to 1	efusi				LABC	Lauck)RY: ks Labk le, Wa:	-		COC No.:

PROJECT NAME:

MULTIPLE SAMPLE LOG SHEET

PAGE_1 OF_1

l	SURFACE SOIL
	SUBSURFACE SOIL
•	[] other

NSWC Crane

[] SEDIMENT S [] LAGOON / POND

SIGNATURE(S): Soct Ver

LOCATION:	BG3SBADY
	······

PROTECT NUMBER:		0087 CT	0 83	•						A	ALYS	ES	
SAMPLE No.	SAMPLE METHOD	DEPTH (Fl.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BG3SBAC401	HA	0-1	11/ 4 /99	orso	SN	L	6	(×				SILT SOME CLAY TH VEGE SAND
BGJSAOHOZ	НА	2-3	11/ 4 /99	0840		i	G	١	×				FGA SANDY SILT TA CLAY
BG35BA0404	HA	3-4	11/ 4 /99	0544	SN	L	6	l	×				FOR SAND THE SILT
BG35BA0405	HA	4-5	11/ 4 /99	dius	SN	Ĺ	Ġ	1	×				FGL SAND
B6356 Acya	HA	5.2.2	11/ 4 /99	disj.	SN	Ĺ	હ	<u>۱</u>	X				FGR SAND
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										5.
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
REMARKS:									LABO	RATO	RY:		COC No.:
										Lauck	s Labo	oratory	
HA - Hand Auger										Seattl	e, Wa	shington	

MULTIPLE SAMPLE LOG SHEET

P	A	G	F	1	0	F	1
•	53	v			~	۰.	

[] SURFACE SOIL [] SUBSURFACE SOIL () OTHER _____

[]	SEDIMENT	SIGI
[]	LAGOON / POND	

SIGNATURE(S): Stort L. Yui

LOCATION

BG35BAUS

PROJECT NAME:		NSWC C			<u> </u>						G318/205			
PROTECT NUMBER:		0087 CT	0.83	-						AN	ALYSE	S		
SAMPLE No.	SAMPLE METHOD	DEPTH (FL.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BG35BA0501	HA	0-1	11/ <i>4 </i> 99	0910	SN	4	6	1	x				FGR	SANDY SILT
BG3SBAOSUS	HA	2-3	11/ 4/99	0916	SN	L	6		×					SANDY SILT TH CLAY
BG35BA0504	HA	3-4	11/ 4 /99	040	SN.	٤	6	1	×					TRELLY THE FOR SAND
BG356A0505	HA	4-5	11/ 년 /99	09.26	SN	L	6	Í	x					L SAND SOME SILT
BG356A0526	HA	5-5.5	11/ 4 /99	0934	su.	L	6		×				FGA	L SAMD THE SILT THE ROCK FRAMES
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	НА		11/ /99											

	· · · · · · · · · · · · · · · · · · ·	HA	1	11/	/99									
REMARKS:			L	1		· .		4	LABO	DRATO	RY:			COC No.:
-			•							Lauc	ks Lab	oralor	/	
HA - Hand Auger										Seatt	le, Wa	shingt	on	

							·								
Tetra Tech NUS, Inc.				MUL II SURI II SUBS	TIPL FACE S SURFA [] OTH	e san Soil Ce Soil Ier	NPLE	LOG () () () () ()	SHEE Sedime Jagoo	ET Ent N / PC	ond	SIGN	ATUR	E(S): Sott freid	PAGE_
PROJECT NAME: PROTECT NUMBER:		NSWC C	Crane	-		-						LOCA			
SAMPLE No.	SAMPLE METHOD	DEPTH (FL.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION	
BG3SBMOIDI	HA	0-1	11/ 1/99	0735	KS		6	(X					Clayoy silt	
BUBSBMOIDZ	HA	2-3	11/ 2/99	0745	SN	L	G	(x					Clayoy silt Blocky clay w/ Fe no	ods.
	HA	· ·	11/ /99												
	HA		11/ /99	ļ							i				
	HA	[11/ /99												
· · · · · · · · · · · · · · · · · · ·	HA		11/ /99	 										· · · · · · · · · · · · · · · · · · ·	
	HA		11/ /99												· .
· 	HA	[11/ /99												
	HA		11/ /99									~			<u> </u>
	HA		<u>11/ /99</u>											- 	
· ·	HA		<u>11/ /99</u>						$\left[- \right]$	{				, 	
	HA HA		<u>11/ /99</u>		·			·····						······································	
	HA		11/ /99 11/ /99						 .					······································	
REMARKS: Only 2 samples		due			Ð 3	fact			LABOI	RATO	RY:			COC No.:	±

PROJECT NAME: PROTECT NUMBER:	Crane O 83				APLE I		EDIME	ent N / Pond	LOCATION	RE(S): Sott Nel PAGE OF '		
		1	1	11		1	r	·			SES	·
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin			SOIL DESCRIPTION
BESSEMOLOI	HA	6-1	11/ 2/99	0635	KS	L	G	(X			Clayer silt
B635BM0203	HA		11/ 1/99		}	1		1	X			Clayey silt Clayey silt
BG3SBMOLOY	HA		11/2/99		T				X			Clayer silt: Trace Sand
BG35BN0205	HA	1	11/ よ/99						X			Clayey silt; Trace Sand Clayey silt; Iron Newls Blocky Clay - Red matting
B63SBMO206	HA		11/2/99		2	\checkmark			X			Blocky Clay - Red matting
	HA		11/ /99									
	HA		11/ /99									
	HA	•	11/ /99									
	HA		11/ /99									
·	HA		11/ /99									
	HA		11/ /99									
	HA		11/ /99									
	HA		11/ /99									
	HA		11/ /99									
Remarks:									LABO	RATORY:		COC No.:
HA - Hand Auger										Laucks Lab Seattle, Wa		

---- Ì

MULTIPLE SAMPLE LOG SHEET

SURFACE SOIL SUBSURFACE SOIL [] OTHER _

[] SEDIMENT [] LAGOON / POND

Seattle, Washington

SIGNATURE(S): For Neil

PAGE | OF (

PROJECT NAME: PROTECT NUMBER:		NSWC C										LOCATION	B635 BM03
										AN	ALYSE	S	
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BUSSBMOZOI	HA	0-1	11/ - /99	0,0	¥S	L	G	١	X				Silt w/some clay
136356 M0303	HA	2-3	11/ <i>入 /</i> 99	1033					×				Clayey silt
BG3SBMUZOU	HA	3-4	11/ス/99	1039					¥.				Clayey silt w/orange staining
	HA	4-5	11/ ス/99	1048					×				Clayey silt ; fe Nals.
Bazzono 306	HA	5-6		1055	\checkmark	\downarrow	4	J.	x				Silt w/some clay Clayey silt Clayey silt w/orange staining Clayey silt of Fe Nools. Clayey silt trace send
	HA		11/ /99										. ,
	HA		11/ /99										
	ĤA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	HA	•	11/ /99										
	HA		11/ /99										
	HA		11/ /99										
Remarks:									LABO			ratory	COC No.:

HA - Hand Auger

Tetra Tech NUS, Inc. MULTIPLE S SURFACE SOIL SUBSURFACE SOIL OTHER						OIL CE SOIL		[] S [] L	EDIM		s ND	IGNATUF	PAGE / OF /
PROJECT NAME: PROTECT NUMBER:		NSWC 0									L	OCATION	BG3SBMOY
	· · · · · ·		1		1					AN	ALYSES	3	
SAMPLE No.	SAMPLE METHOD	OEPTH (FL.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BG3SBMO401	HA		11/3/99	1025	SN	L	6	١	x				Silt tree for send
B635B MOULOS	НА		11/ 3/99	1032	SN	L	6		×				Blocky clay somesile free for send
Bassbmoyoy	НА		11/3/99	1040	SN	L	6	١	X	ſ			Silt tree for send Blocky clay somesilt free for send
B6350mou or	HA		11/3/99	1050	54	Ĺ.	6	۱	×				Vfgr sand trace silt Fe Nods
BOSSBMOYOG	HA		11/ 3/99	1055	SN	L	G	1 - I	х				Í Í
	HA		11/ /99										
	HA		11/ /99	•									
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
· · · · ·	HA		11/ /99										
	HA		11/ /99										
REMARKS: HA - Hand Auror											RY: s Labora s, Washi	-	COC No.:

•

MULTIPLE SAMPLE LOG SHEET

SURFACE SOIL SUBSURFACE SOIL [] SEDIMENT S [] LAGOON / POND

SIGNATURE(S):	For	Ne:O
• • •		

PAGE / OF /

					u									
PROJECT NAME: PROTECT NUMBER:		NSWC C				-						LOCA	TION	BERSEMOS
PHOTEGT NUMBER.		0087 01	0.63	-					ſ.	AN	ALYS	ES		
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BEZSBMOSOI	HA	0-1	11/ 3/99	1355	SN	ل د	6	1	×					Clayoy silt
B635BM0502	HA	2-3	11/ 3/99	1407	SN	L	6	1	×					Clayoy silt. Blocky elay ~/ vfgr send.
BG356 MOSOLI	НА	3-4	11/ 3/99	1415	SU	L	G	1	¥					FOR SAND; SOME SILT; TE CLAN
BG356 MOSO5	HA	4-5	11/ メ /99	1421	SN	L	6	1	ĸ					FERSAND; TR SILT; ROCK FRALS
B635Bm0506	HA	5-6	11/3/99	8641	SN	<u>د</u>	6	(×					OR STAIN.
	HA	•	11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	НА		11/ /99											
	HA		11/ /99											
	НА		11/ /99											
	HA		11/ /99											·
REMARKS									LABO	RATO	RY:			COC No.:
										Lauck	s Labo	oratory		
HA - Hand Auger										Seattl	e, Wa	shingto	n	

MULTIPLE SAMPLE LOG SHEET

PAGE (OF (

SURFACE SOIL SUBSURFACE SOIL [] OTHER

U	SEDIMENT
[]	LAGOON / POND

Seattle, Washington

SIGNATURE(S): Sout Ye

PROJECT NAME:		NSWC C									ι	OCATIO	DN: <u>B6358M06</u>
PROTECT NUMBER:		0087 CT	O 83	-					Г	AN	ALYSE	s	
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BUSSBMOGOI	HA	0-1	11/ J /99	0435	KS	L	G	t	X				Organic silt
BG3SBMOLOZ	НА	2-3	11/2/99	6946					x				Clampy silt
8635BM0604			11/ 2/99	1005		4	\downarrow		×				Organic silt Clayey silt Silly send, rock fregr.
	HA		11/ /99										, , , ,
	HA		11/ /99										
	HA	•	11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	НА		11/ /99										
	HA		11/ /99										
	HA		11/ /99										
	НА		11/ /99										
	НА		11/ /99			32							
	HA		11/ <u>/99</u>										
REMARKS:					-					RATOF Laucks	RY: s Labor	atory	COC No.:

SAMPLE No.

PROJECT NAME:

PROTECT NUMBER:

BG3SBM0701

BE3SBM0703

BG35BM0704

BG3SBM0705

BGBSBMOIDE

MULTIPLE SAMPLE LOG SHEET

SURFACE SOIL SUBSURFACE SOIL () OTHER _____

]	SEDIMENT	
1	LAGOON / POND	

SIGNATURE(S):	Sou	ne:0

PAGE_LOF__

BG3SBM07 LOCATION: **NSWC Crane** 0087 CTO 83 ANALYSES (G) GRAB (C) COMPOSITE CONCENTRATION (L)LOW (H)HIGH TOTAL No. OF CONTAINERS TAL Metals + Tin DEPTH (FL) SAMPLE METHOD SAMPLED BY DATE TIME SOIL DESCRIPTION L 6 HA 0-1 11/3/99 1610 SU 2 × SILT W/ SOME CLAY 6 1-3 11/ 3/99 1620 HA SN 1 ۲ SILT W/ SOME CLAY TA YFGA SAND 3-4 1626 SN L 11/ 3/99 HA G t х 11/3/99 1634 SN 4-5 L___ G HA BLOCKY CLAY W/ SOME SILT TH V FGR SAME 1 ¢ 5-6 11/3 199 1642 5~1 HA L G t х HA 11/ /99 11/ /99 HA 11/ /99 HA 11/ /99 HA 11/ /99 HA HA 11/ /99 11/ /99 HA

	1 1 1	1	×	 1	 					
	HA	11/ /9	9							
	HA	11/ /9	9							·
REMARKS:						LABOF	RATOF	RY:		COC No.:
						1	aucks	Laborato	ry	
HA - Hand Auger						9	Seattle	, Washing	ton	

Tetra Tech NUS, Inc.				(SURI SUBS	FACE S	SOIL CE SOIL	IPLE	[] S [] L			1D	SIGN	atuf	PAGEOF RE(S):
PROJECT NAME: PROTECT NUMBER:		NSWC (0087 CT				-						LOCA	TION	RG3SBMCF
		1	T	1	1	1		r		ANA	LYSE	ES		
SAMPLE No.	SAMPLE METHOD	DEPTH (Ft.)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BOSSEMULU	НА	0-1	11/3/99	0915	KS	L	6	١	x					NEGE sandy silt tree clay
B6356m0101 B635BM080/3	НА		11/ 3/99			L	6	2	x					Afge sandy silt tree clay for sand some silt pock Frags
	НА		11/ /99								-			<i>y</i>
	НА		11/ /99											
	HA		11/ /99											
<u>an an a</u>	HA	1	11/ /99			· · ·								
	HA		11/ /99											
· · · · · · · · · · · · · · · · · · ·	HA		11/ /99											
	HA		11/ /99							·			-,	
	HA													
			11/ /99											
· · · · · · · · · · · · · · · · · · ·	HA		11/ /99					l						
· · · · · · · · · · · · · · · · · · ·	HA		11/ /99											
	HA		11/ /99		ļ					<u> </u>				
REMARKS: Duplicate + MS/N collected due t	HA ASD 0- 50 refu	BG35 541. [11/ /99 Bm 0803 Duplice b	. Or 2 ID	"" "*	2 sam BGFD	ples 1103490			RATOR Laucks		oratory	, . , .	COC No.:
HA - Hand Aller										Seattle,	Was	hingto	on	

a a de Weber

• •••

MULTIPLE SAMPLE LOG SHEET

SURFACE SOIL SUBSURFACE SOIL () OTHER _____

[]	SEDIMENT
D	LAGOON / POND

SIGNATURE(S): Surt No.D

PAGE__OF__

ROJECT NAME: ROTECT NUMBER:		NSWC C 0087 CT				•				AN	VALYSE	LOCATI Es	ON: <u>BG336M09</u>
SAMPLE No.	SAMPLE METHOD	DEPTH (FL)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin				SOIL DESCRIPTION
BG3SBM09DI	НА	0-1	11/ 3/99	1505	¥S		G	1	x				SILT W/SOME CLAY TRYFER SAND
B6356m0903	HA	2-3	11/ 3/99	1512	KS	L	G	1	x				CLAYEY SILT TR VEGR SAND
BG35BMOG04	HA	3-4	11/ 3/99	1520	KS	L	G	. (×				CLAYEY SILT SOME FER SAMD RACK FRAN
	HA		11/ /99										
	HA		11/ /99										
<u> </u>	НА		11/ /99										
	HA		11/ /99										· · ·
<u></u>	НА		11/ /99										
· · · · · · · · · · · · · · · · · · ·	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	НА		11/ /99										
	HA		11/ /99										
REMARKS: Only 3 samp	les taken	due	to refu	-1-1/k	rectro	ike	4 FT.		LABO	RATC	ORY:		COC No.:
۰ <u>ک</u>		•	·	ť						Lauck	ks Labo	ratory	
A - Hand Auger										Seatt	le, Was	hington	

Tetra Tech NUS, Inc.		·		I SUR	FACE S	E SAN CE SOIL ER		[] S N L		ENT	ond	SIGN	ATUR	PAGE <u>/</u> E(S): <u>Seate Yen</u>
PROJECT NAME: PROTECT NUMBER:		NSWC 0 0087 CT								AN	ALYS	LOCA		BG355MIO
SAMPLE No.	SAMPLE METHOD	DEPTH (FL.)	DATE	H ME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin					SOIL DESCRIPTION
BG358 MIDOI	HA	0-1	11/4/99	(000	SN	L	G	<u> </u>	x					SILTY CLAY
B635BM1003	HA	2-3	11/ 4/99	1009	SN	L	6	1	x					SILTY CLAY THE FERSAND
BESSEMIDOY	HA	3-4	11/4 /99	1020	52	L	6	1	x					SILT SOME CLAY SOME FOR SAN
BG35BM1005	НА	4-4.5	11/4/99	1038	SN	L	G	١	x					SILT SOME FORSMO ROCK (
	НА		11/ /99											
	НА		11/ /99											·
	HA		11/ /99											
	HA		11/ /99							L				
	HA		11/ /99											
	HA		11/ /99											· · · · · · · · · · · · · · · · · · ·
	НА		11/ /99											
	HA		11/ /99											
· · ·	HA		11/ /99											
	НА		11/ /99											
REMARKS: Only four of fi	ive Su	-p 65	faker	due	њ ч	e fuse l	• ·		LABO)RY: (s Lab	oratory	1	COC No.:

.

SUPPLEMENTAL FIELD EVENT

(· (•	·					
Tetra Tech NUS, Inc.					FACE S	OIL CE SOIL	IPLE I	() S () L	SHEI EDIMI AGOO	ET ENT N / PC	DND	SIGN	ATUR	E(S): 72-15- PAGE_OF_
PROJECT NAME: PROTECT NUMBER:		NSWC C 0087 CT				• •			[AN	ALYS	LOCA		CRANE, IN
SAMPLE No.	SAMPLE METHOD	DEPTH (FL)	DATE	TIME	SAMPLED BY	CONCENTRATION (L)LOW (H)HIGH	(G) GRAB (C) COMPOSITE	TOTAL No. OF CONTAINERS	TAL Metals + Tin,	+ UTH. STRON., THOR MM				SOIL DESCRIPTION
BG-1 SB A28 0304	HA	3-4	10.6	1635	KS		6	1						SILTY CLAY, TRF. SAND
BG-1 SBA 25 0203	HA	2-3		0815	KS	L	G	2	2	_				CLAY SOME SILT, BRN
	HA													
	HA													
	HA													
	HA													
	НА													
	HA													
	HA													
	HA													
	HA		1											
	HA													· · ·
	HA													
	HA													
REMARKS: ROYN) 2 SAN HA - Hand Auger	PUNS	ο, ος	TOBE	R 20	00						s Labo	oratory	,	COC No.: 0100

A-2 CHAIN-OF-CUSTODY RECORDS

FIRST FIELD EVENT

			TECH NUS, IN Drive • Pittsburgh, PA 152								NSV	ŃC (CRA	NE,	IND	ANA	N				*			0094		
Ĺ	PROJEC	τ NO.: C † 008	to B3	NO. OF C N T A I H E R S	VOLATILES	DISSOLVES	SULFIDE	Tox	SEMIVOL	EXPLOSIN	METALS TIT	CYANDE	PESTICINES	HERBICIES	DIOXINSIE	TOC	SULFATE	AMMONIA	CHLORIDE	PHOSPHOL	SOL	Y.O.V	TAG NO.	REMARKS		
Ţ	11.2		BGRB 11029901	1							1											1	QC 002	AUGER BUCKET SOURCE BLANK		
-	1	+ · · · · · · · · · · · · · · · · · · ·	BGFD 11029901 BGFD 11029901																		/		QC00	DUP of BG35BACIOI		
-[113		66 FD11039901	1							1_							,			~		QC004 QC006	DUP OF BESSEMOROS 5.5, BOWL		
+	<u> </u>		66 A 6110399 1			~~~~	<u> </u>				1												QC007	PE TROWEL		
- 1	14	1140	664611049101								<u> </u>								+				RM006	·····		
}	1/2		BEBSBMUDU											<u> </u>							1		RM007			
ł		<u> </u>	B6358 M0203																		V		RMOIU			
┢		+	BG3SBMU206				<u> </u>					 	<u> </u>								7		RM017			
ł			BG3SEMOLOI					 									<u> </u>				1		RM 029			
┢			BG3SBN0604								1	<u> </u>		†							1		RM014			
┟	11/3		BG35BM0805 BG35BM0801	$\left[\begin{array}{c} 1 \\ 1 \end{array} \right]$									1								~		RM 037			
ł	<u>"/5</u>			2				<u> </u>			1							1			1		RM038	RUN AND MY MSD		
ł			BG3SBMU803 BG3SBMU401							<u> </u>								1	1		1		RMOIL			
ł		1040					1							1	1						RM018					
ŀ			B6-35BM0404	╁╬┯┥						<u> </u>		<u> </u>	†	1		<u> </u>	1				V	1	RM 020			
	- [-	· · · · · · · · · · · · · · · · · · ·	B6-35BMA06	+					 				1	+		<u> </u>					1	t	RM024			
			BL-35BM0504 SHED BY (SIGNATURI	<u>↓ </u>		TE/TIME		REC	EIVED I	L BY (SIGN].):	<u>+</u>	RELINQ	UISHED	BY (SIG!	NATURE):	DATE	TIME				683 5381		
	7	15	Sun JL. ED BY (SIGNATURE):		-+	9 164 Reling	UISHED) EY	T	DAT	e/time	R	ECEIVED	FORLA	B BY (SI	IGNATUF	RE):	DATE	TIME	TEM	P. BLAN		4 °C AT LAB °C		
													·							SHU	PPED -	TO LAUCKS	AB			

•-

april Mariaka

478.4

1 MP 2.

•, ; ·/**

• *

.

· · · · · · · · ·

A STATISTICS AND A STATISTICS

		TECH NUS, IN Drive-Pittsburgh, PA 15	4							NSV	NC	CRA	NE,	IND		•							C	095
JUB#	087	ATURE):	NO. OF C N T A I N E	VOLATILE	SOLVE	SULFINC CASES	y / x	WINC:	EXPLOS.	TALS TAT	ANDE THE	mcinec	HERBICH	DIOXING	C	SULFATE	MOMI	LORIDE	PHOSPHIC	Soli				
19445	TIME	SAMPLE ID	ŝ	13	/ ଶ୍ଚି	6	<u>/ ð</u>	/ %	1	1	/ ठे	/ ä	1	<u> </u>	<u>/ २</u>	3	<u> </u>	<u> 5</u>	1 2	L_{τ}	/	f	REMARKS	·
11.3	1520	B6358M0904	1							1	·									1		RM044		
	1610	BG35BM0701	1																	V	ļ	RM 032		
	_	B635BM0704					ŀ				_									1		RM034		
4	1642	BG-35BM0706	1							1	<u> </u>								<u></u>	1	· · ·	RM036		
11.4	1009	BG35BM1003	1				i 			1										V		RM 048		
	1. 																				ļ		· · · · · · · · · · · · · · · · · · ·	
											ļ											·		
	· · ·																	L		ļ	ļ	· · · · · · · · · · · · · · · · · · ·		
ļ																					ļ			
																					ļ			
<u> </u>											ļ	· · · ·	[ļ	ļ	ļ		
								L				ļ								ļ				
											 	 						L		L	ļ	ļ		
																		ļ		 	ļ			
																		L		ļ				
													L					ļ			ļ	·		
																				L			<u>L</u>	
R	ELINQUIS	HED BY (SIGNATURE):	DA	TE/TIME		REC	EIVED E	BY (S ign	ATURE)	:		RELINQU	JISHED	BY (SIGN	ATURE)	•	DATE	TIME		BILL NO.	8117 30	,93 5381	
-1	-19	Flamin		114.9	916	ю	FED	е×															4 °C AT LAB	<u>°c</u>
	RECEIVE	D BY (SIGNATURE):	<u> </u>			JISHED E			:	DATE	TIME	RE	CEIVED	FOR LA	B BY (SI	GNATUR	(E):	DATE	E/TIME	- coo		STODY SEAL NOS:		
									ſ			1										TO LAUCKS	LABS	

e. ط

. 12

. . . .

بدريهو لا الملا

The part of the second database in the second

	6	il Andersen	TECH NUS, IN Drive Pittsburgh, PA 152	20							NSV	VC.	CRA	NE, I	NDI	ANA								0096
	JOB	# 00	TO 83 87 ATURE: SAMPLE ID	NO OF CONTA-NERS	VOLATILES	DISSOLVED	SULFIDE	¹ 0X	SEMINO	EXPLOSIVE	METALS TYN	CYANIDE	PESTICIDES	HERBICING	DIOXINSIFIL	TOC	SULFATE	AMMONIA	CHLORIDE	PHOSPHOL	Sun		TAG NO.	REMARKS
+	1774 1/5	175	Kalbulos9901	1							×						·					×	QCQ29	ALLETA BUCK TT
-	nk	0000	66 FB 11059901								×		·			·					X		QC 008	DUPULATE OF BOISBPOLOT
ŴN	115		BAISBADBOL	2							×									·	×		AWIS	FUN MS/MID
	1/6		B6 RB110699 01	1		1					×											×	ACU12	S.S. BOWL
-			BGFD11069901								X			·							×		QCOIL	DUP OF BEIPOTOG
	11/2-		B635BA(203								X										X		A0032	
	<u> </u>	1	BG3SBADIOI	1						· ·	×										X		A0026	
	11/2		B6358A0301	1		-					X										X		A0036	
	11/4		R6-35810903	1							X										X		A0042	
			B635BA0404	1						·	X								,		X		A0043	
		and the second se	BESSBAUSO							-	X			*							X	1	A0046	
		-	B6358A0504	1							X										X		A0048	
			BG35BAUSOG								X										X		A0050	
		1	BGISBAOIO	1	- 1						X										X		A0001	
			B615BA0104		· · · ·						X			·····			<u> </u>				X		A 0003	
		T						1			X										X		AOUL	
	<u> </u>		BGISBA0503	<u> </u>	┠───┤						X										X		A0023	
	11-	L.	BGISBAD504								X			,				<u> </u>			X	+	A0016	· ·
	<u>"/5</u>	the second second	BGISBA0401	 (E/TIME	T	RFC	EIVED E	BY (SIGN	L	L		RELINGL	JISHED E	BY (SIGN	ATURE)	L	DATE	/TIME		.I	and the second	158 9231
-	71	35	Simp		11.6.9	9 189	0	FED BY (SIGN	έX		-	TIME					GNATUR		DATE	/TIME	COO	P. BLAN		4 °C AT LAB °C
		RECEIVE	ED BY (SIGNATURE):							-								·-/·				ARKS:	TESTING UNB	

.

1014 Jack 2017 Parts

Lange of the second

₹ ×**≫**≥∻.

¥2.*

4~

¥. 5

e."

Pre-United Sugar an at

TETRA TECH NUS, INC. 661 Andersen Drive • Pittsburgh, PA 15220

CHAIN OF CUSTODY RECORD

NSWC CRANE, INDIANA

13

5 . 16 6

ſ	PROJEC	TNO.: C	TO 83	NO. OF	. /	1	<u>8</u>	7	1	<u>s</u> ?/	1	. 7	7	51	7	. 7	7			7	. 1	-7	/				
		# 001		8	1.	DISSOLVEN	88 /		SEMIVOLAT	ž / ,	METALS TA,	CYANIDE		ໍ່ຊື່ /	DIOXINSIE	<u>%</u>	· /			PHOSPHOL	<u>រ</u> ្ទ្ /	. /					
ľ		and the second se	and the second secon	Ň	VOLATILES	¥ / £	ā / u	y / .	/ 2	EXPLOSING	1/5	, 7 / #	, / Š	HERBICING	5 / j	5/	SULFATE	AMMONIA	CHLORIDE	/ / ᢓ	So 1						
	店	53	TURE: Comp	I N E	15	/ ชี	SULFINE	'/ x		/ 2	12					່/ ບ	15	1	/ ភ្វ័	/ งื่	1 5	$5/\frac{9}{8}$./				
Γ	PMT4	TIME	SAMPLE ID	R S	/ 2	Sa Sa	2	/ ð	¹ / ₁ / ₂	1	NE N	/ చె	<u> </u>	<u><u> </u></u>	2	/ ဥ	3	<u> </u>	5	/ [TAG NO.	REMARKS			
		0847	BGISBA0405								Х			·							X		10019				
1.N 046	1	1505	BGISBA0306	2							X								_		X		A0015	ANNALSO MS/MSD			
Γ		0943	BGISBP1004	1							X										X		RP049				
٠ſ		1056	BGISB POTOL	1							X										X		RP032				
Γ		1324	BGISBPOGOL	1							X										X		RP027	······································			
Γ		1335	BGHSBROG03	1							X										X		RPOIS				
· [¥	1637	BGISBPOSTOST	1							X										X		RP025				
ր	16	0807	BG-15BP0901	1							Х								•		X		RP042	·			
	1	0905	BGISBPOBOI	1							Х										X		RP037				
ſ		0916	BG15BP0804	1							Х										X		RP039				
		0930	BGISBPOBOG	1							X		•	τ.							X		RP041				
ſ			BG-158P0103	1							X										X		RP002				
		1112	BG158P0204	1				, in the second s			Х										X		RPOOB				
ſ		1125	BG15BP0206	1		•					Х										X		RPOID				
F			BGISBPO401	1							X										X		RPOIG				
ľ			BGISBPU406								X										X		RP020				
ľ	¥		BG158P0305	i							X										Х		RP014				
-4 h	1/7		B6-RB 11079901	$\frac{1}{1}$							X											X	QC015	AUGER BUCKET			
. F		L	HED BY (SIGNATURE)	:	DA	TE/TIME	<u> </u>	REC	EIVED B	Y (SIGN		:		RELINQU	ISHED	BY (SIGN	(ATURE):	:	DATE	TIME	AIR			158 9231			
	71=	15	Simin		11.89	9 1841	ם כ	FED	εX									Γ			TEM	TEMP. BLANK: AT SHIPMENTC AT LAB					
F	<u> </u>	RECEIVE	D BY (SIGNATURE):		F	RELINQU	JISHED I	BY (SIGN	ATURE):	T	DATE	TIME	RE	CEIVED	FORLA	B BY (SI	GNATUR	E):	DATE	/TIME		COOLER CUSTODY SEAL NOS: 05, 06					
						N]	;				· ·				TESTING LAB					

TETRA TECH NU 661 Andersen Drive • Pittsburg	JS, INC
661 Andersen Drive • Pittsburg	h, PA 15220

NSWC CRANE, INDIANA

CHAI	OF CL	STODY RECO	RD .							NSV	VC I	URA	NE,	IND	ANA	•							
JOB	# 008	the second s	NO. OF C		s; /	GASES	7		TILES	S. L	ZE		Silectes	ES	RANS		. /	. / 4	, /	Snuc]		
SANIFI - 1= PAJS	ERS (SIGN	ATURE): V (2) SAMPLE ID	T A I NERS	VOLATILE	DISSOLVED	SULFIDE	; 	SEMINOI	EXPLOSING	METALS TA	CYANDE	PESTICIDEOL	HERBIC	DIOXINGUE	00	SULFATE	AMMONIA	CHLORIDE	PHOSPHOL	20'		TAG NO.	REMARKS
11/8	1545	BG-RB 110899 01			·					X											Х	QC019	5.5. BUWL
11/2		BGFD11079901	1							X										X		gco13	OWNER BG25BG0303
11/1		B4FD11079902	1							X										X		QC014	DHP OFBG2SBG0t01
1/8		B6FD11089901						· ·		X										X		9C018	DIP OF BEISBUSSOF
177		B625B60303	1		1 A.					X							, ,			X		L0037	
		B6-25860101	1							×										X		L0026	
\vdash		BG25B60104	1	1						X			·	1						Х		L0028	
\vdash		B625B60201	li							X										X		L0031	
		B625B60203	\dot{i}							×										X	· ·	L0032	
┝┼╴		8625860206	$\frac{1}{1}$							X										Х		10035	
┝─┼─		B625860503	1							×									·	X		L0047	
 -		B625860401	1	1						X				1						X		L0041	
┝╼╋╸		BG25860404	1							X										X		60043	
1/8		BLASBLOSOI	1		1					X		1								Х		L0021	
1		BGISBLU504	2	1						X		1								X		L0023	ANN AND MY MSD
		13615860506	1		<u> </u>					X		†				·				X		L0025	
		BGISBL0305	1	1						X		1	· · · ·	1	 					X		L0014	
		BUISBL0403	+							X										X		20017	· ·
 	Ľ	SHED BY (SIGNATURE	L_' :):	DA	TEITIME	L	REC	EIVED B	Y (SIGN	\square	:	'	RELINQ	UISHED	BY (SIGN	ATURE)	: [DATE/	TIME			8161 495	8 9231
X	15	Simple		11.8.9	9 184	0	FGDE	×	-								ľ			TEM	P. BLANI	C: AT SHIPMENT _	<u>4 °C</u> AT LA8 <u>°C</u>
	RECEIV	ED BY (SIGNATURE):		1	RELING	JISHED	BY (SIGN	ATURE)	:	DATE	TI ME	RE	CEIVED	FOR LA	B BY (SI	GNATUR	E):	DATE/	TIME	COO REM	LER CUS ARKS:	STODY SEAL NOS:	05,04
																						TO LAUCKS	TESTING CAB

<u>т</u>]т	TRA	TECH NUS. IN	C														``````````````````````````````````````	•						
		TECH NUS, IN n Drive+Pittsburgh, PA 15								NSI	NC	CRA	NE,	IND	IANA			•						009
DOB JOB SAMPT	TNO.: 4 井 众	CTO B3	NO. OF C N T A I N E R S	KOLATIN	DISSOI UN	SULFICE GASES	JOX TOY	SEMILO	EXPLOS	VETAL & TA	CYANIDE TIN	PESTICINE	HERBIC	DIOXING	TOC	SULFATE	AMMONI	CHLORIC	PHOSPLIC	SURUS		TAG NO.	REMAR	<s< th=""></s<>
18 18		BGISBLO4-05	1	1	1		f	(<u> </u>	<u> </u>	X		<u> </u>					\uparrow			K	1	L0019		
		BGISBLOIDI	1	1	<u> </u>	1	1	1		×	†						1	1		X		L000		
T		BG15BL0103	1							X										X		L0002		
Y	1327	BLISBLOIDS	1							X										X		L0004		
											1.													
						<u> </u>												L	ļ	· · ·				
				<u> </u>	L		<u> </u>	ļ		ļ				ļ			<u> </u>	[ļ	ļ				
					<u> </u>	ļ					<u> </u>						 	 	ļ	ļ	ŀ			
		· ·	 	<u> </u>	ļ	<u> </u>	┨────	<u> </u>					<u> </u>	ļ	 	ļ	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>		
<u> </u>					┣──								2		<u> </u>	ļ								
								-		<u> </u>		· · · · ·							<u> </u>					
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>		+	<u> </u>			<u> </u>											1		·
				1			ŧ			· · · · · · · ·					<u> </u>					<u> </u>	<u> </u>			
						[<u> </u>	<u> </u>						<u> </u>					1		
							1							<u> </u>		· .	<u> </u>	<u> </u>				<u> </u>		
				1			1		 	<u> </u>			<u> </u>				<u> </u>	<u> </u>		-	1			
		· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>	1	<u> </u>	1	<u> </u>	<u> </u>					·				<u> </u>	1	<u> </u>		
R	ELINQUIS	HED BY (SIGNATURE):	DA	TE/TIME		REC	CEIVED	BY (SIGN	ATURE		1	RELINQ	JISHED	BY (SIGN	ATURE)):]	DATI	E/TIME			8161 499	8 9231	
ル	12	Singe		118991840 FEDEX														TEM	P. BLAN	K: AT SHIPMENT	4 °C AT LAB_	C		
	RECEIVE	ED BY (SIGNATURE):	-		RELINQ	UISHED	BY (SIGN	ATURE):	DATI	E/TIME	RE	CEIVED	FOR LA	B BY (SK	GNATUR	ATURE): DATE/TIME			COO		STODY SEAL NOS:	05.06	
																							TESTING	LAB

and the second second

and she was a second of

in prairie in aller paper

.....

- State

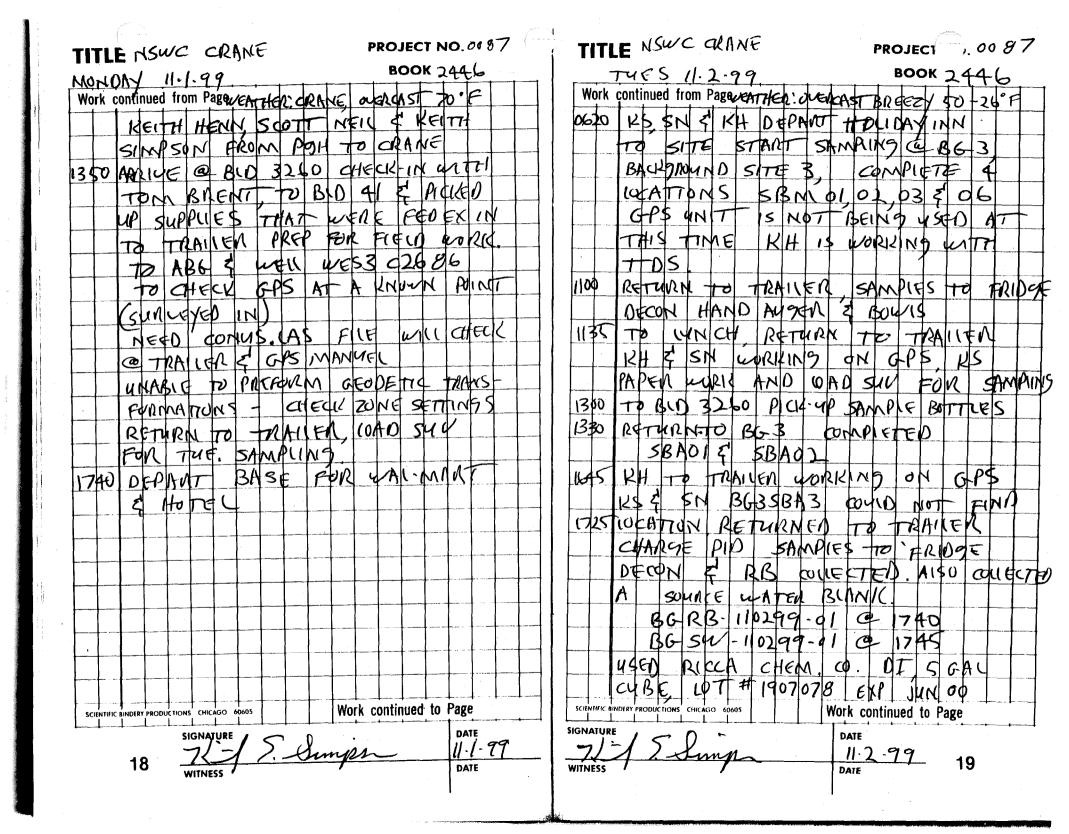
A 19 10 4 4 19 11 14

2.75

.

SUPPLEMENTAL FIELD EVENT

	ETRA	TECH NUS, IN Drive • Pittsburgh, PA 152	C. 220							NO		~										•	0100
CHAIN	OF CL	ISTODY RECO	RD										NE,			4							
SAMPLI T	TIME	SAMPLE ID	NO. OF CONTAIN ERS	VOLATILE	DISSOLUCES	SULFINE GASES	Tox	SEMING.	EXPLOS	METALS	CYANING THE LI	PESTICIDEC	HERBIC	DIOXING	TOC	SULFATE	AMMONIE	CHLORID	PHOSpuid	Now		TAG NO.	REMARKS
		BG-RB 100600 d	1							1			·									QC 100	ALIN FATAIL AUGE
		BG15BA280304				L																A 101	
10.7.00		B6-FD 10070001			ļ					1												QC 102	BGBBA250203
		BGISBAZEO203	2							2												A100, A102	RUN AISO MAJASD
10.7.00	1610	BGRB10070001	1																			QC 101	BUNK AUGEN
L																							
					· .	·																	
F	ELINQUIS	HED BY (SIGNATURE):	DA	TE/TIME		REC	EIVED	BY (SIGN	ATURE)	:		RELINQU	JISHED	BY (SIGN	NATURE)):	DATE	TIME		BILL NO	. 8216 9	043 7455
71	12	ch.		10.9.0	00 090	10 f	=EĎ	€¥															VA °C AT LAB NA °C
	RECEIVI	ED BY (SIGNATURE):		1	RELINQ	UISHED I	BY (SIGN	ATURE)	;	DATE	E/TIME	RE	CEIVED	FOR LA	B BY (SI	GNATUR	IE):	DATE	I	- coo		STODY SEAL NOS:	
1				1							1	1							1	1			


na na seneral de la companya de la c La companya de la comp

ي. در محمد دور ميروسيد رويد دريد در رويد داري محمد در در محمد مرز الماريخ دمانه و دور الأو محمدها مرز المقتي دراي م

in the second second

A-3 FIELD LOG BOOK

FIRST FIELD EVENT

TITI	E NSWC	CRANE	PROJECT NO. 00 87	TITLE NSWC CRANE PROJECT NO. 000/
	11.2.99		BOOK2446	WED 11-3.99 BOOK 2446
Work	continued from			Work continued from Page EATTHER 28-47°F SUNNY
L	DEPART	SITE POR	LHETEL	06RO 125, KH & SN DEPART HOTEL 12H TO
				SITE & GPS IN POINTS IS, SN TO TRAILER PICK-UP EQUIPMENT TO
				0735 SITE START SAMPLING
				SAMPLED 3 BG LOCATIONS
				BG35RAOB MOSEN04
	- DA	ILY SUMM	ARY	BGBSBAD3 03 DUP + MS/MSP TAKEN
			145, K SIMPSON,	1130 RETURN TO TRAILER STORE SAMPLES
	VEITH	HENN Z' S	SCOTT NEIL	IN FRIDGE DECON GO. duen SOP 2
				SAMPLE SELECTED N WITH KH BEFORE
	6	COCATIONS	SAMPLED	HE DEPARTS STIFE POR INDA.
		RINSATE		125 TO VUNCH TO BLD 3260 NIET
		SUMR CA P	SLANK TAIKEN	BILL GATES & TOM BRENT ALSO CHARLIS F. & DAMES MAY.
		CULLECTED	OUP	CHAIS F. O DAMES MAY.
				DISSKYSSON SON SAMPLING BREATLY TON
	SEE A	ISO BONINGIO	DAS SAMPLE	MAY COME OUT TO SAMPLE PURTS
	SHEET			THEFUD IN ENIMAY
				1320 14S & SN TO BGB KH DEPARTS
				1320 145 & SN TO BGB KH DEPARTS SITTE FOR HAEDE: INDIANAROUS KS & SN SAMPLE 3 WCATTONS
				KS & SAMPLE 3 WCATTOKS
				BGBSBMOS MOGEMOZ
				1715 RETURN TO TRAIVER CHARGE EQUIPMENT
				DECON, SAMPLES TO FRIDZE, CLEAN SUC
				E CONFECT RB
				BGRB 110301
SCIENTIFIC OI		AGO 60605	Nork continued to Page	SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 Work continued to Page
⊾ ↓	SIGNAI	rure, / < / 0	- DATE	SIGNATURE DATE 11.3.99
	20 7	(1). Su	mj 11.2.99	WITNESS DATE 21
	WITNE	55	DATE	
			• • • • • • • • • • • • • • • • • • •	

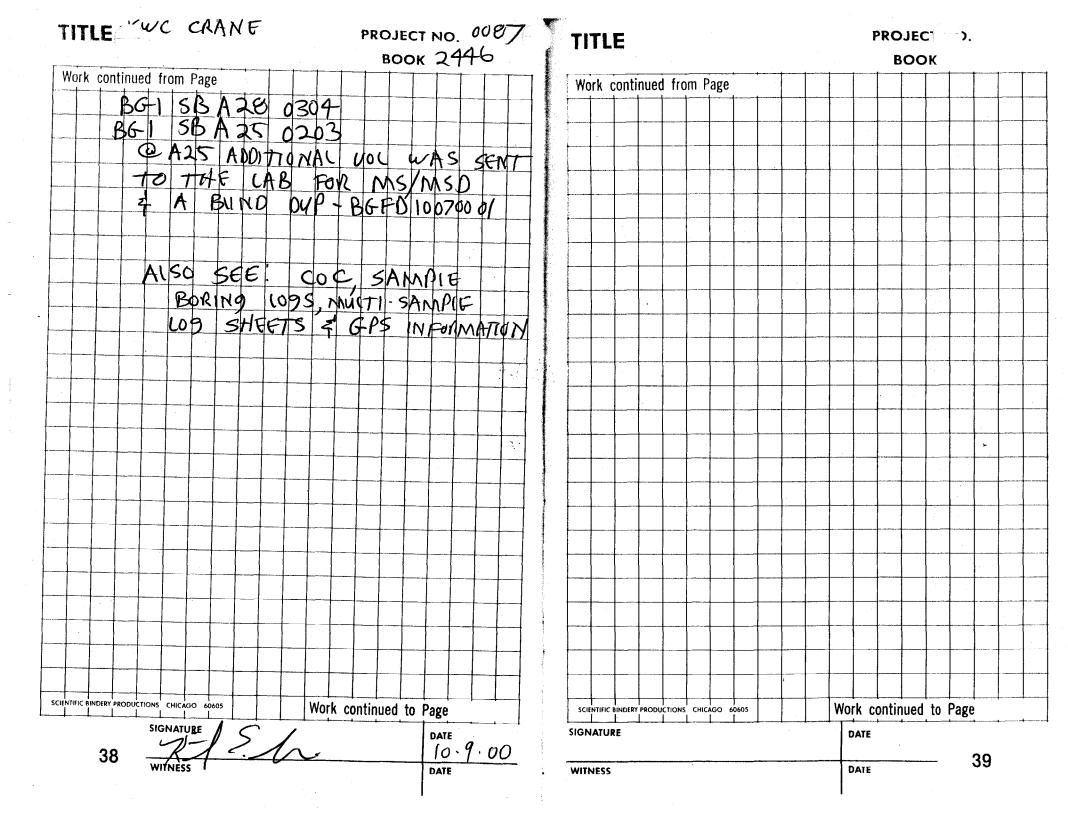
÷-,

TITL, ISWC CRANE	PROJECT NO. 0087	TITLE NEWC CRANE THUR. 11.4:99	PROJECT .0081 BOOK 446
Work continued from Page		Work continued from Pagement HER .	UNNY 28-450E
CONPIETE PAPER WORK		0620 KS & SN DEPANT H	HTEL TO BLD 3260
122 DEPHAT SITE TO HOT		MAILE A FEW MORE	OPIES OF FIELD
		0710 FORMS, TO TRAINE	CAU PIL LOAD
		0730 SUV to BG3	CONFETER R
		INCATTONS BG35	BAOG ADS SMID
		1120 RETURN TO TRAIN	FU TO SORT/PACK
		1120 RETURN TO TRAIN SAMPLES. TOOK A	INSATE BUANC
- DAILY SUMMANY -		B6-RB110499.01	FROM PLASTIC
ON SITTE: T+NUS: 5. NEIL Z' K. HENN K.H. DEPANTS @ 3 SAMPLED 6 BG3	K. SIMPSPIN	DISPOSIABLE TROUTEN	
5 NEIN Z' K. HENN		DOO LYNCH, RETURN T	O TRAILER SELECT
K H DEPAATS @ 13	30	SAMPIES FOR SHIP	PMENT TO LAB
SAMPLED & BG-3	UDCATTONS	BOX RENAINING AN	O STARE IN
COILE OTED 1 DUP 2	/ NS/MSD	TRAILER.	
@ BG35BM0803		BIS TO BG-1 SAMP	LED 3 LOCATTO NS
I RINSATE TAKEN	4	BGISBAOI, 02 8 1720 RETURN TO TRAILE	4 05
		1720 RETURN TO TRAILE	N CHARGE EQ.
SEE ALSO SB 1095, SHEETS & COC	SAMPLE	DECON PACE SAM	PIES FOR FEDIEX
SHEETS & COC		SHIPAED I COOLER - LAUCKSTESTIND	FEDEX TO
		LAUCKS TESTIND	LAB
		1820 DEPART BASE FO	R FEDEX/HOTZL
SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 WORK	continued to Page	SCIENTIFIC BINDERY PRODUCTIONS (HICAGO 60605	Work continued to Page
SIGNATURE S. Simm	DATE	SIGNATURE	DATE 11.4.99
22 WITNESS	11399 DATE	WITNESS	DATE 23
			1

TITLE NSWC CRANE	PROJECT NO. 0087	TITLE NSWE CRAINE	PROJECT NO. 008 /
FRIDAY 11.5-9.9	BOOK 2446	SAT. 11.6.99	BOOK 244.6
Work continued from Pagent AT the war	h 52-887 SUNINY	Work continued from PagewEATTHER SUNN	Y 55-68 F
0620 45 \$ 5N CHECK OUT		6650 SN ZKS @ TRAILER	CAL PID
TO BASE FAL. PID		WAD EQUIPMENT.	
SUU DEPART TRAILE	R FUN BG-1	0715 TO BG-1 SAMPLE	D 4 COCATOONS
KSK SN SAMPIO	B BG-1 LOCATTONS	0715 TO BG-1 SAMPLE BG-1 SBP01, 02, 08 1140 RETURNED TO TRA	\$ 09
BGISBAD4 PO7E	PIO	1140 RETURNED TO TRA	IER RECAL PID,
1130 RETURNI TO TRAILER	SAMPLES TO	SAMPLES TO FRIDO	E & RESTOCK SUM
FRIDDE RESTOCK	SUV	INAS DETURN TO BEI	COMPLETE 2
FRUDPE, RESTOCIL 1150 TO WINCH, GASICE	& BATTERIES	BURINGS BGISBPD3 &	04 17415 CONVELTES
CHECKINTO THE K		PENNSYLVANIAN SOUS	
DAS RETURN TO TRAILE	R LOAD SUV	1520 RETURN TO TRAILER	UNUPHD SUL
1255 RETURNI TO B61	FOR SAMPLING	1520 RETURN TO TRAILER DECON, BERBIIO699 01	ON STAINIESS STEEL
SAMPLED 3 WEATION	5	BOUL SONT SAMO	ITS FOUL SHIPMIGY
B615BA03, P05 # P06		ALLUVIUM Z PENNSYL	VANIAN (AszPs)
1700 RETURN TO TRANCER S	AMPLES TO FRIDE	STORE LAB SAMPLES	IN FRIDGE OTHER
CHARGE EQUIPMENT	PAPEN WURK.	ARE STORED IN BOX	
RINSATE BLANK- BGI		1835 DEPART TRAILER TO	BCQ
OF AUGEN BUCKET			
BIO DEPART TRAILER FOR 4	AU-MAATT &		
SUPPLIES FOR JOB.			
SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 WOI	rk continued to Page	SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 WO	rk continued to Page
SIGNATURE / SD	DATE	SIGNATURE S. D.	DATE 11 1 9 9
24 WITNESS	M 11.5.99 DATE	WITNESS	<u>11.699</u> DATE 25
	стана М		

TITI NSWC CRANE	PROJECT NO. 008/ BOOK 244%	TITLE NSWC CRANE	BOOK 446
54NDAY 11.7.99		MONDAY 11.8.99	
Work continued from PagewEATTHER. SUN		Work continued from Page WEATHER?	
2650 KS & SN @ TRANER CA		0650 SN +0 BLD 3260	TO COPY FIELD ILER CAL. EQUIPMENT
SUN CONTRES Augens/BUN	CANDIETE Z CR'		NER CAN. EQUIPMENT
1720 DEPART FOR BG2	White S SOS	0705 5N @ TRAIER	LUAD SUL FOR
1035 RETURN TO TRAILER BG2SBG01,02 20		SAMAINO, CAUF	(1 a ag) 124(
SAMPLES TO FRIDOR,	PILPO, DUDINI	FLT. TO THE	(1.9.99) 1345 R/Sharpenning
RESTOCIL TRUCK, L		0725 TO BG1 POR SAMPLED 3 SB	LOCATTONS
RESIDUE RUCE L		BG-15BL03 04 \$	05 RETURN TO
2 \$B'S B625B604		1045 TRAILER SAMPLE	S TO FRIDDE
1505 RETURN TO TRAILER			OCK SHU
DECUN RINSATE BU		145 TO LYNCH	
SATWRIES IN FRIDAY		1205 to BEI FOR S	AMPLING
GIS CLEANED TRAILER		FONDER CAN	AAUNG
720 DEPART FOR BQ		$\begin{array}{c} GGISBUOI = 02 \\ AUSBUOI = 02 \\ AUSBUOI = 02 \\ CSE PETAUNI$	
		AU SB 40 9	DAPLETE
		1222 KEIMINEN 10 1 MI	ilen sort
		# PACK SAMPLES	
		SHIPPED 2 CODIEN	
		0 KOON, 136-RB 1/08	
		QUELTEP. AN S	IMPIES NUT SHPPE
		TO THE LAB ARE	STORED IN THE
			S+2 BOTTLES
		(NOT ALL BOKES AND	
╾┼╂╍┼╌┼╍┼╌┼╶┼╴┤		CUEAN WAD COOLEN	TUDATED TO LAUGES
SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 WOT	k continued to Page	SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605	TURNED 10 CALUK> Work continued to Page
	DATE		DATE
or 75-15 Simon	11.7.99	71-15 Simp	11.8.99
26 WITNESS	DATE	WITNESS / /	DATE 27
	I a second		1

TITLE NSWC CRANE	PROJECT NO. 0087	TITLE NSWC CRANE	PROJECT NO. 0097
NONDAY 11.8.99	воок 2446	TUESDAY 11.9.99	BOOK 244 6
Work continued from Page		Work continued from Page RATHER .w	
NSUCE CARNUKS		0650 KS & SN CHECK O	PUT OF BCQ TO
9 coovers were		I TRAINER PACKIN	(9) RENTED EQUIDMENT
	A SEPENATE AURBIIL	FOR RETURN. UPDA	TE/ PROOF FIELD MOTES
1710 DUMP ALL DECON		0800 KS CALLED BASE	TEX PROOF FIED NOTES WATER & SEUAGE
MAR HOVE 327	is per FSP.	1 TREATMENT PLAI	NT C 812 817 1250
CLEAN TRAILER	DEPART FOR	Z TALKED WITH.	- BRADATELO, HE TOUR TRAILER IS
1750 FED EX F WALF		CONFARMED THA	TOUR TRAILER IS
		HOOKED-UP TO T	THE BASE SEULAGE
·		SYSTEM (NOT A	SEPTIC SYSTEM
		AND WE CAN DK	MP WE CARE OURNP EN THAT IS
		PURGEDECON WAT	EV THAT IS
		APPROVED FOR T	AT THE TRAINER
		DOWN THE DRAIN	
		WATEN TO MANY	NEED TO HALL THE HOLE 327.
		CONDUCTOR DACING	C C C N S IN C NTRX
		TRAIER	9, CLEAN & INCENTRIES
			COVA AIRPORT / HONE
		nov bernici Dinse i	
		ENDO	F SHIFT -
	Work continued to Page	SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605	Work continued to Page
SIGNATURE	DATE M	SIGNATURE	
28 WITNESS	M (1.0-7) DATE	WINESS Simp	11.9.99 DAIE 29
6 · · · · \$	•		
~ 2			


SUPPLEMENTAL FIELD EVENT

TITLE NS - GRANE PROJEC	TNO. 0087 ITLE NSWC	- CRANE	PROJECT NC 187
		0.3.00	BOOK 2446
Work continued from Page		Pagementien: SUNN	
1930 KEITH SIMPSOX POH OFFICE			3245
KEVIN MARGETTS NIERT @		WORK ON GAS	UNIT SET UP
ARPORT.	KEVIN		
TO CRANE CHECK-INK TO	BERDIB	EING SHIPPED IT	
400 TO BUD 3245 CHECK WIT			
TOM BRENTT THEN S	TARTED SUPPL	IES POR FIEL	
TO UNPACI EQ. & CAU.	IEADN LITT LINCH	$\boldsymbol{\mathcal{L}}$	
TO USE TRIMBLE GPS GR	VIT	SUV FOR SI ST SB NO	AMPLING
TRIMBLE MODEL T			UCK WITH
	NTED THE	TRIMBLE GP	SUNIT
FROM 45 ENCIRONMENT	AC IT I	S WORKING B	UT THE LEAF
NO WCK WITH GPS 4		THIS TIME OF	YEAR KNOCKS
CAN NOT SET UNIT UP		SATENITE NYMA	
TRY THES AM.		D WE CAN NOT	NAVIGATE
AREP AUGENS, BUTTLES	TOWITH		TEUITES .
700 BCQ	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		
	BUD 3	245	
	1800 TO SI	08	
CIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 Work continued to	Page Scientific Bindery Productions of		
			continued to Page
30 75 22	DATE SIGNATURE	DATE	.3.00
WITNESS	DATE WITNESS	DATE	31

TITLE NSWC CRANE PROJECT	NO.0087	TITLE NSWC GRANE PROJECT NO. 0087
WED 10.4.00 BOOK	2446	10.4.00 BOOK 2446
Work continued from Page CATHER: 62-70"F RAIN @	1730	Work continued from Page
0655 KS F KM @ BLD 3245 CU	FAMIN9	- GPS UNIT
EQ. & WORK SPACE.		TRIMBLE
DISCUSSED JOB PROGRESS L	1774	SER # 0220167399
KEITT HENN WAITING O		TSCI DATA CONFECTOR
	THAT	ASSET SURVEYOR
POINT LE WILL TRY BOT	El UNITS	V 4.03
AND SEE IF WE CAN NA	IDATE	RENTED FROM US ENCLADNMENTAL
IN THE WOODS, WITH THE	LEAF	
COVER. THE TRIMBLE	un	
NOT NAVIGATE IN THE	WOOD	NORTHING / FASTING IN FEET
	NE	NAD 1927
ON UNE. MADE SOME CHAN		IN. WEST
THE GAS SET-UP AND GOT	11-1-1	
working.		
COMPLETE 5 BORIN95;		
PS1 BG-1 SBP 39		
1 42		
45		
BG3SBPDI		
V 09		
1700 RETURN TO BUILDING 3245	DECON	
CLEAN SUD OUT PAPERWORK		
1800 TO BCQ		
SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 Work continued to Pa	ige	SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 Work continued to Page
SIGNATURE SI	DATE	SIGNATURE DATE
52	10.4.00 DATE	VITNESS 10.4-00 3

TITLE ISWC CLANE		!!!L2							. 0	
THUIL 10.5-00 Work continued from Pages 54-16-01 00	BOOK 2446	F	R1 10	6.00	++		B	OOK	244	+×
Work continued from PagewEATHER: RAIN	MENNITE 58-68 F	Work co	ntinued from	Pagewer	THER '					
0645 DEPART BOG TO 15	T BURING OF	0655	KS	f Km	Q	B	6-15	BP4	4	
THE DAY BGISB NEXT BGISB NEXT BGISB	P22		CON	NAETE	0 1	36-1	SBF	116		
NEXT / BG/SB	P 11							13		
NETT BGISB	P 43		3	CONN	PIET	e				
1140 TO VUNCH			10	BUD	32	45	C	HANG	カモ	
KEUN IS NOT	FEELING WEIL		3 Ta BATTE	RIES	NE	CON			1	
1230 I TOUL HIM TO - 125 TO BUD 3245	HE BOQ	135	10	LUNC	H				+	
1KS TO BLO 3245	PAPER WORK			CONP	ETH	2	BOI	RING	5	-
2 DECON AUTENS						BGI	SRI	5 27		
1400 KES TO BG3SB1 RETURN TO BLD 3	08							40		-
RETURN TO BLD 3	245 PAPEN									
	EQUIPMENT							50	<u>+</u> +	-
1740 TO BOQ					MPLE	TEX		Del	BOR	IN
			TAT		15)	NO	>	NA	WAS	
		· · · · · · · · · · · · · · · · · · ·	SET. Fou		귀사				m-	┦
RAIN ON OFF AU DA							0,	01	RING	
			TO SP	ART	NO NO	CRA	BI	120		7
					BG-1	>DJ	20			1
		1720	Return				243	1.00	DE CU OU O	
			RANSAT		NK	156	-QC	-1000	200	-
# SBS COMP	ETED TODAY		@ 174				<u> </u>		┼──┼──	
			RESTOC		1/			<u> </u>	┟──┤───	
TOTAL 9@-			DEPART	<u> s </u>	TE				┝──┼──	-
	HIS PUINT				++-				├ ──	_
						\dashv			 	
SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605	k continued to Description			+ + +						
	k continued to Page			IICAGO 60605		Work	contin	ued to	Page	
7-15/	DATE /0. 5-00	SIGNATURE	-15,			DA	1e 10 - 6	አሰን		
34			<u> </u>	A 5		1 /	. v ~ 0	- V()	35	

TITLE NSWC ORANE SAT 10.7.00	PROJECT NO. 0087 BOOK 2446	TITLE NSWC CR	ANE PROJECT NO. 0087 BOOK 2446
Work continued from Page		Work continued from Page	
DG45 KS & KM FROM BOQ FBG15BAB8	TO BG-ISBARS	BASENDE BA	
1050 RETURN TO BLD 32 SUV PHONE CALL			MMARY
			AS CUMPLETED FOLLOWING
1230 TO BG SBA29	Z'	THE ONIDINAL W	ORR PLAN (THANKS FALL 1999)
B635BA07		AND THE ADDENC	MAN WORK PUAR (T7 NUS EAT
		2000)	
ALL SBS COMPLE	TE	80 I I I I I I I I I	FRE OMPLETED FOLLOWING
195 TO BUD 3245 CUE	AN ER. PACK		D-OUT ON TABLE 3-1.
EQ. FOR RENTAL. R	2 TURN	DRIGING AS-CLOS	FAS POSISIBLE TO EACH
		BORING LOCATION	THEN PROGRAMING THE
TAURED WITH -	tom JOHNSTON		RTHING/EASTING) FROND
LAST WEEK AND	HE SAIN T	TARIE 2-4 IN	TO THE GPS UNIT. AND
uns del to strip	BOTH AR \$		S NAVISATION MODE
			S COCATED. ONCE AT
ACALYSIS WITH D	co ice		THE COORDINATES WERE
	· · · · · · · · · · · · · · · · · · ·		HE GAS UNIT TO BE
COMPLETE DEMOB E	dr cto 83	DOWN LOADED 1	SACIL IN THE OFFICE.
		EACH BORING	WAS ADVANCED USING A
1725 to BOQ		AANO AUGER	AND EACH I FOOT IN TERGAL
		WAS 109960	SEE UP AD 3-2 FOR
END OF FIE	DUGAN		EDURE
		A TOTAL OF	
FOR ADDENDUM C	WORK PLAY		
			UCKS LAB FOR TAL
SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605			TRON. THORI, TIN
SIGNATIÓRE / VIVIA	continued to Page		
7/-1)/	DATE 10.7.00	SIGNATURE	DATE
36 WITNESS	DATE	WITNESS	<u>10 · 9 · 00</u> DATE 37
	a contra		
, particular de la construcción de	-	54 -	

A-4 EQUIPMENT CALIBRATION LOG

FIRST FIELD EVENT

EQUIPMENT CALIBRATION LOG

NSWC Crane Field Form Revison: 0 January 1999

INSTRUMENT NAME/MOD	EL: PIO PHOTOVAC 2020	PROJECT NAME : NS	WC Crane
SERIAL NUMBER:	EDFK 204	PROJECT NUMBER :	'0087 CTO 083
	PHOTOVAC		

COMMENTS STANDARDS | PROCEDURE | ADJUSTMENTS SIGNATURE FINAL CALIBRATIO INITIAL USED MADE SETTINGS DATE SETTINGS NONE ISOBUTYLENE 100 PPIN 100.00 7852 PER MANUF. 11.1.99 100.0 1 Iſ 160 PPM 100.00 ζ 91 100.0 1 ti 11 100 Pm 11 11 100,00 Sain 1-3-99 100.0 11 11 100 Ppm 11-4-99 100.0 11 100.00 لديريك il 11 100.00 KES -5-99 100 PPm 15 100.0 100 PPm 11 11 KES 11 100.00 -6-94 100.0 100 00 100.0 100 PPM 1/5 11 7.90 II. чk TT 100 ppm 100,00 100,0 11 15 11. 8.99 مر

Instrument Rented From:

MANUFACTURER :

TETRA TECH NUS POH WANEHOUSE

A- 1

SUPPLEMENTAL FIELD EVENT

EQUIPMENT CALIBRATION LOG

INSTRUMENT NAME/MODEL: <u>PE Photo VAC</u> SERIAL NUMBER: <u>Model 2020/Serial</u> MANUFACTURER: <u>Photo VAC</u> MANUFACTURER: <u>Photo VAC</u>

CALIBRATION		STANDARDS	PROCEDURE	ADJUSTMENTS		SIGNATURE	COMMENTS	7
DATE	SETTINGS	USED		MADE	SETTINGS			
100300	0.0 ppm	100 ppm Facb	Buto and	None	100 pm	RM		
100400	0.0 ppm 11	n it	SPAN	Auto	100 ppm	TKM TXSP		
12.5.00	11 18	11	· · 11	1((\	7851		
10600							CAN'T CAL, NOT WORKING CURRECT	
							WORKING WRITECT	TV
								1
]
								1
					·			
						· ·		
-								1
								1
							· · · · · · · · · · · · · · · · · · ·	
								1
								1
							and the second se	1
								1
							· · · · · · · · · · · · · · · · · · ·	1
								1
								1
							······································	1
·								1
								1

SURVEY RESULTS BASEWIDE BACKGROUND SOIL INVESTIGATION NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Solo by Tripod Data Systems Inc. GPS Unit Projection: NGS NADCON State Plane 1983 NAD 1983, Indiana West Coord: Northing-Easting Distance: US ft Trimble Model TSC1 State Plane 1983 NAD 1983, Indiana West Coord: Northing-Easting Distance: US ft

First Field Event Inst Field Event BG1SBA01 1287335.4 3014555.6 BG1SBA02 465186 565000 BG1SBA03 1285966.3 3008797.0 BG1SBA04 1279529.6 3011059.8 BG1SBA05 1280380.0 3017126.2 BG1SBL02 1293567.1 300860.7 BG1SBL02 1293567.1 300860.7 BG1SBL02 1293567.3 3009918.7 BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP02 1295470.7 3016826.3 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.0 3012771.0 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286691.0 3012911.9 BG1SBP04 1283603.1 3012911.9 BG1SBP05 1286794.8 3009026.7 BG1SBP08 1287783.2 3008489.5 BG1SBP09 1277832.2 3008489.5	PointName	Y (ft)	X (ft)	comments
Instruction Instruction BG1SBA02 465186 565000 BG1SBA03 1285966.3 3008797.0 BG1SBA04 1279529.6 3011059.8 BG1SBA04 1279529.6 30017126.2 BG1SBA05 1280380.0 3017126.2 BG1SBL01 1295708.5 3009157.0 BG1SBL02 1293567.1 3008860.7 BG1SBL03 1292151.8 3009217.3 BG1SBL05 1291968.5 3010551.4 BG1SBD01 1293733.2 3007343.9 BG1SBP02 1295043.1 3013929.7 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 128690.0 3012771.0 BG1SBP06 128674.8 3009026.7 BG1SBP07 1285279.8 3016648.4 BG1SBP08 1283603.1 3012911.9 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326146.2 3006909.7 BG2SBG03 1326146.2 3006323.8	First Field Ever	it		
not recorded; used proposed location coordinates BG1SBA02 465186 565000 coordinates BG1SBA03 1285966.3 3008797.0 3011059.8 BG1SBA04 1279529.6 30117126.2 3011059.8 BG1SBA05 1280380.0 3017126.2 30131126.2 BG1SBL01 1295708.5 3009217.3 308860.7 BG1SBL02 1293567.1 3008860.7 301551.4 BG1SBL04 1292663.9 3009918.7 301551.4 BG1SBP02 1291968.5 3010551.4 3015036.9 BG1SBP02 1295043.1 3015036.9 301329.7 BG1SBP03 1295470.7 3016826.3 3013929.7 BG1SBP04 1291088.1 3013929.7 3015648.4 BG1SBP05 1286690.0 3012771.0 301532.8 BG1SBP06 128579.8 3016648.4 3013929.7 BG1SBP09 1277832.2 3008489.5 301648.4 BG2SBG01 1325916.3 3006459.1 306323.8 BG2SBG02 1326107.4 30063	BG1SBA01	1287335.4	3014555.6	
BG1SBA02 465186 565000 coordinates BG1SBA03 1285966.3 3008797.0 3011059.8 30131059.8 BG1SBA04 1279529.6 3011059.8 30159.8 30159.8 BG1SBL01 1295708.5 3005152.0 301512.0 301512.0 BG1SBL01 1295708.5 3009217.3 3031151.4 301551.4 BG1SBL04 1292663.9 3009918.7 301551.4 3015036.9 BG1SBL05 1291968.5 3010551.4 3015036.9 301532.0 BG1SBP01 1293733.2 3007343.9 3015036.9 3015036.9 BG1SBP02 1295043.1 3015036.9 301532.7 301532.9 BG1SBP03 1295470.7 3016826.3 301529.7 3015648.4 BG1SBP04 1291088.1 3013291.7 3015648.4 301591.9 3015648.4 BG1SBP05 128679.8 3010679.0 3015648.4 301637.0 3015648.4 BG1SBP10 1278598.8 3010679.0 305280.0 326146.2 300690.7 B				location surveyed but
BG1SBA02 465186 565000 coordinates BG1SBA03 1285966.3 3008797.0 BG1SBA04 1279529.6 3011059.8 BG1SBA04 1279529.6 30017126.2 BG1SBL02 1293567.1 3008860.7 BG1SBL02 1293567.1 3008860.7 BG1SBL03 1292151.8 3009217.3 BG1SBL03 1292151.8 3009217.3 BG1SBL04 129363.2 3007343.9 BG1SBD01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP02 1295043.1 3013929.7 BG1SBP03 1295470.7 3016826.3 BG1SBP03 1295470.7 3016826.3 BG1SBP05 1286690.0 301271.0 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.1 3012691.9 BG1SBP05 128679.8 3016648.4 BG1SBP05 BG1SBP05 1285279.8 3016679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG02 1326174.4 3006323.8 BG3SBA0				not recorded; used
BG1SBA03 1285966.3 3008797.0 BG1SBA04 1279529.6 3011059.8 BG1SBA05 1280380.0 3017126.2 BG1SBL01 1295708.5 300860.7 BG1SBL02 1293567.1 3008860.7 BG1SBL03 1292151.8 3009217.3 BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1288690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3016649.1 BG1SBP08 12283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1327872.5				proposed location
BG1SBA04 1279529.6 3011059.8 BG1SBA05 1280380.0 3017126.2 BG1SBL01 1295708.5 3005152.0 BG1SBL02 1293567.1 3008660.7 BG1SBL03 1292151.8 3009217.3 BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3016648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG3SBA01 1328625.3	BG1SBA02	465186	565000	
BG1SBA05 1280380.0 3017126.2 BG1SBL01 1295708.5 3005152.0 BG1SBL02 1293567.1 3008860.7 BG1SBL03 1292151.8 3009217.3 BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326146.2 3006323.8 BG2SBG03 1326625.3 3052197.6 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5	BG1SBA03	1285966.3	3008797.0	<u>.</u>
BG1SBL01 1295708.5 3005152.0 BG1SBL02 1293567.1 3008860.7 BG1SBL03 1292151.8 3009217.3 BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295470.7 3016826.3 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1288690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 BG2SBG03 1326107.4 3006323.8 BG2SBG04 1327870.1 3007892.1 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5	BG1SBA04	1279529.6	3011059.8	
BG1SBL02 1293567.1 3008860.7 BG1SBL03 1292151.8 3009217.3 BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1288690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 BG2SBG02 1326146.2 3006323.8 BG2SBG03 1326146.2 3006399.7 BG3SBA01 1328625.3 3052197.6 BG3SBA01 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5 BG3SBA03 1331268.6 3057444.7	BG1SBA05	1280380.0	3017126.2	
BG1SBL03 1292151.8 3009217.3 BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5 3008310.4 BG3SBA01 1331268.6 303SA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0	BG1SBL01	1295708.5	3005152.0	
BG1SBL04 1292663.9 3009918.7 BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5 3008310.4 BG3SBA03 1331268.6 3057444.7 BG3SBA04 132569.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331166.9 3049702.0 BG3SBM02 1331014.3 3051614.5	BG1SBL02	1293567.1	3008860.7	
BG1SBL05 1291968.5 3010551.4 BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326146.2 3006909.7 BG2SBG03 1326146.2 3006909.7 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5 3008310.4 BG3SBA03 1331268.6 3057444.7 BG3SBA04 132569.6 3065599.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331166.9	BG1SBL03	1292151.8	3009217.3	
BG1SBP01 1293733.2 3007343.9 BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1286690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326146.2 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG3SBA02 1327872.5 3008310.4 BG3SBA01 132625.3 3052197.6 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 B	BG1SBL04	1292663.9	3009918.7	
BG1SBP02 1295043.1 3015036.9 BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1288690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 1325916.3 3006459.1 BG2SBG02 1326146.2 3006909.7 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5 3008310.4 BG3SBA03 1331268.6 3052412.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM02 1331014.3 3051614.5 BG3SBM01 1331186.9 3049702.0 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 30	BG1SBL05	1291968.5	3010551.4	
BG1SBP03 1295470.7 3016826.3 BG1SBP04 1291088.1 3013929.7 BG1SBP05 1288690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA04 1325609.6 3065509.5 BG3SBM02 1331014.3 3051614.5 BG3SBM01 1331186.9 3049702.0 BG3SBM03 1328036.6 3053012.8 BG3SBM03 1328036.6 30	BG1SBP01	1293733.2	3007343.9	
BG1SBP04 1291088.1 3013929.7 BG1SBP05 1288690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5 3008310.4	BG1SBP02	1295043.1	3015036.9	· · · · · · · · · · · · · · · · · · ·
BG1SBP05 1288690.0 3012771.0 BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM	BG1SBP03	1295470.7	3016826.3	
BG1SBP06 1286744.8 3009026.7 BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327872.5 3008310.4	BG1SBP04	1291088.1	3013929.7	
BG1SBP07 1285279.8 3015648.4 BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM06 1328931.9 3064650.4 BG3SBM07 1328931	BG1SBP05	1288690.0	3012771.0	
BG1SBP08 1283603.1 3012911.9 BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 132803.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.	BG1SBP06	1286744.8	3009026.7	
BG1SBP09 1277832.2 3008489.5 BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2	BG1SBP07	1285279.8	3015648.4	
BG1SBP10 1278598.8 3010679.0 BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG1SBP08	1283603.1	3012911.9	
BG2SBG01 1325916.3 3006459.1 BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG1SBP09	1277832.2	3008489.5	
BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG1SBP10	1278598.8	3010679.0	
BG2SBG02 1326107.4 3006323.8 BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG2SBG01	1325916.3	3006459 1	
BG2SBG03 1326146.2 3006909.7 BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4				
BG2SBG04 1327870.1 3007892.1 BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1328977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4		and the second se		
BG2SBG05 1327872.5 3008310.4 BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1321401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	and stand of the stand of the stand			
BG3SBA01 1328625.3 3052197.6 BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4				
BG3SBA02 1327825.2 3052412.7 BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4		102,0,2.0	0000010.1	
BG3SBA03 1331268.6 3057444.7 BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBA01	1328625.3	3052197.6	
BG3SBA04 1325609.6 3065509.5 BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBA02	1327825.2	3052412.7	
BG3SBA05 1325272.9 3065983.8 BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBA03	1331268.6	3057444.7	
BG3SBM01 1331186.9 3049702.0 BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBA04	1325609.6	3065509.5	
BG3SBM02 1331014.3 3051614.5 BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBA05	1325272.9	3065983.8	· .
BG3SBM03 1328036.6 3053012.8 BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBM01	1331186.9	3049702.0	
BG3SBM04 1331401.4 3061647.1 BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBM02	1331014.3	3051614.5	
BG3SBM05 1329977.3 3063178.8 BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBM03	1328036.6	3053012.8	
BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBM04	1331401.4	3061647.1	
BG3SBM06 1328659.0 3054131.2 BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBM05	1329977.3	3063178.8	
BG3SBM07 1328931.9 3064650.4 BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBM06	1328659.0		
BG3SBM08 1331152.2 3058873.9 BG3SBM09 1328802.2 3062840.4	BG3SBM07			
	BG3SBM08	1331152.2		
BG3SBM10 1325781.3 3066076.7	BG3SBM09	1328802.2	3062840.4	<u>, ; ; , , , , , , , , , , , , , , , , ,</u>
	BG3SBM10	1325781.3	3066076.7	

PointName	Y (ft)	X (ft)	comments
Supplemental F	ield Event		
BG1SBA25	455908.9	556534.1	
1997 B.M			
BG1SBA28	456398.5	565075.8	
BG1SBA29	465981.8	564055.0	
BG1SBA38	464336.0	566086.2	· · ·
BG1SBP11	472252.7	559492.5	
BG1SBP13	472648.5	564180.0	
BG1SBP16	467836.0	564044.6	· · · · · · · · · · · · · · · · · · ·
BG1SBP22	459648.5	553888.3	
BG1SBP37	464013.1	559419.6	
BG1SBP39	468263.1	557950.8	
BG1SBP40	470106.8	556211.2	
BG1SBP42	472950.6	560502.9	
BG1SBP43	469606.8	561138.3	
BG1SBP44	470544.3	562544.6	
BG1SBP45	469096.4	562461.2	
BG1SBP50	473929.8	560482.1	
			· · · · · · · · · · · · · · · · · · ·
BG3SBA07	507275.9	599846.2	

	BG3SBA07	507275.9	599846.2	
[BG3SBP01	510719.7	609427.4	
	BG3SBP08	508563.4	600346.2	
[BG3SBP09	509807.2	599314.9	

Notes:

GPS - Global Positioning System

APPENDIX B

BORING LOGS

FIRST FIELD EVENT

	пс
--	----

Page _1_ of _1_

		NAM			C Crane		BORING N	IUM	BER: BG13BLO				
		NUM				33	DATE:		11 [9 [99				
					plicable	-	GEOLOGI	ST:	5, 211				
	LING	METH		hand			DRILLER:		KISIMPSON /	Sir	JAI	٤	
		Diana (N	ATE	RIAL DESCRIPTION		· ·	PID/FI	ID Rei	nding	(ppm)
Sample No. and		Blows / 6" or	Sample Recovery	Lithology Change	Soli			U					
Type or RQD	or Run	RQD (%)	/ Sample	(Depth/FL)	Density/ Consistenc			S C			2	1	Ł
	No.	(,	Length	or	Y	Color	Material Classification	S	Remarks	Sample	F	Borehole	Dritter BZ*
				Screened Interval	or Rock			1			Sampler BZ	Bor	통
					Hardness								
	0	\angle			10054	BC	SILT Some CLAY	ML	MOIST FOOTS				
5-1	i				1					0	0	0	Ы
	2	/				17			Day	\uparrow	-	-	F
5-3	3	\sim					TAVEGA SAND					_	Н
					STIFF	13	BL CLAY SOME SILT ON MOT OR MOT TRYFOL SANDS		Dinia	0	0	0	0
5-4	4					GAM		ML		0	0	0	0
5-5	5	\angle			d	LTEN KU		V		0	0	0	0
										Ι			
							TD=SFT. REFUSAL			\square			
		7						<u> </u>		+			
		\sim	[+			
<u> </u>													
		$ \leftarrow $										•	
ļ													
		۷						ļ				_	
ļ		Ζ,	ļ										
										Τ			
										T			
								1		1			
						1		1		+	†		
								+		╉──	\vdash	-	
						<u> </u>		+		┿─	╀─		┝─┤
		\sim				<u> </u>				+	┨		┝╌┨
<u> </u>			<u> </u>			 	· · · · · · · · · · · · · · · · · · ·	╂		–	 	<u> </u>	┝─┨
ļ		Ζ,				ļ		<u> </u>		\bot	ļ		
ļ		\angle ,		<u>,</u>									
			er rock bri				· · · · ·						
T inclu Rom	de mon arke:	nor readin	ng in 6 foo	ntervals K Z 4	O borehole). Incre	ease reading frequency if elevated report	158 fe					<u> </u>
Reill	ai NJ.	<u></u>	4 = 1	Solo	LOPOY	2	- BEISELOIDZ		_ Background	; (pp	·m):	<u>e</u> .	<u></u>
		to We		Yes		-	No Well 1.1	D. #:					

