```
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","375-22-
4","PFBA","2.280000","ng/L","J",".14","MDL","","T","","","5.00","LOQ","YES","-99.000000","",".250000",".000500
",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","307-24-
4","PFHxA",".400000","ng/L","J",".19","MDL","","T","",","5.00","LOQ","YES","-99.000000","",".250000",".000500
",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","375-85-
9","PFHpA",".190000","ng/L","J",".16","MDL","","T","",","5.00","LOQ","YES","-99.000000","",".250000",".000500
",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","335-67-
1","PFOA","1.380000","ng/L","J",".18","MDL","","T","","","5.00","LOQ","YES","-99.000000","",".250000",".000500
",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","375-95-
1","PFNA","1.000000","ng/L","U",".26","MDL","","T",","","5.00","LOQ","YES","-99.000000",",".250000",".00050
0","1.00",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","335-76-
2","PFDA",".500000","ng/L","U",".16","MDL",",""T","",","5.00","LOQ","YES","-99.000000","",".250000",".000500
",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","2058-94-
8","PFUnA","1.000000","ng/L","U",".29","MDL",",""T","",","5.00","LOQ","YES","-99.000000","",".250000",".0005
00","1.00",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","307-55-
1","PFDoA",".500000","ng/L","U",".18","MDL",","'","",","5.00","LOQ","YES","-99.000000","",".250000",".00050
0",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","72629-94-
8","PFTrDA",".500000","ng/L","U",".15","MDL",","T","",","5.00","LOQ","YES","-99.000000","",".250000",".0005
00",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","376-06-
7","PFTeDA","1.000000","ng/L","U",".25","MDL","","T","","","5.00","LOQ","YES","-99.000000","",".250000",".000
500","1.00",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","2355-31-
9","NMeFOSAA","2.000000","ng/L","U",".56","MDL",","T","",","5.00","LOQ","YES","-99.000000","",.250000",".
000500","2.00",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","2991-50-
6","NEtFOSAA","1.000000","ng/L","U",".49","MDL","","T","",","5.00","LOQ","YES","-99.000000","",".250000",".0
00500","1.00",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","375-73-
5","PFBS",".500000","ng/L","U",".13","MDL",",",","",","5.00","LOQ","YES","-99.000000","",."250000",".000500"
,".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","355-46-
4","PFHxS",".400000","ng/L","U",".11","MDL","","T","",","5.00","LOQ","YES","-99.000000","",".250000",".000500
",".40",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","1763-23-
1","PFOS",".500000","ng/L","U",".19","MDL",",",T","",","5.00","LOQ","YES","-99.000000","",".250000",".000500"
,".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2105","13C4-
PFBA",".950000","ng/L","","-99.00","NA","","SIS","95.00","",--99.00","NA","YES","1.000000",",".250000",".00050
0",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2217","13C5-
PFHxA",".870000","ng/L","",-99.00","NA","","SIS","87.00","",-99.00","NA","YES","1.000000","",".250000",".0005
00",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2218","13C4-
PFHpA",".920000","ng/L","","-99.00","NA","","SIS","92.00","","-99.00","NA","YES","1.000000","",.250000",".0005
```

00",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2219","13C8-
PFOA","1.050000","ng/L","","-99.00","NA","","SIS","105.00","","-99.00","NA","YES","1.000000","",".250000",". 000 500",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2221","13C9-
PFNA",".920000","ng/L","","-99.00","NA","","SIS","92.00","","-99.00","NA","YES","1.000000","",".250000",". 00050 0",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2222","13C6-
PFDA",".990000","ng/L","","-99.00","NA","","SIS","99.00","","-99.00","NA","YES","1.000000","",".250000",". 00050 0",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2223","13C7-
PFUnA","1.050000","ng/L","","-99.00","NA","","SIS","105.00","","-99.00","NA","YES","1.000000","",".250000",". 00 0500",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2112","13C2-
PFDoA","1.010000","ng/L","","-99.00","NA","","SIS","101.00","","-99.00","NA","YES","1.000000","",".250000",". 00 0500",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2224","13C2-
PFTeDA",".970000","ng/L","","-99.00","NA","","SIS","97.00","","-99.00","NA","YES","1.000000","",".250000",". 000 500",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-1838","d3-
MeFOSAA","1.140000","ng/L","","-99.00","NA","","SIS","114.00","","-99.00","NA","YES","1.000000","",".250000", ".000500",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-1839","d5-
EtFOSAA","1.030000","ng/L","","-99.00","NA","","SIS","103.00","","-99.00","NA","YES","1.000000","",".250000",". 000500",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2226","13C3-
PFBS",".930000","ng/L","","-99.00","NA","","SIS","100.00","","-99.00","NA","YES",".930000","",".250000",". 00050 0",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2227","13C3-
PFHxS",".830000","ng/L","","-99.00","NA","","SIS","88.00","","-99.00","NA","YES",".950000","",".250000",". 00050 0",".50",""
"CS100PB-FS","SOP 5-369","Initial","CS100PB-FS","BNO","BDO-2228","13C8-
PFOS",".950000","ng/L","","-99.00","NA","","SIS","99.00","","-99.00","NA","YES",".960000","",".250000",". 000500 ",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","375-22-
4","PFBA","17.880000","ng/L","B",".14","MDL","","T","89.00","","5.00","LOQ","YES","20.000000","",".250000",". 0 00500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","307-24-
4","PFHxA","16.960000","ng/L","",".19","MDL","","T","84.00","","5.00","LOQ","YES","20.200000","",".250000",".0 00500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","375-85-
9","PFHpA","15.550000","ng/L","",".16","MDL","","T","78.00","","5.00","LOQ","YES","20.000000","",".250000",".0 00500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","335-67-
1","PFOA","15.380000","ng/L","",".18","MDL","","T","77.00","","5.00","LOQ","YES","20.000000","",".250000",". 00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","375-95-
1","PFNA","16.650000","ng/L","",".26","MDL","","T","83.00","","5.00","LOQ","YES","20.000000","",".250000",".00 0500","1.00",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","335-76-
2","PFDA","15.780000","ng/L","",".16","MDL","","T","79.00","","5.00","LOQ","YES","20.000000","",".250000",". 00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","2058-94-
8","PFUnA","14.740000","ng/L","",".29","MDL","","T","74.00","","5.00","LOQ","YES","20.000000","",".250000",".0

00500","1.00",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","307-55-
1","PFDoA","17.440000","ng/L","",".18","MDL","","T","87.00","","5.00","LOQ","YES","20.000000","",".250000",".0 00500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","72629-94-
8","PFTrDA","16.980000","ng/L","",".15","MDL","","T","85.00","","5.00","LOQ","YES","20.000000","",".250000",". 000500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","376-06-
7","PFTeDA","15.910000","ng/L","",".25","MDL","","T","80.00","","5.00","LOQ","YES","20.000000","",".250000",". 000500","1.00",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","2355-31-
9","NMeFOSAA","17.480000","ng/L","",".56","MDL","","T","87.00","","5.00","LOQ","YES","20.000000","",".25000 0",".000500","2.00","'
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","2991-50-
6","NEtFOSAA","15.030000","ng/L","",".49","MDL","","T","75.00","","5.00","LOQ","YES","20.000000","",".250000 ",".000500","1.00",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","375-73-
5","PFBS","15.170000","ng/L","",".13","MDL","","T","75.00","","5.00","LOQ","YES","20.200000","",".250000",". 00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","355-46-
4","PFHxS","15.570000","ng/L","",".11","MDL","","T","77.00","","5.00","LOQ","YES","20.200000","",".250000",".0 00500",".40",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","1763-23-
1","PFOS","19.490000","ng/L","",".19","MDL","","T","97.00","","5.00","LOQ","YES","20.000000","",".250000",". 00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2105","13C4-
PFBA",".940000","ng/L","","-99.00","NA","","SIS","94.00","","-99.00","NA","YES","1.000000","",".250000",".00050 0",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2217","13C5-
PFHxA","1.060000","ng/L","","-99.00","NA","","SIS","106.00","","-99.00","NA","YES","1.000000","",".250000",".00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2218","13C4-
PFHpA","1.100000","ng/L","","-99.00","NA","","SIS","110.00","","-99.00","NA","YES","1.000000","",".250000",". 00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2219","13C8-
PFOA","1.260000","ng/L","","-99.00","NA","","SIS","126.00","","-99.00","NA","YES","1.000000","",".250000",".000 500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2221","13C9-
PFNA","1.110000","ng/L","","-99.00","NA","","SIS","111.00","","-99.00","NA","YES","1.000000","",".250000",". 000 500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2222","13C6-
PFDA","1.100000","ng/L","","-99.00","NA","","SIS","110.00","","-99.00","NA","YES","1.000000","",".250000",". 000 500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2223","13C7-
PFUnA","1.180000","ng/L","","-99.00","NA","","SIS","118.00","","-99.00","NA","YES","1.000000","",".250000",". 00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2112","13C2-
PFDoA","1.040000","ng/L","","-99.00","NA","","SIS","104.00","","-99.00","NA","YES","1.000000","",".250000",". 00 0500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2224","13C2-
PFTeDA","1.060000","ng/L","","-99.00","NA","","SIS","106.00","","-99.00","NA","YES","1.000000","",".250000",".0 00500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-1838","d3-
MeFOSAA","1.250000","ng/L","","-99.00","NA","","SIS","125.00","","-99.00","NA","YES","1.000000","",".250000",
".000500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-1839","d5-
EtFOSAA","1.320000","ng/L","","-99.00","NA","","SIS","132.00","","-99.00","NA","YES","1.000000","",".250000",". 000500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2226","13C3-
PFBS","1.240000","ng/L","","-99.00","NA","","SIS","134.00","","-99.00","NA","YES",".930000","",".250000",". 0005 00",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2227","13C3-
PFHxS","1.020000","ng/L","","-99.00","NA","","SIS","108.00","","-99.00","NA","YES",".950000","",".250000",". 000 500",".50",""
"CS101LCS-FS","SOP 5-369","Initial","CS101LCS-FS","BNO","BDO-2228","13C8-
PFOS",".990000","ng/L","","-99.00","NA","","SIS","104.00","","-99.00","NA","YES",".960000","",".250000",". 00050 0",".50",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","375-22-
4","PFBA","5.780000","ng/L","B",".13","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",".000500 ",".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","307-24-
4","PFHxA","6.290000","ng/L","",".18","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",".000500 ",".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","375-85-
9","PFHpA","2.520000","ng/L","J",".15","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",".00050 0",".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","335-67-
1","PFOA","9.520000","ng/L","B",".17","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 00050 0",".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","375-95-
1","PFNA",".940000","ng/L","U",".25","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 000500 ",".94",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","335-76-
2","PFDA",".470000","ng/L","U",".15","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",".000500 ",".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","2058-94-
8","PFUnA",".940000","ng/L","U",".27","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 00050 0",".94",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","307-55-
1","PFDoA",".470000","ng/L","U",".17","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 00050 0",".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","72629-94-
8","PFTrDA",".470000","ng/L","U",".14","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 0005 00",".47","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","376-06-
7","PFTeDA",".940000","ng/L","U",".24","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 0005 00",".94",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","2355-31-
9","NMeFOSAA","1.890000","ng/L","U",".53","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 000500","1.89",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","2991-50-
6","NEtFOSAA",".940000","ng/L","U",".46","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",".00 0500",".94",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","375-73-
5","PFBS","6.430000","ng/L","",".12","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",".000500", ".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","355-46-
4","PFHxS","40.300000","ng/L","",".10","MDL","","T","","","4.72","LOQ","YES","-99.000000","",".265000",". 00050

0",".38","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","1763-23-
1","PFOS","8.830000","ng/L","",".18","MDL","',"T","',"',"4.72","LOQ","YES","-99.000000","',".265000",".000500", ".47",""
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2105","13C4-
PFBA",".340000","ng/L","',"-99.00","NA","","SIS","36.00","',"-99.00","NA","YES",".940000","",".265000",". 000500 ",".50","'"
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2217","13C5-
PFHxA",".830000","ng/L","","-99.00","NA","',"SIS","88.00","","-99.00","NA","YES",".940000","",".265000",".00050 0",".50","'"
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2218","13C4-
PFHpA","1.060000","ng/L","',"-99.00","NA","","SIS","113.00","","-99.00","NA","YES",".940000","',".265000",". 000 500",".50","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2219","13C8-
PFOA",".910000","ng/L","","-99.00","NA","","SIS","97.00","',"-99.00","NA","YES",".940000","",". $265000 ", " .000500$ ",".50","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2221","13C9-
PFNA",".870000","ng/L","","-99.00","NA","',"SIS","92.00","',"-99.00","NA","YES",".940000","',".265000",". 000500 ",".50","'"
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2222","13C6-
PFDA",".890000',"ng/L","","-99.00","NA","","SIS","95.00","',"-99.00","NA","YES",".940000","',". $265000 ", " .000500$ ",".50","'"
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2223","13C7-
PFUnA",".850000","ng/L","',"-99.00","NA","',"SIS","90.00","","-99.00","NA","YES",".940000',"',". 265000 ",". 00050 0",".50","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2112","13C2-
PFDoA",".850000","ng/L","","-99.00","NA","',"SIS","90.00","","-99.00","NA","YES",".940000","",". 265000 ",".00050 0",".50","'"
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2224","13C2-
PFTeDA",".730000","ng/L","',"-99.00","NA","","SIS","78.00","',"-99.00","NA","YES",".940000","",".265000",".0005 00",".50","'"
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-1838","d3-
MeFOSAA","1.130000","ng/L","","-99.00","NA","","SIS","120.00","","-99.00","NA","YES",".940000","",".265000",". 000500",".50","'"
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-1839","d5-
EtFOSAA","1.070000',"ng/L","","-99.00","NA","',"SIS","114.00","',"-99.00","NA","YES",".940000","",".265000",". 0 00500",".50","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2226","13C3-
PFBS",".790000","ng/L","","-99.00","NA","","SIS","90.00","","-99.00","NA","YES",".880000","',". 265000 ",". 000500 ",".50","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2227","13C3-
PFHxS","1.160000","ng/L","","-99.00","NA","","SIS","130.00","","-99.00","NA","YES",".890000","",".265000",".000 500",".50","'
"NASB-BLL15-MW-01-110118","SOP 5-369","Initial","J9154-FS","BNO","BDO-2228","13C8-
PFOS",".970000","ng/L","","-99.00","NA","","SIS","107.00","","-99.00","NA","YES",".900000","",".265000",". 00050 0",".50","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","375-22-
4","PFBA","2.080000","ng/L","J",".13","MDL","","T","","","4.55","LOQ","YES","-99.000000","",".275000",".000500 ",".45","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","307-24-
4","PFHxA","1.100000","ng/L","J",".17","MDL","',"T","',"',"4.55","LOQ","YES","-99.000000","',". $275000 ", " .00050$ 0",".45","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","375-85-
9","PFHpA",".450000","ng/L","U",".15","MDL","","T","","","4.55","LOQ","YES","-99.000000","',". 275000 ",". 00050

0",".45","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","335-67-
1","PFOA","3.080000","ng/L","J",".16","MDL","","T","","","4.55","LOQ","YES","-99.000000","",".275000",". 000500 ",".45","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","375-95-
1","PFNA",".910000","ng/L","U",".24","MDL","","T","","","4.55","LOQ","YES","-99.000000","",".275000",". 000500 ",".91","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","335-76-
2","PFDA",".450000","ng/L","U",".15","MDL","","T","","","4.55","LOQ","YES","-99.000000","",".275000",".000500 ",".45","'"
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","2058-94-
8","PFUnA",".910000","ng/L","U",".26","MDL","',"T","","","4.55","LOQ","YES","-99.000000","',".275000",".00050 0",".91","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","307-55-
1","PFDoA",".450000","ng/L","U",".16","MDL","',"T","',"',"4.55","LOQ","YES","-99.000000","',".275000",".00050 0",".45","'"
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","72629-94-
8","PFTrDA",".450000","ng/L","U",".14","MDL","","T","","","4.55","LOQ","YES","-99.000000","",". $275000 ", " .0005$ 00",".45","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","376-06-
7","PFTeDA",".910000","ng/L","U",".23","MDL","","T","","',"4.55","LOQ","YES","-99.000000","",". $275000 ", " .0005$ 00",".91","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","2355-31-
9","NMeFOSAA","1.820000","ng/L","U",".51","MDL","",'T","',"',"4.55","LOQ","YES","-99.000000","',".275000",". 000500","1.82","'"
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","2991-50-
6","NEtFOSAA",".910000","ng/L","U",".45","MDL","","T","","","4.55","LOQ","YES","-99.000000","",".275000",". 00 0500",".91","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","375-73-
5","PFBS","1.080000","ng/L","J",".12","MDL","',"T","',"',"4.55","LOQ","YES","-99.000000","',".275000",".000500" ,".45","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","355-46-
4","PFHxS","8.440000","ng/L","",".10","MDL","',"T","',"","4.55","LOQ","YES","-99.000000","',".275000",". 000500 ",".36","'"
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","1763-23-
1","PFOS","7.630000","ng/L","',".17","MDL","","T","","","4.55","LOQ","YES","-99.000000","",".275000",".000500", ".45",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2105","13C4-
PFBA",".460000","ng/L","',"-99.00","NA","","SIS","51.00","',"-99.00","NA","YES",".910000","",".275000",". 000500 ",".50","'"
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2217","13C5-
PFHxA",".890000","ng/L","","-99.00","NA","',"SIS","98.00","","-99.00","NA","YES",".910000","",".275000",".00050 0",".50","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2218","13C4-
PFHpA",".920000","ng/L","","-99.00","NA","","SIS","101.00","","-99.00","NA","YES",".910000","",". 275000 ",". 0005 00",".50',"'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2219","13C8-
PFOA",".770000","ng/L","',"-99.00","NA","","SIS","84.00","',"-99.00","NA","YES",".910000","',".275000",". 000500 ",".50","'"
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2221","13C9-
PFNA",".650000","ng/L","","-99.00","NA","","SIS","71.00","',"-99.00","NA","YES",".910000","",".275000",". 000500 ",".50","'
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2222","13C6-
PFDA",".710000","ng/L","","-99.00","NA","","SIS","78.00","',"-99.00","NA","YES",".910000","',".275000",". 000500

```
",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2223","13C7-
PFUnA",".760000","ng/L","","-99.00","NA","","SIS","84.00","","-99.00","NA","YES",".910000","",".275000",".00050
0",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2112","13C2-
PFDoA",".680000","ng/L","","-99.00","NA","","SIS","74.00","","-99.00","NA","YES",".910000","",".275000",".00050
0",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2224","13C2-
PFTeDA",".570000","ng/L","","-99.00","NA","","SIS","63.00","","-99.00","NA","YES",".910000","",".275000",".0005
00",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-1838","d3-
MeFOSAA",".600000","ng/L","","-99.00","NA","","SIS","66.00","","-99.00","NA","YES",".910000","",".275000",".00
0500",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-1839","d5-
EtFOSAA",".570000","ng/L","","-99.00","NA","","SIS","63.00","","-99.00","NA","YES",".910000","",".275000",".000
500",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2226","13C3-
PFBS","1.000000","ng/L","","-99.00","NA","","SIS","118.00","","-99.00","NA","YES",".850000","",".275000",".0005
00",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2227","13C3-
PFHxS",".920000","ng/L","","-99.00","NA","","SIS","107.00","","-99.00","NA","YES",".860000","",".275000",".0005
00",".50",""
"NASB-BLL15-MW-02-110118","SOP 5-369","Initial","J9155-FS","BNO","BDO-2228","13C8-
PFOS",".800000","ng/L","","-99.00","NA","","SIS","93.00","","-99.00","NA","YES",".870000","",".275000",".000500
",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","375-22-
4","PFBA",".430000","ng/L","U",".12","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".000500"
,".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","307-24-
4","PFHxA",".500000","ng/L","J",".16","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".000500
",".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","375-85-
9","PFHpA",".430000","ng/L","U",".14","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".00050
0",".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","335-67-
1","PFOA","2.880000","ng/L","J",".16","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".000500
",".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","375-95-
1","PFNA",".860000","ng/L","U",".22","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".000500
",".86",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","335-76-
2","PFDA",".430000","ng/L","U",".14","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".000500
",".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","2058-94-
8","PFUnA",".860000","ng/L","U",".25","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".00050
0",".86",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","307-55-
1","PFDoA",".430000","ng/L","U",".16","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".00050
0",".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","72629-94-
8","PFTrDA",".430000","ng/L","U",".13","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".0005
00",".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","376-06-
7","PFTeDA",".860000","ng/L","U",".22","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".0005
```

00",".86",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","2355-31-
9","NMeFOSAA","1.720000","ng/L","U",".48","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",". 000500","1.72",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","2991-50-
6","NEtFOSAA",".860000","ng/L","U",".42","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".00 0500",".86",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","375-73-
5","PFBS",".420000","ng/L","J",".11","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".000500", ".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","355-46-
4","PFHxS","3.990000","ng/L","J",".09","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",". 00050 0",".34",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","1763-23-
1","PFOS","4.500000","ng/L","",".16","MDL","","T","","","4.31","LOQ","YES","-99.000000","",".290000",".000500", ".43",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2105","13C4-
PFBA",".250000","ng/L","","-99.00","NA","","SIS","29.00","","-99.00","NA","YES",".860000","",".290000",".000500 ",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2217","13C5-
PFHxA",".810000","ng/L","","-99.00","NA","","SIS","94.00","","-99.00","NA","YES",".860000","",".290000",". 00050 0",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2218","13C4-
PFHpA","1.000000","ng/L","","-99.00","NA","","SIS","115.00","","-99.00","NA","YES",".860000","",".290000",". 000 500",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2219","13C8-
PFOA",".860000","ng/L","","-99.00","NA","","SIS","100.00","","-99.00","NA","YES",".860000","",".290000",". 00050 0",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2221","13C9-
PFNA",".780000","ng/L","","-99.00","NA","","SIS","90.00","","-99.00","NA","YES",".860000","",".290000",". 000500 ",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2222","13C6-
PFDA",".790000","ng/L","","-99.00","NA","","SIS","92.00","","-99.00","NA","YES",".860000","",".290000",". 000500 ",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2223","13C7-
PFUnA",".800000","ng/L","","-99.00","NA","","SIS","93.00","","-99.00","NA","YES",".860000","",".290000",". 00050 0",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2112","13C2-
PFDoA",".670000","ng/L","","-99.00","NA","","SIS","78.00","","-99.00","NA","YES",".860000","",".290000",". 00050 0",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2224","13C2-
PFTeDA",".550000","ng/L","","-99.00","NA","","SIS","63.00","","-99.00","NA","YES",".860000","",".290000",". 0005 00",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-1838","d3-
MeFOSAA",".800000","ng/L","","-99.00","NA","","SIS","93.00","","-99.00","NA","YES",".860000","",".290000",". 00 0500",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-1839","d5-
EtFOSAA",".750000","ng/L","","-99.00","NA","","SIS","87.00","","-99.00","NA","YES",".860000","",".290000",". 000 500",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2226","13C3-
PFBS",".800000","ng/L","","-99.00","NA","","SIS","100.00","","-99.00","NA","YES",".800000","",".290000",". 00050 0",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2227","13C3-
PFHxS",".930000","ng/L","","-99.00","NA","","SIS","114.00","","-99.00","NA","YES",".820000","",".290000",". 0005

00",".50",""
"NASB-BLL15-MW-03-110118","SOP 5-369","Initial","J9156-FS","BNO","BDO-2228","13C8-
PFOS",".760000","ng/L","","-99.00","NA","","SIS","92.00","","-99.00","NA","YES",".820000","",".290000",". 000500 ",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","375-22-
4","PFBA","35.530000","ng/L","",".13","MDL","","T","126.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","307-24-
4","PFHxA","27.120000","ng/L","",".18","MDL","","T","93.00","","4.72","LOQ","YES","28.580000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","375-85-
9","PFHpA","23.220000","ng/L","",".15","MDL","","T","82.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","335-67-
1","PFOA","26.710000","ng/L","",".17","MDL","","T","84.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","375-95-
1","PFNA","30.590000","ng/L","",".25","MDL","","T","108.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".94",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","335-76-
2","PFDA","22.440000","ng/L","",".15","MDL","","T","79.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","2058-94-
8","PFUnA","23.050000","ng/L","",".27","MDL","","T","81.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".94",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","307-55-
1","PFDoA","24.020000","ng/L","",".17","MDL","","T","85.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","72629-94-
8","PFTrDA","27.500000","ng/L","",".14","MDL","","T","97.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","376-06-
7","PFTeDA","23.740000","ng/L","",".24","MDL","","T","84.00","","4.72","LOQ","YES","28.300000","J9156MSFS",".265000",".000500",".94",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","2355-31-
9","NMeFOSAA","24.460000","ng/L","",".53","MDL","","T","86.00","","4.72","LOQ","YES","28.300000","J9156MS -FS",".265000",".000500","1.89",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","2991-50-
6","NEtFOSAA","28.470000","ng/L","",".46","MDL","","T","101.00","","4.72","LOQ","YES","28.300000","J9156MS -FS",".265000",".000500",".94",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","375-73-
5","PFBS","25.510000","ng/L","",".12","MDL","","T","88.00","","4.72","LOQ","YES","28.580000","J9156MSFS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","355-46-
4","PFHxS","28.660000","ng/L","",".10","MDL","","T","86.00","","4.72","LOQ","YES","28.580000","J9156MSFS",".265000",".000500",".38",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","1763-23-
1","PFOS","31.920000","ng/L","",".18","MDL","","T","97.00","","4.72","LOQ","YES","28.300000","J9156MS-
FS",".265000",".000500",".47",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2105","13C4-
PFBA",".300000","ng/L","","-99.00","NA","","SIS","31.00","","-99.00","NA","YES",".940000","J9156MS-
FS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2217","13C5-
PFHxA",".800000","ng/L","","-99.00","NA","","SIS","84.00","","-99.00","NA","YES",".940000","J9156MS-

FS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2218","13C4-PFHpA",".980000","ng/L","","-99.00","NA","","SIS","104.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2219","13C8-
PFOA",".820000","ng/L","","-99.00","NA","","SIS","87.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2221","13C9-PFNA",".660000","ng/L","","-99.00","NA","","SIS","70.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2222","13C6-PFDA",".750000","ng/L","","-99.00","NA","","SIS","79.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2223","13C7-PFUnA",".780000","ng/L","","-99.00","NA","","SIS","83.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2112","13C2-
PFDoA",".700000","ng/L","","-99.00","NA","","SIS","74.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2224","13C2-
PFTeDA",".570000","ng/L","","-99.00","NA","","SIS","60.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-1838","d3-
MeFOSAA",".770000","ng/L","","-99.00","NA","","SIS","82.00","","-99.00","NA","YES",".940000","J9156MS-
FS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-1839","d5-
EtFOSAA",".640000","ng/L","","-99.00","NA","","SIS","68.00","","-99.00","NA","YES",".940000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2226","13C3-
PFBS",".690000","ng/L","","-99.00","NA","","SIS","78.00","","-99.00","NA","YES",".880000","J9156MS-
FS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2227","13C3-
PFHxS",".890000","ng/L","","-99.00","NA","","SIS","100.00","","-99.00","NA","YES",".890000","J9156MSFS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MS-FS","BNO","BDO-2228","13C8-
PFOS",".770000","ng/L","","-99.00","NA","","SIS","85.00","","-99.00","NA","YES",".900000","J9156MS-
FS",".265000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","375-22-
4","PFBA","24.480000","ng/L","",".12","MDL","","T","95.00","28.1","4.31","LOQ","YES","25.860000","J9156MSDFS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","307-24-
4","PFHxA","24.470000","ng/L","",".16","MDL","","T","92.00","1.1","4.31","LOQ","YES","26.120000","J9156MSDFS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","375-85-
9","PFHpA","21.070000","ng/L","",".14","MDL","","T","81.00","1.2","4.31","LOQ","YES","25.860000","J9156MSDFS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","335-67-
1","PFOA","22.770000","ng/L","",".16","MDL","","T","77.00","8.7","4.31","LOQ","YES","25.860000","J9156MSD-
FS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","375-95-
1","PFNA","24.110000","ng/L","",".22","MDL","","T","93.00","14.9","4.31","LOQ","YES","25.860000","J9156MSDFS",".290000",".000500",".86",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","335-76-
2","PFDA","21.800000","ng/L","",".14","MDL","","T","84.00","6.1","4.31","LOQ","YES","25.860000","J9156MSD-

FS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","2058-94-
8","PFUnA","22.920000","ng/L","",".25","MDL","","T","89.00","9.4","4.31","LOQ","YES","25.860000","J9156MSDFS",".290000",".000500",".86",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","307-55-
1","PFDoA","21.280000","ng/L","",".16","MDL","","T","82.00","3.6","4.31","LOQ","YES","25.860000","J9156MSDFS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","72629-94-
8","PFTrDA","27.810000","ng/L","",".13","MDL","","T","108.00","10.7","4.31","LOQ","YES","25.860000","J9156M SD-FS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","376-06-
7","PFTeDA","24.530000","ng/L","",".22","MDL","","T","95.00","12.3","4.31","LOQ","YES","25.860000","J9156MS D-FS",".290000",".000500",".86",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","2355-31-
9","NMeFOSAA","22.580000","ng/L","",".48","MDL","","T","87.00","1.2","4.31","LOQ","YES","25.860000","J9156 MSD-FS",".290000",".000500","1.72",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","2991-50-
6","NEtFOSAA","28.700000","ng/L","",".42","MDL","","T","111.00","9.4","4.31","LOQ","YES","25.860000","J9156 MSD-FS",".290000",".000500",".86",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","375-73-
5","PFBS","22.040000","ng/L","",".11","MDL","","T","83.00","5.8","4.31","LOQ","YES","26.120000","J9156MSDFS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","355-46-
4","PFHxS","25.310000","ng/L","",".09","MDL","","T","82.00","4.8","4.31","LOQ","YES","26.120000","J9156MSDFS",".290000",".000500",".34",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","1763-23-
1","PFOS","29.960000","ng/L","",".16","MDL","","T","98.00","1.0","4.31","LOQ","YES","25.860000","J9156MSDFS",".290000",".000500",".43",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2105","13C4-PFBA",".330000","ng/L","","-99.00","NA","","SIS","38.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2217","13C5-PFHxA",".780000","ng/L","","-99.00","NA","","SIS","91.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2218","13C4-PFHpA",".970000","ng/L","","-99.00","NA","","SIS","113.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2219","13C8-PFOA",".840000","ng/L","","-99.00","NA","","SIS","98.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2221","13C9-PFNA",".740000","ng/L","","-99.00","NA","","SIS","86.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2222","13C6-PFDA",".690000","ng/L","","-99.00","NA","","SIS","79.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2223","13C7-PFUnA",".630000","ng/L","","-99.00","NA","","SIS","73.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2112","13C2-
PFDoA",".670000","ng/L","","-99.00","NA","","SIS","78.00","","-99.00","NA","YES",".860000","J9156MSDFS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2224","13C2-PFTeDA",".510000","ng/L","","-99.00","NA","","SIS","59.00","","-99.00","NA","YES",".860000","J9156MSD-

FS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-1838","d3-
MeFOSAA",".770000","ng/L","","-99.00","NA","","SIS","90.00","","-99.00","NA","YES",".860000","J9156MSD-
FS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-1839","d5-
EtFOSAA",".550000","ng/L","","-99.00","NA","","SIS","63.00","","-99.00","NA","YES",".860000","J9156MSD-
FS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2226","13C3-
PFBS",".650000","ng/L","","-99.00","NA","","SIS","82.00","","-99.00","NA","YES",".800000","J9156MSD-
FS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2227","13C3-
PFHxS",".840000","ng/L","","-99.00","NA","","SIS","103.00","","-99.00","NA","YES",".820000","J9156MSD-
FS",".290000",".000500",".50",""
"NASB-BLL15-MW-03-110118MS","SOP 5-369","Initial","J9156MSD-FS","BNO","BDO-2228","13C8-
PFOS",".710000","ng/L","","-99.00","NA","","SIS","86.00","","-99.00","NA","YES",".820000","J9156MSD-
FS",".290000",".000500",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","375-22-
4","PFBA",".450000","ng/L","U",".13","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".000500" ,".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","307-24-
4","PFHxA","3.040000","ng/L","J",".17","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 00050 0",".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","375-85-
9","PFHpA","1.640000","ng/L","J",".14","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".00050 0",".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","335-67-
1","PFOA","9.070000","ng/L","B",".16","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 00050 0",".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","375-95-
1","PFNA",".380000","ng/L","J",".23","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".000500", ".89",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","335-76-
2","PFDA",".450000","ng/L","U",".14","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 000500 ",".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","2058-94-
8","PFUnA",".890000","ng/L","U",".26","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 00050 0",".89",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","307-55-
1","PFDoA",".450000","ng/L","U",".16","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 00050 0",".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","72629-94-
8","PFTrDA",".450000","ng/L","U",".13","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 0005 00",".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","376-06-
7","PFTeDA",".890000","ng/L","U",".22","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 0005 00",".89",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","2355-31-
9","NMeFOSAA","1.790000","ng/L","U",".50","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 000500","1.79",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","2991-50-
6","NEtFOSAA",".890000","ng/L","U",".44","MDL","","T","","","4.46","LOQ","YES","-99.000000","",". 280000 ",". 00 0500",".89",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","375-73-
5","PFBS","1.760000","ng/L","J",".12","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".000500"
,".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","355-46-
4","PFHxS","6.370000","ng/L","",".10","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 000500 ",".36",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","1763-23-
1","PFOS","59.360000","ng/L","",".17","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".000500 ",".45",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2105","13C4-
PFBA",".300000","ng/L","","-99.00","NA","","SIS","33.00","","-99.00","NA","YES",".890000","",".280000",". 000500 ",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2217","13C5-
PFHxA",".850000","ng/L","","-99.00","NA","","SIS","95.00","","-99.00","NA","YES",".890000","",".280000",". 00050 0",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2218","13C4-
PFHpA",".940000","ng/L","","-99.00","NA","","SIS","105.00","","-99.00","NA","YES",".890000","",".280000",". 0005 00",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2219","13C8-
PFOA",".810000","ng/L","","-99.00","NA","","SIS","91.00","","-99.00","NA","YES",".890000","",".280000",". 000500 ",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2221","13C9-
PFNA",".630000","ng/L","","-99.00","NA","","SIS","70.00","","-99.00","NA","YES",".890000","",".280000",". 000500 ",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2222","13C6-
PFDA",".700000","ng/L","","-99.00","NA","","SIS","78.00","","-99.00","NA","YES",".890000","",".280000",". 000500 ",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2223","13C7-
PFUnA",".720000","ng/L","","-99.00","NA","","SIS","80.00","","-99.00","NA","YES",".890000","",".280000",".00050 0",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2112","13C2-
PFDoA",".630000","ng/L","","-99.00","NA","","SIS","71.00","","-99.00","NA","YES",".890000","",".280000",". 00050 0",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2224","13C2-
PFTeDA",".470000","ng/L","","-99.00","NA","","SIS","52.00","","-99.00","NA","YES",".890000","",".280000",". 0005 00",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-1838","d3-
MeFOSAA",".890000","ng/L","","-99.00","NA","","SIS","99.00","","-99.00","NA","YES",".890000","",".280000",". 00 0500",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-1839","d5-
EtFOSAA",".830000","ng/L","","-99.00","NA","","SIS","93.00","","-99.00","NA","YES",".890000","",".280000",". 000 500",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2226","13C3-
PFBS",".800000","ng/L","","-99.00","NA","","SIS","97.00","","-99.00","NA","YES",".830000","",".280000",". 000500 ",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2227","13C3-
PFHxS",".860000","ng/L","","-99.00","NA","","SIS","102.00","","-99.00","NA","YES",". $840000 "$, "",".280000",". 0005 00",".50",""
"NASB-BLL15-MW-04-110118","SOP 5-369","Initial","J9157-FS","BNO","BDO-2228","13C8-
PFOS",".720000","ng/L","","-99.00","NA","","SIS","84.00","","-99.00","NA","YES",".850000","",".280000",".000500 ",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","375-22-
4","PFBA",".450000","ng/L","U",".13","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".000500" ,".45",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","307-24-
4","PFHxA","2.710000","ng/L","J",".17","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".00050

0",".45","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","375-85-
9","PFHpA","1.570000","ng/L","J",".14","MDL","","T","',"","4.46","LOQ","YES","-99.000000","",". 280000 ",". 00050 0",".45","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","335-67-
1","PFOA","8.940000","ng/L","B",".16","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".00050 0",".45","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","375-95-
1","PFNA",".250000","ng/L","J",".23","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",".000500", ".89","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","335-76-
2","PFDA",".450000","ng/L","U",".14","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 000500 ",".45","'"
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","2058-94-
8","PFUnA",".890000","ng/L","U",".26","MDL","',"T","',"',"4.46","LOQ","YES","-99.000000","',".280000",".00050 0",".89","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","307-55-
1","PFDoA",".450000","ng/L","U",".16","MDL","","T","","","4.46","LOQ","YES","-99.000000","',". 280000 ",". 00050 0",".45","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","72629-94-
8","PFTrDA",".450000","ng/L","U",".13","MDL","","T","","","4.46","LOQ","YES","-99.000000","',". $280000 ", " .0005$ 00",".45',"'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","376-06-
7","PFTeDA",".890000","ng/L","U",".22","MDL","","T","","","4.46","LOQ","YES","-99.000000","",". $280000 ", " .0005$ 00",".89","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","2355-31-
9","NMeFOSAA","1.790000","ng/L","U",".50","MDL","","T","',"',"4.46","LOQ","YES","-99.000000","',".280000",". 000500","1.79","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","2991-50-
6","NEtFOSAA",".890000","ng/L","U",".44","MDL","',"T","',"',"4.46","LOQ","YES","-99.000000","',".280000",". 00 0500",".89","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","375-73-
5","PFBS","1.390000","ng/L","J",".12","MDL","',"T","',"","4.46","LOQ","YES","-99.000000","',".280000",".000500" ,".45","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","355-46-
4","PFHxS","6.430000","ng/L","",".10","MDL","","T","","","4.46","LOQ","YES","-99.000000","',".280000",". 000500 ",".36","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","1763-23-
1","PFOS","52.450000","ng/L","",".17","MDL","","T","","","4.46","LOQ","YES","-99.000000","",".280000",". 000500 ",".45","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2105","13C4-
PFBA",".280000","ng/L","',"-99.00","NA","","SIS","32.00","',"-99.00","NA","YES",".890000","",".280000",". 000500 ",".50","'"
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2217","13C5-
PFHxA",".990000","ng/L","","-99.00","NA","","SIS","111.00","","-99.00","NA","YES",".890000","",".280000",". 0005 00",".50","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2218","13C4-
PFHpA","1.010000","ng/L","',"-99.00","NA","',"SIS","113.00',"',"-99.00","NA","YES",".890000","',".280000",". 000 500",".50","'
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2219","13C8-
PFOA",".820000","ng/L","","-99.00","NA","","SIS","92.00","',"-99.00","NA","YES",".890000","",".280000",".000500 ",".50","'"
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2221","13C9-
PFNA",".740000","ng/L","","-99.00","NA","","SIS","82.00","',"-99.00","NA","YES",".890000","",". 280000 ",". 000500
",".50","'"
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2222","13C6-
PFDA",".790000","ng/L","',"-99.00","NA","","SIS","88.00","',"-99.00","NA","YES",".890000","',".280000",". 000500 ",".50","'"
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2223","13C7-
PFUnA",".860000","ng/L","","-99.00","NA","","SIS","96.00","","-99.00","NA","YES",".890000","",".280000",". 00050 0",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2112","13C2-
PFDoA",".740000","ng/L","","-99.00","NA","","SIS","83.00","","-99.00","NA","YES",".890000","",".280000",". 00050 0",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2224","13C2-
PFTeDA",".680000","ng/L","","-99.00","NA","","SIS","77.00","","-99.00","NA","YES",".890000","",".280000",". 0005 00",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-1838","d3-
MeFOSAA",".980000","ng/L","","-99.00","NA","","SIS","110.00","","-99.00","NA","YES",".890000","",".280000",". 0 00500",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-1839","d5-
EtFOSAA",".840000","ng/L","","-99.00","NA","","SIS","94.00","","-99.00","NA","YES",".890000","",".280000",". 000 500",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2226","13C3-
PFBS",".940000","ng/L","","-99.00","NA","","SIS","114.00","","-99.00","NA","YES",".830000","",".280000",". 00050 0",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2227","13C3-
PFHxS",".930000","ng/L","","-99.00","NA","","SIS","110.00","","-99.00","NA","YES",".840000","",".280000",". 0005 00",".50",""
"NASB-BLL15-DUP-01-110118","SOP 5-369","Initial","J9158-FS","BNO","BDO-2228","13C8-
PFOS",".860000","ng/L","","-99.00","NA","","SIS","101.00","","-99.00","NA","YES",".850000","",".280000",". 00050 0",".50",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","CS100PB-
FS","","WATER","CS100PB-FS","MB","","-99.000000","SOP 5-369","Gen Prep","Initial","11/08/2018
11:05","11/12/2018 17:55","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-0345","18-0652","11/08/2018 11:05","11/26/2018 15:46",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","CS101LCS-
FS","","WATER","CS101LCS-FS","LCS","","-99.000000","SOP 5-369","Gen Prep","Initial","11/08/2018
11:05","11/12/2018 18:06","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-0345","18-0652","11/08/2018 11:05","11/26/2018 15:46",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","NASB-BLL15-MW-01-
110118","11/01/2018 11:15","GW","J9154-FS","NM","SHP-181102-01",".800000","SOP 5-369","Gen
Prep","Initial","11/08/2018 11:05","11/12/2018
18:17","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-
0345","18-0652","11/02/2018 10:30","11/26/2018 15:46",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","NASB-BLL15-MW-02-
110118","11/01/2018 11:10","GW","J9155-FS","NM","SHP-181102-01",".800000","SOP 5-369","Gen
Prep","Initial","11/08/2018 11:05","11/12/2018
18:28","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-
0345","18-0652","11/02/2018 10:30","11/26/2018 15:46",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","NASB-BLL15-MW-03110118","11/01/2018 10:00","GW","J9156-FS","NM","SHP-181102-01",".800000","SOP 5-369","Gen Prep","Initial","11/08/2018 11:05","11/12/2018
18:39","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-0345","18-0652","11/02/2018 10:30","11/26/2018 15:46",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","NASB-BLL15-MW-03-
110118MS","","GW","J9156MS-FS","MS","","-99.000000","SOP 5-369","Gen Prep","Initial","11/08/2018 11:05","11/12/2018 18:50","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-

18-0345","DP-18-0345","18-0652","11/08/2018 11:05","11/26/2018 15:46","'
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","NASB-BLL15-MW-03-110118MSD","","GW","J9156MSD-FS","MSD","","-99.000000","SOP 5-369","Gen Prep","Initial","11/08/2018 11:05","11/12/2018 19:00","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-0345","18-0652","11/08/2018 11:05","11/26/2018 15:46",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","NASB-BLL15-MW-04110118","11/01/2018 10:05","GW","J9157-FS","NM","SHP-181102-01",".800000","SOP 5-369","Gen Prep","Initial","11/08/2018 11:05","11/12/2018
19:11","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-0345","18-0652","11/02/2018 10:30","11/26/2018 15:46",""
"112G08005-we21.PT.LT","CTO WE21, Former Naval Air Station Brunswick","NASB-BLL15-DUP-01110118","11/01/2018 00:00","GW","J9158-FS","NM","SHP-181102-01",".800000","SOP 5-369","Gen Prep","Initial","11/08/2018 11:05","11/12/2018
19:22","BNO","COA","NA","T","1.000","NA","NA","","100.000000","18-0652","18-0652","DP-18-0345","DP-18-0345","18-0652","11/02/2018 10:30","11/26/2018 15:46",""

DATE: DECEMBER 11, 2018
COPIES: DV FILE

SUBJECT:	ORGANIC DATA VALIDATION - POLYFLUOROALKYL SUBSTANCES (PFAS)
	FORMER NAVAL AIR STATION (NAS) BRUNSWICK, BRUNSWICK, ME
	CTO WE21 PFC ASSESSMENT
	SAMPLE DELIVERY GROUPS (SDGs) $18-0652 \& 18-0671$

SAMPLES: SDG 18-0652
5/Aqueous/PFAS
NASB-BLL15-DUP-01-110118
NASB-BLL15-MW-01-110118
NASB-BLL15-MW-02-110118
NASB-BLL15-MW-04-110118
NASB-BLL15-MW-03-110118

SDG 18-0671
1/Aqueous/PFAS
NASB-BLL15-FRB-01-110118

Overview

The sample set for former NAS Brunswick, SDGs 18-0652 \& 18-0671 consisted of five (5) aqueous environmental samples and one (1) Field Reagent Blank (FRB). All six (6) aqueous samples were analyzed for Polyfluoroalkyl Substances (PFAS). One field duplicate pair was included in these Sample Delivery Groups (SDGs): NASB-BLL15-DUP-01-110118/NASB-BLL15-MW-04-110118.

The samples were collected by Tetra Tech, Inc. on November 1, 2018 and analyzed by Battelle Laboratories. The analyses were conducted in compliance with Department of Defense (DoD)/Department of Energy (DOE) Quality Systems Manual (QSM) for Environmental Laboratories version 5.1 PFAS using LC/MS/MS Appendix B Table B-15 (July 2017). The data was evaluated based on the following parameters:

*	\bullet	Data completeness
*	\bullet	Hold times/Sample Preservation
*	\bullet	Mass Calibration
*	\bullet	LC/MS/MS System Tuning and Performance
*	\bullet	Mass Spectral Acquisition Rate
*	\bullet	Instrument Sensitivity Check
*	\bullet	Ion Transition Check
*	\bullet	Initial/Continuing Calibrations
	\bullet	Laboratory Method/Preparation Blank Results
	\bullet	Extraction Internal Standard (Surrogate) Recoveries
*	- Injection Internal Standard Recoveries	
	\bullet	Laboratory Control Sample Recoveries
*	\bullet	Matrix Spike/Matrix Spike Duplicate Results
*	\bullet	Field Duplicate Precision

TO: J. ORIENT
PAGE 2
SDGs: 18-0652 \& 18-0671

* - Compound Identification
* - Compound Quantitation
* - Detection Limits

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A. Results as reported by the laboratory are presented in Appendix B, and Appendix C contains the documentation to support the findings as discussed in this data validation report. An EPA Region 1 tier II validation was performed on the data in these SDGs. The text of this report has been formulated to address only those areas affecting data quality.

PFAS

The following compounds were detected (<1/2 LOQ) in the laboratory method blank and FRB at the following maximum concentration affecting all samples:

${ }^{(1)}$ - Maximum concentration detected in the laboratory method blank in SDG 18-0652 affecting all environmental samples.
(2) - Maximum concentration detected in the FRB affecting all environmental samples.

The detected results reported for these compounds below the LOQ but above the Limit of Detection (LOD) were qualified as non-detected, (U). The FRB was not qualified for laboratory blank contamination in SDG 18-0671.

The extraction internal standard, 13C4-PFBA, had Percent Recoveries (\%Rs) below the 50\% quality control limit in samples NASB-BLL15-DUP-01-110118, NASB-BLL15-MW-01-110118, NASB-BLL15-MW-03-110118, and NASB-BLL15-MW-04-110118. The detected and non-detected results reported for PFBA in these samples were qualified as estimated, (J) and (UJ), respectively.

NOTES

The Laboratory Control Sample (LCS) analysis performed in SDG 18-0671 had \%Rs for PFBA and perfluorononanoic acid (PFNA) above the upper quality control limits. No action was taken because results for these compounds in the associated FRB were non-detects.