DRIL	LING	METH	IOD:	hand	auger		DRILLER:		K.SIMPSON /S	, ~	_	_		
Sample No. and Type or RQD		Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	N Soli Density/ Consistenc Y or Rock Hardness	Color	RIAL DESCRIPTION	U S C S	Remarks	PID/FI			Dritter BZ ^B	
	0	\leq			10054	Br	SILT TA CLAY THE VEGAL SAND	ML	MOIST; LOOTS		. 			
5-1	1	\leq			Lasse			11		0	0	1.6	o '	
	と	\leq			Med Denise		Clayer SILT THU FOR SAND TRIOR/GRAY MOT BL CLAY SOME SKE		V MANSA	ļ				
5-3	3	\leq			STIFF	Į¥	BL CLARY SOME SKE	¢1	Day	0	0	0	0	
5-4	4	\leq			4	Br		11		0	0	0	0	
5-5	5	\leq			STIFF		SILT SOME BLOWY SOME FOR	NL		0	0	0	D	
5-6	6	\langle						$\downarrow \downarrow$		0	0	0	Ρ	
		$\langle \rangle$		-		ļ	TD=6FT.	_		<u> </u>	<u> </u>	ļ		
			ļ	4		<u> </u>				-				
			 				 	<u> </u>	· · · · · · · · · · · · · · · · · · ·					
		\leftarrow		.										
			 	4	ļ					<u> </u>	_	<u> </u>		
		\vdash		4						╀	-	<u> </u>		
		\vdash		┥				1		+	-			
		$\langle \rangle$		4		+		+		+	-		├ ─┨ .	
		\vdash		4	<u> </u>			+		┿	╂	┼─	┝╌┨	
		\vdash		4				+	· · ·		+		$\left\{ -\right\}$	•
		$\langle \rangle$	+	1		+				+	┼─	+	┝╌┨	
	<u> </u>	\checkmark		1		┼─	<u> </u>	+	· · · · · · · · · · · · · · · · · · ·	+	╀	+	╞╌┫	
		\checkmark	+	1		+		+	-	+	+		┼╌┨	
-	t		1	1		+		╈	-	╉	+	+	+-1	
 		\sim	1	1		+		+		+	+	+	┼╌┨	
		\checkmark	1	1		+		+		+	+		 	
		\checkmark	1	1				+		╉─	+	╋	┼╌┨	
			ler rock bi			. <u>.</u> .	ease reading frequency if elevated repo		ead. Drilli			<u> </u>		

TŁ	Tetra	Tech	NUS,	Inc.
----	-------	------	------	------

Page _/_ of _/

	PROJECT NAME: NSWC Crane BORING NUMBER: BGISBL03 PROJECT NUMBER: 0087 CTO 083 DATE:																	
DRILLING COMPANY: not applicable GEOLOGIST: 5, NEIL								4										
		METH						G	CLUGI	51:	کے۔	NEI	<u> </u>		<u> </u>			
			100.	hand								Sim	ن د <i>حر</i> م	~ 1	1.7	5.01	<u>د</u>	
Sampie	Depth	Blows /	Sample	Lithology	. N	ATE	RIAL DESC	RIPTIC)N						PID/FI	D Rea	ading ((ppm)
No. and Type or RQD		6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc Y or Rock Hardness	Color	Materiai	Ciassifica	ition	U S C S +		Remarks			Sample	Sampler BZ	Borehole	Driller 82**
	0	\angle			Loost	Br	SILT	TRO	in	ML	Mo	·ντ;	foor .	<u>አለም</u> ር.				
5-1	(*			1		,			119	0	عد	0
	2				a la	LT BI			1	J	D	ų	Ţ	/				
८-२	3				into STIFF	Bibi	SILRY CLA	For sm		در	M	1	MC	\$	551	5	480	0
5-4	Ц					5/	Surg	7	TheFor sol	CL					1		314	
3-5	ς				Ţ	V			,	١		V	J	,	1		(12	
5-6	6				STIFF	ON	BL CLAY	TA ASCE (SILT	J	Mais	FE / Duy	1	A55	10		56	
							,					+ +			1			
							TD= 6P	7										
												-						
			-						•									
		\square				· ·											·	
															1			
			· .				-											
		\angle																
		\angle																
		\angle			٤			:										
		\angle																
		\angle				<u> </u>												
		\leq																
		\leq									<u> </u>							
		\angle									<u> </u>							
		\angle																
			er rock bri ng in 6 foc		@ borehole	. Incre	sase reading freq	uency if el	evated repon	50 /e	ad.			Drilli	na A	rea		
							361582030					; Ba		round				.0
					23:05.	2-		SBLO										
Conv	Converted to Well: Yes No Well I.D. #:																	

	£	Tetra '	Tech N	IUS, Inc			BO	RIN	IG L	.00	3			Pag	e	<u>/</u> (of _	_/
		NÁME			C Crane				BORIN	NG N	UME	BER:	BG= (3620	Ч			
		NUM		:	CTO 08	3			DATE	:		/	18/	74			الفدائد	
				hand a	plicable				GEOL DRILL		ST: -			son (S		¥ 11		
	Line	1415					RIAL DESC					<u><u> </u></u>	n m (*	302 13	PID/FI			
Sample	Depth	Biows /	Sampie	Lithology			RIAL DESC		ION		U							
No. and Type or RQD	(Pt) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened interval	Soli Density/ Consistenc Y or Rock Hardness	Color	Material	Ciassi	fication		S C S	F	lema	rks	Sample	Sampler BZ	Borehole"	Dritter B.2"
	0	\angle			2002 Laure	Br	SILT TH	. cu	¥		ML	Nois	<u>r;</u>	Lais				
5-1	1				\downarrow			/	<u> </u>		1				19	0	105	б
	2				MED STIFF	Br	SILTY CE	iy i	The Flack	s,nons	CL			MEJ)				
5-3	3				j		1	/ 0Л	mor						211	0	108	0
5-4	4				$\overline{\mathbf{v}}$	1		/	İ						55	0	80	0
5-5	5				MED DENSE	br	curry s	14			ML				دلا	0	100	0
5-6	6				STIFF	J	BL CLAY		SILT 1		CL				11	0	24	0
		\leq				(in)	for curry	Some	Sia	4-		J						
· ·																		
		\square					TD=6F	<u>.</u>										
										-		-	••••••					
							· · · · · · · · · · · · · · · · · · ·											
		\square	ļ															
	ļ	\square								· · ·								
			· ·															
<u> </u>	ļ		ļ	1	ļ	<u></u>									<u> </u>			
			ļ	1										·				
		\mid	ļ.	1	L													
	ļ	\mid	ļ	4							<u> </u> .							
		\square												•				
	<u> </u>	\leq	ļ	4		1												
	·		ļ	4			· ·		-					•				
	ļ	\mid	ļ	4				_	ter and the second s									
L		\mid	ļ								<u> </u>							
								. <u> </u>										
		-	er rock br ng in 6 fo		: @ borehol	e. Incr	ease reading freq	UBDCV	if elevate	d renov		ad		Drilli	na A	rea		
Rem	arks	<u>S-1</u>	BGIS	81040	تحكين ا	<u>) - (</u>	GISBLOUD	3.	5-2/=	661	SAL	0404	Ba	ckground				0
		d to W		Yes		<u>د ر</u>		7										
CON	V GILC		on.	1 53			No	/		/ell .	U.#	·						

Tetra Tech NUS, ir	IC.
--------------------	-----

		NAM														
		NUM		0087 CTO 083 DATE: パターター not applicable GEOLOGIST: 5 ペデル										_	-	
						· · · · · · · · · · · · · · · · · · ·				ST:	S. NE	ΊL				
	LING	METH	100:	hand					ILLER:		K.SI	mason	<u>رم ک</u>	EIC		
					N	ATE	RIAL DESC	RIPTIO	N				PID/F	ID Rea	ading	(ppm)
Sample No. and Type or RQD		Blows / 6" or RQD (%)	Sampie Recovery / Sampie Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistenc Y or Rock Hardness	Color	Material	Classificat	ion	U S C S ·	Re	marks	Sample	Sampler BZ	Borehole"	Driker 82
	0	\angle			60052	Br	SILT	TR CLAY		ML	MOIST	ROOT MAT.				
5-1	1					EL				1		1	10	0	ר	0
	2	\angle			d	15 67		2		J		L				
5-3	3				DANIS	Br/01	SILTY CU	TAN FO	R SAUN	Che Che	a DM	DENSE	23	0	Xi	0
5-4	ч						Clayen Si	It .	ų	ML		<u> </u>	54	0	42	0
55	5	\angle			J		1			$\overline{\gamma}$			88	0	ıю	Э
5-6	6				STIFF	$ \downarrow$	BLCLUS SO	ME SILT		CL		\downarrow	147	0	(34	Ð
		\angle														
		\angle					TD= 68	- τ.								
		\angle														
									•							
		\angle													·	
		\angle				ļ										
		\angle														
		\angle														
		Ζ,				ļ										Ш
	4		, 				· · · ·					i				
					۱ <u> </u>											
										ļ			·			
								10								Ц
<u> </u>																
ļ						-				ļ				ļ		
		\angle								<u> </u>			-	<u> </u>		\square
					1. ¹					<u> </u>				<u> </u>		Ц
			L	<u> </u>												
			er rock bro Ig in 6 foo		@ borehole	incre	ase reading freq	uency if elev	sted renon	58 189	vd	Drill	ing A	rea		
Rem	arks:	5-1=	Bais	BLOS	<u>61: 5-3</u>	- 6	1155-0503 - 4 = 56015	<u> </u>	BGISB	Los	ou; I	Backgroun	-		0.	0
		5	-5 = B	GISSI	,20,20	S	-4 = BGOIS	R 1050			- /					
Converted to Well: Yes No Well I.D. #:																

Tetra -	Tech NUS, Inc.
---------	----------------

PROJECT NAME: NSWC Crane BORING NUMBER: BGI 56 A o i PROJECT NUMBER: 0087 CTO 083 DATE: 11/4/95													
					DATE: パイダイ4名 DATE: パイダイ4名 DATE: パイダイ4名 DATE: S・ペイル								
				hand			GEOLOGIC DRILLER:	. .	K. SIMPSON S.	~ 4	<u></u>		
		1916					RIAL DESCRIPTION				D Rea		
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soli Density/ Consistenc Y or Rock Hardness	Color		บ ร ร	Remarks				Dritter 82*
	0		1. A. A.		1 10052	Br	SILT TRYFGR SAND	mL	Dry ROOTS.				
5-1	(J	1		1		0	0	0	0
	2	/			Locse		GRAVEL/ LOCK FRACES SILT SOME CLAY TH FERSAND				\square		
5-3	3				1 .				REFUSAL - OFFSET	0	0	0	0
	510	d)			Y			V	C 3AD FOAING	0	0	0	0
					-								
					TD =	8.5	FT. NOVED OFF OF O	46	NAL BORING				
						1	THILD BUUNG WENT ?					÷	
						1	- 3-4 FT. SAMPLE						
							. 0-1 and 2-3 FT						
							DRIGNAL BOUNG.				\square		
											\square		
			1.				· · ·	Ī					
											\square		
		\angle											
		\angle											
		\angle				·							
		\angle			١								
		_											
		\angle											
	•												
		\angle											
		\angle											
		\angle											
		\angle						·					
** inciu	de moni	tor readir	ar rock bro ng in 6 foo BGn 19	t intervals	@borehole 5/ · 5 -	. incre 3 = 1	Base reading frequency if elevated report 3G(1SBA0103), $S-4=SGE$	se rea BAo	ad. Drillin 104 Background	-		٥.	0
Conv	/erted	to We	ell:	Yes		-	No Well I.C). #:	·				

Ŧŧ	Tetra Tech NU	S, Inc
----	---------------	--------

PROJECT NAME: NSWC Crane BORING NUMBER: BG156 A02													
			BER: 0087 CTO 083 DATE: PANY: not applicable GEOLOGI						11/4/99				
		METH						51:	S MEIL	-			
	LING			hand					K. SIMPSON/				
Sample No: and Type or ROD	(FL)	Blows / 6" or RQD (%)	Sampie Recovery / Sampie Length	Lithology Change (Depth/Ft.) or Screened Interval	IV Soli Density/ Consistenc y or Rock Hardness	Color		บ ร เ ร เ	Remarks	2 ample			
	0				10052	Br	Clayey silt Tenforsand	m	MOIST. LOTTMAC				
5-1	1				1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		2.1		רג	0
	2						fefusin AT = 2 FT.			1	Ŭ	~1	Ť
						-	4001710NAL BORINGS RESULTS SAMPLE T	~/	S, MICAN				
								42					
					· · · · ·		allenon Bonnie.			┢──			
									······································				
										$\left \right $			
						 							
<u> </u>										<u> </u>			
ļ						ļ							
		\angle				ļ	·		· •				
		$\langle \rangle$											
			·										
		\angle											
					ι								
									e an suidhich a se an su an suadhadh				
·													
								1					
								<u>†</u>		\square			
					·					\mathbf{t}			
									· · · · · · · · · · · · · · · · · · ·	+	\square		
						<u> </u>				+			┝╌┨
• When	rock co	oring, ente	er rock bri	keness.	I	1	L	1	L	1			
** inclu	de moni	tor readir	ng in 6 foo	t intervals		. Incre	ease reading frequency if elevated repon	ise rea	d. Drillir Background	ig A (pp		D.	0
^ -			-) or				The remain of 4	<u></u>	TITH & JOLL (194	<u>· د</u>			
Con	/ented	to We	ell:	Yes		-	No <u>/</u> Well I.E). # :					

	ł	Tetra '	Tech N	IUS, Inc	D.		BORING LOG Page 1						<u> </u>	of _	1
PRO	JECT	NAME NUME	BER:	0087	C Cran			BORING N DATE:	IUM	BER: RG	-156 AC	3			
					plicable			GEOLOGI DRILLER:	ST:	5,~		S.,			
	LING	METH		hand					1	μ <u>γ</u> . γ					
Sample	Depth	Blows /	Sample	Lithology	N		RIAL DESC	RIPTION	U U			PIDAL		iding ((ppm)
No. and Type or RQD	(FL) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/FL) or Screened interval	Soli Density/ Consistenc Y or Rock Hardness	Color	Materia	I Classification	S C S .	Rem	arks	Sample	Sampler BZ	Borehole"	Driller B.2**
	0	\angle			Loos i	Br	V FGLSAN	D Some SILT	SM	Millst	LOT MAT				
5-1	١	\square								+	·]	0	0	33	0
	2						SILT SOM	EVFORSAND	ML	Dry	*				
5-3	3											0	0	1.5	0
5-4	4			1	Π				11			0			0
5-5	Ś	\square		• •				Sake or Stam	Π			0	σ	0	0
5-6	6					1			J			0	0	0	0
				•											
							70=6	A .							
											·				
							·	· · · · · · · · · · · · · · · · · · ·							
											÷ .				
		\square													
		\leq													
		\leq				ļ	-								
		\leq	ļ												
		\angle			1	1		ing the state of the						ļ	
		\leq		4					<u> </u>			ļ			
						·			_			ļ			
		$\langle \rangle$		4					<u> </u>			<u> </u>	1	\square	
-		<				1	· ·	· .	-			ļ	ļ	ļ	
		\leq	1									<u> </u>		ļ	
		<	1			<u> </u>			-	· · · · · · · · · · · · · · · · · · ·		_		 	
* \A/b								•		<u> </u>					
** inclu	ide mor	oring, ent hitor readi	ng in 6 for	ot intervals	e boreho	le. Incr	ease reading fre	quency if elevated repo	nse re	ad.	Drilli	ng A	rea		
Rem	arks:	<u>S-1=</u>	50-13	8 AO 30	<u>si' 5-</u>	3-6	GISBAO	4-205 5-6	- /	Ba	ackground				0
					0204)	<u>}-</u> ;		-		GISGRO	506.				
Con	vorte	t to W	۰lle	Yes		•	No		n #						

Tetra Tech NUS,	Inc.
-----------------	------

Page ____ of ____

	ROJECT NAME: NSWC Crane BORING NUMBER: BGISBA04													
				the second s		13		DATE:		115195				
					plicable			GEOLOGI	ST:					
DRIL	LING	METH	HOD:	hand	auger			DRILLER:		K. SIMPSON /S	NF	'IL		
					N	IATE	RIAL DESC	RIPTION			PID/F	ID Re	Iding	(ppm)
Sample No. and Type or RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soli Density/ Consistenc Y or Rock Hardness	Color	Materiai	Classification	U S C S •	Remarks	Sample	Sampler BZ	Borehole**	Driller 82*
	0	\angle			SUFT	Br	SILTY CLAY	The Fersons	cu	Maist				
5-1	1.				MIN STIFE						4.1	0	69	0
	2				1			•						
5-3	3				\checkmark			OF MOTTLING			10	0	5	0
6-4	ч				STIFF		CLAY SOME	OF MOTTLING SILT TANFOLSA		Denser	24	0	مر	0
5.5	5				Hans						31	υ	ના	0
5-6	6	/			4			LESS MOTTLED		DENKER	39	0	×	D
		\angle												
		\angle			-		TD= 6	PT.						
		\angle												
		\angle						••••••••••••••••••••••••••••••••••••••						
		\angle						······································						
		Ζ,												
		Ζ,					· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u> </u>	ļ		
		\angle		4							\downarrow	<u> </u>		
		Ζ,		4							<u> </u>			
				4	· · · · · · · · · · · · · · · · · · ·		· · · ·		ļ	·	\downarrow			
		\angle		4	1	ļ				e	<u> </u>	ļ		
						ļ			. .		_	 		
		\angle									<u> </u>			
	· · ·	۷	,	4		·					<u> </u>	<u> </u>	 	
				4			ļ				4	-		
				1					ļ		<u> </u>	<u> </u>	 	
						ļ					╄	_		
• Whee	meke		er rock bri		L			ann an						
					@ borehole	. Incre	ease reading frequ	ency if elevated repor	ise rei	ad. Drilli	ng A	rea		
													0.	0
		<u> </u>	5 = B.	MISACU	05: 5	-6-	BG-ISBA0400	; 5-4=BlontSB1		- ,			•	
		to We		Yes		-	· · · · · · · · · · · · · · · · · · ·	Well I.I						

				IUS, Ind				BOF	RING LO		Pag		<u>i</u> (of _	/
PRO	JECT	NAME	2:	NSW(C Crai	ne	×		BORING	NUM	BER: BG15BAC	25			
PRO.	JECT	NUM	BER:	0087	0100	78	3	· · · · · · · · · · · · · · · · · · ·		ICT.	11/4/99 5.NFIL				· · ·
				not ap		**				151:	S.NFIL				
	LING	MEIF	100:	hand							K. SIMPSON /S	· ~	116	-	
						M	ATE	RIAL DESCI	RIPTION	_		PID/FI	D Rea	nding	(ppm)
Sample No. and Type or RQD		Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density Consiste y or Rock Hardnes	nc	Color	Material (Classification	U S C S	Remarks	Sample	Sampler BZ	Borehole**	Driller 82-
	0				10058		35	SILTYVEG	ALAND	M	MOIST RUTS.				
5-1	(\sim			1		-			1	1 1	5.	0		
5-1	2								<u></u>	╈	DKY SET IDFT.	3.1		/(0
5-3	5				Ţ			SILT W/ Th	LFGL JAND GRAVEL	ML	Y DKy	1.9	0	10	0
5-4	4	/			الأدحا	Į	54	FGL TA	GRAVEL SILT LOCLEAN	.K.P			ŀ	4.4	0
<u> </u>		\frown						JANG IN						1.1	Ĕ
				4											
								TD = FT.	of off s	<u>et.</u>	SAMPLED 0-1FT				
		\angle						INTAL	AT DRIGINA	10	21NG SAMPLAS	ļ			
		\angle						2-3 + 3-	4 FT INTI	non	AT OFF STT				
										1					1.11
]											
		\nearrow													
						-						1			
					1			·	e en	1		1	1		\square
				1				· ·		1.					
										1-					\square
		/		1	-					- <u></u>					\square
			1	1						1	· · ·	\uparrow	1	-	╞─┨
		-	er rock br			_						.	1	L	أسسا
** Inciu	de mon	itor readii	ng in 6 foc	x intervals	@ boreh	ole.	Incre	ase reading frequ	ency if elevated rep	onse re	ad. Drillir				
Kem	arks:	5-1-	BGI	SBAOS	01	<u>S</u> -	-3=	BGISBAOS	503 5-4= KG	ISBA	esoy. Background	(pp	m) :	0.	б
				mar	Cak	~~	<i>ou</i>	a or refu	<u>szt.</u>		· · · · · · · · · · · · · · · · · · ·				
Conv	/ertec	to We	eil.	Yes			• .	No /	Well I	D #	•				<u> </u>

.

Tł	Tetra	Tech	NUS,	Inc.
----	-------	------	------	------

Page ____ of ____

				NSWC Crane BORING NUMBER: BOISBPOI													
						TO 083 DATE: icable GEOLOGIST					_ 11]	6199					
				and the second sec						GEOLOG	IST:	<u>_</u>	NEIL	1			
DRIE	LING	METH	10D:	hand	auge					DRILLER	_	Ľ	Simpson	<u> </u>	141	<u></u>	
Sample No. and Type or RQD	(FL)	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soi Dens Consis Y or Rod	l ity/ tenc	Color	RIAL DES		TION Ification	U S C S ·		Remarks	Sample	Sampler BZ		Driller B2 ^m add)
					Hardn	es s				ereste e e e e e e e e e e e e e e e e e e	_						Ц
	0				100	51	101	SILT SON	nt CL	sy	ML	Mors	T for MM	<u>r </u>		Ļ	
5-1	1				1					/				*	¥	*	*
	2	\square	•				V		\downarrow			De	1				\Box
5-3	3	\angle					LT Br		be c	iny			V. DINSE	*	*	*	**
5-4	4							TA FORLSAND	FE	STATING .			1	11		1	
5-5	4.5	\angle			J		V	KOUL FLAGS .	TA.	ISTANN IFGA SAND	V			V	V	I	1
				*				TD = 4.5	FT.	Augo-	tef	usa I	•				
		\angle															
		\angle		-													
		\angle														ŀ	
		\angle															
		Ζ,															
·		\angle															
		\angle			· .						1	ļ					
		\angle															
		Ζ,			1		ļ										
		\angle															
		\angle					ļ				<u> </u>						
		\angle	5				<u> </u>								_	<u> </u>	
		\angle	L.									ļ					
		\angle					<u> </u>										\square
		\angle					_					ļ				<u> </u>	
		\angle															
			er rock bri na in 6 foc		Ø bor	ahoi	a incr	ease reading fre		if elevated ran	0058 /0	ad	Dr	illing A	rea		
								3P0103 -					Backgrou	ind (pp	om):	: 💌	:
			GIS6	0105.	<u>لمک</u> ۲۱۵۸	3	K B	GISBPOID	ا من ما	snot t	= Ken	duu	to auge	- ref		(,	
Con	orter	t to W		Yes				No	/		D #						

Tetra Tech NUS, In	C.
--------------------	----

Page _/_ of _/

	PROJECT NAME: NSWC Crane BORING NUMBER: BGIS6PO) PROJECT NUMBER: 0087 CTO 083 DATE: 11/4 (44														
					plicable	13		GEOLOG		11/4/44 5. Nili4					
		METH		hand				DRILLER:			PSON (!	5.2	FIL		
							RIAL DESCI					PID/FI		dino	(600)
Sample No. and Type or RQD		Biows / 6" or RQD (%)	Sampie Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc y or Rock Hardness	Color			บ ร เร ร	Rem	arks	Sample			Driller 62"
	0	\angle			رمىلا	br	SILT Some	CLAN	ML	MOIST	some hoose				\Box
5-1	1	\angle			Í	V			1	V		¥	*	*	*
	2	\angle			·	LT Br				Dry					
5-3	3	\angle			STIFF		BL CIMY 5	Or MOT	CL		iensa Enisa	*	*	*	*
5-4	4								V			*	*	×	×
5-5	5	\angle			DENSA		JUT SONA	Be cing	ML		<u> </u>	*	*	*	*
5-6	6	\angle			J.	¥.	ZOLIC FRANCE	TYFUL SAND	1	L	\checkmark				
		\angle													
		\angle				ļ	TD = 6F	T							
		\angle													ŀ
		\angle						•							
		\angle						¥	1						
		\angle													
		\angle				ļ							ļ		
		\angle		Į				a a bli stanovno se					ļ		
		\angle				ļ									
		\angle			١	<u> </u>			_						
		\leq		4											
		\angle													
		\leq				ļ									
·		\angle	ļ			<u> </u>	· ·								
		\leq						••••••				1			
ļ		\angle		4		<u> </u>				1					
** Inclu Rem	de mon arks:	itor readin <u> S-1=</u> <u> S-5</u>	BGNSB 5- BGN	t intervals PODI SBP02	@borehole 5-3- { 05 \$	36115 r le =	BOJOR 5- 66158902	ency if elevated repo U = BG(SBP) U = .	nse re DOG	ad. → Bi	Drilli ackground	-		-	#
Com	/erter	t to Wi	eil:	Vec			No	/ Well I	D #						

Æ	Tetra	Tech	NUS,	Inc.
---	-------	------	------	------

Page _/_ of _/

	PROJECT NAME: NSWC Crane BORING NUMBER: B615B203															
					087 CTO 083 DATE: 116/94 ot applicable GEOLOGIST: 518/16											
		METH		hand				DRILLER	IS I :			7	•			
											L. Simp	1 ~ • •				
Sample	Depth	Blows /	Sample	Lithology	<u> </u>		RIAL DESC	RIPTION					PID/F	ID Rea	ading	(ppm)
No. and Type or RQD		6" or RQD (%)	Recovery / Sample Length		Soil Density/ Consistenc Y or Rock Hardness	Color	•	Classification	U S C S *		Remar	ks	Sample	Sampler BZ	Borehole*	Driller BZ**
	0				Loose	Br	SIG TL	NFGA SAND	ML		OIST TH	am				
5-1	1				L	T		(ŤŤ		Rawy	TIMANNE		0	0	
	à				STIFF		BLCLM <	TILVFGILSIANIS OMA SILT; LOCK	a			OF= SET		Ĕ		0
53	3	\angle			STIFF	jer br			1	X	y Di	NA	0	0	0	5
5-4	4					O Kan	BL CLAY	e Th silt					0	0	0	0
5-5	5	\angle									-		0	0	0	0
5-6	6	\square				GAL		DISTINCT OR MOTTLINL	T		/		0			0
		\angle			· .											
		\angle				· .	TD=6	FT OFFS	er	4	TIMAS					
		\angle						· · · · · ·								
		\angle						•								
		\leq									_				•	
		\leq						· .						\square		
		\leq					·									
		\angle						· · · ·								
		\angle														
		\leq														
					ĨL.											
		\angle						······································								
		\leq														•
		\leq					•		·							
		\leq														
		\leq														
		\angle														
			r rock bro a in 6 foot		A barabal-							0	- A -			
Rema	arks: <	5-(661 CA	03 nu	S-2	. incre AGel<	use reading frequences	uency if elevated repo	nso rea An Zn	nd. Mir	Rack	Drillin ground	-		<u>с</u>	$\overline{}$
		<u> </u>	5: 1	GISBP	02051	3-6	- BGISBP	5-4= Balsb 0306-		.*)		gi vuilu	(hhi	יייי ו		<u></u>
	-	to We		Yes		•	No	Weil I.								

	Ł	Tetra	Tech N	IUS, Ind	C .		BOF	RING LO	G	Pag	je	<u> </u>	of _	L
					C Crane			BORING N DATE:	IUM	BER: BAISBRUH				.
DRIL	LING	COM	PANY:	not ap	plicable	· · · ·		GEOLOGI		5.NIL				
DRIL	LING	METH	IOD:	hand				DRILLER:	-	K. Simpson /	<u>~.2</u>	£1L		
Sample	,	Blows /	Sample	Lithology		IATE	RIAL DESC	RIPTION	U			D Rez	iding ((ppm)
No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc Y or Rock Hardness	Color	Material C	lassification	s c .s •	Remarks	Sample	Sampler BZ	Borehole"	Driller B2
	0	\angle			60058	Br	SILT Some	be camp	ML	Day Root MAY.				
5-1	1	\angle				J	-			DAYIN	0	o	0	0
	6	\angle				61								
5-3	3	\angle			J			or stain		V DINIZ	0	0	0	0
5-4	ú	\angle			STIFF		BLCLAY SOM	A SILET MATGA SAND	C	<u> </u>	0	0	0	0
5-5	5	\angle					BL CLAY ST	int silt	CL		0	0	0	J.
5-6	6	\angle			1	1	¥		1					
		\angle						FT-						
		\angle												
		\angle				·		· ·						
		\angle												
		\angle												
		\angle												
		\angle												
		\angle												
		\angle												
		\angle												
		\angle			Ł									
		\angle												
		\angle												
		\angle												\Box
		\angle												
		\angle												\square
		\angle												\square
		\angle									Ι			
** includ	ie moni	tor readin	ar rock bro ig in 6 foo BASBF 5 = BA(t intervals	© borehole 5-3 405	. Incre B 5-6	ase reading freque GNS 6P0407 = BG(S6P)	ency if elevated repor	se rei SBCO	nd. Drillin แอน Background			0	0
		to We		Yes	3		No _/	Well 1.[

0.000

	Ð	Tetra	Tech N	IUS, Inc	С.		BORING LO	G	Pag	e _/	I 1	of _	1
		NAM			C Crane		BORING	UM	BER: 36158PD5				
					CTO 08 plicable	13	DATE:	~ т.	115 144				
				hand			GEOLOGI DRILLER:	51.	K. SIMPSON /	<u>ς.</u>	NE	11	
						ATE	RIAL DESCRIPTION	1		PID/FI	-		/008
Sample No. and Type or RQD		Biows / 5" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density/ Consistenc Y or Rock Hardness	Color		U S C S •	Remarks	Sample			Driller 82*
	0	\angle			60034	Br	SIT SOMA CLAY	MIL	DAY ROOT MAY.				
5-1	(/								0	0	0	6
	ン					in							Γ
5-3	3		1		STIFF	1	SOME OF MOTELING BLOCKY CLAY SOME SILT	r.	V DENSE	D	\overline{a}	0	0
3-4	ų			1	1		berry and some set	Ī		0	0		0
5~-	5		<u> </u>	1			TREFALSAND SOME LOCK FLACE	†	<u> </u>	0			
Ě	-		<u> </u>	1				\mathbf{H}	 	<u> </u>		1	0
5-6	10	\leftarrow	<u> </u>		V	LV.		≁	<u> </u>	0	0	0	D
 			 	-		┥───┘	~			 	\square		_
			ļ	4		<u> </u>	TD= 6 FT.	ļ		ļ			
		\angle	Ļ				-						
		\angle											ŀ
													Γ
						·		\uparrow				┢	\vdash
		\sim	†	1 .:								-	┢─
		\leftarrow	<u> </u>					1		├		-	┢─
			╂────							┝──	┼──		┢─

* When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Remarks: 5-1 = Ba(5BPOSO1; 5-3 = Ba15BPOSO3; 5-21= Ba15BPOSO4; 5-5= Ba15BPOSO5; 5-6= Ba15BPOSO6; 5-6= Ba15BPOSO6

Drilling Area Background (ppm): 0.0

Converted to Well: Yes No

.

Well I.D. #:

PRC	JECT	i ' NAME	Ξ :		C Crane		BORING LOC BORING N		Page BER: BO13BPO6		_ `	of _	<u> </u>
						13	DATE:		11(5)99				
				not ap			GEOLOGI	SI:			~		
DRI		MEIN		hand			DRILLER:			· ~ ?			
Samal	Depth	Blows /	Sample	Lithology	N		RIAL DESCRIPTION	U		PID/FID	Rea	iding	(ppm)
No. and Type o RQD	1 (FL)	5" or RQD (%)	Recovery / Sample Length		Soli Density/ Consistenc Y or Rock Hardness	Color	Material Classification	5 5 5 5 5 5 5	Remarks	Sample	Sampler BZ	Borehole"	Driller B2"
	0				SOFT	Br	SILTY CLAY TRNEWLSAND	cı	MOIST ROOTS				
5-1	1				ď	J		L	ł	0	0	1.5	0
	2	\square	1]	inne	LBr	SILT SOME CLANG TRV FORSOL	NL	Day				
5-3	3				J.		BEDROCK FING	11	PEFUSAL @ 2FT-	D	0	0	D,
					·				HIT LEFUSALE				
						1	TD=3FF		OFFAT = 20 FT- HIT LEFUIMLC				
] .					= 2.5 Fr.				
]									
]			÷		·				
			·										
									· · · · · · · · · · · · · · · · · · ·				
			· ·					<u> </u>		\square		 	
<u> </u>	<u> </u>	\mid	ļ	4	٤	<u> </u>		_					
 	<u> </u>	\mid	_	-	<u> </u>	 		-		$\left \right $		 	
<u> </u>		$ \mid $	<u> </u>	4						$\left \right $			
				4				 		$\left \right $			
		$\langle \rangle$		-				-	· · · · · · · · · · · · · · · · · · ·	┞╴┨		-	
		\vdash	┥───	-						$\left\{ -\right\}$		┨	
		\vdash	┨───	-	<u> </u>	┼──		-					+
- Wh	n rock «		ler rock h	rokeness.		1	L						
** inci	iude mo	nitor readi	ing in 6 fo	ot intervals	e borehol	e. Incr = B	ease reading frequency if elevated repo Grl SBP0603, SAMPLSS	nse re TVL/CS	ed. Drillir م Background				

Tetra	Tech NUS, Inc.
-------	----------------

					C Crane				BER: 3GISBPO	ו			
					CTO 08	13	DATE:	от .	1115/44				
		METH			plicable		GEOLOGI	51:	S.NIL	<u> </u>	-		
			100.	hand					K. Simpson /				
Sample No. and Type or RQD	(FL)	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soli Density/ Consistenc Y or Rock Hardness	Color	RIAL DESCRIPTION	U S C S	Remarks	Sample Sample			Driller 82" (add
	0				10059	30	V FGIL Sand Some SILT	se	Dey				
5-1					J	1		1	REFULALCE FT -	-			
Ě	· ·					*	<u> </u>	4	OFFSET 3 10 FT -	7.0	10	5.6	Ð
			,						REFUSAL C. 1.5 FT - OFF SET 2 10 FT - REFUSALC 1.0 FT -	<u> </u>			
						ļ	TD = 1.0 Fr.		OFFSIT = 20 FT -				
·							· · · · · · · · · · · · · · · · · · ·		REFUNALO DIS FT - DEF SAT 2 10 FT-				
		\angle						6	takfusme 1.3 Fr.				
		\angle											
					н. - н								
		/											
		\angle											
		/											
				а. С. С. С									
		\angle											
		\angle			١								
		\angle											
		\square											
		/						Ι					
		/				ŀ		\square	· · · · · · · · · · · · · · · · · · ·	1			
										1			
			er rock bre	-				-	<u> </u>				
							ase reading frequency if elevated report						
INCIII	ai NJ.	<u>>-1;</u> 0	FF ST	7 4	TIMES (S I	THEEN FROM OLICINAL B	AUC'	5). Deckyrounia 5,- D99,25,- THAN	(PP <u>2 · /</u>	- 11). []	$\frac{\mathcal{O}}{\mathcal{O}}$	<u>ت ا</u>
		to We		Yes		-	No Vell 1.						·

TŁ	Tetra	Tech	NUS,	Inc.

Page ____ of ____

				NSW(UM		Bais	BPOS				
				0087			53					· T .	1161				. in		
		METH		not ap hand						DRILI		.	<u> </u>	Scare .	psin /	5.2	1.81	· _	
		1915-11			uug			RIAL DE	COD				~	3(m)		PID/FI			
Sample No. and Type or RQD		Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Sc Den Consi) c Rc Hard	oil sity/ stenc / ir ock	Color			assification		U S C <u>S</u> +	1	Rema	rks	Sample			
	0				100	54	Br	5147 50	. 42 CL	MY THE FL	Sand	ML	Deg	200	T MAT.				
5-1	I	/					J					1	Ţ	,	L	0	0	0	0
	J			1.			LT						Mucit	DIIZA	TR Pary				
5-3	3			1			1		· · ·	[· ·		T			J	*	*	¥	*
54	ч								,	TIMFER	Shug				· ·	*	*	.*	*
5-5	5						\square	FGAL SAN	<u>s 500</u>	>> 42 5165	MI Lark	SP							
56						/	I	1	1	IN ADUL F		Ţ							
		\square		[-							1.			\square
		\nearrow						TD= 5	5.5	FT-P	2Fu	M				T			
		\nearrow]													Γ		\square
											•								
											•							·	
		\leq].				·											
		\leq							•										
		\leq			<u>\</u>														
ļ		\leq																	
		\leq												•					
		\angle		4	<u> </u>		1						ļ						
		<					<u> </u>	•											
		\angle	ļ	4			. 												
<u> </u>		\angle		4	<u> </u>		ļ	-					· · ·		<u>.</u>				
					1							<u> </u>							
** Inclu	de mon arks:	itor readi <u>5-1 =</u> S-1	<u> </u>	of intervals	105	5-	3-6-	ease reading Scals & PC Scal S &	freque	ency if elevat S-4 = GG	ed repon	50 TO	ad. -)	Bac	Drilli kground				0
		to W	D MAL	FUNCT Yes	· LONI	مەند	•	No	~		Vell I.[·····				

Tt	etra Tech	NUS,	Inc.
----	-----------	------	------

Page _1_ of _1_

		NAM			C Crane			BORING	S NUN	BER:	Saisbrog				
					CTO 08 plicable	33				116					
				hand	the second s										
	LING			Tianu					≺. ━	<u></u>	impson /	5.0	<u> </u>	<u>د</u>	
Sampie No. and Type or RQD		Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened	Soll Density/ Consistenc y of	Color	RIAL DESC	RIPTION	U S C S	R	emarks	Sample	Sampler BZ	Borehole *	Driller 82*
				interval	Rock Hardness								ñ	à	Δ
	0	\angle			20054	BC	CLAYEY	SILT TR AS	ES MI	- MOIST	. ROOT MAT				
5-1	1	Ζ,		-			Some VFLASA	SOME ACCE	46		+	0	D	.4	0
	2	Ζ,			d	J				DRy		X	B		
		Ζ,					· · · ·				KEFUSLE 1.3 FT. CFF				
		\angle		-			TD= 2	FT			SET = 10 FT.				
		\angle													
		\angle	-												
-		\angle													
							· · · · · · · · · · · · · · · · · · ·								
											-				
					-									·	
							-	<u></u>							
		\angle													
					-										
		\angle		4.							-				
		\angle			٤										
		\angle													
		\angle													
		\angle				ļ									
		\angle					•							Ĺ	
		\angle													
		\angle													
		\angle		-				-							
			er rock bri na in 6 foo		8 harebal			ency if elevated re			D-316-		100		
Rem	arks:	5-(=	361566	0901	Only	one one	sample teck	ionicy is elevated to	iponse n SO	Gald.	Drillir Background			0	. তা
		a	uger	refusie	1 - neo	ved.	tula (cen due to 3 borings)	.						
		to We		Yes		•	No 🗸		I.D. #	;					

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $															
SILLING COMPANY: not applicable GEOLOGIST: Sin Silling SILLING METHOD: hand auger DRILLER: Sin Silling Silling Area MATERIAL DESCRIPTION U Sin Silling Sin Rin N MATERIAL DESCRIPTION U Sin Silling Sin Rin N Sin Rein Sin Silling Sin Silling Sin Rin N Sin Rein Sin Silling Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description Sin Silling Sin Silling Sin Rin Sin Silling Description Notice Color Notice Color Notice Color Sin Silling Sin Silling Description Silling Silling Silling Sin Silling Silling Silling Silling Silling Silling Silling Silling Silling Silling Silling Silling S		Ł	Tetra	Tech N	IUS, Ini	C		BOR	NG LOO	3				of _	1
SILLING COMPANY: not applicable GEOLOGIST: Sin Silling SILLING METHOD: hand auger DRILLER: Sin Silling Silling Area MATERIAL DESCRIPTION U Sin Silling Sin Rin N MATERIAL DESCRIPTION U Sin Silling Sin Rin N Sin Rein Sin Silling Sin Silling Sin Rin N Sin Rein Sin Silling Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description U Sin Silling Sin Rin N Sin Silling Description Sin Silling Sin Silling Sin Rin Sin Silling Description Notice Color Notice Color Notice Color Sin Silling Sin Silling Description Silling Silling Silling Sin Silling Silling Silling Silling Silling Silling Silling Silling Silling Silling Silling Silling S									BORING N	UM	BER: BGISBOID	0-i ⁶	Ð		
RILLING METHOD: hand auger DRILLER: C. Similar (S. Milling) Det Billing / Second MATERIAL DESCRIPTION U Performance (Second Second Sec					and the second se		3				11/2/66				
Days Barner Linding MATERIAL DESCRIPTION U Dept Same Linding Same Sam						the second s				ST:				an a	
Baner / Baner / Baner / Baner / Recovert Charge / Langer / Baner		LING			nanu					_	K. SIMPSON /S	. ~	EIL		
and (Fi) For account (Change) Set (Change)	ampie	Denth	Biows	Sample	Lithology	M	ATE	RIAL DESCRI	PTION			PID/FI	D Re	ading	(ppm)
0 Br Shitzy CLA, TE VEWSONO CL MOIST 1 J J 2 J Remarks 3 J Remarks 4 J Remarks 4 J Remarks 4 J Remarks 5 S Remarks 4 J Remarks 4 J Remarks 4 J Remarks 4 J Sitt Sumt CLASSON CLAMAN DAY 5 Remarks Remarks 4 J Sitt Sumt CLASSON CLAMAN DAY 5 Remarks Remarks 4 J Sitt Sumt CLASSON CLAMAN DAY 7 Remarks Remarks 7 Remarks Remarks 1 Remarks Remarks	io. and Type or RQD	(FL) or Run	6" or RQD	Recovery / Sample	Change (Depth/Ft.) or Screened	Density/ Consistenc y or Rock	Color	Material Cia	sification	S C	Remarks	Sample	sampler B2	Borehole"	Driller BZ*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0				SOFT	Br	Suma ala - F	NE LEANA	C 1	A4				
$\frac{1}{3}$ $\frac{1}$		<u> </u>				1.		story cury th	(NTGA SAWA	H	INDIST	_		$\left \cdot \right $	
$\frac{1}{3}$	5-1	1	\leftarrow				¥	└──── ↓	DOK FRALS			8.)	2	רע	ĽЧ
1 1 1 1 1 0 2 1 1 1 1 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 1 0 2 0 1						boost	LBC	SILT SUME CU	1 Some Fansard	ML	Day				
4 4 4 4 5 5 5 6 5 7	5-3		\angle		l				A	11		55	0	63	0
Morth Up(gAb)(u)? TD = 4.1 FT = 2 D FT 24 Eucu u 3 ET. Morito = u 3 ET. Morito = u 3 ET. Morito = u 10 FT. CLOSE GEAD. Aucusto TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito = 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Filling Area 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Filling Area 10 ET. CLOSE GEAD. Et. Morito To 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE GEAD. Et. Morito TD 4.1 FT. 10 ET. CLOSE FILL Et. Morito TD 4.1 FT. 10 ET. CLOSE FILL Et. Morito TD 4.1 FT.	-4	4	\angle								REFUSAL @ 3.4 FT.	21	0	27	0
TD = 4.1 FT. = 20 FT 24 Excm a 3 FT. Movio =															
a 3 FT. Movip = b PT CLOSS GEAD. Avcarso To 4-1 FT. TOCK 3-4 FT Shorks FB3m S2Covid Babane FB3m S2Covid Babane i <td></td> <td></td> <td>\nearrow</td> <td></td> <td></td> <td></td> <td></td> <td>TD = 4.1</td> <td>Fr.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			\nearrow					TD = 4.1	Fr.						
Jo FT (Loss GLO.) Aucauso TD 4.1 FT TPok 3-4 FT Sample Filom S2Co.10 Boline Filom S2Co.10 Boline Image: State of the			\square												
Augusto TD 4-1 Ft TPOK 3-4 Ft Shingle Fillow Stice, ND Bolissio Filling Area Imarks: 5-1: Bolis&Ploo1, 5-3: Bolis&Ploo3 (S-145-3 TAKE) Background (ppm): D. O Filling Area Background (ppm): D. O					1	· · · ·				<u> </u>					
IDEX 3-4 Fr Shinks Filling Area Intervision of foot intervision of botehole. Increase reading frequency if elevated reporse read. Drilling Area Intervision of foot intervision of botehole. Increase reading frequency if elevated reporse read. Drilling Area Intervision of foot intervision of botehole. Increase reading frequency if elevated reporse read. Drilling Area Intervision of foot intervision of botehole. Increase reading frequency if elevated reporse read. Drilling Area Intervision of foot intervision of botehole. Increase reading frequency if elevated reporse read. Drilling Area Intervision of foot intervision of botehole. Increase reading frequency if elevated reporse read. Drilling Area Background (ppm): [O : O] Fiber Drilling Area Background (ppm): [O : O]															
Fillow S120,10 Bolune Fillow S120,10 Bolune Fillow S120,10 Bolune Fillow S120,10 Bolune Image: Signature Image: Signature Fillow S120,10 Bolune Image: Signature I															
hen rock coring, enter rock brokeness. Include monitor reading in 6 foot intervais @ borehole. Increase reading frequency if elevated reponse read. EREME Distances & Society (Series 2 takts) EREME Distances & Society (Series 2 takts) EREM			\sim											·	
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\sim								FROM SZCOND BOILNI	.			
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\sim						••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·				
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\sim										-		
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\leftarrow												
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\leftarrow										 		
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).								· · · ·							
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).						٤	ļ								
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).													ļ		
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\angle												
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\angle												
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\square												
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).												÷.,			
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\geq										1		
Increase reading frequency if elevated reporse read. Drilling Area BGISBP1001: 5-3= BGISBP1003 (5-1+5-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BELING); 5-4= BGISBP1004 (TAKEN From THIAB BORING).			\nearrow							T					
Emarks: 5-1= BGISBPIOOI, 5-3= BGISBPIOO3 (5-145-3 TAKEN Background (ppm): 0.0 FROM DRIGINAL BERING); 3-4= BGISBPIOO4 (TAKEN FROM THIRD BORING).			•							:	L	i	I	L	
	* inciue Rema	le mon arks:	nor readii	ng in 6 foo $Q_{n} < A$	t intervals		. Incre R/1	SADion 7 /c.	y if elevated repon	50 TO:	ad. Drillin	g A			
			FA	20 m	GINAL	661116		5-4 = BG156P	1004 (TAK	n FN	FLOW THIRD BORIN	(pp) س).):	<u>0</u>	0
					Yes		-	No 🗸						-	

.

Tt	a Tech	NUS,	Inc.
----	--------	------	------

Page ____ of ___

		NAME			C Crane			BORING NUMBER: Starsford 1							
PRO	JECT	NUM	BER:	0087	<u>CTO 08</u>	13	·····	DATE: 11/7/99 GEOLOGIST: 5,7216							
					plicable				ST:						
	LING	METH	IOD:	hand	auger			DRILLER:		K. Simpson S.NO			π.		
					M	IATE	RIAL DESCRI	PTION				PID/FI	D Rea	iding ((ppm)
Sample No. and Type or RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc Y or Rock Hardness	Color	Material Ci	issification	U S C S	R	emarks	Sample	Sampler BZ	Borehole"	Driller 82-
	0					BC	SILTY CLA	y Tenforsd	cL	Noist	TR ROOTS				
5-1	(STIFF			1				23	0	36	0
	2				STIFF			· · · · · · · · · · · · · · · · · · ·		Day	Denser				
5-3	3	\angle						-				14	D	Ś	б
5-4	4				101 01112	L	FULSMO SO	ing cury Kilt	sρ			0	Ю	44	٥
5-5	5	\angle				or	TR	CLAY ISILT	LL_			0	0	ц	0
56	6				1	1		·	\downarrow	L.		0	0	36	C
		\angle					<u>-</u>					ļ			
		\angle					6 FT T	٥							
		\angle													
						L									
		\angle													
		\angle													
		\angle							ļ						
		\angle	•									 			
		\angle													
		\angle				L									
		\angle			٤				İ	ļ		<u> </u>			
		\angle		-		ļ			ļ			-			
L		\angle													
						 			ļ	ļ		ļ		ļ	
					 		•			· ·		<u> </u>		·	
					·.				Ļ			ļ	ļ		
		\angle	с. у.			ļ							 		
L															
	* When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area														
Rem	auke. re nou	<u>-1-</u>	ະມີ ເມີ່ມ	a unorvers Sa Ge mi		-2 - 1	Ray SR (2010)	Carlie RAN	ње Ге : Л.Л	ea. Moute	Background				
i (chi	απα. ζ	-SE BG	1000	<u>5-5-</u>	6= BG)	566	8615860103 0106	+ +		21003		(22		ω	
		to We		Yes		•	No V								

Tetra Tech NUS, Inc.

Page _/_ of _/_

				NSW		BORING NUMBER: BGJSBG02												
					CTO 08	13					2.	11-71	46	·				
					plicable					ST:	S.NEIL K. SIMPSON / SINEIL							
DRIL	LING	METH	IOD:	hand	auger				र:		K	s Si	mp	50~1	5.2	113	-	
					M	IATE	ERIAL DESCRIPTION							PID/FID Reading (ppm)				
Sample No. and Type or RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soli Density/ Consistenc Y or Rock Hardness	Color	U S C Re Material Classification				Remarks		Sample	Sampler BZ	Borehole"	Driller B.2**		
	0				Loose	Br	SILT TAN	FGA SAND		ML	No	7210	×	a fours				
5-1	(\angle				I		· · ·		١	j	k		(5.4	0	53	0
	λ					1					DA	4		1				
5-3	3	\angle			MES DENSE	LT Br		TA OR MOTTUN	36		- (49	Ο	(28	0
5-4	ч						MA NODS								24	0	62	0
5-5	5	\angle					SILT SOME	City sourt for su				L			50	0	28	0
5-6	6	\angle	2		STIFF	Ginny	BLCLMY OR	TRUFGASA	20	a			VD	NSE	Pala	0	13	0
		\angle																
		\leq				ļ	T0 = 6	FT.										
		\angle																
		\angle																
		\angle																e alter e
		\angle						······										
		\angle										·····						
		\leq		•						ļ								
		\angle		-							ļ							
		\angle				ļ												
		\angle		4	٤						ļ					ļ		
		\angle				ļ					<u> </u>						<u> </u>	
		\angle		ļ														
						ļ					ļ						<u> </u>	
			<u> </u>			ļ	· ·			ļ							<u> </u>	
		\leq							_									
				-		<u> </u>		•			<u> </u>	}						
						ŀ												
		•	er rock bro		A haarbot									D_1	nc *			
Rem	arks:	S-1=	66123	A MILLING VALIS		、incré スこゝ	nate reading tree South Sill Control	uency if elevated re	por	50 18	20.		Bac	Drilli kground				<u>.</u>
		\$-	4 = 6	SG15B	66,04	<u> </u>	-5- 694	uency if elevated re 20 5 · SSG10205 ·	5	-6 :	<u>_</u> /~	256	SGa	206	- (PP		<u>بح</u>	<u> </u>
Conv	verted	to We	ell:	Yes		•	No v	Well	1.[). #:								

	, Inc
--	-------

		NAMI			ISWC Crane BORING N 087 CTO 083 DATE:							NUMBER: BG25BG05							
				not ap			55			DATI	=: 1 0GI	ST	S.NEIL						
		METH		hand								J .	K. SIMPSON S. NEIL						
						N	ATE	RIAL D	ESC	RIPTION						PID/FI			(ppm)
Sample No. and Type or RQD	(FL)	Blows / S" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Se Dens Consil Y or Ro Hards	kity/ stenc r ck	Color	M	U S C Material Classification •				Fri	Rem	•	Sample	Sampler BZ	Borehole	Dritter BZ ⁺⁻
	0	\angle			100	5	LT Br	FGLSA	22	SILT TR	cury	ML	DA		2004				
5-1	١						1		~		1	{	DA	ч. М		R.1	0	7.7	0
	2						L						(
5-3	<u> </u>						GAN	FEA	 	TR REAL	FLAGS	59				21	0	IЦ	0
5-4	4						Π^{\prime}			L		Ī				0		33	
5 -5	5						Π	FULSA	י <u>ז</u> ארי	TA SILT T	A Rock	Π				16		(22	
5-6	6					V	V		T	,		IJ				12		7,	0
	-						-	TD:	6	. .									
											· ·								
																		÷	
																	·		
										-									
									.										
		\angle			١														
		\square																	
		\square																	
		\angle																	
		\angle						·											
		\angle		ļ			·	ļ				<u> </u>							
	<u> </u>	\angle					L	<u> </u>		-									Ш
** Inclu Rem	ide mon arks:	itor readin 5-1 - 5-4- 8	6726	t intervals BG 03 G 03 C	8 bor 301	ehole 5. 5<	-3=	6025B	ng frequ BG G C T	$\frac{0303}{305}$	ed repor	se re BG1-	ad. 25/5(-	Ba 20300	Dril ackgrour م	ling A nd (pp		0.	0
Con	iorter	t to We	ell:	Vec			•	No	. /	/ M	Veil I.I	\ #							

Tetra Tech NUS,	Inc.
-----------------	------

di dala

Page _/_ of ____

		NAME			C Crane		DATE: 11/199							
					CTO 08	3	DATE:	от. [•]	11/1/99					
		METH		hand	plicable		GEOLOGI	51.	5 NTIL K. SIMPSON /S		511			
		1¥(1				ATC	RIAL DESCRIPTION		and the second second second second second second second second second second second second second second second		ID Rea	-		
Sample No. and Type or RQD	(FL)	Biows / 6°° or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soli Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample			Dritter B2**	
	0				Laussi	Br	Cirryey SILT	ML	MOIST SOME LEUTS					
5-1	1				1	1		1		0	0	0	Э	
<u>۲</u>	ス					J'S	Some Figh Sol	\uparrow	Dry			_		
<2	3		· ·		ALD Dinish	1	FENCISS REVE FLACE		J ZEFLINIE J SFT. OFF	0	0	υ	3	
<u>к-ц</u>	21				7	J		Ĭ	597 2 16 FT Refuse 10 =	0	0	0	υ	
	2.1						¥¥		2 FT. OFFSET 12 FT-The ful			_		
							TD= 3 4 FA.		C3.4FT		$\left \right $			
		\sim			· · · · · ·		$(V - \gamma) \Psi f(t)$	<u> </u>	<u>enqr</u>		\square			
										-				
											$\left \right $			
<u> </u>											\vdash			
·								-			$\left \cdot \right $	-		
											┝─┦			
				4							\square			
 										 	$\left - \right $			
				4						Ļ	╄╌┥	-		
		4		4				<u> </u>		<u> </u>				
		Ζ,			۱			 		<u> </u>		L		
		Ζ,		ł					n an ann an	<u> </u>				
ļ		Ζ,							1.					
		\angle		.										
·		\angle												
		\angle		j										
		\angle								Γ				
		\angle								Γ				
			er rock br		•	- Image			· · · · · · · · · · · · · · · · · · ·			Niji (i sanata		
Rem	arks:	5-1	= 66	SBG	0101: "	5-3:	ase reading frequency if elevated repor - らんいいろのかのろ	nse rea	d. Drillir Background			0.	σ	
	•	<u> </u>	-u- f	6256	60400	<u> </u>				\r"7"		<u></u>		
Con	verted	to We	ell:	Yes		•	No Well I.I	D. #:						

Tetra	Tech	NUS, Inc.	•
-------	------	-----------	---

Page _i_ of _i_

PRO	JECT	NAM	E :	NSW	C Crane	3		BORING N	UM	BER: BG258G05				
						33				11/7/49				
		METH			plicable	i			51:	S. NILL	<u>s.</u>		<u> </u>	
			100.	hand				DRILLER:		K. SIMPSON 1	. د		72	
Sampie No. and		Blows / 6" or	Sample	Lithology Change	Soil		RIAL DESC	RIPTION	υ		PID/FI	ID Rea	iding	(ppm)
Type or RQD	or Run No.	(%)	/ Sample Length	(Depth/Ft.) or Screened Interval	Density/ Consistenc Y of Rock Hardness	Color	•			Remarks	Sample	Sampler BZ	Borehole	Driller BZ
	0	\leq			SIFT	Br	SILTYC	LAY	CL	MOIST TR ROOTS				
5-1				-		1		,			0	0	0	0
	2			-	MAN	LTBC	TREFILISA	- ROCK FAMES	J	Day				
5-3	5				MED DENSE	L		T DIME SILT ROL FRAM	sp	REFLYCE 3FT- OFF SET 10 PT.	0	0	0	0
					-					REFUSALC 2FT- OFF ST = 15 FT.				
		\square					TD= 3 F	r - Auger		LEFUSALE 2 FT. END OF BOLINGS.				
							refusal.	ROCK Frage						
				925			at)-2	r- Auger Rock Frags FL interval		an freedowiki ng dalam na canangarang ga ang katika				
								Oured bedrock						
					r		с.							
													·	
		\angle												
		\angle												
		\angle												
		\angle												
		\angle												
		\angle			٤									
		\angle								· · · · · · · · · · · · · · · · · · ·				
		\angle						-						
						ļ		×						
						ļ				·				
		\angle				ļ					\bot			
		\angle								·				
		\angle					<u> </u>							
** inclu	de moni	itor readir	er rock bro ng in 6 foo BGJS(t intervals	© borehole	. Incre - 3 ~=	BG125 BG10	uency if elevated repon: 2503	se rea	a. Drillin Background	-		0.	0
Conv	erted	to We	ell:	Yes		•	No -	Well I.D). #:					

TET Tetra Tech NUS, In	NC.
------------------------	-----

Converted to Well:

Yes

No _

~

t.	B	0	F	21	N	IG	00	3

PROJECT NAME: NSWC Crane								BORING NUMBER: Se358 ADI DATE: 11/2/99											
				0087			33	DATE: ۲۲/۵/۹۹ GEOLOGIST: ۲۰ مازید GEOLOGIST: ۲۰ مازید											
				not ap	and the second second	the second second second second second second second second second second second second second second second s				GEC	LOGI	ST:		· NIFIL	1				
DRIL	LING	METH		hand	aug			·	Latin and A				K. SIMPSON/K. HEARN						
						N	ATE	RIAL D	ESCRI	PTION					6	ID/FI	D Rea	ding	(ppm)
Sample No. and Type or RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Dei Cons R Han	oli Isity/ Istenc y ock iness	Color	Ma	U S C Material Classification S *				Sample	Sampler BZ	Borehole -	Driller B.Z.			
-	0	/			Lice	٤	Br	Silbu	IFSC	Shad		ML	DA	-1					
5-1	i				1		LSE		1		FRAGS		1	•	T	10	0	24	0
_	2						1								F				M
		\sim	·	÷.			┼┼					++	\vdash	KEFULAL - O	FF				
5-3	3					<u>k</u>	17	L	×_		٢	$\downarrow \downarrow$	7	- SIT = 25 P		17	С	50	2
								TD =	3 F	7-14	<u>ا</u> ۲			100 A. 19					
					.			REFUS	MQ	3FT	نەد .								
		/						3 DIF											
							<u>†</u>	0.011	- CERA		<u> </u>								
		\sim			<u> </u>												 	_	
								ļ				-							
							-												
		\leq																	
				· .														·	
							1							,					
<u> </u>		\sim										┼──	┝──				-		
 		\leftarrow					<u> </u>					<u> </u>							
		Ζ,			L		ļ					<u> </u>	 						
		\angle												•					
					1								Γ						\Box
				1		-													
		\sim			-		+					\vdash					\vdash		┝─┦
 		~		4	-		+	<u> </u>									\vdash		┝─┦
<u> </u>							<u> </u>						L						
		\angle							_										
]]				1						·	Π
							<u> </u>	<u> </u>											\vdash
* When	nock c	pring, enti	er rock bri	i Dikeness.	L		<u> </u>	L				<u> </u>	L						
** inciu	de mon	itor readin	ng in 6 foo	t intervals	@ bo	rehole	e. Incre	ase readin	g frequen	cy if eleva	ited repon	Se 16(ad.						
ĸem	$\frac{1}{1000} \text{ Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.} Drilling Area Background (ppm): 0.0$																		

Well I.D. #:

Tł	etra Tech	NUS, Inc.
----	-----------	-----------

		NAME			C Crane		BOR	BORING NUMBER: BG356A01								
		NUM				33	DATE: ۱۱۱۲۱۹۹ GEOLOGIST: ۲, ۱۱۲۲۱۹۹									
					olicable		GEU	LOGIS)]:		12.	16				
URIL				hand						K. Simpson /	<u> </u> 2 ·	(-17,	~~			
					N	IATE	RIAL DESCRIPTION					PID/FID Reading (ppm)				
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density/ Consistenc Y or Rock Hardness	Color	Material Classification		U S C <u>S</u> •	Remarks	Sample	Sampler BZ	Borehole	Driller BZ**		
1	0	$\$			V Locsi	Br	Silt trace same	x	ML	Heavy rost met. Moist						
5-1	Ì									L	0	0	D	0		
1	2					lst Br	V FSC Sand som	esile	ŞΜ	Dry						
5-3	3	\angle				¥	Rock	Frags.		1	0	0	0	0		
5-4	4	\angle				SE			J	J OFESET = 15 PT.	0	0	0	0		
>-্	4.5	\angle			1		V For Sand W/ Pock	FRAG	SM	Dry						
		\angle					· · · · · · · · · · · · · · · · · · ·			1						
		\angle					REFUSAL - TD= L	1.5F	-							
		\angle					Off set tawice	,								
		\angle														
·		\angle														
		Ζ,								· .						
· ·		Ζ,								· · · · · · · · · · · · · · · · · · ·						
		Ζ,														
		\angle					· .				<u> </u>					
		\angle														
		\angle									\bot					
L		Ζ,			1	<u> </u>			ļ	· · · · · ·	 			Ш		
ļ		Ζ,	ļ			<u> </u>					_			Ĺ		
ļ		\angle	ļ	ļ		ļ		-		l	_	<u> </u>		\square		
 		Ζ,	ļ			 					<u> </u>	<u> </u>				
 	ļ	Ζ,	<u> </u>	4		<u> </u>						<u> </u>	<u> </u>	\square		
		\angle	ļ							ļ		<u> </u>	<u> </u>	\square		
 		\angle	ļ	ł		 					<u> </u>	<u> </u>	<u> </u>	\downarrow		
L			<u> </u>	<u> </u>			<u> </u>									
** inciu	ide mon	itor readi	er rock br ng in 6 foo	x intervals	@ borehole	e. Incre	sase reading frequency if eleva	ted report	50 103							
Rem	arks:	<u>S-1=</u>	BG3	58.A0	201.	5-3	= BG358A0203			- Background	(pp	m) :	0.	0		
_	Remarks: $S-1 = BG35BA0201$; $S-3 = BG35BA0203$; S-4 = BG35BA0204; $S-5 = RG35BA0205Only 4 Samples Files - refused a Sector Sector Converted to Walls$															

TE Tetra Tech NUS, Inc.	Tł	Tetra	Tech	NUS,	Inc.
-------------------------	----	-------	------	------	------

Page _ of _

					C Crane				BER: 635340	13			
					CTO 08	3	DATE:		113144				
		METH		hand	plicable			GIS1:	S. Nill K. Simpson/K.	te ~	~		
								<u>г.</u> т	E.SIMPSONT F.I				
Sample	Depth	Blows /	Sample	Lithology	IV.	AIE	RIAL DESCRIPTION	U		PID/FI	D Rea	ding	(pom)
No. and Type or RQD		5" or RQD (%)	Recovery / Sample Length		Soli Density/ Consistenc Y or Rock Hardness	Color	•	S C S ·	Remarks	Sample	Sampler BZ	Borehole"	Driller BZ
	0				Loosa	Br	Silt w/ brack for se	nciML	Moist				
5-1	1						1 .12			0	0	C	σ
	2	\angle			\downarrow	Lt Gr	S. It wy trace sends trace gravel						
		\angle					TD = 1 FT. HIT		ASHL MOVED				
		\angle					Touice.						
		\angle											
:		\angle											
	· .	\angle		-									
		\angle											
		\angle											
		Ζ,											
		\angle											
										<u> </u>			
										4			
							·			<u> </u>			
					1					<u> </u>			
								·		<u> </u>			
								<u> .</u>		<u> </u>			
										<u> </u>			
								•		_			
		$ \rightarrow $					· · · · · · · · · · · · · · · · · · ·			<u> </u>			
* When	rock co	pring, ente	er rock bro	keness.				-	1				
** includ	* Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area Background (ppm): [0, 0]												
Rem	arks:	5-1	= <u>BG</u> Ly on	SBAC	23. PLE THE	(f mi .	NUE TO REFERENCE - AL	J+N -	Background		m):	0.	O
0	ONLY ONE SAMPLE TAKEN DUE TO LIFUSAL - MOVED TWICE, BUT ENCOUNTERED REFUSAL AT THE TWO ADDITIONAL BARINGS.												
Conv	Converted to Well: Yes No Well I.D. #:												

Tetra	Tech	NUS,	Inc.
-------	------	------	------

Page ____ of ____

		NAM			C Crane			BORING	NUM	BER: BGSSBAD	4			
						33		DATE:	•	11/11/99				
					plicable					2				
	LING	METH	100:	hand					-	K. SIMPSON &	<u>د</u> .			
Sample	Depth	Biows /	Sample	Lithology	N	ATE	RIAL DESC	RIPTION	_		PID/FI	ID Rei	ading ((ppm)
No. and Type or RQD	(FL)	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc y or Rock Hardness	Color		Classification	U S C S •	Remarks	Sample	Samplet BZ	Borehole	Driller BZ
	0	\angle			10055	B.	Silt some	Cley V fgr jan	JML	Moist				
5-1	١	\angle						, ,		L	0	0	.3	0
	X	\angle			1	15				Day				
53	3	\angle			Locst		FOR SANDY	SILF THEE CIN	1		0	0	0	D
5-4	Ч	\leq				Ł	,	TRESSILT		MOIST	0	0	1.1	D
5-5	5. T	\angle				LBY	FUL S.W	IN	5P		0	Ø	c.1	0
5-6	5.5				X	J.			4		0	0	υ	0
		\angle					TD - 5.5	FT. HIT	REFU	SAL BEDROCK				
							Court	10 ml 5	sma	Lis.				
		\angle							_					
		\leq									<u> </u>			
		\leq												
											_			
									-	· · · · · · · · · · · · · · · · · · ·	–			
										·····	_			
											–	ļ		
	-	\leq			٤						<u> </u>			
											_			
		\leq									<u> </u>			
											_	ļ		
		$\langle \rangle$							_		_			
											+			
		\leq			<u>, .</u>						+	\vdash		$\left - \right $
• When			r rock h-	kezano							<u> </u>			
	* When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area													
Rem	arks:	5-1=	36356	AONDI	5-2=	362	5640403 .	-4 = B6358A	0404	Background			0.1	ס
	•	5.5	: <u>B</u> 6	3582	5-105	5-6.	= BLJ358AON	106.						
Conv	Converted to Well: Yes No Well I.D. #:													

1

Page _____ of ____

				NSW				BORING	NUN	ABE	<u>R:</u> 3	35.5,405				
				0087			33	DATE: <u>۱۱/4/44</u> GEOLOGIST: ۲۰ ۸۲۱۲								
				not ap						<u>S</u> .	NEI	L				
DRIL	LING	METH	HOD:	hand	aug			DRILLER	•	k	L. Sin	mpsom/S.	N41	<u>ر</u>		
						N	IATE	RIAL DESCRIPTION					PID/FI	D Re	ading	(ppm)
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sampie Recovery / Sampie Length	Lithology Change (Depth/FL) or Screened interval	St Den Consi) o Ro Hard	sity/ stanc / r ick	Color	Material Classification	U S S S •		Re	marks	Sample	Sampler BZ	Borehole"	Driker BZ
	υ	\angle			100%	م نہ	Br	FGIR SANDY SILT	M		xy.	SOME FORTS				
5-1	1									1	1	J	0	0	.7	0
1	۶									1				Ē	•••	Ŭ
5-3	3							FOR SANDY SILT TR CLAY			1		16	0	24	D
5-4	4					ļ		SILT TH CLAY TH FILLSA	1.100		l		31	0	ig	0
45	5	\angle				V				٨	Mois	TRACE RED STAIN	*	*	*	*
5-6	5.5	\angle			60	51	V	FGR SAND SOME SILT THE ZOUR FELL SAND THEY SILT FRA	:. 5 P		V	-	1	Y	l	L
		Ζ,		•												
		\angle						D= 5.5 FT. HIT	Ri	Fus	AL :	All				
Ŀ		\angle						SAMPLES TAKEN(L	1		,					
		\angle														
		\angle													·	
		\angle						·								
		\angle														
		\angle														
		\angle			١											
		\angle				-										
						_										
								•								
		\angle										Andreas and an or other				
		\angle														
	* When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
Rem	arks:	orreadin ≶-i =	ig in 6 tool BGZS	KANSO	C bor	ehole < - 2	. Incre . ∽_ Ø	ase reading frequency if elevated repo	onse ro	ad.		Drillin				
		5-5	- 363	SAOSO	5:	<u>- 1</u>	ο= β	63556A0503, 5-4=B635 6356A0506.	5AOS	204;	E	Background	(ppi	m):	0.	له
		to We		Yes	10/11	16.	-	No - Well I								
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	163				INU - VVEILL	U. #	T						

Well	1 0	1 #
AAGII	1.L	J. #1

No

	ł	Tetra	Tech N	IUS, Ind	D.		BORING LO	G	Pag	e	/ (of_	./			
PRO	JECT	NAM	Ξ:	NSW	C Crane	2	BORING N	IUM	BER: BG35BM	01						
						13										
					plicable		DATE: ۲/۲۰/۲۰۱۹۹ GEOLOGIST: ۲٫۸۶۱۴									
DRIL	LING	METH	HOD:	hand	auger		DRILLER:		K. SIMPSON/K	1.1	fan	~				
					N	IATE	RIAL DESCRIPTION		:	PID/FI	WFID Reading (ppm)					
Sampie No. and Type or RQD	Depth (FL) or Run No.	Biows / 6" or RQD (%)	Sampie Recovery / Sampie Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**			
	0	/			Loosi	Br	Clana silt		Ruct mat. Dry	0	0	0	0			
5-1	-	$\overline{}$				1	Clayey silt	IT YA	pore mat. ry	٣	10		M			
2-1								$\downarrow\downarrow$		0	0	0	0			
	2				7											
5-3	3				DENSE		Iron Nody. No titled - Biecky Clay		off set 20 feet.	0	0	0	0			
								1			\square					
							011115	+			\vdash		\vdash			
				<u>м</u>			Refusal at 3 H	<u> </u>		ļ	\square	<u> </u>				
							Off set twice.			L						
		\angle					Refused at 3 Fr Off set twice. TD = 3 FT.									
					-				alines ere se trijk some		\square					
		7														
		$\overline{}$						1		<u> </u>		•				
								+					\square			
				1				1		<u> </u>						
		$\overline{}$		1				+		-	+					
								+			┢─┤					
								+		-	-		\vdash			
				1			<u>.</u>	+	· · · · · · · · · · · · · · · · · · ·	\vdash	┢					
				1				+	······································	┼──	\vdash		\vdash			
											+		$\left - \right $			
						<u> </u>		+			+	-	┝─┤			
				1					· · · · · · · · · · · · · · · · · · ·	╂──	+		+			
<u> </u>				4				+		+	┢		╂──			
				1			÷	+		╞	+	<u> </u>	+			
		>		ł				+		┼──	┢──	-	┢			
L			L	<u>I</u>	1	<u> </u>	1		l	<u> </u>	┶	<u> </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>			

* When rock coring, enter rock brok

** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Remarks: 5-1= BG356m0101 S-3 = BE35BM0103

No

3 FEET.

Well I.D. #:

Drilling Area Background (ppm):

Converted	1 to	Well:	Yes

Tetr	a Tech	NUS,	Inc.
------	--------	------	------

1

Page <u>|</u> of <u>|</u>

		NAME		NSW			BORING	IUM	BER: 663 56N	102	•		
		NUM		0087			DATE:		112197				
				not ap	the second second second second second second second second second second second second second second second s)			5. 1912				
DRIL	LING	METH	IOD:	hand	auger		DRILLER:		K. SIMPSON / 10	·H	<u>م محم ۲</u>	<u>~</u>	
					1	MATE	RIAL DESCRIPTION		-	PID/FI	D Res	iding ((ppm)
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consister y or Rock Hardnes	Color		U S C S	Remarks	Sample	Sampler B2	Borehole"	Driker BZ**
	0	\angle		-	V 60059	Br	Clayey silb	MX	Moist Heavy				
S-1	ł	\angle						\downarrow	Moist Heavy Roots	29	0	458	0
	2	\angle							Dry				
5-3	3						<u>V</u>		V V	149	υ	79ر	0
5-4	4	\angle					Clayer silb brace canon		V. Dry	14	Ο	171	0
5-5	5	\angle			Meis	LT BC	1 L	V		35	U	48	0
5-6	6				DANSE	Br	Blocky clay w/ red not.	<u> </u> CL	Dry	31	υ	59	0.
								ļ	End TD=6FT.			_	
		\angle						<u> </u>					
						-							
								┨───	· · · · · · · · · · · · · · · · · · ·	-			
		$\overline{}$							· · · · · · · · · · · · · · · · · · ·	+			
	-	\frown						+		+			
								+		┼──			
					1		· · · · · · · · · · · · · · · · · · ·	+		+			
								1		<u> </u>			
								1					
		\angle											
		\angle											
		\angle											
		_											
** inciu	de mon	itor readin	er rock bro ng in 6 foo	t intervals	@ boreho	ile, Incre	sase reading frequency if elevated repo	nse rea	nd Drillir	na A	rea		
Rem	arks:	<u>5-1=</u> 5-1=	6635 66735A	6M221	51 S-	3 = 6	635BM0203; 55BM0205; 5-6-6635A		Background			0.	。

Converted to Well: Yes

No

く

Well I.D. #:

PROJECT NAME: PROJECT NUMBER:					C Crane		BORING NUMBER: 3635BM03											
					CTO OE	33		DATE:		11/2/44								
					plicable			GEOLOGI	ST:	S. NAL		1-						
DRIL	LING	METH	IOD:	hand						K. Simpson / 1		†?~						
			÷.,		. N	ATE	RIAL DESC	CRIPTION			PID/FI	D Re	ading ((ppm)				
Sample No. and Type or RQD	(FL)	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soli Density/ Consistenc Y or Rock Hardness	Color	Materia	i Classification	U S C S	Remarks	Sample	Sampler BZ	Borehole	Driller 62"				
	0				1.0052	med Br	SILT - SO	mer curry	MU	DAY - MOIST	12.3	0	101	0				
5-1	ì	\square				\prod		· · · · · · · · · · · · · · · · · · ·		l	↓	4	۲.	V				
	2	\angle						/ · · · · · · · · · · · · · · · · · · ·		Dry								
5-3	3	\angle					CLAMEN	SILT	ML		14.6	0	137	0				
5-4	4	\angle						ORAMIGE STAIN	Ц		60	0	37.3	0				
5-5	5	\angle				LGT 61				V.Day Fe Nod.	15.9	0	673	0				
5-6	6	\angle			J.	or		/ Some sand	V		15	0	354	0				
ļ		\angle				ļ				-	<u> </u>							
<u> </u>		\angle					TO = 6	Ft.	ļ .		<u> </u>	ļ						
<u> </u>		\angle																
		\angle							ļ									
ļ		\angle				ļ		With The initial and group ways against the analysis of a starting starting starting starting starting starting	ļ			<u> </u>						
ļ		Ζ,	. •			 	-				<u> </u>							
											<u> </u>	ļ						
<u> </u>		$\langle -$				<u> </u>						-						
		\angle				<u> </u>		 				ļ	<u> </u>					
						<u> </u>	·	······································	 		_	<u> </u>	<u> </u>					
ļ	<u> </u>				<u> </u>	<u> </u>			<u> </u>		_	<u> </u>	_	 				
 				•							-		┣—	┼╌┨				
 				•			<u> </u>		-		+	-	╞	┝╌┥				
				•					<u> </u>			$\left - \right $	+	┼╌┨				
<u> </u>	<u> </u>	$\langle - \rangle$		4			ļ		-	·	-		┼	┼╌┨				
 			┨		 		<u> </u>		┼─		+-	+	\vdash	┼┤				
				-			<u> </u>		-		+	+	–	┼╌┨				
* Whe			er rock br	okeness														
** Inclu	ude mor	itor readi S-1=	ng in 6 foo AG35	t intervals	N: 5-	2 = 6	5-358MO	quency if elevated repor		Background	ng A d (pp	(rea (m)	0	.0				
		5-4-	6435	BMOZO	<u>, , , , , , , , , , , , , , , , , , , </u>	-5=	66356mo	305: 5-6=6	63	semo 306.								
Con	verte	to W	ell:	Yes		-	No 🗸	Well I.I	D. #	•								

Tetra Tech NUS

Inc.

BORING LOG

Page _ 1_ of _ _ _

PROJECT NAME: NSWC Crar PROJECT NUMBER: 0087 CTO 0							BORING N	UM	BER: BG353 MOL	i _			
						3	DATE: GEOLOGI	·	11/3/94	······			
					olicable			ST:	S. NIL		Te		
DRIL	LING	METH	IOD:	hand			DRILLER:		K. Simpson / K	- • /	22	~	
					N	ATE	RIAL DESCRIPTION			PID/FI	D Rea	iding (ppm)
Sample No. and Type of RQD	(FL)	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soli Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S •	Remarks	Sample	Sampler B2	Borehole	Driller BZ
	0	\angle			LOOSE	B	Silt w/ tracky - sama	ML	MOIST				
5-1	٦.					1				0	0	0	S
	よ	\angle				LE Br	· ·	V	Moist - dry				
5-3	3	\angle			DENSE	1.3-1	Blacky clay somesilt	p	Morea off st have	c	σ	o	o
5-4	4	\angle			1	LB1/		1	DRY	1	0	31	D
5-5	5	\angle			10052	Ц.	Rock Frags; Fe Nich	82	Day	4	0	40	0
5.6	يا				d	$ \downarrow$	V	4	Dry	6	0	81	0
		Ζ,						<u> </u>		<u> </u>			
		\angle				ļ	TD=6FT.						
		\angle					· ·						-
		\angle											
		\angle							<u> </u>				1
		\angle											45
		\angle		· .									
		\angle					·			1			
		\angle				<u> </u>							
		\angle											
		\angle			1								
		\angle											
		\angle											
		\angle											
		\angle							·				
		\angle		Ì									
		\angle							·				
		\angle											
	* When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area												
Rem	arks:	S-1=	Jazsen	10401	S-2-64	0. Incre ≥358	sase reading frequency if elevated repor Moy 03', S-4 = BG3SBM0400 - BG3SBM0406 ,	150 10: 1	d. Drillir Background			C.	÷
		<u> </u>	5=B	63581	10405.	5-6-	- Bessemodole,	-					
Conv	verted	to We	ell:	Yes		•	No Vell I.	D. #:					

					C Crane		BORING N	UM	BER: BG355 MOS				
				0087	CTO OE	33	DATE:		113199				
					plicable		GEOLOGI	ST:					
	LING	METH		hand			DRILLER:		K. Simpson /	<u>~ .2</u>	181	<u></u>	-
Sample					N	ATE	RIAL DESCRIPTION			PID/F	ID Rea	eding	(ppm)
No. and Type or RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soli Density/ Consistenc y or Rock Hardness	Color	Material Classification		Remarks	Sample	Sampler BZ	Borehole"	Driller 82-
	C	\leq			10034	BC	Clayey silt	mit	MULLET ; ROLT MAT				
5-1	1									0	0	1.3	0
	2				V		True Sanet	V	Dry: lighter color			3	3
5-3	3				MED DENSI		Blocky clay Tree sand	ĊL		0	0	•3	0
54	4	\leq			10057		For sand some silt Tr Clay Rack FRAGE	SM		28	0	Ab	0
5-5	5	\angle					For send trace silt	SP	Fe Nords Dry : derker color	iG	0	23	0
5-6	6	\leq			VOR	X	v or stein	V	Dry - MOIST	۲.۱		4.2	
		\leq)				
		\angle					TD=6 AT.						
		\leq			·								
		\square							· · · ·				
		\square										·	
		\leq	-										
		\leq											
		\geq											
		\leq											
					۱								
		\leq											
		\leq											
		$\langle \rangle$											
		\leq											
		\leq											
		\triangleleft											
		$\langle \rangle$											
			r rock broi a in 6 foot		• here-t				~	-			
Rema	arks: \$	S - i = A	y in a 1001 (425,Run	mervals (gy Dorehole. C-スニピ	increa _/2 <	ase reading frequency if elevated repons <u> <u> <u> B</u>M0503; <u>S-4</u>= <u>B</u>GB3BM0</u> </u>	ie rea	a. Drillin · Background				
		5-5	- 6635	BRIDE	5-5-6	: د. مر غ اء =	135BMOTOL	<u>yor</u>		(hhi	ny:[<u>, (</u>	
Conv	- erted	to We		Yes				#.					

1

PRO	PROJECT NAME: PROJECT NUMBER:				C Crane		BORING N	BORING NUMBER: BG35BMOG										
					CTO 08	3	DATE:	-	112/94	-/94								
					plicable				S. NAIL									
DRIL	LING	METH	IOD:	hand	auger	-	DRILLER:	•	K. Simpson / K	- 1-	14 ~	~						
					N	IATE	RIAL DESCRIPTION			PID/FI	D Rea	iding	(ppm)					
Sample No. and Type or RQD		Biows / 5" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soli Density/ Consistanc Y or Rock Hardness	Color		U S C S ·	Remarks	Sample	Sampler B2	Borehole"	Driller BZ					
	0	/			Loosi	Drik Bc	Organic sills	δ	Moist									
5-1	1	\square				\mathbf{V}	\checkmark	V	V Contraction	15	0	43	0					
	2	\angle				Br	Silts w/rd stein	MU	Dry	-								
5-3	3	\angle			MED DENSE		Clay w/somesilt silby sand	₽ ¥c		14	0							
5-4	35				10038	\downarrow	silby sand	ML	Rock Frags	と	0	50	0					
		\angle							Refusal at									
		\angle							3.5 Feet -									
		\angle				<u> </u>			3 different									
		\angle				ļ			locations Augured.									
		\angle							Augered.									
		\angle																
		\angle								<u> </u>								
		\angle																
ļ								1										
	·																	
		\angle		1														
		\angle			-													
		\angle			١.													
		\angle																
<u> </u>		\angle																
		\leq																
	·	\angle							· · ·									
		\angle																
		\leq																
			er rock br		A L 1 - 1				A _1111									
Rem	arks:	S-1 :	- BG39		g borehole • O () S	9. Inch 5-3	ease reading frequency if elevated report - BB35BM0603 *	nse re:	ad. Drilli Background	ng A 1 (dd	(rea m):	0	. उ					
		5-0	1 = 54 (50	5 B63	SBROW	<u>Ч.</u>	= 86358M0603 only 3 samples taken a	dere	to refuse le 3	Š	É	T.						

Converted to Well:

Yes

•	No

-

Well I.D. #:

Æ	Tetra	Tech	NUS,	inc.
---	-------	------	------	------

		NAME		NSW				DATE: GEOLOGIST: DRILLER: K S. Atil K S. Atil														
		NUM		0087			33				DA	TE:	.	-11	3144	.[46						
				not ap							GE		SI:	<u>_</u>	. 1-11L	$\frac{1}{c}$						
DRIL	LING	METH		hand	auç							 	-	<u>Ľ.</u>	SIMPSON	<u>/ </u>	۶ نہ	12	يستجتمع			
Sample No. and Type or RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	De Con	N Soil nsity/ sistenc y or tock rdness	Color		Materia	CRIP"		•	U S C S ·	Remarks			PID/FI admag	Sampler BZ		Driller 6.2**		
	0	/			ترا	558	md- UBr	รแ	- 50~	رز ۲۵	Ang				1. ZOOT MA	π						
5-1	1								1		•		1	T			0	ь	0	0		
	よ	\square			•		UT GAA	4		TR	VF	ASAND		VI	XJ							
5-3	3	\angle					Loc						Ц				0	0	0	0		
54	L					k	1		<u>`````````````````````````````````````</u>	1	J	/	1				0	0	0	О		
55	5	\angle			M 2	ense .		Blue	y Clin	Some	SIL	17615N <u>1</u> T	'ci		<u></u>		0	0	0	Э		
5-6	نا	\angle			_			. 	, ,	V			V		\downarrow		0	0	υ	D		
		\angle					<u> </u>	37) = 6	<u> </u>	•			·								
		\angle			L			ļ						ļ								
		\angle			<u> </u>																	
							<u> </u>							ŀ								
		\angle					ļ															
		\leq																				
<u> </u>																				ŀ		
								ļ	· · · · ·													
					ſ.							· ·										
												•						Ĺ				
		\square											-									
										hanna da na sa	entities whe				· · · ·							
									•													
** Inciu	ide moi		ng in 6 fo	ot intervals								vated repo			Daal	Drillin						
Reff	arks:	5-1=	D=35 5=B6	356mo	л; по	<u>>-3</u> C;	- 6 6 5-6	5515	MOTO GJSBI	5; 5- Mo7	-4= 06	6 6351)MO"	<u>104;</u>	Backg	round	(PP	an):	Ű	-0		

Converted to Well: Yes

No ____

Well I.D. #:

Tetra Tech NUS, Ir	IC.
--------------------	-----

		NAME			C Crane			BORING N	UM	BER: BG353MO	3			
		NUME				3		DATE:	· .	113144				
				<u> </u>	plicable			GEOLOGIS	51.	S.NIL K. S. Dirich		16 41		
			100.	nanu						K. Simpson / K				
Sample No. and Type or RQD		Blows / 6" ar RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft) or Screened interval	Soil Density/ Consistenc Y or Rock	Color	RIAL DESCRIP		ม ร ร ร	Remarks	Sample			Driller B.2.4 (mdd)
					Hardness									
	Ù				0059	35	Vfije Sandys	ilt w/	WL	MOINT				
5-1	l						true clay	Some grove	V		0	0	0	0
	2				60075	LE Br	Silty Far sa	ind	ŚΜ	Return to F.				
5-3	J.S	\angle			Locst	1	trace chuy Silty far sa Fg- sand son	re FRAGE	San	Day	4	0	13	0
							70 = 2.5	FT.	Б₽,	7				
		\angle					Refused a	Her mov	inc					
		\angle					onto anot	hor hole						
		\angle						•		· .				
		\angle											•	
		\angle						• .						
		\angle												
		\angle												
		\angle			· .	ļ	·							
		Ζ,												
		\angle			1	·								
		\angle				<u> </u>		-					-	
		Ζ,												
<u> </u>		Ζ,		ł				MARGINE .			<u> </u>			
ļ		Ζ,		4			•							
		Ζ,		1										
		Ζ,												
		\angle												
		-	er rock bri en in 6 fee		A b t									
				Smort			ase reading frequency = BG3SBM0803	IT elevated repon	50 TG	ad. Drilli Background			٥.	0
•		Only	2 San	relei	terken	die	to refusel.							
Conv	/ertec	to We	ell:	Yes		·	No	Well I.[) #·			<u></u>		

Tetra Tech NUS, In	c.
--------------------	----

		NAME			C Crane		BORING N	IUM	BER: B635BM09				
					CTO 08 plicable	53		ст.	5 NGIL				
				hand			DRILLER:	51.	K. Simpson / S.	~(11		
			1			ATE	RIAL DESCRIPTION	<u> </u>			D Rei	ding	. (2)
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery J Sample Length	Lithology Change (Depth/FL) or Screened interval	Soli Density/ Consistenc y or Rock Hardness	Color		U S C S	Remarks	Sample		Borehole*	Ť
ļ	0	\angle			10034	Br	Silt w/ some clay to vfyrsan	ML	Moist		0		ļ
5-1	1							Щ_	Moist.	0	0	0	ļ
	よ				10059	$\left \right $	Clayer Silk to vegescod	μ_	Moist				╀
5-3	3					Lec	J Zocal Educe	₩.	Dry	0	0	.3	t
5-4						Gen	Clayer Silt Some for sind	1		0	0	6	+
× ×	5						Refusal at 4 FT. Mo.	20	BOAINE LOCATION	ļ			┦
							UPSLOPE = 20 FT REFUS						
							TD= 4 FT 3 SA	have	TS TAKEN.				4
ļ		<u> </u>											4
<u> </u>						ļ							
 						ļ		<u> </u>					
											-		╡
						<u> </u>				_			
						<u> </u>		-					
		\leftarrow											
						 	· · · · · · · · · · · · · · · · · · ·			-	-		. 1 .
										\vdash	-		_
				r	1	<u> </u>		┼					-
								<u> </u>		┢	┢		
<u> </u>		<								┢──	┼──		
 						+		+		┞			-
		$\langle - \rangle$				-				+	+		-
<u> </u>						$\left \right $		\vdash			$\left \right $		1
		\sim	-			-		$\left \right $		+	+		
* When	1 rock or	prina. ente	er rock bro	keness		L		1		<u> </u>	1		
** inclu	ide mon	itor readin 5'-1 =	ng in 6 foo	t intervals	C borehold	K = K	use reading frequency it elevated report Set 4 GBSBM0903; S-Z=BG33 - So refuse (7 Sed rock-	ise re	ad. Drillir موجد Background			0.	

	h NUS, Inc
--	------------

1

PRO	JECT	NAME	:	NSWO	C Cra	ne	;			UME	BER: B	335BMI	0					
	_			0087 (13				E:		11/4	199				
				not app									S. NE		6	16		
DRIL	LING	METH	IOD:	hand a	auge						LLER:		K. Sin	pson 1	5.1			
						M	ATE	RIAL D	ESCRIF	TION	J				PID/FI	D Rei	iding ((ppm)
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Densit Consist y or Roci Hardne	hy∕ ænc	Color	Ma	iterial Clas	sificatio	on	U S C S ·	Rer	narks	Sample	Sampler BZ	Borehoie	Driller B.2"
	0	\leq			ঠন		Br	SILTY	ciny		•	с	Moisr;	TR LOOTS				
5-1	1	\angle								TAR	AL SAND			1	4	0	550	0
	ン	\angle																
5-3	3	\angle			J				ont to		<u> </u>	ł	Dry	INL - OFPILT	67	0	88	0
5-4	4				Loos	٤		SILTS	DAZCLA	4 50	if for sa	ML	1 =15	Pr. West	17	0	54	0
-		\angle					-	REFU	SAL AF	The of	FStr -	دلم	18 = 108	T. CMT				
5-5	4.5	\angle			6005	٤	br		LAGE F			ML	Duy		12	0	27	0
		\angle						· •						· · · · · · · · · · · · · · · · · · ·				
		\angle						TD = L	1.5 Ft.	OF	FSET	Tw	ce AFT	h INITA				
		\angle						boun	to with	T	4 Fr.	H	T LEF	ISAL C				
		\angle		4	L		ļ .	4 FT	ON F	TRST	OFFSCT	An	D REF	usa c				
		\angle						4.5	FT. ON	FCO	DOKE	SE	. TOU	e samples				
		\angle						5-1	5-3 4	- 5 - 6	tout	DE	FIRST	BONNE				
		\angle						140	5-5	cut	of TH	17	HILD B	11~6.				
		\sim												•••				
		\leq																
									•									
					1													
		\geq]														
		\angle									· .							
		\nearrow							•				·	·				
		\geq																
		\geq															Γ	
																	Γ	

ng,

** Include monitor reading in 6 foot intervals @ borehole.	Increase read	ling frequency if	elevated reponse read.	Drilling Area
Remarks: S-1- 69356MID 01: S-3	= Bladsb	M1003:		Background (ppm): O. o
5-4 = 6635BM1004	S-S=bb	ashmioos		
Four out of five sam	ous ter	ien.		
Converted to Well: Yes	No		Well I.D. #:	

SUPPLEMENTAL FIELD EVENT

PRC DRI	DJEC LLIN(G COM	BER: PANY:	0087	C Crane CTO 08 plicable auger		DATE:		IBER: BG-15B 10.700 K. SIMPSON NA				Re	jetts
	T	1			M	IATE	RIAL DESCRIPTION	Τ		PID/F	ID Re	eding	(ppm)	}
Sample No. and Type o RQD	(Ft.) or	Blows / 6° or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Consistenc y	Coloi	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller 82**	TIN 080
	D				SOFT	BRN	CLAY SOME SIT	U	MOIST ROOTS	_				080
	1				(1		1	1					
5.	2	\square	1			Π		\prod	TR RUST CO	COV	R			
5	3						SILTY CLAY		WET					
S,	4		1	4		\prod		Π	GRAY/RUS NOTTI	NO	00	ri.		083
5	5	\square			\checkmark	V		V						08-
	6						TD= 6'			•			1	
			1		······································	1	WATER @ 4'		· · · · · · · · · · · · · · · · · · ·					
		\mathbf{k}	1				4 SAMPLES COLL	FC	FED					
		\sim	1				I SENT TO LAP		0203'					
í —	\uparrow	\sim												
		\sim	1											
									an a shu ana bhlaicht an a a					
	1	\sim					a ana an an an an an an an an an an an a							
 		\checkmark				 	· · · · · · · · · · · · · · · · · · ·							
	1	\checkmark												t.
		< >												
		\checkmark				\vdash			an an an an an an an an an an an an an a					
· · · ·		$\langle -$					· · · · · · · · · · · · · · · · · · ·							
		\vdash												
		\vdash				<u> </u>	PID IS NOT WORKI	17						
		<												
	<u> </u>	\leftarrow					K= SENT TO LAB ALSO FROM THIS SI	<u> </u>	0203' 2x vol.				┝─┨	
		$ \nvdash$					FUR MS/MSD &	۲_				ļ		
		\nvdash	ļ				CONTAINED FOUL OF	10	00 chinataal	ļ				
* \1.11				kar				Ľ	BG-FD10070001	L				ł
Inch	ide moi	nitor readi	4++ -		192	. Incre	ease reading frequency if elevated repor	se rea	^{ad.} Drillin Background				_]	
Con	verte	d to We	əll.	Yes		- :	No i Well I.E) #·					,	

					C Crane				IUM	BER: BG-15E	<u>} A</u>	}	2	8	•
						53		DATE: GEOLOGI	ет.	10.6.00 K. SIMPSON	7,	,	NA C	Se a	AFTE
		i METH			plicable			DRILLER:	51.	NA	/ +	٢	14VL	ν <u>ς</u>	
UNIL	LING		100.	hand					1						
			0	1.20-1	N	IATE	RIAL DESCRIF	PTION			PID/FI	D Re	eding	(ppm)	1
Sample No. and	(Fl.) or	Blows / 6" or RQD	Sample Recovery /	Lithology Change (Depth/Ft.	Soil Density/				U S C	D	0	BZ	10	82**	
Type or RQD	Run No.	(%)	Sample Length	or	Consistenc y	Color	Material Clas	sification	S	Remarks	Sample	Sampler	Borehole	Driller B	
				Screened Interval	or Rock Hardness						S	San	ð	D	TIN
	D	\geq			SUFT	FRN	SILTY C	IAY	a	MOIST RUTTS					- 154
	,				J.	TAN	1	F. SAND	1	TRGRAYERUST					
1					NED	RUST		F. SAND	H	TR ROCK FRADS					
51	2				STIFF	GIZAX				GRAYE AS					1125
52	3	\angle			V	1	V	V	V	V MOTTLIN	\$				1635
	4	\angle													
	5														
	6						TD = 4	I'R	ŧΓ	USAL					
							3 ATTE			· · ·					
							57110								
		\sim													
		$\langle - \rangle$			·		46 66 1-		 	0304					
			-				* > SENT	TOLAC	P	0309			<u> </u>		
		$\langle -$													
		\angle					· · · · · · · · · · · · · · · · · · ·				ļ				
		\angle			•										
								·····							
														1	
		\sim													
															н
								•							·
							PID IS NO	it world	KIV	9					
		\angle													
		-	er rock bro								<u> </u>				i
		NOA		450		. mcrea	ase reading frequency	ir elevated repon	se rea	a. Drillin Background	-				· .

u i di diani j

	F		Tetra	Tech N	IUS, In	C.			~	Pag	<u>م</u>	1	of	1	
	Pro Dril	JEC1	F NAM F NUM G COM	E: BER: PANY:	NSW 0087 not ap	C Crane CTO 08 plicable		DATE: GEOLOGI	IUM	BER: BG-1 SP 10.7.00 K. SIMPSOK	5 A	77	9		JETTS
		LING	METH		hand			DRILLER:		<u>NA</u>					
0	Sampie No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil	Color	RIAL DESCRIPTION Material Classification	U S C S *	Remarks	PID/F aldues	Sampler BZ	Borehole**	Driller 82** (udd)	TIME 1305
0 -		0	\angle			SOFT	BRN	SILTY CLAY TR. SAND STONE ARAS.		MOIST ROOTS					1305
			$\langle - \rangle$									$\left - \right $			1330
		23						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
		5	>												
		5													
6 -		6						· · · · · · · · · · · · · · · · · · ·			•	$\left - \right $			
		-						in the second second second second second second second second second second second second second second second							
								TD=2' REFUSI				Ħ			
									İ.			\square			
	1														
			\square		1										
								SATTEMPTS	$\left + \right $	V 1 TO 2'					
							1								
			\nearrow	NYN	ERU	SA	ND	STONE BOUN	DE	RS/ COBBIES					:
		-				01		SURFACE							
			\leq												
			\angle												
			\angle					 							
			\angle												
			\angle					PID IS NOT WE	RI	KING					
							<u> </u>							· · ·	
			\angle					·		·······					
			\angle					· ·	 		ļ	\square			s 1
	* \M/bor	rook o		er rock bro	kanasa										
·	* Inclu	de mon		ng in 6 foo	t intervals	992	. Incre	ase reading frequency if elevated repon	se rea	ad. Drillin Background					••••••
			EĄ	<u>ST</u>	364										
	Conv	vertec	to We	ell:	Yes			No i Well I.C). #:	······					

					C Cran				BORING I	MUN	BER: BG-	<u>SB</u>	<u>A</u>	3	8		•
					plicable				GEOLOGI	ST:	10.7 K. SIMP	SON	Zł	Ζ.	Mf	R	jetts
					auger				DRILLER:		<u>NA</u>						Н
Sample	Denth	Biows /	Camala	Lähalami	Ν	IATE	RIAL	DESCRIPT	ION			1	PID/FI	D Re	eding	(ppm)	
No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Coloi		Material Classi	fication	U S C S *	Remarks		Sample	Sampler BZ	Borehote**	Driller BZ**	τI
	2				COFT	ear	e 11-	TOWAT		MI	MOIST R	iots				-	TI 2 C 7 SAND
	0					DKPX 1		T SUME TR	F. SAND	$\frac{1}{1}$	SUNCE						- SAND
		$\langle - \rangle$				H^{-}	┝╌╂─		t	╢╴	FI	(RAG)	5				
	2		· · ·			1				₩		\vdash					
	3							<u> </u>									
	4	$ \frown $								<u> </u>							
	5												-	-		$\left - \right $	
	6		<u> </u>						- /								
								= 2.3	-						<u> </u>		
						<u> </u>	4	4 ATT	EMPT	5							
		2				<u> </u>											
										<u> </u>							
		\angle								<u> </u>							
		\angle								<u> </u>							
		<u> </u>								\bot							
		\angle						-									
· · ·		\angle													<u> </u>		
·	:	\angle													1		
		_					PID	15 N	ot u	lor	KING						
		\angle															
		/															
		/								1	· · ·						
		/	1									•					
										1							
									Andreas								
			er rock bro		Ø horehois	inere	350 1001	ling frequency if	alevated reco	1	L	Drillin	a ^•		L		l
		NOL		464	1336		use real	any nequency I	cicvaleu repor	199 169	Backgr		-				

		Æ	Tetra	Tech N	NUS, In	C.			BORI	NG LO	G		P	age _	1	of _	1	. •··
~ [PRO	JEC.	T NAM T NUM	BER:	0087	C Cran CTO 0	33	• 		BORING	— NUM	BER:	BG-151	BP	1			
					not ap hand	plicable auger		······································		_GEOLOG DRILLER	IST:	_K	<u>. simpso</u> NA	K/1	۷.	Mf	VR°	jetts
	Comula	Denth			I	N	/ATE	RIAL [DESCRI	PTION				PID/F	ID Re	ading	(ppm)	1
0	Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y ar Rock Hardness	Color		laterial Clas	sification	U S C S		Remarks	Sample	Sampler BZ	Borehole**	Driller 82**	TIME 0945
0 -		0	\square			SOFT	BRN	CLA	N TH	SILT	CL		IST ROOT					0945
		1				NED STIFF			,,				NOTTLING	80	0	0	0	
		3	\sim		4	<u>9000</u>	1			_	++		BRN/9R	Xa				
		4	/				BRN					Ţ	TR. ROCI	ζO	Ò	0	Ò	
6 -		5				J	\$	¥		\checkmark	Ł	7	I"ØMAX					
-		6		ļ								T		upri				
	<u> </u>) = (>		NO	DULERS LA	151				
			$\langle -$,														
	<u>.</u>														_			•
1000				<u> </u>							+							
													<u></u>					
			\angle							· · ·								
			\angle															
									· · · · · · · · · · · · · · · · · · ·									
																		i.
											┼╌┨							
							-											
			\angle										·					
			\angle															
in the program with	' Incluc	le moni	-		t intervals	@ borehole 2250 4784		ase readir	ig frequency	if elevated repor	nse rea	d.	Dril Backgrour	ling Ar nd (ppr		Ĉ	\geq	
	Conv	erted	to We	ell:	Yes		•	No	1	Well I.[D. #:	· · · ·						

20 J

Ľ	t	Tetra	Tech N	IUS, In	С.			BOR	NG LO			Page _		of _	1	
PROJ				NSW					BORING	NUM	BER: BG-1		2	Ĺ	<u>3</u>	·
PROJ				0087						ют.	10.6.0				<u></u>	erre T
DRILL				not ap					_geolog Driller		K. SIMPS	DUX 1	Κ.	M	<u>v</u> <u></u>	jetts
				hand												
Sample [Depth	Blows /	Semple	Lithology		MA	IE	IAL DESCRI	PHON	- U		PID/F	ID Re	eding	(ppm)	
No.	(Ft.)		Recovery	Change (Depth/Ft.	Soli Density					S						
	or Run	(%)	/ Sample	· ·)	Consiste	nc				C	Remarks	<u>a</u>	8	ole	*Z8	
RQD	No.		Length	or Screened	y or	GC	lor	Material Cla	isification	S *		Sample	Sampler BZ	Borehole"	Driller BZ**	
				interval	Rock Hardnes								Ö	ß		TIME
	D				SOFT	BR	N	CLAYE	SILT	ML	MOIST RU	TS U	0	0	0	1010
	1					17	W	1 /	1		TR RUST	-co	01	K		
	<u>-</u>				t	- ľ		y and	V_		NODUN TA SANOS	est				
	2				BTIF	e 1	H	CLAYEY	SILT	++	TH SANDS	TONE	Ē	KA	<u>75.</u>	1045
	3						-						<u> </u>	 		
	4															
,	5	\land														
	6					1				1			1			
<u> </u>						+	+			+						
							_		ſ	<u> </u>			L	 		
								TD = 3.	3'							
		\square						REFUSA	L							
	-					+				1-0	3'±					
	— ł	$ \rightarrow $				+	-	3 ATTE		$+ \forall$			-		р Г	
							_	1 ATT	EMPT		1.5'=		L	<u> </u>		
		\square														
	Ť															
						+	+					_				
							\downarrow									
		\square														
	Ť					+	+					·····				
	-+	$ \rightarrow $					+									
		\leq														
	-+					+	-			-						
	-+						4									
		\square				Τ	Τ									
When rc	ock cor	ing, ente	r rock bro	keness.						1						11 (PAA)()
				intervals	e boreho	le. Ind	crea	e reading frequency	if elevated repo	ise rea	d. Dr	illing A	rea			
	rks:	NOA	1 # <	4726	-43						Backgrou	nd (pp	m) :		୭	1.0
nemai	-	EAS		564-1											and the second se	

a a date

1

Pro Dril	JECT LING	i COM	BER:	0087 not ap		33	GEOLOG DRILLER	IST:	BER: BG-151 10.600 K. SIMPSON NA	51 ⁻ 71	ΓG ζ.	2 Mf	Ro	IETTS
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length		Soil Density/ Consistenc y		RIAL DESCRIPTION	U S C S *	Remarks	PID/F eld Kurso	Sampler BZ	ading Lapotesion	Driller 82**	T11 09
	D				SOFT	Ben	SILT SOME CLAY	KL	MUIST RUCTS	0	Ċ	đ	0	
	1				J	المار		1	1 1					09
	2	\geq												
	3	\square				ŀ		<u> </u>		-				
	4													
_	5	\angle					241			<u> </u> .				• . •
	6					<u> </u>	$TD = 1\frac{3}{4}$		· ·		 			
		\angle				<u> </u>	REFUSAL	<u> </u>			<u> </u>			•
							GATTEMPT	Þ		 	<u> </u>			
		\angle				<u> </u>								
· .		$\langle - \rangle$					Alay ya ana aka ta manana ana ana ana ana ana ana ana ana		· · · · · · · · · · · · · · · · · · ·		·			
										-				
										+	-			
		$\langle - \rangle$												
			·		-			+	h ici court	+	-		\square	
							DRY STREAM BET		RIS' FRUM	+				н. 1
						<u> </u>	LOCATION, STR		1		-			
·		/		1			UTTERED WITH F		T	+	$\left \right $		$\left - \right $	
			<u>.</u>				BED ROCK OUTCH		COSE 10	-			$\left \cdot \right $	
<u></u>		\sim					ROCK/BOLDENS O		SURFACE		\square			
•		\sim							parernee					
		$\langle \rangle$		{			IN AREA			+-				
		\sim			·			-		+-				
		\sim							· · · · · · · · · · · · · · · · · · ·					
• When	rock c	oring, ente	er rock br	okeness.	1	<u> </u>	<u> </u>	<u> </u>	I	1		<u>I</u>		
			ng in 6 foc LTH		e borehole 7836	. Incre	ase reading frequency if elevaled repo	nse rea	ad. Drilli Background	-		Concession of the local division of the loca	ฮา	

U	It	Tetra	Tech N	IUS, Ind	D.			<u>BORI</u>	NG LO				nge _				
PRO DRIL	JECT LING		BER: PANY:	0087 not ap	C Cran CTO 08 olicable				BORING M DATE: GEOLOGI DRILLER:		BER	BG-1 0.500 NA	5				IETTS
		METH		hand		IATE	RIA	L DESCRIF		1	Ī	<u></u>	PID/F	ID Re	eding	(ppm)	
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness			Material Clas		U S C S *		Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	TII 0 8
	D	\geq			SOFT	TAN	c	LAY TR	SILT	сL	M	DIST ROOT					08
	1				MED STIFF				<u> </u>			9 RAY	190	0	0	0	
<u> </u>	2	\leq						<u>↓ </u>	<u>V</u>						0	0	
	34				1/			LAY SON	NE SILT		14	V	0	0		10	09
	15	\frown					[NOL	MES				+				
1	6	\geq						• • • • • • • • • • • • • • • • • • •						1			
		\square					T	D=4	REF	15	AL						-
		\angle								<u> </u>							
		\angle					3	ATTE	MPTS TO	<u>‡</u>	4	· ·		-			
		$\langle \rangle$		-	-	·		-		<u> </u> .				$\left \right $	1		
		<								+							
						1	13	PS UN	IT NO	F	R	ESPONDIN	19	┢			
					·		A	s 900D		-							
		\angle															
	ļ	\angle				<u> </u>			······································	<u> </u>	<u> </u>				ļ		
· ·		<					•		· · · · ·		<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
		<		-							<u> </u>						
		\sim				+		······		+				+			
						1			ang a sa ang tanàng ang ang ang ang ang ang ang ang ang a	-							
		\angle		Ī					·····	1							
		\angle															
		\square															
** Inclu	ıde mon				e borehol Cal.1	e. Incre	ase r	eading frequency	if elevated repoi	ise re	ad.	Dri Backgroui	lling A		Contraction of the local division of the loc	21	

				NSW 0087					BO		NUM	BER:	BG-	ISF	<u>3 P</u>	3	Ζ		
				not ap	_				GE	ologi	ST:	-R	. SIME	SON	74	2.1	AN	Ro	jetts
DRIL	LING	METH	HOD:	hand	auę	jer			DR	ILLER:			NA						
Sample	Depth	Blows /	Semple	Lithology		N	IATE	ERIAL DES	CRIPTIO	N					PID/FI	D Rea	ding	(ppm)	ŀ
No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length		De Con F	ioil naily/ sistenc y or lock dness	Colo	Mater	ial Classificat	on	U S C S *		Remark	S	Sample	Sampler BZ	Borehole**	Driller BZ**	TII
	D	\geq		İ	50	ст	RON	CLAY	SOLAE	SILT	ci	Mais	T A	NOTS				_	T11 134
	1			1	<u>م</u>	<u></u>	TAN	1 1	<u> </u>			1	<u>, </u>	001.3					İ
	2		· ···· · ·		N	1	1		V		V								
	3				ME	FF	\uparrow	SUT	SOMECI	 A√	MU		····.						
	4					1	17	4	SOME CL TR. F.	SAND	I I				┟─┤		-		
	5				, ,			CIT-	TOCIA	√		t							1415
	6	\sim						5151,	TR E.S	AND-	Ľ	70	SOME	-		+			
	-		· · · · · · · · ·																
																			-
							1	TD >	61										
																\neg	-		
						·····						· · · · ·							
								· · · · · · · · · · · · · · · · · · ·								\neg		_	
																-			
																+	-+		
		\frown							·····	;						-	+		
														. · ·			\neg		
1								2	· .						$\left \right $		\neg	[
															\vdash	+	-	\neg	
															┝┼	-	-+		
 								PID IS	S NOT	- ;4.	no	KIN	<u>a</u>		$\left - \right $	-			
								ו עיז	> 101				<u> </u>		$\left \right $		-+		
		$ \rightarrow $					· .				$\left - \right $					+	_		
* When	rock co	ring, ente	r rock bro	keness.															
** Inclu	le moni	tor reading	g in 6 fool				Increi	ase reading fre	quency if eleva	led repon	se rea	d.	Backgi	Drillin round				_	

PROJE	CT NAM CT NUM IG COM	BER:	0087		83	, 		DATE:		10.4	36-1 SR 4.00 51MP50		<u>P 3</u>	59		
	IG METH			auger						NA						
Sample Dep	1	Sample	Lithology	신문공	MATE	RIAL C	ESCI	RIPTION	υ			PID/F	ID Re	ading	(ppm)	
No. (Ft and or Type or Ru RQD No	RQD n (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Consisten y	Color	M	aterial (Classification	S C S *	Rei	marks	Sample	Sampler BZ	Borehole**	Driller BZ**	TIME
10	\square			SOFT	BRA	SIL	TY	CLAY	CL	NOIST	TROTS	0	0	0	0	1300
1				L				, , , , , , , , , , , , , , , , , , , ,	1	1						
<u> </u>]				MED STIFF	1			GRAY I	WAT	<u> </u>		U	0	0	0	
2				┣─┨──	11			<u>v</u>								_
4				\vdash	++			TR F. SAM				0	0	0	0	1340
	<u> </u>		<u> </u>		11	*		-					+			
			1										\square			
]													
	\square	ļ	1		_	6'	BT	M				\downarrow	<u> </u>	<u> </u>		
	\prec		-		-	<u> </u>		· · · · · · · · · · · · · · · · · · ·				<u> </u>				
	\leftarrow		-			-		<u></u>				-		-		
		1	4										\uparrow	\square		
			1								-					
]														
		ļ			_	<u> </u>								-		
	\prec												-	-		
			-	· ·		<u> </u>							+			
	\leftarrow					· 	<u></u>							+		
	\checkmark	1	1		1		•	<u> </u>				\uparrow		\mathbf{f}		
]													
		er rock br												ĺ		

Г Э

	F															
	Ľ	J	letra	l ech l	NUS, In	IC.		BOR	NG LOO		· ·	ge _				
						C Crane				IUN	BER: BG-1 SR	<u>s P</u>	4	FC)	
					-	CTO 08 plicable	53		DATE: GEOLOGI	ST.	10.6 00 K. SIMPSON	71	<u>, </u>	NAF	NOC	IFTTS
1 - 1 			A METI			auger			DRILLER:		NA	·/_r		<u>, , , (</u>	<u> </u>	
						N	IATE	RIAL DESCRI	PTION			PID/F	ID Re	ading	(ppm)	
	No.	Depth (Ft.)	Blows / 6" or	Recovery		Soil				U S						
	and Type or RQD	or Run No.	(%)	/ Sample Length	(Depth/Ft.	Consistenc	Color	Meterial Dise		C S	Remarks	ple	er BZ	ole**	82**	
	hab	110.		Lengin	or Screened Interval	y or Rock		Material Clas	Sincalion			Sample	Sampler B2	Borehole"	Driller	
~						Hardness							, w			TIME 1440
0 -		D	\square			SUFT	BRN	SILTS	CLAV	CL	MUIST RUUTS					1440
		1				Í	1	1	1	i						
		2							V		MOTTUNE					
		3	\sim			MED	TAN		FINE SAND	If		4				
		4		1		STIFF	1	CLAY 50								
		5					H,	L L	J *	IJ	it t					1510
6 -		6	\sim				¥		<u> </u>							
			\sim			· · · · ·										
			\sim													
		-	\sim					TD = 6	,			$\left\{ \begin{array}{c} \\ \end{array} \right\}$		_		
								10 6								•
.0861														_		
								NECONI		-A .						
								* GRAY LAST	- 1/2 TR. 1		1 CLAY	$\left - \right $	-+	-		
												$\left - \right $				
			$\langle \rangle$								· · · · · · · · · · · · · · · · · · ·					
								,						_		
														-		
	•							· · · · · · · · · · · · · · · · · · ·				$\left \right $				
			\angle													
								. <u> </u>	· · ·							
			\leq								· · · · · · · · · · · · · · · · · · ·					
			\angle					PID NOT	- wor	$ \mathcal{K} $	NG					
								• •								
			\square													
				r rock bro a in 6 fool		Ø horehole	increa	ase reading frequency	if elevated report		d. Drillin	a Ar	<u>0</u> 2			
Sugar.			NOA	1++ 4	1-701						Background					
		-	EAS		556	218		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							
	Conv	erted	to We		Yes			No _i	Well I.D.	. #:						

							BORING LO		D(1CP	D	1	٦		
		' NAME			Crane		BORING DATE:	NUM	BER: BG-158 10.4-00 K. SIMPS		4	<u> </u>		
					olicable		GEOLOG	IST:	K. SIMPS	Yú				
DRIL	LING	METH	IOD:	hand	auger		DRILLER	:	NA					
					M	ATE	RIAL DESCRIPTION			PID/F	D Re	ading	(ppm)	
Sample No. and Type of RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc Y or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	TIME
	0	\geq			SOFT	or- BRN	SILTY CLAY	a	MOIST ROOTS	Ü	0	Ø	0	1555
	1				MED STIFF	<u>БК</u> п. ↓	ROCIL FRAG.	1		Ť	ľ			
	2					TAN	Y Y		MOIST DAY	0	0	0	0	· .
	3				STIFF	1		V	·¥					- 1630
	4													
	5													
	6		ļ						· .	-	Ļ	<u> </u>		
		\angle	ļ							+		<u> </u>		
	<u> </u>					ļ	TD=4' REFUS	ALC.		-	-			
				•			4 ATTEMPTS			·	┝			
-	_	$\langle \rangle$						_		+	-			
	·	\vdash				╂───				+	$\left \right $	<u> </u>		
		$\left \right\rangle$				+						1		
		\sim		1			· · · · · · · · · · · · · · · · · · ·	1						
												<u> </u>		
				-							-			
				4					-		-			
	1	\mid	<u> </u>	4						_	+			-
		\vdash		-		-					╉	<u> </u>		
	•	\vdash	┼──	-						+	+			
		\vdash	+	-						╋	╉	+	+	1
				rokeness.		<u> </u>					 ``		1	1
	lude mo narks	A 0	ing in 6 fo	ot interval h	s @ borehol 7294	-	ease reading frequency if elevated re	oonse r	ead. Drill Backgroun				0]

	F	P-	Tetra	Tech N	NUS, In	с.			~	Pag		1	of	1	
· · · · · · · · · · · · · · · · · · ·	Pro Dril	JECT LINC	J F NAM F NUM G COM	E: BER: PANY:	NSW 0087 not ap	C Crano CTO 08 plicable		DATE: GEOLOGI	NUM	IBER: BG-) SE 10.500 K. SIMPSON	o p	4	.3		• ·
	DRIL	LING	A METH	HOD:	hand	auger		DRILLER:		<u>NA</u>					
0 -	Sample No. and Type or RQD	Depth (Fl.) or Run No.	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	£	Soil Density/ Consistenc Y ar Rock Hardness		RIAL DESCRIPTION	U S C S •	Remarks	PID/F elduss	Sampler BZ	ading Borehole	Driller BZ**	TIME 1035
-		D	\angle				BRA	SILT TRUF SAND TR CLAY	WL	MOIST ROOTS	0	0	0	д	1035
			\angle			V.	V	V V	1	1	2				
		2	\angle				TAN			TR. RUST COUR NODIE					
		3				VERLY STIFF	₩		14	4	0	0	0	0	1105
		4	$\langle \rangle$												
6 -	<u>,</u>	5						-AL ACCUSAL							
								TD=4' REFUSAL VERY STIFF							
								auld NOT ADVAXI	E	AUDER					
			\square												
and the second s			\square												
			\angle			· .							:		
		ł	$\langle \rangle$										1.		
														_	
			$\langle \rangle$									-			
										· · · · · · · · · · · · · · · · · · ·		-+			
												\neg			
			\square		· · · [
			\triangleleft												
		-+	$\langle \rangle$		ŀ				-	· · · ·			-		
- 1	* When	rock col	ring, enter	r rock brol	keness.										
	• Includ	e monit	or reading	g in 6 foot		<u>ਮ</u>	Increa	ase reading frequency if elevated repons	e rea	d. Drilling Background (C		
	Conv	erted	to We	ll:	Yes			No i Well I.D	. #:	······································					

					C Crane		BORING	NUN	IBER: BG-153	P۲	14	Ĺ		
			BER:		plicable	5			10.6 00 K. SIMPSON	7	7	NA 6	500	ETTS
		METH		hand			DRILLEF		NA		<u> </u>	141	<u>v</u> <	
Unit			100.	nanu										
Sample	Denth	Biows /	Semple	Lithology	N N		RIAL DESCRIPTION			PID/F	ID Re	ading	(ppm)	
No.	(Ft.)	6" or	Recovery	Change	Soil	32		s						
and Type or	or Run	RQD (%)	/ Sample	(Depth/Ft.	Density/ Consistenc			C	Remarks	e	¥ 82	"e	28	
RQD	No.		Length	or Screened	y or	Color	Material Classification	S S		Sample	Sampler BZ	Borehole"	Driller BZ*	
				interval	Rock						Sa	ă	ð	-11
					Hardness									TH
	D				SOFT	BRN	SILT SOME CLA	/Imu	MUIST RUOTS	0	0	0	ð	08
·	,				<u> </u>	Ţ	,			[
				,	MED	LT	CLAY SOMESIT	-	1 GDAN		-			
	2				STIFF	BAN			GRAY MOTTUNG	0	0	1.6	0	
	3				+	li				ľ				
	4				STIFF					1				ing A
			~					╈		┼──				094
	5	Ζ.,	``	-	-			Ľ.						
	6													
		$\overline{}$												
					· · · · · · · · · · · · · · · · · · ·		N1				-			
		Ζ.,					TD = 5.5'							
	1						REFUSAL							
							· · · · · · · · · · · · · · · · · · ·							
					-		Oral CALOR (A)	+-	-					
							ROCK FRAGE, LA	· '_						
							12 FOOT							
		/			· .							-		
								_						
											ъ.			
							an anna a chuidh ann a' dh' ann a' dh' ann a' dh' ann a' dh' ann a' dh' ann a' dh' a' dh' a' dh' a' dh' a' dh' Ann a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a' dh' a'						·	
											-			
		\sim												
							· · ·							
							n an an an an an an an an an an an an an							
• •														
			er rock bro a in 6 foor		@ horeholo	inerer	ase reading frequency if elevated rep							
		NOA			10552	a 161 82	and requertly if elevated rep	nise rea		-			2	
			111		1-220				Background	(hb)	m):		<u> </u>	

at an all dreken.

-

PRO PRIL	JECT LING	NUM COM	BER: PANY:	0087		33		GE DR	ologi Iller:	NUM ST:	BER: BC	1 5B 0.7.00 51M NA	f PS	'4 00	5	•	•
		-			N	IATE	RIAL DES	CRIPTIO	N				PID/F	ID Re	ading	(ppm)	
No. and Type or RQD	Depth (Ft.) or Run No.	Biows / 6" or RQD (%)	Sample Recovery / Sample Length		Soil Density/ Consistenc y or Rock Hardness	Color	Materi	al Classificat	ion	U S C S *	Rei	marks	Sample	Sampler BZ	Borehole**	Driller BZ**	T 14
	6	$\overline{}$			SOFT	TAN	SILTY	ĊLA	X	ĸ	NOIST	TROTS	0	0	0	0	14
	1			1	V		<u> </u>	1	\	1	1	KW 1	Ť	† –		Ť	
	2	\square			MED STIFF	,				T.	SOME	OTTLING	0	0	0	0	
	3				V		4	TRACE	F	ML		1					
	4								SAND	İ	· · · ·						15
	5																
	6						-		,,	1							
	/								ione						 		
							BTM	= 4	PET	$\frac{1}{4}u^{<}$	AL	· · · · · ·					
								<u> </u>									
				1			4 KTT	ENNPT	S	1							
		\sim								1							
		\sim		1			· · · ·										
										1							
				1	······												
										1							
		\sim											\uparrow				
		\sim		1									\uparrow	┢			
		\sim		1					·	1			\square	<u> </u>			
		\checkmark		1	<u> </u>								┢	\mathbf{T}			
		\sim		1										1	\square		
				1									\square	\uparrow	\square		
	<u> </u>		1	1			!							\mathbf{T}			
		\checkmark		1									\square	1	1		
		۲		1		1	· · · · ·		·····				\uparrow	┢	1	1	
Inclu		itor readi	er rock br ng in 6 foc RTH ST	ot intervals	@ borehold 4690 624		ase reading fre		vated repor		ad. E	Drillin Background	ng A I (pp	rea m): -S7		0	' -
<u></u>	vorto	d to We	مال	Yes			No 🗸		Well I.[

I I I I Majoda de 17.77

DRILLI									<u>G LO</u>					ige _				
		UME	BER:	0087	C Crane CTO 08			B	ORING N DATE: DEOLOGI	NUM	BER:	BG D. E	-15, , 00	BP > X/H	<u>د</u>	-0 	Rg	errs
UKILLI	NG M			hand					RILLER:			NA						!
					N	IATE	RIAL DESC	CRIPTI	ON	Τ				PID/FI	D Ree	ding	(ppm)	
and o Type or R	Ft.) 6' or R	ows / " or (QD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock Herdness	Color	Materlà	l Classifi	cation	บ ร ร *		Rema	nrks	Sampte	Sampler BZ	Borehole**	Driller 82**	TIME
	0/	\triangleleft			SUFT	FRAK	CIAYEY S	ILT	F. SAND	ML	MOI	ST	-RU07	3				1240
					NED			V	1		1	SON	NE SI S" & N	NDS	121	34		
	5	\nearrow	·				SILTY	1		11			1					
	<u> </u>	\nearrow					5.17			IJ			V					1312
4		\nearrow					-	·	<u> </u>	+								
	5/	\nearrow								+								
	- K		:							+			<u></u>					
	2	\rightarrow															·	
	+								<u></u>					+				
	-							<u> </u>										
														_				، يېلىنىنى
	-	\square						-										. ¹
							7 D=	- 3,	6' 1	2EF	451	4C						
		\leq					3 A1	TEr	NPTS					_				
		\leq					3'	3	3.6	1								
								, ,				-						
		$ \land$																
							SBP	50	15 2	12	50	t						
							Down	912A	15 A DIENT	F	NON	Λ						
		\nearrow							P. AR					-				
		\nearrow					SEF	FID	e	1								
		\nearrow								+-			·					
	-	\rightarrow					0							2-1	<u></u>		C	
	+	\rightarrow					PID 15	> N	57 2	101	FRIT	¥ 7	NO	REA	ווע	v7	2	
	+						DAMP	WE	ATHE	¥:	ļ		5. ingen and a second second second second second second second second second second second second second second					
	-																	
* When roo ** Include i Remari	monitor r ks:/	reading	g in 6 foo TH	t intervals	937	. Incre	ase reading freq	uency if e	levated repor	nse rea	ad.	Bac	Dril kgrour	ling Ai Id (pp				
Conver				Yes			No i		Well I.(

at the sector.

	Pro Dril	JECT LINC	F NUM à COM	BER: PANY:	0087	C Cran CTO 0 plicable	83		DATE:	NUM	BER: BG-35[10.700 K. SIMPSON NA					JETTS
Γ		LINC		100.	nanu		ЛАТЕ	RIAL DESCI			<u> </u>	PID/F	ID Re	ading	(ppm)	}
	Sampia No. and Type or RQD	(Ft.) or	Blows / 6* or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistend y or Rock Herdness	Color	Material C	Classification	U S C S	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	TIN
Ť		D				SOFT	BRN	CLAYEY	SILT	ML	MOIST RUDTS				F	T11 142
ſ		L	\square	·		ĺ		Į,			SOME RUST	41	512	ŀ		
		2	\angle								·					145
ŀ		3	\leq	· · · · ·		Ľ.				╢						170
┠		45	$\langle -$:					+		<u> </u>				
+		<u>)</u> ()	>													
ł							·			╉	in the second second second second second second second second second second second second second second second					
ľ					· ·									-		
Ţ			\square													
-				ļ.				TD =	-		REFUSAL					
			\angle					4 A	TTEMPT	\$			_			
╞								· NATEN	@ 2.5							
ł			$\langle \rangle$						- 0 00 d	-	· · · · · · · · · · · · · · · · · · ·		$\left \right $			
ł																
ŀ				1					**************************************	┢						
	•			1												
			\angle		1											
			\angle					· · ·			· · · · · · · · · · · · · · · · · · ·					
			\angle						Walking of a straight second sec			ļ				
┝			\leftarrow					PID 15	NOTW	<u>ØR</u>	KING		-			
┟			<	· · ·		· · · · · · · · · · · · · · · · · · ·			-	-						
┠			\sim		1					┢						
				er rock bro						1	· · · · · · · · · · · · · · · · · · ·	1	1	1	L	
			itor readi NO			e borehol 270	e. Incre	ase reading freque	ency if elevated repo	nse rea	ad. Drillin Background					ŀ

							at an st spokars								
F	æ	Tetra	Tech N	IUS, Ind	D .		BORING LOC	G	Page	e_	<u> </u>	of _	1		
PRO DRIL	JECT LING	NAMI NUMI COMI METH	BER: PANY:	0087	C Crane CTO 08 plicable auger		BORING N DATE:	IUM	BER: BG35B 10.400 K. SIMPSON NA		0				
					M	IATE	RIAL DESCRIPTION			PID/FI	D Rea	ding	(ppm)	· ·	
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc Y or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	TIME	
	Ð	$\overline{}$			LOOSE	BR	CLAYEY SILT	ML	NOIST ROOTS	0	0	0	d	0920	
	1			1	LOOSE	_	W/F SAND	V	+ +						
	2	\square		1	SOFT		SILTY CLAY	eL	\checkmark	ð	σ	0	D		
	3			1	V		TR FINE SAND	Ļ	RUST COLUR						
	4	\square		1	MED STIFF	J	SANDY SILT	ML	NODUCENS					\mathbf{V}	
	5		1	BIN		TAN	W/ FR FINE SAND	r	SOME GRAVEL	0	0	0	0	1015	
	6			BEDA					1"9 MAX						
			1												
		\sim	1				TD=5'REFUSAL	1							
		\sim	1												· · · · · · · · · · · · · · · · · · ·
		\sim	<u> </u>	4			SOME SILT STON	IE	1"OIN						
		<	<u></u>	4			LAST 2' (4.5)		/ ¥						
		\sim	1	1				1							
		\sim	┨────	1				+							
-		\sim		-		1		1		-					
		\sim	<u> </u>	4								۰.			
		\vdash		-				-	·	<u> </u>					
		\vdash						+				1			
		\vdash		-				-				<u> </u>			
		\vdash	┼──	-		╂───			· · · ·						
		\vdash	+	-				+-							
		\vdash		-						\vdash	+				
		\leftarrow		-				+		$\left - \right $		-			
-		\vdash		-						 			-		
		\swarrow	┼──	-		-				<u> </u>					
* Whe	n rock c		ter rock b	rokeness.			J	<u> </u>	I	<u> </u>		1		1	
** Incl Ren	ude moi n arks :	nitor read	ing in 6 fo ST RTH	ot intervals	s @ borehol 14-34 72 (e. Incre	ease reading frequency if elevated repo		_ Background				2]	
Con	verte	d to W	ell:	Yes		-	No Well I.	D. #						- .	

		tra Tech I	NUS, In	IC.		BORING LO	<u>G</u>	Pag	je _	<u> </u>	of ₋	1	
PROJ	ECT NU	ME: JMBER: DMPANY	0087	CTO O	83	BORING DATE: GEOLOG		MBER: BG-35				_	
		ETHOD:		auger		ORILLER:		K. SIMPSON		Κ	M	<u>v</u> K°	10115
			1		<i>I</i> ATF	RIAL DESCRIPTION	T		PID/F	in Be	edina	(ppm)	
and Type or F	repth Blov (Ft.) 6" or RQ Run (% No.	or Recovery D /		Soil Density/ Consistenc y		Material Classification	U S C S ·	Remarks	Sample	Sampler BZ	Borehote**	Driller 82**	TIM
	0			SOFT	BRN	SILTY CLAY	CL	MOIST RUCTS					1600
	2			NED STIFF	1	CLAY, TR SILT		GRAYIRUST	ò	0	0	0	
	3		1	STIFF	GAY		+	CONOR MOTTO	24				
4				$\overline{\mathbf{v}}$	1	V			0	0	<u>,</u> 3	0	
	5/			STIFF	1	1	· .						1650
4	0/												
		1				TD = 6'							
							ľ						
						TR ROCK FRAM.							
					-	SAND STONE 1'		BTM					
						W/G-RAY & RUST	M	OTTUNG					
						anna ann an Airtheadh air aith a' ann an Airthean an Airthean ann an Airthean ann an Airthean ann ann an Airthe							· .
	1/												
·	1/												
		1							\neg	-+		-	
	+	+-				and the second second second second second second second second second second second second second second second					-		
	+	+	ŀ						_	_		_	
	+	+-1											
* When roc	k coring, e	nter rock bro	keness.			······································			ļ				
" Include n	nonitor rea	ding in 6 foot	intervals (056		e reading frequency if elevated repon	se rea	ad. Drilling Background				লা	
Remark		tST-	600	541				- Dackylounu	hhu	<u>"</u> .Г		2	

							a li (1) a la finker,								
F	7-	Tetra	Tech N	IUS, Ind	C.			2		Page	Э	l	of	1	
Ľ							BORING LOC								
		NAMI NUMI			C Crane		BORING N DATE:	UM	BFI		15	P	09		·
DRIL	LING	COM	PANY:	not ap	plicable	P	GEOLOGI	ST:		K. SIMP	501	(
DRIL	LING	METH	HOD:	hand			DRILLER:		<u> </u>	NA					
Sample		Blows /	Sample	Lithology			RIAL DESCRIPTION	U		· · · · · · · · · · · · · · · · · · ·	PID/FI	DHe	ading	(ppm)	
No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	S C S *		Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	TIME
	0	\geq	 		SOFT	BRN	SILTY CLAY	CL		DIST, ROOTS	0	0	0	0	1050
				1	1	DKN	4	T	1.1	MOTTLED RUST/GRAY					
	- 2			1	NED	UT.	CLAY TR SILT			Rust/Gent	0	д	0	ð	
	3	\sim			STIFF	<u>P</u>	J. TR SAND STANK	$\left \right $				Ť			
	4	>			J.	1	J	\square		(0	0	U	0	
	5			1	MED	GRAY	SUME SILT	V		1 SHALE					1125
	à			<u> </u>					\square				İ —		
			<u> </u>	-	· · ·										
		\sim	1	1			TD = 6'			•					
			1						\uparrow						2 - 1 - N
									Γ						
			1	1							-	ľ			
		\square	1												
			1												
]											
			1				· · · · · · · · · · · · · · · · · · ·			· · · ·					
		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		· .											
		\square													
										·					
			1												
]							·					
											[
** Incl Rem	ude moi narks:	nitor readi	ing in 6 to ST ら ATH	9931		e. Incre	SONE (0991) No Well I.	19		Drillir Background THE PAST,	(pp	m):		0 F	iom Buring
Con	verte		en.	res			weill.	ר.#	·						-

APPENDIX C

ANALYTICAL DATABASE

- C-1 ANALYTICAL DATABASE
- C-2 DATA VALIDATION SUMMARY

TABLE C-1 APPENDIX C-1

SUMMARY OF BACKGROUND SAMPLES NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Background Area/ Depostional Envir./		con cum		ted in the Fi		Number of Samples
Sample Location		Depth in F	eet Below	Ground Surf	ace	Collected for
kground Area 1	0-1	2-3	3-4	4-5	5-6	Chemical Analysis
Loess/Glacial	.					
Outwash						
BG1SBL01	silt	clay	clay	silt	N/A	3
BG1SBL02	silt	silt	clay	clay	silt	0
BG1SBL03	silt	clay	clay	clay	clay	1
BG1SBL04	silt	ciay	clay	silt	clay	2
BG1SBL05	silt	clay	silt	silt	clay	3
Alluvium		Joidy			leidy	5
BG1SBA01	silt	silt	silt	N/A	N/A	2
BG1SBA02	silt	N/A	N/A	N/A	IN/A	0
BG1SBA03	sand	silt	silt	silt	silt	1
BG1SBA04	clay	clay		clay		2
BG1SBA05			clay	the second second second second second second second second second second second second second second second s	clay	
BUISBAUS	sand	silt	sand	N/A	N/A	2
Residual Soil from	ı					
Pennsylvanian Bedrock/Colluviur	m					
BG1SBP01	silt	silt	silt	silt	N/A	1
BG1SBP02	silt	clay	clay	silt	silt	2
BG1SBP03	silt	clay	clay	clay	clay	1
BG1SBP04	silt	silt	clay	clay	clay	2
BG1SBP05	silt	clay	clay	clay	clay	2
BG1SBP06	clay	silt	N/A	N/A	N/A	2
BG1SBP07		N/A	N/A	N/A		2
BG1SBP08	sand				N/A	
	silt	silt	silt	sand	sand	3
BG1SBP09	silt	N/A	N/A	N/A	N/A	1
BG1SBP10 ground Area 2	clay	silt	silt	N/A	N/A	1
Outwash/Loess BG2SBG1	clay	clay	sand	sand	sand	2
BG2SBG2	silt	silt	silt	silt	clay	3
BG2SBG3	silt	sand	sand	sand	sand	1
BG2SBG4	silt	silt	silt	N/A	N/A	2
BG2SBG5	clay	sand	N/A	N/A	N/A	1
ground Area 3						
Alluvium			- I			·····
BG3SBA01	silt	silt	N/A	N/A	N/A	1
BG3SBA02	silt	sand	sand	sand	N/A	1
BG3SBA03	silt	N/A	N/A	N/A	N/A	1
BG3SBA04	silt	silt	sand	sand	sand	2
BG3SBA05	silt	silt	silt	sand	sand	3
Residual Soils fro Mississippian Bedrock/Colluviur BG3SBM01	m	loilt				0
BG3SBM01 BG3SBM02	silt	silt	N/A	N/A	N/A	0
BG3SBM02 BG3SBM03	silt	silt	silt	silt	clay	3
	silt	silt	silt	silt	silt	1
BG3SBM04	silt	clay	clay	sand	sand	3
BG3SBM05	silt	clay	sand	sand	sand	1
	silt	clay	sand	N/A	N/A	2
BG3SBM06	silt	silt	silt	clay	clay	3
BG3SBM07		sand	N/A	N/A	N/A	2
BG3SBM07 BG3SBM08	silt			N/A	N/A	1
BG3SBM07 BG3SBM08 BG3SBM09	silt silt	silt	silt	1 1/7 1	14/14	
BG3SBM07 BG3SBM08		silt clay	silt silt	silt	N/A	1
BG3SBM07 BG3SBM08 BG3SBM09	silt					and the second se
BG3SBM07 BG3SBM08 BG3SBM09	silt clay	clay	silt	silt		1

I/A - sample not collected in the field because one of the conditions discussed in Section 3.4.2.1 were encountered (i.e., borehole refusal, bedrock or the saturated zone was encounted).

TABLE C-1 APPENDIX C-1

SUMMARY OF BACKGROUND SAMPLES NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

Background Area/		Soil Sample	s Collected i	n the Field		Number of Sampl
Depositional Envir./						Collecteed for
Sample Location		Depth in Feel				Chemical Analysi
kground Area 1	0-1	2-3	3-4	4-5	5-6	
Alluvium						
BG1SBA25	clay	clay	clay	clay	clay	<u> </u>
BG1SBA28	clay	clay	clay	N/A	N/A	1
BG1SBA29	clay	N/A	N/A	N/A	N/A	0
BG1SBA38	silt	silt	N/A	N/A	N/A	0
Residual Soil from						
Pennsylvanian						
Bedrock/Colluvium						
BG1SBP11	clay	clay	clay	clay	clay	0
BG1SBP13	clay	clay	N/A	N/A	N/A	0
BG1SBP16	silt	N/A	N/A	N/A	N/A	0
BG1SBP22	clay	clay	clay	N/A	N/A	0
BG1SBP37	clay	clay	silt	silt	silt	0
BG1SBP39	clay	clay	clay	clay	clay	0
BG1SBP40	silt	clay	clay	clay	clay	0
BG1SBP42	clay	clay	clay	N/A	N/A	0
BG1SBP43	silt	silt	silt	N/A	N/A	0
BG1SBP44	silt	silt	silt	silt	silt	0
BG1SBP45	clay	clay	clay	N/A	N/A	0
BG1SBP50	silt	silt	silt	N/A	N/A	0
kground Area 3			<i>ا</i> مىيەت مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر		_I	
Alluvium						
BG3SBA07	silt	silt	silt	N/A	N/A	0
Residual Soil from			L I		1	
Pennsylvanian						
Bedrock/Colluvium						
BG3SBP01	silt	clay	clay	silt	N/A	0
BG3SBP08	clay	clay	clay	clay	clay	0
BG3SBP09	clay	clay	clay	clay	clay	0
	_		· · · ·			-
Тс	tal numbe	r of samples	Collected for	or Chemica	I Analysis	2
						L
Total number of sample	s Collecte	d for Chem	ical Analvei	s (All Fiel	d Evente)	67
						0/

C-1 ANALYTICAL DATABASE

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 1 of 9

Location nsample sample Date QC Type Deposit. Env. Grain Size depth Duplicate Matrix Top Depth	BG1SBA01 BG1SBA0101 BG1SBA0101 11/04/99 NM ALLUVIUM SILT SS NORMAL SO 0	BG1SBA01 BG1SBA0104 BG1SBA0104 11/04/99 NM ALLUVIUM SILT SB NORMAL SO 3	BG1SBA03 BG1SBA0306 BG1SBA0306 11/05/99 NM ALLUVIUM SILT SB NORMAL SO 5	BG1SBA04 BG1SBA0401 BG1SBA0401 11/05/99 NM ALLUVIUM CLAY SS NORMAL SO 0	BG1SBA04 BG1SBA0405 BG1SBA0405 11/05/99 NM ALLUVIUM CLAY SB NORMAL SO 4	BG1SBA05 BG1SBA0503 BG1SBA0503 11/04/99 NM ALLUVIUM SILT SB NORMAL SO 2	BG1SBA05 BG1SBA0504 BG1SBA0504 11/04/99 NM ALLUVIUM SAND SB NORMAL SO 3	BG1SBA25 BG1SBA250203 BG1SBA250203 10/06/00 NM ALLUVIUM CLAY SB DUP SO 2	BG1SBA25 BG1SBA250203-D BGFD10070001 10/07/00 NM ALLUVIUM CLAY SB DUP SO 2	BG1SBA25 BG1SBA250203-MAX BG1SBA250203 10/06/00 NM ALLUVIUM CLAY SB MAX SO 2
Bottom Depth	1	4	6	1	5	3	4	3	3	3
Metal (mg/kg)										
ALUMINUM	8070 J	8180 J	6620 J	6920 J	7870 J	7040 J	6210 J	16000 J	16700 J	16700 J
ANTIMONY	0.53 U	0.39 U	1.8 U	0.37 U	0.36 U	0.46 U	0.52 U	0.45 U	0.49	0.49
ARSENIC	7.9	4	7.5	4	2.8 J	2.8	10	5.9	5.7	5.9
BARIUM	76.6 J	50.8 J	55.6 J	59.1 J	78.5 J	44.1 J	46 J	80.4 J	77.2 J	80.4 J
BERYLLIUM	1.4 U	0.69 U	0.96 U	0.35 U	0.65 U	0.56 U	0.8 U	0.82	0.74	0.82
CADMIUM	0.29 U	0.15 U	0.1 U	0.3 U	0.15 J	0.09 U	0.09 U	0.44 J	0.41 J	0.44 J
CALCIUM	5 U	121 J	279 J	896 J	406 J	299 J	269 J	313	287	· 313
CHROMIUM	21.7 J	12.1 J	12.1 J	10.2 J	10.5 J	9.4 J	19.6 J	17.3 J	14.6 J	17.3 J
COBALT	18	8.5	7.2	6	5.2	5.3	18	7.5	6.1	7.5
COPPER	9.8	6.9	6.7	8.8	6.5	6.8	9.9	10.1 J	10.3 J	10.3 J
IRON	36200 J	13000 J	19200 J	12100 J	9680 J	10500 J	29400 J	22700 J	17200 J	22700 J
LEAD	21.5 J	10 J	10.1 J	9.4 J	7.8 J	7.9 J	14.5 J	13.1	11.4	13.1
LITHIUM		15.8 J	10.6 J	13.6 J	17.4 J	17.1 J	16.3 J	20.3 J	20.7 J	20.7 J
MAGNESIUM	620 J	739 J	565 J	967 J	903 J	691 J	520 J	1400 J	1470 J	1470 J
MANGANESE	1950 J	554 J	461 J	417 J	505 J	356 J	1090 J	1030 J	713 J	1030 J
MERCURY	0.05	0.11	0.05 U	0.05 U	0.05 U	0.04 U	0.04 U	0.04	0.04	0.04
NICKEL	20 J	9.4 J	9.6 J	10.3 J	12.4 J	8.5 J	13.1 J	13	12	13
POTASSIUM	644	664	464 J	607 J	640 J	601	528	1370 J	1440 J	1440 J
SELENIUM	0.82 U	0.49 U	0.76 U	0.45 U	0.75	0.42 U	0.58 U	0.46 U	0.44 U	0.46 U
SILVER	0.05 J	0.04 J	0.23 U	0.22 U	0.23 U					
SODIUM	2.4 U	3.7 J	5.5 U	2.5 U	24.7 U	4.3 J	2.2 U	80.3 J	77.1 J	80.3 J
STRONTIUM		7.0 J	5.5 J	13.7 J	11.6 J	7.9 J	8.2 J	12.7	12.8	12.8
THALLIUM	0.19 J	0.15 J	0.1 J	0.1 J	0.15 J	0.14 J	0.13 J	0.25 J	0.27 J	0.27 J
THORIUM		6.2 J	4.2 J	6.3 J	6.9 J	6.3 J	6.3 J	8.4 J	8.7 J	8.7 J
TIN	0.63 U	0.49 U	0.45 U	0.53 U	0.52 U	0.55 U	0.43 U	0.38 U	0.36 U	0.38 U
VANADIUM	30.7 J	19 J	19.4 J	17.5 J	16.7 J	15.6 J	22.8 J	26.3 J	26.1 J	26.3 J
ZINC	37.6 J	22.3 U	22.2 J	24.4 J	29.1 J	22.2 U	28.3 U	42.9	41.7	42.9

Notes:

NM - Normal soil sample LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

MG/KG - milligram per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 2 of 9

Location nsample	BG1SBA28 BG1SBA280304	BG1SBL01 BG1SBL0101	BG1SBL01 BG1SBL0103	BG1SBL01 BG1SBL0105	BG1SBL03 BG1SBL0305	BG1SBL04 BG1SBL0403	BG1SBL04 BG1SBL0405	BG1SBL05 BG1SBL0501	BG1SBL05 BG1SBL0504	BG1SBL05 BG1SBL0504-D
sample	BG1SBA280304	BG1SBL0101	BG1SBL0103	BG1SBL0105	BG1SBL0305	BG1SBL0403	BG1SBL0405	BG1 SBL0501	BG1SBL0504	BGFD11089901
Sample Date	10/07/00	11/08/99	11/08/99	11/08/99	11/08/99	11/08/99	11/08/99	11/08/99	11/08/99	11/08/99 NM
QC Type	NM	NM	NM	NM	NM	NM	NM	NM	NM	
Deposit. Env.	ALLUVIUM	LOESS	LOESS	LOESS	LOESS	LOESS	LOESS	LOESS	LOESS	LOESS
Grain Size	CLAY	SILT	CLAY	SILT	CLAY	CLAY	SILT	SILT	SILT	SILT
depth	SB	SS	SB	SB	SB	SB	SB	SS	SB	SB DUP
Duplicate	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	SO
Matrix	SO	so	so	so	so	so	SO	so	SO	
Top Depth	3	0	2	4	4	2	4	0	3	3
Bottom Depth	4	1	3	5	5	3	5	1	4	4
Metal (mg/kg)					(0.500)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0000)	40000	10000	44000
ALUMINUM	12000 J	13600 J	16100 J	12400 J	12500	14700	10900 J	13000	12800	11800
ANTIMONY	0.46 U	0.44 U	0.53 U	0.4 U	3.3 U	1.7 U	0.43 U	0.5 U	0.35 U	0.4 U 5.5
ARSENIC	5.6	6.8	3.8	4.9	3.8	4.4	4.8	5.7	4.9	
BARIUM	36.9 J	155 J	72.4 J	52.9 J	94.4 J	55.8 J	47.5 J	122 J	80.6 J	65.1 J
BERYLLIUM	0.54	1.1 U	0.3 U	0.36 U	0.51 J	0.2 Ŭ	0.43 U	0.67 J	0.31 J	0.29 U
CADMIUM	0.33 J	0.26 U	0.3 U	0.21 U	0.04 U	0.05 U	0.17 U	0.05 U	0.04 U	0.08 U
CALCIUM	108	547	506	316	710	253	490	419	493	455
CHROMIUM	20.9 J	14.3 J	19.6 J	16.4 J	23.5 J	17.8 J	13.8 J	14,4 J	19.6 J	18.9 J -
COBALT	2.2	17.1	4.1	3.6	4.7	4	5.1	16.8	6.5	5.5
COPPER	10 J	10.3	16.4	8.7	11.6	9.8	10.1	9.7	15.7	14.2
IRON	28900 J	15800 J	17400 J	17500 J	25400	18300	16800 J	15900	21100	20000
LEAD	10.1	17.1 J	9.3 J	8.8 J	9.3 J	9.6 J	9.3 J	15.8 J	11.7 J	9.4 J
LITHUM	27.9 J	13.5 J	12.7 J	12.4 J	22.3 J	14.1 J	10.8 J	14.5 J	11.9 J	13.6 J
MAGNESIUM	755 J	1360 J	2350 J	1250 J	1740 J	1730 J	1440 J	1290 J	2340 J	2090 J
MANGANESE	86.4 J	1960 J	55.2 J	141 J	90.6 J	134 J	199 J	1840 J	236 J	212 J
MERCURY	0.05 U	0.05 U	0.05	0.04 U	0.05 U	0.07	0.04 U	0.05	0.05 U	0.04 U
NICKEL	9.5	17.4 J	10.3 J	7.3 J	11.8 J	8.8 J	8.9 J	15.8 J	12.6 J	10.8 J
POTASSIUM	1650 J	978	1240	496	729	830	629	896	848	814
SELENIUM	0.44 U	0.94 U	0.34 U	0.52 U	0.26 U	0.29 U	0.43 U	0.58 U	0.27 U	0.25 U
SILVER	0.22 U	0.05 J	0.04 J	0.05 J	0.04 U	0.05 U	0.04 J	0.05 U	0.04 U	0.04 U
SODIUM	97.8 J	7.2 J	54.1	90.2	129	81.9	133	17.8 J	98.1	92.6
STRONTIUM	12.2	12.6 J	16.2 J	9.7 J	17.0 J	10.5 J	11.4 J	10.9 J	13.3 J	14.3 J
THALLIUM	0.22 U	0.31 J	0.26 J	0.15 J	0.13 J	0.2 J	0.17 J	0.29 J	0.18 J	0.17 J
THORIUM	9 J	7.2 J	8.6 J	6.3 J	8.7 J	8.4 J	7.2 J	8.7 J	7.8 J	7.7 J
TIN	0.4 U	0.55 U	0.83 U	0.55 U	0.66 U	0.66 U	0.59 U	0.64 U	0.66 U	0.62 U
VANADIUM	19.9 J	30.7	31	29.8	34.3	31.4	25.4	28.6	30	31.1
ZINC	25.4	44.8 U	38.8 U	15.3 U	25.8 U	34.8 U	27.1 U	43.5 U	36.7 U	32.6 U

Notes:

NM - Normal soil sample LD - Lab duplicate MS - Matrix spike RB - Rinsate Blank LC - Lab Control Sample

PB - Lab Prep Blank MG/KG - mil^{ji - -}am per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 3 of 9

Location	BG1SBL05	BG1SBL05	BG1SBP01	BG1SBP02	BG1SBP02	BG1SBP03	BG1SBP04	BG1SBP04	BG1SBP04	BG1SBP04
nsample	BG1SBL0504-MAX	BG1SBL0506	BG1SBP0103	BG1SBP0204	BG1SBP0206	BG1SBP0305	BG1SBP0401	BG1SBP0406	BG1SBP0406-D	BG1SBP0406-MAX
sample	BG1SBL0504	BG1SBL0506	BG1SBP0103	BG1SBP0204	BG1SBP0206	BG1SBP0305	BG1SBP0401	BG1SBP0406	BGFD11069901	BG1SBP0406
Sample Date	11/08/99	11/08/99	11/06/99	11/06/99	11/06/99	11/06/99	11/06/99	11/06/99	11/06/99	11/06/99
QC Type	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Deposit. Env.	LOESS	LOESS	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN
Grain Size	SILT	CLAY	SILT	CLAY	SILT	CLAY	SILT	CLAY	CLAY	CLAY
depth	SB	SB	SB	SB	SB	SB	SS	SB	SB	SB
Duplicate	MAX	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	DUP	MAX
Matrix	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
Top Depth	3	5	2	3	5	4	0	5	5	5
Bottom Depth	4	6	3	4	6	5	- 1	6	6	6
Metal (mg/kg)	•									
ALUMINUM	12800	16600	15700	15300	16200	9070	12200	10500	9550 J	10500
ANTIMONY	0.4 U	10.8 J	0.97 U	0.77 U	0.68 U	0.4 U	0.72 U	0.48 U	5.5 U	5.5 U
ARSENIC	5.5	5.5	8 J	8.5 J	6 J	5.6 J	5.2 J	1.4 J	1.1	1.4 J
BARIUM	80.6 J	81.3 J	55.4 J	79.5 J	73.6 J	25.1 J	72.2 J	52.6 J	53.5 J	53.5 J
BERYLLIUM	0.31 J	0.69 J	0.52 U	0.56 U	1.2 U	1 U	0.68 U	0.93 U	0.97 U	0.97 U
CADMIUM	0.08 U	0.04 U	0.29 J	0.36 J	0.64	0.1 J	0.26 J	0.05 U	0.08 U	0.08 U
CALCIUM	493	688	199	543	650	85.2 J	255	835	963	963
CHROMIUM	19.6 J	25.5 J	21.3 J	21.6 J	27.1 J	19.6 J	13.7 J	14.7 J	13.6 J	14.7 J
COBALT	6.5	5.3	9.1	6.8	12.5	12.1	15.1	5.9	6.2	6.2
COPPER	15.7	12.5	18	20.4	14.2	23.8	9.8	10.1	12.1	12.1
IRON	21100	27700	24500 J	24600 J	31500 J	40800 J	15600 J	14800 J	14500 J	14800 J
LEAD	11.7 J	11.7 J	13.7 J	11.1 J	14.6 J	13.9 J	13.6 J	8.2 J	8.6 J	8.6 J
LITHIUM	13.6 J	28.1 J	19.6 J	13.8 J	15.1 J	46.6 J	15.0 J	24.8 J	23.5 J	24.8 J
MAGNESIUM	2340 J	1810 J	2390 J	2870 J	2010 J	1100 J	1430 J	1660 J	1780 J	1780 J
MANGANESE	236 J	99.2 J	301 J	222 J	444 J	323 J	577 J	29 J	24.9 J	29 J
MERCURY	0.05 U	0.04 U	0.14	0.05 U	0.05 U	0.04 U	0.05 U	0.04 U	0.04 U	0.04 U
NICKEL	12.6 J	11.4 J	14.6 J	13.4 J	15.7 J	23.7 J	13.1 J	9.6 J	10 J	10 J
POTASSIUM	848	828	1170	1290	988	1290	831	697	801	801
SELENIUM	0.27 U	0.23 U	0.43 J	0.56	0.88	0.56	0.63	0.42 J	0.46 U	0.42 J
SILVER	0.04 U	0.04 U	0.05 J	0.05 J	0.1 J	0.05 J	0.11 J	* 0.05 U	0.04 U	0.05 U
SODIUM	98.1	153	10 J	76.8	145	25.9 J	16.1 J	191	205	205
STRONTIUM	14.3 J	17.0 J	10.3 J	19.2 J	10.4 J	11.8 J	9.4 J	20.3 J	17.9 J	20.3 J
THALLIUM	0.18 J	0.19 J	0.24 J	0.25 J	0.25 J	0.15 J	0.21 J	0.14 J	0.13 J	0.14 J
THORIUM	7.8 J	. 9.1 J	9.1 J	9.3 J	7.1 J	11.7 J	7.5 J	11.1 J	10.6 J	11.1 J
TIN	0.66 U	0.93 U	0.74 U	0.82 U	0.5 U	0.65 U	0.67 U	0.65 U	0.88 U	0.88 U
VANADIUM	31.1	42.4	37.8 J	38.2 J	48.5 J	26.6 J	28.4 J	20.9 J	18.7 J	20.9 J
ZINC	36.7 U	24.6 U	45.2 J	47.8 J	31.4 J	58.2 J	41.4 J	25.8 J	30.3 J	30.3 J

Notes:

NM - Normal soil sample

LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

MG/KG - milligram per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 4 of 9

Location	BG1SBP05	BG1SBP06	BG1SBP06	BG1SBP06	BG1SBP06	BG1SBP07	BG1SBP08	BG1SBP08	BG1SBP08	BG1SBP09
nsample	BG1SBP0505	BG1SBP0601	BG1SBP0601-D	BG1SBP0601-MAX	BG1SBP0603	BG1SBP0701	BG1SBP0801	BG1SBP0804	BG1SBP0806	BG1SBP0901
sample	BG1SBP0505	BG1SBP0601	BGFD11059901	BG1SBP0601	BG1SBP0603	BG1SBP0701	BG1SBP0801	BG1SBP0804	BG1SBP0806	BG1SBP0901
Sample Date	11/05/99	11/05/99	11/05/99	11/05/99	11/05/99	11/05/99	11/06/99	11/06/99	11/06/99	11/06/99
QC Type	NM	NM	NM	NM	NM	NM	NM	NM	NM.	NM
Deposit. Env.	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN	PENNSYLVANIAN
Grain Size	CLAY	CLAY	CLAY	CLAY	SILT	SAND	SILT	SILT	SAND	SILT
depth	SB	SS	SS	SS	SB	SS	SS	SB	SB	SS
Duplicate	NORMAL	DUP	DUP	MAX	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
Matrix	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
Top Depth	4	0	0	0	2	0	0	3	5	0
Bottom Depth	5 ·	1	1	1	- 3	1	1	4	6	1
Metal (mg/kg)										
ALUMINUM	13800 J	14800 J	14900 J	14900 J	13200 J	6770 J	17400	12500	5430	9300
ANTIMONY	11.3 J	0.61 U	0.56 U	0.61 U	0.42 U	0.26 U	1.8 U	1.2 U	0.76 U	3.2 U
ARSENIC	2.5 J	6.8 J	7.9	7.9 J	5.9 J	2.4 J	8.5 J	6.4 J	2.9 J	4.7 J
BARIUM	83.4 J	66.7 J	69.3 J	69.3 J	36.9 J	46.1 J	75 J	56.1 J	24.8 J	77.1 J
BERYLLIUM	0.7 U	0.6 U	0.69 U	0.69 U	0.49 U	0.96 U	0.56 U	0.55 U	0.28 U	0.84 U
CADMIUM	0.05 J	0.45 J	0.16 U	0.45 J	0.2 J	0.19 J	0.61	0.35 J	0.14 J	0.1 J
CALCIUM	970 J	405 J	401 J	405 J	340 J	115 J	418	144	53.6 J	278
CHROMIUM	19.1 J	17.6 J	17.1 J	17.6 J	24.7 J	8.5 J	19.9 J	14.2 J	7.7 J	13.3 J
COBALT	6	10.4	11.5	11.5	6.7	10.2	8.5	10.3	8.8	13.1
COPPER		12.2	12.2	12.2	13.6	5.4	17.1	11.9	5.6	9.4
IRON	19500 J	19700 J	19300 J	19700 J	27200 J	12300 J	23400 J	18300 J	11300 J	15900 J
LEAD	9.3 J	13 J	14.3 J	14.3 J	15.2 J	10.7 J	13.8 J	11.3 J	11.7 J	13.7 J
LITHIUM	31.7 J	19.0 J	18.1 J	19 J	28.7 J	14.7 J	14.5 J	14.5 J	8.6 J	29.9 J
MAGNESIUM	1800 J	1910 J	1880 J	1910 J	1810 J	712 J	2250 J	1960 J	654 J	988 J
MANGANESE	71.8 J	389 J	444 J	444 J	274 J	606 J	268 J	457 J	327 J	1480 J
MERCURY	0.05 U	0.05 U	0.07	0.07	0.05 U	0.05	0.04	0.05 U	0.04 U	0.05 U
NICKEL	10.3 J	14.6 J	14 J	14.6 J	11.3 J	13.2 J	15.9 J	12.5 J	4.6 J	15.2 J
POTASSIUM	718 J	1110 J	1100 J	1110 J	900 J	418 J	1490	866	353	889
SELENIUM	0.28 U	0.55	0.8 U	0.55	0.39 J	0.58	0.51	0.45 J	0.28 J	0.64
SILVER	0.05 J	0.1 J	0.05 J	0.1 J	0.05 J	0.05 J	0.1 J	0.05 J	0.05 J	0.05 J
SODIUM	125 U	22.6 U	12.4 U	22.6 U	30.6 U	2.41 U	18.1 J	11.7 J	2.3 U	14.2 J
STRONTIUM	17.2 J	13.7 J	11.4 J	13.7 J	13.0 J	8.7 J	10.7 J	10.0 J	5.4 J	12.7 J
THALLIUM	0.19 J	0.25 J	0.27 J	0.27 J	0.2 J	0.14 J	0.25 J	0.2 J	0.09 J	0.2 J
THORIUM	8.8 J	8.4 J	8.3 J	8.4 J	8.8 J	5.9 J	8.5 J	8.0 J	4.9 J	7.9 J
TIN	0.91 U	0.61 U	0.77 U	0.77 U	0.6 U	0.51 U	0.8 U	0.6 U	0.43 U	0.6 U
VANADIUM	30 J	34.6 J	34.6 J	34.6 J	38.5 J	17.1 J	40 J	30 J	14.1 J	20.4 J
ZINC	24.3 J	43.1 J	41.9 J	43.1 J	29.4 J	32.7 J	52.6 J	35.5 J	11.4 J	36.2 J

Notes:

NM - Normal soil sample LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

MG/KG - m am per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 5 of 9

Location nsample sample Sample Date	BG1SBP10 BG1SBP1004 BG1SBP1004 11/05/99	BG2SBG01 BG2SBG0101 BG2SBG0101 11/07/99	BG2SBG01 BG2SBG0104 BG2SBG0104 11/07/99	BG2SBG02 BG2SBG0201 BG2SBG0201 11/07/99	BG2SBG02 BG2SBG0203 BG2SBG0203 11/07/99	BG2SBG02 BG2SBG0206 BG2SBG0206 11/07/99	BG2SBG03 BG2SBG0303 BG2SBG0303 11/07/99	BG2SBG03 BG2SBG0303-D BGFD11079901 11/07/99	BG2SBG03 BG2SBG0303-MAX BG2SBG0303 11/07/99	BG2SBG04 BG2SBG0401 BG2SBG0401 11/07/99
QC Type	NM	NM	NM							
Deposit. Env.	PENNSYLVANIAN	GLACIAL	GLACIAL	GLACIAL						
Grain Size	SILT	CLAY	SAND	SILT	SILT	CLAY	SAND	SAND	SAND	SILT
depth	SB	SS	SB	SS	SB	SB	SB	SB	SB	SS
Duplicate	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	DUP	MAX	DUP
Matrix	SO	SO	SO							
Top Depth	3	0	- 3	0	- 2	5	2	2	2	0
Bottom Depth	4	1	. 4	1	3	6	3	3	3	1
Metal (mg/kg)	<u></u>									
ALUMINUM	10900 J	14300 J	13700 J	7940 J	7570 J	16000 J	9340 J	11100 J	11100 J	9560 J
ANTIMONY	0.31 U	0.51 U	0.41 U	0.38 U	0.39 U	0.2 U	0.36 U	0.23 U	0.36 U	0.4 U
ARSENIC	5.3 J	5.8	4.9	3.6	2.2	1.1	1.3	1.2	1.3	3.9
BARIUM	49.1 J	114 J	79.1 J	90.8 J	42.4 J	41.7 J	38.1 J	44.5 J	44.5 J	115 J
BERYLLIUM	0.42 U	0.6 J	0.3 J	0.48 J	0.18 U	0.37 J	0.21 U	0.24 U	0.24 U	0.73 J
CADMIUM	0.28 J	0.05 U	0.04 U	0.05 U	0.05 U	0.1 U				
CALCIUM	333 J	521 J	430 J	345 J	277 J	411 J	370 J	397 J	397 J	1040 J
CHROMIUM	17 J	15.1 J	15.7 J	9.8 J	9.2 J	14.7 J	9.5 J	10.3 J	10.3 J	10.5 J
COBALT	5.2	13	7.3	9.3	3.8	2.7	1.7	1.8	1.8	14.1
COPPER	13	11.3	12.6	6.5	4.3	4.6	4.1	4.3	4.3	7
IRON	18600 J	17400 J	17500 J	10100 J	9130 J	13900 J	7090 J	7140 J	7140 J	11400 J
LEAD	8.9 J	13.5 J	8.9 J	12 J	6.9 J	10.8 J	6.8 J	7.3 J	7.3 J	14.7 J
LITHIUM	13.7 J	13.2 J	14.5 J	10.0 J	9.2 J	10.8 J	9.7 J	11.3 J	11.3 J	12.3 J
MAGNESIUM	1900 J	1810 J	1900 J	1030 J	760 J	959 J	847 J	930 J	930 J	1180 J
MANGANESE	249 J	1060 J	376 J	936 J	268 J	23.2 J	56.3 J	40.3 J	56.3 J	1410 J
MERCURY	0.05 U	0.05 U	0.04 U	0.05 U	0.04 U	0.05 U	0.04 U	0.05 U	0.05 U	0.05
NICKEL	11.3 J	17.1 J	13.1 J	11 J	6.1 J	10 J	4.6 J	4.9 J	4.9 J	13.9 J
POTASSIUM	744 J	1250 J	921 J	525 J	425 J	552 J	438 J	474 J	474 J	699 J
SELENIUM	0.37 J	0.6 U	0.3 U	0.43 U	0.28 U	0.32 U	0.25 U	0.29 U	0.29 U	0.47 U
SILVER	0.05 J	0.06 U	0.05 U	0.05 U	0.05 U	0.05 U	0.04 U	0.05 U	0.05 U	0.05 U
SODIUM	46.7 U	14.7 U	9.1 U	19 U	4.8 U	31.1 U	69.6 U	94.2 U	94.2 U	27.7 U
STRONTIUM	11.6 J	14.2 J	11.7 J	9.7 J	8.1 J	10.0 J	9.7 J	10.8 J	10.8 J	17.0 J
THALLIUM	0.14 J	0.27 J	0.15 J	0.22 J	0.14 J	0.27 J	0.12 J	0.14 J	0.14 J	0.21 J
THORIUM	7.3 J	7.9 J	5.7 J	6.4 J	5.8 J	6.3 J	5.2 J	5.0 J	5.2 J	6.9 J
TIN	0.61 U	0.56 U	0.59 U	0.48 U	0.43 U	0.54 U	0.64 U	0.46 U	0.64 U	0.55 U
VANADIUM	28.3 J	32.2 J	30.4 J	19 J	18.1 J	19.3 J	15.6 J	17.1 J	17.1 J	21.7 J
ZINC	32 J	49.6 J	34.6 J	29.7 J	16.2 J	15.8 J	13.3 J	13.6 J	13.6 J	38.2 J

Notes:

NM - Normal soil sample

LD - Lab duplicate

MS - Matrix spike RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

MG/KG - milligram per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 6 of 9

Location nsample sample Date QC Type Deposit. Env. Grain Size depth Duplicate Matrix Top Depth	BG2SBG04 BG2SBG0401-D BGFD11079902 11/07/99 NM GLACIAL SILT SS DUP SO 0	BG2SBG04 BG2SBG0401-MAX BG2SBG0401 11/07/99 NM GLACIAL SILT SS MAX SO 0	BG2SBG04 BG2SBG0404 BG2SBG0404 11/07/99 NM GLACIAL SILT SB NORMAL SO 3	BG2SBG05 BG2SBG0503 BG2SBG0503 11/07/99 NM GLACIAL SAND SB NORMAL SO 2	BG3SBA01 BG3SBA0101 BG3SBA0101 11/02/99 NM ALLUVIUM SILT SS DUP SO 0	BG3SBA01 BG3SBA0101-D BGFD11029901 11/02/99 NM ALLUVIUM SILT SS DUP SO 0	BG3SBA01 BG3SBA0101-MAX BG3SBA0101 11/02/99 NM ALLUVIUM SILT SS MAX SO 0	BG3SBA02 BG3SBA0203 BG3SBA0203 11/02/99 NM ALLUVIUM SAND SB NORMAL SO 2	BG3SBA03 BG3SBA0301 BG3SBA0301 11/03/99 NM ALLUVIUM SILT SS NORMAL SO 0	BG3SBA04 BG3SBA0403 BG3SBA0403 11/04/99 NM ALLUVIUM SILT SB NORMAL SO 2
Bottom Depth	. 1	1	4	3	1	1	- 1	. 3	1	3
Metal (mg/kg)	· · · · · · · · · · · · · · · · · · ·					_				
ALUMINUM	10700 J	10700 J	12300 J	10500 J	8240 J	7780	8240 J	9060 J	9600 J	9770 J
ANTIMONY	0.49 U	0.49 U	0.42 U	0.45 U	0.71 U	1.1 U	1.1 U	1.1 U	0.71 U	0.5 U
ARSENIC	4.3	4.3	5.8	6	3.7	4.2	4.2	7.5	4.8	5.7
BARIUM	111 J	115 J	45.8 J	51.6 J	74.3 J	75.6 J	75.6 J	83.4 J	105 J	64.8 J
BERYLLIUM	0.74 J	0.74 J	0.32 J	0.4 J	0.64 U	0.49 J	0.49 J	0.63 U	0.69 U	0.66 U
CADMIUM	0.05 U	0.1 U	0.04 U	0.05 U	0.2 U	0.04 U	0.2 U	0.15 U	0.29 U	0.33 U
CALCIUM	924 J	1040 J	157 J	122 J	334	313 J	334	570	957 J	576 J
CHROMIUM	13.1 J	13.1 J	24.3 J	24 J	9.2 J	11.3 J	11.3 J	19.1 J	15 J	10.1 J
COBALT	13.8	14.1	9.2	6.7	8.8	9.6	9.6	11.9	14.4	8.7
COPPER	7.2	7.2	12.1	11.8	6.5	5.7	6.5	7.1	8 J	6.6
IRON	12000 J	12000 J	21200 J	22100 J	9340 J	11800	11800	19500 J	16900 J	11900 J
LEAD	14.8 J	14.8 J	9.8 J	11.4 J	12.3 J	13.1 J	13.1 J	12.2 J	19 J	9.3 J
LITHIUM	12.8 J	12.8 J	14.9 J	15.2 J	8.2 J	9,1 J	9.1 J	12.1 J	10.2 J	10.9 J
MAGNESIUM	1260 J	1260 J	1510 J	1480 J	876 J	846 J	876 J	772 J	1310 J	1100 J
MANGANESE	1360 J	1410 J	351 J	119 J	721 J	776 J	776 J	861 J	1560 J	720 J
MERCURY	0.06	0.06	0.05 U	0.05 U	0.05 U	0.05	0.05	0.05 U	0.05	0.04 U
NICKEL	13.8 J	13.9 J	10.6 J	11.6 J	8.8 J	9.2 J	9.2 J	12.3 J	13.2 J	9.8 J
POTASSIUM	831 J	831 J	814 J	896 J	584	496	584	768	1060	676
SELENIUM	0.79 U	0.79 U	0.24 U	0.3 U	0.64 U	0.4 U	0.64 U	0.39 U	1 U	0.43 U
SILVER	0.05 U	0.05 U	0.04 U	0.05 U	0.05 J	0.04 U	0.05 J	0.05 J	0.06 J	0.05 J
SODIUM	24 U	27.7 U	16.8 Ū	17.1 U	2.5 U	11.9 J	11.9 J	5.2 J	2.9 U	2.3 U
STRONTIUM	17.3 J	17.3 J	9.1 J	8.0 J	7.4 J	7.8 J	7.8 J	7.1 J	10.1 J	8.8 J
THALLIUM	0.26 J	0.26 J	0.16 J	0.15 J	0.15 J	0.18 J	0.18 J	0.15 J	0.17 J	0.14 J
THORIUM	6.6 J	6.9 J	7.6 J	7.4 J	4.8 J	5.9 J	5.9 J	5.9 J	6.4 J	6.2 J
TIN	0.57 U	0.57 U	0.6 U	0.64 U	0.66 U	0.62 U	0.66 U	0.6 U	0.82 U	0.5 U
VANADIUM	23.6 J	23.6 J	31.5 J	28.9 J	16.9	18.2	18.2	23.9	23.5	20.5 J
ZINC	36.2 J	38.2 J	28.4 J	35.3 J	34.1 J	31.2 J	34.1 J	26.5 J	37.7 J	26.5 U

Notes:

Notes: NM - Normal soil sample LD - Lab duplicate MS - Matrix spike RB - Rinsate Blank LC - Lab Control Sample PB - Lab Prep Blank MG/KG - mⁱⁿ In per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 7 of 9

Location	BG3SBA04	BG3SBA05	BG3SBA05	BG3SBA05	BG3SBM02	BG3SBM02	BG3SBM02	BG3SBM03	BG3SBM04	BG3SBM04
nsample	BG3SBA0404	BG3SBA0501	BG3SBA0504	BG3SBA0506	BG3SBM0201	BG3SBM0203	BG3SBM0206	BG3SBM0305	BG3SBM0401	BG3SBM0404
sample	BG3SBA0404	BG3SBA0501	BG3SBA0504	BG3SBA0506	BG3SBM0201	BG3SBM0203	BG3SBM0206	BG3SBM0305	BG3SBM0401	BG3SBM0404
Sample Date	11/04/99	11/04/99	11/04/99	11/04/99	11/02/99	11/02/99	11/02/99	11/02/99	11/03/99	11/03/99
QC Type	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Deposit. Env.	ALLUVIUM	ALLUVIUM	ALLUVIUM	ALLUVIUM	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN
Grain Size	SAND	SILT	SILT	SAND	SILT	SILT	CLAY	SILT	SILT	CLAY
depth	SB	SS SS	SB	SB	SS	SB	SB	SB	SS	SB
Duplicate	NORMAL.	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
Matrix	SO	SO	SO	SO	SO	SO SO	SO	SO	SO	SO
Top Depth	3	0	3	5	0	2	5	4	0	3
Bottom Depth	4	1	4	6	1	3	6	5	1	4
Metal (mg/kg)										
ALUMINUM	12200 J	9800 J	. 10100 J	7810 J	10400	15600	17000	11400	9900	10900
ANTIMONY	0.53 U	0.41 U	0.41 U	0.4 U	0.38 U	0.58 U	0.46 U	0.52 U	5.6 J	2.9 J
ARSENIC	3.2	8	3	3.7	5.9 J	9 J	4.4 J	6.6 J	5.5 J	6.1 J
BARIUM	46.1 J	128 J	57 J	56.9 J	71.8 J	62.3 J	87.9 J	41.8 J	118 J	51.1 J
BERYLLIUM	0.56 U	0.73 U	0.76 U	0.38 U	0.65 U	0.42 U	1.1 U	0.45 U	0.94 U	0.37 U
CADMIUM	0.2 U	0.28 U	0.29 U	0.14 U	3.6 J	1 J	0.06 J	0.25 J	1.2 J	0.26 J
CALCIUM	817 J	595 J	506 J	396 J	303 J	351 J	1260 J	152 J	424 J	239 J
CHROMIUM	14.6 J	11.1 J	10.6 J	10.8 J	17.8 J	22.6 J	25.1 J	18.9 J	12.2 J	17.3 J
COBALT	7.5	8.7	7.3	7.5	15.2	6.4	8.2	6.8	13.5	4.1
COPPER	8.4	7.5	6.9	6.5	7.6	19	10.7	12.1	8.1 J	12.4 J
IRON	15600 J	10700 J	12900 J	12700 J	15700	25400	26400	21000	12400	18300
LEAD	9.3 J	12.3 J	9.4 J	9.3 J	16.6 J	13.6 J	10.9 J	10.9 J	14.2 J	9.2 J
LITHIUM	11.5 J	11.5 J	14.0 J	9.6 J	13.8 J	20.8 J	30.6 J	17.8 J	14.8 J	13.3 J
MAGNESIUM	1230 J	1000 J	1200 J	812 J	1210 J	2590 J	2070 J	1440 J	1310 J	1810 J
MANGANESE	306 J	1430 J	719 J	674 J	851 J	192 J	35.3 J	318 J	1380 J	127 J
MERCURY	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.06	0.05 U	0.06	0.05 U	0.04 U
NICKEL	9.5 J	12.8 J	9.5 J	9.3 J	11.2 J	14.3 J	14.7 J	9.8 J	13.8 J	9.5 J
POTASSIUM	1020	821	731	689	688	1170	1270	851	801	810
SELENIUM	0.56 U	0.73 U	0.48 U	0.33 U	0.98 U	0.69 U	0.46 U	0.3 U	0.94 U	0.57 U
SILVER	0.04 J	0.06 J	0.05 J	0.05 J	0.05 J	0.05 J	0.06 U	0.05 J	0.06 J	0.05
SODIUM	2 U	2.8 U	2.4 U	2.4 U	9.4 J	9.1 J	182	22.9 J	2.8 U	14.3 U
STRONTIUM	9.2 J	9.9 J	10.6 J	7.2 J	8.6 J	16.3 J	25.7 J	8.5 J	13.3 J	12.7 J
THALLIUM	0.12 J	0.22 J	0.19 J	0.14 J	0.16 J	0.21 J	0.17 J	0.15 J	0.22 J	0.16 J
THORIUM	5.9 J	5.3 J	5.7 J	4.5 J	7.1 J	9.4 J	10.0 J	7.8 J	7.3 J	6.5 J
TIN	0.62 U	0.56 U	0.56 U	0.45 U	0.65 U	0.84 U	1.3 U	0.57 U	0.59 U	0.6 U
VANADIUM	26.9 J	19.4 J	21.4 J	18.1 J	26.9	37.7	33	32.6	23.1	28.8
ZINC	26.8 U	30.2 U	26.4 U	22.8 U	35.1 J	47.7 J	14.9 J	28.5 J	37.2 J	27.9 J

Notes:

NM - Normal soil sample

LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

MG/KG - milligram per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 8 of 9

Location	BG3SBM04	BG3SBM05	BG3SBM06	BG3SBM06	BG3SBM07	BG3SBM07	BG3SBM07	BG3SBM08	BG3SBM08	BG3SBM08
nsample	BG3SBM0406	BG3SBM0504	BG3SBM0601	BG3SBM0604	BG3SBM0701	BG3SBM0704	BG3SBM0706	BG3SBM0801	BG3SBM0803	BG3SBM0803-D
sample	BG3SBM0406	BG3SBM0504	BG3SBM0601	BG3SBM0604	BG3SBM0701	BG3SBM0704	BG3SBM0706	BG3SBM0801	BG3SBM0803	BGFD11039901
Sample Date	11/03/99	11/03/99	11/02/99	11/02/99	11/03/99	11/03/99	11/03/99	11/03/99	11/03/99	11/03/99
QC Type	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Deposit. Env.	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN
Grain Size	SAND	SAND	SILT	SILT	SILT	SILT	CLAY	SILT	SAND	SAND
depth	SB	SB	SS	SB	SS	SB	SB	SS	SB	SB
Duplicate	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	DUP	DUP
Matrix	SO	SO ·	so	SO	SO	SO	SO	SO	SO	SO
Top Depth	5	3	0	3	0	3	5	0.	2	2
Bottom Depth	6	4	1 .	4	1	4	6	1	3	3
Metal (mg/kg)					· · · · · · · · · · · · · · · · · · ·					
ALUMINUM	5020	10400	9320	10100	12300	11900	9330	8450	7500	7400
ANTIMONY	1.2 J	1.2 J	0.44 U	0.69 U	1.4 J	0.63 U	0.41 U	0.36 U	0.19 U	0.23 U
ARSENIC	2.5 J	5.6 J	7.8 J	8 J	10.2 J	6.5 J	2.6 J	4.6 J	2 J	1.6 J
BARIUM	27 J	55.4 J	153 J	116 J	143 J	59.6 J	64 J	65.2 J	30.9 J	30 J
BERYLLIUM	0.2 U	0.37 U	0.77 U	1.2 U	1.2 U	0.47 U	0.56 U	0.61 U	0.3 U	0.35 U
CADMIUM	0.34 J	0.32 J	0.83 J	0.77 J	0.72 J	2.1 J	0.21 J	0.83 J	2.8 J	1.2 J
CALCIUM	92.6 J	309 J	35300 J	5320 J	286 J	257 J	479 J	370 J	133 J	130 J
CHROMIUM	10.9 J	15.2 J	13.1 J	30.6 J	16.4 J	17.2 J	13.3 J	17.6 J	14.5 J	12.6 J
COBALT	4.5	4.7	13.7	11.8	27.1	6.9	4.5	8.4	3.3	3.1
COPPER	3.5 J	12.9 J	7.6	7.5	7.1 J	13.1 J	5.3 J	7.9 J	5.7 J	5.1 J
IRON	8850	17300	15000	22300	20900	20100	12000	13200	9640	8820
LEAD	7.5 J	9.6 J	17.8 J	15.4 J	20.6 J	12.8 J	7.6 J	14.3 J	6.4 J	6.1 J
LITHIUM	7.8 J	14.7 J	13.9 J	20.6 J	15.9 J	14.8 J	18.4 J	11.2 J	10.4 J	10.3 J
MAGNESIUM	496 J	1890 J	1330 J	1210 J	1110 J	2000 J	1590 J	1040 J	925 J	910 J
MANGANESE	266 J	177 J	1690 J	1410 J	3040 J	311 J	89.4 J	666 J	87.8 J	85.5 J
MERCURY	0.04 U	0.05 U	0.05 U	0.04 U	0.05 U	0.05 U	0.05 U	0.05	0.04 U	0.04 U
NICKEL	4.6 J	10.2 J	14.2 J	17.3 J	13.6 J	11.8 J	11 J	10.2 J	11.3 J	10.7 J
POTASSIUM	280	768	1340	1330	791	975	960	630	926	884
SELENIUM	0.29 U	0.53 U	1 U	0.56 U	1.3 U	0.42 U	0.72 U	0.72 U	0.3 U	0.3 U
SILVER	0.05 J	0.05 J	0.06 J	0.05 J	0.06 J	0.05 J	0.05 U	0.06 J	0.05 J	0.05 J
SODIUM	2.4 U	16.7 U	23.7 J	21.9 J	13.7 U	51.4 U	119 J	4.4 U	8.6 U	16.5 U
STRONTIUM	4.2 J	13.3 J	63.2 J	15.9 J	11.1 J	16.2 J	15.4 J	7.4 J	5.0 J	5.6 J
THALLIUM	0.05 J	0.16 J	0.18 J	0.1 J	0.22 J	0.21 J	0.1 J	0.17 J	0.05 J	0.05 J
THORIUM	4.1 J	6.7 J	5.9 J	<u>6</u> .9 J	7.8 J	8.3 J	8.1 J	5.8 J	4.6 J	5.1 J
TIN	0.44 U	0.6 U	1.2 U	0.64 U	1.2 U	0.67 U	0.68 U	0.52 U	0.48 U	0.5 U
VANADIUM	16.9	27.1	21.6	26.1	37.4	28.7	18	22.3	14.1	13.2
ZINC	9.4 J	30.8 J	40.2 J	31.5 J	60.2 J	35.7 J	17.1 J	28.1 J	13.2 J	12.9 J

Notes:

NM - Normal soil sample

LD - Lab duplicate MS - Matrix spike RB - Rinsate Blank

LC - Lab Control Sample PB - Lab Prep Blank MG/KG - m^{ill} am per kilogram

ANALYTICAL DATABASE SOIL RESULTS NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 9 of 9

Location	BG3SBM08	BG3SBM09	BG3SBM10				
nsample	BG3SBM0803-MAX	BG3SBM0904	BG3SBM1003				
sample	BG3SBM0803	BG3SBM0904	BG3SBM1003				
Sample Date	11/03/99	11/03/99	11/04/99				
QC Type	NM	NM	NM				
Deposit. Env.	MISSISSIPPIAN	MISSISSIPPIAN	MISSISSIPPIAN				
Grain Size	SAND	SILT	CLAY				
depth	SB	SB SB					
Duplicate	MAX	NORMAL	NORMAL				
Matrix	SO	SO	so				
Top Depth	2	3	2				
Bottom Depth	3	4	3				
Metal (mg/kg)							
ALUMINUM	7500	14300	13800 J				
ANTIMONY	0.23 U	0.97 U	0.6 U				
ARSENIC	2 J	8.5 J	6.3 J				
BARIUM	30.9 J	56.6 J	55.8 J				
BERYLLIUM	0.35 U	0.59 U	0.46 U				
CADMIUM	2.8 J	0.75 J	0.57 J				
CALCIUM	133 J	131 J	312 J				
CHROMIUM	14.5 J	19.4 J	18.7 J				
COBALT	3.3	6.4	6.4				
COPPER	5.7 J	19.7 J	12.9				
IRON	9640	22300	18500 J				
LEAD	6.4 J	14.9 J	12.1 J				
LITHIUM	10.4 J	15.4 J	16.4 J				
MAGNESIUM	925 J	2530 J	1840 J				
MANGANESE	87.8 J	269 J	266 J				
MERCURY	0.04 U	0.05	0.05 U				
NICKEL	11.3 J	14.2 J	12.5 J				
POTASSIUM	926	1150	1020				
SELENIUM	0.3 U	0.54 U	0.88 U				
SILVER	0.05 J	0.05 J	0.05 J				
SODIUM	16.5 U	14.8 U	7.8 J				
STRONTIUM	5.6 J	14.4 J	10.1 J				
THALLIUM	0.05 J	0.21 J	0.21 J				
THORIUM	5.1 J	9.0 J	7.0 J				
TIN	0.5 U	0.66 U	0.65 U				
VANADIUM	14.1	33.7	31.5 J				
ZINC	13.2 J	46.6 J	36.2 J				

Notes:

NM - Normal soil sample

LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

MG/KG - milligram per kilogram

This page intentionally left blank.

1

ILLE C-3

ANALYTICAL DATABASE QC SAMPLES NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 1 of 2

nsample	BG1SBA0306S	BG1SBA280304	BG1SBL0504S	BG1SBP0603S	BG3SBM0803S	BGRB11029901S	BGSW11029901S	LCSS1-C8301	LCSS1-C8303
sample	BG1SBA0306S	BG1SBA280304	BG1SBL0504S	BG1SBP0603S	BG3SBM0803S	BGRB11029901S	BGSW11029901S	LCSS1-C8301	LCSS1-C8303
sample_dat	11/05/99	10/06/00	11/08/99	11/05/99	11/03/99	11/02/99	11/02/99	11/03/99	11/16/99
qc_type	MS	MS	MS	MS	MS	RB/MS	MS	LC	LC
samp_type			· · ·						
Depos. Envirn.	ALLUVIUM	ALLUVIUM	LOESS	PENNSYLVANIAN	MISSISSIPPIAN	· · · · ·			
top_depth	5	3	3	2	2				
bottom_dep	- 6	4	4	3	3	1			
dups									
M ALUMINUM %				***************************************		103		91.2	88.2
M ANTIMONY %	98.4	103	110	97.3	94.5	111		98.7	96.1
M ARSENIC %	91.1	91.6	81.2	84.2	94.1	111		96.3	93.4
M BARIUM %	79.1	108.9	79.1	83.2	94.4	106		95.8	93.8
M BERYLLIUM %	109	92.7	93.2	108	116	104		112	98.0
M CADMIUM %	92.1	96.6	82.3	94.1	36.0 N	106		86.0	80.0
M CALCIUM %						112		96.8	99.7
M CHROMIUM %	97.9	135.2 N	67.5 N	121	77.0	103		97.0	96.0
M COBALT %	83.0	78.8	82.7	86.7	93.4	109	· · · · · · · · · · · · · · · · · · ·	95.8	92.4
M COPPER %	89.9	118	87.7	92.8	97.3	108		99.6	99.2
M IRON %			· ·····			109	·	101	95.1
M LEAD %	80.2	98	77.4	80.5	92.5	105		96.4	92.2
M LITHIUM %	84.6	94.8	104	68.5 N	111		99.7		02.2
M MAGNESIUM %						102		94.1	94.3
M MANGANESE %	61.2	73.1 N	-11.80	31.9	62.9 N	102		96.0	94.4
M MERCURY %	99.5	95.5	94.3	101	98.9	94.8		100	96.0
M NICKEL·%	79.4	80.4	81.8	84.7	92.4	104		96.4	92.4
M POTASSIUM %						98.8		93.2	93.5
M SELENIUM %	86.0	93.4	79.4	84.1	94.6	107		99.2	90.9
M SILVER %	92.1	94.7	85.9	92.1	87.9	104	······	86.0	92.0
M SODIUM %						95.4		102	82.7
M STRONTIUM %	81	117.5	106	105	105		102		
M THALLIUM %	88.6	91.2	86.8	88.6	89.5	102		90.5	91.0
M THORIUM %	94.2	87.2	108	116	105		109		
M TIN %	96.8	89	93.1	92.8	84.6	103		93.2	84.8
M VANADIUM %	85.5	104.7	77.1	74.5 N	89.4	107		98.0	97.0
M ZINC %	74.1 N	108.1	75.3	81.2	89.3	107		94.0	92.8

Notes:

NM - Normal soil sample

LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

UG/L - microgram per liter

ANALYTICAL DATABASE QC SAMPLES NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 2 of 2

nsample	LCSS1-C8304	LCSS1-C8305	LCSS1-C3806	LCSS1-C3807	LCSS1-C3808	LCSS1-C3809	LCSW1-C8302	LCSW1-C8310
sample	LCSS1-C8304	LCSS1-C8305	LCSS1-C3806	LCSS1-C3807	LCSS1-C3808	LCSS1-C3809	LCSW1-C8302	LCSW1-C8310
sample_dat	11/18/99	11/18/99	05/04/00	05/04/00	05/04/00	05/05/00	11/11/99	05/04/00
qc_type	LC	LC	LC	LC	LC	LC	LC	LC
samp_type								
Depos. Envirn.								
top_depth								
bottom_dep		· · ·						
dups								
M ALUMINUM %	83.7	89.0					105	
M ANTIMONY %	103	107					117	
M ARSENIC %	86.0	92.2					109	
M BARIUM %	86.1	93.8	· · · · · · · · · · · · · · · · · · ·				110	
M BERYLLIUM %	120	88.0					105	
M CADMIUM %	96.0	84.0					108	
M CALCIUM %	93.1	97.9					108	
M CHROMIUM %	89.5	94.5					103	
M COBALT %	87.2	93.0					109	
M COPPER %	91.2	98.4					107	
M IRON %	93.8	98.2					110	
M LEAD %	87.4	94.4					108	······································
M LITHIUM %			104	105	93.6	101		109
M MAGNESIUM %	88.1	94.8					102	
M MANGANESE %	88.6	93.8				· · · · · · · · · · · · · · · · · · ·	103	
M MERCURY %	96.0	96.0					88.5	
M NICKEL %	87.2	93.8					105	
M POTASSIUM %	88.1	93.2					97.3	
M SELENIUM %	116	93.2					110	
M SILVER %	106	96.0					108	
M SODIUM %	88.1	92.2					96.7	
M STRONTIUM %			100	101	100	99.6		110
M THALLIUM %	105	94.1			·····		105	
M THORIUM %			102	106	110	102		116
VITIN %	92.5	99.3					106	
VI VANADIUM %	90.0	95.8					109	
VIZINC %	87.4	92.4					108	

Notes: NM - Normal soil sample LD - Lab duplicate MS - Matrix spike RB - Rinsate Blank LC - Lab Control Sample PB - Lab Prep Blank UG/L - microgram per liter

ANALYTICAL DATABASE QC SAMPLES NÄVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 1 of 2

nsample	BGRB11029901	BGRB11029901D	BGRB11039901	BGRB11049901	BGRB11059901	BGRB11069901	BGRB11079901	BGRB11089901	BGSW11029901
sample	BGRB11029901	BGRB11029901D	BGRB11039901	BGRB11049901	BGRB11059901	BGRB11069901	BGRB11079901	BGRB11089901	BGSW11029901
sample_dat	11/02/99	11/02/99	11/03/99	11/04/99	11/05/99	11/06/99	11/07/99	11/08/99	11/02/99
qc_type	RB	RB/LD	RB	RB	RB	RB	RB	RB	NM
M ALUMINUM UG/L	27.4 U	55.6 U	27.4 U	104	114	27.4 U	369	27.4 U	27.4 U
M ANTIMONY UG/L	0.11 U	1.1 U	0.11 U	0.11 U	0.11 U	0.11 U	0.33 J	0.11 U	0.11 U
M ARSENIC UG/L	0.22 U	1.1 U	0.22 U	0.78 J	0.22 U				
M BARIUM UG/L	0.11 U	1.1 U	0.56 J	0.11 U	1.0 J	0.11	3.8	0.89 J	4.7
M BERYLLIUM UG/L	0.11 U	1.1 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
M CADMIUM UG/L	0.11 U	1.1 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 J	0.11 J	0.11 U
M CALCIUM UG/L	18 J	111 U	14.2 J	12.6 J	25.8 J	10.8 U	36.2 J	0.11 U	0.11 U
M CHROMIUM UG/L	0.22 J	5.6 U	0.22 J	0.22 J	033 J	0.11 J	0.44 J	0.22 J	0.22 J
M COBALT UG/L	0.11 U	3.3 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.22 U	0.22 U
M COPPER UG/L	0.22 U	2.2 U	0.33 J	0.22 U	0.22 U	0.22 U	0.22 U	0.11 U	0.11 U
M IRON UG/L	15.6 U	22.2 U	15.6 U	54.6	30.9	15.6 U	99.4	0.22 U	0.22 U
M LEAD UG/L	0.11 U	1.1 U	0.33 J	0.11 U	0.11 U	0.11 U	0.11 J	0.11 J	0.11 J
M LITHIUM UG/L	0.22 UJ		0.22 J	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ
M MAGNESIUM UG/L	12.7 J	111 U	5.4 J	9.9 J	13.4 J	3.0 J	44.4 J	5.6 J	5.6 U
M MANGANESE UG/L	0.22 J	5.6 U	0.11 J	0.33 J	0.44 J	0.11 U	1.0 J	0.22 J	0.22 U
M MERCURY UG/L	0.20 J	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
M NICKEL UG/L	0.11 J	11.1 U	0.11 U	0.11 J					
M POTASSIUM UG/L	21.4 U	111 U	21.4 U	21.4 U	64.7 J	21.4 U	41.3 J	21.4 U	21.4 U
M SELENIUM UG/L	0.67 U	1.1 U	0.67 U	0.67 U	0.67 U	0.67 U	0.67 U	0.78 J	0.67 J
M SILVER UG/L	0.11 U	3.3 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
M SODIUM UG/L	13.6 U	111 U	18.7 J	13.6 U	76.3 J	13.6 U	53.1 J	13.6 U	13.6 U
M STRONTIUM UG/L	0.22 UJ	1	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ
M THALLIUM UG/L	0.11 U	1.1 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	1.1 U
M THORUM UG/L	0.33 J		0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ
M TIN UG/L	0.11 U	11.1 U	0.11 J	0.11 U	0.22 J	0.11 U	2.3 J	0.11 J	0.33 J
M VANADIUM UG/L	0.11 U	2.2 U	0.11 U	0.11 J	0.11 J	0.11 U	0.44 J	0.11 U	0.11 U
M ZINC UG/L	5.8 J	11.1 U	1.4 J	60.3	7.8 J	2.2 J	1.9 J	99.4	1.8 J

Notes:

NM - Normal soil sample

LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

UG/L - microgram per liter

ANALYTICAL DATABASE QC SAMPLES NAVAL SURFACE WARFARE CENTER CRANE, INDIANA Page 2 of 2

nsample	BGSW1102	PBW1-C8302	PBW1-C8310	BGRB10060001	BGRB10070001
sample	BGSW11029901D	PBW1-C8302	PBW1-C8310	BGRB10060001	BGRB10070001
sample_dat	11/02/99	11/11/99	05/05/00	10/06/00	10/06/00
qc_type	SW	PB	PB	RB	RB
M ALUMINUM UG/L		55.6 U		55.9 J	55.6 U
M ANTIMONY UG/L		1.1 U		1.1 U	1.1 U
M ARSENIC UG/L		1.1 U		1.1 U	1.1 U
M BARIUM UG/L		1.1 U		0.68 J	0.56 U
M BERYLLIUM UG/L		1.1 U		0.56 U	0.56 U
M CADMIUM UG/L		1.1 U		0.56 U	0.56 U
M CALCIUM UG/L		111 U		124 U	124 U
M CHROMIUM UG/L		5.6 U		0.56 U	0.56 J
M COBALT UG/L		3.3 U	•	0.56 U	0.56 U
M COPPER UG/L		2.2 U	and the second second	0.56 U	0.56 U
M IRON UG/L		22.2 U		24.9 J	20.2 J
M LEAD UG/L		1.1 U		0.56 U	0.56 U
M LITHIUM UG/L	0.22 U		0.20 U	0.36 J	0.22 U
M MAGNESIUM UG/L		111 U		36.7 U	36.7 U
M MANGANESE UG/L	· · · · ·	5.6 U		1.7 U	1.7 U
M MERCURY UG/L		0.20 U		0.20 U	0.20 U
M NICKEL UG/L		11.1 U		0.56 U	0.56 U
M POTASSIUM UG/L		111 U		163 U	163 U
M SELENIUM UG/L		. 1.1 U		1.1 U	1.1 U
M SILVER UG/L		3.3 U		0.56 U	0.56 U
M SODIUM UG/L		111 U		31.1 U	31.1 U
M STRONTIUM UG/L	0.22 U		0.20 U	0.22 U	0.22 U
M THALLIUM UG/L		1.1 U		0.56 U	0.56 U
M THORUM UG/L	0.22 U		0.20 U	0.43 J	0.22 U
M TIN UG/L		11.1 U		0.11 U	0.11 U
M VANADIUM UG/L		2.2 U		0.56 U	0.56 U
M ZINC UG/L		11.1 U		5.6 U	5.6 U

Notes:

NM - Normal soil sample

LD - Lab duplicate

MS - Matrix spike

RB - Rinsate Blank

LC - Lab Control Sample

PB - Lab Prep Blank

UG/L - microgram per liter

global in the second second second second

C-2 DATA VALIDATION SUMMARY

Tetra Tech NUS

INTERNAL CORRESPONDENCE

то:	K. HENN		DATE:	OCTOBER 23, 2000
FROM:	GRETCHEN A. PHIPF	°S	COPIES:	DV FILE / REV 2
SUBJECT:	INORGANIC DATA V/ CTO 083 – NSWC CR SDG – C8301	ALIDATION – TAL MET ANE	ALS AND TIN	
SAMPLES:	18/Soils/			
	BG3SBM0201 BG3SBM0305 BG3SBM0406 BG3SBM0604 BG3SBM0706 BG3SBM0904	BG3SBM0203 BG3SBM0401 BG3SBM0504 BG3SBM0701 BG3SBM0801 BG3SBM1003	BG3SBM0206 BG3SBM0404 BG3SBM0601 BG3SBM0704 BG3SBM0803 BGFD1103990	01

Overview

The sample set for CTO 083, NSWC Crane, SDG C8301, consists of eighteen (18) soil environmental samples. One (1) reld duplicate pair (BG3SBM0803 / BGFD11039901) was included within this SDG.

All samples were analyzed for target analyte list (TAL) metals and tin. The samples were collected by Tetra Tech NUS on November 2-4, 1999 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Aluminum, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, vanadium and zinc analyses were conducted using SW 846 method 6010B via ICP instrumentation. Arsenic, beryllium, cadmium, selenium, silver, sodium, thallium, antimony and tin analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation. Mercury analyses were conducted using SW 846 method 846 method 7471A via CVAA instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
 - Calibration Verifications
 - Laboratory Blank Analyses
 - Field Quality Control Blank Analyses
- ICP Interference Check Sample Results
 - Matrix Spike Results
 - Laboratory Duplicate Results
 - Field Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits

MEMO TO: K. HENN - PAGE 2 DATE: OCTOBER 23, 2000

* - All quality control criteria were met for this parameter.

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Samples affected: All

	Maximum	<u>Action</u>
Analyte	Concentration	Level (soil)
Antimony ⁽¹⁾	0.150 mg/kg	0.75 mg/kg
Arsenic	0.2µg/L	0.10 mg/kg
Beryllium ⁽¹⁾	0.250 mg/kg	1.25 mg/kg
Selenium	0.6µg/L	0.300 mg/kg
Tin ⁽¹⁾	0.210 mg/kg	1.05 mg/kg

⁽¹⁾ Maximum concentration found in a soil preparation blank.

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results less than the action level for antimony, beryllium, selenium and tin were qualified as nondetected "U". Positive results greater than the action level for antimony, arsenic and barium were qualified as estimated, "J".

All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J".

Matrix Spike Results

The Matrix Spike (MS) Percent Recoveries (%Rs) for cadmium and manganese were <75% quality control limit. The positive results reported for cadmium and manganese were qualified as estimated, "J".

Laboratory Duplicate Results

Laboratory Duplicate imprecision was noted for cadmium. The positive results reported for cadmium were qualified as estimated, "J".

Field Duplicate Results

Field Duplicate imprecision (50%) was noted for cadmium. The positive results reported for cadmium were qualified as estimated, "J".

<u>Notes</u>

The Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) for antimony, arsenic, cadmium, lead and silver were outside the 80-120% quality control limits. No validation action is required per regional guidance.

A comparison of field duplicate pair (BG3SBM0803 / BGFD11039901) is included in Appendix C.

As noted in the Case Narrative, the soil adjusted IDLs were not met for all metals analyzed via ICP instrumentation.

The metals analyzed via MS/ICP instrumentation were conducted at a 5X dilution.

Selenium and sodium exceeded the soil adjusted limits requested in the QAPP.

MEMO TO: K. HENN - PAGE 3 DATE: OCTOBER 23, 2000

Executive Summary

Laboratory Performance: Several analytes were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J". Several analytes were present in the field quality control blanks. The MS %Rs for cadmium and manganese were <75% quality control limit. Laboratory and field duplicate imprecisions were noted for cadmium.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS

Gretchen A. Phipps Chemist

Tetra Teen NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

Tetra Tech NUS

INTERNAL CORRESPONDENCE

BGRB11079901

TO:	K. HENN	DATE:	JANUARY 26, 2000
FROM:	GRETCHEN A. PHIPPS	COPIES:	DV FILE
SUBJECT:	INORGANIC DATA VALI CTO 083 - NSWC CRAN SDG - C8302	TIN	
SAMPLES:	8/Aqueous/		
	BGRB11029901	BGRB11039901	BGRB11049901

Overview

The sample set for CTO 083, NSWC Crane, SDG C8302, consists of seven (7) rinsate blanks and one (1) source water blank (BGSW11029901).

BGRB11069901

BGSW11029901

All samples were analyzed for target analyte list (TAL) metals and tin. The samples were collected by Tetra Tech NUS on November 2-8, 1999 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. All metals analyses, with the exception of mercury, we conducted using SW 846 method 6020 via ICP/MS instrumentation. Mercury analyses were conducted using SW 84- method 7471A via CVAA instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
- Calibration Verifications
- ICP Interference Check Sample Results

BGRB11059901

BGRB11089901

- Laboratory Duplicate Results
- Matrix Spike/ Matrix Spike Duplicate Analyses
- Post Digestion Spike Analyses
- Laboratory Control Sample Results
 - Sample Quanitation
 - Detection Limits
 - + All quality control criteria were met for this parameter.

Post Digestion Spike Analyses

The Post Digestion Spike (PDS) Percent Recovery (%R) for cadmium was >125% quality control limit. The positive results reported for cadmium were qualified as estimated, "J".

<u>Notes</u>

The Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) for arsenic, cobalt and selenium were outside the 80-120% quality control limits. No validation action is required per regional guidance.

Please, note that field quality control samples are not qualified for blank contamination.

All metals, with exception to mercury, were reported at IDLs lower than requested in the QAPP. The laboratory reported results to the IDL listed on the Form 10 included in Appendix C. It was requested that mercury be reported to 0.06μ g/L. The laboratory reported mercury at 0.2μ g/L. No changes were made to adapt the data to meet the QAPP requested IDLs. Results, as submitted by the laboratory were used for data validation purposes.

Executive Summary

Laboratory Performance: None.

Other Factors Affecting Data Quality: The PDS %R for cadmium was >125% quality control limit.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS

Gretchen A. Phipps Chemist

Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

a in a second

I.

Qualifier Codes:

J

L

Y

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance
- D = MS/MSD Noncompliance
- E = LCS/LCSD Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = ICP Serial Dilution Noncompliance
 - = GFAA PDS GFAA MSA's r < 0.995
- K = ICP Interference include ICSAB % R's
 - Instrument Calibration Range Exceedance
- M = Sample Preservation
- N = Internal Standard Noncompliance
- O = Poor Instrument Performance (i.e., base-time drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DDT and Endrin
- U = Pest/PCB D% between columns for positive results
- V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)</p>
- W = EMPC result
- X = Signal to noise response drop
 - % Solid content is less than 30%

CTO083-NSWC CRANE WATER DATA LAUCKS

LAUCKS SDG: C8302

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	11/02/99 9911159-01 NORMAL 0.0 %			BGRB11039901 11/03/99 9911159-03 NORMAL 0.0 % UG/L			BGRB1 11/04/99 9911159 NORMA 0.0 % UG/L	9-04		BGRB11059901 11/05/99 9911195-01 NORMAL 0.0 % UG/L			
,	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	
INORGANICS				1								1	
ALUMINUM	27.4	<u> </u>		27.4	<u> </u>		104			114		4	
ANTIMONY	0.11	U		0.11	U		0.11	<u> </u>		0.11	<u> </u>		
ARSENIC	0.22	U		0.22	U		0.78	J	Р	0.22	U	<u> </u>	
BARIUM	0.11	U		0.56	J	1	0.11	U		1.0	J	P	
BERYLLIUM	0.11	U		0.11	U		0.11	U		0.11	U		
CADMIUM	0.11	U		0.11	U		0.11	U		0.11	U		
CALCIUM	18	J	Р	14.2	J		12.6	J	Р	25.8	J	P	
CHROMIUM	0.22	J	Р	0.22	J	Р	0.22	J	Р	033	J	Р	
COBALT	0.11	U		0.11	Ū		0.11	U		0.11	U		
COPPER	0.22	U		0.33	J	Р	0.22	U		0.22	U		
IRON	15.6	U		15.6	U		54.6			30.9			
LEAD	0.11	U		0.33	J		0.11	U		0.11	U		
MAGNESIUM	12.7	J	P.	5.4	J	P	9.9	J		13.4	J	Р	
MANGANESE	0.22	J	P	0.11	J	P	0.33	J	Р	0.44	J	P	
MERCURY	0.20	J	P	0.20	U		0.20	U		0.20	U		
NICKEL	0.11	J	P	0.11	U		0.11	J	P	0.11	J	Р	
POTASSIUM	21.4	U		21.4	U		21.4	U		64.7	J	Р	
SELENIUM	0.67	U		0.67	U		0.67	U		0.67	U		
SILVER	0.11	U		0.11	U		0.11	U		0.11	U	· · · · ·	
SODIUM	13.6	U		18.7	J	P	13.6	U		76.3	J	Р	
THALLIUM	0.11	U		0.11	U		0.11	U		0.11	Ū		
TIN	0.11	U		0.11	J	Р	0.11	U		0.22	J	Р	
VANADIUM	0.11	U		0.11	U	1	0.11	J	Р	0.11	J	Р	
ZINC	5.8	J	Р	1.4	J	P	60.3			7.8	J	Р	

Page

1

	CTO083-NSWC CRANE WATER DATA LAUCKS SDG: C8302 SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:	BGRB11 11/06/99 9911195 NORMA 0.0 % UG/L	j-02		BGRB1 11/07/99 991119 NORMA 0.0 % UG/L	9 5-03		BGRB1 11/08/99 9911199 NORMA 0.0 % UG/L	5-04		BGSW1 11/02/99 9911159 NORMA 0.0 % UG/L)-02	2
	FIELD DUPLICATE OF:		QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
	INORGANICS	RESULT	QUAL	CODE	RESULT	GUAL	CODE	ALGOL!					
	ALUMINUM	27.4	U	1	369		1	27.4	U	ł	27.4	U	
	ANTIMONY	0.11	U	+	0.33	J	P	0.11	U		0.11	U	
	ARSENIC	0.22	U	<u> </u>	0.22	U		0.22	U		0.22	U	
	BARIUM	0.11		+	3.8			0.89	J	P	4.7		
	BERYLLIUM	0.11	U	+	0.11	U		0.11	0		0.11	U	
		0.11	U		0.11	J	DP	0.11	J	DP	0.11	U	
	CALCIUM	10.8	U	1	36.2	J	P	0.11	U		0.11	U	
	CHROMIUM	.0.11	J	P	0.44	J	Р	0.22	J	P	0.22	J	Р
	COBALT	0.11	U	+	0.11	U		0.22	U		0.22	U	
<u>`</u>	COPPER	0.22	0	1	0.22	U		0.11	U		0.11	U	
	IRON	15.6	U		99.4			0.22	U		0.22	0	
	LEAD	0.11	U	1	0.11	J		0.11	J	1	0.11	J	P
	MAGNESIUM	3.0	J	P	44.4	J		5.6	J	1	5.6	U	
	MANGANESE	0.11	U		1.0	J	Р	0.22	J	P	0.22	Ŭ	
	MERCURY	0.20	U		0.20	U		0.20	U		0.20	U	
	NICKEL	0.11	J	Р	0.11	J		0.11	J	Р	0.11	J	Р
···	POTASSIUM	21.4	υ		41.3	J	Р	21.4	U		21.4	Ū	
	SELENIUM	0.67	U		0.67	U		0.78	J	P	0.67	J	Р
	SILVER	0.11	U		0.11	U		0.11	U		0.11	U	
	SODIUM	13.6	U		53.1	J	Р		U		13.6	<u> </u>	
	THALLIUM	0.11	U		0.11	U		0.11	U		1.1	<u> </u>	P
	TIN	0.11	U		2.3	J		0.11	J	P	0.33	J	
	VANADIUM	0.11	U		0.44	J		0.11	U		0.11	0	P
	ZINC	2.2	J	P	1.9	J	P	99.4			1.8	J	<u>н</u>
		and the second se									-		

CTODO2 NISING CRANE

Tetra Tech NUS

INTERNAL CORRESPONDENCE

t della

TO:	K. HENN	DATE:	OCTOBER 24, 2000
FROM:	GRETCHEN A. PHIPPS	COPIES:	DV FILE / REV 2
SUBJECT:			

SAMPLES: 20/Soils/

BG1SBA0101 BG1SBA0401 BG1SL0101 BG1SL0405 BG3SBA0301 BG3SBA0501 BGFD11059901 BG1SBA0104 BG1SBA0503 BG1SL0103 BG3SBA0101 BG3SBA0403 BG3SBA0504 BGFD11069901

BG1SBA0504 BG1SL0105 BG3SBA0203 BG3SBA0404 BG3SBA0506

BG1SBA0306

Overview

The sample set for CTO 083, NSWC Crane, SDG C8303, consists of twenty (20) soil environmental samples. Two (2) field duplicate samples (BGFD11059901 and BGFD11069901) were included within this SDG.

All samples were analyzed for target analyte list (TAL) metals and tin. The samples were collected by Tetra Tech NUS on November 3-8, 1999 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Aluminum, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, vanadium and zinc analyses were conducted using SW 846 method 6010B via ICP instrumentation. Arsenic, beryllium, cadmium, selenium, silver, sodium, thallium, antimony and tin analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation. Mercury analyses were conducted using SW 846 method 7471A via CVAA instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
 - Calibration Verifications
 - Laboratory Blank Analyses
 - Field Quality Control Blank Analyses
- ICP Interference Check Sample Results
 - Matrix Spike Results
- Laboratory Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
 - Detection Limits

MEMO TO: K. HENN - PAGE 2 DATE: OCTOBER 24, 2000

All quality control criteria were met for this parameter.

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Samples affected: All

	<u>Maximum</u>	<u>Action</u>
Analyte	Concentration	Level (soil)
Antimony ⁽¹⁾	0.250 mg/kg	1.25 mg/kg
Beryllium ⁽¹⁾	0.150 mg/kg	0.75 mg/kg
Cadmium	0.2µg/L	0.10 mg/kg
Tin ⁽¹⁾	0.2mg/kg	1.0 mg/kg

⁽¹⁾ Maximum concentration found in a soil preparation blank.

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results less than the action level for antimony, beryllium, cadmium and tin were qualified as nondetected "U".

All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J".

Matrix Spike Results

ne Matrix Spike (MS) Percent Recovery (%R) for zinc was <75% quality control limit. The positive results reported for zinc were qualified as estimated, "J".

Laboratory Duplicate Results

Laboratory Duplicate imprecision (>35%) was noted for manganese. The positive results reported for manganese were qualified as estimated, "J".

ICP Serial Dilution Results

The ICP Serial Dilution Percent Differences (%Ds) for aluminum, barium, iron and manganese were >10% quality control limit. The positive results reported for aluminum, barium, iron and manganese were qualified as estimated, "J".

<u>Notes</u>

The Contract Required Detection Limit (CRDL) Percent Recovery (%R) for antimony was <80% quality control limits. No validation action is required per regional guidance.

The original samples associated with the field duplicate samples were not included within this SDG. Therefore, a comparison was not included.

As noted in the Case Narrative, the soil adjusted IDLs were not met for the metals analyzed via ICP instrumentation.

The metals analyzed via MS/ICP instrumentation were conducted at a 5X dilution.

Selenium and sodium exceeded the soil adjusted limits requested in the QAPP.

MEMO TO: K. HENN - PAGE 3 DATE: OCTOBER 24, 2000

Executive Summary

Laboratory Performance: Several analytes were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J". Several analytes were present in the field quality control blanks. The MS %R for zinc was <75% quality control limit. Laboratory duplicate imprecision was noted for manganese. The ICP Serial Dilution %Ds for aluminum, barium, iron and manganese were >10% quality control limit.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS

Gretchen A. Phipps Chemist

Terra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:	K. HENN	· .	DATE:	OCTOBER 24, 2000
FROM:	GRETCHEN A. PHIPI	PS	COPIES:	DV FILE / REV 2
SUBJECT:	INORGANIC DATA V CTO 083 – NSWC CF SDG – C8304	ALIDATION – TAL MET RANE	ALS AND TIN	,
SAMPLES:	16/Soils/ BG1SBA0405 BG1SBP0206 BG1SBP0406 BG1SBP0603	BG1SBP0103 BG1SBP0305 BG1SBP0505 BG1SBP0701	BG1SBP0204 BG1SBP0401 BG1SBP0601 BG1SBP0801	

BG1SBP0806

<u>Overview</u>

he sample set for CTO 083, NSWC Crane, SDG C8304, consists of sixteen (16) soil environmental samples.

All samples were analyzed for target analyte list (TAL) metals and tin. The samples were collected by Tetra Tech NUS on November 5-6, 1999 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Aluminum, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, vanadium and zinc analyses were conducted using SW 846 method 6010B via ICP instrumentation. Arsenic, beryllium, cadmium, selenium, silver, sodium, thallium, antimony and tin analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation. Mercury analyses were conducted using SW 846 method 846 method 7471A via CVAA instrumentation.

BG1SBP0901

These data were evaluated based on the following parameters:

- Data Completeness
 - Holding Times
 - Calibration Verifications
 - Laboratory Blank Analyses
 - Field Quality Control Blank Analyses

BG1SBP0804

BG1SBP1004

- ICP Interference Check Sample Results
- Matrix Spike Results
- Laboratory Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits

* - All quality control criteria were met for this parameter.

MEMO TO: K. HENN - PAGE 2 DATE: OCTOBER 24, 2000

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Samples affected: All

	Maximum	Action
Analyte	Concentration	Level (soil)
Antimony ⁽¹⁾	0.20 mg/kg	1.0 mg/kg
Arsenic	0.2µg/L	0.10 mg/kg
Beryllium ⁽¹⁾ Tin ⁽¹⁾	0.05 mg/kg	0.25 mg/kg
Tin ⁽¹⁾	0.350 mg/kg	1.75 mg/kg

⁽¹⁾ Maximum concentration found in a soil preparation blank.

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results less than the action level for antimony, beryllium and tin were qualified as nondetected "U". Positive results greater than the action level for arsenic were qualified as estimated, "J".

All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J".

Matrix Spike Results

The Matrix Spike (MS) Percent Recovery (%R) for vanadium was <75% quality control limit. The positive results reported for vanadium were gualified as estimated, "J".

Laboratory Duplicate Results

Laboratory Duplicate imprecision (>35%) was noted for arsenic, chromium, iron, lead and manganese. The positive results reported for arsenic, chromium, iron, lead and manganese were qualified as estimated, "J".

<u>Notes</u>

The Contract Required Detection Limit (CRDL) Percent Recovery (%R) for arsenic was <80% quality control limits. No validation action is required per regional guidance.

As noted in the Case Narrative, the soil adjusted IDLs were not met for all metals analyzed via ICP instrumentation.

The metals analyzed via MS/ICP instrumentation were conducted at a 5X dilution.

Selenium and sodium exceeded the soil adjusted limits requested in the QAPP.

Executive Summary

Laboratory Performance: Several analytes were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J". Several analytes were present in the field quality control blanks. The MS %R for vanadium was <75% quality control limit. Laboratory duplicate imprecision was noted for arsenic, chromium, iron, lead and manganese.

MEMO TO: K. HENN - PAGE 3 DATE: OCTOBER 24, 2000

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS Gretchen A. Phipps Chemist

Tetra Tech'NUS Joseph A. Samchuck Quality Assurance Officer

`ttachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:	K. HENN	DATE:	OCTOBER 23, 2000
FROM:	GRETCHEN A. PHIPPS	COPIES:	DV FILE / REV 2

SUBJECT: INORGANIC DATA VALIDATION – TAL METALS AND TIN CTO 083 – NSWC CRANE SDG – C8305

SAMPLES: 18/Soils/

BG1SBL0305	BG1SBL0403	BG1SBL0501
BG1SBL0504	BG1SBL0506	BG2SBG0101
BG2SBG0104	BG2SBG0201	BG2SBG0203
BG2SBG0206	BG2SBG0303	BG2SBG0401
BG2SBG0404	BG2SBG0503	BGFD11029901
BGFD11079901	BGFD11079902	BGFD11089901

Overview

The sample set for CTO 083, NSWC Crane, SDG C8305, consists of eighteen (18) soil environmental samples. Three (3) field duplicate pairs (BG2SBG0303 / BGFD11079901, BG2SBG0401 / BGFD11079902 and BG1SBL0504 / BGFD11089901) were included within this SDG.

All samples were analyzed for target analyte list (TAL) metals and tin. The samples were collected by Tetra Tech NUS on November 2, 7 and 8, 1999 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Aluminum, barium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, vanadium and zinc analyses were conducted using SW 846 method 6010B via ICP instrumentation. Arsenic, beryllium, cadmium, selenium, silver, sodium, thallium, antimony and tin analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation. Mercury analyses were conducted using SW 846 method sing SW 846 method 7471A via CVAA instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
 - Holding Times
 - Calibration Verifications
 - Laboratory Blank Analyses
 - Field Quality Control Blank Analyses
 - ICP Interference Check Sample Results
 - Matrix Spike Results
- Laboratory Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits

MEMO TO: K. HENN - PAGE 2 DATE: OCTOBER 23, 2000

All quality control criteria were met for this parameter.

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Samples affected: All

	<u>Maximum</u>	<u>Action</u>
Analyte	<u>Concentration</u>	Level (soil)
Antimony ⁽¹⁾	0.3 mg/kg	1.5 mg/kg
Beryllium	0.1µg/L	0.05 mg/kg
Cadmium	1.6µg/L	0.80 mg/kg
Silver	0.1µg/L	0.05 mg/kg
Tin ⁽¹⁾	0.40 mg/kg	2.0 mg/kg

⁽¹⁾ Maximum concentration found in a soil preparation blank.

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results less than the action level for antimony, beryllium, cadmium, silver and tin were qualified as nondetected "U". Positive results greater than the action level for antimony and beryllium were qualified as estimated, "J".

All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J".

Atrix Spike Results

The Matrix Spike (MS) Percent Recovery (%R) for chromium was <75% quality control limit. The positive results reported for chromium were qualified as estimated, "J".

Notes

The Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) for arsenic, cadmium, lead and silver were outside the 80-120% quality control limits. No validation action is required per regional guidance.

As noted in the Case Narrative, the soil adjusted IDLs were not met for all metals analyzed via ICP instrumentation.

A comparison of field duplicate pairs (BG2SBG0303 / BGFD11079901, BG2SBG0401 / BGFD11079902 and BG1SBL0504 / BGFD11089901) is included in Appendix C.

The metals analyzed via MS/ICP instrumentation were conducted at a 5X dilution.

Selenium and sodium exceeded the soil adjusted limits requested in the QAPP.

The original sample associated with field duplicate sample BGFD11029901 was not included in this SDG. Therefore, a comparison was not made.

Executive Summary

Laboratory Performance: Several analytes were present in the laboratory method / preparation blanks.

MEMO TO: K. HENN - PAGE 3 DATE: OCTOBER 23, 2000

Other Factors Affecting Data Quality: All positive results reported for any analyte present in a field quality control blank were qualified as estimated, "J". Several analytes were present in the field quality control blanks. The MS %R for chromium was <75% quality control limit.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS Gretchen A. Phipps Chemist

m Tetra Tech/NUS

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

INTERNAL CORRESPONDENCE

то:	K. HENN		DATE:	JUNE 1, 2000
FROM:	GRETCHEN A. PHIPF	PS	COPIES:	DV FILE
SUBJECT:	INORGANIC DATA V/ CTO 083 – NSWC CR SDG – C8306	ALIDATION – LITHIUM, IANE	STRONTIUM AI	ND THORIUM
SAMPLES:	18/Soils/			Ň
	BG3SBM0201 BG3SBM0305 BG3SBM0406	BG3SBM0203 BG3SBM0401 BG3SBM0504	BG3SBM0206 BG3SBM0404 BG3SBM0601	

BG3SBM0701

BG3SBM0801

BG3SBM1003

Overview

The sample set for CTO 083, NSWC Crane, SDG C8306, consists of eighteen (18) soil environmental samples. One (1) field duplicate pair (BG3SBM0803 / BGFD11039901) was included within this SDG.

BG3SBM0704

BG3SBM0803

BGFD11039901

All samples were analyzed for lithium, strontium and thorium. The samples were collected by Tetra Tech NUS on November 2-4, 1999 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Metals analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
- Calibration Verifications
- Laboratory Blank Analyses
- ICP Interference Check Sample Results

BG3SBM0604

BG3SBM0706

BG3SBM0904

- Matrix Spike Results
- Laboratory Duplicate Results
- Field Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits

* - All guality control criteria were met for this parameter.

MEMO TO: K. HENN - PAGE 2 JUNE 1, 2000 DATE:

Holding Times

The 180 day holding time for metals analyses was exceeded by 7-9 days. However, the request for analysis of the additional metals was made as hold times were about to expire. The positive results reported were qualified as estimated, "J".

Laboratory Blank Analyses

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

All Samples affected:

	<u>Maximum</u>	Action
<u>Analyte</u>	<u>Concentration</u>	<u>Level (soil)</u>
Lithium	0.2µg/L	0.10 mg/kg
Thorium	0.4µg/L	0.20 mg/kg

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliguot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results greater than the action level lithium and thorium were gualified as estimated, "J".

ICP Serial Dilution

The ICP Serial Dilution Percent Differences (%Ds) for lithium, strontium and thorium were >10% quality control limit. The positive results reported for lithium, strontium and thorium were qualified as estimated, "J".

Notes Notes

A comparison of field duplicate pair (BG3SBM0803 / BGFD11039901) is included in Appendix C.

The metals analyzed via ICP/MS instrumentation were conducted at a 5X dilution.

Executive Summary

Laboratory Performance: Lithium and strontium were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: The holding time was exceeded. The ICP Serial Dilution %Ds for lithium, strontium and thorium were >10% quality control limit.

MEMO TO: K. HENN - PAGE 3 DATE: JUNE 1, 2000

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

pps tchen Tetra Tech NUS

Gretchen A. Phipps Chemist

Vetra Tech NUS

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory

3. Appendix C - Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

L diser.

!

Qualifier Codes:

T

J

κ

L

0

Ρ

Q

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

ICP Serial Dilution Noncompliance

= GFAA PDS - GFAA MSA's r < 0.995</p>

= ICP Interference - include ICSAB % R's

= Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

Poor Instrument Performance (i.e., base-time drifting)

= Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

= Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCD% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)</p>

W = EMPC result

X = Signal to noise response drop

CTO083-NSWC CRANE SOIL DATA LAUCKS

SDG: C8306

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG3SBI 11/02/9 000469 NORMA 82.0 % MG/KG	9 2-02 NL		BG3SB 11/02/9 000469 NORMA 86.4 % MG/KG	9 2-03		BG3SBM 11/02/99 0004692 NORMA 82.2 % MG/KG) 2-04		BG3SBN 11/02/99 0004692 NORMA 90.5 % MG/KG) 2-07	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
LITHIUM	13.8	J	AHI	20.8	J	AHI	30.6	J	AHI	17.8	J	AHI
STRONTIUM	8.6	J	HI	16.3	J	HI	25.7	J	HI	8.5	J	Н
THORIUM	7.1	J	AĤI	9.4	J	AHI	10.0	J	AHI	7.8	J	AHI

INORGANICS LITHIUM 14.8 J AHI 13.3 J AHI 7.8 J AHI 14.7 J J STRONTIUM 13.3 J HI 12.7 J HI 4.2 J HI 13.3 J			· · · · · · · · · · · · · · · · · · ·									and a second sec	
Page SOIL DATA LAUCKS SDG: C8306 SAMPLE NUMBER: BG3SBM0401 BG3SBM0404 BG3SBM0406 BG3SBM0504 SAMPLE DATE: 11/03/99 11/03/99 11/03/99 11/03/99 11/03/99 LABORATORY ID: 0004692-10 0004692-11 0004692-12 0004692-13 NORMAL QC_TYPE: NORMAL NORMAL NORMAL NORMAL NORMAL NORMAL % SOLIDS: 84.4 % MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG INORGANICS MG/KG 13.3 J HI 13.3 J AHI 13.3 J AHI 13.3 J HI 13.3 J AHI 13.3 J HI 14.2 J HI 13.3 J HI 13.3 J HI 14.2 J HI 14.1 J J HI 13.3 J													
SAMPLE DATE: 11/03/99 11/03/99 11/03/99 11/03/99 11/03/99 LABORATORY ID: 0004692-10 0004692-11 0004692-12 0004692-13 QC_TYPE: NORMAL NORMAL NORMAL NORMAL NORMAL % SOLIDS: 84.4 % 88.6 % 93.8 % 87.9 % UNITS: MG/KG MG/KG MG/KG MG/KG MG/KG FIELD DUPLICATE OF: The subtransition of the subtransite subtransition of	SOIL DATA LAUCKS			•								Page	
INORGANICS LITHIUM 14.8 J AHI 13.3 J AHI 7.8 J AHI 14.7 J J STRONTIUM 13.3 J HI 12.7 J HI 4.2 J HI 13.3 J	SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:	11/03/9 000469 NORM/ 84.4 %	9 2-10 NL		11/03/99 0004692 NORMA 88.6 %) -11		11/03/99 0004692 NORMA 93.8 %	-12		11/03/99 0004692 NORMA 87.9 %) 2-13	
LITHIUM 14.8 J AHI 13.3 J AHI 7.8 J AHI 14.7 J STRONTIUM 13.3 J HI 12.7 J HI 4.2 J HI 13.3 J		RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	COD
STRONTIUM 13.3 J HI 12.7 J HI 4.2 J HI 13.3 J		14.0					1						1
			<u> </u>						J		and the second second		HA H
	 THORIUM	7.3	J		6.5	 	AHI		J		6.7	J	

· ·

CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8306			•								Page	3
SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG3SE 11/02/5 000465 NORM 80.3 % MG/KG	19 12-05 AL	• •	BG3SB 11/02/9 000469 NORM/ 90.3 % MG/KG	9 2-06 NL		BG3SBM 11/03/99 0004692 NORMAI 83.4 % MG/KG	-15		BG3SBN 11/03/99 0004692 NORMA 87.2 % MG/KG	-16	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
LITHIUM	13.9	J	AHI	20.6	J	AHI	15.9	J	AHI	14.8	J	AHI
STRONTIUM	63.2	J	HI	15.9	J	H	11.1	J	HI	16.2	J	HI
THORIUM	5.9	J	AHI	6.9	J	AHI	7.8	J	AHI	8.3	J	AHI

•

CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8306		•									Page	4
SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG3SB 11/03/9 000469 NORM/ 90.2 % MG/KG	9 2-17 AL		BG3SBI 11/03/99 000469 NORMA 84.9 % MG/KG	9 2-08		BG3SBM 11/03/99 0004692 NORMA 92.0 % MG/KG) 2-09		BG3SBN 11/03/99 0004692 NORMA 87.1 % MG/KG	-14	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
LITHIUM	18.4	J	AHI	11.2	J	AHI	10.4	J	AHI	15.4	J ·	AHI
STRONTIUM	15.4	J	HI	7.4	J	HI	5.0	J	HI	14.4	J	Н
THORIUM	8.1	J	AHI	5.8	J	AHI	4.6	J	AHI	9.0	J	AHI
STRONTIUM	15.4	J J	НІ	7.4	J	HI	5.0	J J J	н	14.4		н

CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8306			•			·					Page	5
SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG3SB 11/04/9 000469 NORM 88.3 % MG/KG	9 12-18 AL		BGFD1 11/03/9 000469 NORM 91.9 % MG/KG BG3SBM	12-01 AL		/ / 100.0 %			/ /		
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS				1								
LITHIUM	16.4	J	AHI	10.3	J	AHI						
STRONTIUM	10.1	J	HI	5.6	J	HI						
THORIUM	7.0		AHI	5.1	 I	AHI						

2000 - 200 - 200 - 200

Tetra Tech NUS

INTERNAL CORRESPONDENCE

то:	K. HENN	DATE:	JUNE 7, 2000
FROM:	GRETCHEN A. PHIPPS	COPIES:	DV FILE
SUBJECT:	INORGANIC DATA VALIDATION – LITHIUM, CTO 083 – NSWC CRANE SDG – C8307		ID THORIUM
SAMPLES:	19/Soils/		

BG1SBA0104	BG1SBA0306	BG1SBA0401
BG1SBA0503	BG1SBA0504	BG1SBL0101
BG1SBL0103	BG1SBL0105	BG1SBL0405
BG3SBA0101	BG3SBA0203	BG3SBA0301
BG3SBA0403	BG3SBA0404	BG3SBA0501
BG3SBA0504	BG3SBA0506	BGFD11059901
BGFD11069901		

Overview

The sample set for CTO 083, NSWC Crane, SDG C8307, consists nineteen (19) soil environmental samples. Two (2) field duplicate samples (BGFD11059901 and BGFD11069901) were included within this SDG. The corresponding sample duplicates (BG1SBP0601 and BG1SBP0406) were not contained within this SDG.

All samples were analyzed for lithium, strontium and thorium. The samples were collected by Tetra Tech NUS on November 3-8, 1999 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Metals analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
- Calibration Verifications
- Laboratory Blank Analyses
- * ICP Interference Check Sample Results
- Matrix Spike Results.
- Laboratory Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits

* - All guality control criteria were met for this parameter.

MEMO TO: K. HENN - PAGE 2 DATE: JUNE 7, 2000

Holding Times

The 180 day holding time for metals analyses was exceeded by 3-9 days. However, the request for analysis of the additional metals was made as hold times were about to expire. The positive results reported were qualified as estimated, "J".

Laboratory Blank Analyses

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Samples affected: All

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Concentration	<u>Level (soil)</u>
Lithium	0.2µg/L	0.1 mg/kg
Strontium ⁽¹⁾	0.02 mg/kg	0.1 mg/kg
Thorium	0.4µg/L	0.2 mg/kg

⁽¹⁾ Maximum concentration found in a soil preparation blank.

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results greater than the action level for lithium, strontium and thorium were qualified as estimated, "J".

Notes

The original samples associated with the field duplicate samples were not included within this SDG.

The metals analyzed via ICP/MS instrumentation were conducted at a 5X dilution.

Sample BG1SBA101 was not analyzed because the laboratory could not locate the sample.

Positive results reported between the IDL and the reporting limits were gualified as estimated, "J".

Executive Summary

Laboratory Performance: Lithium, strontium and thorium were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: The holding time was exceeded.

MEMO TO: K. HENN - PAGE 3 DATE: JUNE 7, 2000

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS Gretchen A. Phipps Chemist

Terra Tech NOS Yoseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory

3. Appendix C - Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

| − (°) ku detaa 1

Į.

Qualifier Codes:

F

L

0

Ρ

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

D = MS/MSD Noncompliance

E = LCS/LCSD Noncompliance

= Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

= ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - include ICSAB % R's

Instrument Calibration Range Exceedance

M = Sample Preservation

N = Internal Standard Noncompliance

= Poor Instrument Performance (i.e., base-time drifting)

= Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = Pest/PCD% between columns for positive results

V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)

W = EMPC result

X = Signal to noise response drop

CTO083-NSWC CRANE SOIL DATA LAUCKS Page SDG: C8307 SAMPLE NUMBER: BG1SBA0104 BG1SBA0306 BG1SBA0401 BG1SBA0503 SAMPLE DATE: 11/04/99 11/05/99 11/05/99 11/04/99 LABORATORY ID: 0004695-13 0004695-02 0004695-16 0004695-14 QC_TYPE: NORMAL NORMAL NORMAL NORMAL % SOLIDS: 91.2 % 88.7 % 80.3 % 89.5 % UNITS: MG/KG MG/KG MG/KG MG/KG FIELD DUPLICATE OF: RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE INORGANICS LITHIUM 15.8 J AH 10.6 J AH 13.6 AH 17.1 AH J J 7.0 J AH AH STRONTIUM 5.5 J AH 13.7 J 7.9 J AH THORIUM 6.2 J AH 4.2 J PAH 6.3 J AH 6.3 J AH

CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8307											Page	2
SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG1SB 11/04/9 000469 NORM/ 91.0 % MG/KG	9 5-15 NL		BG1SB 11/08/9 000469 NORM/ 80.5 % MG/KG	9 5-18 AL		BG1SBL 11/08/99 0004695 NORMA 85.2 % MG/KG) 5-19		BG1SBL 11/08/99 0004695 NORMA 89.0 % MG/KG) 5-20	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
 LITHIUM	16.3	J	AH	13.5	J	AH	12.7	J	AH	12.4	J	AH
STRONTIUM	8.2	J	AH	12.6	J	AH	16.2	J	AH	9.7	J	AH
THORIUM	6.3	J	AH	7.2	J	AH	8.6	J	AH	6.3	J	AH

1 X

CTO083-NSWC CRANE

SOIL DATA LAUCKS SDG: C8307

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG1SBL04 11/08/00 0004695-1 NORMAL 87.7 % MG/KG			BG3SB 11/02/9 000469 NORM/ 84.3 % MG/KG	9 5-05 NL		BG3SBA 11/02/99 0004695 NORMA 89.2 % MG/KG	j-04		BG3SBA 11/03/99 0004695 NORMA 80.1 % MG/KG	-06	
· · ·	RESULT	QUAL	CODE	RESULT	QUAL	COL.	RESULT	QUAL	CODE	RESULT	QUAL	COD
INORGANICS												
LITHIUM	10.8	J	AH	8.2	J	AH	12.1	J	AH	10.2	J	
STRONTIUM	11.4	J	AH	7.4	J	AH	7.1	J	AH	10.1	J ·	A
THORIUM	7.2	J	AH	4.8	J	AH	5.9	.J	AH	6.4		A

									· · ·				
	CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8307											Page	4
· · · · · · · · · · · · · · · · · · ·	SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG3SB/ 11/04/99 000469 NORMA 90.3 % MG/KG	9 5-07 NL		BG3SB 11/04/9 000469 NORM/ 88.9 % MG/KG	9 5-08 AL		BG3SB, 11/04/9 000469 NORM/ 82.9 % MG/KG	9 5-09 NL		BG3SB/ 11/04/99 0004699 NORMA 85.2 % MG/KG	9 5-10	
		RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
· · · · · · · · · · · · · · · · · · ·	INORGANICS LITHIUM	10.9	J	AH	11.5	J	AH	11.5	J	AH	14.0	J	АН
· · · · · · · · · · · · · · · · · · ·	STRONTIUM THORIUM	<u> </u>	J	AH AH	9.2 5.9	J		9.9 5.3		AH	10.6 5.7	Ĵ	HA AH
11. 0 464-00 							-1			<u>, , , , , , , , , , , , , , , , , ,</u>			-1
•													

· · · · · ·

CTO083-NSWC CRANE

SOIL DATA LAUCKS SDG: C8307

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	11/C 000			BGFD 11/05/9 000469 NORM 82.6 % MG/KG BG1SB	95-01 IAL G		BGFD1 11/06/99 0004699 NORMA 89.8 % MG/KG BG1SBP	5-03 NL		/ / 100.0 %		
	RESUL	T QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
 LITHIUM	9.6	J	AH	18.1	J	AH	23.5	J	AH			
 STRONTIUM	7.2	J	AH	11.4	J	AH	17.9	J	AH			
 THORIUM	4.5	J	AH	8.3	J	AH	10.6	J	AH			
				-			1		•	1		

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:	K. HENN		DATE:	JUNE 7, 2000
FROM:	GRETCHEN A. PHIPP	S	COPIES:	DV FILE
SUBJECT:	INORGANIC DATA VA CTO 083 – NSWC CR SDG – C8308	ALIDATION – LITHIUM, ANE	STRONIUM, AN	D THORIUM
SAMPLES:	16/Soils/			
	BG1SB40405	BG1SBP0103	BG1SBP0204	

DG13DA0403	DG13DF0103	DG13DF0204
BG1SBP0206	BG1SBP0305	BG1SBP0401
BG1SBP0406	BG1SBP0505	BG1SBP0601
BG1SBP0603	BG1SBP0701	BG1SBP0801
BG1SBP0804	BG1SBP0806	BG1SBP0901
BG1SBP1004		

<u>Overview</u>

The sample set for CTO 083, NSWC Crane, SDG C8308, consists of sixteen (16) soil environmental samples.

All samples were analyzed for lithium, strontium and thorium. The samples were collected by Tetra Tech NUS on November 5-6, 1999 and analyzed by Laucks Testing Labs. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Metals analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
- Calibration Verifications
- Laboratory Blank Analyses
- ICP Interference Check Sample Results
- Matrix Spike Results
- Laboratory Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits
 - * All quality control criteria were met for this parameter.

MEMO TO: K. HENN - PAGE 2 DATE: JUNE 7, 2000

Holding Times

The 180 day holding time for metals analyses was exceeded by 5-6 days. However, the request for analysis of the additional metals was made as hold times were about to expire. The positive results reported were qualified as estimated, "J".

Laboratory Blank Analyses

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Samples affected:	All	· · · · · · · · · · · · · · · · · · ·
Analita	Maximum	Action
Analyte	Concentration	Level (soil)
Lithium	0.2µg/L	0.1 mg/kg
Thorium	0.4µg/L	0.2 mg/kg

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results greater than the action level for lithium and thorium were qualified as estimated, "J".

Matrix Spike Results

The Matrix Spike (MS) Percent Recovery (%R) for lithium was <75% quality control limit. The positive results reported for lithium were qualified as estimated, "J".

Notes

The metals analyzed via ICP/MS instrumentation were conducted at a 5X dilution.

Executive Summary

Laboratory Performance: Lithium and thorium were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: The holding time was exceeded. The MS %R for lithium was <75% quality control limit.

MEMO TO: K. HENN - PAGE 3 DATE: JUNE 7, 2000

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data guality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS Gretchen A. Phipps Chemist

Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory

3. Appendix C - Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

С

E F

Н

L

J

Κ

L

Ν

0

Р

Q

т

U

- A = Lab Blank Contamination
- B = Field Blank Contamination
 - = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance
- D = MS/MSD Noncompliance
 - = LCS/LCSD Noncompliance
 - Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
 - Holding Time Exceedance
 - = ICP Serial Dilution Noncompliance
 - = GFAA PDS GFAA MSA's r < 0.995</p>
 - = ICP Interference include ICSAB % R's
 - Instrument Calibration Range Exceedance
- M = Sample Preservation
 - = Internal Standard Noncompliance
 - = Poor Instrument Performance (i.e., base-time drifting)
 - = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
 - Other problems (can encompass a number of issues)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
 - = % Breakdown Noncompliance for DDT and Endrin
 - Pest/PCD% between columns for positive results
 - = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)
- W = EMPC result
- X = Signal to noise response drop

CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8308						*					Page	1
SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG1SB 11/05/9 000469 NORM/ 80.2 % MG/KG	9 9-01 AL		BG1SB 11/06/9 000469 NORM/ 87.7 % MG/KG	9 9-11 AL		BG1SBF 11/06/99 0004699 NORMA 85.5 % MG/KG	-12		BG1SBF 11/06/99 0004699 NORMA 90.1 % MG/KG	9 9-13	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
LITHIUM	17.4	J	ADH	19.6	J	ADH	13.8	J	ADH	15.1	J	ADH
STRONTIUM	11.6	J	Н	10.3	J	H	19.2	J	н	10.4	J	Н
THORIUM	6.9	J	AH	9.1	J	AH	9.3	J	AH	7.1	J	AH
				-			•		•	•	, ·	
								•				

.

CTO083-NSWC CRANE

SOIL DATA LAUCKS SDG: C8308

Page

SAMPLE DATE: LABORATORY ID:	11/06/99 0004699-	16 [′]		11/06/9 000469	-		11/06/99			11/05/99 0004699		
QC_TYPE:	NORMAL			NORMA			NORMA			NORMA		
% SOLIDS: UNITS:	86.7 % MG/KG			85.5 % MG/KG			90.9 % MG/KG			89.6 % MG/KG		
FIELD DUPLICATE OF:	MG/KG		-	MG/NG			MG/NG			MG/KG		
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	COL
INORGANICS												
LITHIUM	46.6	J	ADH	15.0	J	ADH	24.8	J	ADH	31.7	J	AD
STRONTIUM	11.8	J	Н	9.4	J	Н	20.3	J .	H	17.2	J	
THORIUM	11.7	.1	AH	7.5		AH	11.1	L	AH	8.8		A

CTO083-NSWC CRANE SOIL DATA

SOIL DATA LAUCKS SDG: C8308

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG1SB 11/05/9 000469 NORM/ 82.7 % MG/KG	9 9-04 AL		BG1SE 11/05/9 000469 NORM 89.6 %	99 99-05 AL		BG1SB 11/05/9 000469 NORM/ 87.9 % MG/KG	9 9-03 NL		BG1SBF 11/06/99 0004699 NORMA 83.9 % MG/KG))-08	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS				1								
LITHIUM	19.0	J	ADH	28.7	J	ADH	14.7	J	ADH	14.5	J	ADH
STRONTIUM	13.7	J	н	13.0	J	н	8.7	J	Н	10.7	J	н
THORIUM	8.4	J	AH	8.8	J	AH	5.9	J	AH	8.5	J	AH

CTO083-NSWC CRANE

SOIL DATA LAUCKS SDG: C8308

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG1SBF 11/06/99 0004699 NORMA 90.4 % MG/KG))-09		BG1SB 11/06/9 000469 NORMA 94.1 % MG/KG	9 9-10		BG1SBF 11/06/99 0004699 NORMA 82.3 % MG/KG	-07		BG1SBF 11/05/99 0004699 NORMA 89.2 % MG/KG	-02	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												<u></u>
	14.5	J	ADH	8.6	J	ADH	29.9	J	ADH	13.7	J	ADH
STRONTIUM	10.0	J	Н	5.4	J	H	12.7	J	н	11.6	J	н
THORIUM	8.0	J	AH	4.9	J ·	AH	7.9	J	AH	7.3	J	AH

Tetra Tech NUS

INTERNAL CORRESPONDENCE

•						
т0:	K. HENN		DATE:	JUNE 8, 2000		
FROM:	GRETCHEN A. PHIP	PS	COPIES:	DV FILE		
SUBJECT:	INORGANIC DATA VALIDATION – LITHIUM, STRONTIUM AND THORIU CTO 083 – NSWC CRANE SDG – C8309					
SAMPLES:	18/Soils/		•			
	BG1SBL0305	BG1SBL0403	BG1SBL050	1		

DGISDLU3US	DG13DL0403	BGISBLUSUI
BG1SBL0504	BG1SBL0506	BG2SBG0101
BG2SBG0104	BG2SBG0201	BG2SBG0203
BG2SBG0206	BG2SBG0303	BG2SBG0401
BG2SBG0404	BG2SBG0503	BGFD11029901
BGFD11079901	BGFD11079902	BGFD11089901

<u>Overview</u>

The sample set for CTO 083, NSWC Crane, SDG C8309, consists of eighteen (18) soil environmental samples. Three (3) field duplicate pairs (BG2SBG0303 / BGFD11079901, BG2SBG0401 / BGFD11079902 and BG1SBL0504 / BGFD11089901) were included within this SDG.