Two analytes were detected in the procedural blank which was associated with FRB. PFBA was detected at a concentration greater than the LOQ and PFOA at a concentration less than $1 / 2$ the LOQ. Because the FRB is a field quality control blank, the FRB was not qualified for lab method blank contamination. PFBA was not detected in the FRB. The preparation batch for the FRB and the blank was 18-0671. The preparation date for batch 18-0671 was on 11/14/18 which was 6 days after the enviornmental samples were prepared.

Detected results reported below the LOQ but above the Detection Limit (DL) were qualified as estimated, (J). Non-detected results are reported to the Limit of Detection (LOD).

TO: J. ORIENT
PAGE 3
SDGs: 18-0652 \& 18-0671

EXECUTIVE SUMMARY

Laboratory Performance: Contaminants were detected in the laboratory method/preparation blanks. One extraction internal standard \%Rs were low in several samples. One LCS had high \%Rs.

Other Factors Affecting Data Quality: The FRB had contained contaminants. Detected results below the LOQ were estimated.

The data for these analyses were reviewed with reference to the EPA New England Environmental Data Review Supplement for Regional Data Review Elements Superfund Guidance/Procedures (April 2013), National Functional Guidelines for Organic Data Validation (January 2017), and the Department of Defense (DoD) and Department of Energy (DOE) document entitled, "Quality Systems Manual (QSM) for Environmental Laboratories" version 5.1 (2017). The text of this report has been formulated to address only those areas affecting data quality.

Michelle 天. Wooer
Tetra Tech, Inc.
Michelle L. Woeber
Environmental Chemist

Tetra Tech, Inc.
Joseph A. Samchuck
Data Validation Manager

Attachments:
Appendix A - Qualified Analytical Results
Appendix B - Results as reported by the Laboratory
Appendix C - Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted detection limit.				
\mathbf{J}	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).				
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.	$	$	$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
:---:	:---				

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 $=$ GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
G = Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
J = ICP PDS Recovery Noncompliance; MSA's r < 0.995
K = ICP Interference - includes ICS \% R Noncompliance
L = Instrument Calibration Range Exceedance
M = Sample Preservation Noncompliance
N = Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
P = Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$\mathrm{U}=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$V=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
W = EMPC result
$\mathrm{X}=$ Signal to noise response drop
Y = Percent solids $<30 \%$
Z = Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE21	NSAMPLE	NASB-BLL15-D	UUP-0	110118	NASB-BLL15-N	MW-0	10118	NASB-BLL15-N	MW-0	10118	NASB-BLL15-	MW-0	10118
SDG: 18-0652	LAB_ID	J9158-FS			J9154-FS			J9155-FS			J9156-FS		
FRACTION: PFAS	SAMP_DATE	11/1/2018			11/1/2018			11/1/2018			11/1/2018		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF	NASB-BLL15-M	MW-0	10118									
PARAMETER		RESULT	VQL	QLCD									
N-ETHYLPERFLUOROOC	TANE	0.89	U		0.94	U		0.91	U		0.86	U	
SULFONAMIDOACETA	(NEFOSA)												
N-METHYLPERFLUOROO	CTANE	1.79	U		1.89	U		1.82	U		1.72	U	
SULFONAMIDOACETATE	NMFOSA)												
PENTADECAFLUOROOC	ANOIC ACID	8.94			9.52			3.08	U	B	2.88	U	B
PERFLUOROBUTANESU	FONIC ACID	1.39	J	P	6.43			1.08	J	P	0.42	J	P
(PFBS)													
PERFLUOROBUTANOIC	CID (PFBA)	0.45	UJ	N	5.78	J	N	2.08	U	A	0.43	UJ	N
PERFLUORODECANOIC	CID (PFDA)	0.45	U		0.47	U		0.45	U		0.43	U	
PERFLUORODODECANO	C ACID	0.45	U		0.47	U		0.45	U		0.43	U	
(PFDOA)													
PERFLUOROHEPTANOIC	ACID (PFHPA)	1.57	U	A	2.52	U	A	0.45	U		0.43	U	
PERFLUOROHEXANESU	FONIC ACID	6.43			40.3			8.44			3.99	J	P
(PFHXS)													
PERFLUOROHEXANOIC	CID (PFHXA)	2.71	U	A	6.29			1.1	U	A	0.5	U	A
PERFLUORONONANOIC	ACID (PFNA)	0.25	J	P	0.94	U		0.91	U		0.86	U	
PERFLUOROOCTANESU	FONIC ACID	52.45			8.83			7.63			4.5		
PERFLUOROTETRADEC	NOIC ACID	0.89	U		0.94	U		0.91	U		0.86	U	
(PFTEA)													
PERFLUOROTRIDECAN	C ACID	0.45	U		0.47	U		0.45	U		0.43	U	
(PFTRIA)													
PERFLUOROUNDECANO	C ACID	0.89	U		0.94	U		0.91	U		0.86	U	

PROJ_NO: 08005-WE21	NSAMPLE	NASB-BLL15-N	MW-0	10118
SDG: 18-0652	LAB_ID	J9157-FS		
FRACTION: PFAS	SAMP_DATE	11/1/2018		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	NG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
N-ETHYLPERFLUOROO SULFONAMIDOACETAT	ANE	0.89	U	
N-METHYLPERFLUOROO	CTANE	1.79	U	
SULFONAMIDOACETATE	NMFOSA)			
PENTADECAFLUOROOC	ANOIC ACID	9.07		
PERFLUOROBUTANESUL	ONIC ACID	1.76	J	P
PERFLUOROBUTANOIC	CID (PFBA)	0.45	UJ	N
PERFLUORODECANOIC	CID (PFDA)	0.45	U	
PERFLUORODODECANO	C ACID	0.45	U	
(PFDOA)				
PERFLUOROHEPTANOIC	ACID (PFHPA)	1.64	U	A
PERFLUOROHEXANESU	FONIC ACID	6.37		
PERFLUOROHEXANOIC	CID (PFHXA)	3.04	U	A
PERFLUORONONANOIC	CID (PFNA)	0.38	J	P
PERFLUOROOCTANESU	FONIC ACID	59.36		
PERFLUOROTETRADEC	NOIC ACID	0.89	U	
(PFTEA)				
PERFLUOROTRIDECANO	C ACID	0.45	U	
(PFTRIA)				
PERFLUOROUNDECANO	ACID	0.89	U	

APPENDIX B
RESULTS AS REPORTED BY THE LABORATORY

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID
NASB-BLL15-MW-01-110118

Battelle ID	J9154-FS
Sample Type	SA
Collection Date	$11 / 01 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	GW
Sample Size	0.265
Size Unit-Basis	L
Units	ng / L

ng/L

	ng / L	MDL	LOD		
PFBA	$375-22-4$	5.78 B	0.13	0.47	4.72
PFHxA	$307-24-4$	6.29	0.18	0.47	4.72
PFHpA	$375-85-9$	2.52 J	0.15	0.47	4.72
PFOA	$335-67-1$	9.52 B	0.17	0.47	4.72
PFNA	$375-95-1$	0.94 U	0.25	0.94	4.72
PFDA	$335-76-2$	0.47 U	0.15	0.47	4.72
PFUnA	$2058-94-8$	0.94 U	0.27	0.94	4.72
PFDoA	$307-55-1$	0.47 U	0.17	0.47	4.72
PFTrDA	$72629-94-8$	0.47 U	0.14	0.47	4.72
PFTeDA	$376-06-7$	0.94 U	0.24	0.94	4.72
NMeFOSAA	$2355-31-9$	1.89 U	0.53	1.89	4.72
NEtFOSAA	$2991-50-6$	6.94 U	0.46	0.94	4.72
PFBS	$375-73-5$	40.30	0.12	0.47	4.72
PFHxS	$355-46-4$	8.83	0.10	0.38	4.72
PFOS	$1763-23-1$		0.18	0.47	4.72

Surrogate Recoveries (\%)

13C4-PFBA	36 N
$13 C 5-P F H x A$	88
$13 C 4-P F H p A$	113
13C8-PFOA	97
13C9-PFNA	92
13C6-PFDA	95
13C7-PFUnA	90
$13 C 2-P F D o A$	90
13C2-PFTeDA	78
d3-MeFOSAA	120
d5-EtFOSAA	114
13C3-PFBS	90
13C3-PFHxS	130
$13 C 8-P F O S$	107

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID		NASB-BLL15-MW-02-110118			
Battelle ID		J9155-FS			
Sample Type		SA			
Collection Date		11/01/2018			
Extraction Date		11/08/2018			
Analysis Date		11/12/2018			
Analytical Instrument		Sciex 5500 LC/MS/MS			
\% Moisture		NA			
Matrix		GW			
Sample Size		0.275			
Size Unit-Basis		L			
Units		ng / L	MDL	LOD	LOQ
PFBA	375-22-4	2.08 J	0.13	0.45	4.55
PFHxA	307-24-4	1.10 J	0.17	0.45	4.55
PFHpA	375-85-9	0.45 U	0.15	0.45	4.55
PFOA	335-67-1	3.08 J	0.16	0.45	4.55
PFNA	375-95-1	0.91 U	0.24	0.91	4.55
PFDA	335-76-2	0.45 U	0.15	0.45	4.55
PFUnA	2058-94-8	0.91 U	0.26	0.91	4.55
PFDoA	307-55-1	0.45 U	0.16	0.45	4.55
PFTrDA	72629-94-8	0.45 U	0.14	0.45	4.55
PFTeDA	376-06-7	0.91 U	0.23	0.91	4.55
NMeFOSAA	2355-31-9	1.82 U	0.51	1.82	4.55
NEtFOSAA	2991-50-6	0.91 U	0.45	0.91	4.55
PFBS	375-73-5	1.08 J	0.12	0.45	4.55
PFHxS	355-46-4	8.44	0.10	0.36	4.55
PFOS	1763-23-1	7.63	0.17	0.45	4.55
Surrogate Recoveries (\%)					
13C4-PFBA		51			
13C5-PFHxA		98			
13C4-PFHpA		101			
13C8-PFOA		84			
13C9-PFNA		71			
13C6-PFDA		78			
13C7-PFUnA		84			
13C2-PFDoA		74			
13C2-PFTeDA		63			
d3-MeFOSAA		66			
d5-EtFOSAA		63			
13C3-PFBS		118			
13C3-PFHxS		107			
13C8-PFOS		93			

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID
NASB-BLL15-MW-03-110118

Battelle ID	J9156-FS
Sample Type	SA
Collection Date	$11 / 01 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	GW
Sample Size	0.290
Size Unit-Basis	L
Units	ng / L

ng/L

Units		ng/L	MDL	LOD	LOQ
PFBA	375-22-4	0.43 U	0.12	0.43	4.31
PFHxA	307-24-4	0.50 J	0.16	0.43	4.31
PFHpA	375-85-9	0.43 U	0.14	0.43	4.31
PFOA	335-67-1	2.88 J	0.16	0.43	4.31
PFNA	375-95-1	0.86 U	0.22	0.86	4.31
PFDA	335-76-2	0.43 U	0.14	0.43	4.31
PFUnA	2058-94-8	0.86 U	0.25	0.86	4.31
PFDoA	307-55-1	0.43 U	0.16	0.43	4.31
PFTrDA	72629-94-8	0.43 U	0.13	0.43	4.31
PFTeDA	376-06-7	0.86 U	0.22	0.86	4.31
NMeFOSAA	2355-31-9	1.72 U	0.48	1.72	4.31
NEtFOSAA	2991-50-6	0.86 U	0.42	0.86	4.31
PFBS	375-73-5	0.42 J	0.11	0.43	4.31
PFHxS	355-46-4	3.99 J	0.09	0.34	4.31
PFOS	1763-23-1	4.50	0.16	0.43	4.31

Surrogate Recoveries (\%)

13C4-PFBA	29 N
$13 C 5-P F H x A$	94
$13 C 4-P F H p A$	115
$13 C 8-P F O A$	100
$13 C 9-P F N A$	90
$13 C 6-P F D A$	92
$13 C 7-P F U n A$	93
$13 C 2-P F D o A$	78
$13 C 2-P F T e D A$	63
d3-MeFOSAA	93
d5-EtFOSAA	87
13C3-PFBS	100
$13 C 3-P F H x S$	114
$13 C 8-P F O S$	92

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID

NASB-BLL15-MW-04-110118

Battelle ID	J9157-FS
Sample Type	SA
Collection Date	$11 / 01 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	GW
Sample Size	0.280
Size Unit-Basis	L
Units	ng / L

ng/L

Unit		ng/L	MDL	LOD	LOO
PFBA	375-22-4	0.45 U	0.13	0.45	4.46
PFHxA	307-24-4	3.04 J	0.17	0.45	4.46
PFHpA	375-85-9	1.64 J	0.14	0.45	4.46
PFOA	335-67-1	9.07 B	0.16	0.45	4.46
PFNA	375-95-1	0.38 J	0.23	0.89	4.46
PFDA	335-76-2	0.45 U	0.14	0.45	4.46
PFUnA	2058-94-8	0.89 U	0.26	0.89	4.46
PFDoA	307-55-1	0.45 U	0.16	0.45	4.46
PFTrDA	72629-94-8	0.45 U	0.13	0.45	4.46
PFTeDA	376-06-7	0.89 U	0.22	0.89	4.46
NMeFOSAA	2355-31-9	1.79 U	0.50	1.79	4.46
NEtFOSAA	2991-50-6	0.89 U	0.44	0.89	4.46
PFBS	375-73-5	1.76 J	0.12	0.45	4.46
PFHxS	355-46-4	6.37	0.10	0.36	4.46
PFOS	1763-23-1	59.36	0.17	0.45	4.46

Surrogate Recoveries (\%)

13C4-PFBA	33 N
$13 C 5-P F H x A$	95
$13 C 4-P F H p A$	105
$13 C 8-P F O A$	91
$13 C 9-P F N A$	70
$13 C 6-P F D A$	78
$13 C 7-P F U n A$	80
$13 C 2-P F D o A$	71
$13 C 2-P F T e D A$	52
d3-MeFOSAA	99
d5-EtFOSAA	93
$13 C 3-P F B S$	97
13C3-PFHxS	102
$13 C 8-P F O S$	84

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID	NASB-BLL15-DUP-01-110118
Battelle ID	J9158-FS
Sample Type	SA
Collection Date	$11 / 01 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	GW
Sample Size	0.280
Size Unit-Basis	L
Units	ng / L

ng/L MDL LOD \quad LOQ

PFBA	$375-22-4$	0.45 U	0.13	0.45	4.46
PFHxA	$307-24-4$	2.71 J	0.17	0.45	4.46
PFHPA	$375-85-9$	1.57 J	0.14	0.45	4.46
PFOA	$335-67-1$	8.94 B	0.16	0.45	4.46
PFNA	$375-95-1$	0.25 J	0.23	0.89	4.46
PFDA	$335-76-2$	0.45 U	0.14	0.45	4.46
PFUnA	$2058-94-8$	0.89 U	0.26	0.89	4.46
PFDoA	$307-55-1$	0.45 U	0.16	0.45	4.46
PFTrDA	$72629-94-8$	0.45 U	0.13	0.45	4.46
PFTeDA	$376-06-7$	0.89 U	0.22	0.89	4.46
NMeFOSAA	$2355-31-9$	1.79 U	0.50	1.79	4.46
NEtFOSAA	$2991-50-6$	0.89 U	0.44	0.89	4.46
PFBS	$375-73-5$	1.39 J	0.12	0.45	4.46
PFHxS	$355-46-4$	6.43	0.10	0.36	4.46
PFOS	$1763-23-1$	52.45	0.17	0.45	4.46

Surrogate Recoveries (\%)

13C4-PFBA	32 N
13C5-PFHxA	111
13C4-PFHpA	113
13C8-PFOA	92
13C9-PFNA	82
13C6-PFDA	88
13C7-PFUnA	96
$13 C 2-P F D o A ~$	83
13C2-PFTeDA	77
d3-MeFOSAA	110
d5-EtFOSAA	94
$13 C 3-P F B S$	114
$13 C 3-P F H x S$	110
$13 C 8-P F O S$	101

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID		NASB-BLL15-FRB-01-110118			
Battelle ID		J9159-FS			
Sample Type		SA			
Collection Date		11/01/2018			
Extraction Date		11/14/2018			
Analysis Date		11/20/2018			
Analytical Instrument		Sciex 5500 and Sciex 6500+			
\% Moisture		NA			
Matrix		GW			
Sample Size		0.275			
Size Unit-Basis		L			
Units		ng / L	MDL	LOD	LOQ
PFBA	375-22-4	0.45 U	0.13	0.45	4.55
PFHxA	307-24-4	0.45 U	0.17	0.45	4.55
PFHpA	375-85-9	0.45 U	0.15	0.45	4.55
PFOA	335-67-1	1.48 J	0.16	0.45	4.55
PFNA	375-95-1	0.91 U	0.24	0.91	4.55
PFDA	335-76-2	0.16 J	0.15	0.45	4.55
PFUnA	2058-94-8	0.36 J	0.26	0.91	4.55
PFDoA	307-55-1	0.54 J	0.16	0.45	4.55
PFTrDA	72629-94-8	0.82 J	0.14	0.45	4.55
PFTeDA	376-06-7	0.99 J	0.23	0.91	4.55
NMeFOSAA	2355-31-9	1.82 U	0.51	1.82	4.55
NEtFOSAA	2991-50-6	0.91 U	0.45	0.91	4.55
PFBS	375-73-5	0.45 U	0.12	0.45	4.55
PFHxS	355-46-4	0.36 U	0.10	0.36	4.55
PFOS	1763-23-1	0.45 U	0.17	0.45	4.55

Surrogate Recoveries (\%)	
$13 C 4-P F B A$	74
$13 C 5-P F H x A$	80
$13 C 4-P F H p A$	88
$13 C 8-P F O A$	76
13C9-PFNA	82
$13 C 6-P F D A$	78
$13 C 7-P F U n A$	84
13C2-PFDoA	65
13C2-PFTeDA	65
d3-MeFOSAA	63
d5-EtFOSAA	71
$13 C 3-P F B S$	83
$13 C 3-P F H x S$	80
$13 C 8-P F O S$	70

APPENDIX C
SUPPORT DOCUMENTATION

NAS BRUNSWICK

SDG 18-0652
PFAS Concentration $=\quad[(P A-b) / m] * C_{I S} * P I V * D F / S$
Where:
PA Area of target analyte/ area of internal standard
b
$\mathrm{C}_{\text {IS }}$
m
DF
S
PIV

Target Analyte
Sample ID
Laboratory Sample ID
Sample Size (L)
Dilution Factor
PIV (L)
PFOS Area
IS Area
IS Amount (ng/L)
Calibration Curve
Concentration (ng/L) y Intercept from calibration curve Concentration of internal standard (ng/L)
Slope of calibration
Dilution factor
Sample Size
Pre-injection volume (L)

PFOS

NASB-BLL15-MW-04-110118
J9157-FS
0.28

1
0.001
6751577.51
25678.2
239.25
$y=3.77369 x+0.78197$
$(((207917.31 / 20153.38)+0.36483) / 4.76291)^{*} 239.25 * 0.001 * 1 / 0.270$

Sample Name	J9157-FS(0)	Injection Vial	9
Sample ID	NASB-BLL15-MW-04-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T19:11:52	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Area	Conc. (ng/L)	Signal/Noise Ratio	Modified
PFBS_1	298.9 / 80.0	1.54	155525.40	493.873141	79.1	true
PFBS_2	298.9/99.0	1.54	40902.94	419.068428	78.5	false
PFHxA 1	313.0 / 269.0	1.87	241415.56	851.143750	30.4	true
PFHxA_2	313.0 / 119.0	1.86	15783.83	723.646739	34.4	true
PFHpA_1	363.0 / 319.0	2.27	137256.82	457.899485	46.0	false
PFHpA_2	363.0 / 169.0	2.25	4158.12	645.441981	35.1	true
PFHxS_1	399.0 / 80.0	2.30	721653.09	1784.997921	207.0	false
PFHxS_2	399.0 / 99.0	2.30	191495.76	1660.538835	312.1	false
PFOA_1	413.0 / 369.0	2.68	819681.45	2539.267075	176.2	false
PFOA_2	413.0 / 169.0	2.68	44185.90	2134.571417	158.1	false
PFNA_1	463.0 / 419.0	3.08	33962.49	106.658505	49.0	false
PFNA_2	463.0 / 219.0	3.08	15424.03	188.536228	74.0	false
PFOS_1	499.0 / 80.0	3.06	6751577.51	16620.050006	327.7	false
PFOS_2	499.0 / 99.0	3.08	1039342.58	14777.114982	696.2	false
PFDA_1	513.0 / 469.0	N/A	N/A	N/A	N/A	true
PFDA_2	513.0 / 219.0	N/A	N/A	N/A	N/A	true
PFUnA_1	563.0 / 519.0	N/A	N/A	N/A	N/A	true
PFUnA_2	563.0 / 269.0	N/A	N/A	N/A	N/A	true
PFDoA_1	613.0 / 569.0	4.05	3564.85	<0	41.2	false
PFDoA_2	613.0 / 319.0	3.98	730.61	< 0	13.1	false
PFTrDA 1	663.0 / 619.0	N/A	N/A	N/A	N/A	true
PFTrDA_2	663.0 / 169.0	N/A	N/A	N/A	N/A	true
PFTeDA_1	713.0 / 669.0	N/A	N/A	N/A	N/A	true
PFTeDA 2	713.0 / 169.0	N/A	N/A	N/A	N/A	true
NMeFOSAA 1	570.0 / 419.0	N/A	N/A	N/A	N/A	true
NMeFOSAA_2	570.0 / 512.0	N/A	N/A	N/A	N/A	true
NEtFOSAA_1	584.0 / 419.0	N/A	N/A	N/A	N/A	true
NEtFOSAA 2	584.0 / 483.0	N/A	N/A	N/A	N/A	true
PFBA	213.0 / 169.0	N/A	N/A	N/A	N/A	true

Sample Name	J9157-FS(0)	Injection Vial	9
Sample ID	NASB-BLL15-MW-04-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T19:11:52	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Chromatograms

Target Analytes:

Internal Standards:

NAS BRUNSWICK	
SDG 18-0652	
Surrgoate Concentration =	$[(P A) / m] * C_{\text {IS }}$
Where:	
PA	Area of target analyte/area of internal standard
$\mathrm{C}_{\text {IS }}$	Concentration of internal standard (ng/L)
m	Slope of calibration
Surrogate spike amount	250
Surrogate	13C4-PFBA
Sample ID	NASB-BLL15-MW-01-110118
Laboratory Sample ID	J9154-FS
13C4-PFBA Area	18384.86
IS Area	32067.34
IS Amount (ng/L)	250
Calibration Curve	$y=1.60441 \mathrm{x}$
Concentration (ng/L)	89.34
((18384.86/32067.34)/1.60441)*250	
Surrgoate Recovery (\%)	Reported Recovery (\%)
$\left((89.34 / 250)^{*} 100\right)$	
35.7	36

NAS BRUNSWICK
SDG 18-0652
LABORATORY CONTROL SAMPLE

PFBA	Result (ng/L) 17.88	Target (ng/L)	$\begin{gathered} \text { Calculation } \\ 17.88 / 20 * 100 \end{gathered}$	$\begin{gathered} \text { Recovery (\%) } \\ 89.4 \end{gathered}$	Reported Recovery (\%) 89
ICC RECOVERY (\%)	Result (ng	Targe	Calculation	Recovery (\%)	Reported Recovery (\%)
PFBA	934.648432	1000	934.648432/1000*100	93.46	93.46

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

NASB-BLL15-MW-03-110118

PFBA (0.43 U - nondetected)	Result $(\mathrm{ng} / \mathrm{L})$	Target $(\mathrm{ng} / \mathrm{L})$	Calculation
MS	35.53	28.3	$35.53 / 28.3^{*} 100$
MSD	24.48	25.86	$24.48 / 25.86^{\star 1} 100$

Recovery (\%)
125.55
94.66

Reported Recovery (\%) RPD (\%)

126
$95 \quad 28.05$
Reported
RPD (\%)
28.1

ANALYTE
PENTADECAFLUOROOCTANOIC ACID (PFOA)
PERFLUOROBUTANESULFONIC ACID (PFBS)
PERFLUOROHEXANESULFONIC ACID (PFHXS)
PERFLUORONONANOIC ACID (PFNA)
PERFLUOROOCTANESULFONIC ACID (PFOS)
SDG 18-0652
NASB-BLL15-DUP-01-110118/NASB-BLL15-MW-04-110118

TestAmerica Sacramento

880 Riverside Parkuat

Hest Sacramento, CA 95605
Chain of Custody Record 214519

Phone: 916.373.5600 Fax:
Regulatory Program: $\square \mathrm{DW} \quad \square$ NPDES \square RCRA \square other:

Special Instructions/QC Requirements \& Comments:

Custody Seals Intact:	Yes	No	Custody Seal No.:		Cooler Temp. (${ }^{\circ} \mathrm{C}$): Obs'd: _ Corr'd:			Therm ID No.:
Relinquished by:				$\begin{aligned} & \text { Date/Time: } \\ & 1 / / / 1 / 00 \end{aligned}$	Received by: Willidm Mindelsoha Wotle ohth.		Company: Butctelle	$\begin{array}{cc} \hline \text { Date/Time: } & \\ 10: 30 & 11 / 2 / 18 \end{array}$
Relinquished by:			Company:	Date/Time:	Received by:		Company:	Date/Time:
Relinquished by:			Company:	Date/Time:	Received in Laboratory by:		Company:	Date/Time:

Project:	CTO-WE21: Former Naval Air Station, Brunswick, Maine
Parameters:	PFAS
Laboratory:	Battelle, Norwell, MA
Matrix:	GW
Data Set:	DP-18-0345
Analytical SOP:	5-369
Method Reference:	PFAS to QSM 5.1 Table B-15

Sample Custody			
Collection Date		Receipt Date	Temp $\left({ }^{\circ} \mathrm{C}\right)$
$11 / 1 / 2018$		$11 / 2 / 2018$	0.8
Corrective Actions	Sample ID NASB-BLL15-FRB-01-110118 is listed as NASB-BLL15-GW-FB01-110118 on the bottle. Sample was logged in to match the COC.		
Sample Storage	The water samples were stored refrigerated until extraction.		
Related samples	The FRB sample is extracted in SDG 18-0671.		

	METHOD SUMMARIES
Sample Preparation	Water samples were spiked with surrogates in the original sample container from the field. The water was extracted using a weak ion exchange solid phase extraction (SPE) cartridge and eluted from the SPE with $0.4 \% \mathrm{NH}_{3}$ in methanol. Extracts were and concentrated to dryness under nitrogen with a water bath set between $35^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$, reconstituted with 80:20 methanol/water (V/V) and fortified with internal standard. Extracts were transferred for LC-MS/MS analysis.
Prep comments	Samples 57 and 58 clogged the SPE cartridge filter during extraction. The filter was popped and left inside the SPE cartridge for the full extraction procedure.
Analysis	PFAS were measured by liquid chromatography tandem mass spectrometry (LC- MS/MS) in the multiple reaction monitoring (MRM). An initial calibration consisting of representative target analytes, labelled analogs, and internal standards was analyzed prior to analysis to demonstrate the linear range of analysis. Calibration verification was performed at the beginning and end of 10 injections and at the end of each sequence. Target PFAS were quantified using the isotope dilution method. Samples are reported in ng/L concentrations.
Analysis Comments	Samples analyzed on Sciex 5500 LC-MS/MS. The ion ratio for PFOS in sample J9154-FS (NASB-BLL15-MW-01-110118) was above 50\% RPD. PFHxS and PFOS, were detected, were found as a mixture of both linear and branched isomers. The value reported is a combined total of the isomers detected.

Holding Times	Extraction Date(s)	Analysis Date(s)
	$11 / 8 / 2018$	$11 / 7$ and $12 / 2018$

Procedural Blank (PB)	A PB was prepared with this analytical batch to ensure the sample extraction and analysis methods are free of contamination.
$\leq 1 / 2$ the LOQ Samples >10x PB	Five exceedances noted.
	PFBA was detected in the LCS and sample J9154-FS (NASB-BLL15-MW-01110118) at a concentration less than 10x the amount detected in the blank ($2.28 \mathrm{ng} / \mathrm{L}$). PFOA was detected in samples J9154-FS (NASB-BLL15-MW-01110118), J9157-FS (NASB-BLL15-MW-04-110118), and J9158-FS (NASB-BLL15-DUP-01-110118) at a concentration less than 10x the amount detected in the blank ($1.38 \mathrm{ng} / \mathrm{L}$). All five are B qualified. Both PFBA and PFOA are pass criteria for the blank at less than $1 / 2$ the LOQ.

Laboratory Control Spike (LCS)	A LCS was prepared with this analytical batch. The percent recoveries of target analytes were calculated to measure accuracy.
Laboratory derived control limits for recovery	No exceedances noted.
	No comments.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)	A MS/MSD was prepared with this analytical batch. The percent recoveries of target analytes were calculated to measure accuracy.
Laboratory derived control limits for recovery and $<30 \%$ RPD	No exceedances noted.
	No comments.

Extracted Internal Standard Analytes	Labelled analog compounds were added prior to extraction. The recoveries are calculated to measure extraction efficiency.
vo-150\% of true value	Six exceedances noted.
	13C4-PFBA fails low in all field samples, except J9155-FS (NASB-BLL15-MW-02- 110118) but passes in the QC samples (PB and LCS). Samples were re-aliquoted and re-run to verify results. Results appear to be due to matrix. The second analysis is included in the unused data section.

Internal Standard Analytes	Labelled analog compounds were added prior to analysis.
$+/-50 \%$ of the area of the L5 calibration point.	No exceedances noted.
	No comments.

Initial Calibration (ICAL)	The LC-MS/MS was calibrated with multi-level calibration curve for all compounds using linear or quadradic curve fitting.
$+/-30 \%$ of true	No exceedances noted.
value,$R^{2} \geq 0.99$	No comments.

Independent Calibration Check (ICC)	The independent check was run after each initial calibration to verify the calibration. This standard is from a different source than the ICAL.
$+/-30 \%$ of true value	No exceedances noted.
	No comments.

Continuing Calibration Verification (CCV) $)$	Continuing calibration standards were run at the beginning and end of 10 injections and at the end of the sequence to ensure that initial calibration is still valid.
$+/-30 \%$ of true value	No exceedances noted.
	No comments.

Instrument Blank (IB)	Immediately following the highest standard analyzed and daily prior to sample analysis.
$\leq 1 / 2$ the LOQ	No exceedances noted.
	No comments.

13C4-PFBA falls below passing criteria in samples J9154, J9156, J9156MS, J9156MSD, J9157 and J9158. A fresh aliquot of these samples was taken and

Extracted Internal Standard Analytes (Surrogates)

6 run with similar results. There also was a lot of flaky material in the bottom of the reconstituted extract. This precipitated matrix could be causing the suppression of the SIS. DMS 11/21/2018

Instrument Calibration
0
None

Instrument Blank	0	None
Independent Calibration Check	0	None
Continuing Calibration Verification	0	None

It can be done
BATTELLE - NORWELL OPERATIONS MISCELLANEOUS DOCUMENTATION FORM

Project Title:	CTO-WE21: Former Naval Air Station, B	Data Set Number:	DP-18-0345
Project Number:	100122108-CTOWE21	Prep Batch Number:	18-0652
Entered By:	Denise Schumitz	Entered On:	11/21/2018
Test Code (Matrix Type):	Master_369(L)		

Samples that were manually integrated are noted on the quant reports with the comment (TRUE). DMS 11/21/2018
KC66 is not being used for NEtFOSAA in the BASE method. There is no impact on the data once this point is removed from the calibration curve.
DMS 11/21/2018

When adding samples to the sequence on 11/12/2018 the samples were inadvertently typed into the wrong sequence (data file), AC_1092018_5-369. The samples should have been added to 11122018_5-369, however the time stamp shows that the instrument did collect the sample data in sequential order that the data is being reported.
DMS 11/21/2018

Task Leader Approval:

PM Approval:

BATIELIE
It can be done
Glossary of Data Qualifiers
Flag: Application:

B Analyte found in the sample at a concentration $<10 x$ the level found in the procedural blank
D Dilution Run. Initial run outside the initial calibration range of the instrument
E Estimate, result is greater than the highers concentration level in the calibration
H Surrogate dilut
J Analyte detected below the Limit of Quantitation (LOQ)
ME Significant Matrix Interference - Estimated value.
MI Significant Matrix Interference - value could not be determined.
Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO), but
n meets secondary criteria

N Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO)
NA Not Applicable
T Holding Time (HT) exceeded
Analyte not detected or detected below the Method detection limit (MDL) value, Limit of
U Detection (LOD) reported

Client: Tetra Tech, Inc.
SDG: 18-0652
Project/Site: Former Naval Air Station, Brunswick, Maine CTO: WE21

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Receipt Date
CS100PB-FS	Procedural Blank	WATER	$11 / 8 / 2018$	$11 / 8 / 2018$
CS101LCS-FS	Laboratory Control Sample	WATER	$11 / 8 / 2018$	$11 / 8 / 2018$
J9154-FS	NASB-BLL15-MW-01-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$
J9155-FS	NASB-BLL15-MW-02-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$
J9156-FS	NASB-BLL15-MW-03-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$
J9156MS-FS	NASB-BLL15-MW-03-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$
J9156MSD-FS	NASB-BLL15-MW-03-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$
J9157-FS	NASB-BLL15-MW-04-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$
J9158-FS	NASB-BLL15-DUP-01-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$

Example Calculation for PFAS

Calculation of final concentration from area:

$$
\text { Concentration }=\left[\frac{P A-b}{m}\right] * C_{I S} * P I V * D F / S
$$

Where:
PA = Area of target / area of internal standard
$b=y$ intercept from calibration curve
CIS = concentration of internal standard (ng/L)
$\mathrm{m}=$ slope of calibration
DF = dilution factor
S = Sample Size
PIV = Pre-injection volume (L)

Sample ID:	J9154-FS(0)
Client Sample ID:	NASB-BLL15-MW-01-110118
Sample Size:	0.265
Units:	L
Dilution Factor:	1.000
PIV (L):	0.001
Target Analyte:	PFHxS
MRM Transition:	$399.0 / 80.0$
Data file:	AC_11062018_5-369.wiff and AC_11092018_5-369.wiff
Result table:	$18-0652$
Area:	$5,254,440.98$
IS Name:	$13 C 3-P F H x S$
IS Area:	$34,103.51$
IS Amount (ng/L):	236.5
y-intercept:	0.01616
slope:	3.41195

| Concentration | $=$ | $\frac{[(5254440.98 / 34103.51)-0.01616]}{3.41195} * 236.5 * 0.001 * 1 / 0.265$ |
| ---: | :--- | ---: | :--- |
| $n g / L$ | $=$ | 40.30 |

*Final concentration may vary based on rounding.

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21
Preparation Batch: 18-0652
Data Set: DP-18-0345

PFBA	375-22-4	L	L	L	L	L	L	L	L
PFHxA	307-24-4	L	L	L	L	L	L	L	L
PFHpA	375-85-9	L	L	L	L	L	L	L	L
PFOA	335-67-1	L	L	L	L	L	L	L	L
PFNA	375-95-1	-	L	L	L	-	-	-	L
PFDA	335-76-2	-	L	L	L	-	-	-	-
PFUnA	2058-94-8	-	L	L	L	-	-	-	-
PFDoA	307-55-1	-	L	L	L	-	-	-	-
PFTrDA	72629-94-8	-	L	L	L	-	-	-	-
PFTeDA	376-06-7	-	L	L	L	-	-	-	-
NMeFOSAA	2355-31-9	-	L	L	L	-	-	-	-
NEtFOSAA	2991-50-6	-	L	L	L	-	-	-	-
PFBS	375-73-5	-	L	L	L	L	L	L	L
PFHxS	355-46-4	-	L/Br	L/Br	L / Br	L/Br	L/Br	L/Br	L/Br
PFOS	1763-23-1	-	L/Br						

"L" :Linear
"Br": branched
"L/Br": Linear/Branched
"-": Not detected

BATHE

it can

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21
Preparation Batcl
Data Set: DP-18-

PFBA	L
PFHxA	L
PFHpA	L
PFOA	L
PFNA	L
PFDA	-
PFUnA	-
PFDoA	-
PFTrDA	-
PFTeDA	-
NMeFOSAA	-
NEtFOSAA	-
PFBS	L
PFHxS	L/Br
PFOS	L/Br

"L" :Linear
"Br": branched
"L/Br": Linear/Bra
"-": Not detected

It can be done
Precision and Bias at the LOQ for PFAS in non-potable Water

Analyte	CAS No.	Average (ng/L)	ST DEV	2 Sigma	n
PFBA	$375-22-4$	12.25	1.95	3.90	14
PFPeA	$2706-90-3$	10.58	1.50	3.00	10
PFHxA	$307-24-4$	9.93	1.26	2.52	42
PFHpA	$375-85-9$	9.45	1.52	3.04	42
PFOA	$335-67-1$	10.21	1.45	2.90	44
PFNA	$375-95-1$	9.74	1.18	2.36	42
PFDA	$335-76-2$	9.91	1.28	2.56	42
PFUnA	$2058-94-8$	9.87	1.26	2.52	42
PFDoA	$307-55-1$	10.75	1.25	2.50	42
PFTrDA	$72629-94-8$	11.18	1.48	2.96	42
PFTeDA	$376-06-7$	10.71	1.84	3.68	42
NMeFOSAA	$2355-31-9$	10.37	1.87	3.74	42
NEtFOSAA	$2991-50-6$	9.66	1.50	3.00	42
PFOSA	$754-91-6$	9.72	0.93	1.86	5
PFBS	$375-73-5$	10.07	1.41	2.82	43
PFPeS	$2706-91-4$	9.59	0.96	1.92	6
PFHxS	$355-46-4$	9.81	1.45	2.90	42
PFHpS	$375-92-8$	10.79	1.05	2.10	11
PFOS	$1763-23-1$	10.04	1.32	2.64	42
PFNS	$68259-12-1$	9.50	1.02	2.04	5
PFDS	$335-77-3$	10.11	1.77	3.54	10
$4: 2 F T S$	$414911-30-1$	10.81	1.37	2.74	10
$6: 2 F T S$	$27619-97-2$	12.34	2.80	5.60	10
$8: 2 F T S$	$39108-34-4$	11.96	2.44	4.88	10

BATTELLE DETECTION LIMITS FOR PFAS IN NON-POTABLE WATER

Analytical SOP 5-369
Extraction SOP 5-370
PFAS by LC-MS/MS Compliant with QSM 5.1 Compliant Table B-15

Analyte	CAS No.	MDL (ng/L)	LOD (ng/L)	LOQ (ng/L)
PFBA	$375-22-4$	0.14	0.5	5.0
PFPeA	$2706-90-3$	0.31	1.0	5.0
PFHxA	$307-24-4$	0.19	0.5	5.0
PFHpA	$375-85-9$	0.16	0.5	5.0
PFOA	$335-67-1$	0.18	0.5	5.0
PFNA	$375-95-1$	0.26	1.0	5.0
PFDA	$335-76-2$	0.16	0.5	5.0
PFUnA	$2058-94-8$	0.29	1.0	5.0
PFDoA	$307-55-1$	0.18	0.5	5.0
PFTrDA	$72629-94-8$	0.15	0.5	5.0
PFTeDA	$376-06-7$	0.25	1.0	5.0
NMeFOSAA	$2355-31-9$	0.56	2.0	5.0
NEtFOSAA	$2991-50-6$	0.49	1.0	5.0
PFOSA	$754-91-6$	TBD	TBD	5.0
PFBS	$375-73-5$	0.13	0.5	5.0
PFPeS	BDO-2114	0.67	2.5	5.0
PFHxS	$355-46-4$	0.11	0.4	5.0
PFHpS	$375-99-6$	0.20	0.5	5.0
PFOS	$1763-23-1$	0.19	0.5	5.0
PFNS	$98789-57-2$	0.46	1.0	5.0
PFDS	$2806-15-7$	0.17	0.5	5.0
4:2FTS	BDO-2205	0.14	0.5	
6:2FTS	$27619-97-2$	1.36	0.5	5
8:2FTS	$39108-34-4$	0.22		
An	Pa			

Analytes on NELAP and ELAP QSM 5.1 Scope of accreditation
800.201.2011 | solutions @battelle.org | www.battelle.org

Battelle and its logos are registered trademarks of Battelle Memorial Institute. © Battelle Memorial Institute 2018. All Rights Reserved.
It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine

Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 7 / 1810: 16$	$13 C 3-$ PFBA	$60,336.98$	$30,168.49$	$90,505.47$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
Qualifier						
KC66	L1	$11 / 7 / 189: 32$	$13 C 3-P F B A$	$58,780.28$	$30,168.49$	$90,505.47$
KC67	L2	$11 / 7 / 189: 43$	$13 C 3-P F B A$	$67,717.11$	$30,168.49$	$90,505.47$
KC68	L3	$11 / 7 / 189: 54$	$13 C 3-P F B A$	$64,026.91$	$30,168.49$	$90,505.47$
KC69	L5	$11 / 7 / 1810: 05$	$13 C 3-P F B A$	$69,866.24$	$30,168.49$	$90,505.47$
KC70	L6	$11 / 7 / 1810: 16$	$13 C 3-P F B A$	$60,336.98$	$30,168.49$	$90,505.47$
KC71	L7	$11 / 7 / 1810: 27$	$13 C 3-P F B A$	$60,511.18$	$30,168.49$	$90,505.47$
KC72	Instrument Blank	$11 / 7 / 1810: 37$	$13 C 3-P F B A$	$57,812.92$	$30,168.49$	$90,505.47$
KC73 IB	ICC	$11 / 7 / 1810: 48$	$13 C 3-$ PFBA	$49,652.14$	$30,168.49$	$90,505.47$
KC74 ICC	Instrument Sensitivity Check	$11 / 12 / 189: 55$	$13 C 3-P F B A$	$59,672.50$	$30,168.49$	$90,505.47$
KC68 ISC	Instrument Blank	$11 / 12 / 1810: 06$	$13 C 3-P F B A$	$61,443.37$	$30,168.49$	$90,505.47$
KC73 IB	Procedural Blank	$11 / 12 / 1817: 33$	$13 C 3-P F B A$	$62,570.05$	$30,168.49$	$90,505.47$
KC69 CCV	$13 C 3-P F B A$	$72,585.54$	$30,168.49$	$90,505.47$		
CS100PB-FS(0)	Laboratory Control Sample	$11 / 12 / 1818: 06$	$13 C 3-P F B A$	$72,633.58$	$30,168.49$	$90,505.47$
CS101LCS-FS(0)	NASB-BLL15-MW-01-110118	$11 / 12 / 1818: 17$	$13 C 3-P F B A$	$32,067.34$	$30,168.49$	$90,505.47$
J9154-FS(0)	NASB-BLL15-MW-02-110118	$11 / 12 / 1818: 28$	$13 C 3-P F B A$	$53,091.47$	$30,168.49$	$90,505.47$
J9155-FS(0)	NASB-BLL15-MW-03-110118	$11 / 12 / 1818: 39$	$13 C 3-P F B A$	$42,838.86$	$30,168.49$	$90,505.47$
J9156-FS(0)	NASB-BLL15-MW-03-110118	$11 / 12 / 1818: 50$	$13 C 3-P F B A$	$39,557.20$	$30,168.49$	$90,505.47$
J9156MS-FS(0)	NASB-BLL15-MW-03-110118	$11 / 12 / 1819: 00$	$13 C 3-P F B A$	$32,935.57$	$30,168.49$	$90,505.47$
J9156MSD-FS(0)	NASB-BLL15-MW-04-110118	$11 / 12 / 1819: 11$	$13 C 3-P F B A$	$62,980.62$	$30,168.49$	$90,505.47$
J9157-FS(0)	NAS					
J9158-FS(0)	NASB-BLL15-DUP-01-110118	$11 / 12 / 1819: 22$	$13 C 3-P F B A$	$71,902.88$	$30,168.49$	$90,505.47$
KC70 CCV	CCV	$11 / 12 / 1819: 33$	$13 C 3-P F B A$	$58,734.76$	$30,168.49$	$90,505.47$

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine

It can be done
Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 7 / 1810: 16$	$13 C 2-$ PFOA	$86,336.51$	$43,168.26$	$129,504.77$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/7/18 9:32	13C2-PFOA	84,066.25	43,168.26	129,504.77	
KC67	L2	11/7/18 9:43	13C2-PFOA	102,845.91	43,168.26	129,504.77	
KC68	L3	11/7/18 9:54	13C2-PFOA	88,326.90	43,168.26	129,504.77	
KC69	L4	11/7/18 10:05	13C2-PFOA	98,613.47	43,168.26	129,504.77	
KC70	L5	11/7/18 10:16	13C2-PFOA	86,336.51	43,168.26	129,504.77	
KC71	L6	11/7/18 10:27	13C2-PFOA	86,292.83	43,168.26	129,504.77	
KC72	L7	11/7/18 10:37	13C2-PFOA	79,431.22	43,168.26	129,504.77	
KC73 IB	Instrument Blank	11/7/18 10:48	13C2-PFOA	76,405.00	43,168.26	129,504.77	
KC74 ICC	ICC	11/7/18 10:59	13C2-PFOA	89,647.95	43,168.26	129,504.77	
KC68 ISC	Instrument Sensitivity Check	11/12/18 9:55	13C2-PFOA	85,421.07	43,168.26	129,504.77	
KC73 IB	Instrument Blank	11/12/18 10:06	13C2-PFOA	88,895.91	43,168.26	129,504.77	
KC69 CCV	CCV	11/12/18 17:33	13C2-PFOA	87,406.83	43,168.26	129,504.77	
CS100PB-FS(0)	Procedural Blank	11/12/18 17:55	13C2-PFOA	105,077.34	43,168.26	129,504.77	
CS101LCS-FS(0)	Laboratory Control Sample	11/12/18 18:06	13C2-PFOA	87,290.87	43,168.26	129,504.77	
J9154-FS(0)	NASB-BLL15-MW-01-110118	11/12/18 18:17	13C2-PFOA	97,549.32	43,168.26	129,504.77	
J9155-FS(0)	NASB-BLL15-MW-02-110118	11/12/18 18:28	13C2-PFOA	98,396.58	43,168.26	129,504.77	
J9156-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 18:39	13C2-PFOA	92,012.47	43,168.26	129,504.77	
J9156MS-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 18:50	13C2-PFOA	92,781.70	43,168.26	129,504.77	
J9156MSD-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 19:00	13C2-PFOA	95,858.56	43,168.26	129,504.77	
J9157-FS(0)	NASB-BLL15-MW-04-110118	11/12/18 19:11	13C2-PFOA	87,265.41	43,168.26	129,504.77	
J9158-FS(0)	NASB-BLL15-DUP-01-110118	11/12/18 19:22	13C2-PFOA	95,202.77	43,168.26	129,504.77	
KC70 CCV	CCV	11/12/18 19:33	13C2-PFOA	79,982.56	43,168.26	129,504.77	

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine

It can be done
Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 7 / 1810: 16$	$13 C 2-P F D A$	$106,885.53$	$53,442.77$	$160,328.30$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/7/18 9:32	13C2-PFDA	111,551.59	53,442.77	160,328.30	
KC67	L2	11/7/18 9:43	13C2-PFDA	127,695.35	53,442.77	160,328.30	
KC68	L3	11/7/18 9:54	13C2-PFDA	108,381.80	53,442.77	160,328.30	
KC69	L4	11/7/18 10:05	13C2-PFDA	115,243.56	53,442.77	160,328.30	
KC70	L5	11/7/18 10:16	13C2-PFDA	106,885.53	53,442.77	160,328.30	
KC71	L6	11/7/18 10:27	13C2-PFDA	104,669.01	53,442.77	160,328.30	
KC72	L7	11/7/18 10:37	13C2-PFDA	96,837.15	53,442.77	160,328.30	
KC73 IB	Instrument Blank	11/7/18 10:48	13C2-PFDA	96,195.08	53,442.77	160,328.30	
KC74 ICC	ICC	11/7/18 10:59	13C2-PFDA	104,715.91	53,442.77	160,328.30	
KC68 ISC	Instrument Sensitivity Check	11/12/18 9:55	13C2-PFDA	107,046.13	53,442.77	160,328.30	
KC73 IB	Instrument Blank	11/12/18 10:06	13C2-PFDA	112,455.02	53,442.77	160,328.30	
KC69 CCV	CCV	11/12/18 17:33	13C2-PFDA	102,621.91	53,442.77	160,328.30	
CS100PB-FS(0)	Procedural Blank	11/12/18 17:55	13C2-PFDA	120,370.00	53,442.77	160,328.30	
CS101LCS-FS(0)	Laboratory Control Sample	11/12/18 18:06	13C2-PFDA	108,290.79	53,442.77	160,328.30	
J9154-FS(0)	NASB-BLL15-MW-01-110118	11/12/18 18:17	13C2-PFDA	119,486.38	53,442.77	160,328.30	
J9155-FS(0)	NASB-BLL15-MW-02-110118	11/12/18 18:28	13C2-PFDA	108,997.89	53,442.77	160,328.30	
J9156-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 18:39	13C2-PFDA	110,057.47	53,442.77	160,328.30	
J9156MS-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 18:50	13C2-PFDA	109,564.20	53,442.77	160,328.30	
J9156MSD-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 19:00	13C2-PFDA	120,494.36	53,442.77	160,328.30	
J9157-FS(0)	NASB-BLL15-MW-04-110118	11/12/18 19:11	13C2-PFDA	105,365.93	53,442.77	160,328.30	
J9158-FS(0)	NASB-BLL15-DUP-01-110118	11/12/18 19:22	13C2-PFDA	110,040.66	53,442.77	160,328.30	
KC70 CCV	CCV	11/12/18 19:33	13C2-PFDA	100,345.97	53,442.77	160,328.30	

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine

Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 7 / 1810: 16$	$13 C 4-$ PFOS	$29,961.71$	$14,980.86$	$44,942.57$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/7/18 9:32	13C4-PFOS	32,925.77	14,980.86	44,942.57	
KC67	L2	11/7/18 9:43	13C4-PFOS	33,688.74	14,980.86	44,942.57	
KC68	L3	11/7/18 9:54	13C4-PFOS	32,467.35	14,980.86	44,942.57	
KC69	L4	11/7/18 10:05	13C4-PFOS	28,821.29	14,980.86	44,942.57	
KC70	L5	11/7/18 10:16	13C4-PFOS	29,961.71	14,980.86	44,942.57	
KC71	L6	11/7/18 10:27	13C4-PFOS	30,157.99	14,980.86	44,942.57	
KC72	L7	11/7/18 10:37	13C4-PFOS	29,093.03	14,980.86	44,942.57	
KC73 IB	Instrument Blank	11/7/18 10:48	13C4-PFOS	29,417.61	14,980.86	44,942.57	
KC74 ICC	ICC	11/7/18 10:59	13C4-PFOS	33,717.81	14,980.86	44,942.57	
KC68 ISC	Instrument Sensitivity Check	11/12/18 9:55	13C4-PFOS	28,321.56	14,980.86	44,942.57	
KC73 IB	Instrument Blank	11/12/18 10:06	13C4-PFOS	31,859.08	14,980.86	44,942.57	
KC69 CCV	CCV	11/12/18 17:33	13C4-PFOS	30,525.88	14,980.86	44,942.57	
CS100PB-FS(0)	Procedural Blank	11/12/18 17:55	13C4-PFOS	37,746.28	14,980.86	44,942.57	
CS101LCS-FS(0)	Laboratory Control Sample	11/12/18 18:06	13C4-PFOS	31,104.10	14,980.86	44,942.57	
J9154-FS(0)	NASB-BLL15-MW-01-110118	11/12/18 18:17	13C4-PFOS	28,431.16	14,980.86	44,942.57	
J9155-FS(0)	NASB-BLL15-MW-02-110118	11/12/18 18:28	13C4-PFOS	31,310.52	14,980.86	44,942.57	
J9156-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 18:39	13C4-PFOS	29,101.80	14,980.86	44,942.57	
J9156MS-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 18:50	13C4-PFOS	29,974.14	14,980.86	44,942.57	
J9156MSD-FS(0)	NASB-BLL15-MW-03-110118	11/12/18 19:00	13C4-PFOS	31,854.36	14,980.86	44,942.57	
J9157-FS(0)	NASB-BLL15-MW-04-110118	11/12/18 19:11	13C4-PFOS	29,218.00	14,980.86	44,942.57	
J9158-FS(0)	NASB-BLL15-DUP-01-110118	11/12/18 19:22	13C4-PFOS	30,584.96	14,980.86	44,942.57	
KC70 CCV	CCV	11/12/18 19:33	13C4-PFOS	27,656.88	14,980.86	44,942.57	

Sample Name	KC72	Injection Vial	18
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$11 / 7 / 2018$ 10:37:57 AM	Data File	AC_11062018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Spectra Acquisition Rate	Passing Range
PFBS_1	$298.9 / 80.0$	1.57	39	>10
PFBS_2	$298.9 / 99.0$	1.57	43	>10
PFHxA_1	$313.0 / 269.0$	1.90	26	>10
PFHxA_2	$313.0 / 119.0$	1.90	28	>10
PFHpA_1	$363.0 / 319.0$	2.32	31	>10
PFHpA_2	$363.0 / 169.0$	2.32	23	>10
PFHxS_1	$399.0 / 80.0$	2.34	39	>10
PFHxS_2	$399.0 / 99.0$	2.34	32	>10
PFOA_1	$413.0 / 369.0$	2.73	38	>10
PFOA_2	$413.0 / 169.0$	2.73	35	>10
PFNA_1	$463.0 / 419.0$	3.14	31	>10
PFNA_2	$463.0 / 219.0$	3.14	36	>10
PFOS_1	$499.0 / 80.0$	3.13	40	>10
PFOS_2	$499.0 / 99.0$	3.13	34	>10
PFDA_1	$513.0 / 469.0$	3.50	31	>10
PFDA_2	$513.0 / 219.0$	3.50	34	>10
PFUnA_1	$563.0 / 519.0$	3.83	35	>10
PFUnA_2	$563.0 / 269.0$	3.83	39	>10
PFDoA_1	$613.0 / 569.0$	4.11	42	>10
PFDoA_2	$613.0 / 319.0$	4.11	42	>10
PFTrDA_1	$663.0 / 619.0$	4.36	72	>10
PFTrDA_2	$663.0 / 169.0$	4.36	50	>10
PFTeDA_1	$713.0 / 669.0$	4.58	88	>10
PFTeDA_2	$713.0 / 169.0$	4.58	81	>10
NMeFOSAA_1	$570.0 / 419.0$	3.65	28	>10
NMeFOSAA_2	$570.0 / 512.0$	3.65	34	>10
NEtFOSAA_1	$584.0 / 419.0$	3.82	33	>10
NEtFOSAA_2	$584.0 / 483.0$	3.82	17	>10
PFBA	$213.0 / 169.0$	1.17	45	>10

Sample Name	KC72	Injection Vial	18
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$11 / 7 / 2018$ 10:37:57 AM	Data File	AC_11062018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	18-0652_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Spectra Acquisition Rate	Passing Range
13C2-PFDoA	$615.0 / 570.0$	4.10	32	>10
d3-MeFOSAA	$573.0 / 419.0$	3.65	32	>10
d5-EtFOSAA	$589.0 / 419.0$	3.81	22	>10
13C5-PFHxA	$318.0 / 273.0$	1.89	25	>10
13C4-PFHpA	$367.0 / 322.0$	2.31	29	>10
13C8-PFOA	$421.0 / 376.0$	2.73	43	>10
13C9-PFNA	$472.0 / 427.0$	3.12	29	>10
13C6-PFDA	$519.0 / 474.0$	3.48	40	>10
13C7-PFUnA	$570.0 / 525.0$	3.81	29	>10
13C2-PFTeDA	$715.0 / 670.0$	4.58	54	>10
13C3-PFBS	$302.0 / 99.0$	1.55	25	>10
13C3-PFHxS	$402.0 / 99.0$	2.33	22	>10
13C8-PFOS	$507.0 / 99.0$	3.12	27	>10
13C4-PFBA	$217.0 / 172.0$	1.17	36	>10

Analytical Transitions for PFAS in non-potable water, solid, and tissue

EPA 537 MOD DoD QSM 5.1 compliant with Table B-15 requirements

Analyte	CAS No.	Type	Primary Transition	Secondary Transition
PFBA	375-22-4	Target	213.0 / 169.0	NA
PFPeA	2706-90-3	Target	263.0 / 219.0	NA
PFHxA	307-24-4	Target	313.0 / 269.0	313.0 / 119.0
PFHpA	375-85-9	Target	363.0 / 319.0	363.0 / 169.0
PFOA	335-67-1	Target	413.0 / 369.0	413.0 / 169.0
PFNA	375-95-1	Target	463.0 / 419.0	463.0 / 219.0
PFDA	335-76-2	Target	513.0/469.0	513.0/219.0
PFUnA	2058-94-8	Target	563.0 / 519.0	563.0 / 269.0
PFDoA	307-55-1	Target	613.0 / 569.0	613.0 / 319.0
PFTrDA	72629-94-8	Target	663.0 / 619.0	663.0 / 169.0
PFTeDA	376-06-7	Target	713.0 / 669.0	713.0 / 169.0
NMeFOSAA	2355-31-9	Target	570.0 / 419.0	570.0 / 512.0
NEtFOSAA	2991-50-6	Target	584.0 / 419.0	584.0 / 483.0
PFOSA	754-91-6	Target	498.0 / 78.0	498.0 / 83.0
PFBS	375-73-5	Target	299.0 / 80.0	299.0 / 99.0
PFPeS	BDO-2114	Target	349.0 / 99.0	249.0 / 80.0
PFHxS	355-46-4	Target	399.0 / 80.0	399.0 / 99.0
PFHpS	375-99-6	Target	449.0 / 80.0	449.0 / 99.0
PFOS	1763-23-1	Target	499.0 / 80.0	499.0 / 99.0
PFNS	98789-57-2	Target	549.0 / 99.0	549.0 / 80.0
PFDS	2806-15-7	Target	599.0 / 80.0	599.0 / 99.0
4:2FTS	BDO-2205	Target	327.0 / 307.0	327.0 / 80.0
6:2FTS	27619-97-2	Target	427.0 / 407.0	427.0 / 81.0
8:2FTS	39108-34-4	Target	$527.0 / 507.0$	527.0 / 487.0
13C4-PFBA	BDO-2105	SIS ${ }^{1}$	217.0/172.0	NA
13C5-PFPeA	BDO-2216	SIS ${ }^{1}$	268.0 / 223.0	NA
13C5-PFHxA	BDO-2217	SIS ${ }^{1}$	318.0 / 273.0	NA

Analyte	CAS No.	Type	Primary Transition	Secondary Transition
13C4-PFHpA	BDO-2218	SIS 1	$367.0 / 322.0$	NA
13C8-PFOA	BDO-2219	SIS 1	$421.0 / 376.0$	NA
13C9-PFNA	BDO-2221	SIS 1	$472.0 / 427.0$	NA
13C6-PFDA	BDO-2222	SIS 1	$519.0 / 474.0$	NA
13C7-PFUnA	BDO-2223	SIS 1	$570.0 / 525.0$	NA
13C2-PFDoA	BDO-2112	SIS 1	$615.0 / 570.0$	NA
13C2-PFTeDA	BDO-2224	SIS 1	$715.0 / 670.0$	NA
d3-MeFOSAA	BDO-1838	SIS 1	$573.0 / 419.0$	NA
d5-EtFOSAA	BDO-1839	SIS 1	$589.0 / 419.0$	NA
13C8-FOSA	BDO-2225	SIS 1	$506.0 / 78.0$	NA
13C3-PFBS	BDO-2226	SIS 1	$302.0 / 99.0$	NA
13C3-PFHxS	BDO-2227	SIS 1	$402.0 / 99.0$	NA
13C8-PFOS	BDO-2228	SIS 1	$507.0 / 99.0$	NA
13C2-4:2FTS	BDO-2229	SIS 1	$329.0 / 81.0$	NA
13C2-6:2FTS	BDO-2230	SIS 1	$429.0 / 81.0$	NA
13C2-8:2FTS	BDO-2220	SIS 1	$529.0 / 81.0$	NA
13C3-PFBA	BDO-2231	IS 2	$216.0 / 172.0$	NA
13C2-PFOA	BDO-2107	IS 2	$415.0 / 370.0$	NA
13C2-PFDA	BDO-2110	IS 2	$515.0 / 470.0$	NA
13C4-PFOS	BDO-2121	IS 2	$503.0 / 99.0$	NA
1				

${ }^{1}$ - extracted internal standard (surrogate)
${ }^{2}$ - injection internal standard

Non-Potable Water Calibration to Sample Equivalents

ICAL $(\mathrm{ng} / \mathrm{L})$	PIV (mL)	DF 1	Sample Size (L)	Sample Equivalent $(\mathrm{ng} / \mathrm{L})^{2}$
25	1	1	0.250	0.1
50	1	1	0.250	0.2
100	1	1	0.250	0.4
250	1	1	0.250	1.0
500	1	1	0.250	2.0
1,000	1	1	0.250	4.0
2,500	1	1	0.250	10.0
10,000	1	1	0.250	40.0
20,000	1	1	0.250	80.0

${ }^{1}$ - base level dilution as part of the extraction procedure
${ }^{2}$ - calculated equivalent of a sample based on the ICAL concentration

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID
NASB-BLL15-MW-01-110118

Battelle ID	J9154-FS
Sample Type	SA
Collection Date	$11 / 01 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	GW
Sample Size	0.265
Size Unit-Basis	L
Units	ng / L

ng/L

		ng / L	MDL	LOD	
PFBA	$375-22-4$				
PFHxA	$307-24-4$	5.78 B	0.13	0.47	4.72
PFHpA	$375-85-9$	6.29	0.18	0.47	4.72
PFOA	$335-67-1$	2.52 J	0.15	0.47	4.72
PFNA	$375-95-1$	0.52 B	0.17	0.47	4.72
PFDA	$335-76-2$	0.94 U	0.25	0.94	4.72
PFUnA	$2058-94-8$	0.94 U	0.15	0.47	4.72
PFDoA	$307-55-1$	0.47 U	0.27	0.94	4.72
PFTrDA	$72629-94-8$	0.47 U	0.17	0.47	4.72
PFTeDA	$376-06-7$	0.94 U	0.24	0.47	4.72
NMeFOSAA	$2355-31-9$	1.89 U	0.53	0.94	4.89
NEtFOSAA	0.94 U	0.46	0.94	4.72	
PFBS	$2991-50-6$	6.43	0.12	0.47	4.72
PFHxS	$375-73-5$	40.30	0.10	0.38	4.72
PFOS	$355-46-4$	8.83	0.18	0.47	4.72

Surrogate Recoveries (\%)

13C4-PFBA	36 N
13C5-PFHxA	88
13C4-PFHpA	113
13C8-PFOA	97
13C9-PFNA	92
13C6-PFDA	95
13C7-PFUnA	90
13C2-PFDoA	90
13C2-PFTeDA	78
d3-MeFOSAA	120
d5-EtFOSAA	114
13C3-PFBS	90
13C3-PFHxS	130
13C8-PFOS	107

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID
NASB-BLL15-MW-03-110118

Battelle ID	J9156-FS
Sample Type	SA
Collection Date	$11 / 01 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	GW
Sample Size	0.290
Size Unit-Basis	L
Units	ng / L

$n g / L$

Units		ng/L	MDL	LOD	LOQ
PFBA	375-22-4	0.43 U	0.12	0.43	4.31
PFHxA	307-24-4	0.50 J	0.16	0.43	4.31
PFHpA	375-85-9	0.43 U	0.14	0.43	4.31
PFOA	335-67-1	2.88 J	0.16	0.43	4.31
PFNA	375-95-1	0.86 U	0.22	0.86	4.31
PFDA	335-76-2	0.43 U	0.14	0.43	4.31
PFUnA	2058-94-8	0.86 U	0.25	0.86	4.31
PFDoA	307-55-1	0.43 U	0.16	0.43	4.31
PFTrDA	72629-94-8	0.43 U	0.13	0.43	4.31
PFTeDA	376-06-7	0.86 U	0.22	0.86	4.31
NMeFOSAA	2355-31-9	1.72 U	0.48	1.72	4.31
NEtFOSAA	2991-50-6	0.86 U	0.42	0.86	4.31
PFBS	375-73-5	0.42 J	0.11	0.43	4.31
PFHxS	355-46-4	3.99 J	0.09	0.34	4.31
PFOS	1763-23-1	4.50	0.16	0.43	4.31

Surrogate Recoveries (\%)

13C4-PFBA	29 N
$13 C 5-P F H x A$	94
13C4-PFHpA	115
$13 C 8-P F O A$	100
13C9-PFNA	90
13C6-PFDA	92
13C7-PFUnA	93
13C2-PFDoA	78
13C2-PFTeDA	63
d3-MeFOSAA	93
d5-EtFOSAA	87
13C3-PFBS	100
13C3-PFHxS	114
$13 C 8-P F O S$	92

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID

NASB-BLL15-MW-04-110118

Battelle ID	J9157-FS
Sample Type	SA
Collection Date	$11 / 01 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	GW
Sample Size	0.280
Size Unit-Basis	L
Units	ng / L

ng/L

Unit		ng/L	MDL	LOD	LOO
PFBA	375-22-4	0.45 U	0.13	0.45	4.46
PFHxA	307-24-4	3.04 J	0.17	0.45	4.46
PFHpA	375-85-9	1.64 J	0.14	0.45	4.46
PFOA	335-67-1	9.07 B	0.16	0.45	4.46
PFNA	375-95-1	0.38 J	0.23	0.89	4.46
PFDA	335-76-2	0.45 U	0.14	0.45	4.46
PFUnA	2058-94-8	0.89 U	0.26	0.89	4.46
PFDoA	307-55-1	0.45 U	0.16	0.45	4.46
PFTrDA	72629-94-8	0.45 U	0.13	0.45	4.46
PFTeDA	376-06-7	0.89 U	0.22	0.89	4.46
NMeFOSAA	2355-31-9	1.79 U	0.50	1.79	4.46
NEtFOSAA	2991-50-6	0.89 U	0.44	0.89	4.46
PFBS	375-73-5	1.76 J	0.12	0.45	4.46
PFHxS	355-46-4	6.37	0.10	0.36	4.46
PFOS	1763-23-1	59.36	0.17	0.45	4.46

Surrogate Recoveries (\%)

13C4-PFBA	33 N
13C5-PFHxA	95
13C4-PFHpA	105
13C8-PFOA	91
13C9-PFNA	70
13C6-PFDA	78
13C7-PFUnA	80
13C2-PFDoA	71
13C2-PFTeDA	52
d3-MeFOSAA	99
d5-EtFOSAA	93
13C3-PFBS	97
13C3-PFHxS	102
13C8-PFOS	84

BATHELIE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID		NASB-BLL15-DUP-01-110118			
Battelle ID		J9158-FS			
Sample Type		SA			
Collection Date		11/01/2018			
Extraction Date		11/08/2018			
Analysis Date		11/12/2018			
Analytical Instrument		Sciex 5500 LC/MS/MS			
\% Moisture		NA			
Matrix		GW			
Sample Size		0.280			
Size Unit-Basis		L			
Units		ng / L	MDL	LOD	LOQ
PFBA	375-22-4	0.45 U	0.13	0.45	4.46
PFHxA	307-24-4	2.71 J	0.17	0.45	4.46
PFHpA	375-85-9	1.57 J	0.14	0.45	4.46
PFOA	335-67-1	8.94 B	0.16	0.45	4.46
PFNA	375-95-1	0.25 J	0.23	0.89	4.46
PFDA	335-76-2	0.45 U	0.14	0.45	4.46
PFUnA	2058-94-8	0.89 U	0.26	0.89	4.46
PFDoA	307-55-1	0.45 U	0.16	0.45	4.46
PFTrDA	72629-94-8	0.45 U	0.13	0.45	4.46
PFTeDA	376-06-7	0.89 U	0.22	0.89	4.46
NMeFOSAA	2355-31-9	1.79 U	0.50	1.79	4.46
NEtFOSAA	2991-50-6	0.89 U	0.44	0.89	4.46
PFBS	375-73-5	1.39 J	0.12	0.45	4.46
PFHxS	355-46-4	6.43	0.10	0.36	4.46
PFOS	1763-23-1	52.45	0.17	0.45	4.46

Surrogate Recoveries (\%)

13C4-PFBA	32 N
13C5-PFHxA	111
13C4-PFHpA	113
13C8-PFOA	92
13C9-PFNA	82
13C6-PFDA	88
13C7-PFUnA	96
13C2-PFDoA	83
13C2-PFTeDA	77
d3-MeFOSAA	110
d5-EtFOSAA	94
13C3-PFBS	114
13C3-PFHxS	110
$13 C 8-P F O S$	101

BATHELIE
 It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine Project No.: 100122108-CTOWE21

Client ID
KC73 IB

Battelle ID	KC73 IB_11/07/2018
Sample Type	IB
Collection Date	NA
Extraction Date	NA
Analysis Date	$11 / 07 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	Water
Sample Size	0.250
Size Unit-Basis	L
Units	ng / L

Units		ng/L	MD	O	LOQ
PFBA	375-22-4	0.50 U	0.14	0.50	5.00
PFHxA	307-24-4	0.50 U	0.19	0.50	5.00
PFHpA	375-85-9	0.50 U	0.16	0.50	5.00
PFOA	335-67-1	0.50 U	0.18	0.50	5.00
PFNA	375-95-1	1.00 U	0.26	1.00	5.00
PFDA	335-76-2	0.50 U	0.16	0.50	5.00
PFUnA	2058-94-8	1.00 U	0.29	1.00	5.00
PFDoA	307-55-1	0.50 U	0.18	0.50	5.00
PFTrDA	72629-94-8	0.50 U	0.15	0.50	5.00
PFTeDA	376-06-7	1.00 U	0.25	1.00	5.00
NMeFOSAA	2355-31-9	2.00 U	0.56	2.00	5.00
NEtFOSAA	2991-50-6	1.00 U	0.49	1.00	5.00
PFBS	375-73-5	0.50 U	0.13	0.50	5.00
PFHxS	355-46-4	0.11 J	0.11	0.40	5.00
PFOS	1763-23-1	0.50 U	0.19	0.50	5.00

Surrogate Recoveries (\%)	
13C4-PFBA	102
13C5-PFHxA	87
13C4-PFHpA	100
13C8-PFOA	98
13C9-PFNA	95
13C6-PFDA	102
13C7-PFUnA	89
13C2-PFDoA	95
13C2-PFTeDA	92
d3-MeFOSAA	98
d5-EtFOSAA	104
13C3-PFBS	84
13C3-PFHxS	97
13C8-PFOS	93

BATHELIE
 It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine Project No.: 100122108-CTOWE21

Client ID
KC73 IB

Battelle ID	KC73 IB_11/12/2018
Sample Type	IB
Collection Date	NA
Extraction Date	NA
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	Water
Sample Size	0.250
Size Unit-Basis	L
Units	ng / L

Units		ng/L	MD	O	LOQ
PFBA	375-22-4	0.50 U	0.14	0.50	5.00
PFHxA	307-24-4	0.50 U	0.19	0.50	5.00
PFHpA	375-85-9	0.50 U	0.16	0.50	5.00
PFOA	335-67-1	0.50 U	0.18	0.50	5.00
PFNA	375-95-1	1.00 U	0.26	1.00	5.00
PFDA	335-76-2	0.50 U	0.16	0.50	5.00
PFUnA	2058-94-8	1.00 U	0.29	1.00	5.00
PFDoA	307-55-1	0.50 U	0.18	0.50	5.00
PFTrDA	72629-94-8	0.50 U	0.15	0.50	5.00
PFTeDA	376-06-7	1.00 U	0.25	1.00	5.00
NMeFOSAA	2355-31-9	2.00 U	0.56	2.00	5.00
NEtFOSAA	2991-50-6	1.00 U	0.49	1.00	5.00
PFBS	375-73-5	0.50 U	0.13	0.50	5.00
PFHxS	355-46-4	0.40 U	0.11	0.40	5.00
PFOS	1763-23-1	0.50 U	0.19	0.50	5.00

Surrogate Recoveries (\%)	
13C4-PFBA	95
13C5-PFHxA	95
13C4-PFHpA	88
13C8-PFOA	95
13C9-PFNA	86
13C6-PFDA	94
13C7-PFUnA	95
13C2-PFDoA	94
13C2-PFTeDA	105
d3-MeFOSAA	113
d5-EtFOSAA	113
13C3-PFBS	84
13C3-PFHxS	86
13C8-PFOS	92

BATHELIE
 It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID

Battelle ID	CS100PB-FS
Sample Type	PB
Collection Date	$11 / 08 / 2018$
Extraction Date	$11 / 08 / 2018$
Analysis Date	$11 / 12 / 2018$
Analytical Instrument	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$
\% Moisture	NA
Matrix	WATER
Sample Size	0.250
Size Unit-Basis	L
Units	ng / L

PFBA	375-22-4	$2.28 \mathrm{~J}$	0.14	0.50	5.00
PFHxA	307-24-4	0.40 J	0.19	0.50	5.00
PFHpA	375-85-9	0.19 J	0.16	0.50	5.00
PFOA	335-67-1	1.38 J	0.18	0.50	5.00
PFNA	375-95-1	1.00 U	0.26	1.00	5.00
PFDA	335-76-2	0.50 U	0.16	0.50	5.00
PFUnA	2058-94-8	1.00 U	0.29	1.00	5.00
PFDoA	307-55-1	0.50 U	0.18	0.50	5.00
PFTrDA	72629-94-8	0.50 U	0.15	0.50	5.00
PFTeDA	376-06-7	1.00 U	0.25	1.00	5.00
NMeFOSAA	2355-31-9	2.00 U	0.56	2.00	5.00
NEtFOSAA	2991-50-6	1.00 U	0.49	1.00	5.00
PFBS	375-73-5	0.50 U	0.13	0.50	5.00
PFHxS	355-46-4	0.40 U	0.11	0.40	5.00
PFOS	1763-23-1	0.50 U	0.19	0.50	5.00

Surrogate Recoveries (\%)

13C4-PFBA	95
13C5-PFHxA	87
13C4-PFHpA	92
13C8-PFOA	105
13C9-PFNA	92
13C6-PFDA	99
$13 C 7-P F U n A$	105
13C2-PFDoA	101
13C2-PFTeDA	97
d3-MeFOSAA	114
d5-EtFOSAA	103
13C3-PFBS	100
$13 C 3-P F H x S$	88
13C8-PFOS	99

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID		NASB-BLL15-FRB-01-110118			
Battelle ID		J9159-FS			
Sample Type		SA			
Collection Date		11/01/2018			
Extraction Date		11/14/2018			
Analysis Date		11/20/2018			
Analytical Instrument		Sciex 5500 and Sciex 6500+			
\% Moisture		NA			
Matrix		GW			
Sample Size		0.275			
Size Unit-Basis		L			
Units		ng / L	MDL	LOD	LOQ
PFBA	375-22-4	0.45 U	0.13	0.45	4.55
PFHxA	307-24-4	0.45 U	0.17	0.45	4.55
PFHpA	375-85-9	0.45 U	0.15	0.45	4.55
PFOA	335-67-1	1.48 J	0.16	0.45	4.55
PFNA	375-95-1	0.91 U	0.24	0.91	4.55
PFDA	335-76-2	0.16 J	0.15	0.45	4.55
PFUnA	2058-94-8	0.36 J	0.26	0.91	4.55
PFDoA	307-55-1	0.54 J	0.16	0.45	4.55
PFTrDA	72629-94-8	(0.82 J	0.14	0.45	4.55
PFTeDA	376-06-7	0.99 J	0.23	0.91	4.55
NMeFOSAA	2355-31-9	1.82 U	0.51	1.82	4.55
NEtFOSAA	2991-50-6	0.91 U	0.45	0.91	4.55
PFBS	375-73-5	0.45 U	0.12	0.45	4.55
PFHxS	355-46-4	0.36 U	0.10	0.36	4.55
PFOS	1763-23-1	0.45 U	0.17	0.45	4.55

Surrogate Recoveries (\%)	
$13 C 4-P F B A$	74
$13 C 5-P F H x A$	80
$13 C 4-P F H p A$	88
$13 C 8-P F O A$	76
13C9-PFNA	82
$13 C 6-P F D A$	78
$13 C 7-P F U n A$	84
13C2-PFDoA	65
13C2-PFTeDA	65
d3-MeFOSAA	63
d5-EtFOSAA	71
$13 C 3-P F B S$	83
$13 C 3-P F H x S$	80
$13 C 8-P F O S$	70

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

BATIELLE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID		NASB-BLL15-MW-03110118	NASB-BLL15-MW-03110118					
Battelle ID		J9156-FS	J9156MS-FS					
Sample Type		SA	MS					
Collection Date		11/01/2018	11/01/2018					
Extraction Date		11/08/2018	11/08/2018					
Analysis Date		11/12/2018	11/12/2018					
Analytical Instrument		Sciex 5500 LC/MS/MS	Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$					
\% Moisture		NA	NA					
Matrix		GW	GW					
Sample Size		0.290	0.265					
Size Unit-Basis		L	L				Contr	imits
Units		ng/L	ng/L	Target	Recovery	Qual	Lower	Upper
PFBA	375-22-4	0.43 U	35.53	28.30	126		61	139
PFHxA	307-24-4	0.50 J	27.12	28.58	93		51	137
PFHpA	375-85-9	0.43 U	23.22	28.30	82		48	136
PFOA	335-67-1	2.88 J	26.71	28.30	84		49	141
PFNA	375-95-1	0.86 U	30.59	28.30	108		58	122
PFDA	335-76-2	0.43 U	22.44	28.30	79		59	135
PFUnA	2058-94-8	0.86 U	23.05	28.30	81		64	134
PFDoA	307-55-1	0.43 U	24.02	28.30	85		75	131
PFTrDA	72629-94-8	0.43 U	27.50	28.30	97		42	148
PFTeDA	376-06-7	0.86 U	23.74	28.30	84		42	158
NMeFOSAA	2355-31-9	1.72 U	24.46	28.30	86		50	146
NEtFOSAA	2991-50-6	0.86 U	28.47	28.30	101		51	131
PFBS	375-73-5	0.42 J	25.51	28.58	88		56	134
PFHxS	355-46-4	3.99 J	28.66	28.58	86		52	128
PFOS	1763-23-1	4.50	31.92	28.30	97		40	144

Surrogate Recoveries (\%)		
13C4-PFBA	29 N	31 N
13C5-PFHxA	94	84
13C4-PFHpA	115	104
13C8-PFOA	100	87
13C9-PFNA	90	70
13C6-PFDA	92	79
13C7-PFUnA	93	83
13C2-PFDoA	78	74
13C2-PFTeDA	63	60
d3-MeFOSAA	93	82
d5-EtFOSAA	87	68
13C3-PFBS	100	78
13C3-PFHxS	114	100
$13 C 8-P F O S$	92	85

BATIELLE

It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine Project No.: 100122108-CTOWE21

		NASB-BLL15-MW-03-								
Client ID		110118								
Battelle ID		J9156MSD-FS								
Sample Type		MSD								
Collection Date		11/01/2018								
Extraction Date		11/08/2018								
Analysis Date		11/12/2018								
Analytical Instrument		Sciex $5500 \mathrm{LC} / \mathrm{MS} / \mathrm{MS}$								
\% Moisture		NA								
Matrix		GW								
Sample Size		0.290								
Size Unit-Basis		L				Contr	imits			RPD
Units		ng/L	Target	Recovery	Qual	Lower	Upper	RPD	Qual	Limit
PFBA	375-22-4	24.48	25.86	95		61	139	28.1		≤ 30
PFHxA	307-24-4	24.47	26.12	92		51	137	1.1		≤ 30
PFHpA	375-85-9	21.07	25.86	81		48	136	1.2		≤ 30
PFOA	335-67-1	22.77	25.86	77		49	141	8.7		≤ 30
PFNA	375-95-1	24.11	25.86	93		58	122	14.9		≤ 30
PFDA	335-76-2	21.80	25.86	84		59	135	6.1		≤ 30
PFUnA	2058-94-8	22.92	25.86	89		64	134	9.4		≤ 30
PFDoA	307-55-1	21.28	25.86	82		75	131	3.6		≤ 30
PFTrDA	72629-94-8	27.81	25.86	108		42	148	10.7		≤ 30
PFTeDA	376-06-7	24.53	25.86	95		42	158	12.3		≤ 30
NMeFOSAA	2355-31-9	22.58	25.86	87		50	146	1.2		≤ 30
NEtFOSAA	2991-50-6	28.70	25.86	111		51	131	9.4		≤ 30
PFBS	375-73-5	22.04	26.12	83		56	134	5.8		≤ 30
PFHxS	355-46-4	25.31	26.12	82		52	128	4.8		≤ 30
PFOS	1763-23-1	29.96	25.86	98		40	144	1.0		≤ 30

Surrogate Recoveries (\%)	
13C4-PFBA	38 N
13C5-PFHxA	91
13C4-PFHpA	113
13C8-PFOA	98
13C9-PFNA	86
13C6-PFDA	79
13C7-PFUnA	73
13C2-PFDoA	78
13C2-PFTeDA	59
d3-MeFOSAA	90
d5-EtFOSAA	63
13C3-PFBS	82
13C3-PFHxS	103
13C8-PFOS	86

QTRAP 5500
 Preventive Maintenance Checklist

Preventive Maintenance Date:	12-June-2018
Request ID:	9749
Company Name:	Battelle Memorial Institute
Instrument ID:	X60666
Instrument Model:	QTRAP 5500
Instrument Serial Number:	AU23051004

PASS
\square FAIL
Any failure will lead to an automatic Service Call being open to investigate fault.
Preventive Maintenance is performed twice every year unless specified in the Service Contract. It is designed to help maintain optimum system performance and to help diagnose any system deficiencies.

Engineer is required the assigned Request ID for this PM otherwise making this job invalid.
Comments: Suspected issue with pulse gas manifold. TRAP testing in POSITIVE mode couldn't be finished because of pulse gas issue. The same issue will be taken care in separate service call.

Performed By:
 \qquad

Date: \qquad

Approved By \qquad Date: \qquad

[^0]
QTRAP 5500

LC/MS/MS Detector System
Appendix ZEFPM003-2L

PRE PM PPG PERFORMANCE EVALUATION:

\checkmark Consult Customer concerning the unit overall performance.
\square Check Logbook for Services recently performed.
\square Check Vacuum Pressure:

CAD Settings	Vacuum Reading $\left(\times \mathbf{1 0}^{-5}\right.$ Torr)	Acceptance Criteria
\square CAD 0	0.6	0.4 to 1.1×10^{-5} Torr
\square CAD Low	1.3	Read Only
\square CAD Medium	2.7	Read Only
\square CAD High	3.7	Read Only
\square CAD 12	3.7	2.4 to 4.5×10^{-5} Torr

\checkmark Check for Front end contamination symptoms. Run Q1 POS PPG using PPG 2e-7for a few minutes and check for any TIC signal degradation or huge sensitivity drop where the sensitivity result can't pass specification
\checkmark No degradation or Sensitivity drop
\checkmark Check for Q3 contamination symptoms. Run Q3 POS PPG using PPG 2e-7for a few minutes and check for any TIC signal degradation or huge sensitivity drop where the sensitivity result can't pass specification

No degradation or Sensitivity drop
Pre PM PPG Test: Perform each of the following tests. Optimize ion source position only. The specifications listed for these Pre PM tests are guidelines only, not required to be met.
\checkmark Perform Q1 POS using POS PPG 2e-7M. Scan Rate 10 Da/s. Record 10 mca.

Mass	Q1 Intensity		Q1 Width Value	Width Specs
	Value	Spec		
Q1 175.133	4.01 e6	Read Only	0.6998	Read Only
Q1 500.380	2.81 e7	Read Only	0.7038	Read Only
Q1 906.673	4.21 e7	Read Only	0.7071	Read Only

Perform Q3 POS using POS PPG 2e-7M. Scan Rate $10 \mathrm{Da} / \mathrm{s}$. Record 10 mca .

Mass	Q3 Intensity		Q3 Width Value	Width Specs
	Value	Spec		
Q3 175.133	5.45 e6	Read Only	0.6873	Read Only
Q3 500.380	2.69 e7	Read Only	0.7591	Read Only
Q3 906.673	4.50 e7	Read Only	0.7843	Read Only

(C) This document is the property of Zef Scientific and intended for Zef Scientific Inc trained engineers use only. No copying, all or partial, is permitted without prior authorization.

Zef Scientific Inc.

12707 High Bluff Dr.
Suite 200
San Diego, CA
USA 92130
1975 Hymus Blvd.
QTRAP 5500
LC/MS/MS Detector System
Suite 230
Dorval, QC
Canada H9P 1J8
Phone: 1.866.854.7988
Appendix ZEFPM003-2L
\square Perform MSMS POS in Product Ion scan with 609.3 parent and record daughter 195.1 using Reserpine $0.167 \mathrm{pmol} / \mathrm{ul}$ at the scan rate of $10 \mathrm{Da} / \mathrm{s}$ for 10 MCA . Calculate transmission efficiency comparing Q1POS 609 intensity. Transmission Efficiency: : 28.87% (Read Only)

Mass	MSMS Intensity		MSMS Width Value	Width Specs
	Value	Spec		
Q1 609.3	4.26 e 7	Read Only	0.7011	Read Only
MS/MS 195.1	1.23 e 7	Read Only	0.7069	

\checkmark Perform Q1 NEG using NEG PPG 3e-5M. Scan Rate $10 \mathrm{Da} / \mathrm{s}$. Record 10 mca .

Mass	Q1 Intensity		Q1 Width Value	Width Specs
	Value	Spec		
Q1 933.636	1.42 e7	Read Only	0.7686	Read Only

Perform Q3 NEG using NEG PPG 3e-5M. Scan Rate $10 \mathrm{Da} / \mathrm{s}$. Record 10 mca .

Mass	Q3 Intensity		Q3 Width Value	Width Specs
	2.24 e7	Read Only		

Perform Product lon scan using NEG PPG 3e-5M. Record10mca.

Mass	Scan Rate	MCA	MSMS Intensity		MSMS	Width Specs
			Value	Spec	Width Value	
MSMS 45	10	10	3.31 e 6	Read Only	0.6746	Rean

QTRAP 5500

LC/MS/MS Detector System
Appendix ZEFPM003-2L

PREVENTIVE MAINTENANCE CHECKLIST:

\checkmark Check Cooling Fans for Turbo Pumps while MS is ON.
\square Check QJet and QPS tuning voltage for reference.
Record AC input Voltage while MS is OFF: \qquad (200-240VAC). If Out-of-Range, notify customer.

\checkmark Clean Interface

\checkmark Curtain Plate
Orifice Plate
QJet
Q0 Rods.
\checkmark Replace Roughing Pump Oil.
\checkmark Inspect Oil Exhaust Filter, if Applicable.

\checkmark Clean and inspect built-in divert valve if used.
\checkmark Check Multiplier Voltage, optimize if necessary.
\square Replace four Air Filters at the bottom of the mass spectrometer.
\square Pump down overnight if possible.
\square Perform Maintenance on Turbo V source.
\square Replace Electrode, if necessary.
\square Check Turbo heaters resistances.
\square Check if Temperature is reached at 500C with TIS Probe installed.
\square Check if Temperature is reached at 500C with APCI Probe installed. \square N/A

QTRAP 5500

LC/MS/MS Detector System

POST PM PPG PERFORMANCE TESTS:

\checkmark Set-up Sample for Infusion.
\square Check spray and adjust sprayer's position of the TIS source.
\square Check Vacuum Pressure:

CAD Settings	Vacuum Reading $\left(\times \mathbf{1 0} \mathbf{0}^{-5} \mathbf{~}\right.$ orr $)$	Acceptance Criteria
\square CAD 0	0.7	0.4 to 1.1×10^{-5} Torr
\square CAD Low	1.3	Read Only
\square CAD Medium	2.7	Read Only
\square CAD High	3.7	Read Only
\square CAD 12	3.7	2.4 to 4.5×10^{-5} Torr

\square Perform Q1 POS using POS PPG 2e-7M. Mass calibrate to less than 0.1 amu .

Mass	Q1 Intensity		Q1 Width Value	Width Specs
	Value	Spec		
Scan Rate 10 Da/s Record 10 mca				
Q1 175.133	5.04 e 6	$\geq 1.2^{\mathrm{e}} 6$	0.6737	0.6 to 0.8
Q1 500.380	1.60 e 7	$\geq 9.0^{\mathrm{e}} 6$	0.6961	0.6 to 0.8
Q1 906.673	2.84 e 7	$\geq 1.4^{\mathrm{e}} 7$	0.7179	0.6 to 0.8
Scan Rate 1000 Da/s Record 50 mca				
Q1 906.673	1.33 e 8	$\geq 6.8^{\mathrm{e}} 7$	0.7465	0.6 to 0.8

\square Perform Q3 POS using POS PPG 2e-7M. Mass calibrate to less than 0.1 amu .

Mass	Q3 Intensity		Q3 Width Value	Width Specs
	Value	Spec		
Scan Rate $10 \mathrm{Da} / \mathrm{s}$ Record 10 mca				
Q3 175.133	5.02 e 6	$\geq 1.2^{\mathrm{e}} 6$	0.6719	0.6 to 0.8
Q3 500.380	1.72 e 7	$\geq 9.0^{\mathrm{e}} 6$	0.7443	0.6 to 0.8
Q3 906.673	3.00 e 7	$\geq 1.4^{\mathrm{e}} 7$	0.7504	0.6 to 0.8
Scan Rate $1000 \mathrm{Da} / \mathrm{s}$ Record 50 mca				
Q3 906.673	1.46 e 8	$\geq 6.8^{\mathrm{e}} 7$	0.7202	0.6 to 0.8

\checkmark Perform "Product of $609.3^{" P}$ POS and record product ion 195.1 using Reserpine 0.167 pmol/uL. Record 10 mca. Calculate Transmission efficiency comparing Q1POS 609 intensity.
Transmission Efficiency: 21.10\% ($\geq 10.0 \%$)

Mass	MSMS Intensity		Width Value	Width Specs
	Value	Spec		
Q1 609.3	5.78 e7	N/A	0.6888	Read Only
MS/MS 195.1	1.22 e7	N/A	0.7003	Read Only

Zef Scientific Inc.

12707 High Bluff Dr.
Suite 200
San Diego, CA
USA 92130
1975 Hymus Blvd.
QTRAP 5500
LC/MS/MS Detector System
Suite 230
Dorval, QC
Canada H9P 1J8
Phone: 1.866.854.7988
Appendix ZEFPM003-2L
\square Perform Q1 NEG using NEG PPG 3e-5M. Mass calibrate to less than 0.1 amu .

Mass	Scan Rate	Mca	Q1 Intensity		Q1 Width Value	Width Specs
			Value	Spec		
Q1 933.636	10	10	1.35 e 7	$\geq 1.0^{\circ} 7$	0.7486	0.6 to 0.8
Q1 933.636	1000	50	7.52 e 7	$\geq 4.0^{\circ} 7$	0.7206	0.6 to 0.8

\checkmark Perform Q3 NEG using NEG PPG 3e-5M. Mass calibrate to less than 0.1 amu .

Mass	Scan Rate	Mca	Q3 Intensity		Q3 Width	Width Specs
			Value	Spec		
Q3 933.636	10	10	2.15 e 7	$\geq 8.0^{\circ} 6$	0.7492	0.6 to 0.8
Q3 933.636	1000	50	8.33 e 7	$\geq 4.0^{\circ} 7$	0.7299	0.6 to 0.8

Perform Product lon scan using NEG PPG 3e-5M.

Mass	Scan Rate	Mca	MSMS Intensity		MSMS Width	
			Width Specs			
MSMS 45	10	10	3.33 e6	Read Only	0.6387	Read Only

\checkmark Perform ER POS 118.087 and 922.01 using ESI Tuning Mix 1:100 in ES Tuning Dilution Solvent. Apply suggested Scan Rate and Record number of MCA. Mass calibrate to less than 0.1 amu.

Mass	Fill Time (ms)	ER Intensity		ER Width	Width Specs
		Spec	Value		
ScanRate $: 1000 \mathrm{Da} / \mathrm{s} ; 50 \mathrm{Mca}$					
ER 118.087	0.05	8.54 e 6	$\geq 7.2^{\mathrm{e}} 6$	0.1473	<0.35
ER 922.010	0.05	4.96 e 7	$\geq 2.8^{\mathrm{e}} 6$	0.2434	<0.35
ScanRate $: 10000 \mathrm{Da} / \mathrm{s} ; 50 \mathrm{Mca}$					
ER 118.087	0.05		$\geq 2.4^{\mathrm{e}} 7$		<0.65
ER 922.010	0.05		$\geq 6.8^{\mathrm{e}} 7$		<0.65

Perform ER NEG 431.982 and 601.978 using ESI Tuning Mix 1:100 in ES Tuning Dilution Solvent. Apply suggested Scan Rate and Record number of MCA. Mass calibrate to less than 0.1 amu.

Mass	Fill Time(ms)	ER Intensity		ER WidthValue	Width Specs
		Value	Spec		
ScanRate : $1000 \mathrm{Da} / \mathrm{s}$; 50 Mca					
ER 431.982	0.05	1.81 e 8	$\geq 4.4{ }^{\text {e }} 7$	0.1862	<0.35
ER 601.978	0.05	1.70 e8	$\geq 5.6{ }^{\text {e }} 7$	0.1809	<0.35
ScanRate : $10000 \mathrm{Da} / \mathrm{s} ; 50 \mathrm{Mca}$					
ER 431.982	0.05	5.72 e8	$\geq 1.2{ }^{\text {e }} 8$	0.5102	<0.65
ER 601.978	0.05	4.52 e8	$\geq 1.6{ }^{\text {e }} 8$	0.6187	<0.65

(C) This document is the property of Zef Scientific and intended for Zef Scientific Inc trained engineers use only. No copying, all or partial, is permitted without prior authorization.

Zef Scientific Inc.
12707 High Bluff Dr.
Suite 200
San Diego, CA
USA 92130
1975 Hymus Blvd.
Suite 230
Dorval, QC
Canada H9P 1J8
Phone: 1.866.854.7988

QTRAP 5500
 LC/MS/MS Detector System

Appendix ZEFPM003-2L

\checkmark Perform EPI POS 397.2 using Reserpine $0.167 \mathrm{pmol} / \mathrm{uL}$. Record 20 mca .					
Mass Scan Rate 	Q0 Trapping OFF		Q0 Trapping ON		
	Intensity	Spec	Intensity	Spec	
EPI 397.2	10000	$>3.0 \mathrm{e} 6$	$\geq 2.0^{\mathrm{e}} 6$	$>7.0 \mathrm{e} 6$	$\geq 6.4^{\mathrm{e}} 6$

\checkmark Perform MS3 POS full scan Fragmentation ON \& OFF using Reserpine 0.167pmol/uL. Record 20 mca .