All samples were analyzed for lithium, strontium and thorium. The samples were collected by Tetra Tech NUS on November 2, 7 and 8, 1999 and analyzed by Laucks Testing Labs under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Metals analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation.

These data were evaluated based on the following parameters:

Data Completeness

- Holding Times
- Calibration Verifications
- Laboratory Blank Analyses
- ICP Interference Check Sample Results
- Matrix Spike Results
- Laboratory Duplicate Results
- * Field Duplicate Results
- Post Digestion Spike Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits

* - All quality control criteria were met for this parameter.

MEMO TO: K. HENN - PAGE 2 DATE: JUNE 8, 2000

Holding Times

The 180 day holding time for metals analyses was exceeded by 3-4 days. However, the request for analysis of the additional metals was made as hold times were about to expire. The positive results reported were qualified as estimated, "J".

Laboratory Blank Analyses

Samples affected:

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

	Maximum	Action
Analyte	Concentration	Level (soil)
Lithium	0.2µg/L	0.1 mg/kg
Thorium	0.4µ/L	0.2 mg/kg

All

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results greater than the action level for lithium and thorium were qualified as estimated, "J".

ICP Serial Dilution

The ICP Serial Dilution Percent Difference (%D) for lithium was >10% quality control limit. The positive results reported for lithium were qualified as estimated, "J".

Notes

A comparison of field duplicate pairs (BG2SBG0303 / BGFD11079901, BG2SBG0401 / BGFD11079902 and BG1SBL0504 / BGFD11089901) is included in Appendix C.

The metals analyzed via ICP/MS instrumentation were conducted at a 5X dilution.

The original sample associated with field duplicate sample BGFD11029901 was not included in this SDG. Therefore, a comparison was not made.

The incorrect results were reported for sample BG2SBG0503 due to an error on behalf of the laboratory. A transcription error caused the incorrect electronic data to be uploaded. A corrected Form 1 was requested by the data reviewer. The laboratory submitted the corrected Form 1 on June 8, 2000.

Executive Summary

Laboratory Performance: Several analytes were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: The holding time was exceeded. The ICP Serial Dilution %D for lithium was >10% guality control limit.

MEMO TO: K. HENN - PAGE 3 DATE: JUNE 1, 2000

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS

Gretchen A. Phipps Chemist

Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as reported by the Laboratory

3. Appendix C - Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

J

L

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance

J. E.

- D = MS/MSD Noncompliance
- E = LCS/LCSD Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- = ICP Serial Dilution Noncompliance
 - = GFAA PDS GFAA MSA's r < 0.995
- K = ICP Interference include ICSAB % R's
 - = Instrument Calibration Range Exceedance
- M = Sample Preservation
- N = Internal Standard Noncompliance
- O = Poor Instrument Performance (i.e., base-time drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DDT and Endrin
- U = Pest/PCD% between columns for positive results
- V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)</p>
- W = EMPC result
- X = Signal to noise response drop

CTO083-NSWC CRANE

SOIL DATA LAUCKS SDG: C8309

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	11/08/9 000469 NORM/ 87.5 %	BG1SBL0305 11/08/99 0004698-16 NORMAL 87.5 % MG/KG		BG1SBL0403 11/08/99 0004698-17 NORMAL 85.3 % MG/KG		BG1SBL0501 11/08/99 0004698-13 NORMAL 82.0 % MG/KG		BG1SBL0504 11/08/99 0004698-14 NORMAL 89.3 % MG/KG				
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS		,		1								
LITHIUM	22.3	j	AHI	14.1	J	AHI	14.5	J	AHI	11.9	J	AHI
STRONTIUM	17.0	J	н	10.5	J	н	10.9	J	н	13.3	J	н
THORIUM	8.7	J	AH	8.4	J	AH	8.7	J	AH	7.8	J	AH
				T								

CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8309

Page

QUAL

2

CODE

AHI

Н AH

BG2SBG0104	BG2SBG0201
11/07/99	11/07/99

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	11/08/9 000469 NORM/ 89.3 %	BG1SBL0506 11/08/99 0004698-15 NORMAL 89.3 % MG/KG			BG2SBG0101 11/07/99 0004698-05 NORMAL 80.5 % MG/KG			BG2SBG0104 11/07/99 0004698-06 NORMAL 89.7 % MG/KG			G0201 9 3-07 IL
 · · · · · · · · · · · · · · · · · · ·	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QU
INORGANICS											
 LITHIUM	28.1	J	AHI	13.2	J	AHI	14.5	J	AHI	10.0	J
STRONTIUM	17.0	J	Н	14.2	J	Н	11.7	J	Н	9.7	J
THORIUM	9.1	J	AH	7.9	J	AH	5.7	J	AH	6.4	J

CTO083-NSWC CRANE SOIL DATA LAUCKS

SDG: C8309

.

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	11/07/99 0004698			BG2SBG0206 11/07/99 0004698-09 NORMAL 82.1 % MG/KG		BG2SBG0303 11/07/99 0004698-04 NORMAL 90.2 % MG/KG			BG2SBG0401 11/07/99 0004698-11 NORMAL 82.0 % MG/KG			
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS LITHIUM	9.2	J	AHI	10.8	J	AHI	9.7	J	AHI	12.3	J	AHI
STRONTIUM	8.1	J	н	10.0	J	Н	9.7	J	Н	17.0	J	Н
THORIUM	5.8	J	AH	6.3	J	AH	5.2	J	AH	6.9	J	AH

Page

CTO083-NSWC CRANE

SOIL DATA

_

SDG: C8309

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG25B0 11/07/99 0004690 NORMA 88.8 % MG/KG	9 8-12	11 00 N 86		BG2SBG0503 11/07/99 0004698-10 NORMAL 86.9 % MG/KG		BGFD11029901 11/02/99 0004698-18 NORMAL 84.7 % MG/KG BG3SBA0101			BGFD11079901 11/07/99 0004698-01 NORMAL 89.6 % MG/KG BG2SBG0303		•
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
LITHIUM	14.9	J	AHI	205	J	AHI	9.1	J	AHI	11.3	. J	AHI
STRONTIUM	9.1	J	н	108	J	Н	7.8	J	н	10.8	 J	н
THORIUM	7.6	J	AH	99.5	J	AH	5.9	J	AH	5.0	J	AH

CTO083-NSWC CRANE SOIL DATA LAUCKS

SDG: C8309

RESULTQUALCODERESULTQUALCODERESULTQUALCODERESULTQUALCODERESULTQUALCODERESULTQUALQUALINORGANICS LITHIUM12.8JAHI13.6JAHI	SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BGFD1107 11/07/99 0004698-02 NORMAL 81.4 % MG/KG BG2SBG040	2	BGFD11089901 11/08/99 0004698-03 NORMAL 89.2 % MG/KG BG1SBL0504		/ / 100.0 %			/ / 100.0 %			
INORGANICS 12.8 J AHI 13.6 J AHI LITHIUM 12.3 J H 14.3 J H IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		RESULT C	QUAL COL	ERESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	OUAI	CODE
STRONTIUM 17.3 J H 14.3 J H	INORGANICS										40/12	
	LITHIUM	12.8	J AH	13.6	J	AHI			1			1
	STRONTIUM	17.3	J ŀ	14.3	J	н			1	·····		1
THORIUM 6.6 J AH 7.7 J AH	THORIUM	6.6	J Ał	7.7	J	AH						1

Page

Tetra Tech NUS

INTERNAL CORRESPONDENCE

то:	K. HENN	DATE:	JUNE 7, 2000
FROM:	GRETCHEN A. PHIPPS	COPIES:	DV FILE
SUBJECT:	INORGANIC DATA VALIDATION – LITHIUM, S CTO 083 – NSWC CRANE SDG – C8310	STRONTIUM AN	ID THORIUM
SAMPLES:	8/Aqueous/		

BGRB11029901 BGRB11059901 BGRB11089901 BGRB11039901 BGRB11069901 BGSW11029901 BGRB11049901 BGRB11079901

Overview

The sample set for CTO 083, NSWC Crane, SDG C8310, consists of seven (7) rinsate blanks and one (1) source water blank (BGSW11029901).

All samples were analyzed for lithium, strontium and thorium. The samples were collected by Tetra Tech NUS on November 2-8, 1999 and analyzed by Laucks Testing Labs. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Metals analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
 - Holding Times
- Calibration Verifications
- ICP Interference Check Sample Results
- Laboratory Duplicate Results
- Matrix Spike/ Matrix Spike Duplicate Analyses
- Post Digestion Spike Analyses
- Laboratory Control Sample Results
- Sample Quanitation
- Detection Limits

* - All quality control criteria were met for this parameter.

Holding Times

The 180 day holding time for metals analyses was exceeded by 4-10 days. However, the request for analysis of the additional metals was made as hold times were about to expire. The positive and nondetected results reported were qualified as estimated, "J" and "UJ", respectively.

MEMO TO: K. HENN - PAGE 2 DATE: JUNE 7, 2000

<u>Notes</u>

Please, note that field quality control samples are not qualified for blank contamination.

All metals were reported at IDLs marginally higher than requested in the QAPP. No validation action was taken on this basis.

Positive results reported between the IDL and the reporting limits were qualified as estimated, "J".

Executive Summary

Laboratory Performance: None.

Other Factors Affecting Data Quality: The holding time was exceeded.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Laboratory Quality Assurance Guide " (NFESC 2/96). The text of this report has been formulated to address only those problem areas affecting data guality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Tetra Tech NUS Gretchen A. Phipps Chemist

Tetra Tech NUS

Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- Appendix B Results as reported by the Laboratory
- 3. Appendix C Support Documentation

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

F

L

J

Κ

L

0

Ρ

Q

Т

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance
- D = MS/MSD Noncompliance
- E = LCS/LCSD Noncompliance
 - Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
 - ICP Serial Dilution Noncompliance
 - = GFAA PDS GFAA MSA's r < 0.995
 - = ICP Interference include ICSAB % R's
 - = Instrument Calibration Range Exceedance
- M = Sample Preservation
- N = Internal Standard Noncompliance
 - = Poor Instrument Performance (i.e., base-time drifting)
 - = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
 - Other problems (can encompass a number of issues)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
 - = % Breakdown Noncompliance for DDT and Endrin
- U = Pest/PCD% between columns for positive results
- V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)
- W = EMPC result
- X = Signal to noise response drop

CTO083-NSWC CRANE WATER DATA LAUCKS

SDG: C8310

·

SAMPLE NUMBER: BGRB110; SAMPLE DATE: 11/02/99 LABORATORY ID: 0004700-0 QC_TYPE: NORMAL % SOLIDS: 0.0 % UNITS: UG/L FIELD DUPLICATE OF:	01	BGRB11039901 11/03/99 0004700-03 NORMAL 0.0 % UG/L		BGRB11049901 11/04/99 0004700-04 NORMAL 0.0 % UG/L			BGRB11059901 11/05/99 0004700-05 NORMAL 0.0 % UG/L				
RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS											
LITHIUM 0.22	UJ	н	0.22	J	HP	0.22	UJ	н	0.22	UJ	н
STRONTIUM 0.22	UJ	Н	0.22	UJ	Н	0.22	UJ	н	0.22	UJ	н
THORIUM 0.33	J	HP	0.22	ບງ	н	0.22	ບມ	н	0.22	ບມ	· H

Page

CTO083-NSWC CRANE WATER DATA LAUCKS

1	Pa	α	ρ

2

SDG: C8310

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BGRB1 11/06/99 0004700 NORMA 0.0 % UG/L	0-06		BGRB1 11/07/99 0004700 NORMA 0.0 % UG/L))-07		BGRB11 11/08/99 0004700 NORMA 0.0 % UG/L	-08		BGSW1 11/02/99 0004700 NORMA 0.0 % UG/L)-02	
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	COD
INORGANICS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
LITHIUM	0.22	UJ	н	0.22	UJ	Н	0.22	UJ	н	0.22	UJ	F
STRONTIUM	0.22	ບງ	Н	0.22	ບງ	Н	0.22	ບງ	н	0.22	UJ	i
THORIUM	0.22	IJ	Н	0.22	UJ	н	0.22	UJ	Н	0.22	UJ	

Tetra Tech NUS

INTERNAL CORRESPONDENCE

то:	K. HENN		DATE:	JANUARY 10, 2001
FROM:	JENNIFER M. MALLE	:	COPIES:	REVISION 1 DV FILE
SUBJECT:	INORGANIC DATA VA CTO 083 – NSWC CR SDG – C8311		LS,TIN, LITHIUI	M, STRONTIUM AND THORIUM
SAMPLES:	3/Soil/			
	BG1SBA250203	BG1SBA280304	BGFD1007000	1
	2/Aqueous/			
	BGRB10060001	BGRB10070001		

Overview

The sample set for CTO 083, NSWC Crane, SDG C8311, consists of three (3) soil environmental samples and two (2) aqueous field quality control samples. One (1) field duplicate pair (BG1SBA250203 / BGFD10070001) was included within this SDG.

All samples were analyzed for target analyte list (TAL) metals plus tin, lithium, strontium and thorium. The samples were collected by Tetra Tech NUS on October 6-7, 2000 and analyzed by Laucks Testing Labs, Inc. under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. Aluminum, beryllium, calcium, iron, magnesium, manganese, potassium and sodium analyses were conducted using SW 846 method 6010B via ICP instrumentation. Antimony, arsenic, barium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium, zinc, lithium, strontium, thorium and tin analyses were conducted using SW 846 method 6020 via ICP/MS instrumentation. Mercury analyses were conducted using SW 846 method 7471A via CVAA instrumentation.

These data were evaluated based on the following parameters:

- Data Completeness
- Holding Times
 - Calibration Verifications
 - Laboratory Blank Analyses
 - Field Quality Control Blank Analyses
 - ICP Interference Check Sample Results
 - Matrix Spike Results
- Laboratory Duplicate Results
- Field Duplicate Results
- Laboratory Control Sample Results
- ICP Serial Dilution Results
- Sample Quantitation
- Detection Limits

* - All quality control criteria were met for this parameter.

MEMO TO: K. HENN DATE: JANUARY 10, 2001

- PAGE 2 REVISION 1

The following contaminants were detected in the laboratory method / preparation blanks at the following maximum concentrations:

Samples affected: All

	Maximum	Action	Action
Analyte	Concentration	Level (soil)	Level (aqueous)
Chromium (1)	0.088 mg/kg	0.44 mg/kg	NA
Copper	1.7 ug/L	0.85 mg/kg	NA
Iron	27.9 ug/L	13.9 mg/kg	NA
Magnesium ⁽¹⁾	52.8 ug/L	26.4 mg/kg	NA
Sodium	88.9 ug/L	44.4 mg/kg	NA
Tin ⁽¹⁾	0.072 mg/kg	0.36 mg/kg	NA
Thorium	0.2 ug/L	NA	0.10 ug/L

⁽¹⁾ Maximum concentration found in a soil preparation blank.

An action level of 5X the maximum concentration has been used to evaluate the sample data for blank contamination. Sample aliquot, percent solids and dilution factors were taken into consideration when evaluating for blank contamination. Positive results less than the action level for tin were qualified as nondetected "U". Positive results greater than the action level for chromium, copper, iron, magnesium, sodium, and thorium were qualified as estimated, "J".

It should be noted that field quality control blanks were not used to establish an action level. All positive results reported or the analytes aluminum, barium, chromium, iron, lithium and thorium, which were present in a field quality control blank, were qualified as estimated, "J".

ICP Interference Check Sample Results

The percent recovery (%R) for sodium in solution A was 64%. This percentage falls below the 80-120 quality control limits. The positive results reported for sodium were qualified as estimated, "J".

Matrix Spike/Post Digestion Spike Results

Revisions to this data validation letter were required due to a laboratory error in regards to the calculation of the MS/MSD percent recoveries for the soil samples. The laboratory originally reported results for most analytes (13 out of 18) in the spiked sample result (SSR) and spike added (SA) columns incorrectly. Noncompliant percent recoveries were reported for chromium, copper, lead and manganese. The original MS/MSD %Rs were questioned by the analytical chemist for NSWC Crane, Tom Johnston, in part, due to a low %R (5.3 %) for chromium. The laboratory was contacted by Mr. Johnston in regards to the questionable %R. Upon examination of the matrix spike results, the laboratory discovered that calculation errors had occurred. The laboratory resubmitted the MS/MSD results for the soil samples. The resubmitted matrix spike results affected the data qualifiers for copper and lead (qualifiers were removed since the percent recoveries were now within quality control limits). Additionally, although the percent recovery changed for chromium, a noncompliance (a high %R) still existed and the qualifiers for this analyte remained the same. Finally, manganese was not affected by the laboratory error and therefore qualifiers remained unchanged. The following qualifiers are based on the resubmitted MS/MSD results from the lab:

The Matrix Spike (MS) Percent Recovery (%R) for chromium was greater than 125% affecting the soil matrix. The positive results reported for chromium in the affected samples were qualified as estimated, "J".

MEMO TO: K. HENN DATE: JANUARY 10, 2001

- PAGE 3 REVISION 1

The Matrix Spike (MS) Percent Recovery (%R) for manganese was less than 75% quality control limit affecting the soil matrix. The positive results reported for manganese in the affected samples were qualified as estimated, "J".

ICP Serial Dilution

ICP Serial Dilution Percent Difference was greater than 10% and 50x the respective IDL affecting the soil matrix for chromium, lithium, magnesium, potassium and vanadium. The positive results reported in the affected samples for these analytes were gualified as estimated, "J".

<u>Notes</u>

The Contract Required Detection Limit (CRDL) Percent Recovery (%R) for thorium affecting the aqueous matrix was greater than the 120% quality control limits. However, no validation action is required per regional guidance.

The Contract Required Detection Limit (CRDL) Percent Recoveries (%Rs) for copper, strontium and thorium affecting the soil matrix was greater than the 120% quality control limits. However, no validation action is required per regional guidance.

A comparison of field duplicate pair (BG1SBA250203 / BGFD10070001) is included in Appendix C.

Instrument detection limits (IDLs) for calcium, iron, sodium and zinc exceed the soil adjusted limits requested in the QAPP.

Aqueous IDLs for mercury, lithium, strontium and thorium marginally exceeded the requested IDLs requested in the QAPP. No validation action was taken.

Analyses performed on the ICP/MS instrumentation were performed at a 5x dilution.

Executive Summary

Laboratory Performance: Several analytes were present in the laboratory method / preparation blanks.

Other Factors Affecting Data Quality: Several analytes were present in the field quality control blanks. The MS %Rs for copper, lead and manganese were less than the 75% quality control limit affecting the soil matrix. Chromium MS %R in the soil samples was less than 30%. ICP serial dilution noncompliances were noted for chromium, magnesium, potassium, vanadium, and lithium affecting the soil matrix.

MEMO TO: K. HENN DATE: JANUARY 10, 2001

- PAGE 4 REVISION 1

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Inorganic Review", February 1994, "EPA Region V Standard Operating Procedures for Validation of CLP Inorganic Review", September 1993 and the NFESC document entitled "Navy Installation Restoration Chemical Data Quality Manual" (NFESC 9/99). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the NFESC Guidelines and the Quality Assurance Project Plan (QAPP)."

Malle

Tetra Tech NUS Jennifer M. Malle Environmental Scientist

Tetra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- Appendix B Results as reported by the Laboratory

3. Appendix C - Support Documentation

APPENDIX A

1

li della

Qualified Analytical Results

Qualifier Codes:

ŧ

J

L

Y

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration (i.e., % RSDs, %Ds, ICVs, CCVs, RPDs, RRFs, etc.) Noncompliance
- D = MS/MSD Noncompliance
- E = LCS/LCSD Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
 - = ICP Serial Dilution Noncompliance
 - = GFAA PDS GFAA MSA's r < 0.995
- K = ICP Interference include ICSAB % R's
 - = Instrument Calibration Range Exceedance
- M = Sample Preservation
- N = Internal Standard Noncompliance
- O = Poor Instrument Performance (i.e., base-time drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DDT and Endrin
- U = Pest/PCB D% between columns for positive results
- V = Non-linear calibrations, tuning r < 0.995 (correlation coefficient)
- W = EMPC result
- X = Signal to noise response drop
 - = % Solid content is less than 30%

CTO083-NSWC CRANE SOIL DATA LAUCKS SDG: C8311

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:	BG1SE 10/07/0 001026 NORM 79.1 % MG/KG	56-04 AL		BG1SB/ 10/06/00 0010266 NORMA 85.7 % MG/KG	6-02		BGFD10 10/07/00 0010266 NORMA 79.5 % MG/KG BG1SB/) 5-03 L		/ / 100.0 %		
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS												
 ALUMINUM	16000	J	B	12000	J	В	16700	J	В			
 ANTIMONY	0.45	U		0.46	υ		0.49					
 ARSENIC	5.9			5.6			5.7					
 BARIUM	80.4	J	В	36.9	J	В	77.2	J	B			
 BERYLLIUM	0.82			0.54			0.74					
CADMIUM	0.44	J	P	0.33	J	Р	0.41	J	Р			
CALCIUM	313			108			287					
CHROMIUM	17.3	J	BAID	20.9	J	BAID	14.6	J	BAID			
COBALT	7.5			2.2			6.1					
 COPPER	10.1	J	A	10	J de	A	10.3	J	A			
IRON	22700	J	AB	28900	J	AB	17200	J	AB		· · · · · · · · · · · · · · · · · · ·	
LEAD	13.1			10.1			11.4	······				
LITHIUM	20.3	J	IB	27.9	J	IB	20.7	J	IB			
 MAGNESIUM	1400	J	AI	755	J	AI	1470	J	AI			
MANGANESE	1030	J	D	86.4	J	D	713	J	D			
MERCURY	0.04	- <u> </u>		0.05	U		0.04		1			1
 NICKEL	13	·····		9.5			12				· · · · · · · · · · · · · · · · · · ·	
 POTASSIUM	1370	J	1	1650	J	1	1440	J	1			
 SELENIUM	0.46	U		0.44	U		0.44	U	1	[
 SILVER	0.23	U	1.	0.22	U		0.22	U		1		+
 SODIUM	80.3	J	AKP	97.8	J .	AKP	77.1	J	AKP	<u> </u>		
 STRONTIUM	12.7			12.2			12.8			t		
 THALLIUM	0.25	J	Р	0.22	U		0.27	J	P	1	······	<u> </u>
 THORIUM	8.4	J		9	J	В	8.7	J	В		······································	
 TIN	0.38	U	1	0.4		A	0.36	U	A	1		
 VANADIUM	26.3	J		19.9		1	26.1	J	1	t		
 ZINC	42.9		· · · · ·	25.4			41.7		- <u> </u>	· · · ·		
									1	l		

Page

1

in.

CTOC NSWC CRANE WATE, ATA LAUCKS SDG: C8311

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS: FIELD DUPLICATE OF:		BGRB10060 10/06/00 0010266-01 NORMAL 0.0 % UG/L	0001		BGRB100 10/07/00 0010266 NORMAL 0.0 % UG/L	05		/ / 100.0 %			/ /	- 	
	RE	SULT Q	UAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
INORGANICS													
ALUMINUM	55	.9 .	J	Р	55.6	U							
ANTIMONY	1.	1t	J .		1.1	U							
ARSENIC	1.		J		1.1	U							
BARIUM	0.	68 .	J	Р	0.56	U							
BERYLLIUM	0.	56 L	J		0.56	U							<u> </u>
CADMIUM	0.9	56 L	J		0.56	U							
CALCIUM	12	4 l	J		124	U							
CHROMIUM	0.	56 l	J		0.56	J	Р						
COBALT	0.9	56 L	J		0.56	U							
COPPER	0.	56 l	J		0.56	U							
IRON	24	.9 .	1	P	20.2	J	Р						
LEAD	0.0	56 L	J		0.56	U							
LITHIUM	0.3	36 .	1	Р	0.22	U							
MAGNESIUM	36	.7 l	J		36.7	U						-	
MANGANESE	1.7	7 l	J		1.7	U		10-10 Aud					
MERCURY	0.3	20 L	,		0.20	U							
NICKEL	0.	56 L	j .		0.56	U							
POTASSIUM	16	3 ι	J		163	U							
SELENIUM	1.	í	J	1	1.1	U							
SILVER	0.9	56 L	J		0.56	U							
SODIUM	31	.1 L	,		31.1	U							
STRONTIUM	0.2	22 L	J [· ·	0.22	U							
THALLIUM	0.8	56 L	,		0.56	U							1
THORIUM	0.4				0.22	U					· · · ·		
TIN	0.*		j – – – – – – – – – – – – – – – – – – –		0.11	U							
VANADIUM	0.8		,		0.56	U					······································		
ZINC	5.0			·	5.6	U]						

APPENDIX D

METHODOLOGY and SUMMARY OF STATISTICAL ANALYSIS

D-1 METHODOLOGY FOR STATISTICAL ANALYSIS

Appendix D-1

D.1.1 Non-detected Results and Field Duplicate Samples

In the chemical analysis of environmental samples, some analytes may be present at concentrations which are below the detection limit (DL) of the analytical procedure. The results are generally reported as not detected (rather than zero), and the appropriate limit of detection is given. The amount of data that are below the detection limit plays an important role in selecting the method of addressing the limit of detection problem. The nondetects in this investigation site were replaced with the DL divided by two prior to statistical analysis. Clearly, if all the observations are nondetect results, no statistical analysis is warranted.

Duplicate samples also pose a special situation because two results are available for what is essentially one sampling location. To address this, a maximum value for each field duplicate pair was calculated and counted as one sample for use in the statistical analyses.

D.1.2 The Shapiro-Wilk Test of Normality

The Shapiro-Wilk W-test (Gilbert, 1987) is an effective method for determining whether a data set has been drawn from an underlying normal distribution. In addition, by conducting the Shapiro-Wilk W-test on the log-transformed data, the test may be used to determine whether the data have been drawn from an underlying lognormal distribution. The null hypothesis (H_0) that is tested is:

H_o The population has a normal (or lognormal when the data is log-transformed) distribution.

The alternate hypothesis (H_A) is:

 H_A The population does not have a normal (or lognormal when the data is logtransformed) distribution.

If H_0 is rejected, then H_A is accepted. If H_0 is not rejected, the data set is consistent with the H_0 distribution.

A "W" statistic (W_{calc}) is computed for a data set (or a log transformed data set) and compared to a test statistic (W_{test}). If $W_{calc} \ge W_{test}$, then the null hypothesis is not rejected (i.e. the data are assumed to be normally distributed [or lognormally distributed if log transformed data are tested]). If $W_{calc} < W_{test}$, then the null hypothesis is rejected and the alternate hypothesis is accepted (i.e., the data are not assumed to be normally distributed [or not lognormally distributed if log transformed data are tested]).

The following equations present a step-by-step procedure for conducting the W-test on the residuals.

The equation for conducting the W-Test is:

$$W_{calc} = \left[\frac{b}{S_R \sqrt{n-1}}\right]^2$$

where

$$b = \sum_{i=1}^{k} a_i \left(R_{i-i+1} - R_i \right) = \sum_{i=1}^{k} b_i$$

and *n* is the total number of samples.

Step 1. Order the n samples from smallest to largest to obtain the sample order statistics:

 $x_1 \leq x_2 \leq x_3 \leq \ldots \leq x_n$

Step 2. Compute the standard deviation by:

$$S_R = \sqrt{\sum_{i=1}^n \frac{\left(R_{ij} - \overline{R}\right)^2}{(n-1)}}$$

Step 3. Determine the coefficients a_1 , a_2 , a_3 ,..., a_k for the sample size *n* using Table D-1 where:

$$k = \frac{n}{2}$$
 if *n* is even; and

$$k = \frac{n-1}{2} \quad if \ n \ is \ odd$$

Step 4. Determine *b* by the formula:

$$b = \sum_{i=1}^{k} a_i (R_{[n-i+1]} - R_i) = \sum_{i=1}^{k} b_i$$

Step 5. Calculate W_{calc} using b from above:

$$W_{calc} = \left[\frac{b}{S_R \sqrt{n-1}}\right]^2$$

- Step 6. Determine W_{test} at the 5% significance level from Table D-2.
- Step 7. Reject H_o at the 5% significance level if W_{calc} is less than W_{test} .

To test the null hypothesis that the data set has been drawn from an underlying lognormal distribution, transform the data to y_{1j} , y_{2j} , y_{3j} ,..., y_{km} where $y_{ij} = \ln R_{ij}$. Repeat steps 1 through 7 as described in the preceding paragraphs.

D.1.3 Normal Probability Plots

The expected normal probability for the jth value ranked from lowest to highest (Z_i) is defined as:

$$Z_j = \Phi^{-1} \{ (3j - 1)/(3N + 1) \}$$

Where:

 Φ^{-1} denotes the inverse of the cumulative normal distribution function (from Table 1) *j* is the rank of the value from lowest to highest *N* denotes the total number of samples in the dataset

 $\{(3j - 1)/(3N + 1)\} = p$ is the probability that a value falls below that result Z_i denotes the probability p normalized to a Z score to give linear results

A probability plot is a graph of data plotted *versus* the expected probability of a user-specified distribution. If the distribution is normal the plot is a normal probability plot and the expected normal probability is used. The goal of constructing a probability plot is to visually evaluate whether the data fit the proposed underlying distribution. If the graph of plotted points appears linear, the data fit well to the specified distribution. Deviations from a straight line may indicate the existence of outliers.

A distinction is made between "statistical" outliers and "real" outliers. A statistical outlier is a point which appears to be inconsistent with all or most of the other points in the data set, based on some assumed or apparent pattern of those points, e.g., a normal distribution. The various outlier tests found in the statistical literature are all devoted to identifying statistical outliers. Outlier identification should be used as a screening tool. Statistical outliers should not be automatically discarded but rather should be investigated to determine whether they are real outliers. A real outlier is a result which because of outside contamination or because of mistakes such as deviations from protocol, instrument errors, computational errors or transcription errors, really does not belong in the data set. If, upon investigation, a statistical outlier cannot be clearly identified as a real outlier, then it should be discarded. However, if a statistical outlier cannot be clearly identified as a real outlier, then careful consideration should be given to leaving it in the data set and rethinking the assumptions that led to it being identified as a statistical outlier.

Generally, when concentrations of inorganic constituents cannot be linked to a specific contamination source and appear to be randomly distributed, those constituents are suspected to be naturally occurring. The background datasets for each metal were statistically analyzed in order to determine whether they represented members of one population (background) or multiple distinct populations. The analysis involved determining the underlying distribution (normal or lognormal) of each data set by using the Shapiro-Wilk W Test. The theory is that when sampling in soil for constituents of concern, the concentrations of the metals should be normally or lognormally distributed except in locations where metals were introduced into the soil matrix by release due to activities at the base.

To aid in classification of metal results, probability plots were generated on either the nontransformed or log-transformed data (based on the underlying distribution) for each inorganic constituent for the purpose of analyzing the data graphically. Probability plots offer a simple, yet useful graphical presentation of the data that is used to investigate the distribution of a dataset and to identify possible outliers in a dataset (i.e., identify data points that do not reflect background conditions). If analytic data are drawn from the same population (e.g., background), the data points when plotted will approximate a straight line. Curves, gaps, or inflection points suggest that the data come from dissimilar datasets or that outliers exist.

A 95% confidence ellipse was plotted onto each of the probability plots. This type of ellipse is based on the assumption that the two variables follow the bivariate normal distribution. Two variables follow the bivariate normal distribution if for each value of one variable, the corresponding values of another variable are normally distributed. The orientation of this ellipse is determined by the sign of the linear correlation between two variables (the longer axis of the ellipse is superimposed on the regression line). The value of the coefficient, in this case 0.95 or 95%, determines the probability that the values will fall within the area marked by the ellipse.

Confidence in the 'best-fit' trend line tends to be higher for values close to the mean and lower at extremes away from the mean. The reason for this is that in a normally distributed dataset (which can be thought of as a bell-shaped frequency curve) the bulk of the data points are toward the center (near the mean). This instill more confidence in the results. At the extremes (away from the mean) there are only a small number of data points, reducing the confidence.

Outliers were identified by visually inspecting the plotted data relative to the confidence ellipse for each inorganic constituent. Statistical outliers were defined as any point which fell outside of the confidence ellipse.

D.1.4 95% Upper Tolerance Limits (UTLs)

A Tolerance interval establishes a concentration range that is constructed to contain a specified proportion (P%) of the population with a specified confidence coefficient, Y. The proportion of the population included, P, is referred to as the coverage. The probability with which the Tolerance interval includes the proportion P% of the population is referred to as the tolerance coefficient of the interval.

A coverage of 95% is is commonly recommended and was used here. With this specification, random observations from the same distribution as the background data would exceed the upper Tolerance limit less than 5% of the time. Similarly, a tolerance coefficient of 95% was used. This means that one has a confidence level of 95% that the 95% Upper Tolerance Limit (95% UTL) will contain at least 95% of the distribution of observations from background data.

The following equations present a step-by-step procedure for conducting the W-test on the data

Step 1. Take the mean, x, and the standard deviation, S_R , calculated during the Shapiro and Wilk W-test statistical analyses.

Step 2. Construct the one-sided upper Tolerance limit (UTL_{0.95}) as:

 $\mathsf{UTL}_{0.95} = x + k S_R$

where *k* is the one-sided normal Tolerance factor found in Table D-3.

D.1.5 Non-parametric ANOVA: Wilcoxon Rank-Sum Test (a.k.a. Mann-Whitney U Test)

The Wilcoxon Rank-Sum test was used to test the null hypothesis that the soil types come from the same population distribution against the alternate hypothesis that they do not come from the same distribution. This test makes no assumptions concerning the shape (e.g., normal or log-normal) of the data distributions. The Wilcoxon Rank-Sum test is equivalent to the Mann-Whitney U test. The following equations present a step-by-step procedure for conducting the Wilcoxon Rank-Sum test.

The null hypothesis (H₀) that is tested is:

H_o The metal concentration distribution of soil type 1 <u>IS THE SAME AS</u> the metal concentration distribution of soil type 2.

The alternate hypothesis (H_A) is:

H_A The metal concentration distribution of soil type 1 <u>IS NOT THE SAME AS</u> the metal concentration distribution of soil type 2.

If H_0 is rejected, then H_A is accepted. If H_0 is not rejected, the data set is consistent with the H_0 hypothesis.

$$W = \sum_{i=1}^{n} E_{i} - \frac{1}{2}n(n+1)$$

Step 2. Compute the Wilcoxon statistic *W*:

where E_i are the ranks of the soil type 1 samples (Large values of the statistic W give evidence of higher concentrations in soil type 1).

Step 3. Compute an approximate *Z*-score. To find the critical value of W, a normal approximation to its distribution is used. The expected value and standard deviation of W under the null hypothesis (i.e., no contamination exists) are given by the formulas

$$E(W) = \frac{1}{2}mn;$$
 $SD(W) = \sqrt{\frac{1}{12}mn(N+1)}$

An approximate *Z*-score for the Wilcoxon Rank-Sum test may be calculated by the following equations:

$$Z = \frac{W - E(W) - \frac{1}{2}}{SD(W)}$$

The factor of 1/2 in the numerator serves as a continuity correction since the discrete distribution of the statistic W is being approximated by the continuous normal distribution. If n,m > 10 and ties are present, an adjustment to the approximate *Z*-score must be made:

$$Z_{ADJUSTED} = \frac{W - E(W) - \frac{1}{2}}{S'D(W)}$$

4

1

2

where:
$$SD'(W) = \left(\frac{mn}{12}\left[N+1-\frac{\sum_{j=1}^{g}t_{j}(t_{j}^{2}-1)}{N(N-1)}\right]\right)^{\frac{1}{2}}$$

g = the number of tied groups and t_j is the number of tied data in the ^{*j*th} group.

Step 4. For a two-tailed 95% confidence level test for H_0 versus the, reject H_0 and accept H_A if $Z_{ADJUSTED} > Z_{0.95} = +1.96$.

D.1.6 95% Confidence Interval

The 100(1-a) Confidence Interval of the population mean (\bar{x}) consists of an Lower Confidence Limit and an Upper Confidence Limit (LCL_{100(1-□)}) - UCL_{100(1-□)}). When \Box = 0.05, the 95 percent upper confidence limit (one-tailed test) may be calculated as follows:

$$UCL_{0.95} = \overline{x} + t_{0.95,n-1} \frac{S_x}{\sqrt{n}}$$

5

$$LCL_{0.95} = \bar{x} - t_{0.95,n-1} \frac{S_x}{\sqrt{n}}$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 = arithmetic mean

$$S_{x} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}} = the sample standard deviation$$

where:

$$t_{0.95,n-1}$$
 = Value from t - distribution (Table ?)
Table D-3

It should be noted that the 95 percent confidence interval for a second sample of size n drawn from the same population will most likely not be the same as that for the first sample. In theory if an interval estimate is calculated for the means of a very large set of samples of size n, the true population mean will be within 95 percent of this limit.

D.1.7 Satterwaite's t Test

The Satterthwaite t test is an alternative to the Student's t test, and is used when the assumption that the two populations have equal variances seems unreasonable. It provides a t statistic that asymptotically (that is, as the sample sizes become large) approaches a t distribution, allowing for an approximate t test to be calculated when the population variances are not equal.

Compute the Satterwaite two-sample t statistic (Ts):

$$Ts = (\bar{x} - \bar{y}) / (s_x^2/n_x + s_y^2/n_y)^{0.5}$$

Where \overline{x} = the arithmetic mean of n_x site measurements

y = the arithmetic mean of n_y background measurements

 s_x^2 = the sample variance of the n_x site measurements s_y^2 = the sample variance of the n_y background measurements

Compute the approximate degrees of freedom, f, as follows:

$$f = \frac{\left(\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}\right)^2}{\left(\frac{S_x^4}{n_x^2(n_{x-1})} + \frac{S_y^4}{n_y^2(n_{y-1})}\right)} \text{ rounded down to nearest integer.}$$

For computation of minimal detectable difference the site standard deviation (sv) was assumed to be twice the background standard deviation (s_x) and the number of site samples (n_y) was assumed to be 5.

The minimal difference $(\overline{x} - \overline{y}) = \Delta$ can be calculated by:

$$t_{(1-\alpha,f)} = \frac{\overline{X} - \overline{Y} - \delta_0}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}}$$

Let $\sigma_0 = 0$. Then:

$$\Delta = t_{(1-\alpha,f)} \sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}$$

Let $S_v = 2S_x$ and $n_v = 5$:

$$\Delta = t_{(1-\alpha,f)} \sqrt{\frac{S_x^2}{n_x} + \frac{4S_x^2}{5}}$$

Divide both sides by S_x and square both sides:

$$\left(\frac{\Delta}{S_x}\right)^2 = \left(t_{(1-\alpha,f)}\right)^2 \left(\frac{1}{n_x} + \frac{4}{5}\right)$$

Take the square root of both sides:

$$\left(\frac{\Delta}{S_x}\right) = t_{(1-\alpha,f)} \sqrt{\left(\frac{1}{n_x} + \frac{4}{5}\right)}$$

D.1.8 Binomial Probability

Given that 24 metal concentrations were analyzed in each soil sample, a large number of data set comparisons were generated. With this many comparisons, random statistical fluctuations alone would be likely to generate *apparent* differences between soil types where none exist. To counter this effect, binomial probabilities were used to compute the tolerable number of observed differences when the soil types being compared are the same. Assuming complete independence between metal concentrations, there is a 22% chance that two metals could yield statistically significant concentration differences in similar soil samples, there is a 9% chance that three metal concentration differences would be observed, and so on. Recognizing that the metal concentrations within a sample may not be independent, the conservative significance level of 22% was selected as a tolerable probability. Thus, up to two metals were allowed to show statistically significant concentration differences before an actual difference in soil type was inferred to exist. If three or more metals exhibited a difference at the 5% significance level, the soil types were inferred to differ and were not combined into the same soil group.

A binomial experiment is an experiment which satisfies these four conditions

- A fixed number of trials
- Each trial is independent of the others
- There are only two outcomes
- The probability of each outcome remains constant from trial to trial.
- These can be summarized as: An experiment with a fixed number of independent trials, each of which can only have two possible outcomes.

The fact that each trial is independent actually means that the probabilities remain constant.

The probability of getting exactly x success in n trials, with the probability of success on a single trial being p is:

$$P(X=x) = nCx * p^x * q^{(n-x)}$$

Where nCx = the number of combinations of x out of n = n! / x!(n-x)!

p = probability of success of one event

q = probability of failure of one event = 1-p

For example:

24 metals from two soil groups are compared. What is the probability that exactly 21 of the metals will 'pass' a 95% confidence Wilcoxon Rank-Sum test, 1.e., 3 metals will fail.

1. Success = "A metal from the two soil groups passes the Wilcoxon Rank-Sum test"

2. p = 0.95

3. q = 0.05

4. n = 24

5. x = 21

 $P(x=21) = {}_{24}C_{21} * 0.95^{2}1 * 0.05^{3} = ((22^{2}3^{2}4)/(1^{2}3)) * 0.34056 * 0.000125 = 0.0862$

The probability that exactly 21 of the metals will 'pass' a 95% confidence Wilcoxon Rank-Sum test is 0.0862 or approximately 9%.

TABLE D-1 COEFFICIENTS A, FOR W TEST OF NORMALITY FOR N=2 to 50

1/n	2	3	4	5	6	7	8	9	10	
1	0.7071	0.7071	0.6872	0.6646	0.6431	0.6233	0.6052	0.5888	0.5739	
	0.7071	0.7071						0.3244	0.3291	
2			0.1677	0.2413	0.2806	0.3031	0.3164			
3					0.0875	0.1401	0.1743	0.1976	0.2141	
4							0.0561	0.0947	0.1224	
5									0.0399	
i/n	11	12	13	14	15	16	17	18	19	20
1	0.5601	0.5475	0.5359	0.5251	0.5150	0.5056	0.4968	0.4886	0.4808	0.4734
2	0.3315	0.3325	0.3325	0.3318	0.3306	0.3290	0.3273	0.3253	0.3232	0.3211
3	0.2260	0.2347	0.2412	0.2460	0.2495	0.2521	0.2540	0.2553	0.2561	0.2565
4	0.1429	0.1586	0.1707	0.1802	0.1878	0.1939	0.1988	0.2027	0.2059	0.2085
5	0.0695	0.0922	0.1099	0.1240	0.1353	0.1447	0.1524	0.1587	0.1641	0.1686
6	0.0000	0.0303	0.0539	0.0727	0.0880	0.1005	0.1109	0.1197	0.1271	0.1334
		0.0303	0.0559	0.0240	0.0433	0.0593	0.0725	0.0837	0.0932	0.1013
7				0.0240	0.0433	0.0395		0.0496	0.0612	0.0711
8			ł		· · · · ·	0.0190	0.0359			
9								0.0163	0.0303	0.0422
10				1	l					0.0140
i/n	21	22	23	24	25	26	27	28	29	30
1	0.4643	0.4590	0.4542	0.4493	0.4450	0.4407	0.4366	0.4328	0.4291	0.4254
2	0.3185	0.3156	0.3126	0.3098	0.3069	0.3043	0.3018	0.2992	0.2968	0.2944
3	0.2578	0.2571	0.2563	0.2554	0.2543	0.2533	0.2522	0.2510	0.2499	0.2487
4	0.2119	0.2131	0.2139	0.2145	0.2148	0.2151	0.2152	0.2151	0.2150	0.2148
5	0.1736	0.1764	0.1787	0.1807	0.1822	0.1836	0.1848	·0.1857	0.1864	0.1870
6	0.1399	0.1443	0.1480	0.1512	0.1539	0.1563	0.1584	0.1601	0.1616	0.1630
7	0.1092	0.1150	0.1201	0.1245	0.1283	0.1316	0.1346	0.1372	0.1395	0.1415
8	0.0804	0.0878	0.0941	0.0997	0.1046	0.1089	0.1128	0.1162	0.1192	0.1219
9	0.0530	0.0618	0.0696	0.0764	0.0823	0.0876	0.0923	0.0965	0.1002	0.1036
10	0.0350	0.0368	0.0050	0.0539	0.0610	0.0672	0.0323	0.0303	0.0822	0.0862
	0.0203							0.0778	0.0650	0.0697
11		0.0122	0.0228	0.0321	0.0403	0.0476	0.0540			
12				0.0107	0.0200	0.0284	0.0358	0.0424	0.0483	0.0537
13						0.0094	0.0178	0.0253	0.0320	0.0381
14								0.0084	0.0159	0.0227
15			<u> </u>							0.0076
i/n	31	32	33	34	35	36	37	38	39	40
1	0.4220	0.4188	0.4156	0.4127	0.4096	0.4068	0.4040	0.4015	0.9689	0.3964
2	0.2921	0.2898	0.2876	0.2854	0.2834	0.2813	0.2794	0.2774	0.2755	0.2737
3	0.2475	0.2463	0.2451	0.2439	0.2427	0.2415	0.2403	0.2391	0.2380	0.2368
4	0.2145	0.2141	0.2137	0.2132	0.2127	0.2121	0.2116	0.2110	0.2104	0.2098
5	0.1874	0:1878	0.1880	0.1882	0.1883	0.1883	0.1883	0.1881	0.1880	0.1878
6	0 16411	0 1651	0 1660	0 1667	0 1673	0 1678	0 1683	0.1686	0.1689	0 1691
6	0.1641	0.1651	0.1660	0.1667	0.1673	0.1678	0.1683	0.1686	0.1689	0.1691
7	0.1433	0.1449	0.1463	0.1475	0.1487	0.1496	0.1503	0.1513	0.1520	0.1526
7	0.1433 0.1243	0.1449 0.1265	0.1463 0.1284	0.1475 0.1301	0.1487 0.1317	0.1496 0.1331	0.1503 0.1344	0.1513	0.1520 0.1366	0.1526 0.1376
7 8 9	0.1433 0.1243 0.1066	0.1449 0.1265 0.1093	0.1463 0.1284 0.1118	0.1475 0.1301 0.1140	0.1487 0.1317 0.1160	0.1496 0.1331 0.1179	0.1503 0.1344 0.1196	0.1513 0.1356 0.1211	0.1520 0.1366 0.1225	0.1526 0.1376 0.1237
7 8 9 10	0.1433 0.1243 0.1066 0.0899	0.1449 0.1265 0.1093 0.0931	0.1463 0.1284 0.1118 0.0961	0.1475 0.1301 0.1140 0.0988	0.1487 0.1317 0.1160 0.1013	0.1496 0.1331 0.1179 0.1036	0.1503 0.1344 0.1196 0.1056	0.1513 0.1356 0.1211 0.1075	0.1520 0.1366 0.1225 0.1092	0.1526 0.1376 0.1237 0.1108
7 8 9 10 11	0.1433 0.1243 0.1066 0.0899 0.0739	0.1449 0.1265 0.1093 0.0931 0.0777	0.1463 0.1284 0.1118 0.0961 0.0821	0.1475 0.1301 0.1140 0.0988 0.0844	0.1487 0.1317 0.1160 0.1013 0.0873	0.1496 0.1331 0.1179 0.1036 0.0900	0.1503 0.1344 0.1196 0.1056 0.0924	0.1513 0.1356 0.1211 0.1075 0.0947	0.1520 0.1366 0.1225 0.1092 0.0967	0.1526 0.1376 0.1237 0.1108 0.0986
7 8 9 10 11 12	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770	0.1503 0.1344 0.1196 0.1056 0.0924 0.0798	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870
7 8 9 10 11 12 13	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645	0.1503 0.1344 0.1196 0.1056 0.0924 0.0798 0.0677	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0759
7 8 9 10 11 12 13 14	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530 0.0395	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0759 0.0651
7 8 9 10 11 12 13 14 15	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0361	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559 0.0444	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592 0.0481	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546
7 8 9 10 11 12 13 14 15 16	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530 0.0395	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372	0,1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409	0.1526 0.1376 0.1237 0.1108 0.0986 0.0986 0.09870 0.0759 0.0651 0.0546 0.0444
7 8 9 10 11 12 13 14 15 16 17	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0361	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305	0.1526 0.1376 0.1237 0.1108 0.0986 0.0986 0.0986 0.0986 0.0986 0.0959 0.0651 0.0546 0.0444 0.0343
7 8 9 10 11 12 13 13 14 15 16 17 18	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0435 0.0289 0.0144	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0651 0.0546 0.0444 0.0343 0.0244
7 8 9 10 11 12 13 14 15 16 16 17 18 19	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0435 0.0289 0.0144	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305	0.1526 0.1376 0.1237 0.1108 0.0986 0.0986 0.0986 0.0986 0.0986 0.0959 0.0651 0.0546 0.0444 0.0343
7 8 9 10 11 12 13 13 14 15 16 17 18	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0435 0.0289 0.0144	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1463 0.1284 0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0651 0.0546 0.0444 0.0343 0.0244
7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068	0.1463 0.1284 0.0961 0.0821 0.0669 0.0530 0.0530 0.0262 0.0262	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062	0.1487 0.1317 0.1160 0.01013 0.0673 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119	0.1496 0.1331 0.1179 0.0000 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057	0.1503 0.1344 0.1196 0.00924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110	0.1513 0.1356 0.1211 0.1076 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053	0.1520 0.1366 0.1225 0.0927 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101	0.1526 0.1376 0.1237 0.1108 0.0870 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0244 0.0146 0.0049
7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068	0.1463 0.1284 0.1118 0.0961 0.0669 0.0530 0.0395 0.0262 0.0131 43	0.1475 0.1301 0.1140 0.0984 0.0844 0.0706 0.0572 0.0441 0.0187 0.0062 0.0062	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0610 0.0239 0.0119 0.0119	0.1496 0.1331 0.1179 0.1036 0.09900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 0.0172	0.1503 0.1344 0.1196 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47	0.1513 0.1356 0.1211 0.1076 0.0824 0.0706 0.0824 0.0706 0.0824 0.0706 0.0372 0.0264 0.0158 0.0053	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0101	0.1526 0.1376 0.1237 0.1237 0.0986 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0239 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1118 0.0961 0.0669 0.0669 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0314 0.03187 0.0062	0.1487 0.1317 0.1160 0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 45 0.3850	0.1496 0.1331 0.1179 0.0900 0.0770 0.0645 0.0923 0.0404 0.0287 0.0172 0.0057 0.0172 0.0057	0.1503 0.1344 0.1196 0.1056 0.0924 0.0798 0.0444 0.0331 0.0220 0.0110 0.0110 0.0110	0.1513 0.1356 0.1211 0.0755 0.0947 0.0824 0.0752 0.0481 0.0372 0.0481 0.0372 0.0481 0.0372 0.0481 0.0373 0.0053	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0870 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751
7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 2	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1118 0.0961 0.0821 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0572 0.0441 0.0314 0.0314 0.0062 0.0662 44 0.3872 0.2667	0.1487 0.1317 0.1160 0.00873 0.0873 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0119 0.0119 0.03850 0.3850 0.2651	0.1496 0.1331 0.1179 0.1036 0.0900 0.0645 0.0623 0.0404 0.0287 0.0287 0.0057 46 0.3830 0.2835	0.1503 0.1344 0.1196 0.0056 0.0924 0.0677 0.0559 0.0444 0.0359 0.0220 0.0110 	0.1513 0.1356 0.1211 0.1075 0.0947 0.0624 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.0053 0.0053 0.053	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0546 0.0546 0.0546 0.0546 0.0544 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1118 0.0961 0.0621 0.0630 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.06844 0.0706 0.0672 0.0441 0.0314 0.0187 0.0062 0.0441 0.0082 0.062 0.062 0.062 0.062	0.1487 0.1317 0.1160 0.1013 0.0873 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0683 0.0404 0.0287 0.0057 0.0057 46 0.3830 0.2635 0.2302	0.1503 0.1344 0.1196 0.0924 0.0924 0.0879 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291	0.1513 0.1356 0.1211 0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0706 0.0592 0.0481 0.0158 0.0053 48 0.3789 0.2604 0.2281	0.1520 0.1366 0.1225 0.0997 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271	0.1526 0.1376 0.1237 0.0986 0.0986 0.0651 0.0546 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.2574 0.2575
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 2 3 4	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.05844 0.0706 0.0572 0.0441 0.0314 0.0314 0.0187 0.0062 0.0421 0.0062 0.0421 0.0062 0.0421 0.0667 0.2323 0.2072	0.1487 0.1317 0.1160 0.00873 0.0873 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0119 0.0119 0.03850 0.3850 0.2651	0.1496 0.1331 0.1179 0.1036 0.0900 0.0645 0.0623 0.0404 0.0287 0.0287 0.0057 46 0.3830 0.2835	0.1503 0.1344 0.1196 0.0054 0.0924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 0.0110 0.0110 0.0210 0.0110 0.03808 0.2620 0.2291 0.2052	0.1513 0.1356 0.1211 0.0750 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0053 48 0.3789 0.2604 0.2804 0.2804	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0546 0.0546 0.0546 0.0546 0.0544 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1118 0.0961 0.0621 0.0630 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.06844 0.0706 0.0672 0.0441 0.0314 0.0187 0.0062 0.0441 0.0082 0.062 0.062 0.062 0.062	0.1487 0.1317 0.1160 0.1013 0.0873 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0683 0.0404 0.0287 0.0057 0.0057 46 0.3830 0.2635 0.2302	0.1503 0.1344 0.1196 0.1056 0.0924 0.0798 0.0444 0.0331 0.0220 0.0110 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859	0.1513 0.1356 0.1211 0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0706 0.0592 0.0481 0.0158 0.0053 48 0.3789 0.2604 0.2281	0.1520 0.1366 0.1225 0.0997 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271	0.1526 0.1376 0.1237 0.0986 0.0986 0.0651 0.0546 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.2574 0.2575
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 2 3 4	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.05844 0.0706 0.0572 0.0441 0.0314 0.0314 0.0187 0.0062 0.0421 0.0062 0.0421 0.0062 0.0421 0.0667 0.2323 0.2072	0.1487 0.1317 0.1160 0.00873 0.0610 0.0484 0.03611 0.0239 0.0119 0.0119 0.0119 0.3850 0.2851 0.2851 0.2851 0.2213 0.2065	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 0.0057 0.0057 0.03830 0.2635 0.2302 0.2302	0.1503 0.1344 0.1196 0.0054 0.0924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 0.0110 0.0110 0.0210 0.0110 0.03808 0.2620 0.2291 0.2052	0.1513 0.1356 0.1211 0.0750 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0053 48 0.3789 0.2604 0.2804 0.2804	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038	0.1526 0.1376 0.1237 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2260 0.22574
7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 20 Vn 1 2 3 4 5	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1118 0.0961 0.0621 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2884 0.2334 0.2284 0.2334 0.2078 0.1895	0.1475 0.1301 0.1140 0.0988 0.0844 0.0572 0.0441 0.0314 0.0314 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.0252 0.2323 0.2072 0.1895	0.1487 0.1317 0.1160 0.0013 0.0673 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2851 0.2313 0.2065 0.1695 0.1695	0.1496 0.1331 0.1179 0.1036 0.0900 0.06435 0.0623 0.0404 0.0287 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2302 0.2058 0.1695	0.1503 0.1344 0.1196 0.0056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2529 0.1659 0.1695	0.1513 0.1356 0.1211 0.1075 0.0947 0.0824 0.0706 0.0592 0.0641 0.0706 0.0592 0.0264 0.0158 0.0053 48 0.3789 0.2604 0.2281 0.2245 0.2655 0.1693	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.2851	0.1526 0.1376 0.1237 0.986 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0244 0.0244 0.0244 0.0049 50 0.3751 0.2574 0.2260 0.2280 0.2280 0.2032
7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0269 0.0144 41 0.3940 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1118 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.06944 0.0572 0.0441 0.0314 0.0187 0.0662 0.0441 0.0062 0.06620000000000	0.1487 0.1317 0.1160 0.001013 0.0873 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0643 0.0657 0.0770 0.0772 0.0057 0.0772 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862 0.1968 0.1548	0.1503 0.1344 0.1196 0.0924 0.0924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.1650	0.1513 0.1356 0.1211 0.0947 0.0824 0.0706 0.0592 0.0481 0.0758 0.0653 0.0253 48 0.3789 0.2604 0.2281 0.2045 0.1855 0.1855	0.1520 0.1366 0.1225 0.0992 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553	0.1526 0.1376 0.1237 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0244 0.0244 0.0244 0.0256 0.03751 0.2576 0.22560 0.2232 0.1847 0.1554
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 8 3 4 5 6 7 8	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.0572 0.044 0.0572 0.0441 0.0314 0.0187 0.0062 44 0.3872 0.2667 0.2323 0.2072 0.1868 0.1695 0.1542 0.1425	0.1487 0.1317 0.1100 0.1013 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2651 0.2851 0.2851 0.2855 0.1865 0.1865 0.1895 0.1695 0.1695 0.1410	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.2302 0.2058 0.2302 0.2058 0.1662 0.1695 0.1595	0.1503 0.1344 0.1196 0.0556 0.0924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 0.0110 0.0210 0.0110 0.2201 0.0110 0.2252 0.1859 0.1859 0.1859 0.1859 0.1859	0.1513 0.1356 0.1211 0.0756 0.0947 0.0824 0.0706 0.0481 0.0372 0.0264 0.0053 48 0.0053 48 0.3789 0.2604 0.2804 0.2804 0.2804 0.2805 0.1655 0.1693 0.1551	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1653 0.1427	0.1526 0.1376 0.1237 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2260 0.2032 0.1847 0.1691 0.1554 0.1430
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0921 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0572 0.0441 0.0314 0.0187 0.0062 0.0062 0.0062 0.0667 0.2323 0.2067 0.2323 0.2072 0.1695 0.1542 0.1695	0.1487 0.1317 0.1160 0.0013 0.0873 0.0873 0.0873 0.0873 0.0873 0.0010 0.0484 0.0361 0.0239 0.0119 0.0119 0.0119 0.0119 0.2313 0.2065 0.1695 0.1695 0.1645 0.1645 0.1645	0.1496 0.1331 0.1179 0.0900 0.0770 0.0645 0.0287 0.0404 0.0287 0.0404 0.0287 0.0404 0.0287 0.0404 0.057 0.00	0.1503 0.1344 0.1196 0.0566 0.0924 0.0798 0.0444 0.0331 0.0220 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.0110 47 0.3808 0.2620 0.0110 0.2052 0.1859 0.1695 0.1550 0.1420 0.1300	0.1513 0.1356 0.1211 0.0705 0.0947 0.0824 0.0706 0.0481 0.0372 0.0481 0.0372 0.0481 0.0372 0.0481 0.0373 0.0481 0.0053 0.0053 0.0053 0.0053 0.0264 0.2045 0.1855 0.	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312	0.1526 0.1376 0.1237 0.0108 0.0986 0.0870 0.0651 0.0546 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0049 50 0.2574 0.2574 0.26574 0.2632 0.2032 0.1847 0.1691 0.1550 0.1317
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 1 2 3 4 5 6 7 8 9 10	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1118 0.0961 0.0621 0.0630 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0644 0.0706 0.0572 0.0441 0.0314 0.0314 0.0062 0.0441 0.0314 0.0062 0.0441 0.0062 0.0062 0.0062 0.0062 0.0062 0.2323 0.2072 0.1582 0.1542 0.1542 0.1695 0.1542 0.1695	0.1487 0.1317 0.1160 0.0013 0.0673 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0119 0.0239 0.0119 0.0239 0.0119 0.02313 0.2655 0.28551 0.2313 0.2065 0.1695 0.1695 0.1645 0.1695 0.1645 0.1700	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0287 0.0057 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1895 0.1548 0.1895 0.1548 0.12133 0.1180	0.1503 0.1344 0.1196 0.0054 0.0924 0.0827 0.0559 0.0444 0.0331 0.0220 0.0110 47 47 47 47 0.3808 0.2620 0.2291 0.2052 0.1855 0.1655 0.1655 0.1550 0.13500 0.1189	0.1513 0.1356 0.1211 0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0706 0.0592 0.0481 0.0758 0.053 0.053 0.053 0.053 0.053 0.2644 0.2281 0.2245 0.1653 0.1655 0.1653 0.1551	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.22689 0.2271 0.22689 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205	0.1526 0.1376 0.1237 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0244 0.0146 0.0244 0.0244 0.0146 0.0049 50 0.2574 0.2260 0.2250 0.2250 0.1847 0.2260 0.2032 0.1847 0.1554 0.1554 0.1554
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>U</i> /n 1 2 3 4 5 6 7 8 9 10 11	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0269 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0187 0.0062 0.0441 0.0062 0.0441 0.0062 0.0441 0.0267 0.2323 0.2072 0.1868 0.1692 0.1542 0.1694 0.1542 0.1405 0.1278	0.1487 0.1317 0.1160 0.0013 0.0873 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1496 0.1331 0.1179 0.1036 0.0900 0.0645 0.0523 0.0404 0.0645 0.0523 0.0404 0.0657 0.0770 0.0772 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1662 0.1548 0.1415 0.1293 0.1180 0.1073	0.1503 0.1344 0.1196 0.0054 0.0624 0.0627 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2911 0.2052 0.1859 0.1650 0.1420 0.1859 0.1650	0.1513 0.1356 0.1211 0.0715 0.0947 0.0824 0.0706 0.0592 0.0481 0.0702 0.0264 0.0158 0.0053 48 0.3789 0.2604 0.2281 0.2045 0.1855 0.1855 0.1855 0.1855 0.1306 0.1977 0.1095	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105	0.1526 0.1376 0.1376 0.1108 0.0986 0.06870 0.0759 0.06871 0.0546 0.0444 0.0444 0.0444 0.0444 0.0444 0.0244 0.0244 0.0049 50 0.2574 0.2260 0.2232 0.1847 0.1554 0.1554 0.1554 0.1554 0.1554
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 <i>Un</i> 1 20 <i>Un</i> 1 <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.0572 0.044 0.0572 0.041 0.0314 0.0187 0.0062 0.041 0.0062 0.042 0.0662 0.0662 0.0567 0.2323 0.2072 0.1868 0.1695 0.1542 0.1695 0.1278 0.1690 0.1278	0.1487 0.1317 0.1103 0.0873 0.0739 0.0610 0.0484 0.03611 0.0239 0.0119 	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0287 0.0287 0.0404 0.0287 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.2302 0.2058 0.1862 0.1695 0.1548 0.1415 0.1293 0.1180 0.1073 0.0972	0.1503 0.1344 0.1196 0.056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 0.0110 0.0210 0.0110 0.2201 0.252 0.1859 0.1859 0.1859 0.1855 0.1420 0.1300 0.1189 0.1085 0.0986	0.1513 0.1356 0.1211 0.0705 0.0947 0.0824 0.0706 0.0822 0.0481 0.0372 0.0264 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0120 0.0047 0.0024 0.0053 0.0024 0.0053 0.	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105	0.1526 0.1376 0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2260 0.2032 0.1847 0.2691 0.2032 0.1847 0.1691 0.1554 0.1430 0.1317 0.1212 0.1113 0.1020
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 20 <i>Vn</i> 11 21 <i>11</i> <i>11</i> <i>11</i> <i>11</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>11</i> <i>11</i> <i>11</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>11</i> <i>12</i> <i>13</i> <i>12</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>13</i> <i>14</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i> <i>15</i>	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0921 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0572 0.0441 0.0314 0.0187 0.0062 0.062 0.062 0.062 0.062 0.2323 0.2067 0.2323 0.2072 0.1695 0.1542 0.1695 0.1542 0.1695 0.1278 0.1160 0.0273 0.1695 0.1278	0.1487 0.1317 0.1160 0.0013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0119 0.0119 0.0119 0.02313 0.2065 0.1695 0.1695 0.1645 0.1695 0.1645 0.1695 0.1645 0.1695 0.1645 0.1695 0.1645 0.1695 0.1645 0.1695 0.1695 0.1695 0.1645 0.1695 0.1645 0.1695 0.1645 0.0655 0.0665 0.0655 0.0665 0.065	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2302 0.2058 0.1548 0.1695 0.1548 0.1180 0.1293 0.1180 0.1073 0.0972 0.0676	0.1503 0.1344 0.1196 0.0024 0.0798 0.0677 0.0559 0.0444 0.0321 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2529 0.1695 0.1550 0.1420 0.1899 0.1085 0.1350	0.1513 0.1356 0.1211 0.075 0.0947 0.0824 0.0706 0.0692 0.0481 0.0772 0.0264 0.0158 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.2804 0.2281 0.2281 0.2245 0.1693 0.1695 0.1695 0.1695 0.1695 0.1095 0.1095 0.1095 0.1095 0.00966	0.1520 0.1366 0.1225 0.0997 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 	0.1526 0.1376 0.1237 0.986 0.0870 0.0651 0.0546 0.0444 0.0244 0.0244 0.0244 0.0244 0.0244 0.0049 50 0.3751 0.2561 0.2260 0.23751 0.2260 0.23751 0.2260 0.23751 0.2574 0.1691 0.1554 0.1317 0.1554 0.1317 0.1212 0.1113 0.0202
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 1 2 2 <i>V</i> n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 11 12 17 18 19 20 <i>V</i> n 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 11 12 12 17 18 19 20 <i>V</i> n 11 12 12 17 18 19 20 <i>V</i> n 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 11 12 13 14 15 16 17 18 19 10 10 11 11 12 13 14 15 16 17 18 19 10 10 11 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0630 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0644 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0314 0.0062 0.0441 0.0062 0.0062 0.0062 0.02323 0.2072 0.1542 0.1542 0.1542 0.1542 0.1600 0.1649 0.1649 0.1649 0.1649 0.1649 0.0943 0.0843	0.1487 0.1317 0.1160 0.0013 0.0673 0.0610 0.0484 0.0361 0.0239 0.0119 0.019 0.019 0.0239 0.0119 0.0239 0.0255 0.2313 0.2065 0.1695 0.1695 0.1645 0.1700 0.1286 0.1700 0.1286 0.1770 0.1662 0.1700	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0287 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0055 0.2302 0.2058 0.1862 0.1548 0.1862 0.1548 0.1862 0.1548 0.1873 0.0876 0.0972 0.0076	0.1503 0.1344 0.1196 0.0054 0.0924 0.0924 0.0677 0.0559 0.0444 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.0886 0.0886 0.0896 0.0896 0.0896 0.0896 0.0896 0.0896 0.0896 0.0896 0.0896 0.0896 0.0806 0.00	0.1513 0.1356 0.1211 0.075 0.0847 0.0706 0.0592 0.0481 0.0706 0.0592 0.0481 0.0758 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.1551 0.1855 0.1855 0.1855 0.1855 0.1855 0.1995 0.1995 0.1995 0.1995 0.0998	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105 0.1105	0.1526 0.1376 0.1376 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0343 0.0244 0.0146 0.0343 0.0244 0.0146 0.03751 0.2574 0.2574 0.2260 0.232 0.1847 0.1554 0.1554 0.1554 0.1691 0.1554 0.1317 0.1212 0.1130 0.0332 0.0486
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.1433 0.1243 0.1243 0.0899 0.0739 0.0585 0.0435 0.0269 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0484 0.0206 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0622 44 0.3872 0.2623 0.2022 0.1642 0.1642 0.1642 0.1642 0.1642 0.1642 0.1642 0.1642 0.1049 0.0943 0.0842 0.0745 0.0651	0.1487 0.1317 0.1160 0.0013 0.0873 0.0610 0.0484 0.03611 0.0239 0.0119 0.0119 0.0484 0.0239 0.0119 0.0251 0.2313 0.2065 0.1665 0.1645 0.1545 0.1545 0.1545 0.1545 0.16959 0.0860 0.0775 0.0673	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0770 0.0770 0.0772 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1548 0.1415 0.1293 0.1548 0.1415 0.1293 0.1073 0.0972 0.0876 0.0785	0.1503 0.1344 0.1196 0.0054 0.0624 0.0627 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1513 0.1356 0.1211 0.0725 0.0947 0.0824 0.0706 0.0592 0.0481 0.0722 0.0264 0.0158 0.0053 48 0.0053 48 0.0053 48 0.0053 0.0264 0.2281 0.2045 0.1855 0.16551 0.1423 0.1306 0.1195 0.0998 0.0906 0.0817 0.0731	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1255 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.0919	0.1526 0.1376 0.1376 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0244 0.0244 0.0244 0.02574 0.2574 0.22574 0.22574 0.22574 0.2260 0.2032 0.1113 0.1554 0.1430 0.1113 0.1020 0.9346 0.09846 0.0764
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 1 1 2 0 <i>Un</i> 1 2 0 <i>Un</i> 1 1 2 1 3 4 5 6 7 8 9 10 11 15 16 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 16 17 17 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 16 17 17 17 17 17 18 19 20 10 11 11 12 13 14 15 16 16 17 16 16 17 16 17 17 16 16 17 17 17 16 16 17 17 17 16 10 11 11 12 15 16 16 11 11 12 15 16 16 16 16 17 16 16 17 16 16 17 16 16 16 17 17 16 16 16 17 16 16 16 17 16 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.05844 0.0706 0.0572 0.0441 0.0314 0.0314 0.0314 0.0314 0.0314 0.0314 0.0622 0.0441 0.03872 0.2667 0.2523 0.2072 0.1595 0.1595 0.1695 0.1695 0.1049 0.0943 0.0842 0.0745 0.0650	0.1487 0.1317 0.1103 0.0873 0.0610 0.0484 0.03611 0.0239 0.0119 45 0.3850 0.2651 0.2651 0.2655 0.1695 0.0695 0.0660 0.0773 0.0684	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 0.0057 0.0057 0.0057 0.0057 0.2302 0.2058 0.1662 0.2302 0.2058 0.1695 0.1695 0.1695 0.1895 0.1895 0.1897 0.0876 0.0785 0.06974 0.0607	0.1503 0.1344 0.1196 0.0524 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 0.0110 0.0210 0.0110 0.0210 0.0110 0.252 0.1859 0.0861 0.08510000000000000000000000000000000000	0.1513 0.1356 0.1211 0.0706 0.0947 0.0824 0.0706 0.0952 0.0481 0.0372 0.0264 0.0053 48 0.0053 48 0.0053 48 0.0053 48 0.0053 48 0.0264 0.2604 0.2604 0.2604 0.2604 0.2604 0.1955 0.1955 0.1955 0.1955 0.1998 0.1906 0.1977 0.1975 0.0998 0.0906 0.0917 0.1977 0.0984 0.1977 0.0053 0.1077 0.0054 0.0053 0	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105 0.1105 0.0101 0.0919 0.0832 0.0748 0.0667	0.1526 0.1376 0.1376 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0049 50 0.2375
7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.1433 0.1243 0.1066 0.0899 0.0739 0.0685 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0621 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0314 0.062 0.062 0.025 0.2323 0.2072 0.2323 0.2072 0.2323 0.2072 0.1542 0.1542 0.1542 0.1695 0.1245 0.1268 0.1695 0.1268 0.1695 0.1268 0.1695 0.1268 0.1695 0.0542 0.0745 0.0684 0.0745 0.06851 0.0562	0.1487 0.1317 0.1160 0.00739 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0119 0.0239 0.0119 0.0239 0.0119 0.0239 0.0255 0.2855 0.1845 0.1865 0.0860 0.0775 0.0860 0.0873 0.0860 0.0873 0.0860 0.0975 0.0860 0.0860 0.0860 0.0860 0.0875 0.0860 0.086	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0643 0.0287 0.0287 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2302 0.2058 0.1695 0.1548 0.1695 0.1548 0.1695 0.1973 0.0775 0.0785 0.0785 0.0785	0.1503 0.1344 0.1196 0.0024 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1513 0.1356 0.1211 0.075 0.0947 0.0824 0.0706 0.0692 0.0481 0.0772 0.0264 0.0158 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.1055 0.1693 0.1305 0.1305 0.1305 0.1305 0.1305 0.1305 0.1305 0.1305 0.1305 0.1305 0.1315 0.1305 0.1315 0.1	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1101 0.0919 0.0832 0.0748	0.1526 0.1376 0.1237 0.0986 0.0870 0.0651 0.0546 0.0443 0.0244 0.0146 0.0443 0.0244 0.0146 0.049 50 0.3751 0.2574 0.2260 0.232 0.1691 0.1554 0.1691 0.1554 0.1691 0.1317 0.1212 0.1113 0.1022
7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 20 20 Vn 1 13 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0630 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.0984 0.0672 0.0441 0.0187 0.0062 0.0441 0.0187 0.0062 0.0441 0.0087 0.0087 0.0087 0.2323 0.2072 0.1542 0.1695 0.1542 0.1695 0.1542 0.1649 0.1049 0.0943 0.0843 0.0851 0.00745 0.00745	0.1487 0.1317 0.1160 0.01013 0.0873 0.0873 0.0873 0.0873 0.0873 0.0484 0.0239 0.0119 0.0239 0.0119 0.0239 0.0255 0.2850 0.2851 0.2313 0.2065 0.1865 0.1865 0.1865 0.1865 0.11286 0.01775 0.0684	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0287 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0283 0.2302 0.2058 0.1862 0.1862 0.1862 0.1862 0.1862 0.1862 0.1995 0.1862 0.1995 0.1973 0.0972 0.0076 0.0072 0.0078 0.0078 0.0084 0.0084 0.0085 0.0084 0.0085 0.0084 0.0085 0.	0.1503 0.1344 0.1196 0.0054 0.0924 0.0924 0.0859 0.0444 0.0331 0.0250 0.0110 47 0.3808 0.2620 0.0110 47 0.3808 0.2620 0.0291 0.2052 0.1859 0.1650 0.1859 0.1655 0.1655 0.1300 0.11859 0.1085 0.0861 0.0886 0.0886 0.0886 0.0881 0.0713 0.0628 0.0546 0.0546 0.0546 0.0546 0.0559	0.1513 0.1356 0.1211 0.075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0758 0.053 48 0.3789 0.2604 0.2281 0.2045 0.1855 0.1855 0.1855 0.1306 0.1993 0.1651 0.1995 0.0998 0.0998 0.0998 0.0998	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105 0.0919 0.0832 0.0748 0.0667	0.1526 0.1376 0.1376 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2260 0.2032 0.1847 0.1554 0.1554 0.1354 0.2122 0.1847 0.1554 0.1354 0.2122 0.1847 0.1212 0.1113 0.1020 0.0332 0.0846 0.0764 0.0685 0.0688 0.0532
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>U</i> n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0984 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0314 0.0187 0.0062 0.0441 0.0872 0.2323 0.2072 0.1542 0.1542 0.1642 0.1542 0.1649 0.1542 0.1649 0.1649 0.0943 0.0642 0.0745 0.0650 0.0471 0.0583 0.0296	0.1487 0.1317 0.1160 0.0013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0770 0.0770 0.0772 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1548 0.1415 0.1293 0.1662 0.1548 0.1073 0.0772 0.0676 0.0785 0.0694 0.0785	0.1503 0.1344 0.1196 0.0054 0.00924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1513 0.1356 0.1211 0.071 0.0824 0.0706 0.0592 0.0481 0.072 0.0264 0.0158 0.0053 48 0.0053 48 0.0053 48 0.0053 0.0264 0.2281 0.2045 0.1655 0.1655 0.1655 0.1655 0.1955 0.0998 0.0906 0.0117 0.0731 0.0648 0.0648 0.0649 0.0411	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1553 0.1427 0.1353 0.1427 0.1353 0.1427 0.1353 0.1427 0.1353 0.1427 0.1353 0.1427 0.1353 0.1427 0.1353 0.1427 0.13653 0.1427 0.1353 0.0583	0.1526 0.1376 0.1376 0.108 0.0986 0.06870 0.06870 0.06870 0.06870 0.06546 0.0444 0.03444 0.03443 0.0244 0.0444 0.03434 0.0244 0.0444 0.03434 0.0244 0.0049 50 0.2574 0.2560 0.2032 0.1847 0.1654 0.1430 0.1654 0.1654 0.1654 0.1654 0.1654 0.1654 0.1654 0.1654 0.1020 0.0322 0.1102 0.0936 0.0685 0.06880000000000
7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0921 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0572 0.0441 0.0314 0.0187 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.2323 0.2072 0.2667 0.2323 0.2072 0.1695 0.1542 0.1695 0.1542 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1695 0.1278 0.1695 0.1695 0.1695 0.1695 0.0241 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.1695 0.0542 0.0542 0.0542 0.0542 0.1695 0.0542 0.0542 0.0542 0.0542 0.0542 0.1695 0.0542 0.0542 0.0542 0.0552 0.0542 0.0572 0.0552 0.0542 0.0572 0.05520 0.05520 0.05520000000000	0.1487 0.1317 0.1160 0.0013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.119 0.0484 0.0239 0.0484 0.0239 0.0484 0.0239 0.0484 0.0239 0.0510 0.2313 0.2065 0.1695 0.0673 0.0680 0.0775 0.0673 0.0680 0.0775 0.0683 0.0684 0.0683 0.0683 0.0683 0.0684 0.0683 0.0683 0.0684 0.0683 0.0684 0.0683 0.0684 0.0683 0.0684 0.0683 0.0684 0.0685 0.0683 0.0684 0.0685	0.1496 0.1331 0.1179 0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0057 	0.1503 0.1344 0.1196 0.0024 0.0798 0.0627 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1513 0.1356 0.2111 0.075 0.0824 0.0766 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.2604 0.2281 0.2604 0.2281 0.1306 0.1693 0.1551 0.1423 0.1306 0.1995 0.0906 0.0975 0.1995 0.0906 0.0006 0.00006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.	0.1520 0.1366 0.1225 0.0997 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 	0.1526 0.1376 0.1237 0.0108 0.0986 0.0670 0.0651 0.0546 0.0444 0.0444 0.0444 0.0244 0.0244 0.0244 0.0244 0.0049 0.0375 0.03751 0.2574 0.2260 0.2327 0.1691 0.1554 0.1554 0.1317 0.1212 0.1113 0.1020 0.0932 0.0932 0.0936 0.0764 0.0688 0.0668 0.0668 0.0668
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 1 20 <i>Vn</i> 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1463 0.1284 0.1284 0.0961 0.0669 0.0530 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0314 0.0052 0.0441 0.0062 0.0062 0.0062 0.2323 0.2072 0.1542 0.1542 0.1542 0.1542 0.1695 0.1542 0.1695 0.1542 0.0745 0.0651 0.0651 0.06551 0.06551 0.05651 0.06551 0.05651 0.06551 0.05651 0.06551 0.05651 0.06551 0.05520 0.05520 0.05520 0.05520 0.05520 0.05520 0.055200 0.05520000000000	0.1487 0.1317 0.1160 0.0613 0.0673 0.0673 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0239 0.0119 0.0239 0.0255 0.2851 0.2313 0.2655 0.1695 0.1545 0.1695 0.1545 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.0673 0.0674 0.0412 0.0246 0.0412 0.0246 0.0412 0.0673 0.0642 0.0673 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0673 0.0673 0.0642 0.0642 0.0673 0.0642 0.0645 0.0642	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0287 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1548 0.1695 0.1548 0.1695 0.1548 0.1695 0.1548 0.1695 0.1733 0.0972 0.0077 0.0785 0.0694 0.0785 0.0694 0.0697	0.1503 0.1344 0.11366 0.0924 0.0798 0.0677 0.0559 0.0444 0.0220 0.0110 	0.1513 0.1356 0.1211 0.075 0.0847 0.0624 0.0706 0.0592 0.0481 0.0758 0.0053 48 0.0053 48 0.0053 48 0.0053 0.053 0.0553 0.1551 0.1853 0.1855 0.1853 0.1955 0.1995 0.0998 0.001197 0.0998 0.00648 0.0489 0.0411 0.0355 0.0259	0.1520 0.1366 0.1225 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105 0.0748 0.0687 0.0588 0.0588 0.0588 0.0588 0.0588 0.03611 0.0436 0.0588 0.03611 0.0436 0.03611 0.0436 0.03611 0.0288	0.1526 0.1376 0.1376 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0444 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 0.0049 50 0.3751 0.2574 0.2260 0.232 0.1847 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1554 0.1020 0.0314
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 21	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0921 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0572 0.0441 0.0314 0.0187 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.2323 0.2072 0.2667 0.2323 0.2072 0.1695 0.1542 0.1695 0.1542 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1278 0.1695 0.1695 0.1278 0.1695 0.1695 0.1695 0.1695 0.0241 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.0542 0.1695 0.0542 0.0542 0.0542 0.0542 0.1695 0.0542 0.0542 0.0542 0.0542 0.0542 0.1695 0.0542 0.0542 0.0542 0.0552 0.0542 0.0572 0.0552 0.0542 0.0572 0.05520 0.05520 0.05520000000000	0.1487 0.1317 0.1160 0.0013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.119 0.0484 0.0239 0.0484 0.0239 0.0484 0.0239 0.0484 0.0239 0.0510 0.2313 0.2065 0.1695 0.0673 0.0680 0.0775 0.0673 0.0680 0.0775 0.0683 0.0684 0.0683 0.0683 0.0683 0.0684 0.0683 0.0683 0.0684 0.0683 0.0684 0.0683 0.0684 0.0683 0.0684 0.0683 0.0684 0.0685 0.0683 0.0684 0.0685	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0523 0.0404 0.0287 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.02635 0.2302 0.2058 0.1862 0.1862 0.1862 0.1862 0.1995 0.1548 0.1862 0.10972 0.0676 0.0694 0.0607 0.0694 0.0637 0.0694 0.0637 0.0637 0.0637	0.1503 0.1344 0.1196 0.0054 0.0924 0.0924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.00110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.0861 0.0852 0.0851 0.0851 0.0852 0.0851 0.0852 0.0851 0.0852 0.0851 0.08550.0855 0.0855 0.0855 0.08550.0855 0.0855 0.08550.0855 0.0855 0.08550.0855 0.0000000000000000000000000000000	0.1513 0.1356 0.1211 0.072 0.0824 0.0706 0.0592 0.0481 0.0758 0.053 48 0.0053 48 0.0053 48 0.0053 48 0.0053 0.0553 0.0254 0.2281 0.2045 0.1855 0.1855 0.1855 0.1855 0.1855 0.1995 0.0998 0.00817 0.0731 0.0731 0.0731 0.0754 0.0998 0.00817 0.0731 0.0754 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.00555 0.00555 0.00555 0.00555 0.0055	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1427 0.1312 0.1255 0.1427 0.1312 0.1255 0.1427 0.1312 0.1255 0.1427 0.1312 0.1255 0.1427 0.1325 0.1427 0.1325 0.1427 0.1325 0.1427 0.1353 0.1427 0.1353 0.1427 0.1353 0.1427 0.1305 0.1425 0.1425 0.1425 0.1405 0.0548 0.0511 0.0667 0.06678 0.03611 0.0436 0.03611 0.0436 0.0511 0.0436 0.0511 0.0436 0.0511 0.0436 0.0511 0.0288 0.0511 0.0288 0.0215 0.0215 0.0215 0.0228 0.0215 0.0228 0.0215 0.0228 0.0215 0.0228 0.0215 0.0228 0.0255 0.0223 0.0203 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1312 0.1255 0.1427 0.1255 0.1427 0.1312 0.1255 0.1427 0.0532 0.0515 0.0203 0.0515 0.0203 0.0203 0.1427 0.1255 0.1427 0.0588 0.0578 0.0203 0.0203 0.0203 0.1427 0.0588 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05	0.1526 0.1376 0.1376 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0444 0.0244 0.0244 0.0244 0.0244 0.2260 0.2032 0.1847 0.2260 0.2032 0.1847 0.1554 0.1554 0.1317 0.1554 0.1430 0.1317 0.1212 0.1113 0.1020 0.09846 0.0764 0.0685 0.0751 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.1020 0.0751 0.0257 0.0751 0.0257 0.0751 0.02570 0.02570 0.02570000000000000000000000000000
7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 177 18 19 20 21 13 14 15 16 17 18 19 20 21 23 23	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0921 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0314 0.0052 0.0441 0.0062 0.0062 0.0062 0.2323 0.2072 0.1542 0.1542 0.1542 0.1542 0.1695 0.1542 0.1695 0.1542 0.0745 0.0651 0.0651 0.06551 0.06551 0.05651 0.06551 0.05651 0.06551 0.05651 0.06551 0.05520 0.05520 0.05520 0.05520 0.05520 0.05520 0.055200 0.05520000000000	0.1487 0.1317 0.1160 0.0613 0.0673 0.0673 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0239 0.0119 0.0239 0.0255 0.2851 0.2313 0.2655 0.1695 0.1545 0.1695 0.1545 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.0673 0.0674 0.0412 0.0246 0.0412 0.0246 0.0412 0.0673 0.0642 0.0673 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0673 0.0673 0.0642 0.0642 0.0673 0.0642 0.0645 0.0642	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0623 0.0404 0.0287 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1548 0.1695 0.1548 0.1695 0.1548 0.1695 0.1548 0.1695 0.1733 0.0972 0.0077 0.0785 0.0694 0.0785 0.0694 0.0697	0.1503 0.1344 0.11366 0.0924 0.0798 0.0677 0.0559 0.0444 0.0220 0.0110 	0.1513 0.1356 0.1211 0.075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0720 0.0264 0.0158 0.0053 48 0.3789 0.0053 48 0.3789 0.0053 0.0264 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.155 0.1655 0.1655 0.1655 0.1655 0.0998 0.0906 0.0817 0.0731 0.0648 0.0648 0.0648 0.0648 0.0658 0.0649 0.0731 0.0648 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0649 0.0649 0.0658 0.0658 0.0649 0.0731 0.0658 0.0649 0.0649 0.0658 0.0658 0.0649 0.0731 0.0658 0.0658 0.0658 0.0592 0.0659 0.05590000000000	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105 0.1105 0.1105 0.1105 0.0143 0.0581 0.0436 0.0581 0.0436 0.0581 0.0436 0.0581 0.0436 0.0581 0.0436 0.0285 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215	0.1526 0.1376 0.1376 0.108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.03751 0.2574 0.2574 0.2260 0.2032 0.1847 0.1691 0.1554 0.1430 0.1317 0.1212 0.1137 0.1212 0.1137 0.1212 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0085 0.0085 0.0085 0.0314 0.0244 0.0244 0.01212 0.0314 0.0254 0.0254 0.0314 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0314 0.0254 0.0314 0.0555 0.0055 0.0314 0.05550 0.05550 0.05550 0.055500000000
7 8 9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22 24	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0921 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0314 0.0052 0.0441 0.0062 0.0062 0.0062 0.2323 0.2072 0.1542 0.1542 0.1542 0.1542 0.1695 0.1542 0.1695 0.1542 0.0745 0.0651 0.0651 0.06551 0.06551 0.05651 0.06551 0.05651 0.06551 0.05651 0.06551 0.05520 0.05520 0.05520 0.05520 0.05520 0.05520 0.055200 0.05520000000000	0.1487 0.1317 0.1160 0.0613 0.0673 0.0673 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0239 0.0119 0.0239 0.0255 0.2851 0.2313 0.2655 0.1695 0.1545 0.1695 0.1545 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.0673 0.0674 0.0412 0.0246 0.0412 0.0246 0.0412 0.0673 0.0642 0.0673 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0673 0.0673 0.0642 0.0642 0.0673 0.0642 0.0645 0.0642	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0523 0.0404 0.0287 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.02635 0.2302 0.2058 0.1862 0.1862 0.1862 0.1862 0.1995 0.1548 0.1862 0.10972 0.0676 0.0694 0.0607 0.0694 0.0637 0.0694 0.0637 0.0637 0.0637	0.1503 0.1344 0.1196 0.0054 0.0924 0.0924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.00110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.0861 0.0852 0.0851 0.0851 0.0852 0.0851 0.0852 0.0851 0.0852 0.0851 0.08550.0855 0.0855 0.0855 0.08550.0855 0.0855 0.08550.0855 0.0855 0.08550.0855 0.0000000000000000000000000000000	0.1513 0.1356 0.1211 0.072 0.0824 0.0706 0.0592 0.0481 0.0758 0.053 48 0.0053 48 0.0053 48 0.0053 48 0.0053 0.0553 0.0254 0.2281 0.2045 0.1855 0.1855 0.1855 0.1855 0.1855 0.1995 0.0998 0.00817 0.0731 0.0731 0.0731 0.0754 0.0998 0.00817 0.0731 0.0754 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.0755 0.0998 0.00817 0.00555 0.00555 0.00555 0.00555 0.00555 0.00555 0.00	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1427 0.1312 0.1255 0.1427 0.1312 0.1255 0.1427 0.1312 0.1255 0.1427 0.1312 0.1255 0.1427 0.1325 0.1427 0.1325 0.1427 0.1325 0.1427 0.1353 0.1427 0.1353 0.1427 0.1353 0.1427 0.1305 0.1425 0.1425 0.1425 0.1405 0.0548 0.0511 0.0667 0.06678 0.03611 0.0436 0.03611 0.0436 0.0511 0.0436 0.0511 0.0436 0.0511 0.0436 0.0511 0.0288 0.0511 0.0288 0.0215 0.0215 0.0215 0.0228 0.0215 0.0228 0.0215 0.0228 0.0215 0.0228 0.0215 0.0228 0.0255 0.0223 0.0203 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1255 0.1427 0.1312 0.1255 0.1427 0.1255 0.1427 0.1312 0.1255 0.1427 0.0532 0.0515 0.0203 0.0515 0.0203 0.0203 0.1427 0.1255 0.1427 0.0588 0.0578 0.0203 0.0203 0.0203 0.1427 0.0588 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05788 0.05	0.1526 0.1376 0.1376 0.0986 0.0870 0.0651 0.0546 0.0444 0.0244 0.0244 0.0049 50 0.3751 0.2260 0.3751 0.2260 0.2260 0.232 0.03751 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.2260 0.1113 0.1212 0.11212 0.1132 0.1212 0.0212 0.0
7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>U</i> n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.1433 0.1243 0.1066 0.0899 0.0739 0.0585 0.0289 0.0144 	0.1449 0.1265 0.1093 0.0931 0.0777 0.0629 0.0445 0.0344 0.0206 0.0068 	0.1463 0.1284 0.118 0.0961 0.0921 0.0530 0.0395 0.0262 0.0131 	0.1475 0.1301 0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 0.0441 0.0314 0.0052 0.0441 0.0062 0.0062 0.0062 0.2323 0.2072 0.1542 0.1542 0.1542 0.1542 0.1695 0.1542 0.1695 0.1542 0.0745 0.0651 0.0651 0.06551 0.06551 0.05651 0.06551 0.05651 0.06551 0.05651 0.06551 0.05520 0.05520 0.05520 0.05520 0.05520 0.05520 0.055200 0.05520000000000	0.1487 0.1317 0.1160 0.0613 0.0673 0.0673 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0239 0.0119 0.0239 0.0255 0.2851 0.2313 0.2655 0.1695 0.1545 0.1695 0.1545 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.0673 0.0674 0.0412 0.0246 0.0412 0.0246 0.0412 0.0673 0.0642 0.0673 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0642 0.0673 0.0673 0.0673 0.0642 0.0642 0.0673 0.0642 0.0645 0.0642	0.1496 0.1331 0.1179 0.1036 0.0900 0.0643 0.0523 0.0404 0.0287 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.02635 0.2302 0.2058 0.1862 0.1862 0.1862 0.1862 0.1995 0.1548 0.1862 0.10972 0.0676 0.0694 0.0607 0.0694 0.0637 0.0694 0.0637 0.0637 0.0637	0.1503 0.1344 0.1196 0.0054 0.0924 0.0924 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.00110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.0861 0.0852 0.0851 0.0851 0.0852 0.0851 0.0852 0.0851 0.0852 0.0851 0.08550.0855 0.0855 0.0855 0.08550.0855 0.0855 0.08550.0855 0.0855 0.08550.0855 0.0000000000000000000000000000000	0.1513 0.1356 0.1211 0.075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0720 0.0264 0.0158 0.0053 48 0.3789 0.0053 48 0.3789 0.0053 0.0264 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.2204 0.155 0.1655 0.1655 0.1655 0.1655 0.0998 0.0906 0.0817 0.0731 0.0648 0.0648 0.0648 0.0648 0.0658 0.0649 0.0731 0.0648 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0731 0.0658 0.0649 0.0649 0.0649 0.0658 0.0658 0.0649 0.0731 0.0658 0.0649 0.0649 0.0658 0.0658 0.0649 0.0731 0.0658 0.0658 0.0658 0.0592 0.0659 0.05590000000000	0.1520 0.1366 0.1225 0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105 0.1105 0.1105 0.1105 0.0143 0.0581 0.0436 0.0581 0.0436 0.0581 0.0436 0.0581 0.0436 0.0581 0.0436 0.0285 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215 0.0143 0.0215	0.1526 0.1376 0.1376 0.108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.03751 0.2574 0.2574 0.2260 0.2032 0.1847 0.1691 0.1554 0.1430 0.1317 0.1212 0.1137 0.1212 0.1137 0.1212 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0932 0.0085 0.0085 0.0085 0.0314 0.0244 0.0244 0.01212 0.0314 0.0254 0.0254 0.0314 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0254 0.0254 0.0314 0.0254 0.0314 0.0254 0.0314 0.0555 0.0055 0.0314 0.05550 0.05550 0.05550 0.055500000000