Mass	Scan Rate (Da/s)	Fragamentation OFF		Fragmentation ON	
		Spec	Intensity	Spec	
MS3 397.2	1000	Yes	Contains only 397.2	N/A	N/A
$\square 236$ OR $\square 365$	1000	Yes	Fragment Intensity	>2.0 e6	$\geq 1.6 \times 10^{\mathrm{e}} 6$

REVIEW:

\checkmark Attach all spectrums printouts to this procedure.If any parameter setting access modes were changed during the PM, ensure they are returned to their normal access mode and that their offsets are adjusted to match optimized values from the post-PM acquisition files.
\square Empty tuning cache folder, if necessary
\checkmark Update Service Work Order statusFill and replace PM Label.

END OF PREVENTIVE MAINTENANCE CHECKLIST

Document history:

06 OCT 2016: Appendix ZEFPM003-2L: Removed requirements to fit Manufacturer's testing criteria.

- +ER: 50 MCA scans from Sample 4 (ER POS_10000 Da) ... Max. $4.7 \mathrm{e} 8 \mathrm{cps} . \quad$ +ER: 50 MCA scans from Sample 4 (ER POS_10000 Da) ...

It can be done
BATTELLE - NORWELL OPERATIONS SAMPLE PREPARATION RECORDS

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0652
CTO-WE21: Former Naval Air Station, Brunswick, Maine GW

SOP Numbers (see workplan for modifications)
ExtractionSOP No. 5-370

This Batch Contains The Following Samples:
CS100PB-FS J9156MSD-FS
CS101LCS-FS J9157-FS
J9154-FS J9158-FS
J9155-FS
J9156-FS J9156MS-FS

Laboratory Preparation Records
COMPLETE AND VALIDATED

Prep Task Leader: Stephanie Schultz

Approved By:	Date	Initials
Denise Schumitz	$11 / 14 / 2018$	DMS

BATTELLE - NORWELL OPERATIONS SAMPLE IDENTIFICATION PAGE

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0652
CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

Sample ID	Description
CS100PB-FS	Procedural Blank
CS101LCS-FS	Laboratory Control Sample
J9154-FS	NASB-BLL15-MW-01-110118
J9155-FS	NASB-BLL15-MW-02-110118
J9156-FS	NASB-BLL15-MW-03-110118
J9156MS-FS	Matrix Spike of NASB-BLL15-MW-03-110118
J9156MSD-FS	Matrix Spike Duplicate of NASB-BLL15-MW-03-110118
J9157-FS	NASB-BLL15-MW-04-110118
J9158-FS	NASB-BLL15-DUP-01-110118

It can be done

BATTELLE - NORWELL OPERATIONS SAMPLE CUSTODY LOG

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21

18-0652

CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

It can be done

BATTELLE - NORWELL OPERATIONS
 LIQUID SAMPLE ID FORM

Project Title(s)
Project No.(s)
CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0652
CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

Sample ID	Description	Volume $(\mathbf{m L})$	Bottles	$*$	Date Initials
CS100PB-FS	Procedural Blank	250.0	NA	--	$11 / 08 / 18 \mathrm{~KB}$
CS101LCS-FS	Laboratory Control Sample	250.0	NA	--	$11 / 08 / 18 \mathrm{~KB}$
J9154-FS	NASB-BLL15-MW-01-110118	265.0	1	C	$11 / 08 / 18 \mathrm{~KB}$
J9155-FS	NASB-BLL15-MW-02-110118	275.0	1	C	$11 / 08 / 18 \mathrm{~KB}$
J9156-FS	NASB-BLL15-MW-03-110118	290.0	1	C	$11 / 08 / 18 \mathrm{~KB}$
J9156MS-FS	Matrix Spike	265.0	NA	C	$11 / 08 / 18 \mathrm{~KB}$
J9156MSD-FS	Matrix Spike Duplicate	290.0	NA	C	$11 / 08 / 18 \mathrm{~KB}$
J9157-FS	NASB-BLL15-MW-04-110118	280.0	NA	C	$11 / 08 / 18 \mathrm{~KB}$
J9158-FS	NASB-BLL15-DUP-01-110118	280.0	NA	C	$11 / 08 / 18 \mathrm{~KB}$

Comments:

[^1]
BATTELLE - NORWELL OPERATIONS SURROGATE SPIKE FORM

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0652

CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW

Sample ID	Standard ID	Type	Vial No.	Vol Added (uL)	Date Spiked/ Spiked By	Witn'd By	Comment
CS100PB-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
CS101LCS-FS	KB82	LCS/MS	1	100	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
CS101LCS-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9154-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9155-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9156-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9156MS-FS	KB82	LCS/MS	1	150	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9156MS-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9156MSD-FS	KB82	LCS/MS	1	150	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9156MSD-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9157-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA
J9158-FS	KC19	SIS	1	50	$11 / 08 / 18 \mathrm{~KB}$	DMS	NA

Syringes/Pipettes Used:

Std ID	Type	Syr/Pip
KB82	Pipette	B814657482
KB82	Pipette	B814659662
KC19	Pipette	B814659662

It can be done

BATTELLE - NORWELL OPERATIONS INTERNAL STANDARD SPIKING FORM

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0652

CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW
(N/A Fraction)

Extract Id Vol. (uL)	Added (uL)	Std. Id	Accm $\cdot(\mathrm{uL})$	Vial No.	Pre Inj. Vol. $(\mathrm{uL})^{\wedge}$	Final Dilution $*$	Date Spiked/ Spiked By	Witn'd By	
CS100PB-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
CS101LCS-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
J9154-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
J9155-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
J9156-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
J9156MS-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
J9156MSD-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
J9157-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK
J9158-FS(0)	950	50	KC52	50	1	1000	1.000	$11 / 12 / 18 \mathrm{~KB}$	AEK

Syringes/Pipettes Used:

Std ID	Type	Syr/Pip
KC52	Pipette	B814659662

[^2]\wedge - Pre Injection Volume (PIV) includes any RIS spikes.

BATIELIE

It can be done

BATTELLE - NORWELL OPERATIONS

 PREPARATION EXTRACT SPLIT FORM
Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine
100122108-
CTOWE21
18-0652
CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW

Extract		*	Extract Date	Source		Initial Extract Vol (uL)	Extract Split	Extract Split	Total Dilution	Date/Initials
Name	\#			Name	\#					
CS100PB-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
CS101LCS-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
J9154-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
J9155-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
J9156-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
J9156MS-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
J9156MSD-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
J9157-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB
J9158-FS	0	--	11/8/2018 11:05:00 AM	NA		NA	NA	1.000	1.000	11/08/18 KB

[^3]* - "C" = Extract is Consumed

It can be done

BATTELLE - NORWELL OPERATIONS EXTRACT - INSTRUMENT FACILITY CUSTODY PAGE

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0652

CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW

It can be done

BATTELLE - NORWELL OPERATIONS SAMPLE SPECIFIC COMMENTS

Project Title(s)

Project No.(s)
CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0652
CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

| Sample ID: | Comment: | Date/Initials: |
| :--- | :--- | :--- | :--- |
| CS100PB-FS | Extraction started 11:05am, extraction block 1, ended at 12:09pm | $11 / 08 / 18 \mathrm{~KB}$ |
| CS101LCS-FS | Extraction started 11:05am, extraction block 1, ended at 12:02pm | $11 / 08 / 18 \mathrm{~KB}$ |
| J9154-FS | Extraction started 11:05am, extraction block 1, ended at 12:24pm | $11 / 08 / 18 \mathrm{~KB}$ |
| J9155-FS | Extraction started 11:05am, extraction block 1, ended at 12:39pm | $11 / 08 / 18 \mathrm{~KB}$ |
| J9156-FS | Extraction started 11:05am, extraction block 1, ended at 12:34pm | $11 / 08 / 18 \mathrm{~KB}$ |
| J9156MS-FS | Extraction started 11:05am, extraction block 1, ended at 12:32pm | $11 / 08 / 18 \mathrm{~KB}$ |
| J9156MSD-FS | Extraction started 11:05am, extraction block 1, ended at 12:43pm | $11 / 08 / 18 \mathrm{~KB}$ |
| J9157-FS | Extraction started 11:05am, extraction block 1, ended at 1:08pm. Sample contained some
 dirt which slightly clogged the filter, slowing down the extraction. | $11 / 08 / 18 \mathrm{~KB}$ |
| J9158-FS | Extraction started 11:05am, extraction block 1, ended at 12:54pm. Sample contained some
 dirt which slightly clogged the filter, slowing down the extraction. | $11 / 08 / 18 \mathrm{~KB}$ |

Sequence Report Printed: 16/11/2018 11:16:39 AM
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Vial } & \text { Laboratory Sample ID } & \text { Client Sample ID } & \text { Acquisition Date } & \text { Acquisition Method } & \text { Data File } \\ \hline 11 & \text { MeOH } & & \begin{array}{c}11 / 7 / 2018 \text { 9:21:56 } \\ \text { AM }\end{array} & \text { 5-0369.dam } & \text { AC_11062018_5- } \\ \hline \text { 369.wiff_- }\end{array}\right]$

Created with Analyst Reporter
Sequence Report
Printed: 21/11/2018 2:26:52 PM

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
1	KC68 ISC	Instrument Sensitivity Check	$\begin{gathered} \hline 11 / 12 / 2018 \text { 9:55:29 } \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ \text { 369.wiff } \end{gathered}$
2	KC73 IB	Instrument Blank	$\begin{gathered} \hline 11 / 12 / 2018 \text { 10:06:22 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ \text { 369.wiff } \end{gathered}$
3	MeOH		$\begin{gathered} \text { 11/12/2018 10:17:15 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ \text { 369.wiff } \end{gathered}$
19	19126-FS-D(3)		$\begin{gathered} \text { 11/12/2018-10:28:07 } \\ \text { AMA } \end{gathered}$	5-0369.dam	AC_11122018_5-
20	19126-FS-D(5)		$\begin{gathered} \hline 11 / 12 / 2018-10: 38: 59 \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{369 \text { wiff }}$
24	19126-FS-D(7)		$\begin{gathered} \hline \text { 11/12/2018 10:49:53 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{\substack{369 . \text { wiff }}}$
22	19126-FS-D(9)		$\begin{gathered} \text { 11/12/2018 11:00:45 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ 369 \text { wiff } \end{gathered}$
23	19144-FS(0)		$\begin{gathered} \text { 11/12/2018 11:11:37 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{369 \text { wiff }}$
24	19117-FS(0)		$\begin{gathered} \hline \text { 11/12/2018 11:22:29 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ \text { 369.wiff } \end{gathered}$
25	19118-FS(0)		$\begin{gathered} \text { 11/12/2018 11:33:21 } \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{369 \text { wiff }}$
26	19119-FS(0)		$\begin{gathered} \text { 11/12/2018 11:44:13 } \\ \text { AN } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5-wiff } \\ 369 . \text { in } \end{gathered}$
27	MeOH		$\begin{gathered} \text { 11/12/2018 11:55:05 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ \text { 369.wiff } \end{gathered}$
28	KC70-C6V	GCV	$\begin{gathered} \text { 11/12/2018 12:05:58 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{\substack{11122018-5 \\ 369 \text { wiff }}}$
27	MeOH		$\begin{gathered} \hline \text { 11/12/2018 12:16:51 } \\ \text { PN } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AG_11122018_5-wiff } \\ 369 . \text { in } \end{gathered}$
29	19120-FS(0)		$\begin{gathered} \hline \text { 11/12/2018 12:27:43 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{369 \text { wiff }}$
34	19126-FS(0)		$\begin{gathered} \text { 11/12/2018 12:38:35 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ \text { 369.wiff } \end{gathered}$
30	MeOH		$\begin{gathered} \text { 11/12/2018 12:49:28 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ 369 \text { wiff } \end{gathered}$
33	19122-FS(0)		$\begin{gathered} 11 / 12 / 2018-1: 00: 19 \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{369 \text { wiff }}$
32	MeOH		$\begin{gathered} 11 / 12 / 2018-1: 11: 12 \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AG_11122018_5-wiff } \\ 369 . \text { in } \end{gathered}$
35	10121 FS(0)		$\begin{gathered} \text { 11/12/2018-1:22:04 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ 369 \text { wiff } \end{gathered}$
34	MeOH		$\begin{gathered} 11 / 12 / 2018-1: 32: 56 \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5-wiff }_{369 . \text { wifle }}$
8	MeOH		$\begin{gathered} 11 / 12 / 2018-1: 15: 41 \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ 369 \text { wiff } \end{gathered}$
8	MeOH		$\begin{gathered} \text { 11/12/2018-1:56:33 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{369 \text { wiff }}^{10-}$
36	KC69-CCV	GCV	$\begin{gathered} \text { 11/12/2018 2:07:27 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ \text { 369.wiff } \end{gathered}$
45	MeOH		$\begin{gathered} 11 / 12 / 2018-2: 18: 19 \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11122018_5- } \\ 369 \text { wiff } \end{gathered}$
37	CS02PB-FS(3)		$\begin{gathered} 11 / 12 / 2018-2: 29: 10 \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11122018_5- }_{369 \text { wiff }}$
38	CS030LCS-FS(3)		11/12/2018 2:10:02	5-0369.dam	AC_11122018_5-

Created with Analyst Reporter
Sequence Report
Printed: 21/11/2018 2:26:52 PM

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
			PM		
39	d8928-FS(3)		$11 / 12 / 20182: 50: 56$	5-0369.dam	AC_11122018_5-
40	d8929-FS(3)		PM		
369.wiff					

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
11	KC70 CCV	CCV	$11 / 12 / 20187: 33: 36$	PM	PM

1 - When adding samples to the run they were typed onto the wrong sequence it should have been AC_11122018_5-369. The time stamp for each sample is showing that it was run in the correct order. DMS 11/21/2018

All crossed out injections are not related to SDG 18-0652. JRT 11/26/2018

BATHEIIE

	Isotope Dilution Calibration Curve Concentrations (ng/L)						
	KC66	KC67	KC68	KC69	KC70	KC71	KC72
PFBA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFPeA	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHxA	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHpA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFNA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFUnA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDoA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFTrDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFTeDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
NMeFOSAA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
NEtFOSAA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOSA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFBS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFPeS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFHxS (Branched)	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHpS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOS (Branched)	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFNS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
4:2FTS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
6:2FTS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
8:2FTS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
	Surrogates / Extracted Internal Standards						
13C4-PFBA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C5-PFPeA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C5-PFHxA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C4-PFHpA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C8-PFOA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C9-PFNA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C6-PFDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C7-PFUnA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFDoA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFTeDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
d3-MeFOSAA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
d5-EtFOSAA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C8-FOSA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C3-PFBS	232.25	232.25	232.25	232.25	232.25	232.25	232.25
13C3-PFHxS	236.50	236.50	236.50	236.50	236.50	236.50	236.50
13C8-PFOS	239.25	239.25	239.25	239.25	239.25	239.25	239.25
13C2-4:2FTS	233.75	233.75	233.75	233.75	233.75	233.75	233.75
13C2-6:2FTS	237.25	237.25	237.25	237.25	237.25	237.25	237.25
13C2-8:2FTS	239.50	239.50	239.50	239.50	239.50	239.50	239.50
	Internal Standards						
13C3-PFBA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFOA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C4-PFOS	239.25	239.25	239.25	239.25	239.25	239.25	239.25

BATHEIIE

	ICC
	KC74
PFBA	1,000.00
PFPeA	1,000.00
PFHxA	1,010.00
PFHpA	1,000.00
PFOA	1,000.00
PFNA	1,000.00
PFDA	1,000.00
PFUnA	1,000.00
PFDoA	1,000.00
PFTrDA	1,000.00
PFTeDA	1,000.00
NMeFOSAA	1,000.00
NEtFOSAA	1,000.00
PFOSA	1,000.00
PFBS	1,010.00
PFPeS	1,000.00
PFHxS	1,010.00
PFHpS	1,000.00
PFOS	1,000.00
PFDS	1,010.00
PFNS	1,010.00
4:2FTS	1,000.00
6:2FTS	1,000.00
8:2FTS	1,010.00
13C4-PFBA	250.00
13C5-PFPeA	250.00
13C5-PFHxA	250.00
13C4-PFHpA	250.00
13C8-PFOA	250.00
13C9-PFNA	250.00
13C6-PFDA	250.00
13C7-PFUnA	250.00
13C2-PFDoA	250.00
13C2-PFTeDA	250.00
d3-MeFOSAA	250.00
d5-EtFOSAA	250.00
13C8-FOSA	250.00
13C3-PFBS	232.25
13C3-PFHxS	236.50
13C8-PFOS	239.25
13C2-4:2FTS	233.75
13C2-6:2FTS	237.25
13C2-8:2FTS	239.50
13C3-PFBA	250.00
13C2-PFOA	250.00
13C2-PFDA	250.00
13C4-PFOS	239.25

Analyte Name	PFBS_1	Data File	AC_11062018_5-369.wiff
MRM Transition	$298.9 / 80.0$	Result Table	18-0652
Internal Standard	13C3-PFBS	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=2.64037 x+-0.02990(r=0.99964)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
12	KC66	L1	True	101.00	99.254148	98.3
13	KC67	L2	True	252.50	276.752750	109.6
14	KC68	L3	True	505.00	487.632465	96.6
15	KC69	True	1010.00	967.506674	95.8	
16	KC70	L5	True	2525.00	2562.531257	101.5
17	KC71	True	10100.00	9753.445484	96.6	
18	KC72	True	20200.00	20546.377221	101.7	

Analyte Name	PFBS_2	Data File	AC_11062018_5-369.wiff
MRM Transition	298.9/99.0	Result Table	18-0652
Internal Standard	13C3-PFBS	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $y=0.81304 x+0.00176(r=0.99929)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	101.00	104.609228	103.6
13	KC67	L2	True	252.50	295.386280	117.0
14	KC68	L3	True	505.00	449.367006	89.0
15	KC69	L4	True	1010.00	961.478769	95.2
16	KC70	L5	True	2525.00	2431.977399	96.3
17	KC71	L6	True	10100.00	9736.495915	96.4
18	KC72	L7	True	20200.00	20714.185403	102.6

Analyte Name	PFHxA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	$313.0 / 269.0$	Result Table	18-0652
Internal Standard	13C5-PFHxA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.91654 x+0.10310(r=0.99925)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	101.00	91.785376	90.9
13	KC67	L2	True	252.50	289.479366	114.7
14	KC68	L3	True	505.00	508.733890	100.7
15	KC69	L4	True	1010.00	1025.584221	101.5
16	KC70	L5	True	2525.00	2256.916514	89.4
17	KC71	L6	True	10100.00	10447.202686	103.4
18	KC72	L7	True	20200.00	20073.797947	99.4

Analyte Name	PFHxA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	$313.0 / 119.0$	Result Table	18-0652
Internal Standard	13C5-PFHxA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.06960 x+0.00929(r=0.99946)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	101.00	86.832947	86.0
13	KC67	L2	True	252.50	295.670074	117.1
14	KC68	L3	True	505.00	510.775019	101.1
15	KC69	L4	True	1010.00	991.330359	98.2
16	KC70	L5	True	2525.00	2403.988502	95.2
17	KC71	L6	True	10100.00	10485.385577	103.8
18	KC72	L7	True	20200.00	19919.517521	98.6

Analyte Name	PFHpA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	$363.0 / 319.0$	Result Table	18-0652
Internal Standard	13C4-PFHpA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.76020 x+0.08507(r=0.99924)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	92.746714	92.8
13	KC67	L2	True	250.00	259.668781	103.9
14	KC68	L3	True	500.00	480.259162	96.1
15	KC69	L4	True	1000.00	1060.993309	106.1
16	KC70	L5	True	2500.00	2466.376875	98.7
17	KC71	L6	True	10000.00	10525.951972	105.3
18	KC72	L7	True	20000.00	19464.003187	97.3

Analyte Name	PFHpA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	$363.0 / 169.0$	Result Table	18-0652
Internal Standard	13C4-PFHpA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad \mathrm{y}=0.01601 \mathrm{x}+0.00344(\mathrm{r}=0.99858)$ (weighting: $1 / \mathrm{x}$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	104.106088	104.1
13	KC67	L2	True	250.00	281.822464	112.7
14	KC68	L3	True	500.00	407.259102	81.5
15	KC69	L4	True	1000.00	945.323579	94.5
16	KC70	L5	True	2500.00	2597.138140	103.9
17	KC71	L6	True	10000.00	10644.693795	106.5
18	KC72	L7	True	20000.00	19369.656831	96.9

Analyte Name	PFHxS_1	Data File	AC_11062018_5-369.wiff
MRM Transition	$399.0 / 80.0$	Result Table	18-0652
Internal Standard	$13 C 3-$ PFHxS	Instrument Name	QTRAP 5500
Acquisition Date	$11 / 7 / 20189: 21: 56$ AM	Acquisition Method	5-0369.dam

Regression Equation: $y=3.41195 x+0.01616(r=0.99912)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	101.00	104.253305	103.2
13	KC67	L2	True	252.50	265.196957	105.0
14	KC68	L3	True	505.00	501.843046	99.4
15	KC69	L4	True	1010.00	945.684197	93.6
16	KC70	L5	True	2525.00	2564.175091	101.6
17	KC71	L6	True	10100.00	9520.428465	94.3
18	KC72	L7	True	20200.00	20791.918939	102.9

Analyte Name	PFHxS_2	Data File	AC_11062018_5-369.wiff
MRM Transition	$399.0 / 99.0$	Result Table	18-0652
Internal Standard	$13 C 3-$ PFHxS	Instrument Name	QTRAP 5500
Acquisition Date	$11 / 7 / 20189: 21: 56$ AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.97676 x+-0.02038(r=0.99844)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	101.00	105.700972	104.7
13	KC67	L2	True	252.50	280.569142	111.1
14	KC68	L3	True	505.00	461.276446	91.3
15	KC69	L4	True	1010.00	998.567975	98.9
16	KC70	L5	True	2525.00	2456.369460	97.3
17	KC71	L6	True	10100.00	9349.885193	92.6
18	KC72	L7	True	20200.00	21041.130810	104.2

Analyte Name	PFOA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	413.0/369.0	Result Table	18-0652
Internal Standard	13C8-PFOA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.95407 x+0.05984(r=0.99983)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L) $)$	Recovery $(\%)$
12	KC66	L1	True	100.00	101.227619	101.2
13	KC67	L2	True	250.00	275.648643	110.3
14	KC68	L3	True	500.00	444.209513	88.8
15	KC69	L4	True	1000.00	976.764804	97.7
16	KC70	L5	True	2500.00	2555.639527	102.2
17	KC71	L6	True	10000.00	9957.282055	99.6
18	KC72	L7	True	20000.00	20039.227839	100.2

Analyte Name	PFOA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	413.0/169.0	Result Table	18-0652
Internal Standard	13C8-PFOA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.06167 x+-9.30221 e-4$ ($r=0.99966$) (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	89.661531	89.7
13	KC67	L2	True	250.00	261.200913	104.5
14	KC68	L3	True	500.00	494.190235	98.8
15	KC69	L4	True	1000.00	1009.670556	101.0
16	KC70	L5	True	2500.00	2641.760392	105.7
17	KC71	L6	True	10000.00	10223.000786	102.2
18	KC72	L7	True	20000.00	19630.515588	98.2

Analyte Name	PFNA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	463.0/419.0	Result Table	18-0652
Internal Standard	13C9-PFNA	Instrument Name	QTRAP5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $y=0.75910 x+0.13866(r=0.99893)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	95.960001	96.0
13	KC67	L2	True	250.00	276.855061	110.7
14	KC68	L3	True	500.00	499.516141	99.9
15	KC69	L4	True	1000.00	911.618322	91.2
16	KC70	L5	True	2500.00	2462.440024	98.5
17	KC71	L6	True	10000.00	10643.452267	106.4
18	KC72	L7	True	20000.00	19460.158184	97.3

Analyte Name	PFNA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	463.0/219.0	Result Table	18-0652
Internal Standard	13C9-PFNA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.23401 x+0.03357(r=0.99635)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	75.886943	75.9
13	KC67	L2	True	250.00	315.547033	126.2
14	KC68	L3	True	500.00	498.005987	99.6
15	KC69	L4	True	1000.00	945.601392	94.6
16	KC70	L5	True	2500.00	2434.316411	97.4
17	KC71	L6	True	10000.00	11191.407985	111.9
18	KC72	L7	True	20000.00	18889.234250	94.5

Analyte Name	PFOS_1	Data File	AC_11062018_5-369.wiff
MRM Transition	$499.0 / 80.0$	Result Table	18-0652
Internal Standard	13C8-PFOS	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=3.77369 x+0.78197(r=0.99224)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	76.205430	76.2
13	KC67	L2	True	250.00	256.658249	102.7
14	KC68	L3	True	500.00	540.434375	108.1
15	KC69	L4	True	1000.00	1073.838129	107.4
16	KC70	L5	True	2500.00	2421.320597	96.9
17	KC71	L6	True	10000.00	11780.008526	117.8
18	KC72	T7	True	20000.00	18201.534695	91.0

Analyte Name	PFOS_2	Data File	AC_11062018_5-369.wiff
MRM Transition	499.0/99.0	Result Table	18-0652
Internal Standard	13C8-PFOS	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.65276 x+0.15867(r=0.99092)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $\mathbf{n g} / \mathrm{L})$	Recovery $(\%)$
12	KC66	L1	True	100.00	71.437567	71.4
13	KC67	L2	True	250.00	246.898827	98.8
14	KC68	L3	True	500.00	552.832649	110.6
15	KC69	L4	True	1000.00	1111.227192	111.1
16	KC70	L5	True	2500.00	2481.483270	99.3
17	KC71	L6	True	10000.00	11884.744062	118.9
18	KC72	L7	True	20000.00	18001.376434	90.0

Analyte Name	PFDA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	513.0/469.0	Result Table	18-0652
Internal Standard	13C6-PFDA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.93608 x+0.08620(r=0.99829)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $($ ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	89.174702	89.2
13	KC67	L2	True	250.00	266.010880	106.4
14	KC68	L3	True	500.00	455.431734	91.1
15	KC69	L4	True	1000.00	1040.073636	104.0
16	KC70	L5	True	2500.00	2664.696102	106.6
17	KC71	L6	True	10000.00	10713.265468	107.1
18	KC72	L7	True	20000.00	19121.347479	95.6

Analyte Name	PFDA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	513.0/219.0	Result Table	18-0652
Internal Standard	13C6-PFDA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $y=0.04001 x+0.02035(r=0.99605)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	False	100.00	4.116121	4.1
13	KC67	L2	True	250.00	237.838582	95.1
14	KC68	L3	True	500.00	493.966524	98.8
15	KC69	L4	True	1000.00	1039.458501	104.0
16	KC70	L5	True	2500.00	2383.668629	95.4
17	KC71	L6	True	10000.00	11260.665706	112.6
18	KC72	L7	True	20000.00	18834.402059	94.2

Analyte Name	PFUnA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	563.0/519.0	Result Table	18-0652
Internal Standard	13C7-PFUnA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=1.00215 x+-0.04350(r=0.99903)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	121.053183	121.1
13	KC67	L2	True	250.00	248.553340	99.4
14	KC68	L3	True	500.00	504.844362	101.0
15	KC69	L4	True	1000.00	885.851250	88.6
16	KC70	L5	True	2500.00	2208.959528	88.4
17	KC71	L6	True	10000.00	9941.882253	99.4
18	KC72	L7	True	20000.00	20438.856084	102.2

Analyte Name	PFUnA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	563.0/269.0	Result Table	18-0652
Internal Standard	13C7-PFUnA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $y=0.04954 x+0.00310(r=0.99938)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	87.422506	87.4
13	KC67	L2	True	250.00	293.144462	117.3
14	KC68	L3	True	500.00	529.868374	106.0
15	KC69	L4	True	1000.00	982.756236	98.3
16	KC70	L5	True	2500.00	2241.055556	89.6
17	KC71	L6	True	10000.00	10069.884869	100.7
18	KC72	L7	True	20000.00	20145.867997	100.7

Analyte Name	PFDoA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	$613.0 / 569.0$	Result Table	18-0652
Internal Standard	13C2-PFDoA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.82686 x+0.09179(r=0.99904)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	88.395885	88.4
13	KC67	L2	True	250.00	284.051806	113.6
14	KC68	L3	True	500.00	461.401236	92.3
15	KC69	L4	True	1000.00	1009.535144	101.0
16	KC70	L5	True	2500.00	2554.300150	102.2
17	KC71	L6	True	10000.00	10563.209297	105.6
18	KC72	L7	True	20000.00	19389.106482	97.0

Analyte Name	PFDoA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	613.0/319.0	Result Table	18-0652
Internal Standard	13C2-PFDoA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.13064 x+0.01832(r=0.99976)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	103.115456	103.1
13	KC67	L2	True	250.00	254.210543	101.7
14	KC68	L3	True	500.00	453.606058	90.7
15	KC69	L4	True	1000.00	1048.070308	104.8
16	KC70	L5	True	2500.00	2457.732735	98.3
17	KC71	L6	True	10000.00	10239.289965	102.4
18	KC72	L7	True	20000.00	19793.974934	99.0

Analyte Name	PFTrDA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	663.0 / 619.0	Result Table	18-0652
Internal Standard	13C2-PFTeDA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $y=0.84470 x+0.10645(r=0.99808)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	81.782770	81.8
13	KC67	L2	True	250.00	266.797082	106.7
14	KC68	L3	True	500.00	510.105538	102.0
15	KC69	L4	True	1000.00	1063.296369	106.3
16	KC70	L5	True	2500.00	2478.719293	99.2
17	KC71	L6	True	10000.00	10850.477257	108.5
18	KC72	L7	True	20000.00	19098.821691	95.5

Calibration Summary Report

Analyte Name	PFTrDA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	663.0/169.0	Result Table	18-0652
Internal Standard	13C2-PFTeDA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.05492 x+0.00870(r=0.99859)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	94.895090	94.9
13	KC67	L2	True	250.00	248.876881	99.6
14	KC68	L3	True	500.00	489.700366	97.9
15	KC69	L4	True	1000.00	1008.433950	100.8
16	KC70	L5	True	2500.00	2588.329760	103.5
17	KC71	L6	True	10000.00	10727.735805	107.3
18	KC72	L7	True	20000.00	19192.028149	96.0

Analyte Name	PFTeDA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	713.0/669.0	Result Table	18-0652
Internal Standard	13C2-PFTeDA	Instrument Name	QTRAP5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad \mathrm{y}=1.02547 \mathrm{x}+0.15468(\mathrm{r}=0.99834)$ (weighting: $1 / \mathrm{x}$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	83.916189	83.9
13	KC67	L2	True	250.00	266.878016	106.8
14	KC68	L3	True	500.00	516.263577	103.3
15	KC69	L4	True	1000.00	1019.190373	101.9
16	KC70	L5	True	2500.00	2509.504448	100.4
17	KC71	L6	True	10000.00	10801.887403	108.0
18	KC72	L7	True	20000.00	19152.359993	95.8

Calibration Summary Report

Analyte Name	PFTeDA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	713.0/169.0	Result Table	18-0652
Internal Standard	13C2-PFTeDA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.04893 x+0.01155(r=0.99859)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	95.751773	95.8
13	KC67	L2	True	250.00	259.055516	103.6
14	KC68	L3	True	500.00	486.598845	97.3
15	KC69	L4	True	1000.00	985.026194	98.5
16	KC70	L5	True	2500.00	2524.404202	101.0
17	KC71	L6	True	10000.00	10766.329362	107.7
18	KC72	L7	True	20000.00	19232.834108	96.2

Analyte Name	NMeFOSAA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	$570.0 / 419.0$	Result Table	18-0652
Internal Standard	d3-MeFOSAA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.91100 x+0.17315(r=0.99794)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	80.509813	80.5
13	KC67	L2	True	250.00	240.779287	96.3
14	KC68	L3	True	500.00	481.531491	96.3
15	KC69	L4	True	1000.00	1123.094618	112.3
16	KC70	L5	True	2500.00	2864.591702	114.6
17	KC71	L6	True	10000.00	10436.315629	104.4
18	KC72	L7	True	20000.00	19123.177459	95.6

Analyte Name	NMeFOSAA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	$570.0 / 512.0$	Result Table	18-0652
Internal Standard	d3-MeFOSAA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.49579 x+0.20225(r=0.99728)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $($ ng/L) $)$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	False	100.00	<0	N/A
13	KC67	L2	True	250.00	207.927864	83.2
14	KC68	L3	True	500.00	473.844189	94.8
15	KC69	L4	True	1000.00	1079.641840	108.0
16	KC70	L5	True	2500.00	2798.371078	111.9
17	KC71	L6	True	10000.00	10741.982836	107.4
18	KC72	L7	True	20000.00	18948.232193	94.7

Analyte Name	NEtFOSAA_1	Data File	AC_11062018_5-369.wiff
MRM Transition	584.0/419.0	Result Table	18-0652
Internal Standard	d5-EtFOSAA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.81399 x+0.38998(r=0.99895)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. (ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	False	100.00	<0	N/A
13	KC67	L2	True	250.00	205.407742	82.2
14	KC68	L3	True	500.00	529.652763	105.9
15	KC69	L4	True	1000.00	1050.019155	105.0
16	KC70	L5	True	2500.00	2766.827802	110.7
17	KC71	L6	True	10000.00	9548.172064	95.5
18	KC72	L7	True	20000.00	20149.920474	100.8

Calibration Summary Report

Analyte Name	NEtFOSAA_2	Data File	AC_11062018_5-369.wiff
MRM Transition	584.0/483.0	Result Table	18-0652
Internal Standard	d5-EtFOSAA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=0.05369 x+0.03118(r=0.99923)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	81.040060	81.0
13	KC67	L2	True	250.00	298.903353	119.6
14	KC68	L3	True	500.00	491.431973	98.3
15	KC69	L4	True	1000.00	942.205122	94.2
16	KC70	L5	True	2500.00	2735.406350	109.4
17	KC71	L6	True	10000.00	9694.074525	96.9
18	KC72	L7	True	20000.00	20106.938617	100.5

Analyte Name	PFBA	Data File	AC_11062018_5-369.wiff
MRM Transition	213.0 / 169.0	Result Table	18-0652
Internal Standard	13C4-PFBA	Instrument Name	QTRAP 5500
Acquisition Date	11/7/2018 9:21:56 AM	Acquisition Method	5-0369.dam

Regression Equation: $\quad y=1.21939 x+0.80867(r=0.99951)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. ng/L)	Calculated Conc. (ng/L)	Recovery $(\%)$
12	KC66	L1	True	100.00	117.819436	117.8
13	KC67	L2	True	250.00	268.605251	107.4
14	KC68	L3	True	500.00	418.233560	83.7
15	KC69	L4	True	1000.00	927.489698	92.8
16	KC70	L5	True	2500.00	2407.003235	96.3
17	KC71	L6	True	10000.00	10201.681675	102.0
18	KC72	L7	True	20000.00	20009.167145	100.1

BATHEIIE

	Isotope Dilution Calibration Curve Concentrations (ng/L)						
	KC66	KC67	KC68	KC69	KC70	KC71	KC72
PFBA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFPeA	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHxA	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHpA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFNA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFUnA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDoA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFTrDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFTeDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
NMeFOSAA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
NEtFOSAA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOSA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFBS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFPeS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFHxS (Branched)	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHpS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOS (Branched)	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFNS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
4:2FTS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
6:2FTS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
8:2FTS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
	Surrogates / Extracted Internal Standards						
13C4-PFBA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C5-PFPeA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C5-PFHxA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C4-PFHpA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C8-PFOA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C9-PFNA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C6-PFDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C7-PFUnA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFDoA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFTeDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
d3-MeFOSAA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
d5-EtFOSAA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C8-FOSA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C3-PFBS	232.25	232.25	232.25	232.25	232.25	232.25	232.25
13C3-PFHxS	236.50	236.50	236.50	236.50	236.50	236.50	236.50
13C8-PFOS	239.25	239.25	239.25	239.25	239.25	239.25	239.25
13C2-4:2FTS	233.75	233.75	233.75	233.75	233.75	233.75	233.75
13C2-6:2FTS	237.25	237.25	237.25	237.25	237.25	237.25	237.25
13C2-8:2FTS	239.50	239.50	239.50	239.50	239.50	239.50	239.50
	Internal Standards						
13C3-PFBA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFOA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C4-PFOS	239.25	239.25	239.25	239.25	239.25	239.25	239.25

BATHEIIE

	ICC
	KC74
PFBA	1,000.00
PFPeA	1,000.00
PFHxA	1,010.00
PFHpA	1,000.00
PFOA	1,000.00
PFNA	1,000.00
PFDA	1,000.00
PFUnA	1,000.00
PFDoA	1,000.00
PFTrDA	1,000.00
PFTeDA	1,000.00
NMeFOSAA	1,000.00
NEtFOSAA	1,000.00
PFOSA	1,000.00
PFBS	1,010.00
PFPeS	1,000.00
PFHxS	1,010.00
PFHpS	1,000.00
PFOS	1,000.00
PFDS	1,010.00
PFNS	1,010.00
4:2FTS	1,000.00
6:2FTS	1,000.00
8:2FTS	1,010.00
13C4-PFBA	250.00
13C5-PFPeA	250.00
13C5-PFHxA	250.00
13C4-PFHpA	250.00
13C8-PFOA	250.00
13C9-PFNA	250.00
13C6-PFDA	250.00
13C7-PFUnA	250.00
13C2-PFDoA	250.00
13C2-PFTeDA	250.00
d3-MeFOSAA	250.00
d5-EtFOSAA	250.00
13C8-FOSA	250.00
13C3-PFBS	232.25
13C3-PFHxS	236.50
13C8-PFOS	239.25
13C2-4:2FTS	233.75
13C2-6:2FTS	237.25
13C2-8:2FTS	239.50
13C3-PFBA	250.00
13C2-PFOA	250.00
13C2-PFDA	250.00
13C4-PFOS	239.25

Sample Name	KC66	Injection Vial	12
Sample ID	L1	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T09:32:49	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.59	PFBS			
PFBS 2	298.9/99.0	1.59	PFBS	0.330	0.310	
PFHxA_1	$313.0 / 269.0$	1.93	PFHxA			
PFHxA_2	$313.0 / 119.0$	1.92	PFHxA	0.080	0.077	
PFHpA_1	363.0 / 319.0	2.35	PFHpA			
PFHpA_2	363.0 / 169.0	2.35	PFHpA	0.030	0.022	
PFHxS_1	399.0 / 80.0	2.37	PFHxS			
PFHxS_2	399.0 / 99.0	2.37	PFHxS	0.270	0.282	
PFOA_1	413.0 / 369.0	2.77	PFOA			
PFOA_2	413.0 / 169.0	2.78	PFOA	0.050	0.062	
PFNA_1	463.0/419.0	3.17	PFNA			
PFNA_2	463.0 / 219.0	3.17	PFNA	0.240	0.303	
PFOS_1	499.0 / 80.0	3.17	PFOS			
PFOS_2	499.0 / 99.0	3.17	PFOS	0.180	0.176	
PFDA_1	513.0/469.0	3.54	PFDA			
PFDA_2	$513.0 / 219.0$	3.54	PFDA	0.050	0.047	
PFUnA_1	$563.0 / 519.0$	3.87	PFUnA			
PFUnA_2	563.0 / 269.0	3.87	PFUnA	0.050	0.053	
PFDoA_1	613.0 / 569.0	4.16	PFDoA			
PFDoA_2	613.0 / 319.0	4.16	PFDoA	0.190	0.161	
PFTrDA_1	663.0 / 619.0	4.42	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.41	PFTrDA	0.080	0.066	
PFTeDA_1	713.0/669.0	4.64	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.64	PFTeDA	0.060	0.050	
NMeFOSAA_1	$570.0 / 419.0$	3.70	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	3.70	NMeFOSAA	0.380	0.562	
NEtFOSAA_1	$584.0 / 419.0$	3.86	NEtFOSAA			
NEtFOSAA_2	$584.0 / 483.0$	3.87	NEtFOSAA	0.130	0.078	
PFBA	$213.0 / 169.0$	1.18				

Sample Name	KC67	Injection Vial	13
Sample ID	L2	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T09:43:41	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.59	PFBS			
PFBS_2	298.9 / 99.0	1.59	PFBS	0.330	0.310	,
PFHxA_1	313.0 / 269.0	1.92	PFHxA			
PFHxA_2	313.0 / 119.0	1.91	PFHxA	0.080	0.077	,
PFHpA_1	363.0 / 319.0	2.34	PFHpA			
PFHpA_2	363.0 / 169.0	2.33	PFHpA	0.020	0.022	,
PFHxS_1	399.0 / 80.0	2.36	PFHxS			
PFHxS_2	399.0 / 99.0	2.36	PFHxS	0.300	0.282	,
PFOA_1	413.0 / 369.0	2.76	PFOA			
PFOA_2	413.0 / 169.0	2.76	PFOA	0.060	0.062	,
PFNA_1	463.0 / 419.0	3.16	PFNA			
PFNA_2	463.0 / 219.0	3.16	PFNA	0.340	0.303	,
PFOS_1	499.0 / 80.0	3.16	PFOS			
PFOS 2	499.0 / 99.0	3.16	PFOS	0.170	0.176	,
PFDA_1	513.0 / 469.0	3.52	PFDA			
PFDA_2	513.0 / 219.0	3.52	PFDA	0.050	0.047	,
PFUnA_1	563.0 / 519.0	3.86	PFUnA			
PFUnA_2	563.0 / 269.0	3.85	PFUnA	0.060	0.053	,
PFDoA_1	613.0 / 569.0	4.15	PFDoA			
PFDoA_2	613.0 / 319.0	4.14	PFDoA	0.150	0.161	,
PFTrDA_1	663.0 / 619.0	4.40	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.40	PFTrDA	0.060	0.066	,
PFTeDA_1	713.0 / 669.0	4.63	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.62	PFTeDA	0.050	0.050	,
NMeFOSAA_1	570.0 / 419.0	3.68	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.68	NMeFOSAA	0.590	0.562	,
NEtFOSAA_1	584.0 / 419.0	3.85	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.85	NEtFOSAA	0.090	0.078	,
PFBA	213.0 / 169.0	1.17				

Sample Name	KC68	Injection Vial	14
Sample ID	L3	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T09:54:32	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.58	PFBS			
PFBS 2	298.9/99.0	1.58	PFBS	0.290	0.310	
PFHxA_1	$313.0 / 269.0$	1.91	PFHxA			
PFHxA 2	313.0 / 119.0	1.91	PFHxA	0.080	0.077	
PFHpA_1	363.0 / 319.0	2.33	PFHpA			
PFHpA_2	363.0 / 169.0	2.33	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.35	PFHxS			
PFHxS_2	399.0 / 99.0	2.35	PFHxS	0.260	0.282	
PFOA_1	413.0 / 369.0	2.75	PFOA			
PFOA_2	413.0 / 169.0	2.75	PFOA	0.070	0.062	
PFNA_1	463.0/419.0	3.15	PFNA			
PFNA_2	463.0 / 219.0	3.15	PFNA	0.300	0.303	
PFOS_1	499.0 / 80.0	3.15	PFOS			
PFOS_2	499.0 / 99.0	3.15	PFOS	0.180	0.176	
PFDA_1	$513.0 / 469.0$	3.51	PFDA			
PFDA_2	$513.0 / 219.0$	3.51	PFDA	0.060	0.047	.
PFUnA_1	563.0 / 519.0	3.85	PFUnA			
PFUnA_2	$563.0 / 269.0$	3.85	PFUnA	0.050	0.053	
PFDoA_1	$613.0 / 569.0$	4.13	PFDoA			
PFDoA_2	613.0 / 319.0	4.13	PFDoA	0.160	0.161	
PFTrDA_1	663.0 / 619.0	4.39	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.39	PFTrDA	0.060	0.066	
PFTeDA_1	713.0/669.0	4.61	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.61	PFTeDA	0.050	0.050	
NMeFOSAA_1	570.0/419.0	3.68	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	3.67	NMeFOSAA	0.590	0.562	.
NEtFOSAA_1	584.0 / 419.0	3.84	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.84	NEtFOSAA	0.060	0.078	
PFBA	213.0/169.0	1.17				

Sample Name	KC69	Injection Vial	15
Sample ID	L4	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T10:05:24	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.58	PFBS			
PFBS 2	298.9/99.0	1.58	PFBS	0.310	0.310	
PFHxA_1	$313.0 / 269.0$	1.91	PFHxA			
PFHxA 2	313.0 / 119.0	1.91	PFHxA	0.070	0.077	
PFHpA_1	363.0 / 319.0	2.33	PFHpA			
PFHpA_2	363.0 / 169.0	2.32	PFHpA	0.020	0.022	
PFHxS_1	$399.0 / 80.0$	2.35	PFHxS			
PFHxS_2	399.0 / 99.0	2.35	PFHxS	0.300	0.282	
PFOA_1	413.0 / 369.0	2.75	PFOA			
PFOA_2	413.0 / 169.0	2.74	PFOA	0.070	0.062	
PFNA_1	463.0/419.0	3.15	PFNA			
PFNA_2	463.0 / 219.0	3.14	PFNA	0.320	0.303	
PFOS_1	499.0 / 80.0	3.14	PFOS			
PFOS_2	499.0 / 99.0	3.14	PFOS	0.180	0.176	
PFDA_1	$513.0 / 469.0$	3.51	PFDA			
PFDA_2	$513.0 / 219.0$	3.51	PFDA	0.050	0.047	.
PFUnA_1	563.0 / 519.0	3.84	PFUnA			
PFUnA_2	$563.0 / 269.0$	3.84	PFUnA	0.060	0.053	
PFDoA_1	$613.0 / 569.0$	4.13	PFDoA			
PFDoA_2	613.0 / 319.0	4.12	PFDoA	0.160	0.161	
PFTrDA_1	663.0 / 619.0	4.38	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.38	PFTrDA	0.060	0.066	
PFTeDA_1	713.0/669.0	4.60	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.60	PFTeDA	0.050	0.050	
NMeFOSAA_1	570.0/419.0	3.66	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	3.66	NMeFOSAA	0.550	0.562	.
NEtFOSAA_1	584.0 / 419.0	3.83	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.83	NEtFOSAA	0.060	0.078	
PFBA	213.0/169.0	1.17				

Sample Name	KC70	Injection Vial	16
Sample ID	L5	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T10:16:15	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.58	PFBS			
PFBS_2	298.9 / 99.0	1.58	PFBS	0.290	0.310	,
PFHxA_1	313.0 / 269.0	1.91	PFHxA			
PFHxA_2	313.0 / 119.0	1.91	PFHxA	0.080	0.077	,
PFHpA_1	363.0 / 319.0	2.32	PFHpA			
PFHpA_2	363.0 / 169.0	2.32	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.35	PFHxS			
PFHxS_2	399.0 / 99.0	2.35	PFHxS	0.270	0.282	,
PFOA_1	413.0 / 369.0	2.74	PFOA			
PFOA_2	413.0 / 169.0	2.74	PFOA	0.070	0.062	,
PFNA_1	463.0 / 419.0	3.14	PFNA			
PFNA_2	463.0 / 219.0	3.14	PFNA	0.300	0.303	,
PFOS_1	499.0 / 80.0	3.14	PFOS			
PFOS_2	499.0 / 99.0	3.14	PFOS	0.180	0.176	,
PFDA_1	513.0 / 469.0	3.50	PFDA			
PFDA_2	513.0 / 219.0	3.50	PFDA	0.040	0.047	,
PFUnA_1	563.0 / 519.0	3.83	PFUnA			
PFUnA_2	563.0 / 269.0	3.83	PFUnA	0.050	0.053	,
PFDoA_1	613.0 / 569.0	4.12	PFDoA			
PFDoA 2	613.0 / 319.0	4.12	PFDoA	0.150	0.161	,
PFTrDA_1	663.0 / 619.0	4.37	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.37	PFTrDA	0.070	0.066	,
PFTeDA_1	713.0 / 669.0	4.59	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.59	PFTeDA	0.050	0.050	,
NMeFOSAA_1	570.0 / 419.0	3.66	NMeFOSAA			
NMeFOSAA 2	570.0 / 512.0	3.66	NMeFOSAA	0.540	0.562	,
NEtFOSAA_1	584.0 / 419.0	3.83	NEtFOSAA			
NEtFOSAA 2	584.0 / 483.0	3.82	NEtFOSAA	0.070	0.078	,
PFBA	213.0 / 169.0	1.17				

Sample Name	KC71	Injection Vial	17
Sample ID	L6	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T10:27:06	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.58	PFBS			
PFBS 2	298.9/99.0	1.58	PFBS	0.310	0.310	
PFHxA_1	$313.0 / 269.0$	1.91	PFHxA			
PFHxA 2	313.0 / 119.0	1.91	PFHxA	0.080	0.077	
PFHpA_1	363.0 / 319.0	2.32	PFHpA			
PFHpA_2	363.0 / 169.0	2.32	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.34	PFHxS			
PFHxS_2	399.0 / 99.0	2.34	PFHxS	0.280	0.282	
PFOA_1	413.0 / 369.0	2.74	PFOA			
PFOA_2	413.0 / 169.0	2.74	PFOA	0.070	0.062	
PFNA_1	463.0/419.0	3.14	PFNA			
PFNA_2	463.0 / 219.0	3.14	PFNA	0.320	0.303	
PFOS_1	499.0 / 80.0	3.13	PFOS			
PFOS_2	499.0 / 99.0	3.13	PFOS	0.170	0.176	
PFDA_1	$513.0 / 469.0$	3.50	PFDA			
PFDA_2	$513.0 / 219.0$	3.50	PFDA	0.050	0.047	.
PFUnA_1	563.0 / 519.0	3.83	PFUnA			
PFUnA_2	$563.0 / 269.0$	3.83	PFUnA	0.050	0.053	
PFDoA_1	$613.0 / 569.0$	4.11	PFDoA			
PFDoA_2	613.0 / 319.0	4.11	PFDoA	0.150	0.161	
PFTrDA_1	663.0 / 619.0	4.37	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.37	PFTrDA	0.060	0.066	
PFTeDA_1	713.0/669.0	4.59	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.59	PFTeDA	0.050	0.050	
NMeFOSAA_1	570.0/419.0	3.66	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	3.66	NMeFOSAA	0.560	0.562	.
NEtFOSAA_1	584.0 / 419.0	3.82	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.82	NEtFOSAA	0.070	0.078	
PFBA	213.0/169.0	1.17				

Sample Name	KC72	Injection Vial	18
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T10:37:57	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.57	PFBS			
PFBS_2	298.9 / 99.0	1.57	PFBS	0.310	0.310	,
PFHxA_1	313.0 / 269.0	1.90	PFHxA			
PFHxA_2	313.0 / 119.0	1.90	PFHxA	0.080	0.077	,
PFHpA_1	363.0 / 319.0	2.32	PFHpA			
PFHpA_2	363.0 / 169.0	2.32	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.34	PFHxS			
PFHxS_2	399.0 / 99.0	2.34	PFHxS	0.290	0.282	,
PFOA_1	413.0 / 369.0	2.73	PFOA			
PFOA_2	413.0 / 169.0	2.73	PFOA	0.060	0.062	,
PFNA_1	463.0 / 419.0	3.14	PFNA			
PFNA_2	463.0 / 219.0	3.14	PFNA	0.300	0.303	,
PFOS_1	499.0 / 80.0	3.13	PFOS			
PFOS_2	499.0 / 99.0	3.13	PFOS	0.170	0.176	,
PFDA_1	513.0 / 469.0	3.50	PFDA			
PFDA_2	513.0 / 219.0	3.50	PFDA	0.040	0.047	,
PFUnA_1	563.0 / 519.0	3.83	PFUnA			
PFUnA_2	563.0 / 269.0	3.83	PFUnA	0.050	0.053	,
PFDoA_1	613.0 / 569.0	4.11	PFDoA			
PFDoA 2	613.0 / 319.0	4.11	PFDoA	0.160	0.161	,
PFTrDA_1	663.0 / 619.0	4.36	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.36	PFTrDA	0.070	0.066	,
PFTeDA_1	713.0 / 669.0	4.58	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.58	PFTeDA	0.050	0.050	,
NMeFOSAA_1	570.0 / 419.0	3.65	NMeFOSAA			
NMeFOSAA 2	570.0 / 512.0	3.65	NMeFOSAA	0.540	0.562	,
NEtFOSAA_1	584.0 / 419.0	3.82	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.82	NEtFOSAA	0.070	0.078	,
PFBA	213.0 / 169.0	1.17				

Sample Name	KC74 ICC	Injection Vial	20
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T10:59:42	Data File	AC_11062018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	$18-0652$
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
PFBS_1	298.9 / 80.0	1.57	985.657132	1010.00	97.59
PFBS_2	298.9/99.0	1.57	967.900235	1010.00	95.83
PFHxA_1	313.0 / 269.0	1.90	936.741191	1010.00	92.75
PFHxA_2	313.0 / 119.0	1.90	846.085477	1010.00	83.77
PFHpA_1	363.0 / 319.0	2.31	966.982362	1000.00	96.70
PFHpA_2	363.0 / 169.0	2.31	1023.155557	1000.00	102.32
PFHxS_1	399.0 / 80.0	2.33	1028.703659	1010.00	101.85
PFHxS_2	399.0 / 99.0	2.33	1029.712714	1010.00	101.95
PFOA_1	413.0 / 369.0	2.73	918.648556	1000.00	91.86
PFOA_2	413.0 / 169.0	2.73	855.214451	1000.00	85.52
PFNA_1	463.0 / 419.0	3.13	1040.339836	1000.00	104.03
PFNA_2	463.0 / 219.0	3.13	1103.887217	1000.00	110.39
PFOS_1	499.0 / 80.0	3.12	999.198415	1000.00	99.92
PFOS_2	499.0 / 99.0	3.12	942.462562	1000.00	94.25
PFDA_1	513.0 / 469.0	3.49	1042.262467	1000.00	104.23
PFDA_2	513.0 / 219.0	3.48	808.019577	1000.00	80.80
PFUnA_1	563.0 / 519.0	3.82	956.944687	1000.00	95.69
PFUnA_2	563.0 / 269.0	3.81	949.260172	1000.00	94.93
PFDoA_1	613.0 / 569.0	4.10	997.936913	1000.00	99.79
PFDoA_2	613.0 / 319.0	4.10	1041.596286	1000.00	104.16
PFTrDA_1	663.0 / 619.0	4.35	1037.504407	1000.00	103.75
PFTrDA 2	663.0 / 169.0	4.35	1066.628102	1000.00	106.66
PFTeDA_1	713.0 / 669.0	4.57	993.285971	1000.00	99.33
PFTeDA_2	713.0 / 169.0	4.57	969.594006	1000.00	96.96
NMeFOSAA_1	570.0 / 419.0	3.64	971.895726	1000.00	97.19
NMeFOSAA_2	570.0 / 512.0	3.64	872.117255	1000.00	87.21
NEtFOSAA_1	584.0 / 419.0	3.81	945.882870	1000.00	94.59
NEtFOSAA_2	584.0 / 483.0	3.81	701.811220	1000.00	70.18
PFBA	213.0 / 169.0	1.16	934.648432	1000.00	93.46

Sample Name	KC68 ISC	Injection Vial	1
Sample ID	Instrument Sensitivity Check	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-12 T 09: 55: 29$	Data File	AC_11122018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	$18-0652$
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
PFBS_1	298.9 / 80.0	1.60	476.432877	505.00	94.34
PFBS_2	298.9/99.0	1.60	474.557019	505.00	93.97
PFHxA_1	313.0 / 269.0	1.94	477.699102	505.00	94.59
PFHxA_2	313.0 / 119.0	1.94	480.173251	505.00	95.08
PFHpA_1	363.0 / 319.0	2.37	517.509974	500.00	103.50
PFHpA_2	363.0 / 169.0	2.36	539.002987	500.00	107.80
PFHxS_1	399.0 / 80.0	2.39	461.231282	505.00	91.33
PFHxS_2	399.0 / 99.0	2.39	497.147260	505.00	98.45
PFOA_1	413.0 / 369.0	2.79	437.167381	500.00	87.43
PFOA_2	413.0 / 169.0	2.79	452.627878	500.00	90.53
PFNA_1	463.0 / 419.0	3.19	505.007632	500.00	101.00
PFNA_2	463.0 / 219.0	3.19	503.509856	500.00	100.70
PFOS_1	499.0 / 80.0	3.19	503.272745	500.00	100.65
PFOS_2	499.0 / 99.0	3.19	538.815584	500.00	107.76
PFDA_1	513.0 / 469.0	3.56	532.916758	500.00	106.58
PFDA_2	513.0 / 219.0	3.56	509.185008	500.00	101.84
PFUnA_1	563.0 / 519.0	3.89	503.080185	500.00	100.62
PFUnA_2	563.0 / 269.0	3.89	579.847575	500.00	115.97
PFDoA_1	613.0 / 569.0	4.18	534.003828	500.00	106.80
PFDoA_2	613.0 / 319.0	4.18	537.502784	500.00	107.50
PFTrDA_1	663.0 / 619.0	4.44	467.415643	500.00	93.48
PFTrDA 2	663.0 / 169.0	4.44	452.493593	500.00	90.50
PFTeDA_1	713.0 / 669.0	4.67	505.842577	500.00	101.17
PFTeDA_2	713.0 / 169.0	4.67	456.637026	500.00	91.33
NMeFOSAA 1	570.0 / 419.0	3.72	564.444221	500.00	112.89
NMeFOSAA_2	570.0 / 512.0	3.72	451.777889	500.00	90.36
NEtFOSAA_1	584.0 / 419.0	3.89	456.102147	500.00	91.22
NEtFOSAA 2	584.0 / 483.0	3.88	407.532891	500.00	81.51
PFBA	213.0 / 169.0	1.18	469.618092	500.00	93.92

Sample Name	KC69 CCV	Injection Vial	54
Sample ID	CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T17:33:59	Data File	AC_11122018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	$18-0652$
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
PFBS_1	298.9 / 80.0	1.55	957.017348	1010.00	94.75
PFBS_2	298.9/99.0	1.54	911.563008	1010.00	90.25
PFHxA_1	313.0 / 269.0	1.87	1031.567707	1010.00	102.14
PFHxA_2	313.0 / 119.0	1.87	1128.941254	1010.00	111.78
PFHpA_1	363.0 / 319.0	2.28	966.143435	1000.00	96.61
PFHpA_2	363.0 / 169.0	2.28	897.683026	1000.00	89.77
PFHxS_1	399.0 / 80.0	2.30	903.796333	1010.00	89.48
PFHxS_2	399.0 / 99.0	2.30	882.944056	1010.00	87.42
PFOA_1	413.0 / 369.0	2.69	945.436764	1000.00	94.54
PFOA_2	413.0 / 169.0	2.69	888.369761	1000.00	88.84
PFNA_1	463.0 / 419.0	3.09	1021.542598	1000.00	102.15
PFNA_2	463.0 / 219.0	3.09	996.704475	1000.00	99.67
PFOS_1	499.0 / 80.0	3.08	1057.739404	1000.00	105.77
PFOS_2	499.0 / 99.0	3.08	1110.945710	1000.00	111.09
PFDA_1	513.0 / 469.0	3.44	979.519296	1000.00	97.95
PFDA_2	513.0 / 219.0	3.44	870.336553	1000.00	87.03
PFUnA_1	563.0 / 519.0	3.77	1039.517234	1000.00	103.95
PFUnA_2	563.0 / 269.0	3.77	1092.870827	1000.00	109.29
PFDoA_1	613.0 / 569.0	4.05	1105.956309	1000.00	110.60
PFDoA_2	613.0 / 319.0	4.05	1097.282117	1000.00	109.73
PFTrDA_1	663.0 / 619.0	4.29	1080.257970	1000.00	108.03
PFTrDA 2	663.0 / 169.0	4.29	1223.506942	1000.00	122.35
PFTeDA_1	713.0 / 669.0	4.51	1045.576600	1000.00	104.56
PFTeDA_2	713.0 / 169.0	4.51	1075.715018	1000.00	107.57
NMeFOSAA_1	570.0 / 419.0	3.60	1014.741056	1000.00	101.47
NMeFOSAA_2	570.0 / 512.0	3.60	1154.273267	1000.00	115.43
NEtFOSAA_1	584.0 / 419.0	3.76	851.850247	1000.00	85.19
NEtFOSAA 2	584.0 / 483.0	3.76	733.902069	1000.00	73.39
PFBA	213.0 / 169.0	1.14	914.424384	1000.00	91.44

Sample Name	KC70 CCV	Injection Vial	11
Sample ID	CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T19:33:36	Data File	AC_11092018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	$18-0652$
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	
PFBS_1	$298.9 / 80.0$	1.54	2677.700884	Recovery (\%)	
PFBS_2	$298.9 / 99.0$	1.54	2489.404669	2525.00	106.05
PFHxA_1	$313.0 / 269.0$	1.87	2418.294193	2525.00	98.59
PFHxA_2	$313.0 / 119.0$	1.86	2515.370589	2525.00	95.77
PFHpA_1	$363.0 / 319.0$	2.28	2605.520263	2525.00	99.62
PFHpA_2	$363.0 / 169.0$	2.28	2650.981575	2500.00	104.22
PFHxS_1	$399.0 / 80.0$	2.30	2243.731225	2500.00	106.04
PFHxS_2	$399.0 / 99.0$	2.30	2220.523402	2525.00	88.86
PFOA_1	$413.0 / 369.0$	2.69	2205.349346	2525.00	87.94
PFOA_2	$413.0 / 169.0$	2.68	2288.550515	2500.00	88.21
PFNA_1	$463.0 / 419.0$	3.08	2702.092152	2500.00	91.54
PFNA_2	$463.0 / 219.0$	3.08	2623.853204	2500.00	108.08
PFOS_1	$499.0 / 80.0$	3.08	2742.109521	2500.00	104.95
PFOS_2	$499.0 / 99.0$	3.08	2775.730415	2500.00	109.68
PFDA_1	$513.0 / 469.0$	3.44	2625.354805	111.03	
PFDA_2	$513.0 / 219.0$	3.43	2632.505463	105.01	
PFUnA_1	$563.0 / 519.0$	3.76	2322.144052	2500.00	105.30
PFUnA_2	$563.0 / 269.0$	3.76	2473.757628	2500.00	92.89
PFDoA_1	$613.0 / 569.0$	4.04	2671.432624	2500.00	98.95
PFDoA_2	$613.0 / 319.0$	4.04	2642.557699	2500.00	106.86
PFTrDA_1	$663.0 / 619.0$	4.29	2587.051297	2500.00	105.70
PFTrDA_2	$663.0 / 169.0$	4.29	2500.00	103.48	
PFTeDA_1	$713.0 / 669.0$	4.50	2530.639975	2500.00	103.04
PFTeDA_2	$713.0 / 169.0$	4.50	2651.286652	2500.00	101.23
NMeFOSAA_1	$570.0 / 419.0$	3.59	2444.491042	2500.00	106.05
NMeFOSAA_2	$570.0 / 512.0$	3.59	2500.00	97.78	
NEtFOSAA_1	$584.0 / 419.0$	3.75	2776.766890	93.30	
NEtFOSAA_2	$584.0 / 483.0$	3.75	3102.644747	111.07	
PFBA	$213.0 / 169.0$	1.14	2890.642127	2500.00	124.11
	2500.00	115.63			

Sample Name	KC74 ICC	Injection Vial	20
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-07T10:59:42	Data File	AC_11062018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	18-0652_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C2-PFDoA	615.0 / 570.0	4.09	237.727951	250.00	95.09
d3-MeFOSAA	573.0 / 419.0	3.64	230.660071	250.00	92.26
d5-EtFOSAA	589.0 / 419.0	3.80	245.335713	250.00	98.13
13C5-PFHxA	318.0 / 273.0	1.89	240.076906	250.00	96.03
13C4-PFHpA	367.0 / 322.0	2.30	228.021670	250.00	91.21
13C8-PFOA	421.0 / 376.0	2.72	251.099690	250.00	100.44
13C9-PFNA	472.0 / 427.0	3.11	236.580685	250.00	94.63
13C6-PFDA	519.0/474.0	3.47	243.285788	250.00	97.31
13C7-PFUnA	570.0 / 525.0	3.80	246.324399	250.00	98.53
13C2-PFTeDA	715.0 / 670.0	4.57	236.803010	250.00	94.72
13C3-PFBS	302.0 / 99.0	1.55	212.697277	232.25	91.58
13C3-PFHxS	402.0 / 99.0	2.33	194.886838	236.50	82.40
13C8-PFOS	507.0 / 99.0	3.11	224.315680	239.50	93.66
13C4-PFBA	217.0 / 172.0	1.16	256.649850	250.00	102.66

Sample Name	KC68 ISC	Injection Vial	1	
Sample ID	Instrument Sensitivity check	Injection Volume	10.00	
Sample Type	Quality Control	Instrument Name	QTRAP 5500	
Acquisition Date	$2018-11-12 T 09: 55: 29$	Data File	AC_11122018_5-369.wiff	
Acquisition Method	$5-0369 . d a m$	Result Table	$18-0652$ SIS	
Sample Comment				

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C2-PFDoA	$615.0 / 570.0$	4.17	264.135033	105.65	
d3-MeFOSAA	$573.0 / 419.0$	3.72	315.320086	250.00	126.13
d5-EtFOSAA	$589.0 / 419.0$	3.88	308.340213	250.00	123.34
13C5-PFHxA	$318.0 / 273.0$	1.93	260.333379	250.00	104.13
13C4-PFHpA	$367.0 / 322.0$	2.36	240.528408	250.00	96.21
13C8-PFOA	$421.0 / 376.0$	2.78	278.861342	250.00	111.54
13C9-PFNA	$472.0 / 427.0$	3.18	241.826407	250.00	96.73
13C6-PFDA	$519.0 / 474.0$	3.55	243.269461	250.00	97.31
13C7-PFUnA	$570.0 / 525.0$	3.88	261.589238	250.00	104.64
13C2-PFTeDA	$715.0 / 670.0$	4.67	291.605184	250.00	116.64
13C3-PFBS	$302.0 / 99.0$	1.59	227.439316	250.00	97.93
13C3-PFHxS	$402.0 / 99.0$	2.38	259.654273	232.25	109.79
13C8-PFOS	$507.0 / 99.0$	3.18	254.113517	236.50	106.10
13C4-PFBA	$217.0 / 172.0$	1.18	232.649243	239.50	93.06

Sample Name	KC69 CCV	Injection Vial	54
Sample ID	CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-12 T 17: 33: 59$	Data File	AC_11122018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	$18-0652$ SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C2-PFDoA	$615.0 / 570.0$	4.04	243.548219	97.42	
d3-MeFOSAA	$573.0 / 419.0$	3.59	262.300070	250.00	104.92
d5-EtFOSAA	$589.0 / 419.0$	3.75	319.128805	250.00	127.65
13C5-PFHxA	$318.0 / 273.0$	1.85	235.276246	250.00	94.11
13C4-PFHpA	$367.0 / 322.0$	2.27	233.896927	93.56	
13C8-PFOA	$421.0 / 376.0$	2.68	274.187292	250.00	109.67
13C9-PFNA	$472.0 / 427.0$	3.07	253.519634	250.00	101.41
13C6-PFDA	$519.0 / 474.0$	3.43	254.567880	250.00	101.83
13C7-PFUnA	$570.0 / 525.0$	3.75	263.416294	250.00	105.37
13C2-PFTeDA	$715.0 / 670.0$	4.50	251.096534	250.00	100.44
13C3-PFBS	$302.0 / 99.0$	1.53	268.954199	250.00	115.80
13C3-PFHxS	$402.0 / 99.0$	2.29	253.684117	232.25	107.27
13C8-PFOS	$507.0 / 99.0$	3.07	244.340198	236.50	102.02
13C4-PFBA	$217.0 / 172.0$	1.15	243.691902	239.50	97.48

Sample Name	KC70 CCV	Injection Vial	11
Sample ID	CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-12 T 19: 33: 36$	Data File	AC_11092018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	$18-0652$ SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C2-PFDoA	$615.0 / 570.0$	4.03	245.763900	98.31	
d3-MeFOSAA	$573.0 / 419.0$	3.59	323.271642	250.00	129.31
d5-EtFOSAA	$589.0 / 419.0$	3.75	292.299027	250.00	116.92
13C5-PFHxA	$318.0 / 273.0$	1.85	242.452161	250.00	96.98
13C4-PFHpA	$367.0 / 322.0$	2.26	232.833113	93.13	
13C8-PFOA	$421.0 / 376.0$	2.67	283.274879	250.00	113.31
13C9-PFNA	$472.0 / 427.0$	3.07	249.903502	99.96	
13C6-PFDA	$519.0 / 474.0$	3.42	229.944915	250.00	91.98
13C7-PFUnA	$570.0 / 525.0$	3.74	262.124760	250.00	104.85
13C2-PFTeDA	$715.0 / 670.0$	4.50	263.817902	105.53	
13C3-PFBS	$302.0 / 99.0$	1.53	244.396494	105.23	
13C3-PFHxS	$402.0 / 99.0$	2.29	255.286259	250.00	107.94
13C8-PFOS	$507.0 / 99.0$	3.07	250.680365	232.25	104.67
13C4-PFBA	$217.0 / 172.0$	1.15	249.062331	236.50	99.62

Sample Name	KC74 ICC	Injection Vial	20	
Sample ID	ICC	Injection Volume	10.00	
Sample Type	Quality Control	Instrument Name	QTRAP 5500	
Acquisition Date	2018-11-07T10:59:42	Data File	AC_11062018_5-369.wiff	
Acquisition Method	5-0369.dam	Result Table	18-0652	
Sample Comment				

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.57	PFBS			
PFBS_2	298.9 / 99.0	1.57	PFBS	0.300	0.310	
PFHxA_1	313.0 / 269.0	1.90	PFHxA			
PFHxA 2	313.0 / 119.0	1.90	PFHxA	0.070	0.077	
PFHpA_1	363.0 / 319.0	2.31	PFHpA			
PFHpA_2	363.0 / 169.0	2.31	PFHpA	0.020	0.022	
PFHxS 1	399.0 / 80.0	2.33	PFHxS			
PFHxS_2	399.0 / 99.0	2.33	PFHxS	0.280	0.282	
PFOA_1	413.0 / 369.0	2.73	PFOA			
PFOA_2	413.0 / 169.0	2.73	PFOA	0.060	0.062	
PFNA_1	463.0 / 419.0	3.13	PFNA			
PFNA_2	463.0 / 219.0	3.13	PFNA	0.320	0.303	
PFOS_1	499.0 / 80.0	3.12	PFOS			
PFOS_2	499.0 / 99.0	3.12	PFOS	0.170	0.176	
PFDA_1	513.0/469.0	3.49	PFDA			
PFDA_2	$513.0 / 219.0$	3.48	PFDA	0.040	0.047	
PFUnA_1	$563.0 / 519.0$	3.82	PFUnA			
PFUnA_2	563.0 / 269.0	3.81	PFUnA	0.050	0.053	
PFDoA_1	$613.0 / 569.0$	4.10	PFDoA			
PFDoA_2	$613.0 / 319.0$	4.10	PFDoA	0.170	0.161	
PFTrDA_1	$663.0 / 619.0$	4.35	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.35	PFTrDA	0.070	0.066	,
PFTeDA_1	$713.0 / 669.0$	4.57	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.57	PFTeDA	0.050	0.050	
NMeFOSAA_1	570.0/419.0	3.64	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	3.64	NMeFOSAA	0.520	0.562	
NEtFOSAA_1	584.0 /419.0	3.81	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.81	NEtFOSAA	0.050	0.078	
PFBA	$213.0 / 169.0$	1.16				

Sample Name	KC68 ISC	Injection Vial	1	
Sample ID	Instrument Sensitivity Check	Injection Volume	10.00	
Sample Type	Quality Control	Instrument Name	QTRAP 5500	
Acquisition Date	2018-11-12T09:55:29	Data File	AC_11122018_5-369.wiff	
Acquisition Method	5-0369.dam	Result Table	18-0652	
Sample Comment				

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.60	PFBS			
PFBS 2	298.9/99.0	1.60	PFBS	0.310	0.310	
PFHxA_1	$313.0 / 269.0$	1.94	PFHxA			
PFHxA_2	313.0 / 119.0	1.94	PFHxA	0.080	0.077	
PFHpA_1	363.0 / 319.0	2.37	PFHpA			
PFHpA_2	363.0 / 169.0	2.36	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.39	PFHxS			
PFHxS_2	399.0 / 99.0	2.39	PFHxS	0.300	0.282	
PFOA_1	413.0 / 369.0	2.79	PFOA			
PFOA_2	413.0 / 169.0	2.79	PFOA	0.060	0.062	
PFNA_1	463.0/419.0	3.19	PFNA			
PFNA_2	463.0 / 219.0	3.19	PFNA	0.300	0.303	
PFOS_1	499.0 / 80.0	3.19	PFOS			
PFOS_2	499.0 / 99.0	3.19	PFOS	0.190	0.176	
PFDA_1	$513.0 / 469.0$	3.56	PFDA			
PFDA_2	$513.0 / 219.0$	3.56	PFDA	0.050	0.047	.
PFUnA_1	563.0 / 519.0	3.89	PFUnA			
PFUnA_2	$563.0 / 269.0$	3.89	PFUnA	0.060	0.053	
PFDoA_1	613.0 / 569.0	4.18	PFDoA			
PFDoA_2	613.0 / 319.0	4.18	PFDoA	0.160	0.161	
PFTrDA_1	663.0 / 619.0	4.44	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.44	PFTrDA	0.060	0.066	
PFTeDA_1	713.0/669.0	4.67	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.67	PFTeDA	0.050	0.050	
NMeFOSAA_1	570.0/419.0	3.72	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	3.72	NMeFOSAA	0.490	0.562	.
NEtFOSAA_1	584.0 / 419.0	3.89	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.88	NEtFOSAA	0.060	0.078	
PFBA	213.0/169.0	1.18				

Sample Name	KC69 CCV	Injection Vial	54
Sample ID	CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T17:33:59	Data File	AC_11122018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.55	PFBS			
PFBS 2	298.9/99.0	1.54	PFBS	0.290	0.310	
PFHxA_1	$313.0 / 269.0$	1.87	PFHxA			
PFHxA_2	$313.0 / 119.0$	1.87	PFHxA	0.080	0.077	
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.28	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.280	0.282	
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA_2	413.0 / 169.0	2.69	PFOA	0.060	0.062	
PFNA_1	463.0/419.0	3.09	PFNA			
PFNA_2	463.0 / 219.0	3.09	PFNA	0.300	0.303	
PFOS_1	499.0 / 80.0	3.08	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.180	0.176	
PFDA_1	513.0/469.0	3.44	PFDA			
PFDA_2	$513.0 / 219.0$	3.44	PFDA	0.040	0.047	
PFUnA_1	$563.0 / 519.0$	3.77	PFUnA			
PFUnA_2	563.0 / 269.0	3.77	PFUnA	0.050	0.053	
PFDoA_1	613.0 / 569.0	4.05	PFDoA			
PFDoA_2	613.0 / 319.0	4.05	PFDoA	0.160	0.161	
PFTrDA_1	663.0 / 619.0	4.29	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.29	PFTrDA	0.070	0.066	
PFTeDA_1	713.0/669.0	4.51	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.51	PFTeDA	0.050	0.050	
NMeFOSAA_1	$570.0 / 419.0$	3.60	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	3.60	NMeFOSAA	0.640	0.562	
NEtFOSAA_1	$584.0 / 419.0$	3.76	NEtFOSAA			
NEtFOSAA_2	$584.0 / 483.0$	3.76	NEtFOSAA	0.060	0.078	
PFBA	$213.0 / 169.0$	1.14				

Sample Name	KC70 CCV	Injection Vial	11
Sample ID	CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T19:33:36	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS_2	298.9 / 99.0	1.54	PFBS	0.290	0.310	,
PFHxA_1	313.0 / 269.0	1.87	PFHxA			
PFHxA_2	313.0 / 119.0	1.86	PFHxA	0.080	0.077	,
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.28	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.280	0.282	,
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA_2	413.0 / 169.0	2.68	PFOA	0.070	0.062	,
PFNA_1	463.0 / 419.0	3.08	PFNA			
PFNA_2	463.0 / 219.0	3.08	PFNA	0.300	0.303	,
PFOS_1	499.0 / 80.0	3.08	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.180	0.176	,
PFDA_1	513.0 / 469.0	3.44	PFDA			
PFDA_2	513.0 / 219.0	3.43	PFDA	0.040	0.047	,
PFUnA_1	563.0 / 519.0	3.76	PFUnA			
PFUnA_2	563.0 / 269.0	3.76	PFUnA	0.050	0.053	,
PFDoA_1	613.0 / 569.0	4.04	PFDoA			
PFDoA 2	613.0 / 319.0	4.04	PFDoA	0.160	0.161	,
PFTrDA_1	663.0 / 619.0	4.29	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.29	PFTrDA	0.060	0.066	,
PFTeDA_1	713.0 / 669.0	4.50	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.50	PFTeDA	0.050	0.050	,
NMeFOSAA_1	570.0 / 419.0	3.59	NMeFOSAA			
NMeFOSAA 2	570.0 / 512.0	3.59	NMeFOSAA	0.530	0.562	,
NEtFOSAA_1	584.0 / 419.0	3.75	NEtFOSAA			
NEtFOSAA 2	584.0 / 483.0	3.75	NEtFOSAA	0.070	0.078	,
PFBA	213.0 / 169.0	1.14				

Sample Name	KC73 IB	Injection Vial	19
Sample ID	Instrument Blank	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-07 T 10: 48: 49$	Data File	AC_11062018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.58	PFBS			
PFBS_2	298.9 / 99.0	1.58	PFBS	0.610	0.310	
PFHxA_1	313.0 / 269.0	N/A	PFHxA			
PFHxA_2	313.0 / 119.0	N/A	PFHxA	N/A	0.077	
PFHpA_1	363.0 / 319.0	N/A	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.022	,
PFHxS_1	399.0 / 80.0	2.34	PFHxS			
PFHxS_2	399.0 / 99.0	2.35	PFHxS	0.260	0.282	,
PFOA_1	413.0 / 369.0	N/A	PFOA			
PFOA_2	413.0 / 169.0	N/A	PFOA	N/A	0.062	,
PFNA_1	463.0 / 419.0	3.13	PFNA			
PFNA_2	463.0 / 219.0	3.13	PFNA	0.440	0.303	,
PFOS_1	499.0 / 80.0	N/A	PFOS			
PFOS_2	499.0 / 99.0	N/A	PFOS	N/A	0.176	,
PFDA_1	513.0 / 469.0	N/A	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.047	,
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.053	,
PFDoA_1	613.0 / 569.0	4.11	PFDoA			
PFDoA 2	613.0 / 319.0	4.11	PFDoA	0.190	0.161	,
PFTrDA_1	663.0 / 619.0	4.36	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.37	PFTrDA	0.080	0.066	,
PFTeDA_1	713.0 / 669.0	4.58	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.58	PFTeDA	0.070	0.050	,
NMeFOSAA_1	570.0 / 419.0	3.65	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.64	NMeFOSAA	0.880	0.562	
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA 2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.078	,
PFBA	213.0 / 169.0	1.17				

Sample Name	KC73 IB	Injection Vial	2
Sample ID	Instrument Blank	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-12 T 10: 06: 22$	Data File	AC_11122018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	N/A	PFBS			
PFBS_2	298.9 / 99.0	N/A	PFBS	N/A	0.310	,
PFHxA_1	313.0 / 269.0	N/A	PFHxA			
PFHxA_2	313.0 / 119.0	N/A	PFHxA	N/A	0.077	,
PFHpA_1	363.0 / 319.0	N/A	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.022	,
PFHxS_1	399.0 / 80.0	N/A	PFHxS			
PFHxS_2	399.0 / 99.0	N/A	PFHxS	N/A	0.282	,
PFOA_1	413.0 / 369.0	N/A	PFOA			
PFOA_2	413.0 / 169.0	N/A	PFOA	N/A	0.062	,
PFNA_1	463.0 / 419.0	N/A	PFNA			
PFNA_2	463.0 / 219.0	N/A	PFNA	N/A	0.303	,
PFOS_1	499.0 / 80.0	N/A	PFOS			
PFOS_2	499.0 / 99.0	N/A	PFOS	N/A	0.176	,
PFDA_1	513.0 / 469.0	N/A	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.047	,
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.053	,
PFDoA_1	613.0 / 569.0	N/A	PFDoA			
PFDoA 2	613.0 / 319.0	N/A	PFDoA	N/A	0.161	,
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	,
PFTeDA_1	713.0 / 669.0	N/A	PFTeDA			
PFTeDA_2	713.0 / 169.0	N/A	PFTeDA	N/A	0.050	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.562	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA 2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.078	,
PFBA	213.0 / 169.0	N/A				

Sample Name	CS100PB-FS(0)	Injection Vial	2
Sample ID	Procedural Blank	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-12 T 17: 55: 45$	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS_2	298.9 / 99.0	1.54	PFBS	0.230	0.310	,
PFHxA_1	313.0 / 269.0	1.87	PFHxA			
PFHxA_2	313.0 / 119.0	1.86	PFHxA	0.100	0.077	,
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.28	PFHpA	0.050	0.022	
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.340	0.282	,
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA_2	413.0 / 169.0	2.69	PFOA	0.070	0.062	,
PFNA_1	463.0 / 419.0	3.09	PFNA			
PFNA_2	463.0 / 219.0	3.09	PFNA	0.400	0.303	,
PFOS_1	499.0 / 80.0	3.06	PFOS			
PFOS 2	499.0 / 99.0	3.09	PFOS	0.140	0.176	,
PFDA_1	513.0 / 469.0	N/A	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.047	,
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.053	,
PFDoA_1	613.0 / 569.0	N/A	PFDoA			
PFDoA_2	613.0 / 319.0	N/A	PFDoA	N/A	0.161	,
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	,
PFTeDA_1	713.0 / 669.0	N/A	PFTeDA			
PFTeDA_2	713.0 / 169.0	N/A	PFTeDA	N/A	0.050	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.562	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.078	,
PFBA	213.0 / 169.0	1.14				

Sample Name	CS101LCS-FS(0)	Injection Vial	3
Sample ID	Laboratory Control Sample	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T18:06:38	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS_2	298.9 / 99.0	1.54	PFBS	0.300	0.310	
PFHxA_1	313.0 / 269.0	1.87	PFHxA			
PFHxA 2	313.0 / 119.0	1.87	PFHxA	0.080	0.077	
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.28	PFHpA	0.020	0.022	
PFHxS 1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.290	0.282	
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA 2	413.0 / 169.0	2.69	PFOA	0.060	0.062	
PFNA_1	463.0 / 419.0	3.09	PFNA			
PFNA_2	$463.0 / 219.0$	3.08	PFNA	0.340	0.303	
PFOS_1	499.0 / 80.0	3.08	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.190	0.176	
PFDA_1	$513.0 / 469.0$	3.44	PFDA			
PFDA_2	513.0 / 219.0	3.44	PFDA	0.040	0.047	
PFUnA_1	563.0 / 519.0	3.77	PFUnA			
PFUnA_2	$563.0 / 269.0$	3.77	PFUnA	0.050	0.053	
PFDoA_1	$613.0 / 569.0$	4.05	PFDoA			
PFDoA_2	$613.0 / 319.0$	4.05	PFDoA	0.160	0.161	
PFTrDA_1	$663.0 / 619.0$	4.29	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.29	PFTrDA	0.070	0.066	
PFTeDA_1	$713.0 / 669.0$	4.51	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.51	PFTeDA	0.050	0.050	.
NMeFOSAA_1	$570.0 / 419.0$	3.60	NMeFOSAA			
NMeFOSAA 2	$570.0 / 512.0$	3.59	NMeFOSAA	0.570	0.562	
NEtFOSAA_1	584.0 / 419.0	3.76	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.76	NEtFOSAA	0.060	0.078	
PFBA	213.0 / 169.0	1.15				

Sample Name	J9154-FS(0)	Injection Vial	4
Sample ID	NASB-BLL15-MW-01-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-12 T 18: 17: 30$	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS_2	298.9 / 99.0	1.54	PFBS	0.280	0.310	,
PFHxA_1	313.0 / 269.0	1.86	PFHxA			
PFHxA_2	313.0 / 119.0	1.86	PFHxA	0.080	0.077	,
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.26	PFHpA	0.020	0.022	,
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.280	0.282	,
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA_2	413.0 / 169.0	2.67	PFOA	0.060	0.062	,
PFNA_1	463.0 / 419.0	3.08	PFNA			
PFNA_2	463.0 / 219.0	3.09	PFNA	0.320	0.303	,
PFOS_1	499.0 / 80.0	2.95	PFOS			
PFOS 2	499.0 / 99.0	2.97	PFOS	0.080	0.176	
PFDA_1	513.0 / 469.0	N/A	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.047	,
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.053	,
PFDoA_1	613.0 / 569.0	N/A	PFDoA			
PFDoA_2	613.0 / 319.0	N/A	PFDoA	N/A	0.161	,
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	,
PFTeDA_1	713.0 / 669.0	N/A	PFTeDA			
PFTeDA_2	713.0 / 169.0	N/A	PFTeDA	N/A	0.050	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.562	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.078	,
PFBA	213.0 / 169.0	1.14				

Sample Name	J9155-FS(0)	Injection Vial	5
Sample ID	NASB-BLL15-MW-02-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T18:28:23	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS 2	298.9/99.0	1.54	PFBS	0.270	0.310	
PFHxA_1	$313.0 / 269.0$	1.86	PFHxA			
PFHxA 2	313.0 / 119.0	1.86	PFHxA	0.080	0.077	
PFHpA_1	363.0 / 319.0	N/A	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.022	
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.300	0.282	
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA_2	413.0 / 169.0	2.67	PFOA	0.060	0.062	
PFNA_1	463.0/419.0	3.09	PFNA			
PFNA_2	463.0 / 219.0	3.08	PFNA	0.280	0.303	
PFOS_1	499.0 / 80.0	2.95	PFOS			
PFOS_2	499.0 / 99.0	3.01	PFOS	0.120	0.176	
PFDA_1	$513.0 / 469.0$	N/A	PFDA			
PFDA_2	$513.0 / 219.0$	N/A	PFDA	N/A	0.047	.
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	$563.0 / 269.0$	N/A	PFUnA	N/A	0.053	
PFDoA_1	$613.0 / 569.0$	N/A	PFDoA			
PFDoA_2	613.0 / 319.0	N/A	PFDoA	N/A	0.161	
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	
PFTeDA_1	713.0/669.0	N/A	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	N/A	PFTeDA	N/A	0.050	
NMeFOSAA_1	570.0/419.0	N/A	NMeFOSAA			
NMeFOSAA 2	$570.0 / 512.0$	N/A	NMeFOSAA	N/A	0.562	.
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.078	
PFBA	213.0/169.0	1.14				

Sample Name	J9156-FS(0)	Injection Vial	6
Sample ID	NASB-BLL15-MW-03-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-12 T 18: 39: 15$	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.50	PFBS			
PFBS_2	298.9 / 99.0	1.50	PFBS	0.230	0.310	,
PFHxA_1	313.0 / 269.0	1.84	PFHxA			
PFHxA_2	313.0 / 119.0	1.83	PFHxA	0.100	0.077	,
PFHpA_1	363.0 / 319.0	N/A	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.022	,
PFHxS_1	399.0 / 80.0	2.29	PFHxS			
PFHxS_2	399.0 / 99.0	2.29	PFHxS	0.270	0.282	,
PFOA_1	413.0 / 369.0	2.68	PFOA			
PFOA_2	413.0 / 169.0	2.68	PFOA	0.060	0.062	,
PFNA_1	463.0 / 419.0	3.08	PFNA			
PFNA_2	463.0 / 219.0	3.07	PFNA	0.340	0.303	,
PFOS_1	499.0 / 80.0	2.95	PFOS			
PFOS 2	499.0 / 99.0	2.98	PFOS	0.100	0.176	,
PFDA_1	513.0 / 469.0	N/A	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.047	,
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.053	,
PFDoA_1	613.0 / 569.0	N/A	PFDoA			
PFDoA_2	613.0 / 319.0	N/A	PFDoA	N/A	0.161	,
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	,
PFTeDA_1	713.0 / 669.0	N/A	PFTeDA			
PFTeDA_2	713.0 / 169.0	N/A	PFTeDA	N/A	0.050	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.562	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.078	,
PFBA	213.0 / 169.0	N/A				

Sample Name	J9156MS-FS(0)	Injection Vial	7
Sample ID	NASB-BLL15-MW-03-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T18:50:07	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.55	PFBS			
PFBS_2	298.9 / 99.0	1.54	PFBS	0.280	0.310	,
PFHxA_1	313.0 / 269.0	1.87	PFHxA			
PFHxA_2	313.0 / 119.0	1.87	PFHxA	0.080	0.077	,
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.28	PFHpA	0.020	0.022	,
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.290	0.282	,
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA_2	413.0 / 169.0	2.69	PFOA	0.070	0.062	,
PFNA_1	463.0 / 419.0	3.09	PFNA			
PFNA_2	463.0 / 219.0	3.09	PFNA	0.320	0.303	,
PFOS_1	499.0 / 80.0	3.08	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.160	0.176	,
PFDA_1	513.0 / 469.0	3.44	PFDA			
PFDA_2	513.0 / 219.0	3.44	PFDA	0.040	0.047	,
PFUnA_1	563.0 / 519.0	3.76	PFUnA			
PFUnA_2	563.0 / 269.0	3.77	PFUnA	0.050	0.053	,
PFDoA_1	613.0 / 569.0	4.05	PFDoA			
PFDoA 2	613.0 / 319.0	4.05	PFDoA	0.170	0.161	,
PFTrDA_1	663.0 / 619.0	4.29	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.29	PFTrDA	0.070	0.066	,
PFTeDA_1	713.0 / 669.0	4.51	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.51	PFTeDA	0.050	0.050	,
NMeFOSAA_1	570.0 / 419.0	3.59	NMeFOSAA			
NMeFOSAA 2	570.0 / 512.0	3.60	NMeFOSAA	0.570	0.562	,
NEtFOSAA_1	584.0 / 419.0	3.76	NEtFOSAA			
NEtFOSAA 2	584.0 / 483.0	3.76	NEtFOSAA	0.060	0.078	,
PFBA	213.0 / 169.0	1.15				

Sample Name	J9156MSD-FS(0)	Injection Vial	8
Sample ID	NASB-BLL15-MW-03-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T19:00:59	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS 2	298.9/99.0	1.54	PFBS	0.290	0.310	
PFHxA_1	$313.0 / 269.0$	1.86	PFHxA			
PFHxA 2	313.0 / 119.0	1.86	PFHxA	0.070	0.077	
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.28	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.280	0.282	
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA_2	413.0 / 169.0	2.69	PFOA	0.070	0.062	
PFNA_1	463.0/419.0	3.08	PFNA			
PFNA_2	463.0 / 219.0	3.08	PFNA	0.330	0.303	
PFOS_1	499.0 / 80.0	3.07	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.170	0.176	
PFDA_1	$513.0 / 469.0$	3.44	PFDA			
PFDA_2	$513.0 / 219.0$	3.44	PFDA	0.040	0.047	.
PFUnA_1	563.0 / 519.0	3.76	PFUnA			
PFUnA_2	$563.0 / 269.0$	3.76	PFUnA	0.050	0.053	
PFDoA_1	$613.0 / 569.0$	4.05	PFDoA			
PFDoA_2	613.0 / 319.0	4.05	PFDoA	0.170	0.161	
PFTrDA_1	663.0 / 619.0	4.29	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.29	PFTrDA	0.070	0.066	
PFTeDA_1	713.0/669.0	4.51	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	4.50	PFTeDA	0.050	0.050	
NMeFOSAA_1	570.0/419.0	3.59	NMeFOSAA			
NMeFOSAA 2	$570.0 / 512.0$	3.59	NMeFOSAA	0.580	0.562	.
NEtFOSAA_1	584.0 / 419.0	3.76	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.76	NEtFOSAA	0.070	0.078	
PFBA	213.0/169.0	1.14				

Sample Name	J9157-FS(0)	Injection Vial	9
Sample ID	NASB-BLL15-MW-04-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T19:11:52	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS_2	298.9/99.0	1.54	PFBS	0.260	0.310	
PFHxA_1	$313.0 / 269.0$	1.87	PFHxA			
PFHxA 2	313.0 / 119.0	1.86	PFHxA	0.070	0.077	
PFHpA_1	363.0 / 319.0	2.27	PFHpA			
PFHpA_2	363.0 / 169.0	2.25	PFHpA	0.030	0.022	
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.270	0.282	
PFOA_1	413.0 / 369.0	2.68	PFOA			
PFOA_2	413.0 / 169.0	2.68	PFOA	0.050	0.062	
PFNA_1	463.0/419.0	3.08	PFNA			
PFNA_2	463.0 / 219.0	3.08	PFNA	0.450	0.303	
PFOS_1	499.0 / 80.0	3.06	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.150	0.176	,
PFDA_1	513.0/469.0	N/A	PFDA			
PFDA_2	$513.0 / 219.0$	N/A	PFDA	N/A	0.047	
PFUnA_1	$563.0 / 519.0$	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.053	
PFDoA_1	613.0 / 569.0	4.05	PFDoA			
PFDoA_2	613.0 / 319.0	3.98	PFDoA	0.200	0.161	
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	
PFTeDA_1	713.0/669.0	N/A	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	N/A	PFTeDA	N/A	0.050	
NMeFOSAA_1	570.0/419.0	N/A	NMeFOSAA			
NMeFOSAA_2	$570.0 / 512.0$	N/A	NMeFOSAA	N/A	0.562	
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA 2	$584.0 / 483.0$	N/A	NEtFOSAA	N/A	0.078	
PFBA	213.0/169.0	N/A				

Sample Name	J9158-FS(0)	Injection Vial	10
Sample ID	NASB-BLL15-DUP-01-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-12T19:22:43	Data File	AC_11092018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0652
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.54	PFBS			
PFBS 2	298.9/99.0	1.54	PFBS	0.260	0.310	
PFHxA_1	$313.0 / 269.0$	1.86	PFHxA			
PFHxA 2	313.0 / 119.0	1.86	PFHxA	0.070	0.077	
PFHpA_1	363.0 / 319.0	2.27	PFHpA			
PFHpA_2	363.0 / 169.0	2.23	PFHpA	0.020	0.022	
PFHxS_1	399.0 / 80.0	2.30	PFHxS			
PFHxS_2	399.0 / 99.0	2.30	PFHxS	0.280	0.282	
PFOA_1	413.0 / 369.0	2.68	PFOA			
PFOA_2	413.0 / 169.0	2.67	PFOA	0.050	0.062	
PFNA_1	463.0/419.0	3.08	PFNA			
PFNA_2	463.0 / 219.0	3.08	PFNA	0.390	0.303	
PFOS_1	499.0 / 80.0	3.05	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.150	0.176	
PFDA_1	$513.0 / 469.0$	N/A	PFDA			
PFDA_2	$513.0 / 219.0$	N/A	PFDA	N/A	0.047	.
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	$563.0 / 269.0$	N/A	PFUnA	N/A	0.053	
PFDoA_1	$613.0 / 569.0$	N/A	PFDoA			
PFDoA_2	613.0 / 319.0	N/A	PFDoA	N/A	0.161	
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	
PFTeDA_1	713.0/669.0	N/A	PFTeDA			
PFTeDA_2	$713.0 / 169.0$	N/A	PFTeDA	N/A	0.050	
NMeFOSAA_1	570.0/419.0	N/A	NMeFOSAA			
NMeFOSAA 2	$570.0 / 512.0$	N/A	NMeFOSAA	N/A	0.562	.
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.078	
PFBA	213.0/169.0	N/A				

Project:	CTO-WE21: Former Naval Air Station, Brunswick, Maine
Parameters:	PFAS
Laboratory:	Battelle, Norwell, MA
Matrix:	GW
Data Set:	DP-18-0357
Analytical SOP:	5-369
Method Reference:	PFAS to QSM 5.1 Table B-15

Sample Custody			
Collection Date		Receipt Date	Temp ($\left.{ }^{\circ} \mathrm{C}\right)$
$11 / 1 / 2018$		$11 / 2 / 2018$	0.8
Corrective Actions	Sample ID NASB-BLL15-FRB-01-110118 is listed as NASB-BLL15-GW-FB01-110118 on the bottle. Sample was logged in to match the COC.		
Sample Storage	The water samples were stored refrigerated until extraction.		
Related samples	The field samples are extracted in SDG 18-0652.		