TABLE D-2 PERCENTAGE POINTS OF THE W TEST FOR N=3 to 50

n	0.01	0.05
3	0.753	0.767
4	0.687	0.748
5	0.686	0.762
6	0.713	0.788
7	0.730	0.803
8	0.749	0.818
9	0.764	0.829
10	0.781	0.842
11	0.792	0.850
12	0.805	0.859
13	0.814	0.866
14	0.825	0.874
15	0.835	0.881
16	0.844	0.887
17	0.851	0.892
18	0.858	0.897
19	0.863	0.901
20	0.868	0.905
21	0.873	0.908
22	0.878	0.911
23	0.881	0.914
24	0.884	0.916
25	0.888	0.918
26	0.891	0.920
27	0.894	0.923
28	0.896	0.924
29	0.898	0.926
30	0.900	0.927

n 0.01 0.05 31 0.902 0.9 32 0.904 0.9 33 0.906 0.9 34 0.908 0.9 35 0.910 0.9 36 0.912 0.9 37 0.914 0.9 38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9 47 0.928 0.9	
32 0.904 0.9 33 0.906 0.9 34 0.908 0.9 35 0.910 0.9 36 0.912 0.9 37 0.914 0.9 38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	
33 0.906 0.9 34 0.908 0.9 35 0.910 0.9 36 0.912 0.9 37 0.914 0.9 38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.923 0.9 43 0.924 0.9 45 0.926 0.9 46 0.927 0.9	29
34 0.908 0.9 35 0.910 0.9 36 0.912 0.9 37 0.914 0.9 38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	30
35 0.910 0.9 36 0.912 0.9 37 0.914 0.9 38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.923 0.9 43 0.924 0.9 45 0.926 0.9 46 0.927 0.9	31
36 0.912 0.9 37 0.914 0.9 38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 45 0.926 0.9 46 0.927 0.9	33
37 0.914 0.9 38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 45 0.926 0.9 46 0.927 0.9	34
38 0.916 0.9 39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	35
39 0.917 0.9 40 0.919 0.9 41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	36
40 0.919 0.9 41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	38
41 0.920 0.9 42 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	39
42 0.922 0.9 43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	40
43 0.923 0.9 44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	41
44 0.924 0.9 45 0.926 0.9 46 0.927 0.9	42
45 0.926 0.9 46 0.927 0.9	43
46 0.927 0.9	44
	45
47 0928 09	45
	46
48 0.929 0.9	47
49 0.929 0.9	47
50 0.930 0.9	47

TABLE D-3

TOLERANCE FACTORS (K) FOR ONE-SIDED NORMAL TOLERANCE INTERVALS WITH CONFIDENCE FACTOR Y=0.95 AND COVERAGE P=95%

n	K
3	7.655
4	5.145
5	4.202
6	3.707
7	3.707 3.399
8	3.188
9	3.031
10	2.911
11	2.815
12	2.736
13	2.670
14	2.614
15	2.566
16	2.523
17	2.486
18	2.543
19	2.423
20	2.396
21	2.371
22	2.350
23	2.329
24	2.309
25	2.292
30	2.220
35	2.166
40	2.126
45	2.092
50	2.065
55	2.036
60	2.017
65	2.000
70	1.986
75	1.972
100	1.924
125	1.891

n	K
150	1.868
175	1.850
200	1.836
225	1.824
250	1.814
275	1.806
300	1.799
325	1.792
350	1.787
375	1.782
400	1.777
425	1.773
450	1.769
475	1.766
500	1.763
525	1 760
550	1.757
575	1.754
600	1.752
625	1.750
650	1.748
675	1.746
700	1.744
725	1.742
750	1.740 1.739
775 800	1.739 1.737
825	1.736
850	1.736
875	1.734
900	1.732
925	1.731
950	1.729
975	1.728
1000	1.727
	L

TABLE D-4

PERCENTILES OF STUDENT's t-DISTRIBUTION WITH n DEGREES OF FREEDOM

n\F	0.60	0.75	0.90	0.95	0.975	0.99	0.995	0.9995
1	0.325	1.000	3.078	6.314	12.706	31.821	63.656	636.578
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	31.600
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	6.869
· · · ·					-			
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.850
		·						
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.768
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.689
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.674
29	0.256	0.683	1.311	1.699	2:045	2.462	2.756	3.660
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.646
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.551
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3.460
120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.373
1,000,000	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.290

TETRA TECH NUS, INC. **CALCULATION WORKSHEET** OF PAGE NSWC Crane IOB NUMBER 0687 SUBJECT SAMPLE Calculations of Statistical Analyses DRAWING NUMBER Sitewide Soil Backeround CHECKED BY APPROVED BY 19/00 SAMPLE CALCULATIONS WERE PERFORMED FOR THE FOLLOWING STATISTICAL PROCEOULES USED IN SUPPORT OF THIS REPORT: 1. Shapiro-Wilk W Test of Normality 2. Wilcoxon Rank-Sum Test 3. 95% UPPER Tolerance Limit 4. 95% Confidence Interval 5. Minimum Detectable Differences Between Data Sets 6 Binomial Probabilities LOESS/GWACIAL SURFACE SOIL RESULTS FOR ARSENIC: LS LS LS LS LS RESULT (MG/KG) SAMPLE 6 8 BGISBLOIDI 5,7 BGISBLUSON 5,8 BEZSBEDIOI 3.6 BG25860201 BG25BG0401-MAX 1. SHAPIRO-WILK W TEST OF NORMALITY a. The arithmetic mean (X) can be calculated by: $\overline{\chi} = \frac{\sum \chi_{i}}{\sum \chi_{i}}$ Xi= 6.8+5.7+5.8+3.6+4.3 = 26.2 MG/KG X = 26.2 = 5.24 MG/KG

PAGE 2 OF TETRA TECH NUS, INC. CALCULATION WORKSHEET Crane $\infty \beta^{-}$ Calculations of Statistical Analyses Sal Backgrond DATE 19100 b. The standard deviation (Sx) can be calculated by: $S_{\chi = \gamma} = \sum_{i=1}^{\tilde{\Sigma}} (\chi_i - \bar{\chi})$ $\sum_{i=1}^{n} (\chi_{i} - \overline{\chi})^{\frac{1}{2}} (6.8 - 5.24)^{\frac{1}{2}} (5.7 - 5.24)^{\frac{1}{2}} (5.8 - 5.24)^{\frac{1}{2}} (3.6 - 5.24)^{\frac{1}{2}}$ $+(4.3-5.24)^{2} = 1.56^{2} + 0.46^{2} + 0.56^{2} + (-1.64)^{2} + (-0.94)^{2}$ " = 2,4336+0,2116+0.3136+2.6896+0.8836=6.532 Sx = 16.532 = 11.633 = 1.278 MG/KG c. Calculate b: $b = \sum_{i=1}^{n} b_i = \sum_{i=1}^{n} a_{(n-i+1)} \left[X_{(n-i+1)} - X_i \right]$ where k is the greatest integer $\leq n/2$ $Q_{(n-1)}$ can be found in Table 1. ١ 58 2 b= 2 b; = 2.48867 5.7 3 4.3 5.B 4 36 6.8 5 HIGNEST Lowess

TETRA TECH NUS, INC. CALCULATION W	VORKSHEET PAGE 3 OF 7
NSWC Crane	JOB NUMBER
SUBJECT AMPLE CALCULATIONS OF S	MATISTICAL AWALYSES
BASED ON TEWIDE SOLG BACKGROWN BY BEL CHECKED BY MBP	DRAWING NUMBER
d. The Shapiro-Wilk W Sta	tistic (w) can be colculated by:
$\mathcal{W} = \begin{bmatrix} \frac{b}{S_{x}} \end{bmatrix}$	-
$W = \left[\frac{2.48867}{(1.278)74'}\right]^2 = \left[\frac{2.488}{2.555}\right]^2$	$\left[\frac{6}{378} \right]^{\frac{2}{3}} = \left[\frac{6}{9} - \frac{7}{37} \right]^{\frac{2}{3}} - \frac{69481}{878}$
e. Compare W with Wtest F	von Table 2:
W=0.9481>0).762=Wfest
Since W>Wtest, we ac (Ho) that the assenic dat	cept the null hypothesis a has a normal distribution.
2. Wilcoxon Rank-Sum Test	(Non-parametric ANUM)
LOGSS/GLACIAL SUBSURFACESOIL SAMPLE RESULT (MG BG2SBG0303-HAX 1.3 BG2SBG0303-HAX 1.3 BG2SBG0503 6.0	
Combine both data sets and SAMPLE RESULTING	rank from smallest to largest: IKG) GROUP
BUZSBGU303-MAK 1.3	LBS
BG25BG0201 3.6 BG25BG0401-MX 4.3	LS 2 LS 3
B623BG0104 4.9	LBS 4
5.7	LS 5
5.8	LS 6 LBS 7
6.8	LS 8

TETRA TECH NUS, INC. **CALCULATION WORKSHEET** JOB NUMBER SINC CRANE 0087 AMPLE CALCULATIONS OF STATISTICAL AWALYSUS CHECKED BY APPROVED BY 19/00 MEP Wrs= Rank-Sum & LBS = 1+4+7 = 12 $Zrs = Wrs - \frac{N_1(M+1)}{2}$ $\sqrt{N_1N_2(M+1)}$ 12where n = # of LBS results = 3 N2= # of LS results = S $M = N_1 + N_2 = 8$ $Z_{15=} 12 - 3(8+1) 12 - 135$ $\frac{2}{12} = 11.25$ $2r_{s^2} - 1.5 = -0.4472$ 3 354 FROM TABLES Z= -0.4472 => p= 0.6547 Since D=0.6547 > 0.05, we accept the null hypothesis (Ho) that LB'S and LS are Statisticily similar.

.

. .

TETRA TECH NUS, INC. CALCULATION WORKSHEET JOB NUMBER 0087 RANE ACULATIONS OF STATISTICA ANALYSSS DRAWING NUMBER al BAKGLOUND CHECKED BY APPROVED BY JATE / 19/00 5 Minimum Detectable Differences Between Data Setz. To determine the minimum detectable differences between means of thesebackground data sets and site data sets, assumptions must be made about the site data sets. We assume that 5 samples (i.e., M=5) will be taken at the site and that the Sample Standard deviction of the site data will be the some as the background data (1.e., SY=Sx) FOR ARSONIC IN GROUP LS: X-Y= time, f SNE $S_{NE} = \left\{ \frac{S_{x}^{2}}{m}, \frac{S_{y}^{2}}{n} \right\} = \left\{ \frac{(1,278)^{2}}{5}, \frac{(1,278)^{2}}{5} \right\}$ SNG= 10.6533 = 0.8083 MG/KG $\int z \left[\frac{5x^{2}}{m} + \frac{5y^{2}}{n} \right]^{2} = \left[\frac{(1.278)^{2}}{5} + \frac{(1.278)^{2}}{5} \right]^{2} \\ = \frac{5x^{4}}{m^{2}(m-1)} + \frac{5y^{4}}{n^{2}(m-1)} + \frac{(1.278)^{4}}{5^{2}(4)} + \frac{(1.278)^{4}}{5^{2}(4)} + \frac{(1.278)^{4}}{5^{2}(4)} \right]^{2}$ $f_{2} \left(0.6533 \right)^{2} = 0.000$ tors, a = 1.800 FROM TABLES

CALCULATION WORKSHEET PAGE OF **TETRA TECH NUS, INC.** RANE 78 CARCULATIONES OF MAJISACK ANAYSES Sou Brekerowne DATE (19/00 APPROVED BY MBP X-Y=(1.860)(0.8083mores) X-V= 1.503 MGIKG EXPRESSED AS STANDARD DEVIATIONS : X-Y= 1.503 MG/KGX 5x = 1.176 Sx 1.278 MG/KG 6 Binomial Probabilities FOR & FIXED NUMBER OF INDEPENDENT TRIALS WITH TWO DUROMOS. n is the number of trials X is the mumber of successes out of those trials p+15 the probability of success 1-p is the probability of failure f(x) is the probability of getting exactly X successes $f(x) = \frac{n!}{p^{x}(1-p)^{n-x}}$ $X^{1}(n-x)^{1}$ n = 27 $\begin{array}{l} X = 1 \\ P = 0.05 \end{array}$ $f(1) = \frac{27!}{112(1)} 0.05' 0.95^{26}$ f(1) = (27)(0.05)(0.2635) = 0.3557

Sample Calculations Table 1 COEFFICIENTS A FOR W TEST OF NORMALITY FOR N=2 to 50

i/n	2	3	4	5	6	7	8 -	9	10	
1										
	0.7071	0.7071	0.6872	0.6646	0.6431	0.6233	0.6052	0.5888	0.5739	
2			0.1677	0.2413	0.2806	0.3031	0.3164	0.3244	0.3291	
3					0.0875	0.1401	0.1743	0.1976	0.2141	
4							0.0561	0.0947	0.1224	
5									0.0399	
h	· ·									
110	11	12	40	14	45	10	47	10	40	
i/n	· · · · · · · · · · · · · · · · · · ·		13	14	15	16	17	18	19	20
1	0.5601	0.5475	0.5359	0.5251	0.5150	0.5056	0.4968	0.4886	0.4808	0.4734
2	0.3315	0.3325	0.3325	0.3318	0.3306	0.3290	0.3273	0.3253	0.3232	0.3211
3	0.2260	0.2347	0.2412	0.2460	0.2495	0.2521	0.2540	0.2553	0.2561	0.2565
4	0.1429	0.1586	0.1707	0.1802	0.1878	0.1939	0.1988	0.2027	0.2059	0.2085
5	0.0695	0.0922	0.1099	0.1240	0.1353	0.1447	0.1524	0.1587	0.1641	0.1686
6		0.0303	0.0539	0.0727	0.0880	0.1005	0.1109	0.1197	0.1271	0.1334
. 7				0.0240	0.0433	0.0593	0.0725	0.0837	0.0932	0.1013
8						0.0196	0.0359	0.0496	0.0612	0.0711
9						0.0100	0.0000	0.0163	0.0303	0.0422
								0.0103	0.0303	
10										0.0140
i/n	21	22	23	24	25	26	27	28	29	30
1	0.4643	0.4590	0.4542	0.4493	0.4450	0.4407	0.4366	0.4328	0.4291	0.4254
2	0.3185	0.3156	0.3126	0.3098	0.3069	0.3043	0.3018	0.2992	0.2968	0.2944
3	0.2578	0.2571	0.2563	0.2554	0.2543		0.2522			
						0.2533		0.2510	0.2499	0.2487
4	0.2119	0.2131	0.2139	0.2145	0.2148	0.2151	0.2152	0.2151	0.2150	0.2148
5	0.1736	0.1764	0.1787	0.1807	0.1822	0.1836	0.1848	0.1857	0.1864	0.1870
6	0.1399	0.1443	0.1480	0.1512	0.1539	0.1563	0.1584	0.1601	0.1616	0.1630
7	0.1092	0.1150	0.1201	0.1245	0.1283	0.1316	0.1346	0.1372	0.1395	0.1415
8	0.0804	0.0878	0.0941	0.0997	0.1046	0.1089	0.1128	0.1162	0.1192	0.1219
9		0.0618	0.0696	0.0997					0.1192	
	0.0530				0.0823	0.0876	0.0923	0.0965		0.1036
10	0.0263	0.0368	0.0459	0.0539	0.0610	0.0672	0.0728	0.0778	0.0822	0.0862
11		0.0122	0.0228	0.0321	0.0403	0.0476	0.0540	0.0598	0.0650	0.0697
12				0.0107	0.0200	0.0284	0.0358	0.0424	0.0483	0.0537
13						0.0094	0.0178	0.0253	0.0320	0.0381
	<u>├</u>					0.0034	0.0170			
14								0.0084	0.0159	0.0227
15										0.0076
i/n	31	32	33	34	35	36	37	38	39	40
1	0.4220	0.4188	0.4156	0.4127	0.4096	0.4068	0.4040	0.4015	0.9689	0.3964
2	0.2921	0.2898	0.2876	0.2854	0.2834	0.2813	0.2794	0.2774	0.2755	0.2737
	0.2475	0.2463								
3			0.2451	0.2439	0.2427	0.2415	0.2403	0.2391	0.2380	0.2368
4	0.2145	0.2141	0.2137	0.2132	0.2127	0.2121	0.2116	0.2110	0.2104	0.2098
5	0.1874	0.1878	0.1880	0.1882	0.1883	0.1883	0.1883	0.1881	0.1880	0.1878
6	0.1641	0.1651	0.1660	0.1667	0.1673	0.1678	0.1683	0.1686	0.1689	0.1691
7	0.1433	0.1449	0.1463	0.1475	0.1487	0.1496	0.1503	0.1513	0.1520	0.1526
8				0.1301						
					0.1317	0.1331	0.1344	0.1356	0.1366	0.1376
	0.1243	0.1265	0.1284							
9.	0.1066	0.1265	0.1204	0.1140	0.1160	0.1179	0.1196	0.1211	0.1225	0.1237
					0.1160	0.1179	0.1196 0.1056	0.1211	0.1225	
9 10	0.1066	0.1093	0.1118	0.1140 0.0988	0.1013	0.1036	0.1056	0.1075	0.1092	0.1237
9 10 11	0.1066 0.0899 0.0739	0.1093 0.0931 0.0777	0.1118 0.0961 0.0821	0.1140 0.0988 0.0844	0.1013 0.0873	0.1036	0.1056 0.0924	0.1075 0.0947	0.1092 0.0967	0.1237 0.1108 0.0986
9 10 11 12	0.1066 0.0899 0.0739 0.0585	0.1093 0.0931 0.0777 0.0629	0.1118 0.0961 0.0821 0.0669	0.1140 0.0988 0.0844 0.0706	0.1013 0.0873 0.0739	0.1036 0.0900 0.0770	0.1056 0.0924 0.0798	0.1075 0.0947 0.0824	0.1092 0.0967 0.0848	0.1237 0.1108 0.0986 0.0870
9 10 11 12 13	0.1066 0.0899 0.0739 0.0585 0.0435	0.1093 0.0931 0.0777 0.0629 0.0485	0.1118 0.0961 0.0821 0.0669 0.0530	0.1140 0.0988 0.0844 0.0706 0.0572	0.1013 0.0873 0.0739 0.0610	0.1036 0.0900 0.0770 0.0645	0.1056 0.0924 0.0798 0.0677	0.1075 0.0947 0.0824 0.0706	0.1092 0.0967 0.0848 0.0733	0.1237 0.1108 0.0986 0.0870 0.0759
9 10 11 12 13 14	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441	0.1013 0.0873 0.0739 0.0610 0.0484	0.1036 0.0900 0.0770 0.0645 0.0523	0.1056 0.0924 0.0798 0.0677 0.0559	0.1075 0.0947 0.0824 0.0706 0.0592	0.1092 0.0967 0.0848 0.0733 0.0622	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651
9 10 11 12 13 14 15	0.1066 0.0899 0.0739 0.0585 0.0435	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314	0.1013 0.0873 0.0739 0.0610	0.1036 0.0900 0.0770 0.0645	0.1056 0.0924 0.0798 0.0677	0.1075 0.0947 0.0824 0.0706	0.1092 0.0967 0.0848 0.0733	0.1237 0.1108 0.0986 0.0870 0.0759
9 10 11 12 13 14	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441	0.1013 0.0873 0.0739 0.0610 0.0484	0.1036 0.0900 0.0770 0.0645 0.0523	0.1056 0.0924 0.0798 0.0677 0.0559	0.1075 0.0947 0.0824 0.0706 0.0592	0.1092 0.0967 0.0848 0.0733 0.0622	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651
9 10 11 12 13 14 15	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444
9 10 11 12 13 14 15 16 17	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343
9 10 11 12 13 14 15 16 17 18	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244
9 10 11 12 13 14 15 16 17 18 19	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146
9 10 11 12 13 14 15 16 17 18	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244
9 10 11 12 13 14 15 16 17 18 19 20	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262 0.0131	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101	0.1237 0.1108 0.0986 0.0870 0.0651 0.0546 0.0444 0.0343 0.0244 0.0244 0.0146 0.0049
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i>	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068	0.1118 0.0961 0.0821 0.0530 0.0395 0.0262 0.0131 43	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 44	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0101	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0146 0.0049
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1	0.1066 0.0899 0.0739 0.0685 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 0.0068 	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0062 44 44 0.3872	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 • •	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751
9 10 11 12 13 14 15 16 17 18 19 20 <i>U</i> n 1 2	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 0.0068 42 0.03917 0.2701	0.1118 0.0961 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 44 0.3872 0.2667	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48 0.3789 0.2604	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 • • • • • • • • • • • • • • • • • •	0.1237 0.1108 0.08700 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1	0.1066 0.0899 0.0739 0.0685 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 0.0068 	0.1118 0.0961 0.0821 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0062 44 44 0.3872	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 • •	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751
9 10 11 12 13 14 15 16 17 18 19 20 <i>U</i> n 1 2	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 0.0068 42 0.03917 0.2701	0.1118 0.0961 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 44 0.3872 0.2667	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 	0.1092 0.0967 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 	0.1237 0.1108 0.098/0 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2260
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4	0.1066 0.0899 0.0739 0.0865 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0861 0.0530 0.0530 0.0262 0.0131 43 0.3894 0.2684 0.23894 0.2684 0.2332	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0187 0.0062 44 0.3872 0.2667 0.2323 0.2072	0.1013 0.0873 0.073 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.077 0.0772 0.0057 46 0.3830 0.2832 0.2302 0.2302	0.1056 0.0924 0.0798 0.0657 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2931 0.2052	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48 0.3789 0.2604 0.2281 0.2281	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0101 * * 49 0.3770 0.2589 0.2271 0.2288	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2250 0.232
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5	0.1066 0.0899 0.0739 0.0685 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684 0.2684 0.2034 0.2038 0.1871	0.1140 0.0898 0.0844 0.0706 0.0572 0.0441 0.0314 0.0187 0.0062 44 0.3872 0.2667 0.2263 0.2072 0.2667 0.2223 0.2072	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2651 0.2313 0.2065 0.1865	0.1036 0.0900 0.0745 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862	0.1056 0.0924 0.0798 0.0659 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 	0.1092 0.0967 0.0848 0.0733 0.0622 0.0516 0.0305 0.0203 0.0101 * * * * * * *	0.1237 0.1108 0.09866 0.0870 0.0759 0.0651 0.0544 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2574 0.2260 0.2032 0.1847
9 10 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 1 2 3 4 5 6	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 0.0289 0.0144 0.02719 0.2357 0.2091 0.1876 0.1693	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 42 0.0068 	0.1118 0.0961 0.0669 0.0530 0.0530 0.0282 0.0282 0.0131 43 0.3894 0.2684 0.2334 0.2078 0.1871 0.1695	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0314 0.0082 44 0.3872 0.2067 0.2323 0.2072 0.2667 0.2323 0.2072 0.1668	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.02399 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2635 0.2302 0.2058 0.1665	0.1056 0.0924 0.0778 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1695 0.1695	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0758 0.0253 0.0253 0.053 0.053 0.053 0.053 0.053 0.2604 0.2281 0.2604 0.2281 0.2045 0.1655 0.1693	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0644 0.0444 0.0343 0.0244 0.0446 0.0499 50 0.3751 0.2574 0.2250 0.2032 0.2032 0.2032
9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 2 3 4 5 6 7	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0861 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684 0.2334 0.2684 0.2334 0.2078 0.1679 0.1639	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0187 0.0062 44 44 0.3872 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.1542	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0239 0.0119 0.2313 0.2065 0.1865 0.1865 0.1545	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862 0.1695 0.1548	0.1056 0.0924 0.0798 0.0677 0.0659 0.0444 0.0331 0.0220 0.0110 47 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.1655	0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48 0.2045 0.2045 0.1855 0.1855	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0101 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1851 0.1553	0.1237 0.1108 0.0980 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.049 50 53 50 53 53 53 53 53 53 53 53
9 10 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 1 2 3 4 5 6	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 0.0289 0.0144 0.02719 0.2357 0.2091 0.1876 0.1693	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 42 0.0068 	0.1118 0.0961 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684 0.2334 0.2078 0.1895	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0314 0.0082 44 0.3872 0.2067 0.2323 0.2072 0.2667 0.2323 0.2072 0.1668	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.02399 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2635 0.2302 0.2058 0.1665	0.1056 0.0924 0.0778 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1695 0.1695	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0758 0.0253 0.0253 0.053 0.053 0.053 0.053 0.053 0.2604 0.2281 0.2604 0.2281 0.2045 0.1655 0.1693	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0101 	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0644 0.0444 0.0343 0.0244 0.0446 0.0499 50 0.3751 0.2574 0.2250 0.2032 0.2032 0.2032
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>Vn</i> 20 <i>S</i> <i>Vn</i> 20 <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i>	0.1066 0.0899 0.0739 0.0865 0.0435 0.0289 0.0144 0.0144 0.0144 0.03940 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2884 0.2884 0.2884 0.23894 0.23078 0.1317 0.1695 0.1539 0.1398	0.1140 0.0888 0.0844 0.0706 0.0572 0.0441 0.0317 0.0052 44 0.0187 0.0062 44 0.3872 0.2067 0.2323 0.2072 0.1868 0.1695 0.1642 0.1405	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0239 0.0119 0.2313 0.2065 0.1865 0.1865 0.1545	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0057 46 0.3830 0.2655 0.2302 0.2058 0.1862 0.1695 0.1548 0.1415	0.1056 0.0924 0.0798 0.0659 0.0444 0.0331 0.0220 0.0110 47 47 0.3808 0.2620 0.2931 0.2052 0.1659 0.1695 0.1550 0.1420	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0706 0.0252 0.0224 0.0158 0.0053 48 0.3789 0.2604 0.2281 0.2045 0.1855 0.1853 0.1551 0.1423	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0101 * * 49 0.3770 0.2589 0.2271 0.2038 0.1851 0.1653 0.1427	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2674 0.2674 0.2032 0.2032 0.1847 0.1691 0.1654 0.1430
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 0.0144 0.0249 0.0144 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.02068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.03917 0.2701 0.2701 0.2345 0.2085 0.1874 0.1694 0.1535 0.1874 0.1535	0.1118 0.0961 0.0669 0.0530 0.0530 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0317 0.0062 44 0.3872 0.2667 0.2223 0.2667 0.2223 0.2067 0.2223 0.2072 0.1668 0.1695 0.1542 0.1405 0.1278	0.1013 0.0873 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2651 0.22313 0.2065 0.1695 0.1695 0.1695 0.1545 0.1426	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0172 0.0057 	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1695 0.1695 0.1550 0.1420 0.1300	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0758 0.0264 0.0158 0.0053 48 0.3789 0.2604 0.2281 0.2045 0.1853 0.1693 0.1551 0.1423 0.1306	0.1092 0.0967 0.0848 0.0733 0.0622 0.0516 0.0409 0.0305 0.0203 0.0101 1 49 0.3770 0.2589 0.2271 0.2038 0.2271 0.2038 0.1851 0.1653 0.1853 0.1427 0.1312	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0544 0.0444 0.0446 0.0444 0.0446 0.0049 50 0.3751 0.2574 0.2260 0.2032 0.1847 0.1691 0.1554 0.1357
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 9 10	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684 0.2334 0.2684 0.2334 0.2078 0.1639 0.1539 0.1539 0.1539 0.1289	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0314 0.0082 	0.1013 0.0873 0.0730 0.0610 0.0484 0.0361 0.02399 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2635 0.2302 0.2058 0.1685 0.1685 0.1685 0.1548 0.1895	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2620 0.2291 0.2652 0.1659 0.1659 0.1659 0.1550 0.1420 0.1350	0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.0053 0.0053 0.0053 0.0053 0.2604 0.2281 0.2045 0.1693 0.1693 0.1551 0.1306 0.1197	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.2271 0.2589 0.2571 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2570 0.2589 0.2271 0.2589 0.2570 0.2589 0.2271 0.2589 0.2570 0.2589 0.2570 0.2570 0.2589 0.2570 0.2589 0.2570 0.2589 0.2570 0.2589 0.2570 0.2589 0.2570 0.2589 0.2570 0.2589 0.2570 0.2589 0.2570 0.2589 0.2570 0.2570 0.2570 0.2589 0.25700 0.25700 0.25700 0.25700 0.25700000000000000000000000000000000000	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0644 0.0444 0.0343 0.0244 0.0146 0.0449 0.049 0.049 0.03751 0.2574 0.2260 0.2032 0.2032 0.1847 0.1691 0.1554 0.1430 0.1317 0.1212
9 10 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 20 <i>Un</i> 1 1 1 1 20 <i>Un</i> 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.0144 0.03940 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1024	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0861 0.0530 0.0530 0.0262 0.0131 43 0.3894 0.2684 0.2078 0.1871 0.1695 0.1398 0.1269 0.1398	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0187 0.0052 0.0052 0.0572 0.0052 0.0572 0.0052 0.0572 0.0052 0.0572 0.0052 0.0572 0.1552 0.0572 0.1552 0.	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0119 0.02851 0.2851 0.2851 0.2851 0.2855 0.1865 0.1865 0.1865 0.1845 0.1410 0.1286 0.1170 0.1286	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862 0.1648 0.1415 0.1293 0.1648	0.1056 0.0924 0.0798 0.0677 0.0659 0.0444 0.0331 0.0220 0.0110 47 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.1859 0.1859 0.1859 0.1420 0.1420 0.1300	0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48 0.2045 0.158 0.2045 0.1855 0.1855 0.1855 0.1955 0.1196	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.2570 0.2589 0.2271 0.2038 0.1851 0.1851 0.1953 0.1427 0.1312 0.1205 0.1105	0.1237 0.1108 0.09866 0.0870 0.0759 0.0651 0.0444 0.0343 0.0244 0.0146 0.0049 50 0.3751 0.2574 0.2250 0.2032 0.1847 0.2032 0.1847 0.1554 0.1430 0.1317 0.1254
9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 12 15 16 17 18 19 20 11 12 12 12 12 12 12 12 12 12	0.1066 0.0899 0.0739 0.0685 0.0435 0.0289 0.0144 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1004 0.0091	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2884 0.2884 0.2884 0.2884 0.2334 0.2078 0.1871 0.1895 0.1539 0.1398 0.1269 0.1398 0.1269 0.1398	0.1140 0.0888 0.0844 0.0706 0.0572 0.0441 0.0317 0.0052 0.0872 0.0052 0.0872 0.2067 0.2323 0.2072 0.1868 0.1695 0.1595 0.1595 0.1278 0.1278 0.1278	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2651 0.2651 0.2651 0.2651 0.2651 0.2655 0.1865 0.1865 0.1865 0.1545 0.1440 0.01286 0.1170 0.1286	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2635 0.2635 0.2635 0.2635 0.1862 0.1695 0.1548 0.1849 0.1415 0.1293 0.1180 0.1073	0.1056 0.0924 0.0798 0.0659 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2620 0.2291 0.2620 0.2859 0.1695 0.1859 0.1450 0.1420 0.1300 0.1430 0.1430 0.0444	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.053 0.053 0.2604 0.2841 0.2045 0.1855 0.1855 0.1855 0.1853 0.1693 0.1306 0.1307 0.1306 0.1307 0.1306 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1306 0.1306 0.1307 0.1306 0.10	0.1092 0.0967 0.0644 0.0733 0.0622 0.0516 0.0305 0.0203 0.0101 * * * * * * * * * * * * * * * * * *	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0444 0.0343 0.0244 0.0446 0.0049 50 0.3751 0.2574 0.2674 0.2674 0.2674 0.2674 0.2032 0.1847 0.1691 0.1307 0.1317 0.1317 0.1317 0.1212
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 12 13 13 14 15 16 17 18 19 20 <i>Vn</i> 19 20 <i>Vn</i> 10 11 12 13 15 16 17 19 20 <i>Vn</i> 11 12 13 15 16 17 19 20 <i>Vn</i> 11 12 13 15 16 17 19 20 <i>Vn</i> 11 12 13 15 16 17 19 20 <i>Vn</i> 11 12 13 19 20 <i>Vn</i> 11 12 13 15 16 17 19 20 11 12 13 19 19 20 11 11 12 13 19 10 10 11 12 13 10 10 11 12 13 10 10 10 11 12 13 14 15 16 17 10 10 10 10 11 12 10 11 12 13 10 10 11 12 13 10 10 11 11 11 11 11 11 11 11	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 0.0144 0.02719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1004 0.0782	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.02068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0070 0.2045 0.2085 0.13917 0.2701 0.2245 0.2085 0.1694 0.1535 0.16940	0.1118 0.0961 0.0669 0.0530 0.0530 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0374 0.0062 44 0.3872 0.2667 0.2323 0.2067 0.2323 0.2067 0.2323 0.2072 0.1668 0.1695 0.1542 0.1695 0.1278 0.1160 0.1160 0.0442	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0057 0.0172 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1648 0.1695 0.1548 0.1695 0.1548 0.1180 0.1073 0.0976	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1695 0.1695 0.1420 0.1420 0.1189 0.1085 0.0992	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0706 0.0592 0.0264 0.0158 0.0053 0.053 0.053 0.2604 0.2281 0.2604 0.2804 0.2805 0.1693 0.1551 0.1306 0.1197 0.1095 0.0998 0.0906	0.1092 0.0867 0.0848 0.0733 0.0622 0.0516 0.0409 0.0306 0.0203 0.0101 	0.1237 0.1108 0.0986 0.0970 0.0759 0.0651 0.0546 0.0444 0.0343 0.0244 0.046 0.0049 50 0.3751 0.2574 0.2574 0.2260 0.3751 0.2574 0.2674 0.2200 0.2032 0.1847 0.1691 0.1554 0.1317 0.1212 0.1113 0.1220
9 10 11 12 13 14 15 16 17 18 19 20 Vn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 18 19 20 11 12 12 15 16 17 18 19 20 11 12 12 12 12 12 12 12 12 12	0.1066 0.0899 0.0739 0.0685 0.0435 0.0289 0.0144 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1004 0.0091	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2884 0.2884 0.2884 0.2884 0.2334 0.2078 0.1871 0.1895 0.1539 0.1398 0.1269 0.1398 0.1269 0.1398	0.1140 0.0888 0.0844 0.0706 0.0572 0.0441 0.0317 0.0052 0.0872 0.0052 0.0872 0.2067 0.2323 0.2072 0.1868 0.1695 0.1595 0.1595 0.1278 0.1278 0.1278	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2651 0.2651 0.2651 0.2651 0.2651 0.2655 0.1865 0.1865 0.1865 0.1545 0.1440 0.01286 0.1170 0.1286	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2635 0.2635 0.2635 0.2635 0.1862 0.1695 0.1548 0.1849 0.1415 0.1293 0.1180 0.1073	0.1056 0.0924 0.0798 0.0659 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2620 0.2291 0.2620 0.2859 0.1695 0.1859 0.1450 0.1420 0.1300 0.1430 0.1430 0.0444	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.053 0.053 0.2604 0.2841 0.2045 0.1855 0.1855 0.1855 0.1853 0.1693 0.1306 0.1307 0.1306 0.1307 0.1306 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1307 0.1306 0.1306 0.1307 0.1306 0.10	0.1092 0.0967 0.0644 0.0733 0.0622 0.0516 0.0305 0.0203 0.0101 * * * * * * * * * * * * * * * * * *	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0444 0.0343 0.0244 0.0446 0.0049 50 0.3751 0.2574 0.2674 0.2674 0.2674 0.2674 0.2032 0.1847 0.1691 0.1307 0.1317 0.1317 0.1317 0.1212
9 10 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>V</i> n 11 19 20 <i>V</i> n 11 19 20 <i>V</i> n 11 12 13 14 15 16 17 19 20 <i>V</i> n 19 20 <i>V</i> n 10 11 11 12 13 14 15 16 17 19 20 <i>V</i> n 11 11 12 13 14 15 16 17 19 20 <i>V</i> n 11 11 12 13 14 15 16 17 19 20 11 11 12 13 14 15 16 17 19 20 11 11 12 13 14 19 20 11 12 13 14 15 16 17 19 20 11 12 10 10 10 10 10 10 10 10 10 10	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 0.0144 0.02719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1004 0.0782	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0669 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684 0.2334 0.2684 0.2334 0.2684 0.2334 0.2078 0.1539 0.1539 0.1539 0.1539 0.1539 0.1149 0.1035 0.0927 0.0827 0.0827	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0314 0.0317 0.0062 44 0.3372 0.2067 0.2323 0.2072 0.1688 0.1695 0.1542 0.1695 0.1542 0.1695 0.1740 0.1160 0.1049 0.0943 0.0642 0.0745	0.1013 0.0873 0.0730 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0057 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862 0.1862 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1868 0.1873 0.0876 0.0778	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.0053 0.0053 0.0053 0.2604 0.2281 0.2045 0.1653 0.1653 0.1551 0.1423 0.1305 0.1095 0.0998 0.0998	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.2271 0.2589 0.2271 0.2388 0.1853 0.1692 0.1553 0.1427 0.1312 0.1205 0.1105 0.1105 0.0110 0.0819 0.0832	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0644 0.0444 0.0343 0.0244 0.0444 0.0446 0.0449 0.0449 0.0449 0.0449 0.0449 0.0449 0.0550 0.2574 0.2574 0.2260 0.2032 0.1847 0.1651 0.1554 0.1691 0.1554 0.1691 0.1617 0.1212 0.1113 0.1020 0.0932 0.0846
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 21 21 <i>Vn</i> 1 21 <i>Vn</i> 1 21 <i>Vn</i> 1 <i>1</i> 21 <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0782 0.0677	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0821 0.0659 0.0530 0.0395 0.0262 0.0131 43 0.2884 0.2884 0.2884 0.2884 0.2389 0.1398 0.1269 0.1398 0.1269 0.1398 0.1269 0.1398 0.1269 0.1398 0.1269 0.1398	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0187 0.0062 44 0.0187 0.0062 44 0.3872 0.2667 0.2323 0.2072 0.1668 0.1895 0.1655 0.1278 0.1405 0.1278 0.1405 0.1049 0.0943 0.0943 0.0945	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 0.0119 0.0239 0.0265 0.2651 0.2653 0.2655 0.1865 0.1645 0.1410 0.1286 0.1170 0.1062 0.0959 0.0860 0.0775 0.0673	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1548 0.1415 0.1548 0.1415 0.1548 0.1415 0.1933 0.10972 0.0676	0.1056 0.0924 0.0798 0.0659 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.1859 0.1859 0.1859 0.1420 0.1420 0.1420 0.1859 0.1985 0.0986 0.0992 0.0991 0.0092	0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48 0.2604 0.2281 0.2045 0.1855 0.1855 0.1855 0.1955 0.1998 0.1997 0.1095 0.0998 0.0917 0.0731	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.2589 0.2271 0.2388 0.1851 0.1851 0.1853 0.1427 0.1312 0.1055 0.1105 0.1010 0.0919 0.0832 0.0748	0.1237 0.1108 0.09866 0.0870 0.0759 0.0651 0.0444 0.0343 0.0444 0.0446 0.0049 50 0.3751 0.2574 0.2674 0.2674 0.2674 0.2674 0.2674 0.2032 0.1847 0.1691 0.1317 0.1691 0.1317 0.1212 0.1133 0.1020 0.0932 0.0846 0.0764
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1066 0.0899 0.0739 0.0685 0.0435 0.0289 0.0144 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1531 0.1533 0.1533 0.1249 0.11249 0.11249 0.11249 0.11249 0.1249 0.1249 0.1249 0.1255 0.06775 0.06775 0.0476	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 43 0.3894 0.2684 0.2684 0.2684 0.2684 0.2678 0.1871 0.1695 0.1539 0.1269 0.1149 0.1038 0.1269 0.1149 0.1038 0.0527 0.0824 0.0724	0.1140 0.0898 0.0844 0.0706 0.0572 0.0441 0.0317 0.0062 44 0.0187 0.0062 44 0.0872 0.2667 0.2323 0.2667 0.2323 0.2072 0.1868 0.1695 0.1542 0.1695 0.1542 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.0643 0.0643 0.0643 0.0644	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862 0.1685 0.1685 0.1685 0.1685 0.1695 0.1695 0.1695 0.1695 0.172 0.0876 0.0876 0.0876	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2659 0.1695 0.1695 0.1695 0.1850 0.1420 0.1300 0.1189 0.0464 0.04130 0.0420 0.04130 0.04130 0.04130 0.04130 0.04130 0.04130 0.04130 0.04130 0.04130 0.0414 0.04140 0.0410 0.04140 0.04140 0.0410 0.04140 0.0410 0.04140 0.0410 0.0410 0.0410 0.0410 0.0410 0.0420 0.0410 0.0400 0.0410 0.0400 0.0410 0.04000 0.0400 0.0400 0.04000 0.04000 0.04000 0.04000 0.04000 0.04000 0.0400000000	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0706 0.0532 0.0264 0.0158 0.0053 0.053 0.2604 0.2841 0.2045 0.1855 0.1855 0.1853 0.1855 0.1893 0.1306 0.1197 0.1095 0.0998 0.0906 0.0817 0.0931 0.0931	0.1092 0.0967 0.0848 0.0733 0.0622 0.0516 0.0305 0.0203 0.0101 - - - - - - - - - - - - - - - - - -	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0544 0.0343 0.0244 0.0343 0.0244 0.0049 50 0.3751 0.2574 0.2674 0.2627 0.2674 0.2627 0.2632 0.1847 0.1691 0.1554 0.1317 0.1212 0.032 0.032 0.032 0.0344 0.0444 0.0444 0.1317 0.1212 0.032 0.032 0.032 0.0344 0.032 0.0344 0.0444 0.0445 0.032 0.032 0.032 0.032 0.0344 0.032 0.0344
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 19 20 <i>Vn</i> 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1066 0.0899 0.0739 0.0585 0.0435 0.0289 0.0144 0.0289 0.0144 0.02719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1876 0.1693 0.1531 0.1876 0.1693 0.1531 0.1249 0.1123 0.1004 0.0891 0.0752 0.0677 0.0677 0.0575 0.0476	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.02066 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.03917 0.2701 0.2345 0.1325 0.0060 0.0060 0.0060 0.00701	0.1118 0.0961 0.0669 0.0530 0.0530 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0314 0.0317 0.0062 44 0.3872 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.1695 0.1542 0.1695 0.1278 0.1160 0.0442 0.0745 0.0642 0.0745 0.0651	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0172 0.0057 46 0.2635 0.2302 0.2058 0.1695 0.1695 0.1695 0.1695 0.1695 0.1695 0.173 0.0775 0.0775 0.0785 0.0785	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0758 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.0053 0.2804 0.2281 0.2804 0.2281 0.2804 0.2804 0.2804 0.2804 0.2805 0.1893 0.1305 0.1998 0.1998 0.0998 0.0998 0.0998 0.0998 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0981 0.0053 0.0055 0.0053 0.00550 0.00550 0.00550 0.00550 0.00550 0.00550 0.00550 0.00550 0	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0306 0.0203 0.0101 	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0644 0.0444 0.0343 0.0244 0.0466 0.0049 50 0.3751 0.2674 0.2260 0.3751 0.2674 0.2260 0.2075 0.2674 0.2260 0.2075 0.1847 0.1691 0.1554 0.1317 0.1212 0.1133 0.10212 0.0846 0.0764 0.0855 0.0688 0.0685
9 10 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 17 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 13 14 15 16 16 17 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 11 12 10 10 10 11 11 12 10 10 10 10 10 10 11 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.0144 0.03940 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1004 0.0782 0.00575 0.00575 0.0476 0.0379 0.0283	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0861 0.0530 0.0530 0.0262 0.0131 43 0.3894 0.2684 0.2078 0.1871 0.1695 0.1595 0.1398 0.1269 0.1139 0.1398 0.1269 0.11398 0.1269 0.11398 0.1269 0.11398 0.1269 0.11398 0.0527 0.0524 0.0524 0.0534	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0187 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.1542 0.1642 0.1642 0.1642 0.1649 0.1649 0.1649 0.1049 0.0643 0.0651 0.0651 0.0651	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0057 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862 0.1862 0.1862 0.1862 0.1863 0.1862 0.1648 0.1415 0.1863 0.1073 0.072 0.0872 0.0872 0.0872	0.1056 0.0924 0.0798 0.0677 0.0659 0.0444 0.0331 0.0220 0.0110 	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48 0.3789 0.2604 0.2281 0.2045 0.1855 0.1855 0.1855 0.1855 0.1905 0.1905 0.0998 0.0998 0.0908 0.0817 0.0731 0.0731 0.0731	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.02589 0.2271 0.2038 0.1852 0.1853 0.1427 0.1553 0.1427 0.1553 0.1427 0.1105 0.1105 0.0892 0.0892 0.0892 0.0892 0.0892	0.1237 0.1108 0.0986 0.0986 0.00759 0.0544 0.0343 0.0444 0.0146 0.0049 50 0.3751 0.2574 0.2250 0.2032 0.1847 0.2250 0.2032 0.1847 0.1554 0.1430 0.1317 0.1554 0.1430 0.1317 0.1254 0.1113 0.1020 0.0932 0.093
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 <i>1</i> 20 <i>Vn</i> 1 <i>1</i> 20 <i>Vn</i> 1 <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1531 0.1384 0.1249 0.1123 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0755 0.0077 0.0575 0.0476 0.0379 0.0283 0.0188	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0821 0.0689 0.0530 0.0395 0.0262 0.0131 43 0.2884 0.2884 0.2884 0.23894 0.2684 0.2378 0.1871 0.1695 0.1398 0.1269 0.1398 0.1269 0.1398 0.1269 0.1398 0.1269 0.0927 0.0824 0.0724 0.0624 0.0534	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0387 0.0062 	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2651 0.2651 0.2651 0.2651 0.2651 0.2651 0.2655 0.1865 0.1865 0.1865 0.1865 0.1845 0.1865 0.1845 0.1700 0.0859 0.0860 0.0775 0.0859 0.0869 0.0859 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.00300000000	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2635 0.2635 0.2635 0.2635 0.1685 0.1685 0.1648 0.1648 0.1648 0.1648 0.1648 0.172 0.0972 0.0876 0.0785 0.0697 0.0697	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2620 0.2291 0.2620 0.2291 0.2620 0.1859 0.1695 0.1859 0.1695 0.1850 0.1420 0.1300 0.1430 0.0466 0.0982 0.0801 0.0713 0.0628 0.0546 0.0456 0.0485 0.0485 0.0485 0.0485	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0252 0.0264 0.0158 0.0053 0.053 0.2604 0.2811 0.2045 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1933 0.1565 0.1933 0.1565 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0568 0.0648 0.0648 0.0648 0.0648	0.1092 0.0967 0.0644 0.0733 0.0622 0.0516 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.02589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2389 0.2589 0.2570 0.2580 0.2570 0.2580 0.0588 0.0588 0.05810000000000000000000000000000000000	0.1237 0.1108 0.0986 0.09651 0.0759 0.0651 0.0444 0.0343 0.0244 0.0049 50 0.3751 0.2574 0.2674 0.2674 0.2620 0.2032 0.1847 0.1631 0.1317 0.1631 0.1317 0.1212 0.0932 0.0932 0.0932 0.0932 0.0764 0.0685 0.0608
9 10 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 17 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 18 19 20 <i>Un</i> 11 12 13 14 15 16 16 17 17 18 19 20 <i>Un</i> 11 12 13 14 15 16 17 18 19 20 <i>Un</i> 11 12 10 10 10 11 11 12 10 10 10 10 10 10 11 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.0144 0.03940 0.2719 0.2357 0.2091 0.1876 0.1693 0.1531 0.1384 0.1249 0.1123 0.1004 0.0782 0.00575 0.00575 0.0476 0.0379 0.0283	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0861 0.0530 0.0530 0.0262 0.0131 43 0.3894 0.2684 0.2078 0.1871 0.1695 0.1595 0.1398 0.1269 0.1139 0.1398 0.1269 0.11398 0.1269 0.11398 0.1269 0.11398 0.1269 0.11398 0.0527 0.0524 0.0524 0.0534	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0187 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.1542 0.1642 0.1642 0.1642 0.1649 0.1649 0.1649 0.1049 0.0643 0.0651 0.0651 0.0651	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0057 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.1862 0.1862 0.1862 0.1862 0.1863 0.1862 0.1648 0.1415 0.1863 0.1073 0.072 0.0872 0.0872 0.0872	0.1056 0.0924 0.0798 0.0677 0.0659 0.0444 0.0331 0.0220 0.0110 	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 48 0.3789 0.2604 0.2281 0.2045 0.1855 0.1855 0.1855 0.1855 0.1905 0.1905 0.0998 0.0998 0.0908 0.0817 0.0731 0.0731 0.0731	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.02589 0.2271 0.2038 0.1852 0.1853 0.1427 0.1553 0.1427 0.1553 0.1427 0.1105 0.1105 0.0892 0.0892 0.0892 0.0892 0.0892	0.1237 0.1108 0.0986 0.0986 0.00759 0.0544 0.0343 0.0444 0.0146 0.0049 50 0.3751 0.2574 0.22574 0.22574 0.22574 0.22500 0.2032 0.1847 0.2250 0.2032 0.1847 0.1554 0.1430 0.1317 0.1554 0.1430 0.1317 0.1254 0.1113 0.1020 0.0932 0
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 <i>1</i> 20 <i>Vn</i> 1 <i>1</i> 20 <i>Vn</i> 1 <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1531 0.1384 0.1249 0.1123 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0755 0.0077 0.0575 0.0476 0.0379 0.0283 0.0188	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0821 0.0689 0.0530 0.0395 0.0262 0.0131 43 0.2884 0.2884 0.2884 0.23894 0.2684 0.2378 0.1871 0.1695 0.1398 0.1269 0.1398 0.1269 0.1398 0.1269 0.1398 0.1269 0.0927 0.0824 0.0724 0.0624 0.0534	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0387 0.0062 	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 45 0.3850 0.2651 0.2651 0.2651 0.2651 0.2651 0.2651 0.2655 0.1865 0.1865 0.1865 0.1865 0.1845 0.1865 0.1845 0.1700 0.0859 0.0860 0.0775 0.0859 0.0869 0.0859 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.00300000000	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2635 0.2635 0.2635 0.2635 0.1685 0.1685 0.1648 0.1648 0.1648 0.1648 0.1648 0.172 0.0972 0.0876 0.0785 0.0697 0.0697	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2620 0.2291 0.2620 0.2291 0.2620 0.1859 0.1695 0.1859 0.1695 0.1850 0.1420 0.1300 0.1430 0.0466 0.0982 0.0801 0.0713 0.0628 0.0546 0.0456 0.0485 0.0485 0.0485 0.0485	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0252 0.0264 0.0158 0.0053 0.053 0.2604 0.2811 0.2045 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1855 0.1933 0.1565 0.1933 0.1565 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0938 0.0568 0.0648 0.0648 0.0648 0.0648	0.1092 0.0967 0.0644 0.0733 0.0622 0.0516 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.02589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2389 0.2589 0.2570 0.2580 0.2570 0.2580 0.0588 0.0588 0.05810000000000000000000000000000000000	0.1237 0.1108 0.0986 0.09651 0.0759 0.0651 0.0444 0.0343 0.0244 0.0049 50 0.3751 0.2574 0.2674 0.2674 0.2620 0.2032 0.1847 0.1631 0.1317 0.1631 0.1317 0.1212 0.0932 0.0932 0.0932 0.0932 0.0764 0.0685 0.0608
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 11 19 20 21 20 21	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1531 0.1384 0.1249 0.1123 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0755 0.0077 0.0575 0.0476 0.0379 0.0283 0.0188	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0317 0.0062 44 0.3872 0.2067 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.1542 0.1542 0.1542 0.1695 0.1542 0.0642 0.0745 0.0642 0.0745 0.0651 0.0652 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0652 0.0651 0.0652 0.0652 0.0652 0.0652 0.0652 0.0752 0.0652 0.0551 0.0552 0.0551 0.0552 0.05510000000000	0.1013 0.0873 0.0730 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0827 0.0172 0.0057 46 0.3630 0.2635 0.2302 0.2635 0.2302 0.2635 0.2302 0.2058 0.1648 0.1695 0.1695 0.1695 0.1695 0.1695 0.1773 0.0775 0.0785 0.0785 0.0694 0.0694 0.0692 0.0694 0.0622 0.0439 0.0637 0.0522	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.0053 0.0053 0.0053 0.0053 0.2604 0.2281 0.2045 0.1693 0.1693 0.1693 0.1693 0.1095 0.0998 0.0098 0.00817 0.0998 0.00648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.02271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.2589 0.2271 0.1553 0.1655 0.1010 0.1055 0.1010 0.0832 0.0748 0.0658 0.0551 0.0558	0.1237 0.1108 0.0986 0.0870 0.0759 0.0651 0.0644 0.0444 0.0343 0.0244 0.046 0.0049 50 0.3751 0.2574 0.2674 0.2260 0.3751 0.2574 0.2674 0.2260 0.3751 0.2574 0.2674 0.2260 0.3751 0.1554 0.1554 0.1691 0.1554 0.1113 0.1020 0.0322 0.0846 0.0764 0.0688 0.0532 0.0688 0.0532 0.0314
9 10 11 12 13 14 15 16 17 18 19 20 Un 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1531 0.1384 0.1249 0.1123 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0755 0.0077 0.0575 0.0476 0.0379 0.0283 0.0188	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0317 0.0062 	0.1013 0.0873 0.0739 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2302 0.2058 0.1648 0.1415 0.1648 0.1415 0.1648 0.1648 0.1648 0.10972 0.0676 0.0775 0.0694 0.06357 0.0634 0.06357 0.06357	0.1056 0.0924 0.0798 0.0677 0.0659 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.1650 0.1420 0.1859 0.1685 0.1420 0.1859 0.1685 0.01420 0.1085 0.0986 0.0892 0.0801 0.0713 0.0628 0.0546 0.0365 0.0377 0.0365 0.0377 0.0365 0.0377 0.0365 0.0377 0.0365 0.03777 0.03777 0.037777 0.037777777777	0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.0053 0.0053 0.2604 0.2281 0.2045 0.1651 0.1423 0.1551 0.1423 0.1551 0.1423 0.1551 0.1423 0.1551 0.1995 0.0998 0.00817 0.07310000000000000000000000000000000000	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.2589 0.2271 0.2038 0.2070 0.2059 0.2271 0.2038 0.1277 0.1012 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	0.1237 0.1108 0.09866 0.0870 0.0759 0.0651 0.0444 0.0343 0.0444 0.0343 0.0244 0.0446 0.0049 50 0.3751 0.2574 0.22572 0.22572 0.22572 0.22574 0.22574 0.22574 0.22574 0.22574 0.22574 0.22572 0.0252
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 22 3 <i>4</i> 5 6 6 7 8 9 10 11 12 13 14 15 16 17 <i>Vn</i> 22 23 <i>Vn</i> 1 22 23 <i>Vn</i> 22 <i>Vn</i> 1 22 <i>Xn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i> <i>Vn</i>	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1531 0.1384 0.1249 0.1123 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0755 0.0077 0.0575 0.0476 0.0379 0.0283 0.0188	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0317 0.0062 44 0.3872 0.2067 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.1542 0.1542 0.1542 0.1695 0.1542 0.0642 0.0745 0.0642 0.0745 0.0651 0.0652 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0652 0.0651 0.0652 0.0652 0.0652 0.0652 0.0652 0.0752 0.0652 0.0551 0.0552 0.0551 0.0552 0.05510000000000	0.1013 0.0873 0.0730 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0827 0.0172 0.0057 46 0.3630 0.2635 0.2302 0.2635 0.2302 0.2635 0.2302 0.2058 0.1648 0.1695 0.1695 0.1695 0.1695 0.1695 0.1773 0.0775 0.0785 0.0785 0.0694 0.0694 0.0692 0.0694 0.0622 0.0439 0.0637 0.0522	0.1056 0.0924 0.0798 0.0677 0.0559 0.0444 0.0331 0.0220 0.0110 	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0706 0.0592 0.0264 0.0158 0.0053 0.053 0.2604 0.2281 0.2045 0.1855 0.1855 0.1853 0.1855 0.1853 0.1855 0.1853 0.1855 0.1995 0.0817 0.0998 0.0906 0.0817 0.07648 0.0568 0.0911 0.0335 0.0259 0.0481 0.0335 0.0259 0.0111	0.1092 0.0967 0.0848 0.0733 0.0622 0.0516 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0223 0.0223 0.0223 0.0223 0.02589 0.2271 0.2038 0.2589 0.2271 0.2038 0.1853 0.1853 0.1853 0.1853 0.1427 0.1051 0.0032 0.0748 0.0667 0.0588 0.0251 0.0433 0.0288	0.1237 0.1108 0.0986 0.0986 0.0870 0.0759 0.0651 0.0444 0.0343 0.0244 0.0049 50 0.3751 0.2574 0.2674 0.2032 0.3751 0.2574 0.2674 0.2032 0.1847 0.1202 0.1317 0.1317 0.1313 0.1020 0.0932 0.0846 0.0764 0.0685 0.0685 0.06532 0.0685 0.06532 0.0532
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 20 <i>Vn</i> 1 2 3 4 5 6 7 19 20 20 <i>Vn</i> 1 2 3 4 5 6 7 19 20 20 <i>Vn</i> 1 2 2 3 4 5 6 7 19 20 20 <i>Vn</i> 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1531 0.1384 0.1249 0.1123 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0755 0.0077 0.0575 0.0476 0.0379 0.0283 0.0188	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0317 0.0062 44 0.3872 0.2067 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.1542 0.1542 0.1542 0.1695 0.1542 0.0642 0.0745 0.0642 0.0745 0.0651 0.0652 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0652 0.0651 0.0652 0.0652 0.0652 0.0652 0.0652 0.0752 0.0652 0.0551 0.0552 0.0551 0.0552 0.05510000000000	0.1013 0.0873 0.0730 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2302 0.2058 0.1648 0.1415 0.1648 0.1415 0.1648 0.1648 0.1648 0.10972 0.0676 0.0775 0.0694 0.06357 0.0634 0.06357 0.06357	0.1056 0.0924 0.0798 0.0677 0.0659 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.1650 0.1420 0.1859 0.1685 0.1420 0.1859 0.1685 0.01420 0.1085 0.0986 0.0892 0.0801 0.0713 0.0628 0.0546 0.0365 0.0377 0.0365 0.0377 0.0365 0.0377 0.0365 0.0377 0.0365 0.03777 0.03777 0.037777 0.037777777777	0.1075 0.0947 0.0624 0.0706 0.0592 0.0481 0.0372 0.0264 0.0158 0.0053 0.0053 0.0053 0.2604 0.2281 0.2045 0.1651 0.1423 0.1551 0.1423 0.1551 0.1423 0.1551 0.1423 0.1551 0.1995 0.0998 0.00817 0.07310000000000000000000000000000000000	0.1092 0.0867 0.0848 0.0733 0.0622 0.0515 0.0409 0.0305 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.2589 0.2271 0.2038 0.2070 0.2059 0.2271 0.2038 0.1277 0.1012 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000	0.1237 0.1108 0.0986 0.0970 0.0759 0.0651 0.0544 0.0444 0.0343 0.0244 0.046 0.0049 50 0.3751 0.2574 0.2574 0.2674 0.2674 0.2674 0.2674 0.2672 0.1847 0.1691 0.1554 0.1317 0.1212 0.1113 0.1020 0.0932 0.0946 0.0932 0.0936 0.0532 0.0551 0.0551 0.25740 0.257400000000000000000000000000000000000
9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 20 <i>Vn</i> 1 22 3 <i>4</i> 5 6 7 8 9 10 11 12 13 14 15 16 17 <i>Vn</i> 22 3 <i>4</i> 4 5 6 7 8 9 10 11 12 21 13 14 15 16 17 <i>Vn</i> 22 23 20 <i>Vn</i> 22 22 23 23 22 23 23 22 23 23	0.1066 0.0899 0.0739 0.0285 0.0435 0.0289 0.0144 0.2719 0.2357 0.2091 0.1876 0.1531 0.1384 0.1249 0.1123 0.1531 0.1384 0.1249 0.1123 0.1004 0.0891 0.0755 0.0077 0.0575 0.0476 0.0379 0.0283 0.0188	0.1093 0.0931 0.0777 0.0629 0.0485 0.0344 0.0206 0.0068 	0.1118 0.0961 0.0629 0.0530 0.0395 0.0262 0.0131 	0.1140 0.0988 0.0844 0.0706 0.0572 0.0441 0.0317 0.0062 44 0.3872 0.2067 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.2667 0.2323 0.2072 0.1542 0.1542 0.1542 0.1695 0.1542 0.0642 0.0745 0.0642 0.0745 0.0651 0.0652 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0652 0.0651 0.0652 0.0652 0.0652 0.0652 0.0652 0.0752 0.0652 0.0551 0.0552 0.0551 0.0552 0.05510000000000	0.1013 0.0873 0.0730 0.0610 0.0484 0.0361 0.0239 0.0119 	0.1036 0.0900 0.0770 0.0645 0.0523 0.0404 0.0287 0.0172 0.0057 46 0.3830 0.2635 0.2302 0.2058 0.2302 0.2058 0.1648 0.1415 0.1648 0.1415 0.1648 0.1648 0.1648 0.10972 0.0676 0.0775 0.0694 0.06357 0.0634 0.06357 0.06357	0.1056 0.0924 0.0798 0.0677 0.0659 0.0444 0.0331 0.0220 0.0110 47 0.3808 0.2620 0.2291 0.2052 0.1859 0.1650 0.1420 0.1859 0.1685 0.1420 0.1859 0.1685 0.01420 0.1085 0.0986 0.0892 0.0801 0.0713 0.0628 0.0546 0.0365 0.0377 0.0365 0.0377 0.0365 0.0377 0.0365 0.0377 0.0365 0.03777 0.03777 0.037777 0.037777777777	0.1075 0.0947 0.0824 0.0706 0.0592 0.0481 0.0706 0.0592 0.0264 0.0158 0.0053 0.053 0.2604 0.2281 0.2045 0.1855 0.1855 0.1853 0.1855 0.1853 0.1855 0.1853 0.1855 0.1995 0.0817 0.0998 0.0906 0.0817 0.0701 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0917 0.0588 0.0906 0.0817 0.0588 0.0917 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0588 0.0906 0.0817 0.0907 0.0827 0.0907 0.0827 0.0907 0.0827 0.0907 0.0827 0.0907 0.0827 0.0907 0.0827 0.0907 0.000700000000	0.1092 0.0967 0.0848 0.0733 0.0622 0.0516 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0223 0.0223 0.0223 0.0223 0.02589 0.2271 0.2038 0.2589 0.2271 0.2038 0.1853 0.1853 0.1853 0.1853 0.1427 0.1051 0.0032 0.0748 0.0667 0.0588 0.0251 0.0433 0.0288	0.1237 0.1108 0.0986 0.0986 0.0870 0.0759 0.0651 0.0444 0.0343 0.0244 0.0049 50 0.3751 0.2574 0.2674 0.2032 0.3751 0.2574 0.2674 0.2032 0.1847 0.1202 0.1317 0.1317 0.1313 0.1020 0.0932 0.0846 0.0764 0.0685 0.0685 0.06532 0.0685 0.06532 0.0532

Sample Calculations Table 2 PERCENTAGE POINTS OF THE W TEST FOR N=3 to 50

	0.01 0.05				
n	0.01	0.05			
3	0.753	0.767			
4	0.687	0.748			
5	0.686	0.762			
6	0.713	0.788			
7	0.730	0.803			
8	0.749	0.818			
9	0.764	0.829			
10	0.781	0.842			
11	0.792	0.850			
12	0.805	0.859			
13	0.814	0.866			
14	0.825	0.874			
15	0.835	0.881			
16	0.844	0.887			
17	0.851	0.892			
18	0.858	0.897			
19	0.863	0.901			
20	0.868	0.905			
21	0.873	0.908			
22	0.878	0.911			
23	0.881	0.914			
24	0.884	0.916			
25	0.888	0.918			
26	0.891	0.920			
27	0.894	0.923			
28	0.896	0.924			
29	0.898	0.926			
30	0.900	0.927			

n	0.01	0.05
31	0.902	0.929
32	0.904	0.930
33	0.906	0.931
34	0.908	0.933
35	0.910	0.934
36	0.912	0.935
37	0.914	0.936
38	0.916	0.938
39	0.917	0.939
40	0.919	0.940
41	0.920	0.941
42	0.922	0.942
43	0.923	0.943
44	0.924	0.944
45	0.926	0.945
46	0.927	0.945
47	0.928	0.946
48	0.929	0.947
- 49	0.929	0.947
50	0.930	0.947

Sample Calculation Table 3 p Levels from Z Scores for 2 Sided Tests

Z	p Z	p Z p	Zp	Zp	Zp	Zp	Z	p
0.00 1	.0000 0.50 0.	171 1.00 0.3173	1.50 0.1336	2.00 0.0455	2.50 0.0124	3.00 0.0027	3.50	0.0005
0.01 0	.9920 0.51 0.	101 1.01 0.3125	1.51 0.1310	2.01 0.0444	2.51 0.0121	3.01 0.0026	3.51	0.0004
		031 1.02 0.3077	1.52 0.1285	2.02 0.0434	2.52 0.0117	3.02 0.0025	3.52	0.0004
		961 1.03 0.3030	1.53 0.1260	2.03 0.0424	2.53 0.0114	3.03 0.0024	3.53	0.0004
		892 1.04 0.2983	1.54 0.1236	2.04 0.0414	2.54 0.0111	3.04 0.0024	3.54	0.0004
		823 1.05 0.2937	1.55 0.1211	2.05 0.0404	2.55 0.0108	3.05 0.0023	3.55	0.0004
		755 1.06 0.2891	1.56 0.1188	2.06 0.0394	2.56 0.0105	3.06 0.0022	3.56	0.0004
		687 1.07 0.2846	1.57 0.1164	2.07 0.0385	2.57 0.0102	3.07 0.0021	3.57	0.0004
		619 1.08 0.2801	1.58 0.1141	2.08 0.0375	2.58 0.0099	3.08 0.0021	3.58	0.0003
		552 1.09 0.2757	1.59 0.1118	2.09 0.0366	2.59 0.0096	3.09 0.0020	3.59	0.0003
		485 1.10 0.2713	1.60 0.1096	2.10 0.0357	2.60 0.0093	3.10 0.0019	3.60	0.0003
		419 1.11 0.2670	1.61 0.1074	2.11 0.0349	2.61 0.0091	3.11 0.0019	3.61	0.0003
		353 1.12 0.2627	1 62 0.1052	2.12 0.0340	2.62 0.0088	3.12 0.0018	3.62	0.0003
		287 1.13 0.2585	1.63 0.1031	2.13 0.0332	2.63 0.0085	3.13 0.0017	3.63	0.0003
		222 1.14 0.2543	1.64 0.1010	2.14 0.0324	2.64 0.0083	3.14 0.0017	3.64	0.0003
		157 1.15 0.2501 093 1.16 0.2460	1.65 0.0989 1.66 0.0969	2.15 0.0316 2.16 0.0308	2.65 0.0080 2.66 0.0078	3.15 0.0016	3.65	0.0003
		029 1.17 0.2420	1.67 0.0949	2.16 0.0308	2.67 0.0076	<u>3.16 0.0016</u> 3.17 0.0015	3.66	0.0003
		965 1.18 0.2380	1.68 0.0930	2.18 0.0293	2.68 0.0074	3.18 0.0015	3.67 3.68	0.0002
		902 1.19 0.2340	1.69 0.0910	2.19 0.0285	2.69 0.0074	3.19 0.0013	3.69	0.0002
		839 1.20 0.2301	1.70 0.0891	2.20 0.0278	2.70 0.0069	3.20 0.0014	3.70	0.0002
in the second second second second second second second second second second second second second second second		777 1.21 0.2263	1.71 0.0873	2.21 0.0271	2.71 0.0067	3.21 0.0013	3.71	0.0002
		715 1.22 0.2225	1.72 0.0854	2.22 0.0264	2.72 0.0065	3.22 0.0013	3.72	0.0002
Contraction of the local division of the loc		654 1.23 0.2187	1.73 0.0836	2.23 0.0257	2.73 0.0063	3.23 0.0012	3.73	0.0002
		593 1.24 0.2150	1.74 0.0819	2.24 0.0251	2.74 0.0061	3.24 0.0012	3.74	0.0002
		533 1.25 0.2113	1.75 0.0801	2.25 0.0244	2.75 0.0060	3.25 0.0012	3.75	0.0002
0.26 0.	.7949 0.76 0.4	473 1.26 0.2077	1.76 0.0784	2.26 0.0238	2.76 0.0058	3.26 0.0011	3.76	0.0002
0.27 0.	.7872 0.77 0.4	413 1.27 0.2041	1.77 0.0767	2.27 0.0232	2.77 0.0056	3.27 0.0011	3.77	0.0002
0.28 0.	.7795 0.78 0.4	354 1.28 0.2005	1.78 0.0751	2.28 0.0226	2.78 0.0054	3.28 0.0010	3.78	0.0002
0.29 0.	.7718 0.79 0.4	295 1.29 0.1971	1.79 0.0735	2.29 0.0220	2.79 0.0053	3.29 0.0010	3.79	0.0002
0.30 0.	.7642 0.80 0.4	237 1.30 0.1936	1.80 0.0719	2.30 0.0214	2.80 0.0051	3.30 0.0010	3.80	0.0001
		179 1.31 0.1902	1.81 0.0703	2.31 0.0209	2.81 0.0050	3.31 0.0009	3.81	0.0001
		122 1.32 0.1868	1.82 0.0688	2.32 0.0203	2.82 0.0048	3.32 0.0009	3.82	0.0001
and the second sec	and a second sec	065 1.33 0.1835	1.83 0.0672	2.33 0.0198	2.83 0.0047	3 33 0 0009	3.83	0.0001
		009 1.34 0.1802	1.84 0.0658	2.34 0.0193	2.84 0.0045	3.34 0.0008	3.84	0.0001
	a second se	953 1.35 0.1770	1.85 0.0643	2.35 0.0188	2.85 0.0044	3.35 0.0008	3.85	0.0001
		898 1.36 0.1738	1.86 0.0629	2.36 0.0183	2.86 0.0042	3.36 0.0008	3.86	0.0001
		843 1.37 0.1707	1.87 0.0615	2.37 0.0178	2.87 0.0041	3.37 0.0008	3.87	0.0001
		789 1.38 0.1676	1.88 0.0601	2.38 0.0173	2.88 0.0040	3.38 0.0007	3.88	0.0001
		735 1.39 0.1645 681 1.40 0.1615	1.89 0.0588 1.90 0.0574	2.39 0.0168	2.89 0.0039	3.39 0.0007	3.89	0.0001
				2.40 0.0164	2.90 0.0037	3.40 0.0007	3.90	0.0001
		628 1.41 0.1585 576 1.42 0.1556	1.91 0.0561 1.92 0.0549	2.41 0.0160 2.42 0.0155	2.91 0.0036 2.92 0.0035	3.41 0.0006	3.91	0.0001
		524 1.43 0.1527	1.93 0.0536	2.42 0.0155	2.92 0.0035 2.93 0.0034	3.42 0.0006 3.43 0.0006	3.92	0.0001
		1.43 0.1527 472 1.44 0.1499	1.93 0.0536	2.43 0.0151	2.93 0.0034	3.43 0.0006 3.44 0.0006	3.93 3.94	0.0001
		472 1.44 0.1499	1.95 0.0512	2.44 0.0147	2.95 0.0032	3.45 0.0006	3.94	0.0001
		371 1.46 0.1443	1.96 0.0500	2.45 0.0143	2.96 0.0032	3.46 0.0005	3.95	0.0001
		320 1.47 0.1416	1.97 0.0488	2.47 0.0135	2.97 0.0030	3.47 0.0005	3.90	0.0001
		271 1.48 0.1389	1.98 0.0477	2.48 0.0131	2.98 0.0029	3.48 0.0005	3.98	0.0001
		222 1.49 0.1362	1.99 0.0466	2.49 0.0128	2.99 0.0028	3.49 0.0005	3.99	0.0001
								المطلقة تتبتقنيهم