	METHOD SUMMARIES
Sample Preparation	Water samples were spiked with surrogates in the original sample container from the field. The water was extracted using a weak ion exchange solid phase extraction (SPE) cartridge and eluted from the SPE with 0.4% NH 3 in methanol. Extracts were and concentrated to dryness under nitrogen with a water bath set between $35^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$, reconstituted with $80: 20$ methanol/water (V/V) and fortified with internal standard. Extracts were transferred for LC-MS/MS analysis.
Prep comments	A small amount of the LCS sample was spilled during extraction (~ 1-mL of water).
Analysis	PFAS were measured by liquid chromatography tandem mass spectrometry (LC- MS/MS) in the multiple reaction monitoring (MRM). An initial calibration consisting of representative target analytes, labelled analogs, and internal standards was analyzed prior to analysis to demonstrate the linear range of analysis. Calibration verification was performed at the beginning and end of 10 injections and at the end of each sequence. Target PFAS were quantified using the isotope dilution method. Samples are reported in ng/L concentrations.
Analysis Comments	Samples analyzed on Sciex 5500 LC-MS/MS and the Sciex 6500+ LC/MS/MS. Only PFDoA, NEtFOSAA, 13C2-PFDoA, and d5-EtFOSAA are reported from the methods run on the Sciex 5500 (quant methods 18-0671A and 18-0671A_SIS)

Holding Times	Extraction Date(s)	Analysis Date(s)
	$11 / 14 / 2018$	$11 / 20$ and $21 / 2018$

Procedural Blank (PB)	A PB was prepared with this analytical batch to ensure the sample extraction and analysis methods are free of contamination.
$\leq 1 / 2$ the LOQ Samples >10x PB	Two exceedances noted.
	PFBA was detected in the PB above $1 / 2$ the LOQ, the sample was re-run with Quant Method 18-0671A verifying the concentration detected, this issue is isolated to the procedural blank. Note that the FRB sample is non-detect for PFBA. The concentration of PFBA detected in the LCS is less than 10x the amount detected in the PB, the sample was re-run with Quant Method 180671 A verifying the concentration detected. The result is B qualified.
Laboratory Control Spike (LCS)	A LCS was prepared with this analytical batch. The percent recoveries of target analytes were calculated to measure accuracy.
Laboratory derived control limits for recovery	Two exceedances noted.
	PFBA and PFNA are both over-recovered in the LCS sample. The sample was realiquoted and re-run to verify the original results. The second run, Quant Method 18-0671A, was used to report PFDoA and NEtFOSAA. Result was overrecovered and not detected in the FRB sample. Where the results are notdetected in the FRB sample and over-recovered in the LCS (indicating a bias high for sample results), no further corrective action is taken.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)	A MS/MSD was prepared with this analytical batch. The percent recoveries of target analytes were calculated to measure accuracy.
Laboratory derived control limits for recovery and $<30 \%$ RPD	MS/MSD not prepared with the FRB sample.
	No comments.

Extracted Internal Standard Analytes	Labelled analog compounds were added prior to extraction. The recoveries are calculated to measure extraction efficiency.
$50-150 \%$ of true value	No exceedances noted.
	No comments.

Internal Standard Analytes	Labelled analog compounds were added prior to analysis.
+/- 50% of the area of the L5 calibration point.	No exceedances noted.13C2-PFOA was above criteria for the Procedural Blank in the initial run. The re-ru of the sample with Quant Method 18-0671A_SIS was acceptable. All results for surrogates quantified vs. this internal standard, and natives quantified vs. the labelled surrogates, are reported from the second run. This impacts the labelled and native PFHxA, PFHpA, PFOA, and PFNA.

Initial Calibration (ICAL)	The LC-MS/MS was calibrated with multi-level calibration curve for all compounds using linear or quadradic curve fitting.
$+/-30 \%$ of true value, $\mathrm{R}^{2} \geq 0.99$	No exceedances noted.
	No comments.

Independent Calibration Check (ICC)	The independent check was run after each initial calibration to verify the calibration. This standard is from a different source than the ICAL.
+/- 30\% of true value	No exceedances noted.
	Note that NEtFOSAA in Quant Method 18-0671A fails low for the secondary transition, however, no data is reported using the secondary transition.

Continuing Calibration Verification (CCV)	Continuing calibration standards were run at the beginning and end of 10 injections and at the end of the sequence to ensure that initial calibration is still valid.
$+/-30 \%$ of true value	No exceedances noted.
	No comments.

Instrument Blank (IB)	Immediately following the highest standard analyzed and daily prior to sample analysis.
$\leq 1 / 2$ the LOQ	No exceedances noted.
	No comments.

Project Client: Tetra Tech	Tetra Tech	
Project Name: CTO-WE21	CTO-WE21: Former Naval Air Station, Brunswick, Maine	
Project Number: 100122108	100122108-CTOWE21	
Preparation Batch: 18-0671	18-0671	
Data Set: DP-18-0	DP-18-0357	
Test Code: Master_	Master_369	
QC Parameter:	Exceed:	Justification:
Procedural Blank	1	PFBA was detected in the PB above $1 / 2$ the LOQ, the sample was re-run with Quant Method 18-0671A verifying the concentration detected, this issue is isolated to the procedural blank. Note that the FRB sample is non-detect for PFBA.
PB Measurement Quality Objective	1	The concentration of PFBA detected in the LCS is less than $10 x$ the amount detected in the PB, the sample was re-run with Quant Method 18-0671A verifying the concentration detected. The result is B qualified.
Laboratory Control Sample	2	PFBA and PFNA are both over-recovered in the LCS sample. The sample was re-aliquoted and re-run to verify the original results. The second run, Quant Method 18-0671A, was used to report PFDoA and NEtFOSAA. Result was over-recovered and not detected in the FRB sample.
Matrix Spike / Matrix Spike Duplicate Recovery	NA	NA
Matrix Spike / Matrix Spike Duplicate Precision	NA	NA
Extracted Internal Standard Analytes (Surrogates)	0	None
Instrument Calibration	0	None
Instrument Blank	0	None
Independent Calibration Check	0	None
Continuing Calibration Verification	0	None

It can be done
BATTELLE - NORWELL OPERATIONS MISCELLANEOUS DOCUMENTATION FORM

Project Title:	CTO-WE21: Former Naval Air Station, B	Data Set Number:	DP-18-0357
Project Number:	100122108-CTOWE21	Prep Batch Number:	18-0671
Entered By:	Jonathan Thorn	Entered On:	11/26/2018
Test Code (Matrix Type):	Master_369(L)		

Samples that were manually integrated are noted on the quant reports with the comment (TRUE). JRT 11/26/2018
Quant methods 18-0671 and 18-0671_SIS quantified by Denise Schumitz. Quant methods 18-0671A and 18-0671A_SIS quantified by Jonathan Thorn. JRT 11/26/2018

KC72 is not being used for PFDOA in method 18-0671. There is no impact on the data once this point is removed from the calibration. CRD 11/26/2018

KC66 is not being used for NetFOSAA in method 18-0671. There is no impact on the data once this point is removed from the calibration. CRD 11/26/2018

KC66 is not being used for PFBA in method 18-0671A. There is no impact on the data once this point is removed from the calibration. CRD 11/26/2018

Task Leader Approval:
SupervisorApproval:
PM Approval:

Glossary of Data Qualifiers

Flag: Application:
B Analyte found in the sample at a concentration $<10 x$ the level found in the procedural blank
D Dilution Run. Initial run outside the initial calibration range of the instrument
E Estimate, result is greater than the highers concentration level in the calibration
H Surrogate diluted out. Used when surrogate recovery is affected by excessive dilution of the sample extract.
J Analyte detected below the Limit of Quantitation (LOQ)
ME Significant Matrix Interference - Estimated value.
MI Significant Matrix Interference - value could not be determined.
Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO), but
n meets secondary criteria

N
Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO)
NA Not Applicable
T Holding Time (HT) exceeded
U \quad Analyte not detected or detected below the Method detection limit (MDL) value, Limit of Detection (LOD) reported

Client: Tetra Tech, Inc.
SDG: 18-0671
Project/Site: Former Naval Air Station, Brunswick, Maine CTO: WE21

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Receipt Date
CS196PB-FS	Procedural Blank	WATER	$11 / 14 / 2018$	$11 / 14 / 2018$
CS197LCS-FS	Laboratory Control Sample	WATER	$11 / 14 / 2018$	$11 / 14 / 2018$
J9159-FS	NASB-BLL15-FRB-01-110118	GW	$11 / 1 / 2018$	$11 / 2 / 2018$

Example Calculation for PFAS

Calculation of final concentration from area:

$$
\text { Concentration }=\left[\frac{P A-b}{m}\right] * C_{I S} * P I V * D F / S
$$

Where:
PA = Area of target / area of internal standard
$b=y$ intercept from calibration curve
CIS = concentration of internal standard (ng/L)
$\mathrm{m}=$ slope of calibration
DF = dilution factor
S = Sample Size
PIV = Pre-injection volume (L)

```
Sample ID: J9159-FS(0)
Client Sample ID: NASB-BLL15-FRB-01-110118
Sample Size: 0.275
Units: L
Dilution Factor: }1.00
PIV (L): 0.001
Target Analyte: PFDA
MRM Transition: 513.0 / 469.0
Data file: AE_11202018_5-369.wiff
Result table: 18-0671
Area: 19,317.39
IS Name: 13C6-PFDA
IS Area: 97,163.08
IS Amount (ng/L): }25
y-intercept: 0.02635
slope: 0.98519
\begin{tabular}{rl} 
Concentration \(=\) & \(\frac{[(19317.39 / 97163.08)-0.02635]}{0.98519} \quad * 250 * 0.001 * 1 / 0.275\) \\
\(\mathrm{ng} / \mathrm{L}=\) & 0.16
\end{tabular}
```

*Final concentration may vary based on rounding.

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21
Preparation Batch: 18-0671
Data Set: DP-18-0357

PFBA	375-22-4	L	L	-
PFHxA	307-24-4	-	L	-
PFHpA	375-85-9	-	L	-
PFOA	335-67-1	-	L	-
PFNA	375-95-1	-	L	-
PFDA	335-76-2	-	L	-
PFUnA	2058-94-8	-	L	-
PFDoA	307-55-1	-	L	-
PFTrDA	72629-94-8	-	L	-
PFTeDA	376-06-7	-	L	-
NMeFOSAA	2355-31-9	-	L	-
NEtFOSAA	2991-50-6	-	L	-
PFBS	375-73-5	-	L	-
PFHxS	355-46-4	-	L/Br	-
PFOS	1763-23-1	-	L/Br	-

[^4]Project Client: Tetra Tech

Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 20 / 1814: 10$	$13 C 3-P F B A$	$99,415.96$	$49,707.98$	$149,123.94$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/20/18 13:28	13C3-PFBA	90,139.58	49,707.98	149,123.94	
KC67	L2	11/20/18 13:39	13C3-PFBA	93,267.36	49,707.98	149,123.94	
KC68	L3	11/20/18 13:49	13C3-PFBA	92,214.77	49,707.98	149,123.94	
KC69	L4	11/20/18 14:00	13C3-PFBA	95,609.59	49,707.98	149,123.94	
KC70	L5	11/20/18 14:10	13C3-PFBA	99,415.96	49,707.98	149,123.94	
KC71	L6	11/20/18 14:21	13C3-PFBA	88,316.87	49,707.98	149,123.94	
KC72	L7	11/20/18 14:31	13C3-PFBA	82,393.87	49,707.98	149,123.94	
KC73 IB	Instrument Blank	11/20/18 14:41	13C3-PFBA	100,002.41	49,707.98	149,123.94	
KC74 ICC	ICC	11/20/18 14:52	13C3-PFBA	101,354.26	49,707.98	149,123.94	
CS196PB-FS(0)	Procedural Blank	11/20/18 15:23	13C3-PFBA	121,018.81	49,707.98	149,123.94	
CS197LCS-FS(0)	Laboratory Control Sample	11/20/18 15:34	13C3-PFBA	114,067.51	49,707.98	149,123.94	
J9159-FS(0)	NASB-BLL15-FRB-01-110118	11/20/18 15:44	13C3-PFBA	122,852.31	49,707.98	149,123.94	
KC69 CCV	KC69 CCV	11/20/18 15:55	13C3-PFBA	97,886.30	49,707.98	149,123.94	

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine

Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 20 / 1814: 10$	$13 C 2-$ PFOA	$75,964.55$	$37,982.28$	$113,946.83$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/20/18 13:28	13C2-PFOA	70,811.67	37,982.28	113,946.83	
KC67	L2	11/20/18 13:39	13C2-PFOA	80,470.22	37,982.28	113,946.83	
KC68	L3	11/20/18 13:49	13C2-PFOA	75,543.91	37,982.28	113,946.83	
KC69	L4	11/20/18 14:00	13C2-PFOA	77,578.73	37,982.28	113,946.83	
KC70	L5	11/20/18 14:10	13C2-PFOA	75,964.55	37,982.28	113,946.83	
KC71	L6	11/20/18 14:21	13C2-PFOA	74,727.73	37,982.28	113,946.83	
KC72	L7	11/20/18 14:31	13C2-PFOA	69,168.83	37,982.28	113,946.83	
KC73 IB	Instrument Blank	11/20/18 14:41	13C2-PFOA	89,684.47	37,982.28	113,946.83	
KC74 ICC	ICC	11/20/18 14:52	13C2-PFOA	86,657.04	37,982.28	113,946.83	
CS196PB-FS(0)	Procedural Blank	11/20/18 15:23	13C2-PFOA	120,242.43	37,982.28	113,946.83	N
CS197LCS-FS(0)	Laboratory Control Sample	11/20/18 15:34	13C2-PFOA	93,538.72	37,982.28	113,946.83	
J9159-FS(0)	NASB-BLL15-FRB-01-110118	11/20/18 15:44	13C2-PFOA	104,771.18	37,982.28	113,946.83	
KC69 CCV	KC69 CCV	11/20/18 15:55	13C2-PFOA	78,068.23	37,982.28	113,946.83	

See Narrative regarding CS196PB-FS(0) JRT 11/26/2018

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

It can be done

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 20 / 1814: 10$	$13 C 2-P F D A$	$103,187.00$	$51,593.50$	$154,780.50$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/20/18 13:28	13C2-PFDA	81,771.93	51,593.50	154,780.50	
KC67	L2	11/20/18 13:39	13C2-PFDA	96,629.54	51,593.50	154,780.50	
KC68	L3	11/20/18 13:49	13C2-PFDA	94,875.23	51,593.50	154,780.50	
KC69	L4	11/20/18 14:00	13C2-PFDA	83,384.51	51,593.50	154,780.50	
KC70	L5	11/20/18 14:10	13C2-PFDA	103,187.00	51,593.50	154,780.50	
KC71	L6	11/20/18 14:21	13C2-PFDA	99,932.71	51,593.50	154,780.50	
KC72	L7	11/20/18 14:31	13C2-PFDA	98,768.79	51,593.50	154,780.50	
KC73 IB	Instrument Blank	11/20/18 14:41	13C2-PFDA	106,596.72	51,593.50	154,780.50	
KC74 ICC	ICC	11/20/18 14:52	13C2-PFDA	104,426.75	51,593.50	154,780.50	
CS196PB-FS(0)	Procedural Blank	11/20/18 15:23	13C2-PFDA	122,602.12	51,593.50	154,780.50	
CS197LCS-FS(0)	Laboratory Control Sample	11/20/18 15:34	13C2-PFDA	105,148.82	51,593.50	154,780.50	
J9159-FS(0)	NASB-BLL15-FRB-01-110118	11/20/18 15:44	13C2-PFDA	122,012.22	51,593.50	154,780.50	
KC69 CCV	KC69 CCV	11/20/18 15:55	13C2-PFDA	93,122.52	51,593.50	154,780.50	

Project Client: Tetra Tech

Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine It can be done
Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 20 / 1814: 10$	$13 C 4-$ PFOS	$31,674.41$	$15,837.21$	$47,511.62$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/20/18 13:28	13C4-PFOS	30,469.85	15,837.21	47,511.62	
KC67	L2	11/20/18 13:39	13C4-PFOS	33,079.75	15,837.21	47,511.62	
KC68	L3	11/20/18 13:49	13C4-PFOS	27,956.71	15,837.21	47,511.62	
KC69	L4	11/20/18 14:00	13C4-PFOS	33,450.66	15,837.21	47,511.62	
KC70	L5	11/20/18 14:10	13C4-PFOS	31,674.41	15,837.21	47,511.62	
KC71	L6	11/20/18 14:21	13C4-PFOS	33,289.26	15,837.21	47,511.62	
KC72	L7	11/20/18 14:31	13C4-PFOS	37,236.46	15,837.21	47,511.62	
KC73 IB	Instrument Blank	11/20/18 14:41	13C4-PFOS	31,951.54	15,837.21	47,511.62	
KC74 ICC	ICC	11/20/18 14:52	13C4-PFOS	35,297.49	15,837.21	47,511.62	
CS196PB-FS(0)	Procedural Blank	11/20/18 15:23	13C4-PFOS	44,110.25	15,837.21	47,511.62	
CS197LCS-FS(0)	Laboratory Control Sample	11/20/18 15:34	13C4-PFOS	42,224.93	15,837.21	47,511.62	
J9159-FS(0)	NASB-BLL15-FRB-01-110118	11/20/18 15:44	13C4-PFOS	44,330.50	15,837.21	47,511.62	
KC69 CCV	KC69 CCV	11/20/18 15:55	13C4-PFOS	36,882.76	15,837.21	47,511.62	

Project Client: Tetra Tech

Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 21 / 1818: 14$	$13 C 3-$ PFBA	$55,634.24$	$27,817.12$	$83,451.36$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
Qualifier						
KC66	L1	$11 / 21 / 1817: 30$	$13 C 3-P F B A$	$50,724.48$	$27,817.12$	$83,451.36$
KC67	L2	$11 / 21 / 1817: 41$	$13 C 3-P F B A$	$54,735.19$	$27,817.12$	$83,451.36$
KC68	L3	$11 / 21 / 1817: 52$	$13 C 3-P F B A$	$52,954.27$	$27,817.12$	$83,451.36$
KC69	L4	$11 / 21 / 1818: 03$	$13 C 3-P F B A$	$53,720.16$	$27,817.12$	$83,451.36$
KC70	L6	$11 / 21 / 1818: 14$	$13 C 3-P F B A$	$55,634.24$	$27,817.12$	$83,451.36$
KC71	L7	$11 / 21 / 1818: 25$	$13 C 3-P F B A$	$55,634.19$	$27,817.12$	$83,451.36$
KC72	Instrument blank	$11 / 21 / 1818: 35$	$13 C 3-P F B A$	$57,442.92$	$27,817.12$	$83,451.36$
KC73 IB	ICC	$11 / 21 / 1818: 56$	$13 C 3-P F B A$	$13 C 3-P F B A$	$58,687.35$	$27,817.12$
KC74 ICC	Procedural Blank	$11 / 21 / 1819: 30$	$13 C 3-P F B A$	$71,339.79$	$27,817.12$	$83,451.36$
CS196PB-FS(0)	Laboratory Control Sample	$11 / 21 / 1819: 41$	$13 C 3-P F B A$	$78,175.05$	$27,817.12$	$83,451.36$
CS197LCS-FS(0)	NASB-BLL15-FRB-01-110118	$11 / 21 / 1819: 52$	$13 C 3-P F B A$	$77,368.70$	$27,817.12$	$83,451.36$
J9159-FS(0)	KC70 CCV	$11 / 21 / 1820: 24$	$13 C 3-P F B A$	$55,666.05$	$27,817.12$	$83,451.36$
KC70 CCV						

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine

Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 21 / 1818: 14$	13C2-PFOA	$91,047.48$	$45,523.74$	$136,571.22$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/21/18 17:30	13C2-PFOA	98,017.35	45,523.74	136,571.22	
KC67	L2	11/21/18 17:41	13C2-PFOA	97,445.83	45,523.74	136,571.22	
KC68	L3	11/21/18 17:52	13C2-PFOA	87,780.57	45,523.74	136,571.22	
KC69	L4	11/21/18 18:03	13C2-PFOA	88,909.88	45,523.74	136,571.22	
KC70	L5	11/21/18 18:14	13C2-PFOA	91,047.48	45,523.74	136,571.22	
KC71	L6	11/21/18 18:25	13C2-PFOA	79,565.82	45,523.74	136,571.22	
KC72	L7	11/21/18 18:35	13C2-PFOA	82,742.15	45,523.74	136,571.22	
KC73 IB	Instrument blank	11/21/18 18:46	13C2-PFOA	95,246.18	45,523.74	136,571.22	
KC74 ICC	ICC	11/21/18 18:57	13C2-PFOA	89,368.50	45,523.74	136,571.22	
CS196PB-FS(0)	Procedural Blank	11/21/18 19:30	13C2-PFOA	94,896.28	45,523.74	136,571.22	
CS197LCS-FS(0)	Laboratory Control Sample	11/21/18 19:41	13C2-PFOA	100,438.06	45,523.74	136,571.22	
J9159-FS(0)	NASB-BLL15-FRB-01-110118	11/21/18 19:52	13C2-PFOA	111,955.83	45,523.74	136,571.22	
KC70 CCV	KC70 CCV	11/21/18 20:24	13C2-PFOA	83,969.03	45,523.74	136,571.22	

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

It can be done

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 21 / 1818: 14$	$13 C 2-P F D A$	$102,200.38$	$51,100.19$	$153,300.57$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	11/21/18 17:30	13C2-PFDA	119,662.17	51,100.19	153,300.57	
KC67	L2	11/21/18 17:41	13C2-PFDA	110,902.44	51,100.19	153,300.57	
KC68	L3	11/21/18 17:52	13C2-PFDA	104,442.66	51,100.19	153,300.57	
KC69	L4	11/21/18 18:03	13C2-PFDA	99,143.75	51,100.19	153,300.57	
KC70	L5	11/21/18 18:14	13C2-PFDA	102,200.38	51,100.19	153,300.57	
KC71	L6	11/21/18 18:25	13C2-PFDA	94,912.50	51,100.19	153,300.57	
KC72	L7	11/21/18 18:35	13C2-PFDA	99,452.96	51,100.19	153,300.57	
KC73 IB	Instrument blank	11/21/18 18:46	13C2-PFDA	113,338.13	51,100.19	153,300.57	
KC74 ICC	ICC	11/21/18 18:57	13C2-PFDA	101,424.20	51,100.19	153,300.57	
CS196PB-FS(0)	Procedural Blank	11/21/18 19:30	13C2-PFDA	113,605.23	51,100.19	153,300.57	
CS197LCS-FS(0)	Laboratory Control Sample	11/21/18 19:41	13C2-PFDA	118,831.25	51,100.19	153,300.57	
J9159-FS(0)	NASB-BLL15-FRB-01-110118	11/21/18 19:52	13C2-PFDA	119,356.78	51,100.19	153,300.57	
KC70 CCV	KC70 CCV	11/21/18 20:24	13C2-PFDA	98,610.36	51,100.19	153,300.57	

Project Client: Tetra Tech

Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine It can be done
Project No.: 100122108-CTOWE21

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper
KC70	L5	$11 / 21 / 1818: 14$	$13 C 4-$ PFOS	$31,303.11$	$15,651.56$	$46,954.67$

Sample Name	Sample ID	Analysis Date	Analyte	Area	Lower	Upper	Qualifier
KC66	L1	$11 / 21 / 1817: 30$	$13 C 4-P F O S$	$36,067.09$	$15,651.56$	$46,954.67$	
KC67	L2	$11 / 21 / 1817: 41$	$13 C 4-P F O S$	$39,042.23$	$15,651.56$	$46,954.67$	
KC68	L3	$11 / 21 / 1817: 52$	$13 C 4-P F O S$	$33,496.50$	$15,651.56$	$46,954.67$	
KC69	L4	$11 / 21 / 1818: 03$	$13 C 4-P F O S$	$28,877.93$	$15,651.56$	$46,954.67$	
KC70	L6	$11 / 21 / 1818: 14$	$13 C 4-P F O S$	$31,303.11$	$15,651.56$	$46,954.67$	
KC71	L7	$11 / 21 / 1818: 25$	$13 C 4-P F O S$	$28,836.46$	$15,651.56$	$46,954.67$	
KC72	Instrument blank	$11 / 21 / 1818: 46$	$13 C 4-P F O S$	$35,871.46$	$15,651.56$	$46,954.67$	
KC73 IB	ICC	$11 / 21 / 1818: 57$	$13 C 4-P F O S$	$31,264.01$	$15,651.56$	$46,954.67$	
KC74 ICC	Procedural Blank	$11 / 21 / 1819: 30$	$13 C 4-P F O S$	$36,798.80$	$15,651.56$	$46,954.67$	
CS196PB-FS(0)	Laboratory Control Sample	$11 / 21 / 1819: 41$	$13 C 4-P F O S$	$38,993.29$	$15,651.56$	$46,954.67$	
CS197LCS-FS(0)	NASB-BLL15-FRB-01-110118	$11 / 21 / 1819: 52$	$13 C 4-P F O S$	$37,923.90$	$15,651.56$	$46,954.67$	
J9159-FS(0)	KC70 CCV	$11 / 21 / 1820: 24$	$13 C 4-P F O S$	$29,554.92$	$15,651.56$	$46,954.67$	
KC70 CCV							

Sample Name	KC72	Injection Vial	8
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 2018$ 2:31:28 PM	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Spectra Acquisition Rate	Passing Range
PFBS_1	$298.9 / 80.0$	1.17	53	>10
PFBS_2	$298.9 / 99.0$	1.16	64	>10
PFHxA_1	$313.0 / 269.0$	1.39	22	>10
PFHxA_2	$313.0 / 119.0$	1.39	21	>10
PFHpA_1	$363.0 / 319.0$	1.66	47	>10
PFHpA_2	$363.0 / 169.0$	1.66	30	>10
PFHxS_1	$399.0 / 80.0$	1.66	34	>10
PFHxS_2	$399.0 / 99.0$	1.66	39	>10
PFOA_1	$413.0 / 369.0$	1.97	42	>10
PFOA_2	$413.0 / 169.0$	1.97	46	>10
PFNA_1	$463.0 / 419.0$	2.31	50	>10
PFNA_2	$463.0 / 219.0$	2.31	48	>10
PFOS_1	$499.0 / 80.0$	2.30	56	>10
PFOS_2	$499.0 / 99.0$	2.30	39	>10
PFDA_1	$513.0 / 469.0$	2.66	55	>10
PFDA_2	$513.0 / 219.0$	2.66	43	>10
PFUnA_1	$563.0 / 519.0$	2.99	49	>10
PFUnA_2	$563.0 / 269.0$	2.99	50	>10
PFDoA_1	$613.0 / 569.0$	3.30	59	>10
PFDoA_2	$613.0 / 319.0$	3.30	61	>10
PFTrDA_1	$663.0 / 619.0$	3.57	61	>10
PFTrDA_2	$663.0 / 169.0$	3.57	56	>10
PFTeDA_1	$713.0 / 669.0$	3.82	73	>10
PFTeDA 2	$713.0 / 169.0$	3.82	60	>10
NMeFOSAA_1	$570.0 / 419.0$	2.81	35	>10
NMeFOSAA_2	$570.0 / 512.0$	2.81	53	>10
NEtFOSAA_1	$584.0 / 419.0$	2.98	36	>10
NEtFOSAA_2	$584.0 / 483.0$	2.98	41	>10
PFBA	$213.0 / 169.0$	0.92	56	>10

Sample Name	KC72	Injection Vial	8
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 2018$ 2:31:28 PM	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Spectra Acquisition Rate	Passing Range
13C4-PFBA	$217.0 / 172.0$	0.93	50	>10
13C2-PFDoA	$615.0 / 570.0$	3.29	36	>10
d3-MeFOSAA	$573.0 / 419.0$	2.81	23	>10
d5-EtFOSAA	$589.0 / 419.0$	2.98	30	>10
13C5-PFHxA	$318.0 / 273.0$	1.38	38	>10
13C4-PFHpA	$367.0 / 322.0$	1.65	34	>10
13C8-PFOA	$421.0 / 376.0$	1.96	43	>10
13C9-PFNA	$472.0 / 427.0$	2.30	42	>10
13C6-PFDA	$519.0 / 474.0$	2.64	57	>10
13C7-PFUnA	$570.0 / 525.0$	2.98	33	>10
13C2-PFTeDA	$715.0 / 670.0$	3.81	27	>10
13C3-PFBS	$302.0 / 99.0$	1.15	48	>10
13C3-PFHXS	$402.0 / 99.0$	1.66	27	>10
13C8-PFOS	$507.0 / 99.0$	2.29	19	>10

Sample Name	KC72	Injection Vial	8
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$11 / 21 / 20186: 35: 58$ PM	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Spectra Acquisition Rate	Passing Range
PFBS_1	$298.9 / 80.0$	1.56	42	>10
PFBS_2	$298.9 / 99.0$	1.56	35	>10
PFHxA_1	$313.0 / 269.0$	1.88	23	>10
PFHxA_2	$313.0 / 119.0$	1.88	23	>10
PFHpA_1	$363.0 / 319.0$	2.29	28	>10
PFHpA_2	$363.0 / 169.0$	2.29	25	>10
PFHxS_1	$399.0 / 80.0$	2.32	37	>10
PFHxS_2	$399.0 / 99.0$	2.32	39	>10
PFOA_1	$413.0 / 369.0$	2.71	32	>10
PFOA_2	$413.0 / 169.0$	2.71	31	>10
PFNA_1	$463.0 / 419.0$	3.10	28	>10
PFNA_2	$463.0 / 219.0$	3.10	36	>10
PFOS_1	$499.0 / 80.0$	3.10	40	>10
PFOS_2	$499.0 / 99.0$	3.10	35	>10
PFDA_1	$513.0 / 469.0$	3.46	29	>10
PFDA_2	$513.0 / 219.0$	3.46	33	>10
PFUnA_1	$563.0 / 519.0$	3.79	29	>10
PFUnA_2	$563.0 / 269.0$	3.78	38	>10
PFDoA_1	$613.0 / 569.0$	4.07	34	>10
PFDoA_2	$613.0 / 319.0$	4.07	35	>10
PFTrDA_1	$663.0 / 619.0$	4.31	41	>10
PFTrDA_2	$663.0 / 169.0$	4.31	48	>10
PFTeDA_1	$713.0 / 669.0$	4.53	77	>10
PFTeDA_2	$713.0 / 169.0$	4.53	70	>10
NMeFOSAA_1	$570.0 / 419.0$	3.61	24	>10
NMeFOSAA_2	$570.0 / 512.0$	3.61	27	>10
NEtFOSAA_1	$584.0 / 419.0$	3.78	36	>10
NEtFOSAA_2	$584.0 / 483.0$	3.78	19	>10
PFBA	$213.0 / 169.0$	1.15	44	>10

Sample Name	KC72	Injection Vial	8
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$11 / 21 / 20186: 35: 58$ PM	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Spectra Acquisition Rate	Passing Range
13C4-PFBA	$217.0 / 172.0$	1.15	36	>10
13C2-PFDoA	$615.0 / 570.0$	4.06	25	>10
d3-MeFOSAA	$573.0 / 419.0$	3.61	27	>10
d5-EtFOSAA	$589.0 / 419.0$	3.77	18	>10
13C5-PFHxA	$318.0 / 273.0$	1.87	35	>10
13C4-PFHpA	$367.0 / 322.0$	2.28	32	>10
13C8-PFOA	$421.0 / 376.0$	2.69	31	>10
13C9-PFNA	$472.0 / 427.0$	3.09	36	>10
13C6-PFDA	$519.0 / 474.0$	3.45	35	>10
13C7-PFUnA	$570.0 / 525.0$	3.77	25	>10
13C2-PFTeDA	$715.0 / 670.0$	4.52	43	>10
13C3-PFBS	$302.0 / 99.0$	1.54	29	>10
13C3-PFHXS	$402.0 / 99.0$	2.30	25	>10
13C8-PFOS	$507.0 / 99.0$	3.09	22	>10

can be done

Precision and Bias at the LOQ for PFAS in non-potable Water

Analyte	CAS No.	Average (ng/L)	ST DEV	2 Sigma	n
PFBA	$375-22-4$	12.25	1.95	3.90	14
PFPeA	$2706-90-3$	10.58	1.50	3.00	10
PFHxA	$307-24-4$	9.93	1.26	2.52	42
PFHpA	$375-85-9$	9.45	1.52	3.04	42
PFOA	$335-67-1$	10.21	1.45	2.90	44
PFNA	$375-95-1$	9.74	1.18	2.36	42
PFDA	$335-76-2$	9.91	1.28	2.56	42
PFUnA	$2058-94-8$	9.87	1.26	2.52	42
PFDoA	$307-55-1$	10.75	1.25	2.50	42
PFTrDA	$72629-94-8$	11.18	1.48	2.96	42
PFTeDA	$376-06-7$	10.71	1.84	3.68	42
NMeFOSAA	$2355-31-9$	10.37	1.87	3.74	42
NEtFOSAA	$2991-50-6$	9.66	1.50	3.00	42
PFOSA	$754-91-6$	9.72	0.93	1.86	5
PFBS	$375-73-5$	10.07	1.41	2.82	43
PFPeS	$2706-91-4$	9.59	0.96	1.92	6
PFHxS	$355-46-4$	9.81	1.45	2.90	42
PFHpS	$375-92-8$	10.79	1.05	2.10	11
PFOS	$1763-23-1$	10.04	1.32	2.64	42
PFNS	$68259-12-1$	9.50	1.02	2.04	5
PFDS	$335-77-3$	10.11	1.77	3.54	10
$4: 2 F T S$	$414911-30-1$	10.81	1.37	2.74	10
$6: 2 F T S$	$27619-97-2$	12.34	2.80	5.60	10
$8: 2 F F S$	$39108-34-4$	11.96	2.44	4.88	10

BATTELLE DETECTION LIMITS FOR PFAS IN NON-POTABLE WATER

Analytical SOP 5-369
Extraction SOP 5-370
PFAS by LC-MS/MS Compliant with QSM 5.1 Compliant Table B-15

Analyte	CAS No.	MDL (ng/L)	LOD (ng/L)	LOQ (ng/L)
PFBA	$375-22-4$	0.14	0.5	5.0
PFPeA	$2706-90-3$	0.31	1.0	5.0
PFHxA	$307-24-4$	0.19	0.5	5.0
PFHpA	$375-85-9$	0.16	0.5	5.0
PFOA	$335-67-1$	0.18	0.5	5.0
PFNA	$375-95-1$	0.26	1.0	5.0
PFDA	$335-76-2$	0.16	0.5	5.0
PFUnA	$2058-94-8$	0.29	1.0	5.0
PFDoA	$307-55-1$	0.18	0.5	5.0
PFTrDA	$72629-94-8$	0.15	0.5	5.0
PFTeDA	$376-06-7$	0.25	1.0	5.0
NMeFOSAA	$2355-31-9$	0.56	2.0	5.0
NEtFOSAA	$2991-50-6$	0.49	1.0	5.0
PFOSA	$754-91-6$	TBD	TBD	5.0
PFBS	$375-73-5$	0.13	0.5	5.0
PFPeS	BDO-2114	0.67	2.5	5.0
PFHxS	$355-46-4$	0.11	0.4	5.0
PFHpS	$375-99-6$	0.20	0.5	5.0
PFOS	$1763-23-1$	0.19	0.5	5.0
PFNS	$98789-57-2$	0.46	1.0	5.0
PFDS	$2806-15-7$	0.17	0.5	5.0
4:2FTS	BDO-2205	0.14	0.5	
6:2FTS	$27619-97-2$	1.36	0.5	5
8:2FTS	$39108-34-4$	0.22		
An	Pa			

Analytes on NELAP and ELAP QSM 5.1 Scope of accreditation
800.201.2011 | solutions @battelle.org | www.battelle.org

Battelle and its logos are registered trademarks of Battelle Memorial Institute. © Battelle Memorial Institute 2018. All Rights Reserved.
It can be done

Analytical Transitions for PFAS in non-potable water, solid, and tissue

EPA 537 MOD DoD QSM 5.1 compliant with Table B-15 requirements

Analyte	CAS No.	Type	Primary Transition	Secondary Transition
PFBA	375-22-4	Target	213.0/169.0	NA
PFPeA	2706-90-3	Target	263.0 / 219.0	NA
PFHxA	307-24-4	Target	313.0 / 269.0	313.0 / 119.0
PFHpA	375-85-9	Target	363.0 / 319.0	363.0 / 169.0
PFOA	335-67-1	Target	413.0 / 369.0	413.0 / 169.0
PFNA	375-95-1	Target	463.0 / 419.0	463.0 / 219.0
PFDA	335-76-2	Target	513.0/469.0	513.0 / 219.0
PFUnA	2058-94-8	Target	563.0 / 519.0	563.0 / 269.0
PFDoA	307-55-1	Target	613.0 / 569.0	613.0 / 319.0
PFTrDA	72629-94-8	Target	663.0 / 619.0	663.0 / 169.0
PFTeDA	376-06-7	Target	713.0 / 669.0	713.0 / 169.0
NMeFOSAA	2355-31-9	Target	570.0 / 419.0	$570.0 / 512.0$
NEtFOSAA	2991-50-6	Target	584.0 / 419.0	584.0 / 483.0
PFOSA	754-91-6	Target	498.0 / 78.0	498.0 / 83.0
PFBS	375-73-5	Target	299.0 / 80.0	299.0 / 99.0
PFPeS	BDO-2114	Target	349.0 / 99.0	249.0 / 80.0
PFHxS	355-46-4	Target	399.0 / 80.0	399.0 / 99.0
PFHpS	375-99-6	Target	449.0 / 80.0	449.0 / 99.0
PFOS	1763-23-1	Target	499.0 / 80.0	499.0 / 99.0
PFNS	98789-57-2	Target	549.0 / 99.0	549.0 / 80.0
PFDS	2806-15-7	Target	599.0 / 80.0	599.0 / 99.0
4:2FTS	BDO-2205	Target	327.0 / 307.0	327.0 / 80.0
6:2FTS	27619-97-2	Target	427.0 / 407.0	427.0 / 81.0
8:2FTS	39108-34-4	Target	$527.0 / 507.0$	527.0 / 487.0
13C4-PFBA	BDO-2105	SIS ${ }^{1}$	217.0/172.0	NA
13C5-PFPeA	BDO-2216	SIS ${ }^{1}$	268.0 / 223.0	NA
13C5-PFHxA	BDO-2217	SIS ${ }^{1}$	318.0 / 273.0	NA

Analyte	CAS No.	Type	Primary Transition	Secondary Transition
13C4-PFHpA	BDO-2218	SIS 1	$367.0 / 322.0$	NA
13C8-PFOA	BDO-2219	SIS 1	$421.0 / 376.0$	NA
13C9-PFNA	BDO-2221	SIS 1	$472.0 / 427.0$	NA
13C6-PFDA	BDO-2222	SIS 1	$519.0 / 474.0$	NA
13C7-PFUnA	BDO-2223	SIS 1	$570.0 / 525.0$	NA
13C2-PFDoA	BDO-2112	SIS 1	$615.0 / 570.0$	NA
13C2-PFTeDA	BDO-2224	SIS 1	$715.0 / 670.0$	NA
d3-MeFOSAA	BDO-1838	SIS 1	$573.0 / 419.0$	NA
d5-EtFOSAA	BDO-1839	SIS 1	$589.0 / 419.0$	NA
13C8-FOSA	BDO-2225	SIS 1	$506.0 / 78.0$	NA
13C3-PFBS	BDO-2226	SIS 1	$302.0 / 99.0$	NA
13C3-PFHxS	BDO-2227	SIS 1	$402.0 / 99.0$	NA
13C8-PFOS	BDO-2228	SIS 1	$507.0 / 99.0$	NA
13C2-4:2FTS	BDO-2229	SIS 1	$329.0 / 81.0$	NA
13C2-6:2FTS	BDO-2230	SIS 1	$429.0 / 81.0$	NA
13C2-8:2FTS	BDO-2220	SIS 1	$529.0 / 81.0$	NA
13C3-PFBA	BDO-2231	IS 2	$216.0 / 172.0$	NA
13C2-PFOA	BDO-2107	IS 2	$415.0 / 370.0$	NA
13C2-PFDA	BDO-2110	IS 2	$515.0 / 470.0$	NA
13C4-PFOS	BDO-2121	IS 2	$503.0 / 99.0$	NA
1				

${ }^{1}$ - extracted internal standard (surrogate)
${ }^{2}$ - injection internal standard

Non-Potable Water Calibration to Sample Equivalents

ICAL $(\mathrm{ng} / \mathrm{L})$	PIV (mL)	DF 1	Sample Size (L)	Sample Equivalent $(\mathrm{ng} / \mathrm{L})^{2}$
25	1	1	0.250	0.1
50	1	1	0.250	0.2
100	1	1	0.250	0.4
250	1	1	0.250	1.0
500	1	1	0.250	2.0
1,000	1	1	0.250	4.0
2,500	1	1	0.250	10.0
10,000	1	1	0.250	40.0
20,000	1	1	0.250	80.0

${ }^{1}$ - base level dilution as part of the extraction procedure
${ }^{2}$ - calculated equivalent of a sample based on the ICAL concentration

BATHELIE
 It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine Project No.: 100122108-CTOWE21

Client ID		KC73 IB			
Battelle ID		11/20/2018			
Sample Type		IB			
Collection Date		NA			
Extraction Date		NA			
Analysis Date		11/20/2018			
Analytical Instrument		Sciex 6500+			
\% Moisture		NA			
Matrix		Water			
Sample Size		0.250			
Size Unit-Basis		L			
Units		ng / L	MDL	LOD	LOQ
PFBA	375-22-4	0.50 U	0.14	0.50	5.00
PFHxA	307-24-4	0.50 U	0.19	0.50	5.00
PFHpA	375-85-9	0.50 U	0.16	0.50	5.00
PFOA	335-67-1	0.50 U	0.18	0.50	5.00
PFNA	375-95-1	1.00 U	0.26	1.00	5.00
PFDA	335-76-2	0.50 U	0.16	0.50	5.00
PFUnA	2058-94-8	1.00 U	0.29	1.00	5.00
PFDoA	307-55-1	0.50 U	0.18	0.50	5.00
PFTrDA	72629-94-8	0.50 U	0.15	0.50	5.00
PFTeDA	376-06-7	1.00 U	0.25	1.00	5.00
NMeFOSAA	2355-31-9	2.00 U	0.56	2.00	5.00
NEtFOSAA	2991-50-6	1.00 U	0.49	1.00	5.00
PFBS	375-73-5	0.50 U	0.13	0.50	5.00
PFHxS	355-46-4	0.40 U	0.11	0.40	5.00
PFOS	1763-23-1	0.50 U	0.19	0.50	5.00

Surrogate Recoveries (\%)	
13C4-PFBA	97
13C5-PFHxA	89
13C4-PFHpA	90
13C8-PFOA	96
13C9-PFNA	90
13C6-PFDA	95
13C7-PFUnA	108
13C2-PFDoA	89
13C2-PFTeDA	111
d3-MeFOSAA	111
d5-EtFOSAA	100
13C3-PFBS	100
13C3-PFHxS	107
13C8-PFOS	105

BATHELIE
 It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine Project No.: 100122108-CTOWE21

Client ID		KC73 IB			
Battelle ID		KC73 IB_11/21/2018			
Sample Type		IB			
Collection Date		NA			
Extraction Date		NA			
Analysis Date		11/21/2018			
Analytical Instrument		Sciex 5500			
\% Moisture		NA			
Matrix		Water			
Sample Size		0.250			
Size Unit-Basis		L			
Units		ng / L	MDL	LOD	LOQ
PFBA	375-22-4	0.50 U	0.14	0.50	5.00
PFHxA	307-24-4	0.50 U	0.19	0.50	5.00
PFHpA	375-85-9	0.50 U	0.16	0.50	5.00
PFOA	335-67-1	0.50 U	0.18	0.50	5.00
PFNA	375-95-1	1.00 U	0.26	1.00	5.00
PFDA	335-76-2	0.50 U	0.16	0.50	5.00
PFUnA	2058-94-8	1.00 U	0.29	1.00	5.00
PFDoA	307-55-1	0.50 U	0.18	0.50	5.00
PFTrDA	72629-94-8	0.50 U	0.15	0.50	5.00
PFTeDA	376-06-7	1.00 U	0.25	1.00	5.00
NMeFOSAA	2355-31-9	2.00 U	0.56	2.00	5.00
NEtFOSAA	2991-50-6	1.00 U	0.49	1.00	5.00
PFBS	375-73-5	0.50 U	0.13	0.50	5.00
PFHxS	355-46-4	0.40 U	0.11	0.40	5.00
PFOS	1763-23-1	0.50 U	0.19	0.50	5.00

Surrogate Recoveries (\%)	
13C4-PFBA	95
13C5-PFHxA	90
13C4-PFHpA	101
13C8-PFOA	97
13C9-PFNA	97
13C6-PFDA	96
13C7-PFUnA	94
13C2-PFDoA	91
13C2-PFTeDA	92
d3-MeFOSAA	88
d5-EtFOSAA	96
13C3-PFBS	90
13C3-PFHxS	90
13C8-PFOS	109

BATHELIE
 It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID		Procedural Blank			
Battelle ID		CS196PB-FS			
Sample Type		PB			
Collection Date		11/14/2018			
Extraction Date		11/14/2018			
Analysis Date		11/20/2018			
Analytical Instrument		Sciex 5500 and Sciex 6500+			
\% Moisture		NA			
Matrix		WATER			
Sample Size		0.250			
Size Unit-Basis		L			
Units		ng / L	MDL	LOD	LOQ
PFBA	375-22-4	10.60 N	0.14	0.50	5.00
PFHxA	307-24-4	0.50 U	0.19	0.50	5.00
PFHpA	375-85-9	0.50 U	0.16	0.50	5.00
PFOA	335-67-1	1.83 J	0.18	0.50	5.00
PFNA	375-95-1	1.00 U	0.26	1.00	5.00
PFDA	335-76-2	0.50 U	0.16	0.50	5.00
PFUnA	2058-94-8	1.00 U	0.29	1.00	5.00
PFDoA	307-55-1	0.50 U	0.18	0.50	5.00
PFTrDA	72629-94-8	0.50 U	0.15	0.50	5.00
PFTeDA	376-06-7	1.00 U	0.25	1.00	5.00
NMeFOSAA	2355-31-9	2.00 U	0.56	2.00	5.00
NEtFOSAA	2991-50-6	1.00 U	0.49	1.00	5.00
PFBS	375-73-5	0.50 U	0.13	0.50	5.00
PFHxS	355-46-4	0.40 U	0.11	0.40	5.00
PFOS	1763-23-1	0.50 U	0.19	0.50	5.00

Surrogate Recoveries (\%)

13C4-PFBA	73
$13 C 5-P F H x A$	77
$13 C 4-P F H p A$	73
$13 C 8-P F O A$	74
$13 C 9-P F N A$	75
$13 C 6-P F D A$	64
$13 C 7-P F U n A$	71
13C2-PFDoA	65
$13 C 2-P F T e D A$	72
d3-MeFOSAA	67
d5-EtFOSAA	67
13C3-PFBS	70
$13 C 3-P F H x S$	74
13C8-PFOS	71

BATHELIE
 It can be done

Project Client: Tetra Tech
Project Name: CTO-WE21: Former Naval Air Station, Brunswick, Maine
Project No.: 100122108-CTOWE21

Client ID		Laboratory Control Sample					
Battelle ID		CS197LCS-FS					
Sample Type		LCS					
Collection Date		11/14/2018					
Extraction Date		11/14/2018					
Analysis Date		11/20/2018					
Analytical Instrument		Sciex 5500 and Sciex 6500+					
\% Moisture		NA					
Matrix		WATER					
Sample Size		0.250					
Size Unit-Basis		L				Contr	Limits
Units		ng / L	Target	Recovery	Qual	Lower	Upper
PFBA	375-22-4	30.67 B	20.00	153	N	61	139
PFHxA	307-24-4	23.79	20.20	118		51	137
PFHpA	375-85-9	20.93	20.00	105		48	136
PFOA	335-67-1	24.25	20.00	121		49	141
PFNA	375-95-1	26.00	20.00	130	N	58	122
PFDA	335-76-2	19.43	20.00	97		59	135
PFUnA	2058-94-8	23.56	20.00	118		64	134
PFDoA	307-55-1	26.27	20.00	131		75	131
PFTrDA	72629-94-8	21.99	20.00	110		42	148
PFTeDA	376-06-7	25.35	20.00	127		42	158
NMeFOSAA	2355-31-9	26.31	20.00	132		50	146
NEtFOSAA	2991-50-6	24.13	20.00	121		51	131
PFBS	375-73-5	24.25	20.20	120		56	134
PFHxS	355-46-4	24.98	20.20	124		52	128
PFOS	1763-23-1	20.33	20.00	102		40	144

Surrogate Recoveries (\%)

13C4-PFBA	68
$13 C 5-P F H x A$	72
$13 C 4-P F H p A$	79
$13 C 8-P F O A$	66
$13 C 9-P F N A$	62
$13 C 6-P F D A$	80
$13 C 7-P F U n A$	70
$13 C 2-P F D o A$	65
$13 C 2-P F T e D A$	64
d3-MeFOSAA	56
$d 5-E t F O S A A$	61
$13 C 3-P F B S$	75
$13 C 3-P F H x S$	73
$13 C 8-P F O S$	82

QTRAP 5500
 Preventive Maintenance Checklist

Preventive Maintenance Date:	12-June-2018
Request ID:	9749
Company Name:	Battelle Memorial Institute
Instrument ID:	X60666
Instrument Model:	QTRAP 5500
Instrument Serial Number:	AU23051004

PASS
\square FAIL
Any failure will lead to an automatic Service Call being open to investigate fault.
Preventive Maintenance is performed twice every year unless specified in the Service Contract. It is designed to help maintain optimum system performance and to help diagnose any system deficiencies.

Engineer is required the assigned Request ID for this PM otherwise making this job invalid.
Comments: Suspected issue with pulse gas manifold. TRAP testing in POSITIVE mode couldn't be finished because of pulse gas issue. The same issue will be taken care in separate service call.

Performed By:
 \qquad

Date: \qquad

Approved By \qquad Date: \qquad

[^5]
QTRAP 5500

LC/MS/MS Detector System
Appendix ZEFPM003-2L

PRE PM PPG PERFORMANCE EVALUATION:

\checkmark Consult Customer concerning the unit overall performance.
\square Check Logbook for Services recently performed.
\square Check Vacuum Pressure:

CAD Settings	Vacuum Reading $\left(\times \mathbf{1 0}^{-5}\right.$ Torr)	Acceptance Criteria
\square CAD 0	0.6	0.4 to 1.1×10^{-5} Torr
\square CAD Low	1.3	Read Only
\square CAD Medium	2.7	Read Only
\square CAD High	3.7	Read Only
\square CAD 12	3.7	2.4 to 4.5×10^{-5} Torr

\checkmark Check for Front end contamination symptoms. Run Q1 POS PPG using PPG 2e-7for a few minutes and check for any TIC signal degradation or huge sensitivity drop where the sensitivity result can't pass specification
\square No degradation or Sensitivity drop
\checkmark Check for Q3 contamination symptoms. Run Q3 POS PPG using PPG 2e-7for a few minutes and check for any TIC signal degradation or huge sensitivity drop where the sensitivity result can't pass specification

No degradation or Sensitivity drop
Pre PM PPG Test: Perform each of the following tests. Optimize ion source position only. The specifications listed for these Pre PM tests are guidelines only, not required to be met.
\checkmark Perform Q1 POS using POS PPG 2e-7M. Scan Rate 10 Da/s. Record 10 mca.

Mass	Q1 Intensity		Q1 Width Value	Width Specs
	Value	Spec		
Q1 175.133	4.01 e6	Read Only	0.6998	Read Only
Q1 500.380	2.81 e7	Read Only	0.7038	Read Only
Q1 906.673	4.21 e7	Read Only	0.7071	Read Only

Perform Q3 POS using POS PPG 2e-7M. Scan Rate $10 \mathrm{Da} / \mathrm{s}$. Record 10 mca .

Mass	Q3 Intensity		Q3 Width Value	Width Specs
	Value	Spec		
Q3 175.133	5.45 e6	Read Only	0.6873	Read Only
Q3 500.380	2.69 e7	Read Only	0.7591	Read Only
Q3 906.673	4.50 e7	Read Only	0.7843	Read Only

(C) This document is the property of Zef Scientific and intended for Zef Scientific Inc trained engineers use only. No copying, all or partial, is permitted without prior authorization.

Zef Scientific Inc.

12707 High Bluff Dr.
Suite 200
San Diego, CA
USA 92130
1975 Hymus Blvd.
QTRAP 5500
LC/MS/MS Detector System
Suite 230
Dorval, QC
Canada H9P 1J8
Phone: 1.866.854.7988
Appendix ZEFPM003-2L

Perform MSMS POS in Product Ion scan with 609.3 parent and record daughter 195.1 using Reserpine $0.167 \mathrm{pmol} / \mathrm{ul}$ at the scan rate of $10 \mathrm{Da} / \mathrm{s}$ for 10 MCA . Calculate transmission efficiency comparing Q1POS 609 intensity. Transmission Efficiency: : 28.87% (Read Only)

Mass	MSMS Intensity		MSMS Width Value	Width Specs
	Value	Spec		
Q1 609.3	4.26 e 7	Read Only	0.7011	Read Only
MS/MS 195.1	1.23 e 7	Read Only	0.7069	

\checkmark Perform Q1 NEG using NEG PPG 3e-5M. Scan Rate 10 Da/s. Record 10 mca.

Mass	Q1 Intensity		Q1 Width Value	Width Specs
	Value	Spec		
Q1 933.636	1.42 e7	Read Only	0.7686	Read Only

Perform Q3 NEG using NEG PPG 3e-5M. Scan Rate 10 Da .s. Record 10 mca .

Mass	Q3 Intensity		Q3 Width Value	Width Specs
	Value	Spec		
Q3 933.636	2.24 e7	Read Only	0.7243	Read Only

Perform Product Ion scan using NEG PPG 3e-5M. Record10mca.

Mass	Scan Rate	MCA	MSMS Intensity		MSMS	Width Specs
			Value	Spec	Width Value	
MSMS 45	10	10	3.31 e 6	Read Only	0.6746	Rean

QTRAP 5500

LC/MS/MS Detector System
Appendix ZEFPM003-2L

PREVENTIVE MAINTENANCE CHECKLIST:

\checkmark Check Cooling Fans for Turbo Pumps while MS is ON.
\square Check QJet and QPS tuning voltage for reference.
Record AC input Voltage while MS is OFF: \qquad (200-240VAC). If Out-of-Range, notify customer.

\checkmark Clean Interface

\checkmark Curtain Plate
Orifice Plate
QJet
Q0 Rods.
\checkmark Replace Roughing Pump Oil.
\checkmark Inspect Oil Exhaust Filter, if Applicable.

\checkmark Clean and inspect built-in divert valve if used.
\checkmark Check Multiplier Voltage, optimize if necessary.
\square Replace four Air Filters at the bottom of the mass spectrometer.
\square Pump down overnight if possible.
\square Perform Maintenance on Turbo V source.
\square Replace Electrode, if necessary.
\square Check Turbo heaters resistances.
\square Check if Temperature is reached at 500C with TIS Probe installed.
\square Check if Temperature is reached at 500C with APCI Probe installed. \square N/A

QTRAP 5500

LC/MS/MS Detector System
Appendix ZEFPM003-2L

POST PM PPG PERFORMANCE TESTS:

\checkmark Set-up Sample for Infusion.
\square Check spray and adjust sprayer's position of the TIS source.
\square Check Vacuum Pressure:

CAD Settings	Vacuum Reading $\left(\times \mathbf{1 0}^{-5}\right.$ Torr)	Acceptance Criteria
\square CAD 0	0.7	0.4 to 1.1×10^{-5} Torr
\square CAD Low	1.3	Read Only
\square CAD Medium	2.7	Read Only
\square CAD High	3.7	Read Only
\square CAD 12	3.7	2.4 to 4.5×10^{-5} Torr

\square Perform Q1 POS using POS PPG 2e-7M. Mass calibrate to less than 0.1 amu .

Mass	Q1 Intensity		Q1 Width Value	Width Specs
	Value	Spec		
Scan Rate 10 Da/s Record 10 mca				
Q1 175.133	5.04 e 6	$\geq 1.2^{\mathrm{e}} 6$	0.6737	0.6 to 0.8
Q1 500.380	1.60 e 7	$\geq 9.0^{\mathrm{e}} 6$	0.6961	0.6 to 0.8
Q1 906.673	2.84 e 7	$\geq 1.4^{\mathrm{e}} 7$	0.7179	0.6 to 0.8
Scan Rate $1000 \mathrm{Da} / \mathrm{s}$ Record 50 mca				
Q1 906.673	1.33 e 8	$\geq 6.8^{\mathrm{e}} 7$	0.7465	0.6 to 0.8

\square Perform Q3 POS using POS PPG 2e-7M. Mass calibrate to less than 0.1 amu .

Mass	Q3 Intensity		Q3 Width Value	Width Specs
	Value	Spec		
Scan Rate $10 \mathrm{Da} / \mathrm{s}$ Record 10 mca				
Q3 175.133	5.02 e 6	$\geq 1.2^{\mathrm{e}} 6$	0.6719	0.6 to 0.8
Q3 500.380	1.72 e 7	$\geq 9.0^{\mathrm{e}} 6$	0.7443	0.6 to 0.8
Q3 906.673	3.00 e 7	$\geq 1.4^{\mathrm{e}} 7$	0.7504	0.6 to 0.8
Scan Rate $1000 \mathrm{Da} / \mathrm{s}$ Record 50 mca				
Q3 906.673	1.46 e 8	$\geq 6.8^{\mathrm{e}} 7$	0.7202	0.6 to 0.8

\square Perform "Product of 609.3" POS and record product ion 195.1 using Reserpine $0.167 \mathrm{pmol} / \mathrm{uL}$. Record 10 mca . Calculate Transmission efficiency comparing Q1POS 609 intensity.
Transmission Efficiency: 21.10\% (\geq 10.0\%)

Mass	MSMS Intensity		Width Value	Width Specs
	Value	Spec		
Q1 609.3	5.78 e7	N/A	0.6888	Read Only
MS/MS 195.1	1.22 e7	N/A	0.7003	Read Only

Zef Scientific Inc.

12707 High Bluff Dr.
Suite 200
San Diego, CA
USA 92130
1975 Hymus Blvd.
QTRAP 5500
LC/MS/MS Detector System
Suite 230
Dorval, QC
Canada H9P 1J8
Phone: 1.866.854.7988
Appendix ZEFPM003-2L
\square Perform Q1 NEG using NEG PPG 3e-5M. Mass calibrate to less than 0.1 amu .

Mass	Scan Rate	Mca	Q1 Intensity		Q1 Width Value	Width Specs
			Value	Spec		
Q1 933.636	10	10	1.35 e 7	$\geq 1.0^{\circ} 7$	0.7486	0.6 to 0.8
Q1 933.636	1000	50	7.52 e 7	$\geq 4.0^{\circ} 7$	0.7206	0.6 to 0.8

\checkmark Perform Q3 NEG using NEG PPG 3e-5M. Mass calibrate to less than 0.1 amu .

Mass	Scan Rate	Mca	Q3 Intensity		Q3 Width	Width Specs
			Value	Spec		
Q3 933.636	10	10	2.15 e 7	$\geq 8.0^{\circ} 6$	0.7492	0.6 to 0.8
Q3 933.636	1000	50	8.33 e 7	$\geq 4.0^{\circ} 7$	0.7299	0.6 to 0.8

Perform Product lon scan using NEG PPG 3e-5M.

Mass	Scan Rate	Mca	MSMS Intensity		MSMS Width	
			Width Specs			
MSMS 45	10	10	3.33 e6	Read Only	0.6387	Read Only

\checkmark Perform ER POS 118.087 and 922.01 using ESI Tuning Mix 1:100 in ES Tuning Dilution Solvent. Apply suggested Scan Rate and Record number of MCA. Mass calibrate to less than 0.1 amu.

Mass	Fill Time (ms)	ER Intensity		ER Width	Width Specs
		Spec	Value		
ScanRate $: 1000 \mathrm{Da} / \mathrm{s} ; 50 \mathrm{Mca}$					
ER 118.087	0.05	8.54 e 6	$\geq 7.2^{\mathrm{e}} 6$	0.1473	<0.35
ER 922.010	0.05	4.96 e 7	$\geq 2.8^{\mathrm{e}} 6$	0.2434	<0.35
ScanRate $: 10000 \mathrm{Da} / \mathrm{s} ; 50 \mathrm{Mca}$					
ER 118.087	0.05		$\geq 2.4^{\mathrm{e}} 7$		<0.65
ER 922.010	0.05		$\geq 6.8^{\mathrm{e}} 7$		<0.65

Perform ER NEG 431.982 and 601.978 using ESI Tuning Mix 1:100 in ES Tuning Dilution Solvent. Apply suggested Scan Rate and Record number of MCA. Mass calibrate to less than 0.1 amu.

Mass	Fill Time(ms)	ER Intensity		ER WidthValue	Width Specs
		Value	Spec		
ScanRate : $1000 \mathrm{Da} / \mathrm{s}$; 50 Mca					
ER 431.982	0.05	1.81 e 8	$\geq 4.4{ }^{\text {e }} 7$	0.1862	<0.35
ER 601.978	0.05	1.70 e8	$\geq 5.6{ }^{\text {e }} 7$	0.1809	<0.35
ScanRate : $10000 \mathrm{Da} / \mathrm{s} ; 50 \mathrm{Mca}$					
ER 431.982	0.05	5.72 e8	$\geq 1.2{ }^{\text {e }} 8$	0.5102	<0.65
ER 601.978	0.05	4.52 e8	$\geq 1.6{ }^{\text {e }} 8$	0.6187	<0.65

(C) This document is the property of Zef Scientific and intended for Zef Scientific Inc trained engineers use only. No copying, all or partial, is permitted without prior authorization.

Zef Scientific Inc.
12707 High Bluff Dr.
Suite 200
San Diego, CA
USA 92130

1975 Hymus Blvd.
Suite 230
Dorval, QC
Canada H9P 1J8

Phone: 1.866.854.7988

QTRAP 5500

LC/MS/MS Detector System
Appendix ZEFPM003-2L
\boxed{V} Perform EPI POS 397.2 using Reserpine $0.167 \mathrm{pmol} / \mathrm{uL}$. Record 20 mca .

Mass	Scan Rate (Da/s)	Q0 Trapping OFF		Q0 Trapping ON	
	Intensity	Spec	Intensity	Spec	
EPI 397.2	10000	$>3.0 \mathrm{e} 6$	$\geq 2.0^{\mathrm{e}} 6$	$>7.0 \mathrm{e} 6$	$\geq 6.4^{\mathrm{e}} 6$

(Perform MS3 POS full scan Fragmentation ON \& OFF using Reserpine 0.167pmol/uL. Record 20 mca.

Mass	Scan Rate (Da/s)	Fragamentation OFF		Fragmentation ON	
		Spec	Intensity	Spec	
MS3 397.2	1000	Yes	Contains only 397.2	N/A	N/A
$\square 236$ OR $\square 365$	1000	Yes	Fragment Intensity	>2.0 e6	$\geq 1.6 \times 10^{\mathrm{e}} 6$

REVIEW:

Attach all spectrums printouts to this procedure.If any parameter setting access modes were changed during the PM, ensure they are returned to their normal access mode and that their offsets are adjusted to match optimized values from the post-PM acquisition files.
\square Empty tuning cache folder, if necessary.
\checkmark Update Service Work Order statusFill and replace PM Label.

END OF PREVENTIVE MAINTENANCE CHECKLIST

Document history:

06 OCT 2016: Appendix ZEFPM003-2L: Removed requirements to fit Manufacturer's testing criteria.

- +ER: 50 MCA scans from Sample 4 (ER POS_10000 Da) ... Max. $4.7 \mathrm{e} 8 \mathrm{cps} . \quad$ +ER: 50 MCA scans from Sample 4 (ER POS_10000 Da) ...

It can be done
BATTELLE - NORWELL OPERATIONS
SAMPLE PREPARATION RECORDS

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0671
CTO-WE21: Former Naval Air Station, Brunswick, Maine GW

SOP Numbers (see workplan for modifications)
ExtractionSOP No. 5-370

This Batch Contains The Following Samples:

CS196PB-FS
CS197LCS-FS
J9159-FS

Laboratory Preparation Records
COMPLETE AND VALIDATED

Prep Task Leader: Kevin Bailey

Approved By:	Date	Initials
Denise Schumitz	$11 / 20 / 2018$	DMS

BATTELLE - NORWELL OPERATIONS SAMPLE IDENTIFICATION PAGE

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0671
CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

Sample ID	Description
CS196PB-FS	Procedural Blank
CS197LCS-FS	Laboratory Control Sample
J9159-FS	NASB-BLL15-FRB-01-110118

It can be done

BATTELLE - NORWELL OPERATIONS SAMPLE CUSTODY LOG

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0671
CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

Requested On/By: Relinquished On/By:	11/14/2018 KB 11/14/2018 MDS				Purpose: Sample Preparation		
						Last Activity:	Transfer
Accepted On/By:	11/14/2018 KB				Returned On/To:		
Stored In Facility:	Sample Preparation				Returned To Facility:		
Stored Comment:	NA				Returned Comment:	NA	
No. BDO-ID:	Ctrs * Condition:			Custody Comment:			
J9159	1	C	Consumed	NA			
Total Samples	1 * "C" = Consumed Container						

It can be done

BATTELLE - NORWELL OPERATIONS
 LIQUID SAMPLE ID FORM

Project Title(s)

Project No.(s)
CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0671
CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

Sample ID	Description	Volume $(\mathbf{m L})$	Bottles	$\boldsymbol{*}$	Date Initials
CS196PB-FS	Procedural Blank	250.0	NA	--	$11 / 14 / 18 \mathrm{~KB}$
CS197LCS-FS	Laboratory Control Sample	250.0	NA	--	$11 / 14 / 18 \mathrm{~KB}$
J9159-FS	NASB-BLL15-FRB-01-110118	275.0	1	C	$11 / 15 / 18 \mathrm{~KB}$

Comments:

It can be done

BATTELLE - NORWELL OPERATIONS SURROGATE SPIKE FORM

Project Title(s)

Project No.(s)
CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21

18-0671

CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW

Sample ID	Standard ID	Type	Vial No.	Vol Added $(u L)$	Date Spiked/ Spiked By	Witn'd By	Comment
CS196PB-FS	KC98	SIS	1	50	$11 / 14 / 18 \mathrm{~KB}$	AEK	NA
CS197LCS-FS	KB82	LCS/MS	1	100	$11 / 14 / 18 \mathrm{~KB}$	AEK	NA
CS197LCS-FS	KC98	SIS	1	50	$11 / 14 / 18 \mathrm{~KB}$	AEK	NA
J9159-FS	KC98	SIS	1	50	$11 / 14 / 18 \mathrm{~KB}$	AEK	NA

Syringes/Pipettes Used:

Std ID	Type	Syr/Pip
KB82	Pipette	B814659662
KC98	Pipette	B814659662

It can be done

BATTELLE - NORWELL OPERATIONS INTERNAL STANDARD SPIKING FORM

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0671

CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW

(N/A Fraction)

| Extract Id | Extr.
 Vol. (uL) | Added
 (uL) | Std. Id | Accm
 $\cdot(\mathrm{uL})$ | Vial
 No. | Pre Inj.
 Vol. $(\mathrm{uL}) \wedge$ | Final
 Dilution | Date Spiked/
 Spiked By | Witn'd
 By |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CS196PB-FS(0) | 950 | 50 | KC52 | 50 | 1 | 1000 | 1.000 | $11 / 15 / 18 \mathrm{LMG}$ | RDL |
| CS197LCS-FS(0) | 950 | 50 | KC52 | 50 | 1 | 1000 | 1.000 | $11 / 15 / 18 \mathrm{LMG}$ | RDL |
| J9159-FS(0) | 950 | 50 | KC52 | 50 | 1 | 1000 | 1.000 | $11 / 15 / 18 \mathrm{LMG}$ | RDL |

Syringes/Pipettes Used:

Std ID	Type	Syr/Pip
KC52	Pipette	B814659662

* - Final Dilution is any HPLC, dilutions, or other manipulation
\wedge - Pre Injection Volume (PIV) includes any RIS spikes.

BATIELIE

It can be done

BATTELLE - NORWELL OPERATIONS

 PREPARATION EXTRACT SPLIT FORM
Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine
100122108-
CTOWE21

18-0671

CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW

Extract		*	Extract Date	Source		Initial Extract Vol (uL)	Extract Split	Extract Split	Total Dilution	Date/Initials
Name	\#			Name	\#					
CS196PB-FS	0	--	11/14/2018 10:58:00 AM	NA		NA	NA	1.000	1.000	11/14/18 KB
CS197LCS-FS	0	--	11/14/2018 10:58:00 AM	NA		NA	NA	1.000	1.000	11/14/18 KB
J9159-FS	0	--	11/14/2018 10:58:00 AM	NA		NA	NA	1.000	1.000	11/14/18 KB

[^6]* - "C" = Extract is Consumed

It can be done
BATTELLE - NORWELL OPERATIONS
EXTRACT - INSTRUMENT FACILITY CUSTODY PAGE

Project Title(s)

Project No.(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0671

CTO-WE21: Former Naval Air Station, Brunswick, Maine

GW

	ose:	LC-M	RANS			Last Activity:	Prep->Inst
	quished On/By:	Nov	4:42P			Received On/By:	Nov 152018 4:53PM DMS
	nquished From:	Sam	aration			Received Location:	LC Laboratory: NA
	quish Comment:	NA				Received Comment:	NA
No.	BDO-ID:		PIV:	DF:	Condition:	Custody Commen	
1	CS196PB-FS(0)		1000	1	Intact	NA	
2	CS197LCS-FS(0)		1000	1	Intact	NA	
3	J9159-FS(0)		1000	1	Intact	NA	
Total Extracts:		3					

BATTELLE - NORWELL OPERATIONS SAMPLE SPECIFIC COMMENTS

Project Title(s)

CTO-WE21: Former Naval Air Station, Brunswick, Maine 100122108-
CTOWE21
18-0671
CTO-WE21: Former Naval Air Station, Brunswick, Maine
GW

| Sample ID: | Comment: | Date/Initials: |
| :--- | :--- | :--- | :--- |
| CS196PB-FS | Extraction started 10:58am, extraction block 1, ended 11:48am | $11 / 14 / 18 \mathrm{~KB}$ |
| CS197LCS-FS | Extraction started 10:58am, extraction block 1, ended 11:57am A small amount of smaple
 $(\sim 1 \mathrm{~mL})$ spilled during extraction. | $11 / 14 / 18 \mathrm{~KB}$ |
| J9159-FS | Extraction started 10:58am, extraction block 1, ended 12:00pm | $11 / 14 / 18 \mathrm{~KB}$ | Created with Analyst Reporter

Sequence Report Printed: 26/11/2018 11:30:25 AM

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
1	MeOH	Methanol	$\begin{gathered} \hline \text { 11/20/2018 1:18:18 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
2	KC66	L1	$\begin{gathered} \hline \text { 11/20/2018 1:28:46 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5- } \\ \text { 369.wiff } \end{gathered}$
3	KC67	L2	$\begin{gathered} \text { 11/20/2018 1:39:14 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ \text { 369.wiff } \end{gathered}$
4	KC68	L3	$\begin{gathered} \hline \text { 11/20/2018 1:49:41 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
5	KC69	L4	$\begin{gathered} \hline \text { 11/20/2018 2:00:08 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . w i f f \end{gathered}$
6	KC70	L5	$\begin{gathered} \hline \text { 11/20/2018 2:10:35 } \\ \text { PM } \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . w i f f \end{gathered}$
7	KC71	L6	$\begin{gathered} \hline \text { 11/20/2018 2:21:02 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ \text { 369.wiff } \end{gathered}$
8	KC72	L7	$\begin{gathered} \text { 11/20/2018 2:31:28 } \\ \text { PM } \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
9	KC73 IB	Instrument Blank	$\begin{gathered} \hline 11 / 20 / 2018 \text { 2:41:55 } \\ \text { PM } \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
10	KC74 ICC	ICC	$\begin{gathered} \hline \text { 11/20/2018 2:52:23 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
11	KC75 Branch	Branched Standard	$\begin{gathered} \hline 11 / 20 / 2018 \text { 3:02:52 } \\ \text { PM } \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5- } \\ 369 . \text { wiff } \end{gathered}$
12	MeOH	Methanol	$\begin{gathered} \hline 11 / 20 / 2018 \text { 3:13:19 } \\ \text { PM } \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
13	CS196PB-FS(0)	Procedural Blank	$\begin{gathered} \text { 11/20/2018 3:23:46 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ \text { 369.wiff } \end{gathered}$
14	CS197LCS-FS(0)	Laboratory Control Sample	$\begin{gathered} \hline 11 / 20 / 2018 \text { 3:34:13 } \\ \text { PM } \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ 369 . w i f f \end{gathered}$
15	J9159-FS(0)	$\begin{gathered} \hline \text { NASB-BLL15-FRB-01- } \\ 110118 \end{gathered}$	$\begin{gathered} \hline 11 / 20 / 2018 \text { 3:44:40 } \\ \text { PM } \\ \hline \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5- } \\ 369 . \text { wiff } \end{gathered}$
16	KC69 CCV	KC69 CCV	$\begin{gathered} \text { 11/20/2018 3:55:07 } \\ \text { PM } \end{gathered}$	5-369.dam	$\begin{gathered} \text { AE_11202018_5-5 } \\ \text { 369.wiff } \end{gathered}$

Created with Analyst Reporter
Sequence Report
Printed: 26/11/2018 9:07:12 AM

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
8	CONDITIONER	Column Conditioner	$\begin{gathered} \hline \text { 11/21/2018 4:58:08 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
1	MeOH	Methanol	$\begin{gathered} \hline \text { 11/21/2018 5:09:00 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
1	MeOH	Methanol	$\begin{gathered} \text { 11/21/2018 5:19:52 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
2	KC66	L1	$\begin{gathered} \hline \text { 11/21/2018 5:30:46 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
3	KC67	L2	$\begin{gathered} \hline \text { 11/21/2018 5:41:38 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
4	KC68	L3	$\begin{gathered} \hline \text { 11/21/2018 5:52:32 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
5	KC69	L4	$\begin{gathered} \hline \text { 11/21/2018 6:03:23 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
6	KC70	L5	$\begin{gathered} \text { 11/21/2018 6:14:15 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ \text { 369.wiff } \end{gathered}$
7	KC71	L6	$\begin{gathered} \hline \text { 11/21/2018 6:25:07 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
8	KC72	L7	$\begin{gathered} \hline 11 / 21 / 2018 \text { 6:35:58 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
9	KC73 IB	Instrument blank	$\begin{gathered} \hline \text { 11/21/2018 6:46:49 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
10	KC74 ICC	ICC	$\begin{gathered} \hline \text { 11/21/2018 6:57:42 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
11	KC75 Branch	Branched standard	$\begin{gathered} \hline \text { 11/21/2018 7:08:34 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
12	MeOH	Methanol	$\begin{gathered} \hline \text { 11/21/2018 7:19:26 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
13	CS196PB-FS(0)	Procedural Blank	$\begin{gathered} \hline \text { 11/21/2018 7:30:17 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
14	CS197LCS-FS(0)	Laboratory Control Sample	$\begin{gathered} \hline \text { 11/21/2018 7:41:10 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
15	J9159-FS(0)	$\begin{gathered} \hline \text { NASB-BLL15-FRB-01- } \\ 110118 \end{gathered}$	$\begin{gathered} \text { 11/21/2018 7:52:01 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
16	KD94 CHK 1	KD94 Standard-Check	$\begin{gathered} \text { 11/21/2018-8:02:52 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5}^{369 . \text { wiff }}$
17	KD94 CHK 2	KD94 Standard-Check	$\begin{gathered} \hline \text { 11/21/2018-8:13:44 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 \text { wiff } \end{gathered}$
18	KC70 CCV	KC70 CCV	$\begin{gathered} \hline 11 / 21 / 2018 \text { 8:24:37 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
19	MeOH	Methanol	$\begin{gathered} \text { 11/21/2018 8:35:28 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
20	CS235PB-FS(0)		$\begin{gathered} 11 / 21 / 2018-8: 46: 21 \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-1}^{11212018 _5-\mathrm{wiff}}$
24	CS236LCS-FS(0)		$\begin{gathered} \text { 11/21/2018 8:57:13 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5-5}^{369 . \text { wiff }}$
22	19409-FS(0)		$\begin{gathered} \text { 11/21/2018 9:08:05 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
23	19410-FS(0)		$\begin{gathered} \text { 11/21/2018-9:18:57 } \\ \text { PM } \end{gathered}$	5-0369.dam	
24	19411-FS(0)		$\begin{gathered} \text { 11/21/2018-9:29:19 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AG_11212018_5-5 }_{369 . \text { wiff }}$
25	d9411-FS-D(3)		11/21/20189:40:40	5-0369.dam	AC_11212018_5-

Created with Analyst Reporter
Sequence Report
Printed: 26/11/2018 9:07:12 AM

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
			PM		369.wiff
26	KC69-C6V	KC69-CCV	$\begin{gathered} \text { 11/21/2018 } 9: 51: 32 \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5- } \\ 369 \text { wiff } \end{gathered}$
27	MeOH	Methanel	$\begin{gathered} \text { 11/21/2018-10:02:23 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5- } \\ 369 . \text { wiff } \end{gathered}$
28	CS243PB-FS(0)		$\begin{gathered} \hline 11 / 21 / 2018: 10: 13: 14 \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018<5-}^{369 \text { wiff }}$
29	GS244LCS-FS(0)		$\begin{gathered} \text { 11/21/2018 10:24:08 } \\ \text { PM } \end{gathered}$	5-0369.dam	AC_11212018_5-
30	19420-FS(0)		$\begin{gathered} \text { 11/21/2018 10:35:01 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- }_{369 \text { wiff }}$
34	19414 FS(0)		$\begin{gathered} \text { 11/21/2018 10:45:53 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5- } \\ 369 \text {.wiff } \end{gathered}$
32	19414-FS-D(3)		$\begin{gathered} \text { 11/21/2018-10:56:43 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5-\mathrm{3}}^{369 \text { wiff }}$
33	d9414-FS-D(5)		$\begin{gathered} \text { 11/21/2018 11:07:35 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AG}_{-11212018 _5-\mathrm{s}}^{369 \text { wiff }}$
34	19414-FS-D(7)		11/21/2018 11:18:26 PM	5-0369.dam	$\text { AC_11212018_5- }_{369 \text { wiff }}$
35	d9415MS-FS(0)		$\begin{gathered} \text { 11/21/2018 11:29:18 } \\ \text { PM } \\ \hline \end{gathered}$	5-0369.dam	${ }_{\text {AC_11212018_5- }}^{\substack{369 . w i f f}}$
36	J9415MS-FS-D(3)		$\begin{gathered} \hline \text { 11/21/2018 11:40:09 } \\ \text { PM } \end{gathered}$	5-0369.dam	AC_11212018_5-
37	d9415MS-FS-D(5)		$\begin{gathered} \text { 11/21/2018 11:51:01 } \\ \text { PM } \end{gathered}$	5-0369.dam	$A C-11212018 _5_{369 \text { wiff }}$
38	KG70-G6V	KC70-G6V	$\begin{gathered} \text { 11/22/2018-12:01:53 } \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	$\text { AG_11212018_5- }_{369 . \text { wiff }}$
39	MeOH	Methanot	$\begin{gathered} \text { 11/22/2018 12:12:46 } \\ \text { AMA } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- }_{369 \text { wiff }}$
40	d9415MS-FS-D(7)		$\begin{gathered} \text { 11/22/2018 12:23:39 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5 } \\ 369 . \text { wiff } \end{gathered}$
44	19416MSD-FS(0)		$\begin{gathered} \text { 11/22/2018 12:34:31 } \\ \text { AA } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5- } \\ \text { 369.wiff } \end{gathered}$
42	J9416MSD-FS-D(3)		$\begin{gathered} \text { 11/22/2018 12:45:22 } \\ \text { AMA } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5}^{369 \text { wiff }}$
43	J9416MSD-FS-D(5)		$\begin{gathered} 11 / 22 / 2018-12: 56: 15 \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	$\text { AG_11212018_5- }_{369 . \text { wiff }}$
44	J9416MSD-FS-D(7)		$\begin{gathered} \text { 11/22/2018-1:07:07 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- }_{369 \text { wiff }}$
45	19417-FS(0)		$\begin{gathered} \text { 11/22/2018 1:17:59 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
46	d9417-FS-D(3)		$\begin{gathered} \text { 11/22/2018 1:28:51 } \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	$\text { AG_11212018_5- }_{369 \text { wiff }}$
47	19417-FS-D(5)		$\begin{gathered} \text { 11/22/2018-1:39:13 } \\ \text { AM } \end{gathered}$	5-0369.dam	AC_11212018_5
48	19417 FS-D(7)		$\begin{gathered} \text { 11/22/2018 1:50:35 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
49	KC69CCV	KC69-CCV	$\begin{gathered} 11 / 22 / 2018-2: 01: 26 \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5- } \\ 369 \text {.wiff } \end{gathered}$
50	MeOH	Methanot	$\begin{gathered} 11 / 22 / 2018-2: 12: 18 \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_1 }_{\substack{1212018-5 \\ 369 \text { wiff }}}$
54	GS241PB-FS(0)		$\begin{gathered} \text { 11/22/2018 2:23:09 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- }_{369 \text { wiff }}$

Created with Analyst Reporter
Sequence Report
Printed: 26/11/2018 9:07:12 AM

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
52	GS242LGS-FS(0)		$\begin{gathered} \text { 11/22/2018 2:34:01 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5-5}^{369 . \text { wiff }}$
53	19419-FS(0)		$\begin{gathered} \text { 11/22/2018 2:44:55 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
54	19412-FS(0)		$\begin{gathered} \text { 11/22/2018 2:55:16 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-1}^{11212018 _5-\mathrm{wiff}}$
4	19412-FS-D(3)		$\begin{gathered} \text { 11/22/2018-3:06:39 } \\ \text { AM } \end{gathered}$	5-0369.dam	AC_11212018_5-369-wiff
z	19412-FS-D(5)		$\begin{gathered} \text { 11/22/2018-3:17:32 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AG_11212018_5-5 }_{369 . \text { wiff }}$
3	19412-FS-D(7)		$\begin{gathered} \text { 11/22/2018 3:28:25 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5-}^{169 \text { wiff }}$
4	19412 FS-D(9)		$\begin{gathered} \text { 11/22/2018 3:39:18 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5-\mathrm{3}}^{369 \text { wiff }}$
5	19413-FS(0)		$\begin{gathered} \text { 11/22/2018 3:50:10 } \\ \text { AM } \end{gathered}$	5-0369.dam	${ }_{\text {AG_11212018_5-5 }}^{369 . \text { wiff }}$
6	d9413-FS-D(3)		$\begin{gathered} \text { 11/22/2018-4:01:03 } \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	AC_11212018_5-5
7	KC70-6CV	KC70-G6V	$\begin{gathered} \text { 11/22/2018-4:11:56 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-}^{11212018 _5-\mathrm{z}}$
8	MeOH	Methanel	$\begin{gathered} \text { 11/22/2018-4:22:48 } \\ \text { AMA } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5-\mathrm{3}}^{369 . \text { wiff }}$
9	19413-FS-D(5)		$\begin{gathered} \text { 11/22/2018-4:33:44 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_1 }_{369 \text {-wiff }}^{11212018 _5-5}$
10	19413-FS-D(7)		$\begin{gathered} \text { 11/22/2018-4:41:33 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5-5 }_{369 . \text { wiff }}$
14	19413-FS-D(9)		$\begin{gathered} \text { 11/22/2018-4:55:27 } \\ \text { AM } \end{gathered}$	5-0369.dam	AG_11212018_5-5
12	19418-FS(0)		$\begin{gathered} \text { 11/22/2018 5:06:20 } \\ \text { AM } \end{gathered}$	5-0369.dam	AC_11212018_5-
13	19418-FS-D(3)		$\begin{gathered} \text { 11/22/2018 5:17:12 } \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AG_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
14	19418-FS-D(5)		$\begin{gathered} \text { 11/22/2018 5:28:04 } \\ \text { AA } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-1}^{11212018 _5-\mathrm{wiff}}$
15	19418-FS-D(7)		$\begin{gathered} \text { 11/22/2018 5:38:59 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5}^{369 \text { wiff }}$
16	19421-FS(0)		$\begin{gathered} \text { 11/22/2018 5:49:52 } \\ \text { AM } \\ \hline \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 \text { wiff } \end{gathered}$
17	19421-FS-D(3)		$\begin{gathered} \text { 11/22/2018-6:00:44 } \\ \text { AM } \end{gathered}$	5-0369.dam	AC_11212018_5-5-
18	19421-FS-D(5)		$\begin{gathered} \text { 11/22/2018-6:11:37 } \\ \text { AM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5}^{369 . \text { wiff }}$
7	KC70-6.	KC70-CCV	$\begin{gathered} 11 / 22 / 2018-8: 26: 25 \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-1}^{11212018 _5-\text { wiff }}$
8	MeOH	Methanot	$\begin{gathered} 11 / 22 / 2018-8: 38: 10 \\ \text { PM } \end{gathered}$	5-0369.dam	AC_11212018_5-5
9	19413-FS-D(5)		$\begin{gathered} \hline \text { 11/22/2018-8:49:02 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5-5 } \\ 369 . \text { wiff } \end{gathered}$
10	19413-FS-D(7)		$\begin{gathered} 11 / 22 / 2018-8: 59: 54 \\ \text { PM } \end{gathered}$	5-0369.dam	$\mathrm{AC}_{-11212018 _5-10 . \text { wiff }}$
14	19413-FS-D(9)		$\begin{gathered} 11 / 22 / 2018-9: 10: 18 \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_1 }_{369 \text {.wiff }}^{11212018-5}$
12	J9418-FS(0)		11/22/2018-9:21:38	5-0369.dam	AC_11212018_5-

Created with Analyst Reporter
Printed: 26/11/2018 9:07:12 AM

Vial	Laboratory Sample ID	Client Sample ID	Acquisition Date	Acquisition Method	Data File
			PM		369.wiff
13	19418-FS-D(3)		$\begin{gathered} \text { 11/22/2018-9:32:31 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\begin{gathered} \text { AC_11212018_5- } \\ 369 . \text { wiff } \end{gathered}$
14	19418-FS-D(5)		$\begin{gathered} 11 / 22 / 2018-9: 13: 24 \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- }_{369 \text { wiff }}$
15	19418-FS-D(7)		$\begin{gathered} \text { 11/22/2018-9:54:17 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- }_{369 \text { wiff }}$
16	19421 FS(0)		$\begin{gathered} \text { 11/22/2018 10:05:09 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- }_{369 . \text { wiff }}$
17	d9421-FS-D(3)		$\begin{gathered} \text { 11/22/2018 10:16:02 } \\ \text { PM } \end{gathered}$	5-0369.dam	AG_11212018_5-5
48	19421 FS-D(5)		$\begin{gathered} \text { 11/22/2018 10:26:54 } \\ \text { PM } \end{gathered}$	5-0369.dam	$\text { AC_11212018_5- } \underset{369 \text {.wiff }}{ }$

[^7]| Analyte Name | PFBS_1 | Data File | AE_11202018_5-369.wiff |
| :--- | :--- | :--- | :--- |
| MRM Transition | $298.9 / 80.0$ | Result Table | 18-0671 |
| Internal Standard | $13 C 3-$ PFBS | Instrument Name | Triple Quad 6500+ Low Mass |
| Acquisition Date | $11 / 20 / 20181: 18: 18$ PM | Acquisition Method | 5-369.dam |

Regression Equation: $y=2.04715 x+0.35083(r=0.99847)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	101.00	83.888501	83.1
3	KC67	L2	True	252.50	270.237015	107.0
4	KC68	L3	True	505.00	488.243260	96.7
5	KC69	True	1010.00	1060.701202	105.0	
6	KC70	L5	True	2525.00	2670.123231	105.8
8	KC71	True	10100.00	10778.291612	106.7	

Analyte Name	PFBS_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$298.9 / 99.0$	Result Table	18-0671
Internal Standard	$13 C 3-P F B S$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.73346 x+0.10062(r=0.99785)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	101.00	84.131991	83.3
3	KC67	L2	True	252.50	253.815568	100.5
4	KC68	True	505.00	550.295368	109.0	
5	KC69	True	1010.00	993.747945	98.4	
6	KC70	L5	True	2525.00	2658.621353	105.3
8	KC71	True	10100.00	10959.724160	108.5	

Analyte Name	PFHxA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$313.0 / 269.0$	Result Table	18-0671
Internal Standard	13C5-PFHxA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=1.08766 x+0.11357(r=0.99947)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	101.00	111.966062	110.9
3	KC67	L2	True	252.50	252.768448	100.1
4	KC68	L3	True	505.00	504.738360	100.0
5	KC69	True	1010.00	954.533503	94.5	
6	KC70	L5	True	2525.00	2411.573100	95.5
8	KC71	L6	True	10100.00	9754.602075	96.6

Analyte Name	PFHxA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$313.0 / 119.0$	Result Table	18-0671
Internal Standard	$13 C 5-P F H x A$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.05726 x+0.00706(r=0.99897)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	101.00	102.244402	101.2
3	KC67	L2	True	252.50	259.034596	102.6
4	KC68	L3	True	505.00	526.971544	104.4
5	KC69	True	1010.00	962.897418	95.3	
6	KC70	L5	True	2525.00	2512.672710	99.5
8	KC71	True	10100.00	9460.480884	93.7	

Analyte Name	PFHpA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$363.0 / 319.0$	Result Table	18-0671
Internal Standard	$13 C 4-$ PFHpA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.65675 x+0.09062(r=0.99934)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	89.411524	89.4
3	KC67	L2	True	250.00	260.939063	104.4
4	KC68	L3	True	500.00	537.306077	107.5
5	KC69	True	1000.00	925.168891	92.5	
6	KC70	L5	True	2500.00	2617.443698	104.7
8	KC71	True	10000.00	10387.668909	103.9	

Analyte Name	PFHpA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$363.0 / 169.0$	Result Table	18-0671
Internal Standard	13C4-PFHpA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18 \mathrm{PM}$	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.01098 x+-0.00176(r=0.99717)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	108.219549	108.2
3	KC67	L2	True	250.00	291.350425	116.5
4	KC68	L3	True	500.00	534.909412	107.0
5	KC69	True	1000.00	845.427912	84.5	
6	KC70	L5	True	2500.00	1952.835703	78.1
8	KC71	True	10000.00	10503.178904	105.0	

Analyte Name	PFHxS_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$399.0 / 80.0$	Result Table	18-0671
Internal Standard	$13 C 3-P F H x S$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=2.70232 x+0.43513(r=0.99857)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	101.00	74.553352	73.8
3	KC67	L2	True	252.50	259.013978	102.6
4	KC68	L3	True	505.00	593.954679	117.6
5	KC69	L4	1010.00	1008.429121	99.8	
6	KC70	L5	True	2525.00	2798.079709	110.8
8	KC71	True	10100.00	9497.334890	94.0	

Analyte Name	PFHxS_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$399.0 / 99.0$	Result Table	18-0671
Internal Standard	$13 C 3-P F H x S$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.94118 x+0.17518(r=0.99922)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	101.00	72.514577	71.8
3	KC67	L2	True	252.50	275.052980	108.9
4	KC68	L3	True	505.00	536.460449	106.2
5	KC69	True	1010.00	1073.028977	106.2	
6	KC70	L5	True	2525.00	2776.171079	110.0
7	KC71	True	10100.00	9804.208025	97.1	
8	KC72	True	20200.00	20156.063912	99.8	

Analyte Name	PFOA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$413.0 / 369.0$	Result Table	18-0671
Internal Standard	$13 C 8-P F O A$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.85805 x+0.05261(r=0.99610)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	100.00	112.254171	112.3
3	KC67	L2	True	250.00	253.270036	101.3
4	KC68	L3	True	500.00	450.277930	90.1
5	KC69	True	1000.00	941.583067	94.2	
6	KC70	L5	True	2500.00	2728.227263	109.1
7	KC71	True	10000.00	8754.578738	87.6	
8	KC72	True	20000.00	21109.808795	105.6	

Analyte Name	PFOA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$413.0 / 169.0$	Result Table	18-0671
Internal Standard	$13 C 8-P F O A$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.05318 x+7.57035 e-4(r=0.99492)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	100.00	128.976264	129.0
3	KC67	L2	True	250.00	234.259600	93.7
4	KC68	L3	True	500.00	395.618926	79.1
5	KC69	True	1000.00	977.850077	97.8	
6	KC70	L4	True	2500.00	2693.200847	107.7
7	KC71	True	10000.00	8616.519630	86.2	
8	KC72	True	20000.00	21303.574656	106.5	

Analyte Name	PFNA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$463.0 / 419.0$	Result Table	18-0671
Internal Standard	$13 C 9-P F N A$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.64110 x+0.01434(r=0.99947)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L) $)$	Recovery $(\%)$
2	KC66	L1	True	100.00	105.502831	105.5
3	KC67	L2	True	250.00	273.411552	109.4
4	KC68	L3	True	500.00	487.917428	97.6
5	KC69	True	1000.00	931.551703	93.2	
6	KC70	L5	True	2500.00	2374.448280	95.0
8	KC71	True	10000.00	9706.024056	97.1	