Sample Calculations Table 4 TOLERANCE FACTORS (K) FOR ONE-SIDED NORMAL TOLERANCE INTERVALS WITH CONFIDENCE FACTOR Y=0.95 AND COVERAGE P=95%

1

n	K	L
3	7.655	L
4	5.145	
5	4.202	
6	3.707	
7	3.399	Γ
8	3.188	Γ
9	3.031	Γ
10	2.911	Γ
11	2.815	
12	2.736	
13	2.670	Γ
14	2.614	
15	2.566	
16	2.523	
17	2.486	
18	2.543	
19	2.423	
20	2.396	
21	2.371	
22	2.350	
23	2.329	
24	2.309	-
25	2.292	
30	2.220	
35	2.166	
40	2.126	
45	2.092	· [
50	2.065	
55	2.036	
60	2.017	
65	2.000	
70	1.986	_
75	1.972	
100	1.924	
125	1.891	
L		L

n	К
150	1.868
175	1.850
200	1.836
225	1.824
250	1.814
275	1.806
300	1.799
325	1.792
350	1.787
375	1.782
400	1.777
425	1.773
450	1.769
475	1.766
500	1.763
525	1.760
550	1.757
575	1.754
600	1.752
625	1.750
650	1.748
675	1.746
700	1.744
725	1.742
750	1.740
775	1.739
800	1.737
825	1.736
850	1.734
875	1.733
900	1.732
925	1.731
950	1.729
975	1.728
1000	1.727

Sample Calculations Table 5 PERCENTILES OF STUDENT's t-DISTRIBUTION WITH n DEGREES OF FREEDOM

n\F	0.60	0.75	0.90	0.95	0.975	0.99	0.995	0.9995
1	0.325	1.000	3.078	6.314	12.706	31.821	63.656	636.578
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	31.600
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.768
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	<u>3.725</u>
								0.707
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.689
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.660
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.646
		<u> </u>				0.400	0.704	0 554
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3.551
60	0.254	0.679	1.296		2.000	2.390	2.660	3.460
120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.373
1,000,000	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.290

D-2 STATISTICAL ANALYSIS OF ENVIRONMENTAL DATA

Appendix D-2

D.2.1 Examples of Shapiro-Wilk Test of Normality Result

48 Test result (Normal & Lognormal for 27 metals) for Alluvial Subsurface Silt

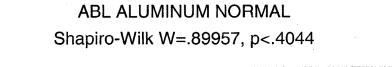
D.2.2 Examples of Normal Probability Plot

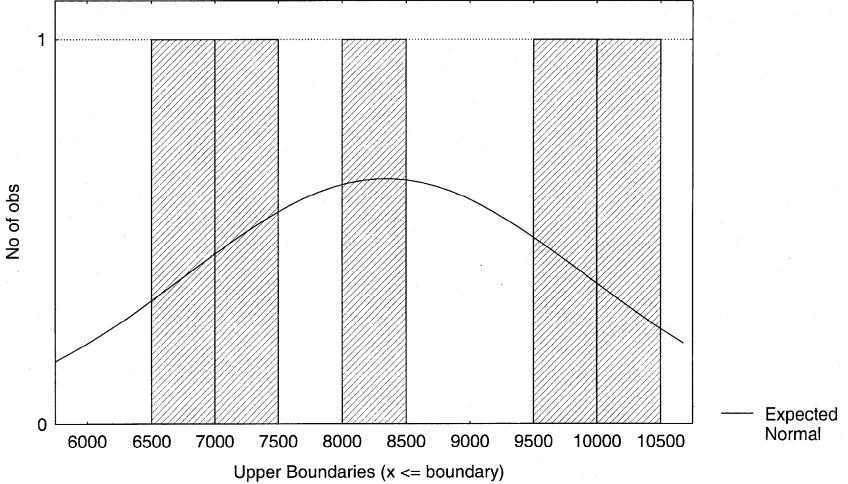
27 plots (Normal or Lognormal for 24 metals) for Alluvial Subsurface Silt

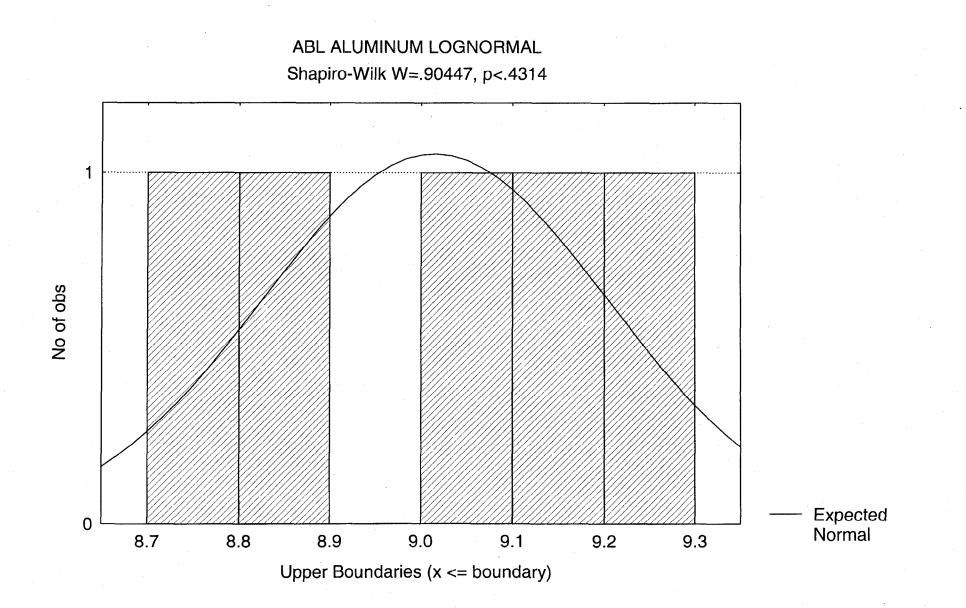
D.2.3 Examples of 95% Confidence Interval Results

27 comparisons (one for each of 27 metals) of Pennsylvanian Subsurface Sand results with the 95% Confidence Interval of combined Pennsylvanian Subsurface Clay / Pennsylvanian Subsurface Silt

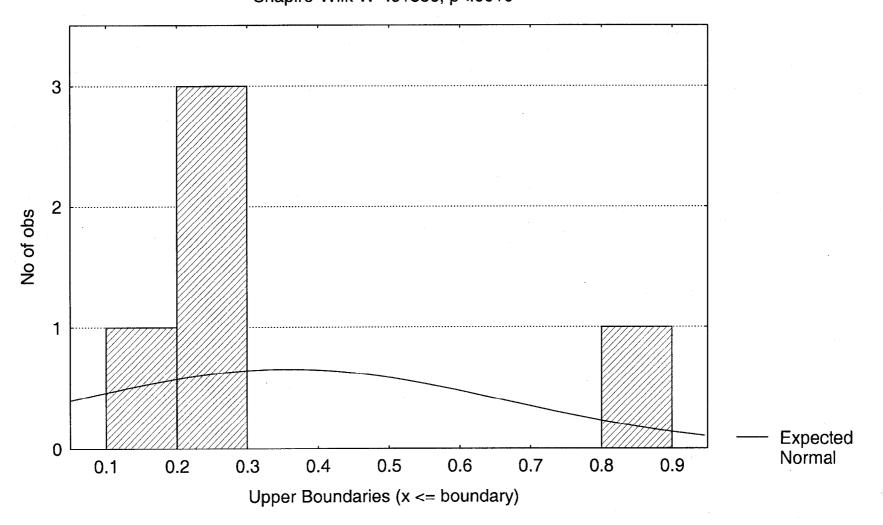
D.2.4 Example of Wilcoxon Rank-Sum Test Results

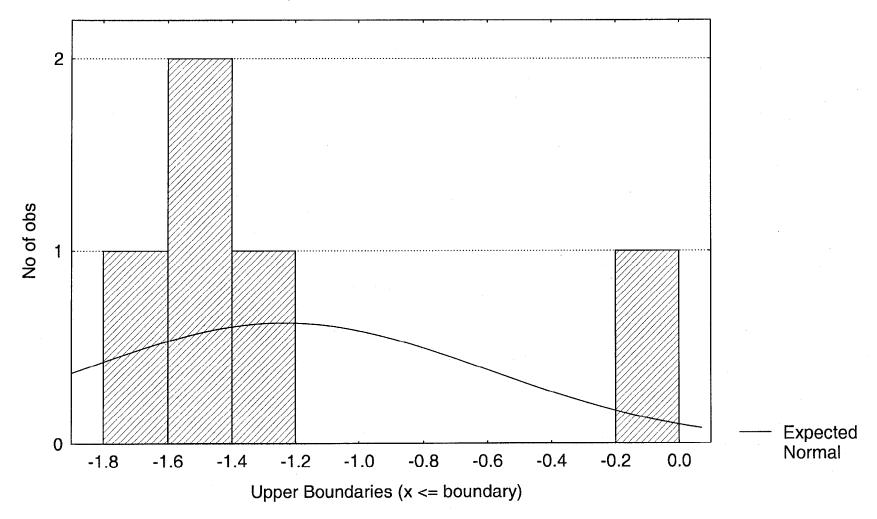

27 comparisons (one for each of 27 metals) of combined Pennsylvanian Subsurface Clay versus Pennsylvanian Subsurface Silt

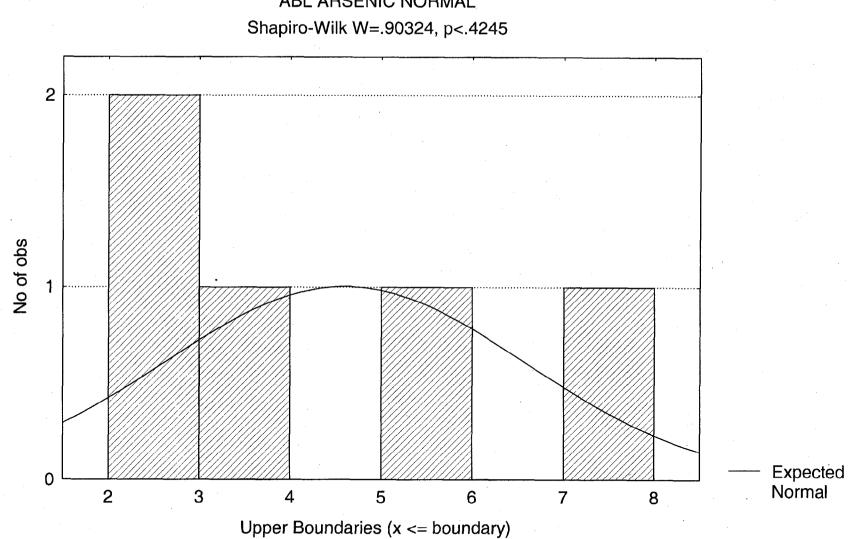

D.2.5 Matrices Conveying Combinations of Soil Types due to Wilcoxon Rank-Sum Test Results

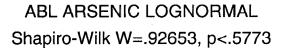

Note: The remainder of the statistical analysis results are available on request.

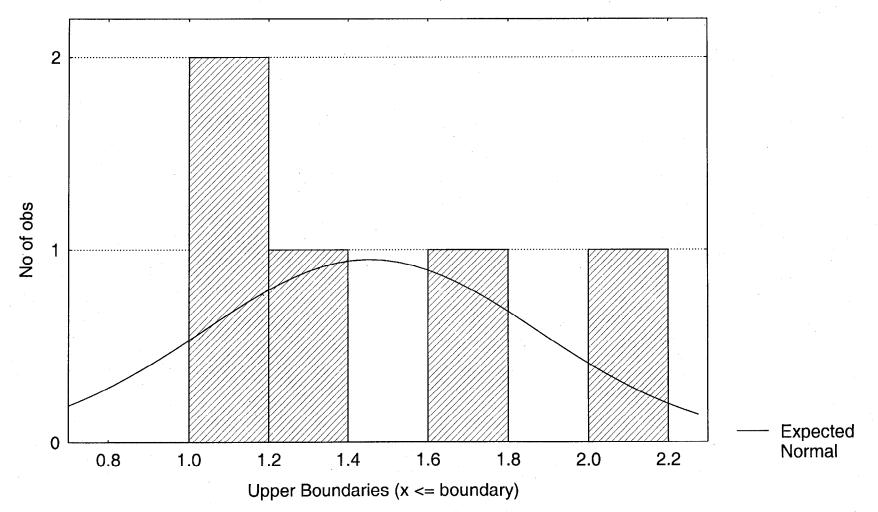
D.2.1 Examples of Shapiro-Wilk Test of Normality Result

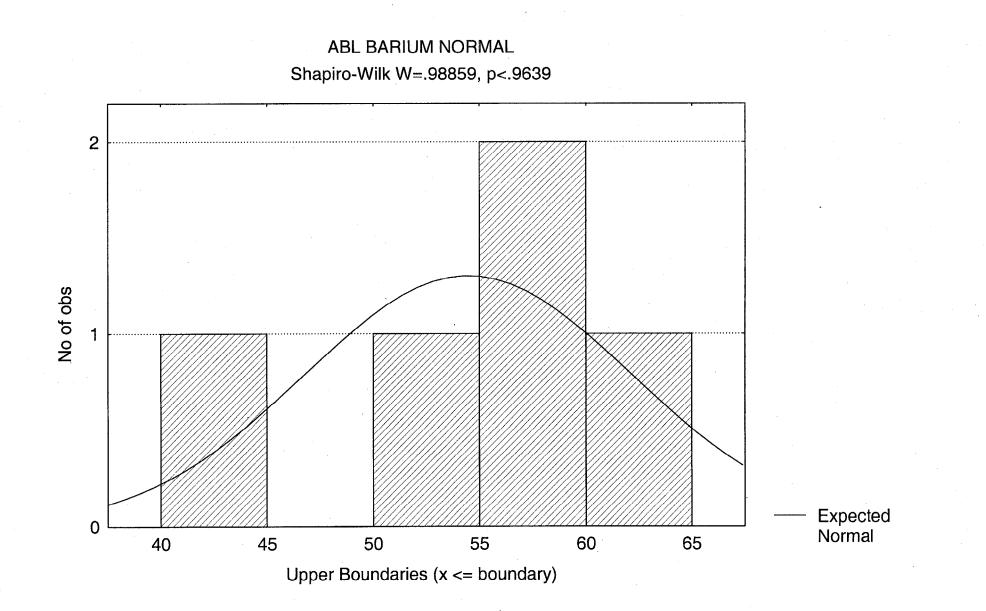

48 Test result (Normal & Lognormal for 27 metals) for Alluvial Subsurface Silt

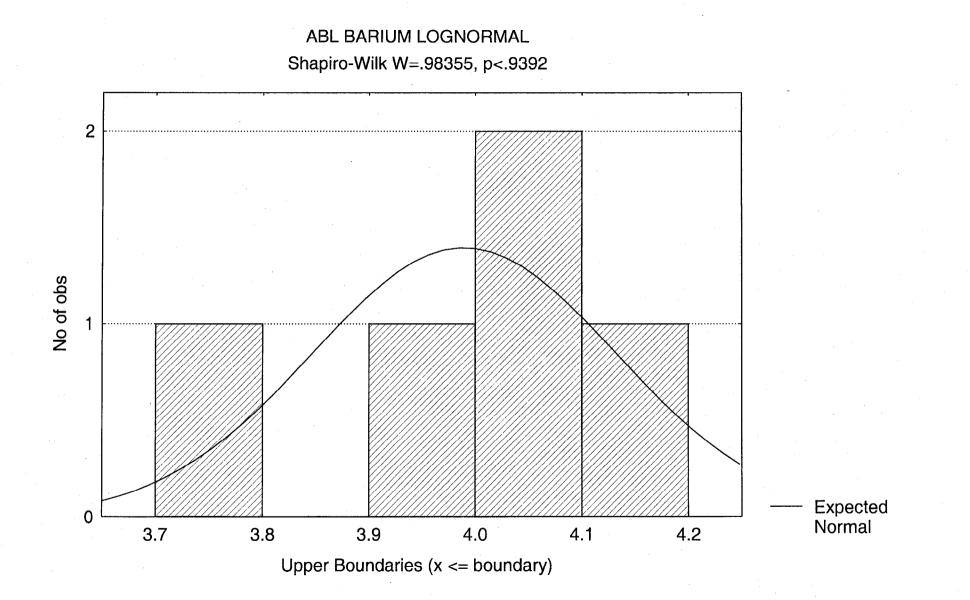


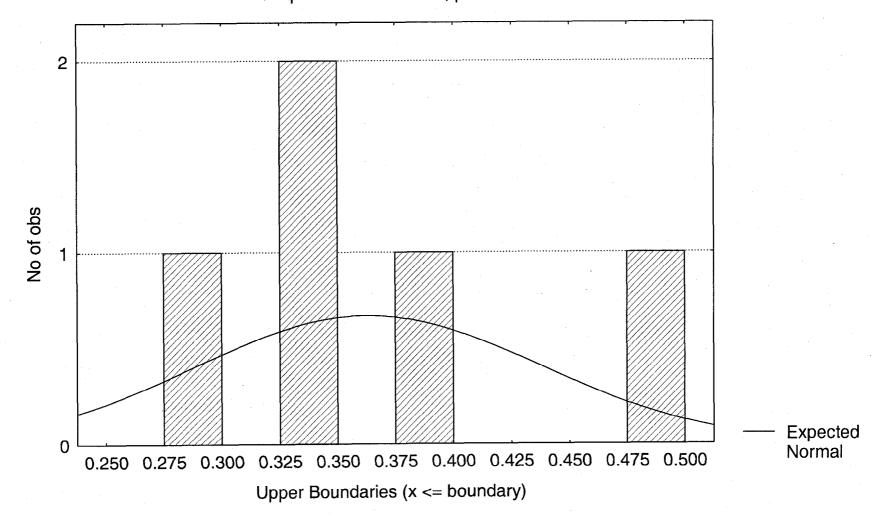

ABL ANTIMONY NORMAL Shapiro-Wilk W=.61836, p<.0010

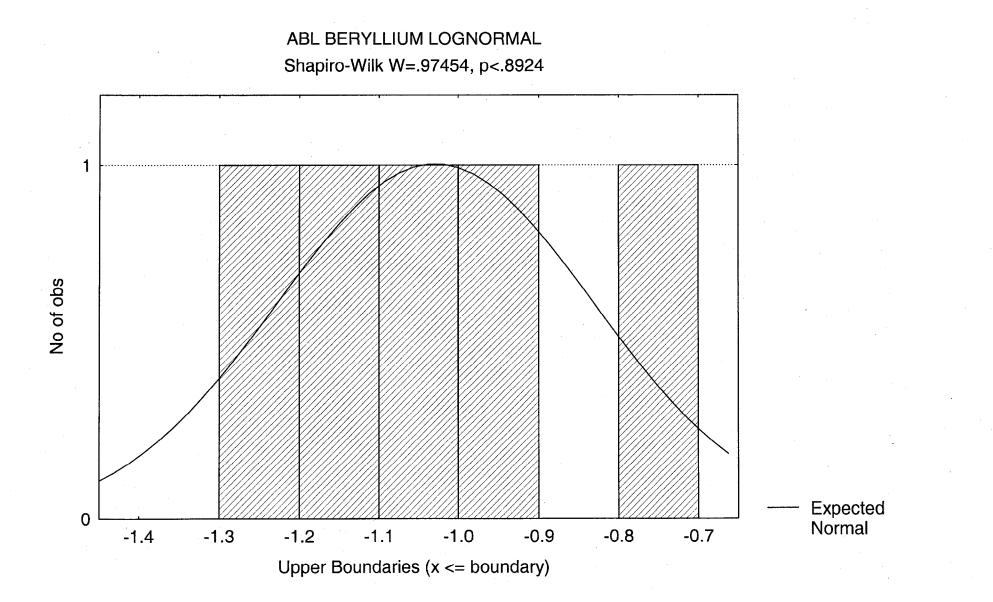

ABL ANTIMONY LOGNORMAL

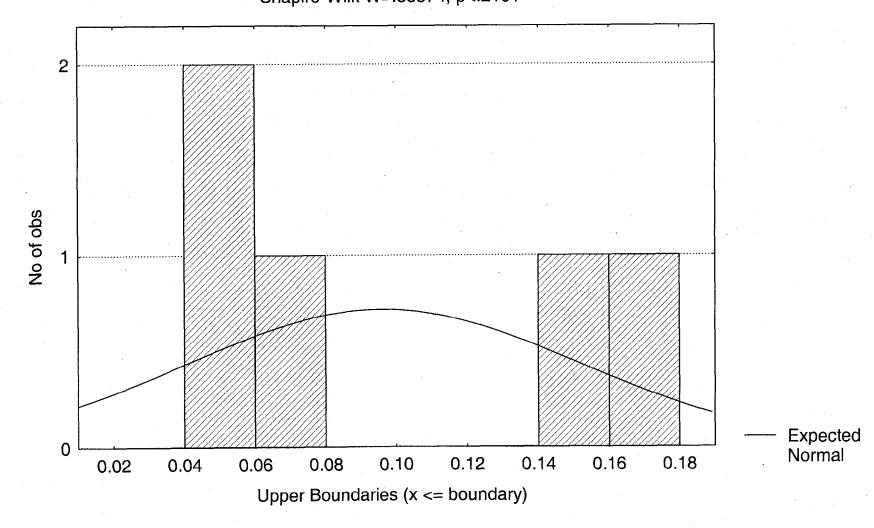

Shapiro-Wilk W=.69251, p<.0094



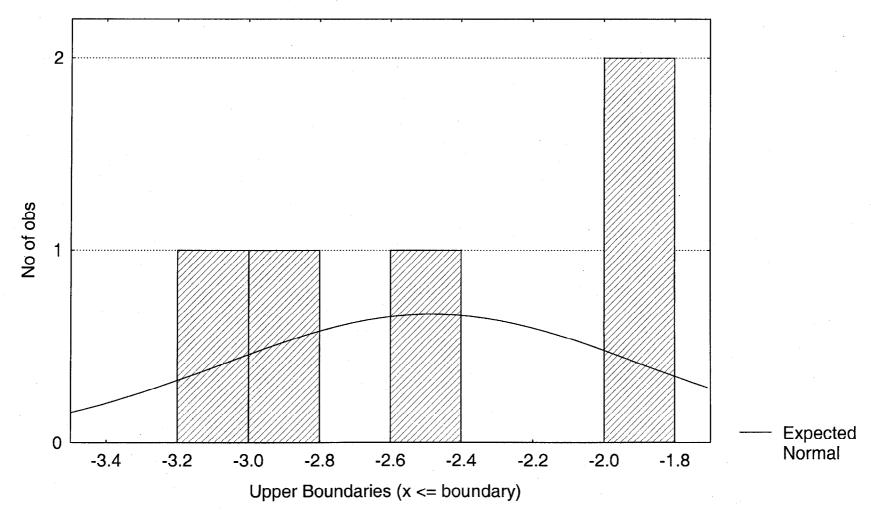

ABL ARSENIC NORMAL



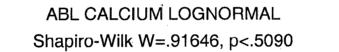

•

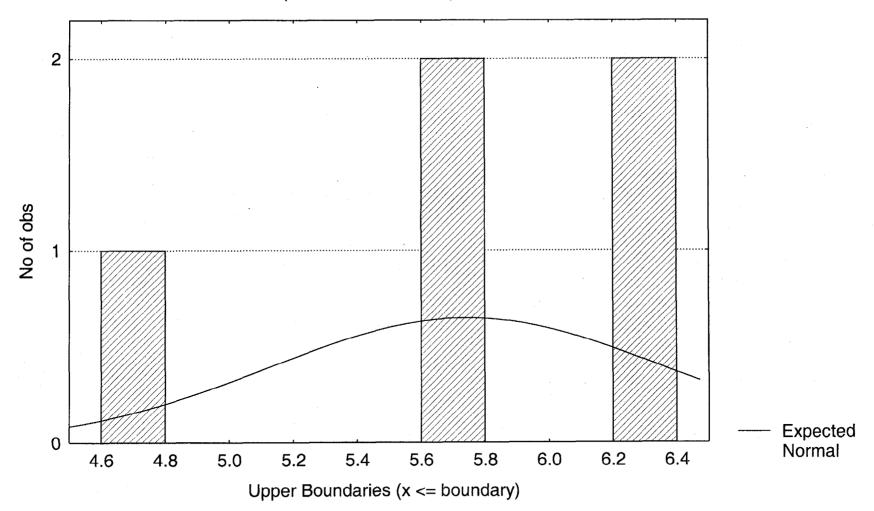


ABL BERYLLIUM NORMAL Shapiro-Wilk W=.94367, p<.6998

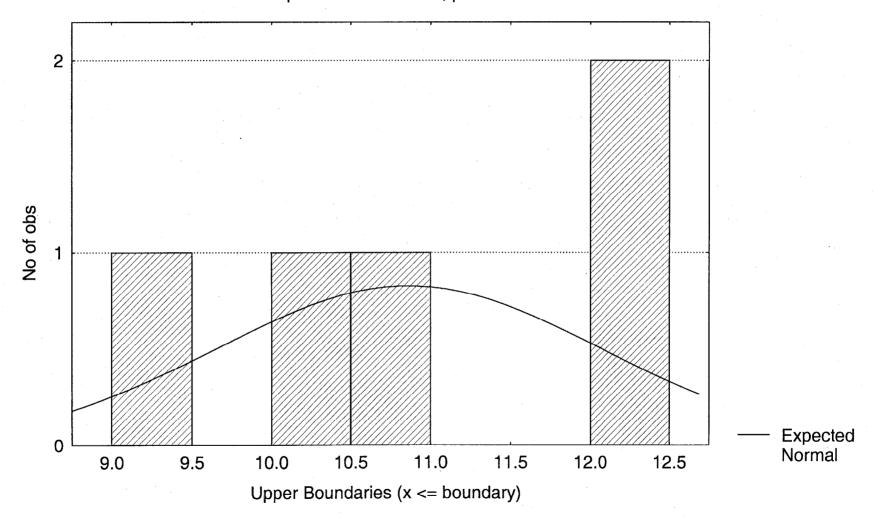


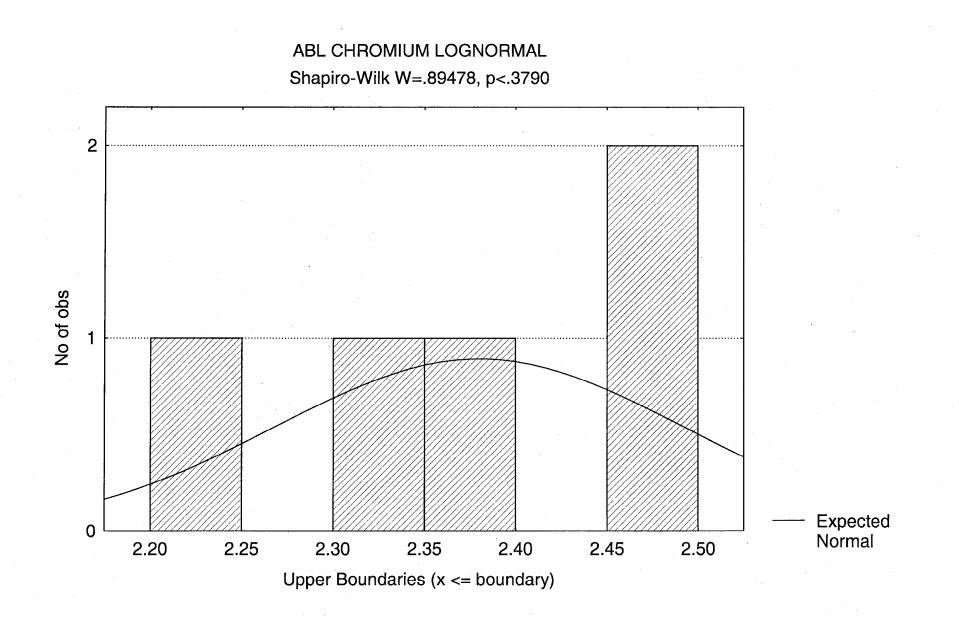
ABL CADMIUM NORMAL Shapiro-Wilk W=.85574, p<.2101

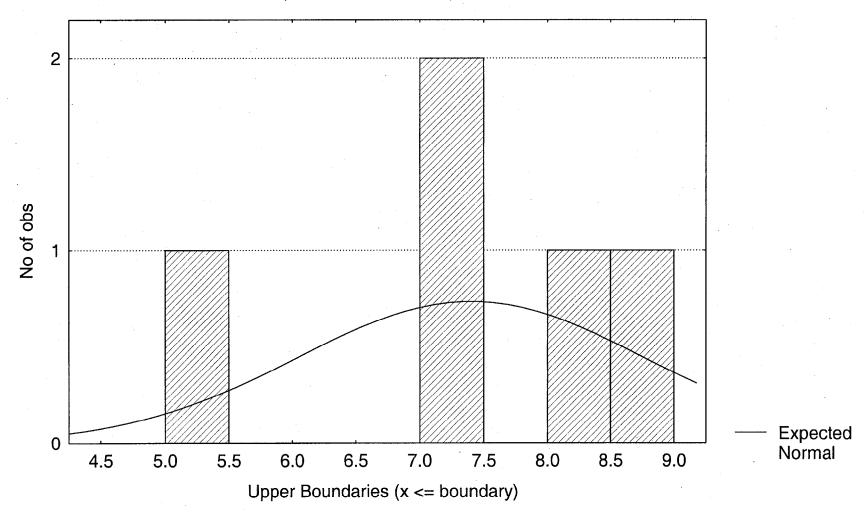


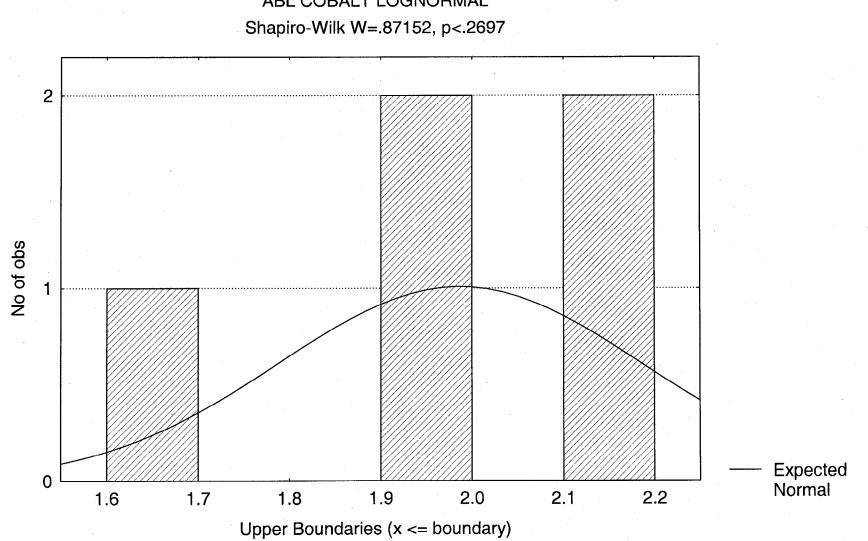

ABL CADMIUM LOGNORMAL

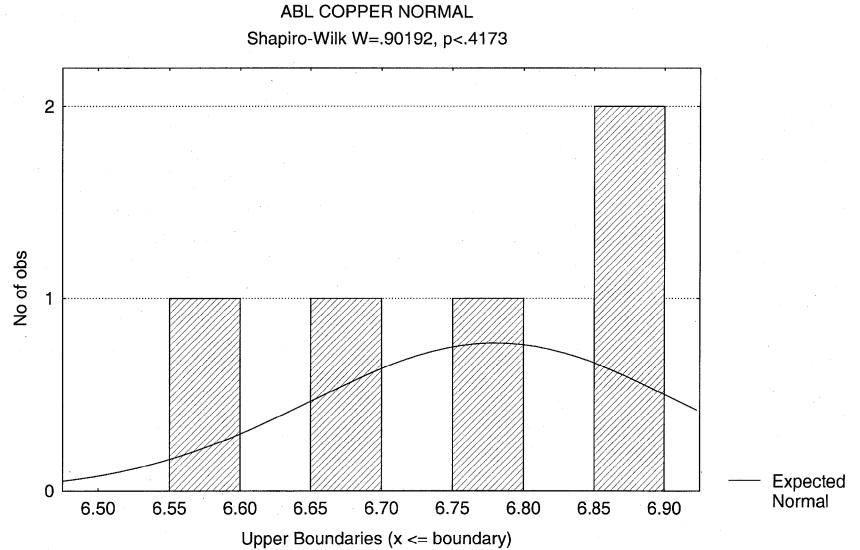
Shapiro-Wilk W=.88089, p<.3107

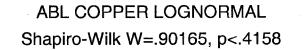


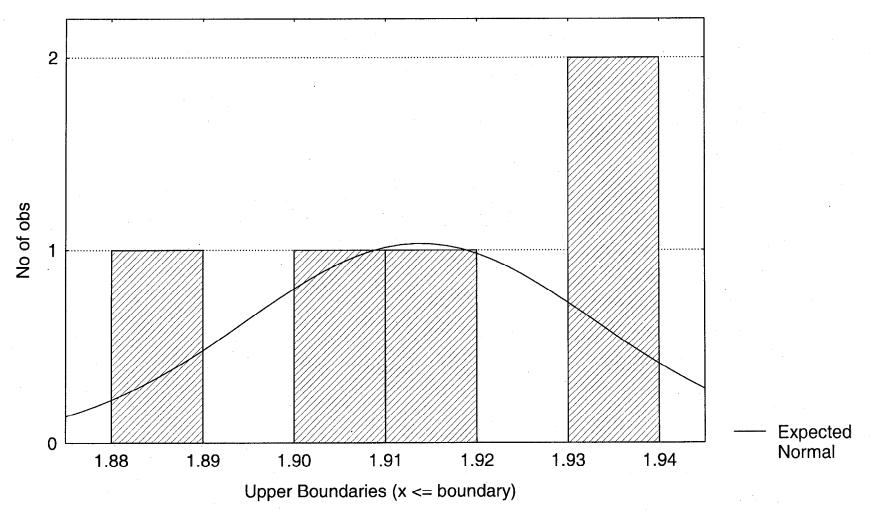


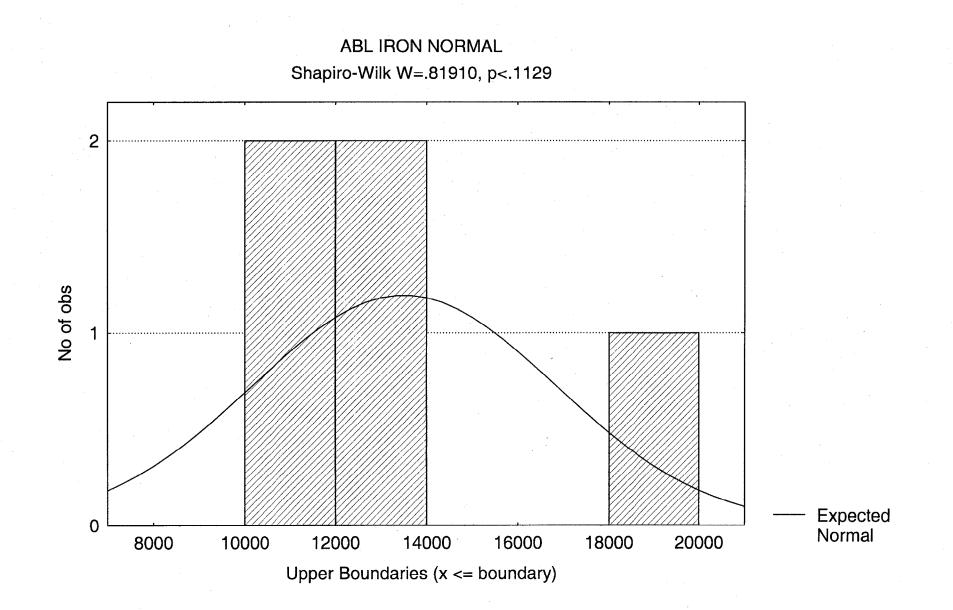

ABL CHROMIUM NORMAL Shapiro-Wilk W=.88605, p<.3350

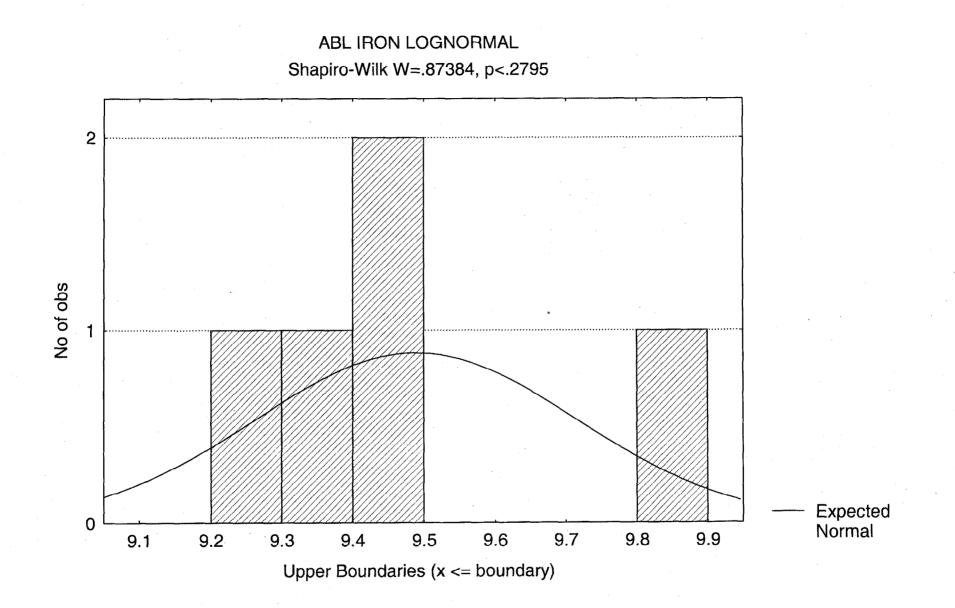


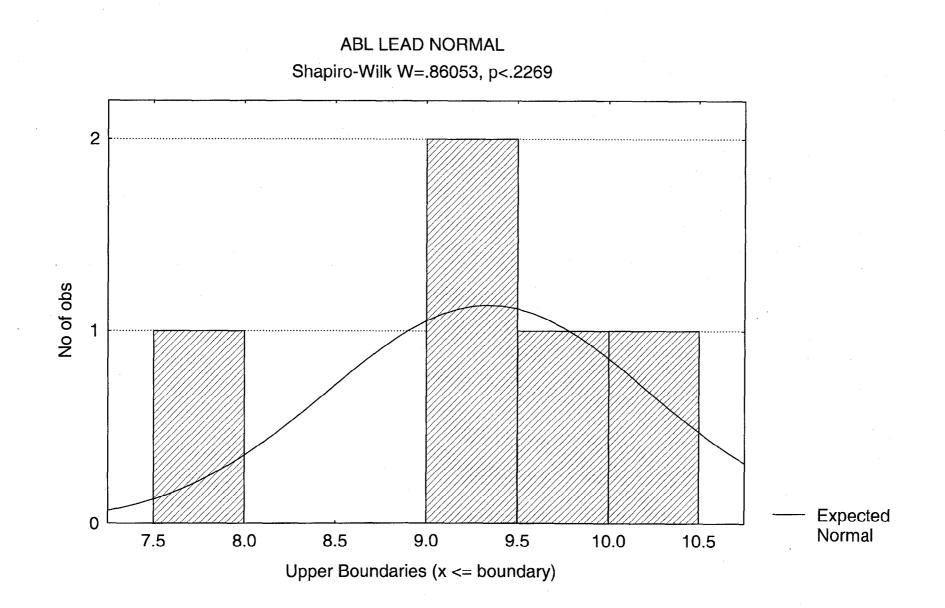


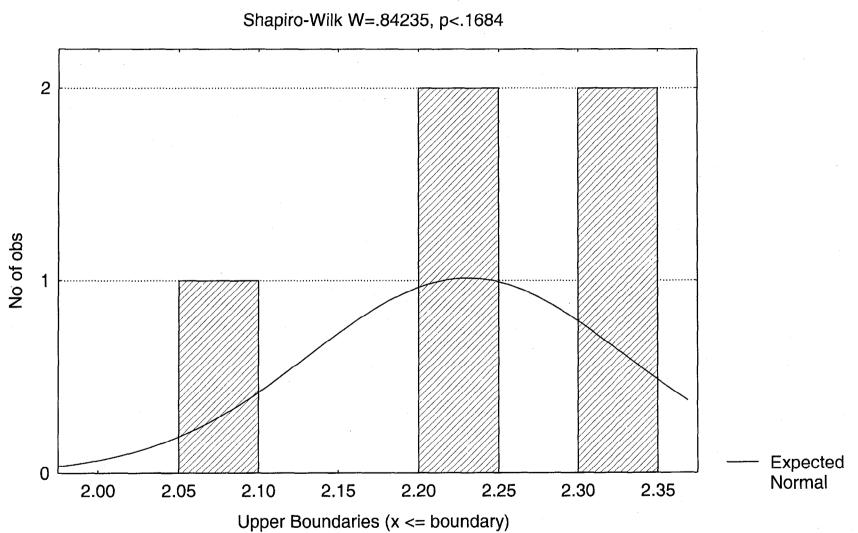

Shapiro-Wilk W=.89988, p<.4061



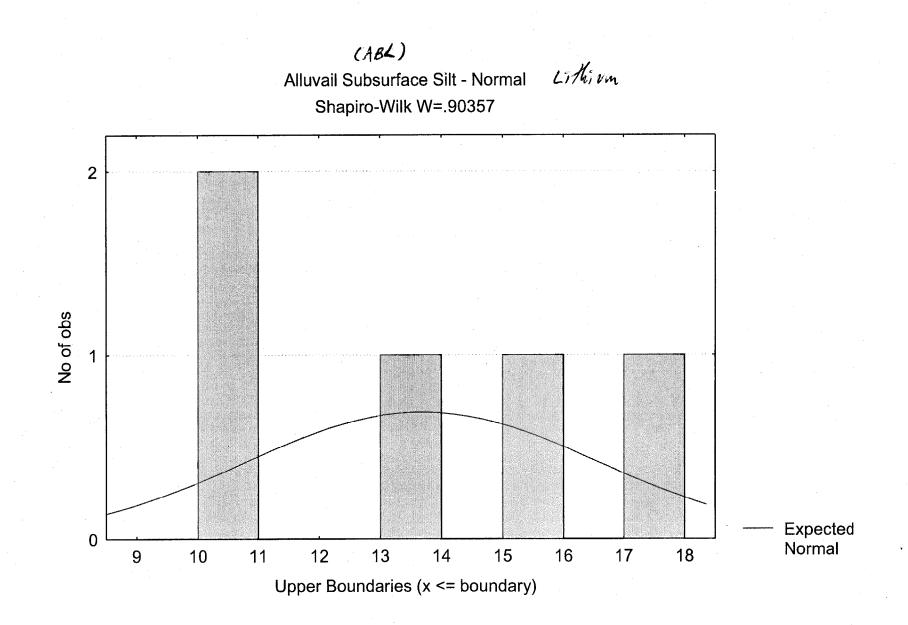

ABL COBALT LOGNORMAL

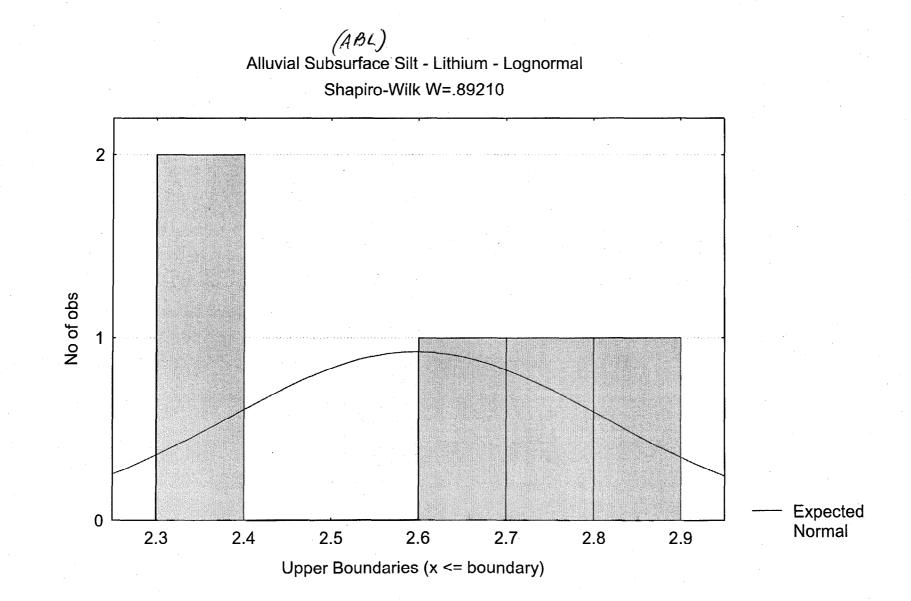


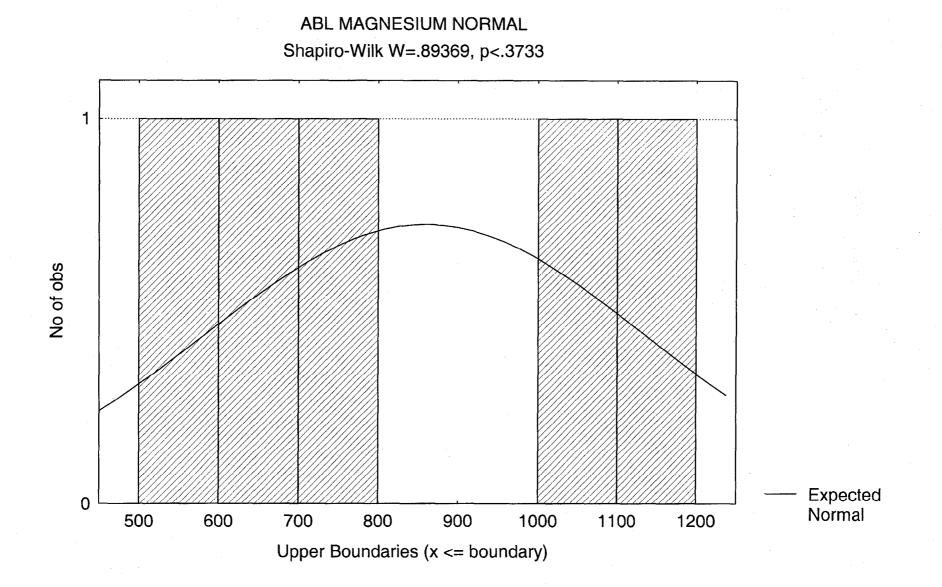


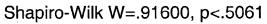


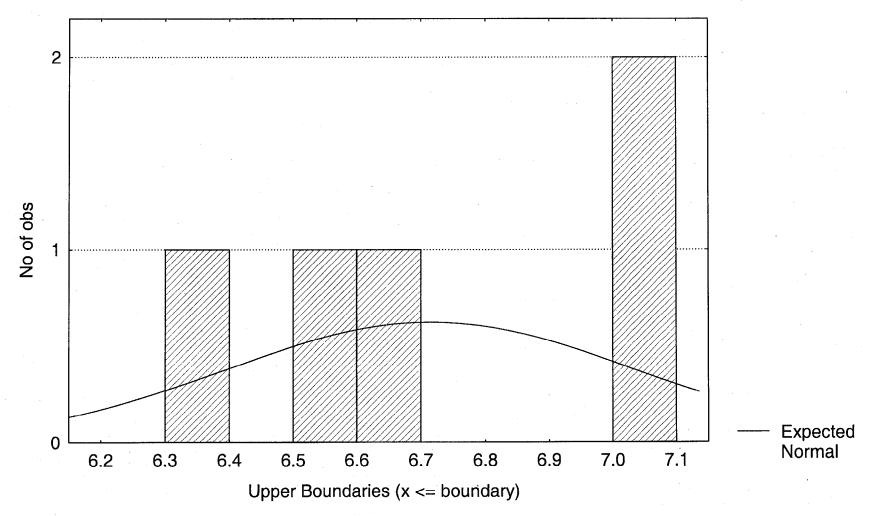
ŝ

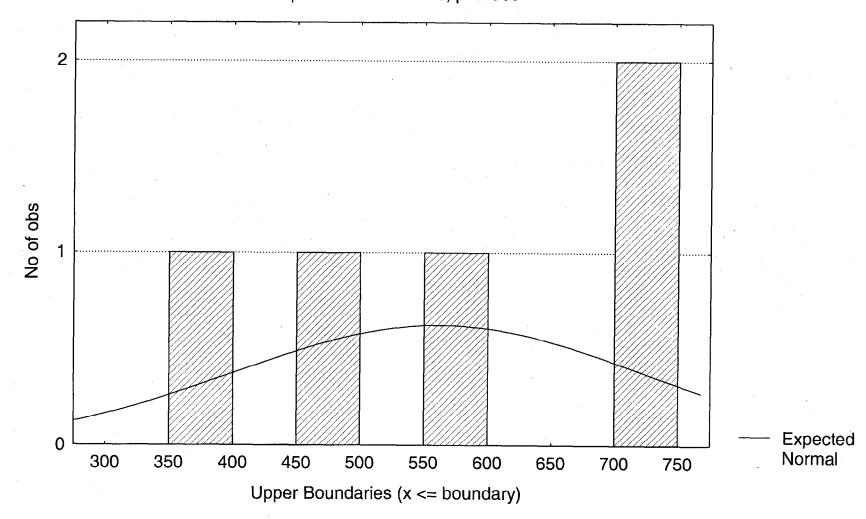




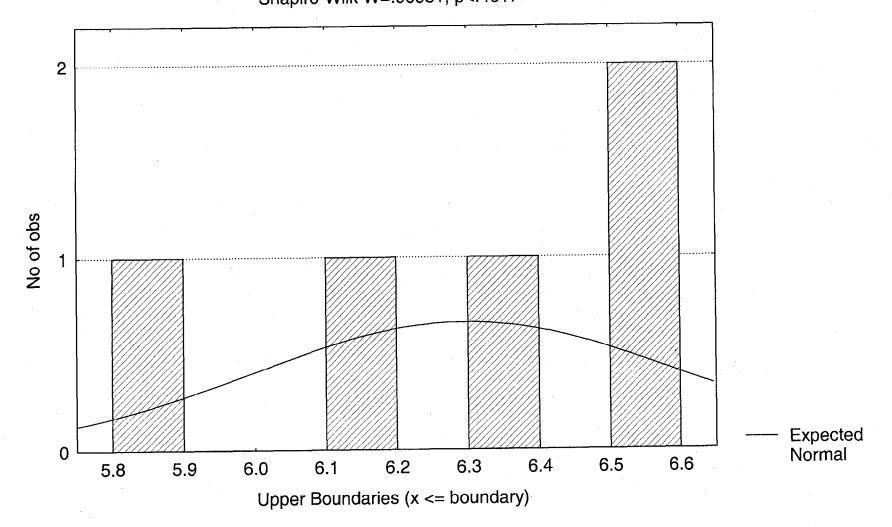


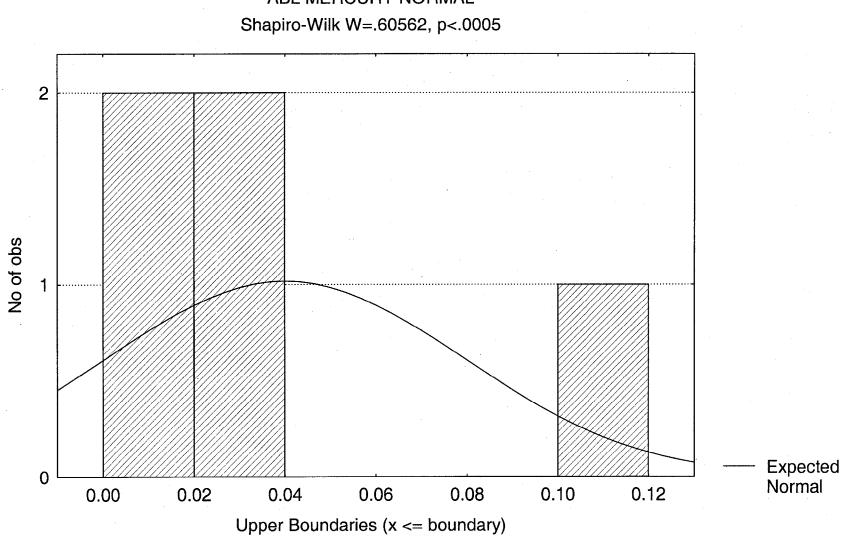

ABL LEAD LOGNORMAL



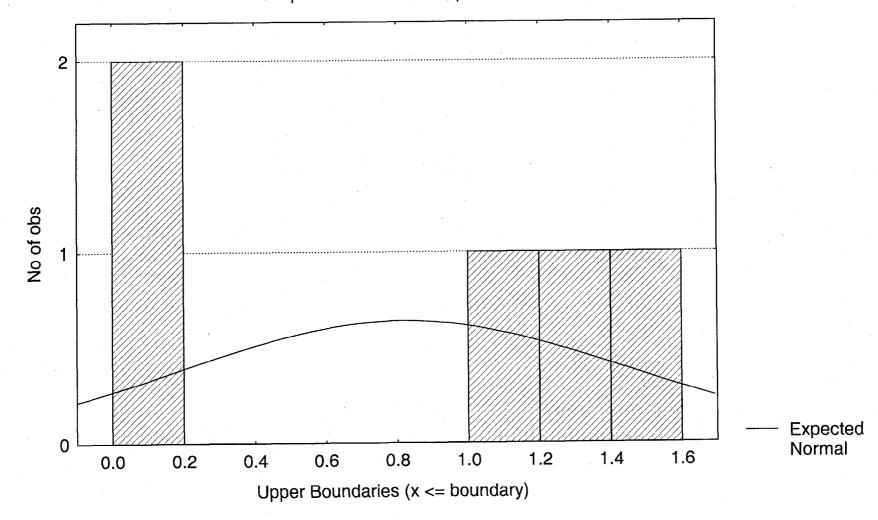


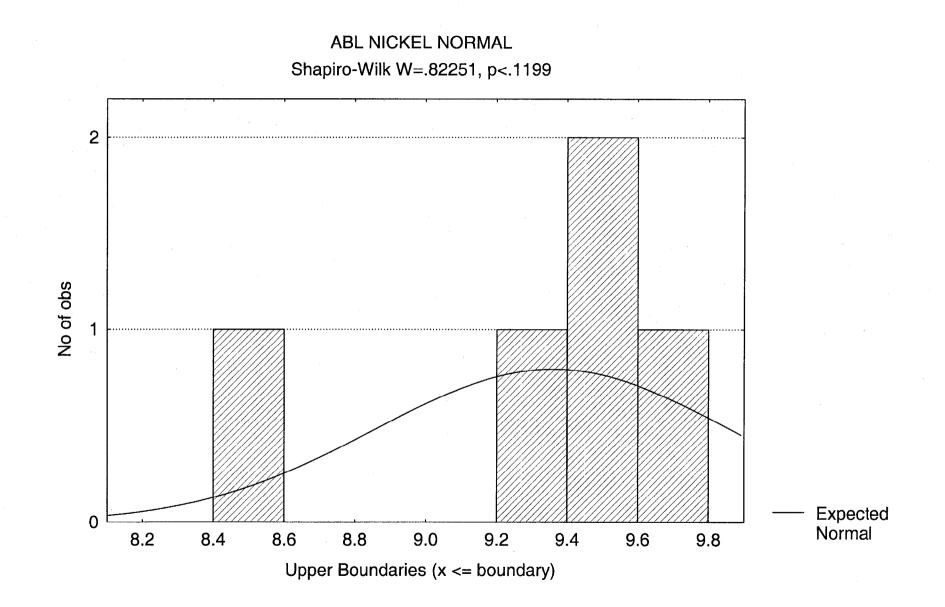
ABL MAGNESIUM LOGNORMAL

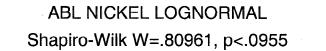


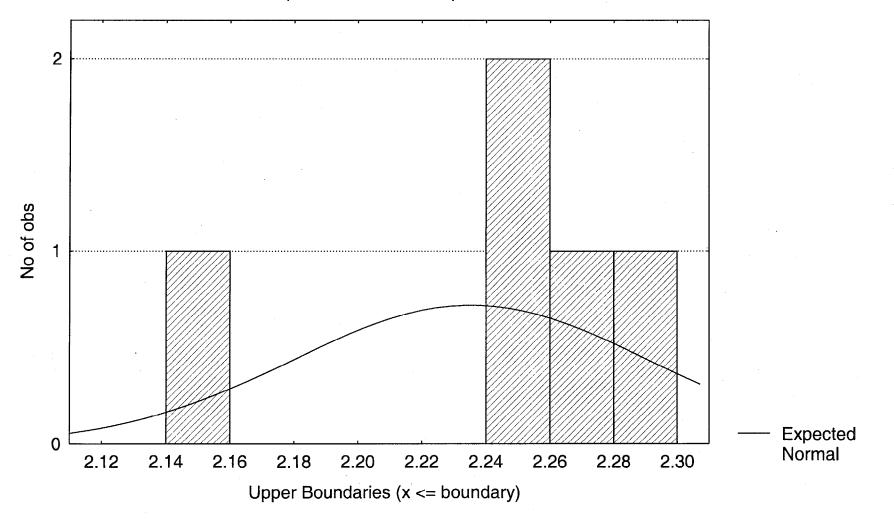

ABL MANGANESE NORMAL Shapiro-Wilk W=.90433, p<.4306

ABL MANGANESE LOGNORMAL Shapiro-Wilk W=.90981, p<.4617

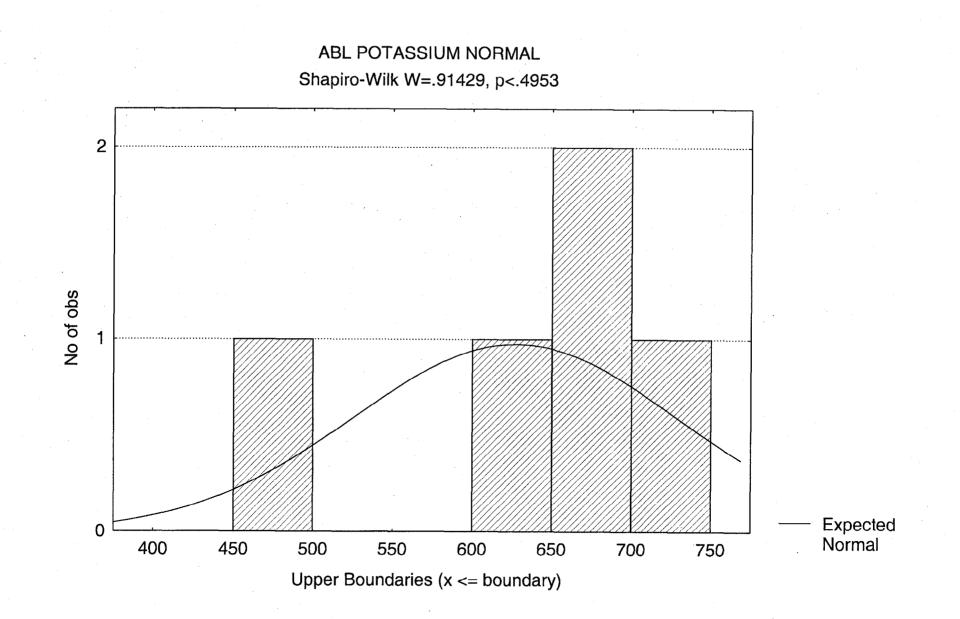


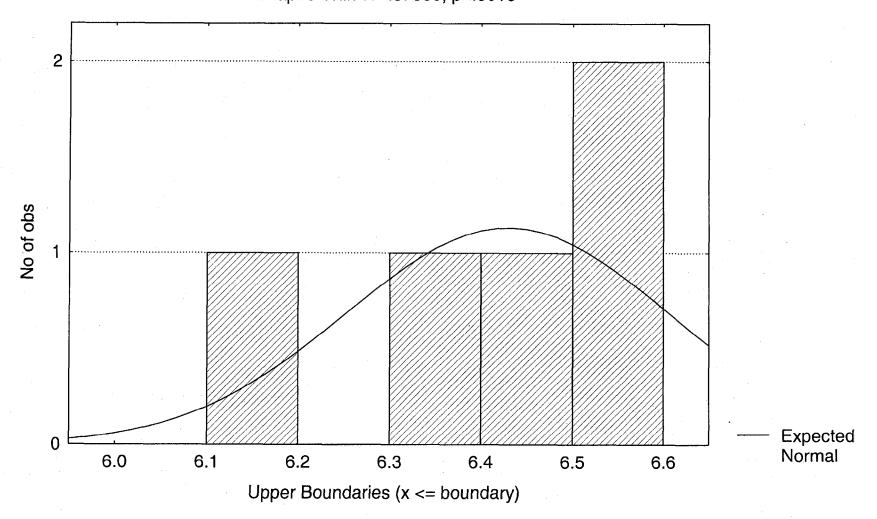

.

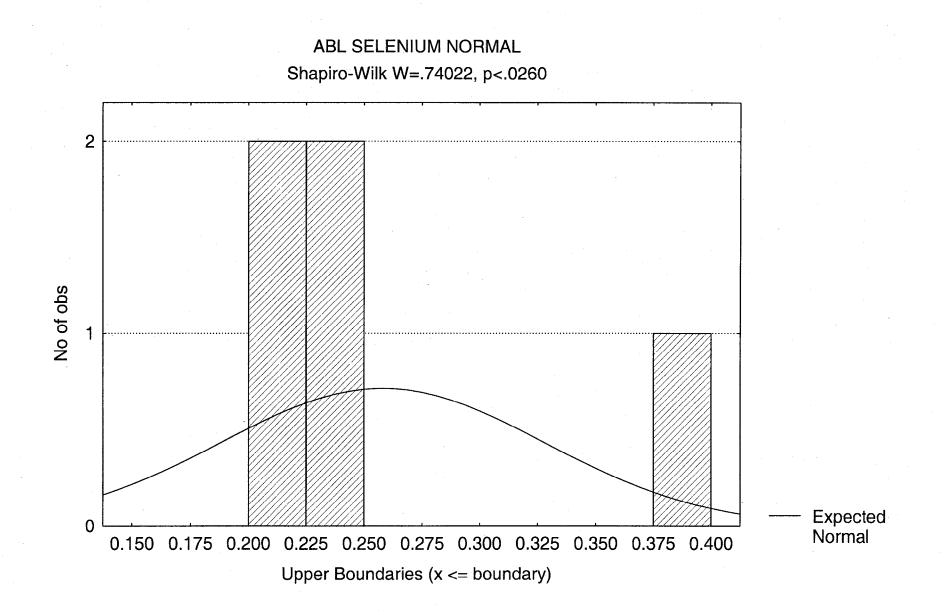


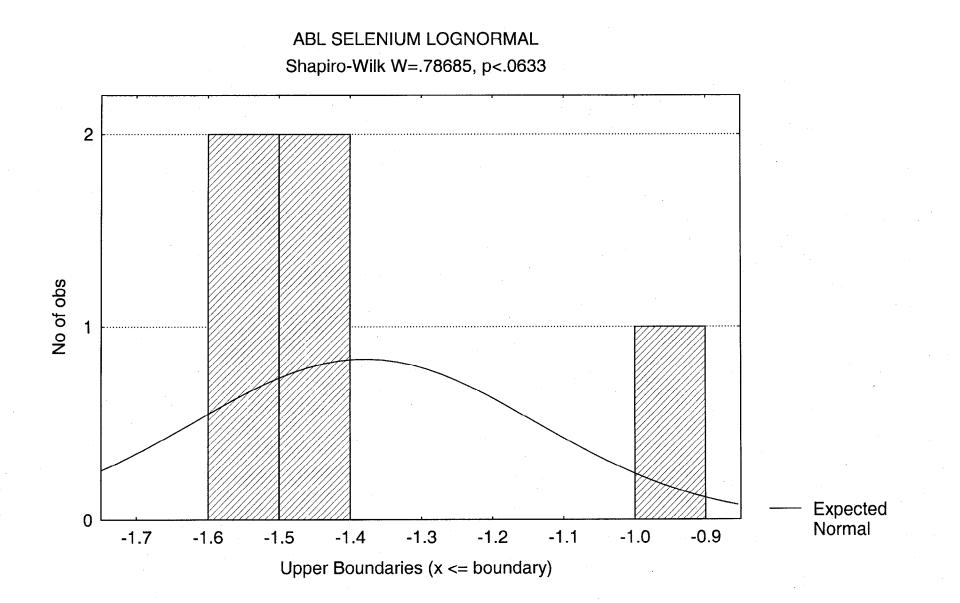

ABL MERCURY NORMAL

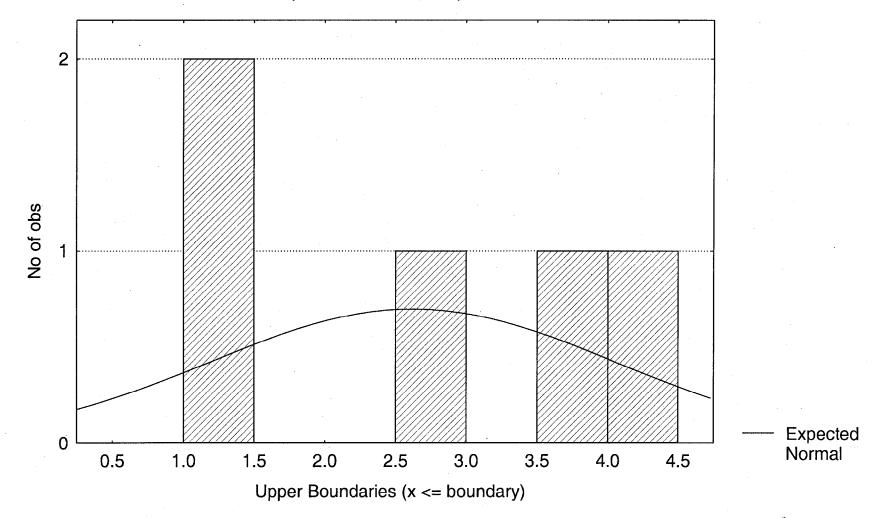
ABL SODIUM LOGNORMAL Shapiro-Wilk W=.84931, p<.1891

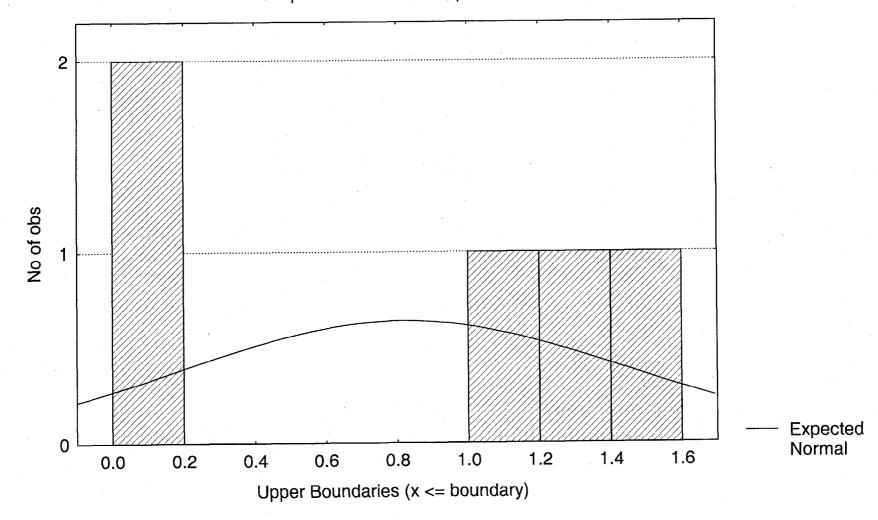


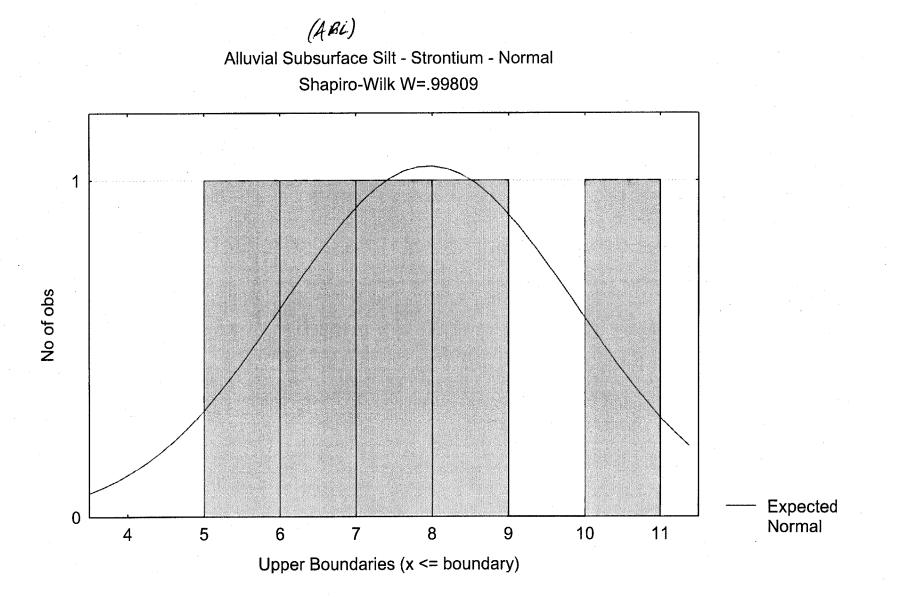


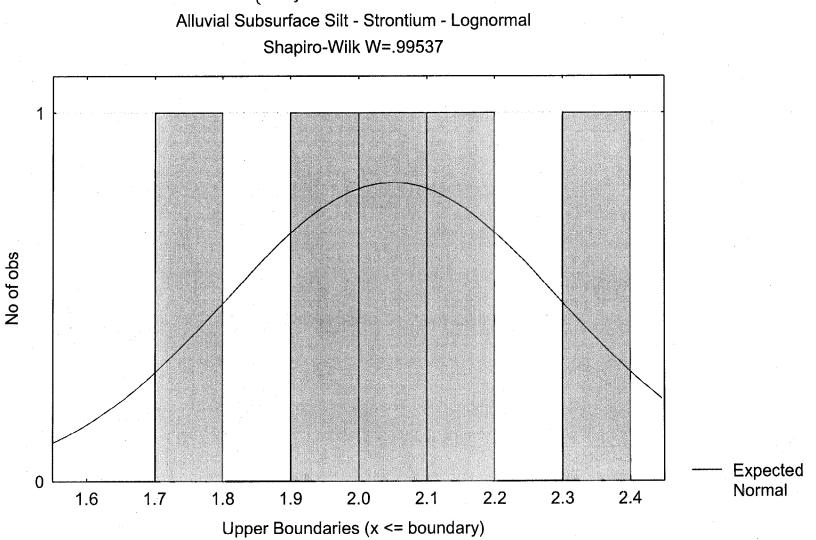


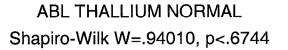


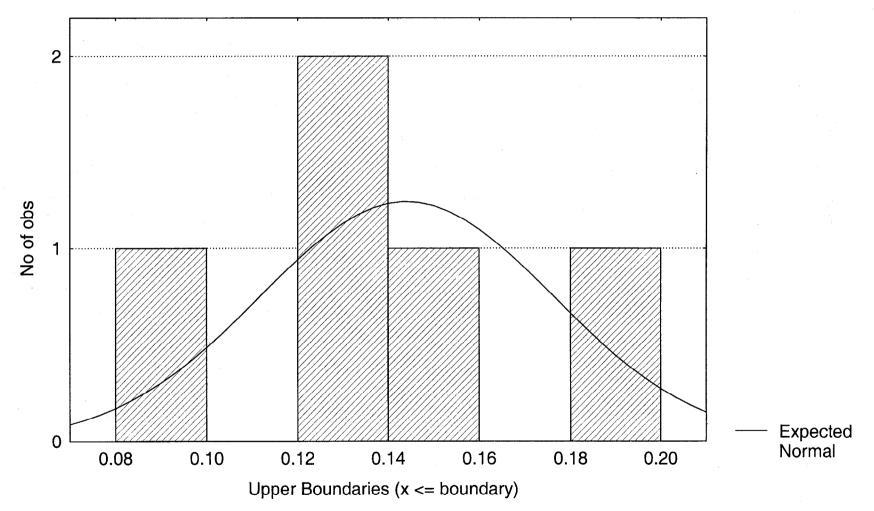

ABL POTASSIUM LOGNORMAL Shapiro-Wilk W=.87888, p<.3016

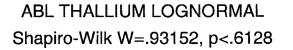


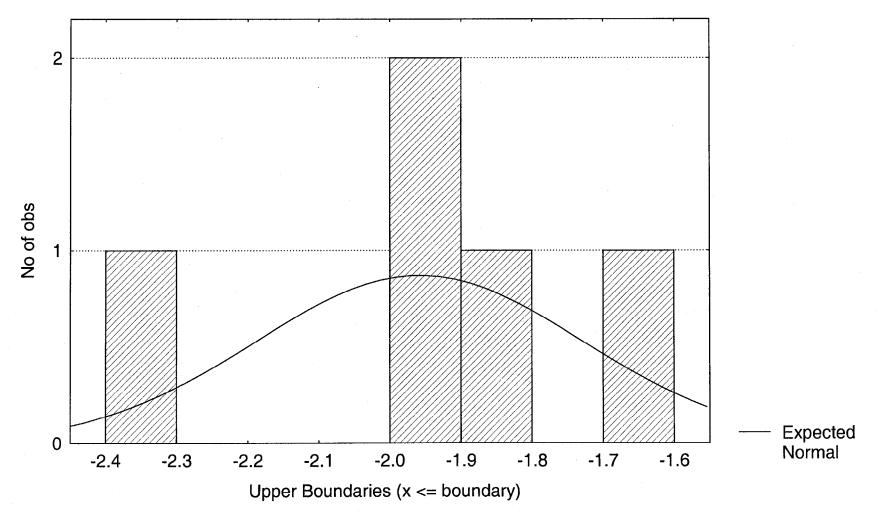


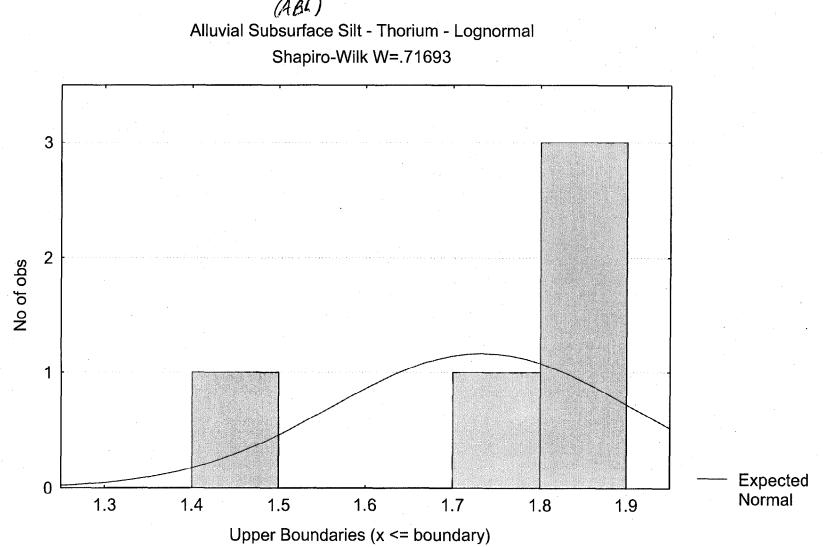

ABL SODIUM NORMAL Shapiro-Wilk W=.88876, p<.3484

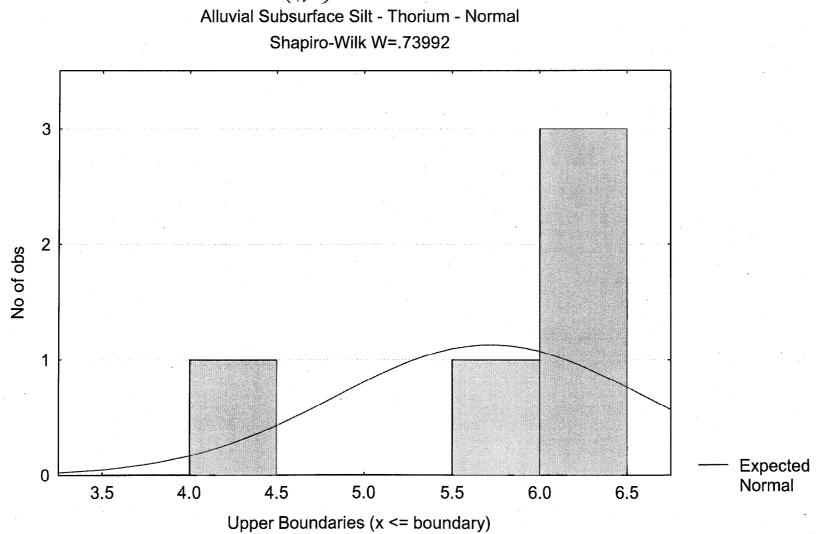

ABL SODIUM LOGNORMAL Shapiro-Wilk W=.84931, p<.1891

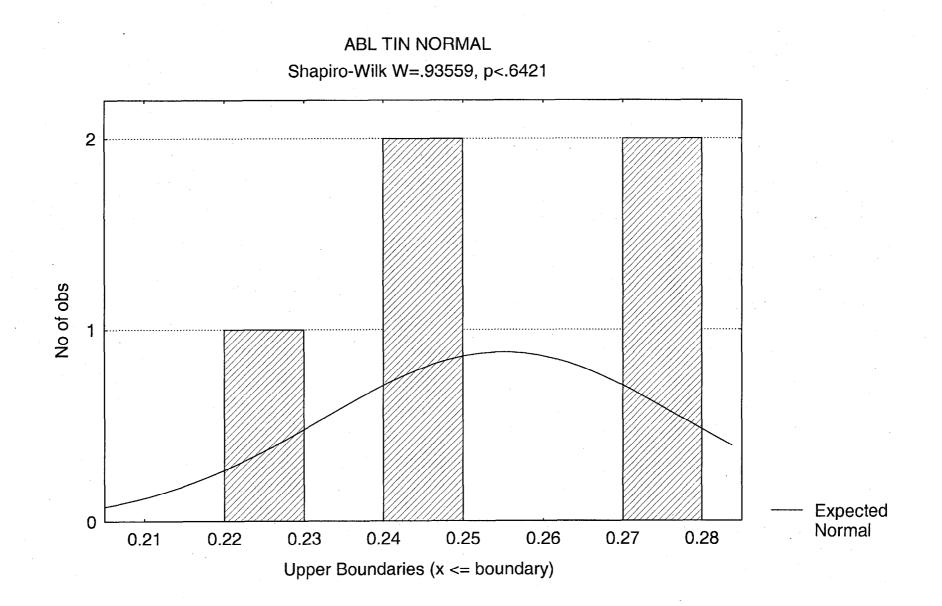


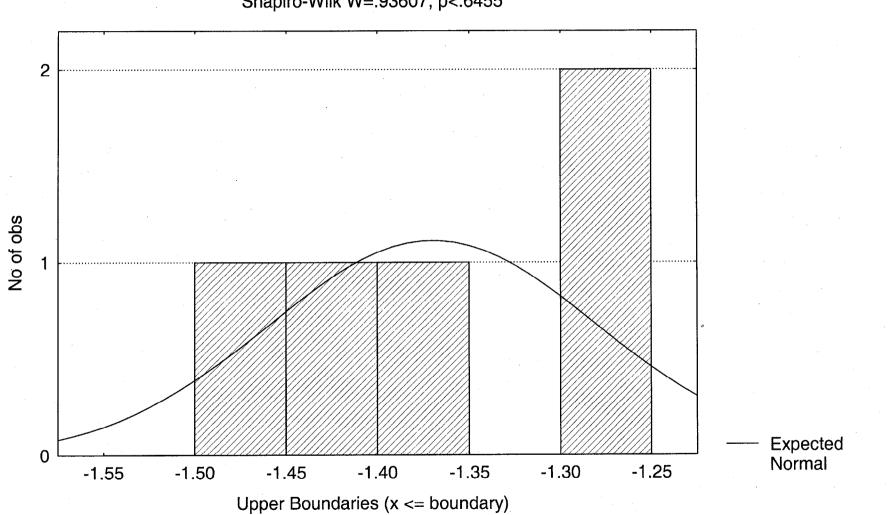




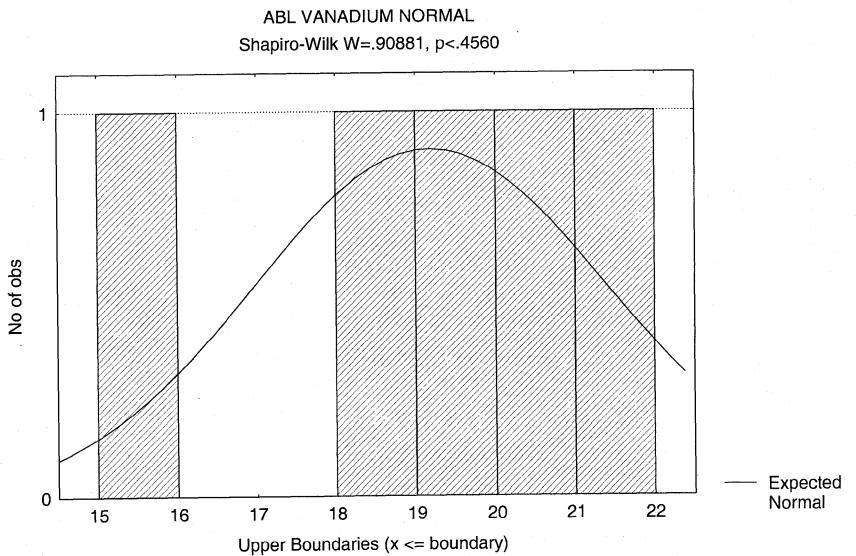

(ABL)

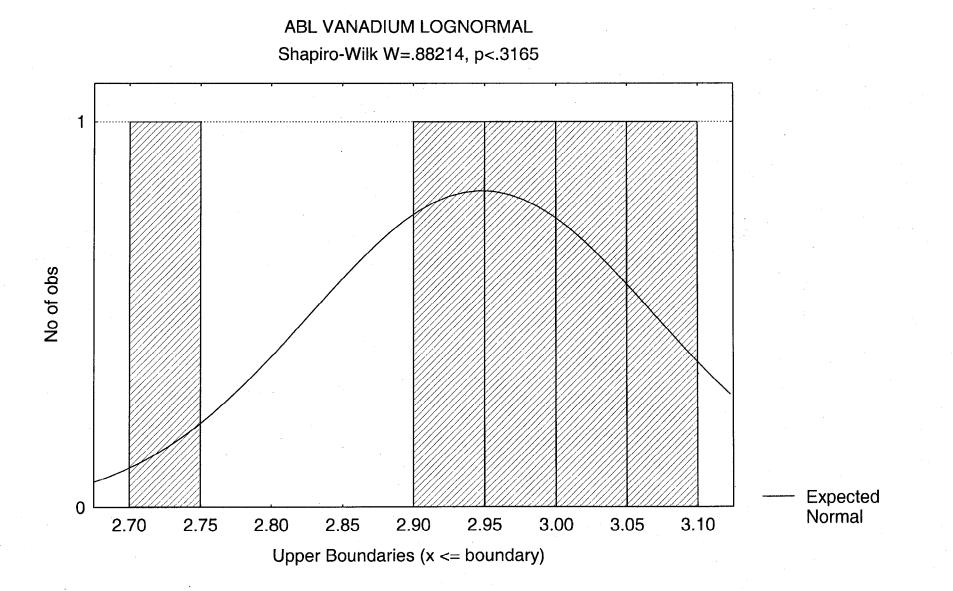


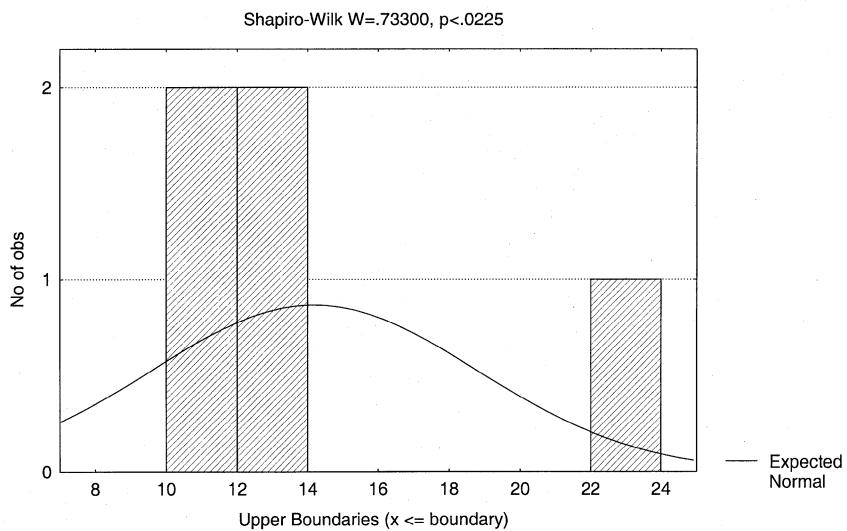


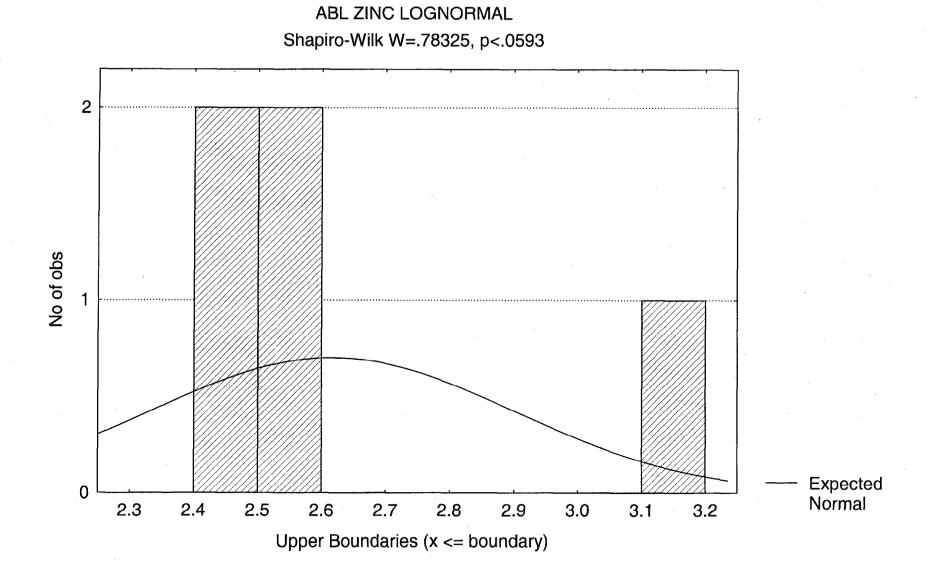


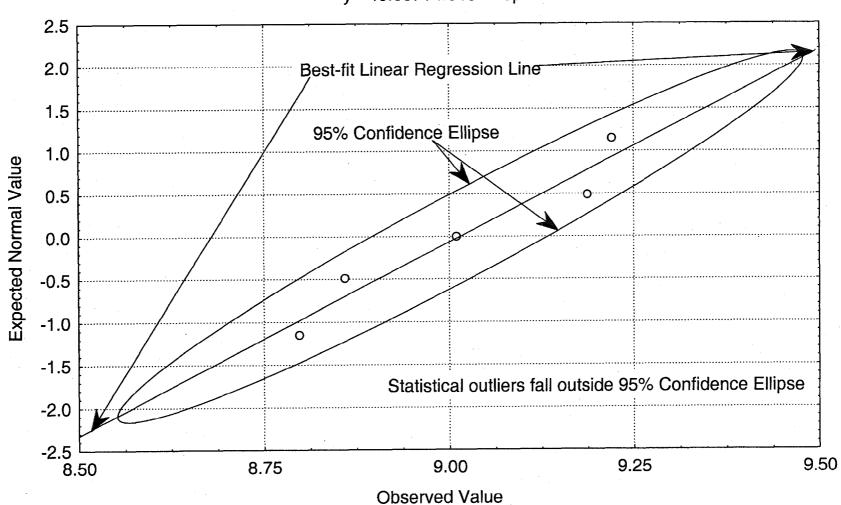
(ABL)



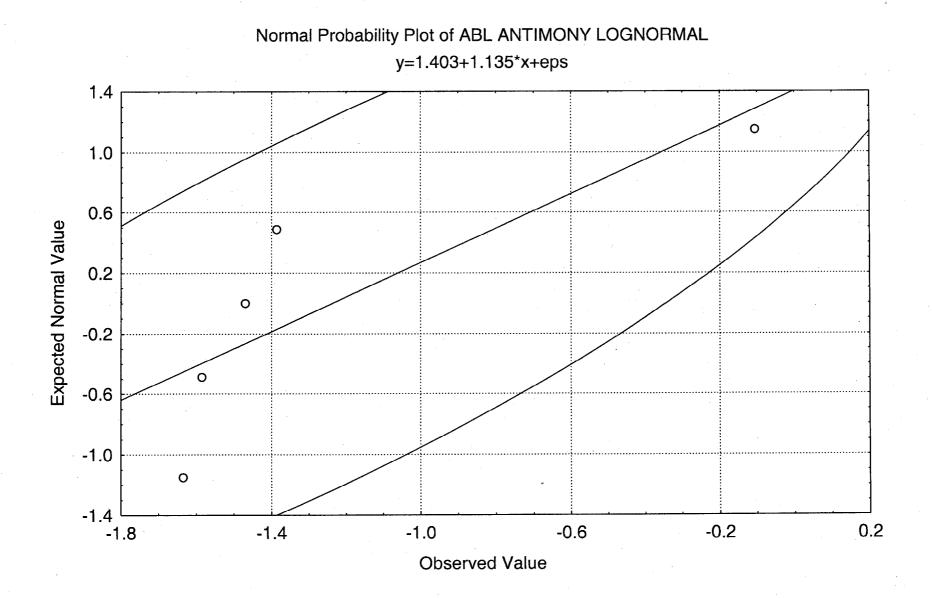

(ABL)

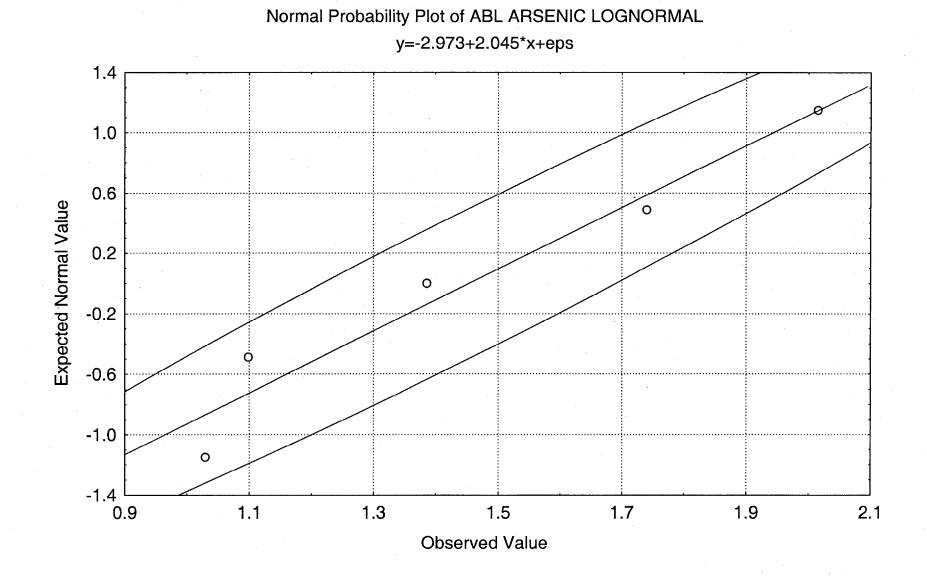


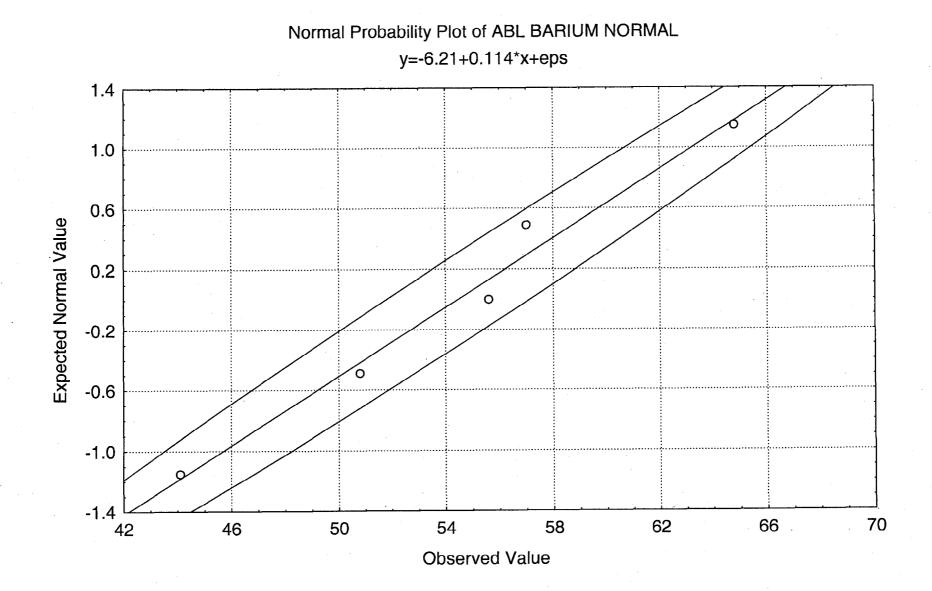

ABL TIN LOGNORMAL Shapiro-Wilk W=.93607, p<.6455

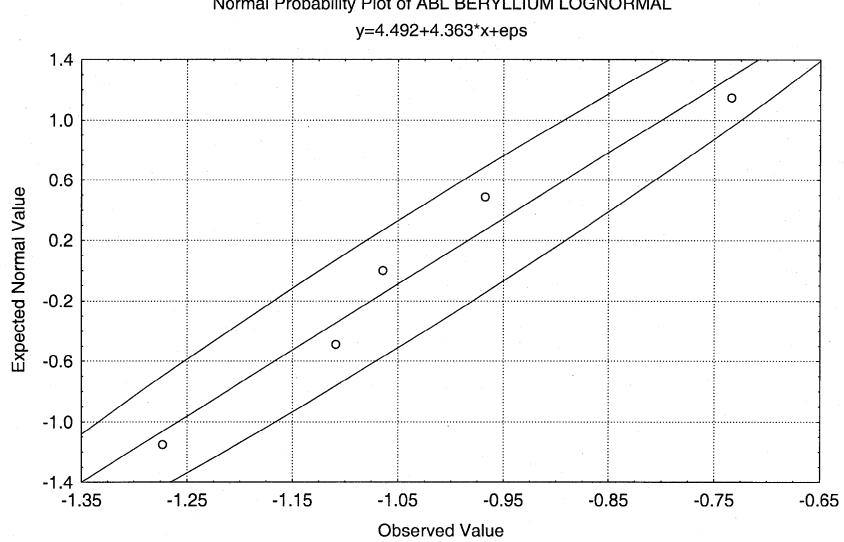


ABL ZINC NORMAL

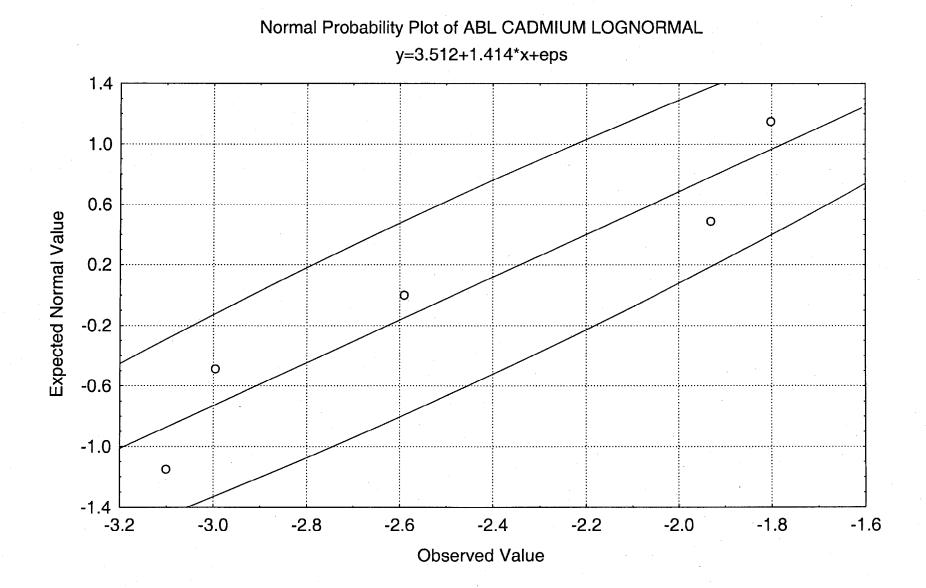


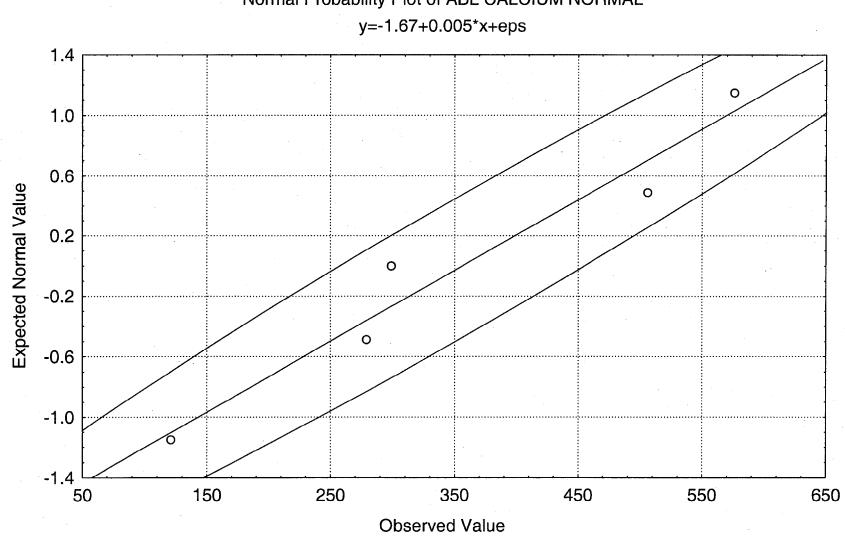

D.2.2 Examples of Normal Probability Plot

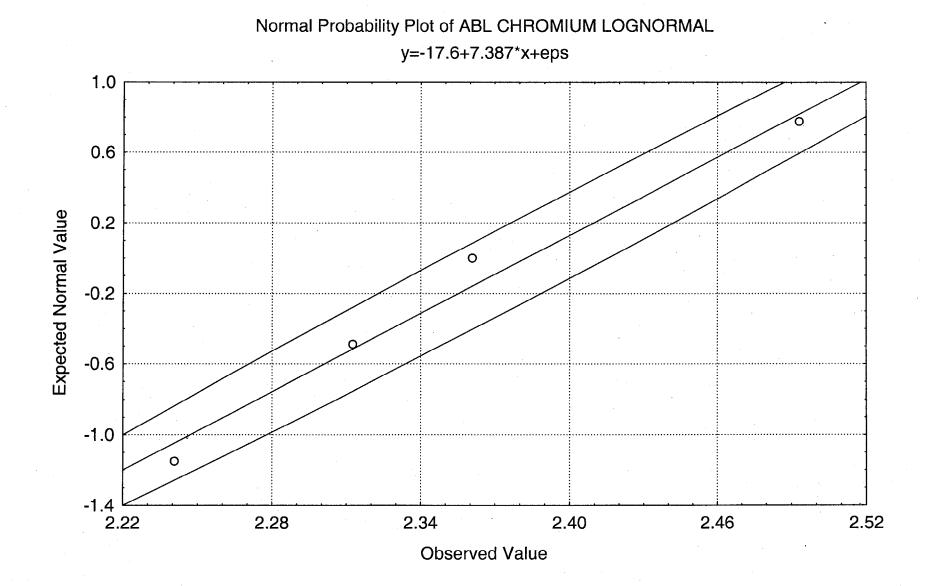

27 plots (Normal or Lognormal for 27 metals) for Alluvial Subsurface Silt

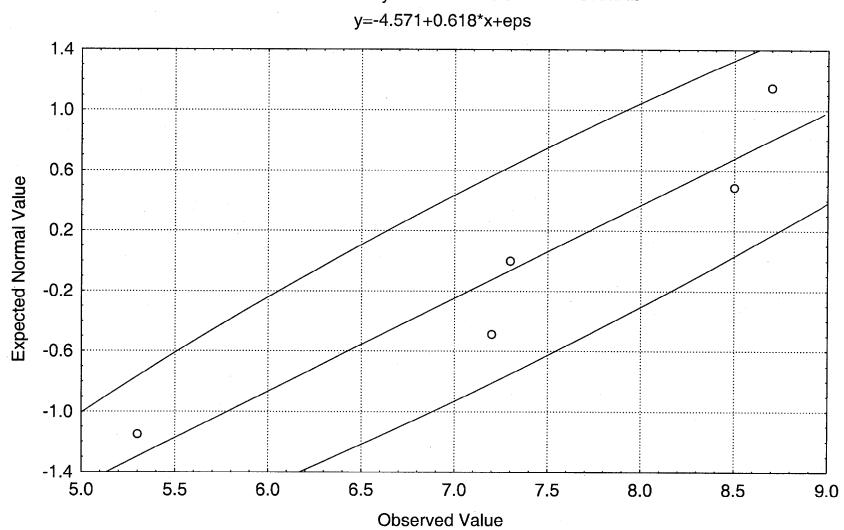


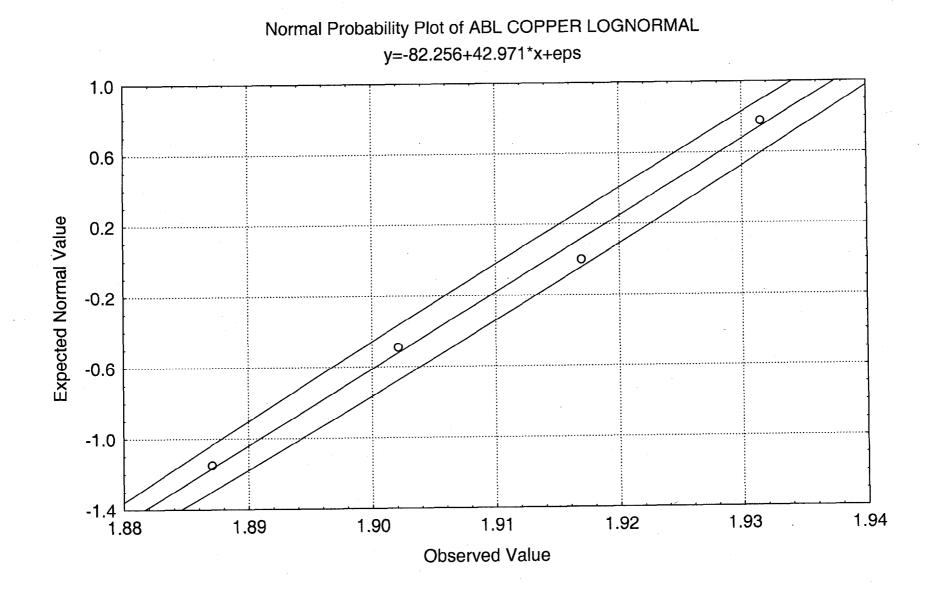
Normal Probability Plot of ABL ALUMINUM LOGNORMAL y=-40.687+4.513*x+eps

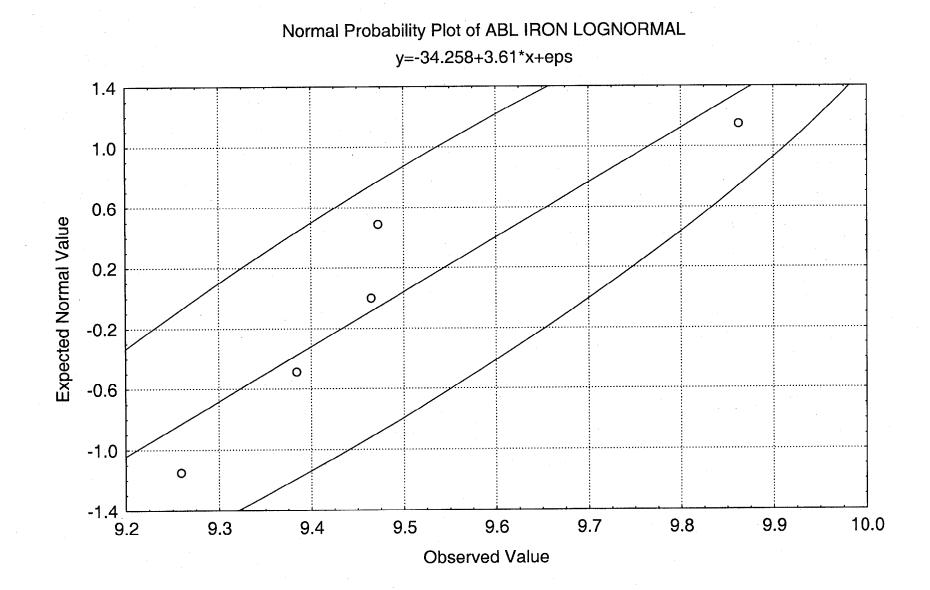


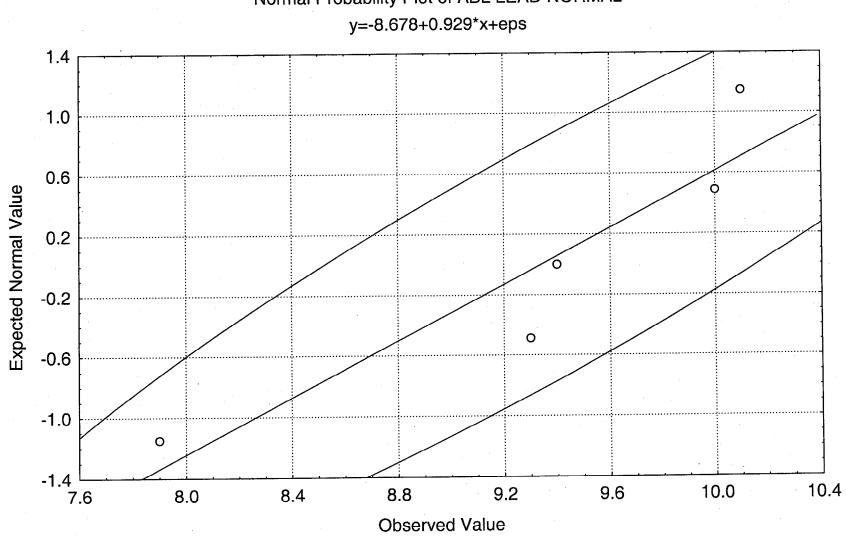




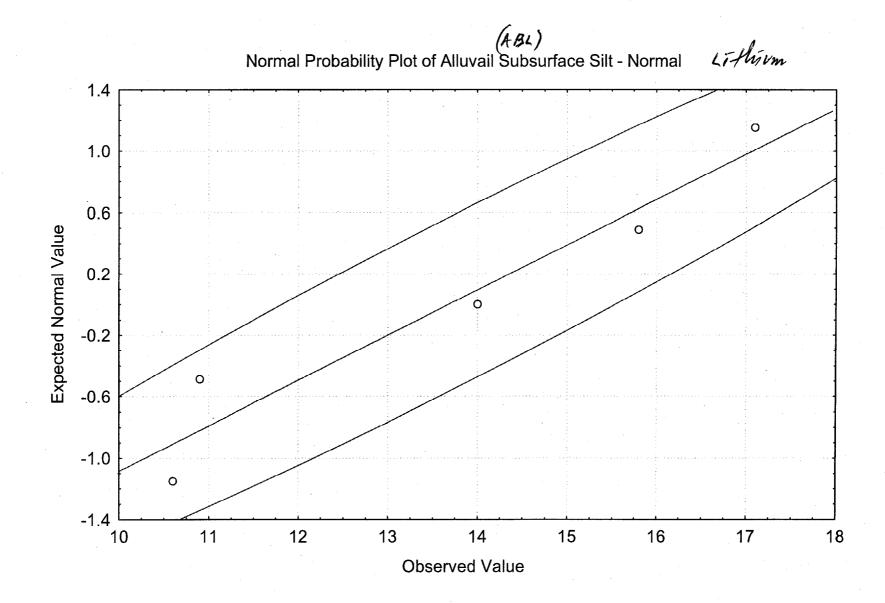

Normal Probability Plot of ABL BERYLLIUM LOGNORMAL

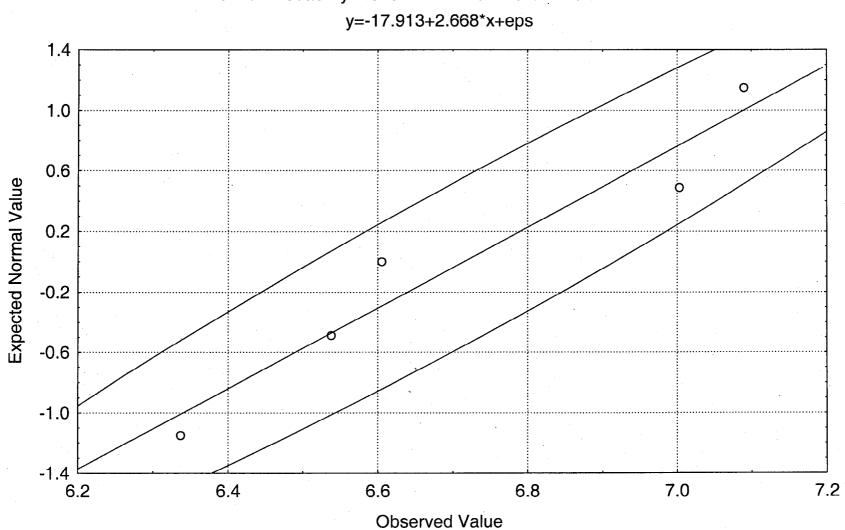



Normal Probability Plot of ABL CALCIUM NORMAL



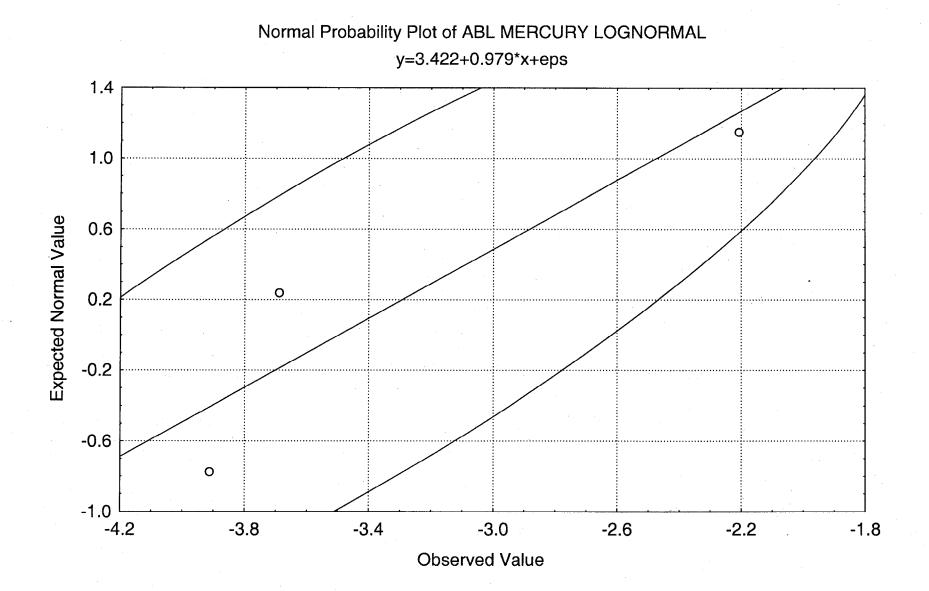
Normal Probability Plot of ABL COBALT NORMAL

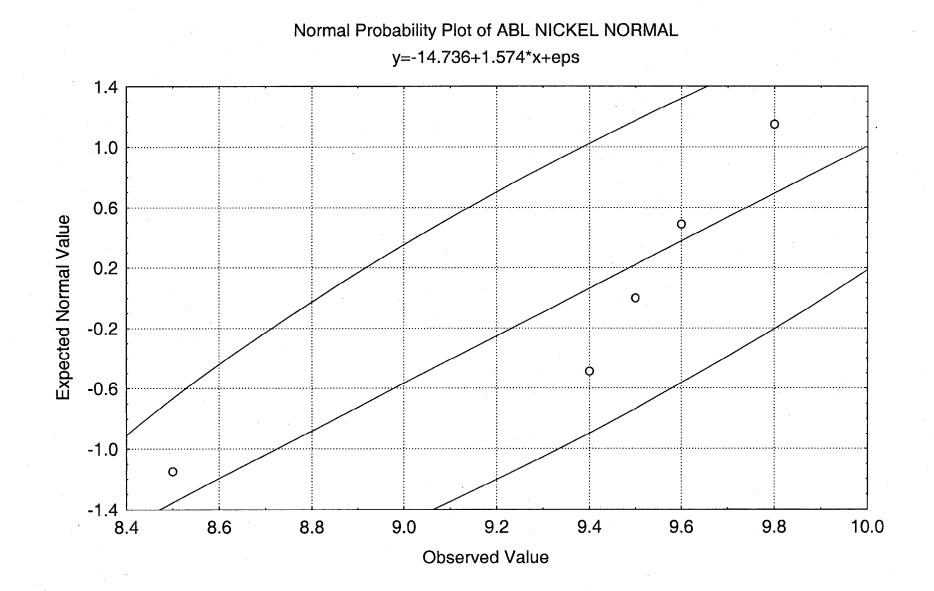


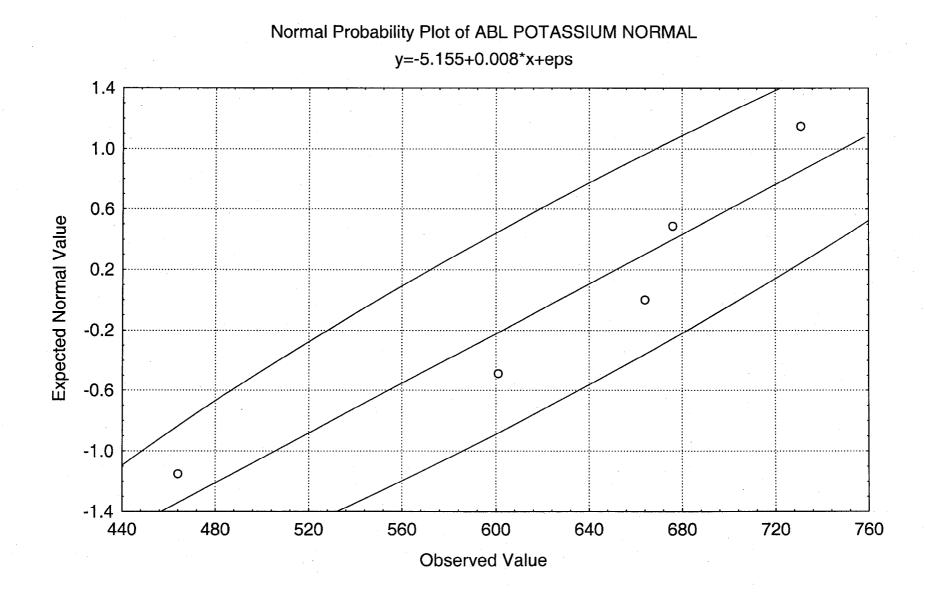


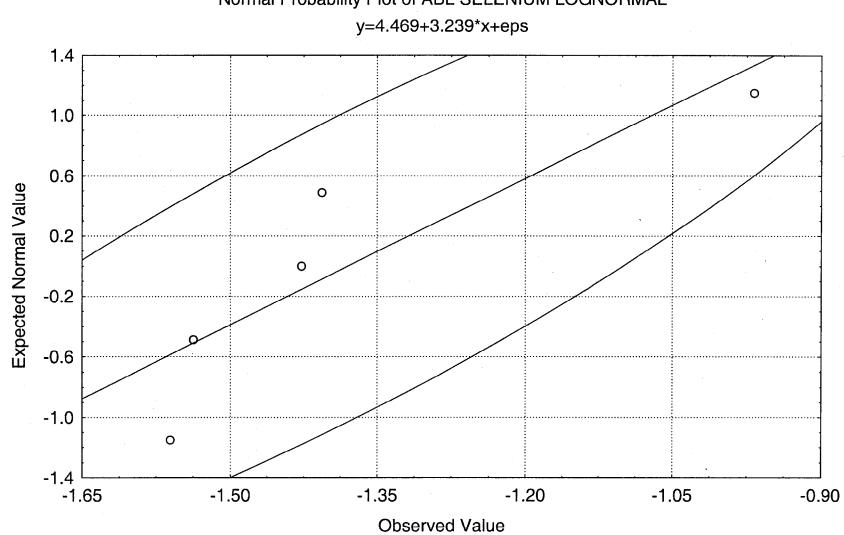
Normal Probability Plot of ABL LEAD NORMAL

.

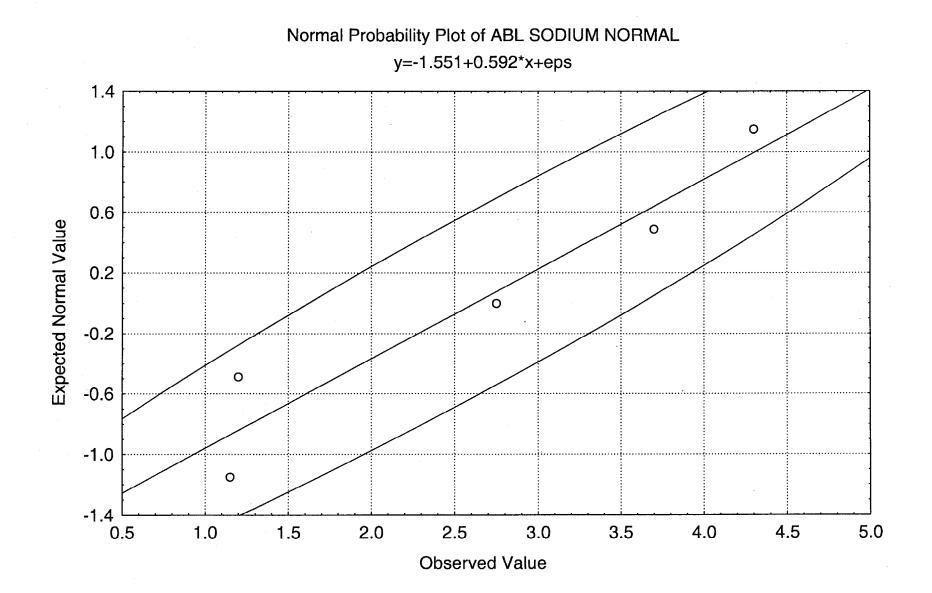


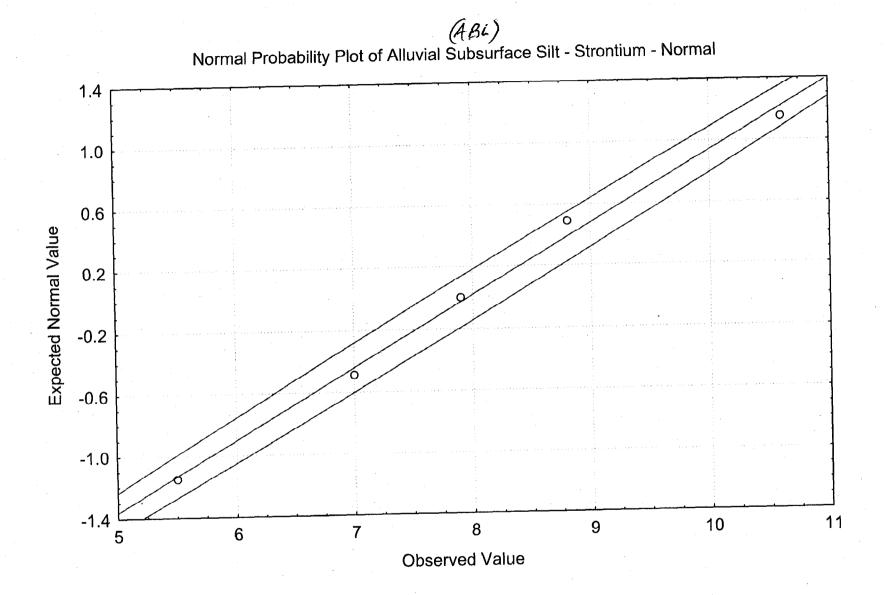


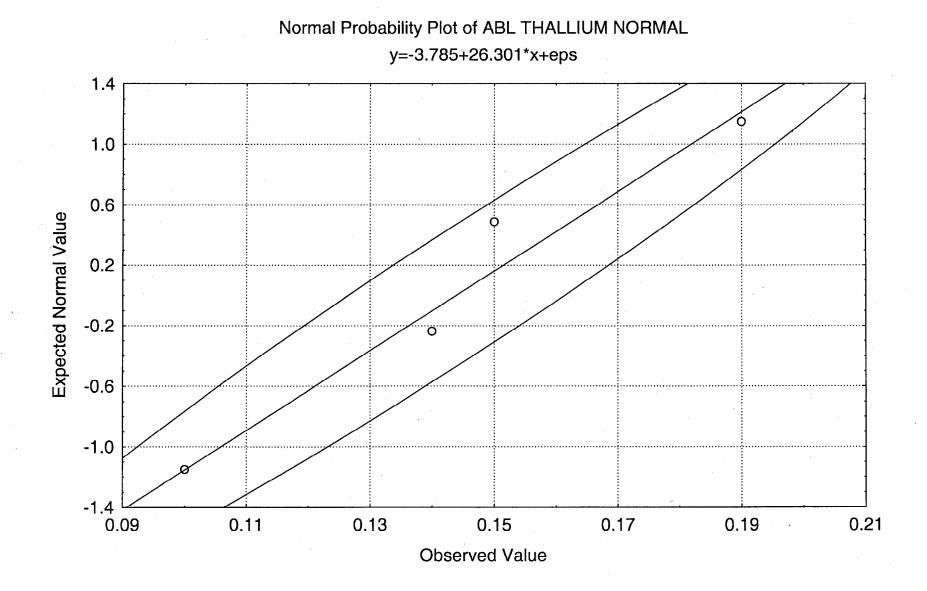

Normal Probability Plot of ABL MAGNESIUM LOGNORMAL

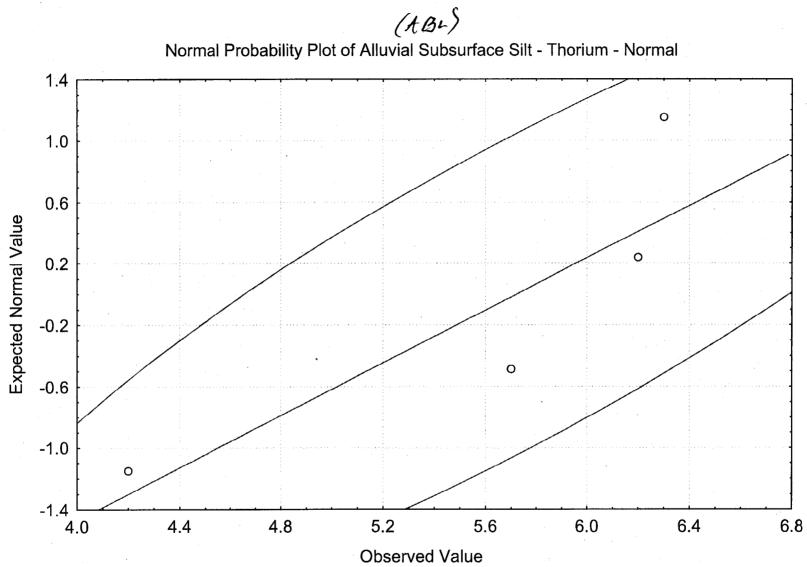

1.4 0 1.0 0.6 Expected Normal Value 0 0.2 -0.2 -0.6 -1.0 -1.4 🗠 5.8 6.0 6.2 6.4 6.5 6.6 5.9 6.3 6.1 6.7 **Observed Value**

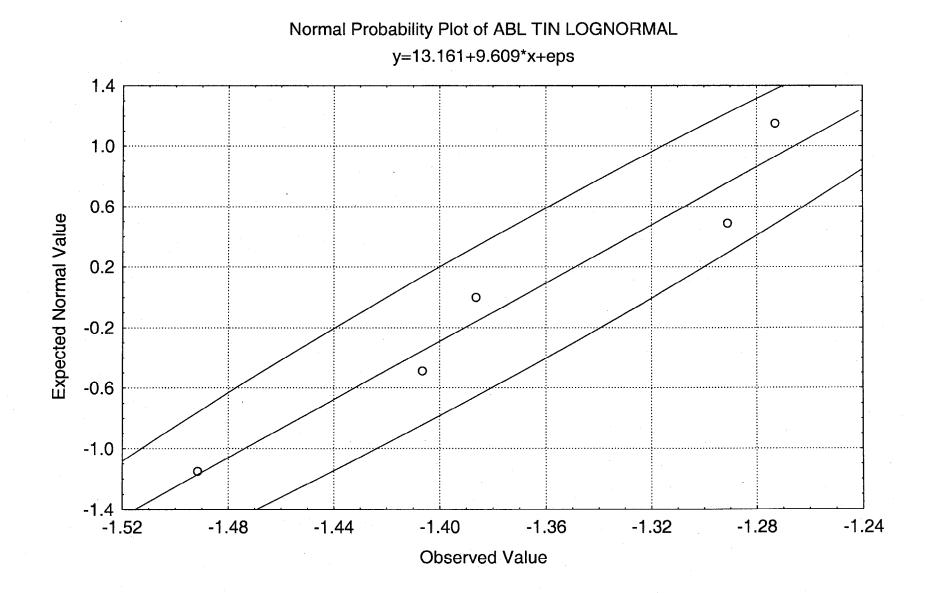
Normal Probability Plot of ABL MANGANESE LOGNORMAL y=-17.78+2.824*x+eps

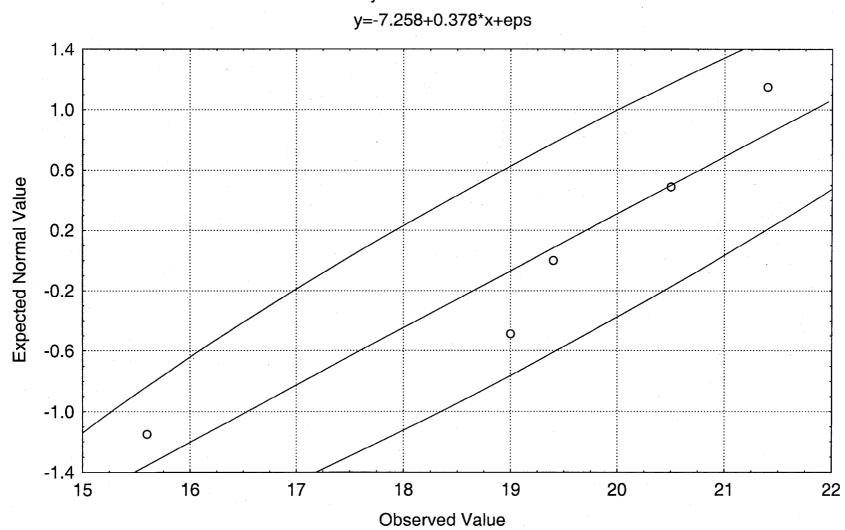


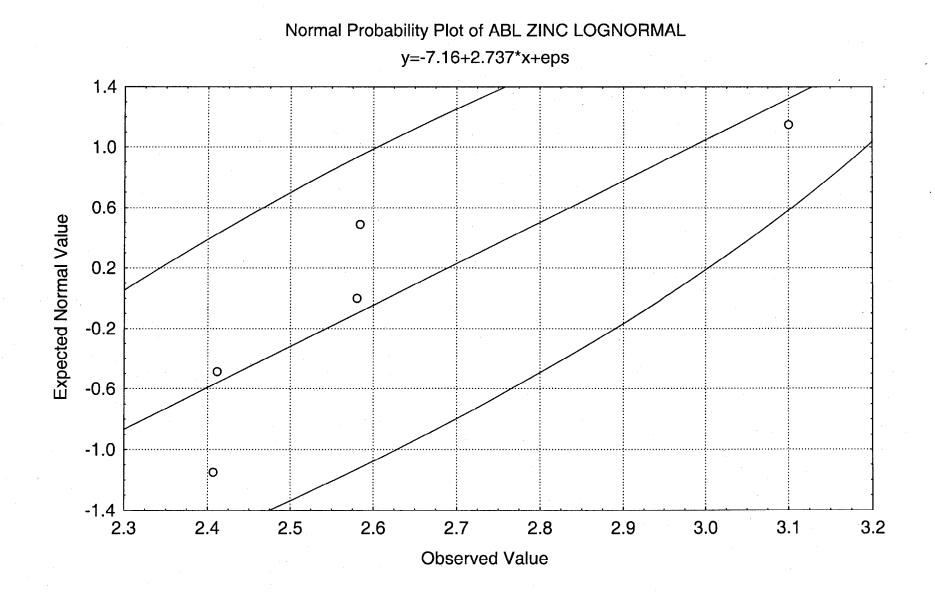







Normal Probability Plot of ABL SELENIUM LOGNORMAL





Normal Probability Plot of ABL VANADIUM NORMAL

D.2.3 Examples of 95% Confidence Interval Results

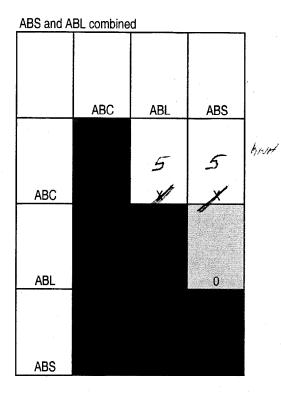
27 comparisons (one for each of 27 metals) of Pennsylvanian Subsurface Sand results with the 95% Confidence Interval of combined Pennsylvanian Subsurface Clay / Pennsylvanian Subsurface Silt

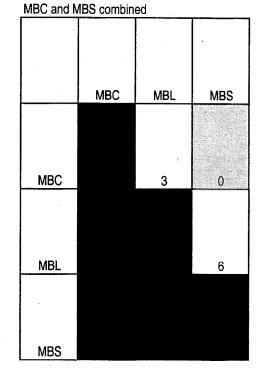
Appendix D.2.3 Comparison of Pennsylvanian Subsurface Sand (PBS) Results with 95% Confidence Intervals of Penssylvanian Subsurface Clay and Sand (PB)

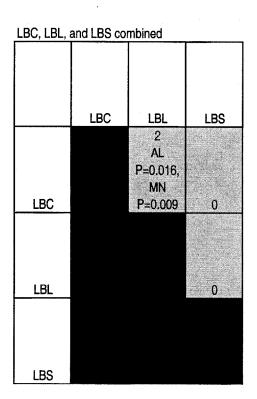
	PBS	Group PB 95%		Grou	p PB	PB Result	PB Result
PARAMETER	Result	Confidence Int	erval (95% CR)	Range (N	lin - Max)	Within PB 95% CI?	Within PB Range?
ALUMINUM	5,430	11,500	14,200	9,070	16,200	NO (LOW)	NO (LOW)
ANTIMONY	0.38	: 0	3.00	0.155	11.3	YES	YES
ARSENIC	2.9	5.03	7.57	1.4	9.0	NO (LOW)	YES
BARIUM	24.8	47.7	73.6	25.1	116	NO (LOW)	NO (LOW)
BERYLLIUM	0.14	0.258	0.423	0.21	0.60	NO (LOW)	NO (LOW)
CADMIUM	0.14	0.200	0.826	0.04	2.1	NO (LOW)	YES
CALCIUM	53.6	0	1,520	85.2	5,320	YES	NO (LOW)
CHROMIUM	7.7	17.9	23.2	14.2	30.6	NO (LOW)	NO (LOW)
COBALT	8.8	6.62	9.55	5.2	12.5	YES	YES
COPPER	5.6	12.4	17.6	7.5	23.8	NO (LOW)	NO (LOW)
IRON	11,300	19,900	27,400	14,800	40,800	NO (LOW)	NO (LOW)
LEAD	11.7	11.1	13.8	8.6	15.4	YES	YES
LITHIUM	8.6	16.0	26.6	13.7	46.6	NO (LOW)	NO (LOW)
MAGNESIUM	654	1,660	2,250	1,100	2,870	NO (LOW)	NO (LOW)
MANGANESE	327	159	537	29	1,410	YES	YES
MERCURY	0.02	0.0202	0.0576	0.02	0.14	NO (LOW)	YES
NICKEL	4.6	11.5	15.7	9.8	23.7	NO (LOW)	NO (LOW)
POTASSIUM	353	894	1,140	718	1,330	NO (LOW)	NO (LOW)
SELENIUM	0.28	0.278	0.501	0.14	0.88	YES	YES
SILVER	0.05	0.0429	0.0607	0.025	0.1	YES	YES
SODIUM	1.15	13.4	81.3	7.4	205	NO (LOW)	NO (LOW)
STRONTIUM	5.4	11.8	16.1	8.5	20.3	NO (LOW)	NO (LOW)
THALLIUM	0.09	0.162	0.215	0.1	0.25	NO (LOW)	NO (LOW)
THORIUM	4.9	7.96	9.56	6.9	11.70	NO (LOW)	NO (LOW)
TIN	0.215	0.310	0.382	0.25	0.455	NO (LOW)	NO (LOW)
VANADIUM	14.1	28.6	36.7	20.9	48.5	NO (LOW)	NO (LOW)
ZINC	11.4	31.7	43.1	24.3	58.2	NO (LOW)	NO (LOW)

If the PBS results are statistically similar to the 15 PB results, the probability that PBS would exhibit 18 or more of the 27 lowest values is 1.76×10^{-15} % (1 in 567 trillion).

D.2.4 Example of Wilcoxon Rank-Sum Test Results


27 comparisons (one for each of 27 metals) of combined Pennsylvanian Subsurface Clay versus Pennsylvanian Subsurface Silt


Appendix D.2.4 Wilcoxon Rank-Sum (WRS) Results of Pennsylvanian Subsurface Clay versus Pennsylvanian Subsurface Silt


	Rank Sum	Rank Sum	Valid N	Valid N	Rank Avg	Rank Avg				Z		PBC and PBL
PARAMETER	PBC	PBL	PBC	PBL	PBC	PBL	U	z	p-level	adjusted	p-level	Similar?
ALUMINUM	16	29	4	5	4.00	5.80	6	-0.9798	0.3272	-0.9798	0.3272	YES
ANTIMONY	24	21	4	5	6.00	4.20	6 [.]	0.9798	0.3272	0.9798	0.3272	YES
ARSENIC	16	29	4	5	4.00	5.80	6	-0.9798	0.3272	-0.9798	0.3272	YES
BARIUM	22	23	4	5	5.50	4.60	8	0.4899	0.6242	0.4899	0.6242	YES
BERYLLIUM	26	19	4	5	6.50	3.80	4	1.4697	0.1417	1.4697	0.1417	YES
CADMIUM	14	31	4	5	3.50	6.20	4	-1.4697	0.1417	-1.4697	0.1417	YES
CALCIUM	24	21	4	5	6.00	4.20	6	0.9798	0.3272	0.9798	0.3272	YES
CHROMIUM	18	27	4	5	4.50	5.40	8	-0.4899	0.6242	-0.4899	0.6242	YES
COBALT	18	27	4	5	4.50	5.40	8	-0.4899	0.6242	-0.4899	0.6242	YES
COPPER	21	24	4	5	5.25	4.80	9	0.2449	0.8065	0.2449	0.8065	YES
IRON	20	25	4	5	5.00	5.00	10	0.0000	1.0000	0.0000	1.0000	YES
LEAD	15	30	4	5	3.75	6.00	5	-1.2247	0.2207	-1.2247	0.2207	YES
LITHIUM	25	20	4	5	6.25	4.00	5	1.2247	0.2207	1.2247	0.2207	YES
MAGNESIUM	15	30	4	5	3.75	6.00	- 5	-1.2247	0.2207	-1.2247	0.2207	YES
MANGANESE	-13	32	4	5	3.25	6.40	3	-1.7146	0.0864	-1.7146	0.0864	YES
MERCURY	14	31	4	5	3.50	6.20	4	-1.4697	0.1417	-1.7566	0.0790	YES
NICKEL	18	27	4	5	4.50	5.40	8	-0.4899	0.6242	-0.4920	0.6228	YES
POTASSIUM	21	24	4	5	5.25	4.80	9	0.2449	0.8065	0.2460	0.8057	YES
SELENIUM	20	25	4	5	5.00	5.00	10	0.0000	1.0000	0.0000	1.0000	YES
SILVER	16	29	4	5	4.00	5.80	6	-0.9798	0.3272	-1.3416	0.1797	YES
SODIUM	27	18	4	5	6.75	3.60	3	1.7146	0.0864	1.7146	0.0864	YES
STRONTIUM	29	16	4	5	7.25	3.20	1	2.2045	0.0275	2.2045	0.0275	NO
THALLIUM	17	28	4	5	4.25	5.60	7	-0.7348	0.4624	-0.7442	0.4568	YES
THORIUM	28.5	16.5	4	5.	7.13	3.30	1.5	2.0821	0.0373	2.0908	0.0366	NO
TIN	29	16	4	5	7.25	3.20	· 1	2.2045	0.0275	2.2138	0.0269	NO
VANADIUM	14.5	30.5	4	5	3.63	6.10	4.5	-1.3472	0.1779	-1.3529	0.1761	YES
ZINC	21	24	4	5	5.25	4.80	9	0.2449	0.8065	0.2449	0.8065	YES

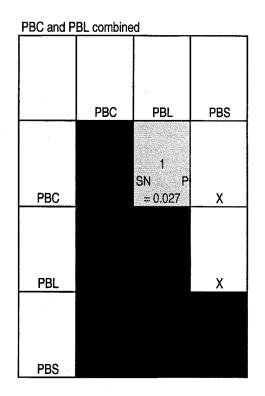
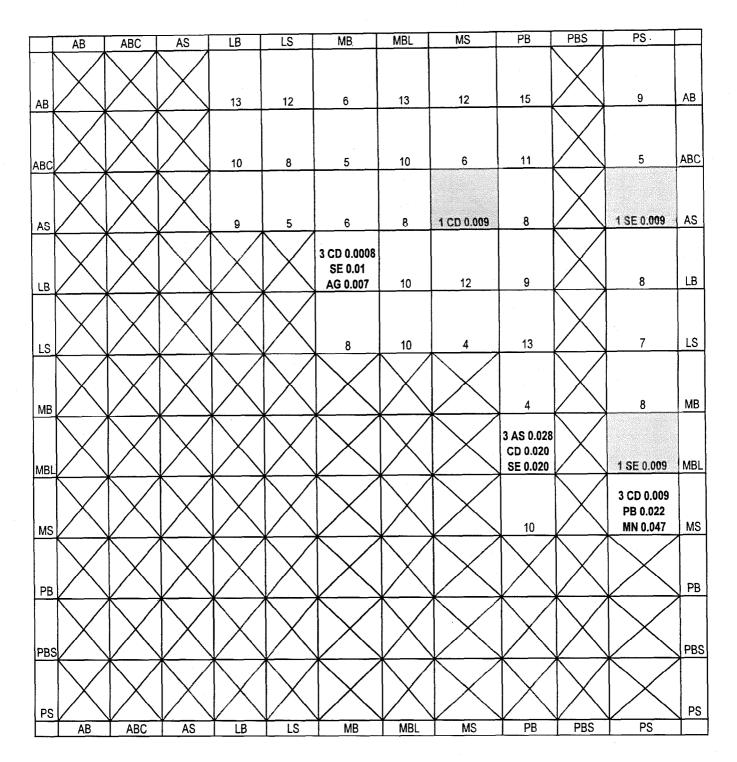

D.2.5 Matrices Conveying Combinations of Soil Types due to Wilcoxon Rank-Sum Test Results

TABLE D-5 SUMMARY OF WILCOXON RANK-SUM RESULTS OF COMPARISONS OF SUBSURFACE SOIL TYPES WITHIN DEPOSITIONAL ENVIRONMENTS

IN MATRIX INDICATES # OF THE 24 METALS THAT WHERE STATISTICALLY DIFFERENT X INDICATES THAT SAMPLE SIZE TOO SMALL FOR COMPARISON


 Table D-6

 Number of Statistically Different Metals (out of 27) between Soil Groups Across Depositional Environments

A. Soler

ł

I.

METALS AS = ARSENIC

AG = SILVER

CD = CADMIUM

MN = MANGANESE

PB = LEAD

SE = SELENIUM

D-3 DETAILED DISCUSSION OF SOIL TYPE CHARACTERIZATION AND CONSOLIDATION

Appendix D-3

Detailed Discussion of Soil Type Characterization and Consolidation

Two different data analyses were conducted in an effort to identify unique soil groups that could be used for background comparisons during site investigations. The first analysis included 24 metals and identified nine different soil groups. Later, three metals were added to the list of original 24 metals. The analyses were then repeated with the entire set of 27 metals. The result of the second analysis was seven (compare to nine) different soil groups. How each analysis was conducted and how the difference in the number of soil groups generated by each analysis was reconciled is described below. These descriptions apply to each of the two data analyses unless otherwise indicated.

As planned, an attempt was made to combine analytical data sets from different soil types for two reasons: (1) to increase the statistical power achievable when performing comparisons of site data to background data, and (2) to minimize, if warranted, the number of background data sets that would be required when performing background comparisons as part of site investigations. Combinations of analytical data from different soil types into groups are referred to herein as soil groups.

Initially, data sets were compared for each of 24 metals within a DE for different grain sizes using a non-parametric Wilcoxon Rank Sum comparison method (methodology outlined in Appendix D-1). The data distribution of each soil type was compared against the data distribution for each of the other 15 soil types (if available), metal by metal, to determine whether a difference exists at the 5% significance level.

With the many comparisons that were done, random statistical fluctuations alone were likely to generate *apparent* differences between soil types where none exist. To counter this effect, binomial probabilities were used to compute the tolerable number of observed differences when the soil types being compared are the same (methodology in Appendix D-1). When considering data for just 24 metals, those probabilities allowed up to two metals to show statistically significant concentration differences before an actual difference in soil type was inferred to exist. If three or more metals exhibited a difference at the 5% significance level, the soil types were inferred to differ and were not combined into the same soil group. When data for 27 metals were considered, the allowable number of differences for soil types combined into a single soil group changed from two to three. The significance of this is explained below, where appropriate.

Based on the Wilcoxon Rank Sum (WRS) comparisons for 24 metals, two or three data sets, each representing soil types, were combined within each DE because the two or three data sets were statistically similar (i.e., not statistically different). The new data sets within a DE were then compared to similarly generated data sets in the other DEs. Based upon a comparison of data sets for statistical similarity, those soil types which were similar were combined into soil groups. These groups are illustrated in Figure 4-1 and the number of soil samples in the combined soil group data sets are displayed on the bottom portion of the figure.

Analysis after the First Field Event

Combination of soil types resulted in nine soil groups. A total of 5 soil groups were derived from the combination of two to three soil types showing statistically similar data distributions, as discussed above. However, loess/glacial outwash surface soil (LS) and residual soil from Mississippian subsurface silt (MBL) soil types exhibited no statistical similarities with other soil types. As a result these two soil types are maintained as separate soil groups. Finally, two soil types, alluvial subsurface clay (ABC) and residual Pennsylvanian subsurface sand (PBS), each had only one sample. Because statistical comparisons could not be performed on data sets of only one sample, these two soil types were not compared with other soil types, resulting in the two remaining soil groups.

1

The infrequency of encountering the ABC and PBS soil types during the first field investigation (tabulated in page 1, Table C-1, Appendix C-1) explains why each soil type is represented by only one sample. Statistically, there also were numerous metal concentration differences between these two soil types and the other soil types. A 95% confidence interval (CI; see Appendix D-1) was calculated for each metal in the combined alluvial subsurface (ABL and ABS) and Pennsylvanian subsurface (PBC and PBL) soil groups. The ABC and PBS data sets were then compared to their counterpart CIs to determine whether the values fell within the interval. In both cases a large proportion of the results (11 of 24 for ABC; and 17 of 24 for PBS) fell outside of their respective confidence interval. Even though incorporating these soil data sets into other data sets would have simplified the data analysis, the numerous differences between these data sets and the other data sets were too significant to justify this consolidation. The significance of the lack of sufficient samples for the ABC and PBS soil types is discussed further in Section 4.3.

The soil groups established for the first 24 metals using statistical analyses were evaluated from a geological/geochemical perspective to ensure that the soil groups are logical. Because the soil parent material largely determines the chemical composition it is likely that soil from similar DEs will exhibit similar metals concentrations. The statistical evaluation of surface soil and several subsurface soil type combinations are consistent with this expectation. In addition to the geological/geochemical evaluation, box and whisker plots (shown in Appendix D-2) were also used to aid in this review. Those plots provide a visual aid for inspecting the data sets to determine whether significant differences exist.

The statistical evaluations indicate that surface soil exhibits similar metal concentration data distributions across three of four DEs and that the similar data sets can be combined into soil group 3 shown in Figure 4-1. This conclusion is supported by accounts that describe surface soil as having been deposited in a similar manner over the entire facility (McElrath, 1988; see Section 2.7.2.2). Because the parent material is likely the same, the soil metals concentrations are also similar. It is also noted that the surface soil results were statistically different from the subsurface soil results. This is also supported geologically because the parent material is likely different for the surface and subsurface soil. Unexpectedly, the loess/glacial surface soil (LS) is not statistically similar to the metals concentrations of surface soil from the other DEs. This dissimilarity does not appear to be an artifact of the chemical analyses. Because of the differences between the LS soil type and the other surface soil types, the LS soil type is referred to as separate soil group (soil group 1). Also notable is that all of the loess/glacial outwash subsurface soil types have been grouped into one soil group (soil group 2). This indicates that the metals concentrations are similar in this DE's subsurface soil irrespective of soil grain size. Because these samples originated from the same parent material it is likely that they would have similar metals concentrations.

Subsurface soil within the Mississippian DE was also combined. In this DE subsurface Mississippian residual clay (MBC) and subsurface residual Mississippian sand (MBS) were combined into soil group 6 because of their chemical similarity. However, the Mississipian subsurface silt (MBL) in the same DE, which would be expected to exhibit metal concentrations intermediate to clay and sand, is measurably different from the clay and sand. It is unclear why the metals concentrations of subsurface silt in this DE are measurably different. This difference does not appear to be an artifact of the chemical analyses. With no basis for maintaining separation between the MBC and MBS soil types, they were combined. Because of the differences between the MBL soil type and the other soil types within the Mississipian DE, it is referred to as a unique soil group (soil group 7). From the observed data set differences, it is clear that soil grain size has an affect on how the subsurface soil from the Mississippian DE is grouped.

Other examples of subsurface soil type combinations according to DE include the subsurface soil from the alluvium DE and the subsurface residual soil from the Pennsylvanian DE. As expected, similarity between soil within each DE was apparent. Two out of the three subsurface soil types

in each of these DEs were combined. However, one soil type in each DE (i.e., alluvial subsurface clay or ABC and Pennsylvanian subsurface sand or PBS) was statistically dissimilar to the other soil types within each respective DE. Coincidentally, only one sample was collected for chemical analysis for each of these two soil types.

As introduced above, with the increase from 24 metals to 27 metals, the cutoff for declaring statistically significant differences between soil groups was increased from 3 metals with statistically significant differences to 4 metals with statistically significant differences. If soil data sets are statistically similar there is a 11.6 % chance of obtaining 3 or more differences out of 24 metals. There is a 15.0 % chance of detecting 3 or more differences out of 27 metals and there is a 4.4% chance of detecting 4 or more differences out of 27 metals and there is a 4.4% chance of detecting 4 or more differences out of 27 metals if the soil groups are actually statistically similar. Setting the acceptance criterion for detectable differences at the 5% significance level, 3 differences out of 24 and 4 differences out of 27 were selected as the cutoff points for detectable differences between data sets.

The primary Wilcoxon Rank-Sum (WRS) tests were repeated on data from 27 metals within each depositional environment (DE). Within the Loess/Glacial DE, all the subsurface soils are similar to each other (0 - 2 metals statistically different) while the surface soil is different (7 - 10 metals statistically different) the subsurface soils. So groups LBS, LBL, and LBS were combined into one group LB while group LS remains its own group (see Table 4-13).

Within the Mississippian DE, MBC is similar to both MBS and MBL (1 and 3 metals statistically different respectively) while MBL and MBS are dissimilar (9 metals statistically different). Because MBC is more similar to MBS than to MBL, MBC and MBS were combined into one group, MB, while MBL was relegated to its own group (see Table 4-13). The surface soil in this DE (i.e., MS) is different (7 - 9 metals statistically different) from the subsurface soils so MS remains its own group (see Table 4-13).

Within the Pennsylvanian DE, PBL is similar to both PBC and PS (3 and 0 metals that are statistically different, respectively) while PBC and PS are dissimilar (4 metals that are statistically different). PBL and PBC were combined into one group, AB, with preference to combining soil types at different depths within a DE rather than combining soil types of similar grain size across DEs. PS and PBS (only one sample) remain in their own groups (see Table 4-13).

Within the Alluvial DE, ABS is similar to both ABL and AS (1 metal statistically different) while ABL and AS are dissimilar (4 metals statistically different). ABS and ABL were combined into one group, AB, again with preference given to combining data within a DE rather than across DEs (see Table 4-13). AS and PBC (only one sample) remain in their own groups.

At this point, 11 soil groups had been generated based on the analysis of data for 27 metals. Two of the soil groups contained only one sample whereas the other nine groups each contained more than one sample. A secondary WRS comparison was made to determine whether any of the soil groupings were similar enough that they could be consolidated.

In the secondary WRS comparisons, the 9 (out of 11) remaining soil groupings with more than 1 sample were all compared to each other. PS was similar to AS, MS, MBL, and PB. While AS and MS are similar to each other and MBL and PB are similar to each other, neither MBL nor PB are similar to AS (10 and 9 metals statistically different, respectively) or MS (9 and 12 metals statistically different, respectively). On this basis PS, AS, and MS were combined into group S, while PBC/PBL and MBL (3 metals statistically different) were combined into a group (see Table 4-13). Groups LBC/LBL/LBC and MBC/MBS (3 metals statistically different) were combined into a group (see Table 4-13).

The two soil groups containing one sample (PBS and ABC) each were then compared to the remaining soil groups using a 95% confidence limit test to determine whether they could be

combined statistically with any other group. Both soil groups had more than ten differences from the other soil groups. PBS had 17 out of the 27 metals outside the 95% confidence interval for the PBC/PBL/MBL group while ABC had 15 out of the 27 metals outside the 95% confidence interval for the PBC/PBL/MBL group. Because these values didn't seem similar to the other groups from their DE they were retained as their own soil groups.

At this point 7 combined soil groups remained (also see Table 4-13):

- 1. LS = Loess/Glacial Surface Soil (LS)
- L/MB = Loess/Glacial Subsurface Clay (LBC), Loess/Glacial Subsurface Silt (LBL), Loess/Glacial Subsurface Sand (LBS), Mississippian Subsurface Clay (MBC) and Mississippian Subsurface Sand (MBS)
- 3. S = Mississippian Surface Soil (MS), Pennsylvanian Surface Soil (PS), and Alluvial Surface Soil (AS)
- 4. PB/MBL = Pennsylvanian Subsurface Clay (PBC),Pennsylvanian Subsurface Silt (PBL), and Mississippian Subsurface Silt (MBS
- 5. PBS = Pennsylvanian Subsurface Sand (PBS) [only 1 sample]
- 6. ABC = Alluvial Subsurface Clay (ABC)) [only 1 sample]
- 7. AB = Alluvial Subsurface Silt (ABL) and Alluvial Subsurface Sand (ABS)

The seven soil groups illustrated in Table 4-13 appears to be valid from a purely statistical perspective. However, combining the subsurface loess/glacial soil with subsurface Mississippian clay and sand soil (MBC and MBS) to form a soil group and combining subsurface Pennsylvanian clay and silt (PBC and PBL) to form a soil group is problematic from a geological point of view. As stated above and in Sections 3 and 4, soil within a DE are expected to have similar metal concentrations and as a result group together because they have a similar parent material. On the other hand, because the parent material is different from DE to DE it is less likely these soil types would be similar. This is especially the case for the loess/glacial soil and the Pennsylvanian and Mississippian derived soil because their parent material is expected to be geochemically different. It is noted that the differences between the alluvial soil and the soil in other DEs. Furthermore, it is unlikely that certain soil grain sizes would be similar to other grains sizes across DEs, while others would not as was shown by the pure statistical result (i.e., outcome of 7 soil groups).

It is also noted that the three additional metals analyzed (lithium, strontium, and thorium) did not generate any statistically detectable differences among metals in various soil types. Instead, the reclassifications of soil types into different soil groups resulted from a change in the acceptance criterion for detectable differences (i.e., three differences instead of four). This criterion was used as a guide to accommodate the realization that the number of observed differences among metals is likely to increase with the number of metals included in the data analysis. As such it is not considered to carry the same importance as similarities or differences among DEs. Finally, the differences between the two soil grouping schemes (7 versus 9 soil groups) are relatively minor. Thus, the outcome of background comparisons during site investigations should be similar no matter which of the two grouping schemes is used. Given all of these considerations, the original nine soil groupings determined using only the 24 metals (Figure 4-1) were selected as the final soil groupings because the geological considerations were judged to outweigh the purely statistical evaluations.

Analysis after the Supplemental Field Event

Two additional samples of type ABC were collected and analyzed during the supplemental field event in October 2000. With the addition of these two samples the ABC soil group now had three samples, enough for WRS comparisons to the other soil groups. Comparisons of the ABC metals to each Alluvial soil type (AS, ABS, and ABL) as well as each soil type in the other DEs produced at least 5 of 27 metals statistically different, so the ABC remained in its own soil group.

Summary

A summary of analytical results table was generated for each of the nine soil groups to provide an overview of each soil group. These tables are numbered Tables 4-2 through 4-10. Each group represents soil types that have similar metal concentration distributions. Four of the soil types could not be combined with any other soil type. Within a DE a maximum of three soil groups exists. Thus, for any SWMU that lies entirely within a single DE, no more than three background data sets will be needed for comparisons with site data to determine whether the site metal concentrations exceed background concentrations. For each DE two of the soil groups exist solely because of differences between surface and subsurface soil. One soil group (PBS or soil group #9, Figure 4-1) remains which does not have a sufficient number of samples for background comparison. Please refer to Sections 4.4 and Section 6.2 for more information on the data collection in these soil groups.

APPENDIX E

HUMAN HEALTH AND ECOLOGICAL RISK-BASED CRITERIA

TABLE E-1

HUMAN HEALTH AND ECOLOGICAL RISK-BASED CRITERIA BASEWIDE BACKGROUND SOIL INVESTIGATION REPORT NAVAL SURFACE WARFARE CENTER CRANE, INDIANA

	U.S. EPA SSL ⁽¹⁾			Region 9	PRG ⁽²⁾	IDEM Tier 1 Default Cleanup Level ⁽³⁾				
			Migration to	Residential	Industrial	Resident	tial Land Use	Non-Reside	Region 5	
	Ingestion	Inhalation	Ground Water	Land Use	Land Use	Surface Soil	Subsurface Soil	Surface Soil	Subsurface Soil	EDQL ⁽⁴⁾
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum				75000	100000					
Antimony	31		0.3	30	750					0.1423
Arsenic	0.4	750	1	0.38	3	3.9	29.2	19.6	29.2	5.7
Barium	5500	690000	82	5200	100000	1000	1000	1000	1000	1.04
Beryllium	0.1	1300	3	0.14	1.2	1.87	63.2	10.1	63.2	1.06
Cadmium	78	1800	0.4	37	930	24	7.52	1000	154	0.18095
Calcium										
Chromium,	390	270	2	30 ⁽⁵⁾	64 ⁽⁵⁾	1000	38.4	1000	196	0.4
Cobalt				3300	29000					0.14033
Copper				2800	70000					0.3132
Iron				22000	100000					
Lead	400 ⁽⁶⁾			400 ⁽⁶⁾	1000 ⁽⁶⁾					0.45053
Lithium				1,500	37,000					
Magnesium										
Manganes				3100	45000					
Mercury	23	10	0.1	22	560	54.7	2.09	147	32	0.0079
Nickel	1600	13000	7	1500	37000	1000	130	1000	1000	13.6
Potassium										
Selenium	390		0.3	370	9400	1000	5.2	1000	53.1	0.02765
Silver	390		2	370	9400	1000	31	1000	86.9	4.04
Sodium										
Strontium				45,000	100,000					
Thallium			0.04	6 ⁽⁷⁾	150 ⁽⁷⁾	1000	2.85	1000	1000	0.05692
Thorium										
Tin				45000	100000					7.62
Vanadium	550		300	520	13000					1.59
Zinc	23000		620	22000	100000	1000	1000	1000	1000	6.62

1 U.S. EPA Soil Screening Levels. (Soil Screening Guidance Technical Background Document. EPA/540/R-95/128. Office of Solid Waste and Emergency Response, Washington, D.C. Directive 9355.4-17A, May 1996.) For migration to ground water, values associated with a dilution and attenuation factor (DAF) of 1 are used.

2 U.S. EPA Region 9 Preliminary Remediation Goal. (U.S. EPA Region 9, May 1998.)

3 Risk-Integrated System of Cleanups. Indiana Department of Environmental Management. October 21, 1997.

4 U.S. EPA Region 5 Ecological Data Quality Levels (April 1998).

5 Hexavalent chromium.

6 OSWER soil screening level for residential land use (U.S. EPA, July 1994).

7 Thallium carbonate.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

ome M. Hunsich

GNATURE

Environmental Protection Department Manager 01/39/01 TITLE