Analyte Name	PFNA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$463.0 / 219.0$	Result Table	18-0671
Internal Standard	$13 C 9-P F N A$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.23087 x+0.03213(r=0.99953)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	90.761554	90.8
3	KC67	L2	True	250.00	253.266259	101.3
4	KC68	L3	True	500.00	545.991142	109.2
5	KC69	True	1000.00	1046.329875	104.6	
6	KC70	L5	True	2500.00	2307.347739	92.3
8	KC71	True	10000.00	10255.059884	102.6	

Analyte Name	PFOS_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$499.0 / 80.0$	Result Table	18-0671
Internal Standard	$13 C 8-P F O S$	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18 \mathrm{PM}$	Acquisition Method	5-369.dam

Regression Equation: $y=3.85029 x+0.28470(r=0.99841)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	93.512875	93.5
3	KC67	L2	True	250.00	251.710223	100.7
4	KC68	L3	True	500.00	552.882307	110.6
5	KC69	True	1000.00	961.052881	96.1	
6	KC70	L5	True	2500.00	2591.416569	103.7
8	KC71	True	10000.00	9193.499467	91.9	

Analyte Name	PFOS_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$499.0 / 99.0$	Result Table	18-0671
Internal Standard	$13 C 8-$ PFOS	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.77926 x+0.15286(r=0.99867)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	87.966472	88.0
3	KC67	L2	True	250.00	266.574385	106.6
4	KC68	L3	True	500.00	549.553215	109.9
5	KC69	True	1000.00	932.090704	93.2	
6	KC70	L5	True	2500.00	2661.248055	106.5
8	KC71	True	10000.00	9314.260569	93.1	

Analyte Name	PFDA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$513.0 / 469.0$	Result Table	18-0671
Internal Standard	13C6-PFDA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.98519 x+0.02635(r=0.99916)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	90.951035	91.0
3	KC67	L2	True	250.00	265.476496	106.2
4	KC68	L3	True	500.00	490.962288	98.2
5	KC69	True	1000.00	1118.872339	111.9	
6	KC70	L5	True	2500.00	2260.957663	90.4
8	KC71	True	10000.00	10345.293600	103.5	

Analyte Name	PFDA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$513.0 / 219.0$	Result Table	18-0671
Internal Standard	13C6-PFDA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.03342 x+-0.00379(r=0.99981)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	False	100.00	160.703621	160.7
3	KC67	L2	False	250.00	480.428663	192.2
4	KC68	L3	True	500.00	491.131033	98.2
5	KC69	True	1000.00	971.513799	97.2	
6	KC70	L5	True	2500.00	2604.033680	104.2
8	KC71	True	10000.00	10158.891781	101.6	

Analyte Name	PFUnA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$563.0 / 519.0$	Result Table	18-0671
Internal Standard	$13 C 7-$ PFUnA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=1.30581 x+-0.08824(r=0.99639)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	100.00	121.085413	121.1
3	KC67	L2	True	250.00	268.754931	107.5
4	KC68	L3	True	500.00	448.964362	89.8
5	KC69	True	1000.00	864.430186	86.4	
6	KC70	L4	True	2500.00	2498.777111	100.0
7	KC71	True	10000.00	8897.139847	89.0	
8	KC72	True	20000.00	21250.848150	106.3	

Analyte Name	PFUnA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$563.0 / 269.0$	Result Table	18-0671
Internal Standard	13C7-PFUnA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.05422 x+-0.01025(r=0.99938)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	100.00	103.827779	103.8
3	KC67	L2	True	250.00	270.012970	108.0
4	KC68	L3	True	500.00	427.814458	85.6
5	KC69	L4	1000.00	1071.859294	107.2	
6	KC70	Lrue	2500.00	2420.702883	96.8	
8	KC71	L6	True	10000.00	9662.236857	96.6

Analyte Name	PFDoA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$613.0 / 569.0$	Result Table	18-0671
Internal Standard	13C2-PFDoA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.82964 x+0.12164(r=0.99810)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	100.00	82.589955	82.6
3	KC67	L2	True	250.00	264.262487	105.7
4	KC68	L3	True	500.00	600.431145	120.1
5	KC69	True	1000.00	993.811414	99.4	
6	KC70	L5	True	2500.00	2271.621006	90.9
8	KC71	True	10000.00	10137.283994	101.4	

Analyte Name	PFDoA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$613.0 / 319.0$	Result Table	18-0671
Internal Standard	13C2-PFDoA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.10333 x+0.01723(r=0.99886)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	100.00	87.948847	88.0
3	KC67	L2	True	250.00	260.132844	104.1
4	KC68	True	500.00	561.638373	112.3	
5	KC69	True	1000.00	952.220600	95.2	
6	KC70	L5	True	2500.00	2422.577787	96.9
7	KC71	True	10000.00	10643.552317	106.4	
8	KC72	True	20000.00	19421.929231	97.1	

Analyte Name	PFTrDA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$663.0 / 619.0$	Result Table	18-0671
Internal Standard	13C2-PFTeDA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=1.23494 x+-0.07826(r=0.99934)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	True	100.00	117.417720	117.4
3	KC67	L2	True	250.00	248.014044	99.2
4	KC68	L3	True	500.00	440.944292	88.2
5	KC69	L4	1000.00	936.300682	93.6	
6	KC70	L5	True	2500.00	2462.604914	98.5
8	KC71	True	10000.00	10465.989454	104.7	

Analyte Name	PFTrDA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$663.0 / 169.0$	Result Table	18-0671
Internal Standard	13C2-PFTeDA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.06411 x+-0.00321(r=0.99941)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	88.902121	88.9
3	KC67	L2	True	250.00	291.019332	116.4
4	KC68	True	500.00	428.975299	85.8	
5	KC69	True	1000.00	1041.563432	104.2	
6	KC70	L5	True	2500.00	2597.315130	103.9
8	KC71	True	10000.00	10267.003010	102.7	

Analyte Name	PFTeDA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$713.0 / 669.0$	Result Table	18-0671
Internal Standard	13C2-PFTeDA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18$ PM	Acquisition Method	5-369.dam

Regression Equation: $y=1.05035 x+0.05480(r=0.99863)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	90.597160	90.6
3	KC67	L2	True	250.00	244.830096	97.9
4	KC68	True	500.00	478.965374	95.8	
5	KC69	True	1000.00	1102.327101	110.2	
6	KC70	L5	True	2500.00	2573.229328	102.9
8	KC71	True	10000.00	10643.117780	106.4	

Analyte Name	PFTeDA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$713.0 / 169.0$	Result Table	18-0671
Internal Standard	13C2-PFTeDA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.04274 x+-2.82718 e-4(r=0.99899)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	111.343508	111.3
3	KC67	L2	True	250.00	236.800068	94.7
4	KC68	L3	True	500.00	444.880035	89.0
5	KC69	True	1000.00	1063.843896	106.4	
6	KC70	L5	True	2500.00	2546.153323	101.9
8	KC71	True	10000.00	9399.007918	94.0	

Analyte Name	NMeFOSAA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$570.0 / 419.0$	Result Table	18-0671
Internal Standard	d3-MeFOSAA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$11 / 20 / 20181: 18: 18 \mathrm{PM}$	Acquisition Method	5-369.dam

Regression Equation: $y=0.96431 x+0.14927(r=0.99865)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	81.263158	81.3
3	KC67	L2	True	250.00	219.644380	87.9
4	KC68	L3	True	500.00	569.603109	113.9
5	KC69	True	1000.00	1209.520728	121.0	
6	KC70	L4	True	2500.00	2484.629367	99.4
8	KC71	True	10000.00	9538.904935	95.4	

Analyte Name	NMeFOSAA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$570.0 / 512.0$	Result Table	18-0671
Internal Standard	d3-MeFOSAA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.64372 x+0.59544(r=0.99929)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. (ng/L)	Recovery $(\%)$
2	KC66	L1	False	100.00	<0	N/A
3	KC67	L2	False	250.00	54.886728	22.0
4	KC68	L3	True	500.00	448.529185	89.7
5	KC69	L4	True	1000.00	1110.793913	111.1
6	KC70	L5	True	2500.00	2542.679695	101.7
7	KC71	L6	True	10000.00	9603.519560	96.0
8	KC72	L7	True	20000.00	20294.477647	101.5

Analyte Name	NEtFOSAA_1	Data File	AE_11202018_5-369.wiff
MRM Transition	$584.0 / 419.0$	Result Table	18-0671
Internal Standard	d5-EtFOSAA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.92470 x+-0.00522(r=0.99716)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	False	100.00	160.939422	160.9
3	KC67	L2	True	250.00	277.339194	110.9
4	KC68	L3	True	500.00	424.144256	84.8
5	KC69	True	1000.00	1185.760697	118.6	
6	KC70	L5	True	2500.00	2209.993807	88.4
8	KC71	True	10000.00	9299.167791	93.0	

Analyte Name	NEtFOSAA_2	Data File	AE_11202018_5-369.wiff
MRM Transition	$584.0 / 483.0$	Result Table	18-0671
Internal Standard	d5-EtFOSAA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $\quad y=0.05888 x+-0.01006(r=0.99650)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	False	100.00	352.296408	352.3
3	KC67	L2	True	250.00	230.826195	92.3
4	KC68	L3	True	500.00	558.097335	111.6
5	KC69	True	1000.00	1143.319809	114.3	
6	KC70	L5	True	2500.00	2122.329262	84.9
8	KC71	True	10000.00	9169.553365	91.7	

Analyte Name	PFBA	Data File	AE_11202018_5-369.wiff
MRM Transition	$213.0 / 169.0$	Result Table	18-0671
Internal Standard	13C4-PFBA	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	11/20/2018 1:18:18 PM	Acquisition Method	5-369.dam

Regression Equation: $y=0.95396 x+0.64287(r=0.99964)$ (weighting: $1 / x$)

Vial	Sample Name	Sample ID	Used for ICAL	Target Conc. $(\mathrm{ng} / \mathrm{L})$	Calculated Conc. $(\mathrm{ng} / \mathrm{L})$	Recovery $(\%)$
2	KC66	L1	True	100.00	94.982677	95.0
3	KC67	L2	True	250.00	265.062999	106.0
4	KC68	True	500.00	453.607474	90.7	
5	KC69	L4	1000.00	1048.757555	104.9	
6	KC70	L5	True	2500.00	2560.056734	102.4
7	KC71	True	10000.00	10270.988248	102.7	
8	KC72	True	20000.00	19656.544312	98.3	

BATHELIE

	Isotope Dilution Calibration Curve Concentrations (ng/L)						
	KC66	KC67	KC68	KC69	KC70	KC71	KC72
PFBA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFPeA	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHxA	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHpA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFNA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFUnA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDoA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFTrDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFTeDA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
NMeFOSAA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
NEtFOSAA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOSA	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFBS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFPeS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFHxS (Branched)	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFHpS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFOS (Branched)	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
PFDS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
PFNS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
4:2FTS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
6:2FTS	100.00	250.00	500.00	1,000.00	2,500.00	10,000.00	20,000.00
8:2FTS	101.00	252.50	505.00	1,010.00	2,525.00	10,100.00	20,200.00
	Surrogates / Extracted Internal Standards						
13C4-PFBA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C5-PFPeA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C5-PFHxA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C4-PFHpA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C8-PFOA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C9-PFNA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C6-PFDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C7-PFUnA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFDoA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFTeDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
d3-MeFOSAA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
d5-EtFOSAA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C8-FOSA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C3-PFBS	232.25	232.25	232.25	232.25	232.25	232.25	232.25
13C3-PFHxS	236.50	236.50	236.50	236.50	236.50	236.50	236.50
13C8-PFOS	239.25	239.25	239.25	239.25	239.25	239.25	239.25
13C2-4:2FTS	233.75	233.75	233.75	233.75	233.75	233.75	233.75
13C2-6:2FTS	237.25	237.25	237.25	237.25	237.25	237.25	237.25
13C2-8:2FTS	239.50	239.50	239.50	239.50	239.50	239.50	239.50
	Internal Standards						
13C3-PFBA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFOA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C2-PFDA	250.00	250.00	250.00	250.00	250.00	250.00	250.00
13C4-PFOS	239.25	239.25	239.25	239.25	239.25	239.25	239.25

BATHEIIE

	ICC
	KC74
PFBA	1,000.00
PFPeA	1,000.00
PFHxA	1,010.00
PFHpA	1,000.00
PFOA	1,000.00
PFNA	1,000.00
PFDA	1,000.00
PFUnA	1,000.00
PFDoA	1,000.00
PFTrDA	1,000.00
PFTeDA	1,000.00
NMeFOSAA	1,000.00
NEtFOSAA	1,000.00
PFOSA	1,000.00
PFBS	1,010.00
PFPeS	1,000.00
PFHxS	1,010.00
PFHpS	1,000.00
PFOS	1,000.00
PFDS	1,010.00
PFNS	1,010.00
4:2FTS	1,000.00
6:2FTS	1,000.00
8:2FTS	1,010.00
13C4-PFBA	250.00
13C5-PFPeA	250.00
13C5-PFHxA	250.00
13C4-PFHpA	250.00
13C8-PFOA	250.00
13C9-PFNA	250.00
13C6-PFDA	250.00
13C7-PFUnA	250.00
13C2-PFDoA	250.00
13C2-PFTeDA	250.00
d3-MeFOSAA	250.00
d5-EtFOSAA	250.00
13C8-FOSA	250.00
13C3-PFBS	232.25
13C3-PFHxS	236.50
13C8-PFOS	239.25
13C2-4:2FTS	233.75
13C2-6:2FTS	237.25
13C2-8:2FTS	239.50
13C3-PFBA	250.00
13C2-PFOA	250.00
13C2-PFDA	250.00
13C4-PFOS	239.25

Summary Ion Ratio Report

Sample Name	KC66	Injection Vial	2
Sample ID	L1	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 13: 28: 46$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.17	PFBS			
PFBS_2	298.9 / 99.0	1.17	PFBS	0.340	0.353	,
PFHxA 1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.66	PFHpA			
PFHpA_2	363.0 / 169.0	1.65	PFHpA	0.010	0.014	,
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.360	0.354	,
PFOA_1	413.0 / 369.0	1.96	PFOA			
PFOA 2	413.0 / 169.0	1.95	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.30	PFNA			
PFNA_2	463.0 / 219.0	2.30	PFNA	0.410	0.386	,
PFOS_1	499.0 / 80.0	2.29	PFOS			
PFOS_2	499.0 / 99.0	2.28	PFOS	0.250	0.216	,
PFDA_1	513.0 / 469.0	2.64	PFDA			
PFDA_2	513.0 / 219.0	2.64	PFDA	0.050	0.033	,
PFUnA_1	563.0 / 519.0	2.98	PFUnA			
PFUnA_2	563.0 / 269.0	2.98	PFUnA	0.020	0.039	,
PFDoA_1	613.0 / 569.0	3.29	PFDoA			
PFDoA_2	613.0 / 319.0	3.28	PFDoA	0.140	0.127	,
PFTrDA_1	663.0 / 619.0	3.56	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.57	PFTrDA	0.040	0.053	,
PFTeDA_1	713.0 / 669.0	3.82	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.83	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.80	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.79	NMeFOSAA	0.740	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.97	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.96	NEtFOSAA	0.120	0.061	
PFBA	213.0 / 169.0	0.93				

Summary Ion Ratio Report

Sample Name	KC67	Injection Vial	3
Sample ID	L2	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 13: 39: 14$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.17	PFBS			
PFBS_2	298.9 / 99.0	1.17	PFBS	0.330	0.353	,
PFHxA_1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.66	PFHpA			
PFHpA 2	363.0 / 169.0	1.66	PFHpA	0.010	0.014	
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.370	0.354	
PFOA 1	413.0 / 369.0	1.97	PFOA			
PFOA 2	413.0 / 169.0	1.97	PFOA	0.050	0.060	,
PFNA_1	463.0 / 419.0	2.31	PFNA			
PFNA 2	463.0 / 219.0	2.31	PFNA	0.370	0.386	,
PFOS_1	499.0 / 80.0	2.29	PFOS			
PFOS 2	499.0 / 99.0	2.30	PFOS	0.240	0.216	,
PFDA_1	513.0 / 469.0	2.65	PFDA			
PFDA_2	513.0 / 219.0	2.64	PFDA	0.060	0.033	
PFUnA_1	563.0 / 519.0	2.99	PFUnA			
PFUnA_2	563.0 / 269.0	2.99	PFUnA	0.040	0.039	,
PFDoA_1	613.0 / 569.0	3.29	PFDoA			
PFDoA_2	613.0 / 319.0	3.29	PFDoA	0.120	0.127	,
PFTrDA_1	663.0 / 619.0	3.57	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.57	PFTrDA	0.060	0.053	,
PFTeDA_1	713.0 / 669.0	3.82	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.82	PFTeDA	0.040	0.039	,
NMeFOSAA 1	570.0 / 419.0	2.80	NMeFOSAA			
NMeFOSAA 2	570.0 / 512.0	2.80	NMeFOSAA	0.740	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.97	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.97	NEtFOSAA	0.040	0.061	,
PFBA	213.0 / 169.0	0.93				

Sample Name	KC68	Injection Vial	4
Sample ID	L3	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T13:49:41	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS 1	298.9 / 80.0	1.17	PFBS			
PFBS 2	298.9 / 99.0	1.17	PFBS	0.390	0.353	,
PFHxA 1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.060	0.053	,
PFHpA_1	363.0 / 319.0	1.66	PFHpA			
PFHpA_2	363.0 / 169.0	1.66	PFHpA	0.010	0.014	,
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.320	0.354	
PFOA_1	413.0 / 369.0	1.96	PFOA			
PFOA 2	413.0 / 169.0	1.95	PFOA	0.050	0.060	,
PFNA_1	463.0 / 419.0	2.30	PFNA			
PFNA_2	463.0 / 219.0	2.30	PFNA	0.420	0.386	,
PFOS 1	499.0 / 80.0	2.29	PFOS			
PFOS_2	499.0 / 99.0	2.29	PFOS	0.210	0.216	,
PFDA_1	513.0 / 469.0	2.64	PFDA			
PFDA_2	513.0 / 219.0	2.64	PFDA	0.030	0.033	,
PFUnA_1	563.0 / 519.0	2.98	PFUnA			
PFUnA_2	563.0 / 269.0	2.98	PFUnA	0.040	0.039	,
PFDoA_1	613.0 / 569.0	3.29	PFDoA			
PFDoA_2	613.0 / 319.0	3.28	PFDoA	0.120	0.127	,
PFTrDA_1	663.0 / 619.0	3.56	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.56	PFTrDA	0.050	0.053	,
PFTeDA_1	713.0 / 669.0	3.81	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.81	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.80	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.80	NMeFOSAA	0.750	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.97	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.96	NEtFOSAA	0.080	0.061	,
PFBA	213.0 / 169.0	0.93				

Summary Ion Ratio Report

Sample Name	KC69	Injection Vial	5
Sample ID	L4	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T14:00:08	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS 1	298.9 / 80.0	1.17	PFBS			
PFBS 2	298.9 / 99.0	1.17	PFBS	0.330	0.353	,
PFHxA 1	313.0 / 269.0	1.40	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.67	PFHpA			
PFHpA_2	363.0 / 169.0	1.66	PFHpA	0.010	0.014	,
PFHxS_1	399.0 / 80.0	1.67	PFHxS			
PFHxS_2	399.0 / 99.0	1.67	PFHxS	0.370	0.354	
PFOA_1	413.0 / 369.0	1.97	PFOA			
PFOA 2	413.0 / 169.0	1.97	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.32	PFNA			
PFNA_2	463.0 / 219.0	2.31	PFNA	0.420	0.386	,
PFOS 1	499.0 / 80.0	2.30	PFOS			
PFOS_2	499.0 / 99.0	2.30	PFOS	0.200	0.216	,
PFDA_1	513.0 / 469.0	2.65	PFDA			
PFDA_2	513.0 / 219.0	2.66	PFDA	0.030	0.033	,
PFUnA_1	563.0 / 519.0	2.99	PFUnA			
PFUnA_2	563.0 / 269.0	3.00	PFUnA	0.050	0.039	,
PFDoA_1	613.0 / 569.0	3.30	PFDoA			
PFDoA_2	613.0 / 319.0	3.30	PFDoA	0.120	0.127	,
PFTrDA_1	663.0 / 619.0	3.57	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.57	PFTrDA	0.060	0.053	,
PFTeDA_1	713.0 / 669.0	3.82	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.82	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.81	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.81	NMeFOSAA	0.720	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.98	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.98	NEtFOSAA	0.060	0.061	,
PFBA	213.0 / 169.0	0.93				

Summary Ion Ratio Report

Sample Name	KC70	Injection Vial	6
Sample ID	L5	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T14:10:35	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS 1	298.9 / 80.0	1.17	PFBS			
PFBS 2	298.9 / 99.0	1.17	PFBS	0.360	0.353	,
PFHxA 1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.66	PFHpA			
PFHpA_2	363.0 / 169.0	1.66	PFHpA	0.010	0.014	,
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.350	0.354	
PFOA_1	413.0 / 369.0	1.96	PFOA			
PFOA 2	413.0 / 169.0	1.96	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.30	PFNA			
PFNA_2	463.0 / 219.0	2.30	PFNA	0.350	0.386	,
PFOS 1	499.0 / 80.0	2.29	PFOS			
PFOS_2	499.0 / 99.0	2.29	PFOS	0.210	0.216	,
PFDA_1	513.0 / 469.0	2.64	PFDA			
PFDA_2	513.0 / 219.0	2.64	PFDA	0.040	0.033	,
PFUnA_1	563.0 / 519.0	2.98	PFUnA			
PFUnA_2	563.0 / 269.0	2.98	PFUnA	0.040	0.039	,
PFDoA_1	613.0 / 569.0	3.28	PFDoA			
PFDoA_2	613.0 / 319.0	3.28	PFDoA	0.130	0.127	,
PFTrDA_1	663.0 / 619.0	3.56	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.56	PFTrDA	0.050	0.053	,
PFTeDA_1	713.0 / 669.0	3.81	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.81	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.80	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.80	NMeFOSAA	0.730	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.97	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.97	NEtFOSAA	0.060	0.061	,
PFBA	213.0 / 169.0	0.93				

Sample Name	KC71	Injection Vial	7
Sample ID	L6	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T14:21:02	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS 1	298.9 / 80.0	1.17	PFBS			
PFBS 2	298.9 / 99.0	1.17	PFBS	0.360	0.353	,
PFHxA 1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.66	PFHpA			
PFHpA_2	363.0 / 169.0	1.66	PFHpA	0.020	0.014	,
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.360	0.354	
PFOA_1	413.0 / 369.0	1.96	PFOA			
PFOA 2	413.0 / 169.0	1.96	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.30	PFNA			
PFNA_2	463.0 / 219.0	2.30	PFNA	0.380	0.386	,
PFOS 1	499.0 / 80.0	2.29	PFOS			
PFOS_2	499.0 / 99.0	2.29	PFOS	0.210	0.216	,
PFDA_1	513.0 / 469.0	2.64	PFDA			
PFDA_2	513.0 / 219.0	2.64	PFDA	0.030	0.033	,
PFUnA_1	563.0 / 519.0	2.98	PFUnA			
PFUnA_2	563.0 / 269.0	2.97	PFUnA	0.040	0.039	,
PFDoA_1	613.0 / 569.0	3.28	PFDoA			
PFDoA_2	613.0 / 319.0	3.28	PFDoA	0.130	0.127	,
PFTrDA_1	663.0 / 619.0	3.56	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.56	PFTrDA	0.050	0.053	,
PFTeDA_1	713.0 / 669.0	3.81	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.81	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.80	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.79	NMeFOSAA	0.690	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.97	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.97	NEtFOSAA	0.060	0.061	,
PFBA	213.0 / 169.0	0.93				

Sample Name	KC72	Injection Vial	8
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T14:31:28	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.17	PFBS			
PFBS_2	298.9 / 99.0	1.16	PFBS	0.360	0.353	,
PFHxA 1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.66	PFHpA			
PFHpA_2	363.0 / 169.0	1.66	PFHpA	0.020	0.014	,
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.340	0.354	,
PFOA_1	413.0 / 369.0	1.97	PFOA			
PFOA 2	413.0 / 169.0	1.97	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.31	PFNA			
PFNA_2	463.0 / 219.0	2.31	PFNA	0.350	0.386	,
PFOS_1	499.0 / 80.0	2.30	PFOS			
PFOS_2	499.0 / 99.0	2.30	PFOS	0.200	0.216	,
PFDA_1	513.0 / 469.0	2.66	PFDA			
PFDA_2	513.0 / 219.0	2.66	PFDA	0.030	0.033	,
PFUnA_1	563.0 / 519.0	2.99	PFUnA			
PFUnA_2	563.0 / 269.0	2.99	PFUnA	0.040	0.039	,
PFDoA_1	613.0 / 569.0	3.30	PFDoA			
PFDoA_2	613.0 / 319.0	3.30	PFDoA	0.130	0.127	,
PFTrDA_1	663.0 / 619.0	3.57	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.57	PFTrDA	0.050	0.053	,
PFTeDA_1	713.0 / 669.0	3.82	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.82	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.81	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.81	NMeFOSAA	0.680	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.98	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.98	NEtFOSAA	0.060	0.061	,
PFBA	213.0 / 169.0	0.92				

Summary Ion Ratio Report

Sample Name	KC66	Injection Vial	2
Sample ID	L1	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 17: 30: 46$	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.55	PFBS			
PFBS_2	298.9 / 99.0	1.55	PFBS	0.342	0.308	,
PFHxA 1	313.0 / 269.0	1.85	PFHxA			
PFHxA_2	313.0 / 119.0	1.85	PFHxA	0.092	0.078	,
PFHpA_1	363.0 / 319.0	2.27	PFHpA			
PFHpA_2	363.0 / 169.0	2.28	PFHpA	0.024	0.019	,
PFHxS_1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.307	0.287	,
PFOA_1	413.0 / 369.0	2.69	PFOA			
PFOA 2	413.0 / 169.0	2.69	PFOA	0.103	0.068	
PFNA_1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.09	PFNA	0.331	0.312	,
PFOS_1	499.0 / 80.0	3.10	PFOS			
PFOS 2	499.0 / 99.0	3.10	PFOS	0.224	0.186	,
PFDA_1	513.0/469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	3.45	PFDA	0.046	0.041	,
PFUnA_1	563.0 / 519.0	3.79	PFUnA			
PFUnA_2	563.0 / 269.0	3.79	PFUnA	0.060	0.050	,
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA_2	613.0 / 319.0	4.07	PFDoA	0.145	0.160	,
PFTrDA_1	663.0 / 619.0	4.32	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.32	PFTrDA	0.072	0.066	,
PFTeDA_1	713.0 / 669.0	4.54	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.54	PFTeDA	0.044	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.61	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.62	NMeFOSAA	0.592	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.78	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.79	NEtFOSAA	0.095	0.073	,
PFBA	213.0 / 169.0	1.09				

Summary Ion Ratio Report

Sample Name	KC67	Injection Vial	3
Sample ID	L2	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 17: 41: 38$	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.55	PFBS			
PFBS 2	298.9 / 99.0	1.55	PFBS	0.341	0.308	,
PFHxA_1	313.0 / 269.0	1.86	PFHxA			
PFHxA_2	313.0 / 119.0	1.86	PFHxA	0.072	0.078	,
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.27	PFHpA	0.019	0.019	,
PFHxS_1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.289	0.287	,
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA 2	413.0 / 169.0	2.70	PFOA	0.065	0.068	,
PFNA 1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.296	0.312	,
PFOS_1	499.0 / 80.0	3.10	PFOS			
PFOS_2	499.0 / 99.0	3.10	PFOS	0.186	0.186	,
PFDA_1	513.0 / 469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	3.46	PFDA	0.044	0.041	,
PFUnA_1	563.0 / 519.0	3.79	PFUnA			
PFUnA_2	563.0 / 269.0	3.79	PFUnA	0.054	0.050	,
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA_2	613.0 / 319.0	4.07	PFDoA	0.153	0.160	,
PFTrDA_1	663.0 / 619.0	4.32	PFTrDA			
PFTrDA 2	663.0 / 169.0	4.32	PFTrDA	0.060	0.066	,
PFTeDA_1	713.0 / 669.0	4.54	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.54	PFTeDA	0.051	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.62	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.62	NMeFOSAA	0.477	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.78	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.78	NEtFOSAA	0.094	0.073	,
PFBA	213.0 / 169.0	1.10				

Summary Ion Ratio Report

Sample Name	KC68	Injection Vial	4
Sample ID	L3	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 17: 52: 32$	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS 2	298.9 / 99.0	1.55	PFBS	0.303	0.308	,
PFHxA_1	313.0 / 269.0	1.86	PFHxA			
PFHxA 2	313.0 / 119.0	1.86	PFHxA	0.076	0.078	,
PFHpA_1	363.0 / 319.0	2.28	PFHpA			
PFHpA_2	363.0 / 169.0	2.27	PFHpA	0.018	0.019	
PFHxS_1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.279	0.287	
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA 2	413.0 / 169.0	2.69	PFOA	0.066	0.068	,
PFNA 1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.323	0.312	,
PFOS_1	499.0 / 80.0	3.10	PFOS			
PFOS_2	499.0 / 99.0	3.10	PFOS	0.180	0.186	,
PFDA_1	513.0 / 469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	3.46	PFDA	0.039	0.041	,
PFUnA_1	563.0 / 519.0	3.79	PFUnA			
PFUnA_2	563.0 / 269.0	3.79	PFUnA	0.048	0.050	,
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA_2	613.0 / 319.0	4.07	PFDoA	0.168	0.160	,
PFTrDA_1	663.0 / 619.0	4.32	PFTrDA			
PFTrDA 2	663.0 / 169.0	4.32	PFTrDA	0.066	0.066	,
PFTeDA_1	713.0 / 669.0	4.54	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.54	PFTeDA	0.048	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.61	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.61	NMeFOSAA	0.529	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.78	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.77	NEtFOSAA	0.091	0.073	,
PFBA	213.0 / 169.0	1.12				

Sample Name	KC69	Injection Vial	5
Sample ID	L4	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-21T18:03:23	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS_2	298.9 / 99.0	1.56	PFBS	0.289	0.308	,
PFHxA 1	313.0 / 269.0	1.87	PFHxA			
PFHxA_2	313.0 / 119.0	1.87	PFHxA	0.073	0.078	,
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	2.29	PFHpA	0.020	0.019	,
PFHxS_1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.283	0.287	,
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA_2	413.0 / 169.0	2.70	PFOA	0.058	0.068	,
PFNA_1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.322	0.312	,
PFOS_1	499.0 / 80.0	3.10	PFOS			
PFOS 2	499.0 / 99.0	3.10	PFOS	0.191	0.186	,
PFDA_1	513.0/469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	3.46	PFDA	0.036	0.041	,
PFUnA_1	563.0 / 519.0	3.79	PFUnA			
PFUnA_2	563.0 / 269.0	3.79	PFUnA	0.046	0.050	,
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA_2	613.0 / 319.0	4.07	PFDoA	0.155	0.160	,
PFTrDA_1	663.0 / 619.0	4.32	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.31	PFTrDA	0.066	0.066	,
PFTeDA_1	713.0 / 669.0	4.53	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.53	PFTeDA	0.048	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.62	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.62	NMeFOSAA	0.592	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.78	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.78	NEtFOSAA	0.052	0.073	,
PFBA	213.0 / 169.0	1.14				

Summary Ion Ratio Report

Sample Name	KC70	Injection Vial	6
Sample ID	L5	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 18: 14: 15$	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS 2	298.9 / 99.0	1.56	PFBS	0.280	0.308	,
PFHxA_1	313.0 / 269.0	1.88	PFHxA			
PFHxA 2	313.0 / 119.0	1.88	PFHxA	0.080	0.078	,
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	2.29	PFHpA	0.018	0.019	
PFHxS_1	399.0 / 80.0	2.32	PFHxS			
PFHxS_2	399.0 / 99.0	2.32	PFHxS	0.276	0.287	
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA 2	413.0 / 169.0	2.70	PFOA	0.060	0.068	,
PFNA 1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.289	0.312	,
PFOS_1	499.0 / 80.0	3.10	PFOS			
PFOS_2	499.0 / 99.0	3.10	PFOS	0.179	0.186	,
PFDA_1	513.0 / 469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	3.46	PFDA	0.042	0.041	,
PFUnA_1	563.0 / 519.0	3.78	PFUnA			
PFUnA_2	563.0 / 269.0	3.78	PFUnA	0.050	0.050	,
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA_2	613.0 / 319.0	4.06	PFDoA	0.171	0.160	,
PFTrDA_1	663.0 / 619.0	4.31	PFTrDA			
PFTrDA 2	663.0 / 169.0	4.31	PFTrDA	0.065	0.066	,
PFTeDA_1	713.0 / 669.0	4.53	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.53	PFTeDA	0.049	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.61	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.61	NMeFOSAA	0.528	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.78	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.77	NEtFOSAA	0.058	0.073	,
PFBA	213.0 / 169.0	1.15				

Summary Ion Ratio Report

Sample Name	KC71	Injection Vial	7
Sample ID	L6	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-21T18:25:07	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS_2	298.9 / 99.0	1.56	PFBS	0.301	0.308	,
PFHxA 1	313.0 / 269.0	1.88	PFHxA			
PFHxA 2	313.0 / 119.0	1.88	PFHxA	0.075	0.078	,
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	2.29	PFHpA	0.018	0.019	,
PFHxS_1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.292	0.287	,
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA 2	413.0 / 169.0	2.70	PFOA	0.062	0.068	,
PFNA_1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.314	0.312	,
PFOS_1	499.0 / 80.0	3.10	PFOS			
PFOS_2	499.0 / 99.0	3.10	PFOS	0.173	0.186	,
PFDA_1	513.0 / 469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	3.46	PFDA	0.042	0.041	,
PFUnA_1	563.0 / 519.0	3.78	PFUnA			
PFUnA_2	563.0 / 269.0	3.78	PFUnA	0.048	0.050	,
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA_2	613.0 / 319.0	4.06	PFDoA	0.160	0.160	,
PFTrDA_1	663.0 / 619.0	4.31	PFTrDA			
PFTrDA 2	663.0 / 169.0	4.31	PFTrDA	0.068	0.066	,
PFTeDA_1	713.0 / 669.0	4.53	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.53	PFTeDA	0.047	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.61	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.61	NMeFOSAA	0.542	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.78	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.78	NEtFOSAA	0.058	0.073	,
PFBA	213.0 / 169.0	1.15				

Summary Ion Ratio Report

Sample Name	KC72	Injection Vial	8
Sample ID	L7	Injection Volume	10.00
Sample Type	Standard	Instrument Name	QTRAP 5500
Acquisition Date	2018-11-21T18:35:58	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS 2	298.9 / 99.0	1.56	PFBS	0.298	0.308	,
PFHxA_1	313.0 / 269.0	1.88	PFHxA			
PFHxA_2	313.0 / 119.0	1.88	PFHxA	0.075	0.078	,
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	2.29	PFHpA	0.019	0.019	
PFHxS_1	399.0 / 80.0	2.32	PFHxS			
PFHxS_2	399.0 / 99.0	2.32	PFHxS	0.281	0.287	,
PFOA_1	413.0 / 369.0	2.71	PFOA			
PFOA 2	413.0 / 169.0	2.71	PFOA	0.064	0.068	,
PFNA 1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.309	0.312	,
PFOS_1	499.0 / 80.0	3.10	PFOS			
PFOS_2	499.0 / 99.0	3.10	PFOS	0.168	0.186	,
PFDA_1	513.0 / 469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	3.46	PFDA	0.040	0.041	,
PFUnA_1	563.0 / 519.0	3.79	PFUnA			
PFUnA_2	563.0 / 269.0	3.78	PFUnA	0.048	0.050	,
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA_2	613.0 / 319.0	4.07	PFDoA	0.166	0.160	,
PFTrDA_1	663.0 / 619.0	4.31	PFTrDA			
PFTrDA 2	663.0 / 169.0	4.31	PFTrDA	0.062	0.066	,
PFTeDA_1	713.0 / 669.0	4.53	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.53	PFTeDA	0.049	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.61	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.61	NMeFOSAA	0.531	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.78	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.78	NEtFOSAA	0.062	0.073	,
PFBA	213.0 / 169.0	1.15				

Sample Name	KC74 ICC	Injection Vial	10
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 14: 52: 23$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369$. dam	Result Table	$18-0671$
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
PFBS_1	298.9 / 80.0	1.16	960.475468	1010.00	95.10
PFBS_2	298.9/99.0	1.16	942.331514	1010.00	93.30
PFHxA_1	313.0 / 269.0	1.39	912.532514	1010.00	90.35
PFHxA_2	313.0 / 119.0	1.39	932.542017	1010.00	92.33
PFHpA_1	363.0 / 319.0	1.67	903.163105	1000.00	90.32
PFHpA_2	363.0 / 169.0	1.67	818.637623	1000.00	81.86
PFHxS_1	399.0 / 80.0	1.67	998.721551	1010.00	98.88
PFHxS_2	399.0 / 99.0	1.67	1001.364617	1010.00	99.15
PFOA_1	413.0 / 369.0	1.98	965.629743	1000.00	96.56
PFOA_2	413.0 / 169.0	1.98	1012.445376	1000.00	101.24
PFNA_1	463.0 / 419.0	2.33	1014.109413	1000.00	101.41
PFNA_2	463.0 / 219.0	2.32	938.409819	1000.00	93.84
PFOS_1	499.0 / 80.0	2.31	920.228778	1000.00	92.02
PFOS_2	499.0 / 99.0	2.31	902.003990	1000.00	90.20
PFDA_1	513.0 / 469.0	2.66	914.855068	1000.00	91.49
PFDA_2	513.0 / 219.0	2.67	1073.163865	1000.00	107.32
PFUnA_1	563.0 / 519.0	3.00	990.321430	1000.00	99.03
PFUnA_2	563.0 / 269.0	3.01	1091.453516	1000.00	109.15
PFDoA_1	613.0 / 569.0	3.30	890.284304	1000.00	89.03
PFDoA_2	613.0 / 319.0	3.30	898.969156	1000.00	89.90
PFTrDA_1	663.0 / 619.0	3.58	792.478247	1000.00	79.25
PFTrDA 2	663.0 / 169.0	3.58	826.760715	1000.00	82.68
PFTeDA_1	713.0 / 669.0	3.82	932.726745	1000.00	93.27
PFTeDA_2	713.0 / 169.0	3.82	758.977527	1000.00	75.90
NMeFOSAA 1	570.0 / 419.0	2.82	1065.918840	1000.00	106.59
NMeFOSAA_2	$570.0 / 512.0$	2.82	922.123263	1000.00	92.21
NEtFOSAA_1	584.0 / 419.0	2.99	980.521978	1000.00	98.05
NEtFOSAA_2	584.0 / 483.0	2.99	779.135102	1000.00	77.91
PFBA	213.0 / 169.0	0.92	985.255399	1000.00	98.53

Sample Name	KC69 CCV	Injection Vial	16
Sample ID	KC69 CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 15: 55: 07$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369$. dam	Result Table	$18-0671$
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
PFBS_1	298.9 / 80.0	1.16	1128.253991	1010.00	111.71
PFBS_2	298.9/99.0	1.16	1151.722518	1010.00	114.03
PFHxA_1	313.0 / 269.0	1.39	924.958137	1010.00	91.58
PFHxA_2	313.0 / 119.0	1.39	894.495303	1010.00	88.56
PFHpA_1	363.0 / 319.0	1.67	925.678733	1000.00	92.57
PFHpA_2	363.0 / 169.0	1.67	814.147437	1000.00	81.41
PFHxS_1	399.0 / 80.0	1.66	1037.455675	1010.00	102.72
PFHxS_2	399.0 / 99.0	1.66	1067.565969	1010.00	105.70
PFOA_1	413.0 / 369.0	1.98	818.303861	1000.00	81.83
PFOA_2	413.0 / 169.0	1.98	931.685237	1000.00	93.17
PFNA_1	463.0 / 419.0	2.32	1061.511691	1000.00	106.15
PFNA_2	463.0 / 219.0	2.32	897.364448	1000.00	89.74
PFOS_1	499.0 / 80.0	2.30	1102.390964	1000.00	110.24
PFOS_2	499.0 / 99.0	2.31	1062.828064	1000.00	106.28
PFDA_1	513.0 / 469.0	2.65	957.265268	1000.00	95.73
PFDA_2	513.0 / 219.0	2.65	1083.939640	1000.00	108.39
PFUnA_1	563.0 / 519.0	2.99	844.159659	1000.00	84.42
PFUnA_2	563.0 / 269.0	2.99	1030.365925	1000.00	103.04
PFDoA_1	613.0 / 569.0	3.29	899.190001	1000.00	89.92
PFDoA_2	613.0 / 319.0	3.30	894.802096	1000.00	89.48
PFTrDA_1	663.0 / 619.0	3.57	939.883179	1000.00	93.99
PFTrDA 2	663.0 / 169.0	3.57	920.892954	1000.00	92.09
PFTeDA_1	713.0 / 669.0	3.82	990.982771	1000.00	99.10
PFTeDA_2	713.0 / 169.0	3.81	1048.878146	1000.00	104.89
NMeFOSAA_1	570.0 / 419.0	2.81	954.092271	1000.00	95.41
NMeFOSAA_2	570.0 / 512.0	2.81	876.866569	1000.00	87.69
NEtFOSAA_1	584.0 / 419.0	2.98	878.328007	1000.00	87.83
NEtFOSAA 2	584.0 / 483.0	2.98	988.646217	1000.00	98.86
PFBA	213.0 / 169.0	0.92	977.624453	1000.00	97.76

Sample Name	KC74 ICC	Injection Vial	10
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 14: 52: 23$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C4-PFBA	$217.0 / 172.0$	0.93	244.971526	97.99	
13C2-PFDoA	$615.0 / 570.0$	3.29	288.053559	250.00	115.22
d3-MeFOSAA	$573.0 / 419.0$	2.82	228.635536	250.00	91.45
d5-EtFOSAA	$589.0 / 419.0$	2.99	279.395322	250.00	111.76
13C5-PFHxA	$318.0 / 273.0$	1.38	240.522381	250.00	96.21
13C4-PFHpA	$367.0 / 322.0$	1.66	255.723440	250.00	102.29
13C8-PFOA	$421.0 / 376.0$	1.96	236.160848	250.00	94.46
13C9-PFNA	$472.0 / 427.0$	2.31	242.076522	250.00	96.83
13C6-PFDA	$519.0 / 474.0$	2.65	248.348547	250.00	99.34
13C7-PFUnA	$570.0 / 525.0$	2.99	234.973280	250.00	93.99
13C2-PFTeDA	$715.0 / 670.0$	3.82	278.293490	250.00	111.32
13C3-PFBS	$302.0 / 99.0$	1.15	226.992708	250.00	97.74
13C3-PFHxS	$402.0 / 99.0$	1.66	237.044281	232.25	100.23
13C8-PFOS	$507.0 / 99.0$	2.31	239.316954	236.50	100.03

Sample Name	KC69 CCV	Injection Vial	16
Sample ID	KC69 CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 15: 55: 07$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C4-PFBA	$217.0 / 172.0$	0.93	251.825345	100.73	
13C2-PFDoA	$615.0 / 570.0$	3.29	293.064495	250.00	117.23
d3-MeFOSAA	$573.0 / 419.0$	2.81	216.623994	250.00	86.65
d5-EtFOSAA	$589.0 / 419.0$	2.98	240.257675	250.00	96.10
13C5-PFHxA	$318.0 / 273.0$	1.38	284.649412	250.00	113.86
13C4-PFHpA	$367.0 / 322.0$	1.65	290.431354	250.00	116.17
13C8-PFOA	$421.0 / 376.0$	1.96	270.093456	250.00	108.04
13C9-PFNA	$472.0 / 427.0$	2.30	255.944471	250.00	102.38
13C6-PFDA	$519.0 / 474.0$	2.65	280.978156	250.00	112.39
13C7-PFUnA	$570.0 / 525.0$	2.98	273.807693	250.00	109.52
13C2-PFTeDA	$715.0 / 670.0$	3.80	278.136000	250.00	111.25
13C3-PFBS	$302.0 / 99.0$	1.15	204.873377	250.00	88.21
13C3-PFHxS	$402.0 / 99.0$	1.66	241.851782	232.25	102.26
13C8-PFOS	$507.0 / 99.0$	2.30	221.463374	236.50	92.57

Sample Name	KC74 ICC	Injection Vial	10
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 18: 57: 42$	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	
PFBS_1	$298.9 / 80.0$	1.56	949.452	1010.000	Recovery (\%)
PFBS_2	$298.9 / 99.0$	1.56	978.509	1010.000	96.01
PFHxA_1	$313.0 / 269.0$	1.88	991.320	1010.000	
PFHxA_2	$313.0 / 119.0$	1.88	919.187	1010.000	98.15
PFHpA_1	$363.0 / 319.0$	2.29	927.874	1000.000	91.01
PFHpA_2	$363.0 / 169.0$	2.29	1148.253	1000.000	92.79
PFHxS_1	$399.0 / 80.0$	2.31	1063.706	1010.000	114.83
PFHxS_2	$399.0 / 99.0$	2.31	1096.694	1010.000	105.32
PFOA_1	$413.0 / 369.0$	2.70	949.572	1000.000	108.58
PFOA_2	$413.0 / 169.0$	2.70	848.667	1000.000	94.96
PFNA_1	$463.0 / 419.0$	3.10	949.985	1000.000	84.87
PFNA_2	$463.0 / 219.0$	3.10	997.821	1000.000	95.00
PFOS_1	$499.0 / 80.0$	3.09	978.882	1000.000	99.78
PFOS_2	$499.0 / 99.0$	3.09	997.010	1000.000	97.89
PFDA_1	$513.0 / 469.0$	3.45	969.808	99.70	
PFDA_2	$513.0 / 219.0$	3.45	1007.361	1000.000	96.98
PFUnA_1	$563.0 / 519.0$	3.78	966.270	1000.000	100.74
PFUnA_2	$563.0 / 269.0$	3.77	1069.275	1000.000	96.63
PFDoA_1	$613.0 / 569.0$	4.06	1095.915	1000.000	106.93
PFDoA_2	$613.0 / 319.0$	4.06	1067.666	1000.000	109.59
PFTrDA_1	$663.0 / 619.0$	4.31	1001.864	1000.000	106.77
PFTrDA_2	$663.0 / 169.0$	4.31	1031.188	1000.000	100.19
PFTeDA_1	$713.0 / 669.0$	4.53	984.894	1000.000	103.12
PFTeDA_2	$713.0 / 169.0$	4.52	1043.360	1000.000	98.49
NMeFOSAA_1	$570.0 / 419.0$	3.61	1065.871	1000.000	104.34
NMeFOSAA_2	$570.0 / 512.0$	3.61	1133.615	1000.000	106.59
NEtFOSAA_1	$584.0 / 419.0$	3.77	836.594	1000.000	1000.000
NEtFOSAA_2	$584.0 / 483.0$	3.77	690.316	1000.000	1000.000
PFBA	$213.0 / 169.0$	1.15	1090.099	83.66	
			69.03	(1)	109.01

(1) NEtFOSAA fails low in the ICC for the secondary transition, however, no data is reported from the secondary transition. JRT 11/26/2018

Sample Name	KC70 CCV	Injection Vial	18
Sample ID	KC70 CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 20: 24: 37$	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369$. dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	
PFBS_1	$298.9 / 80.0$	1.56	2415.307	2525.000	Recovery (\%)
PFBS_2	$298.9 / 99.0$	1.56	2465.160	25.66	
PFHxA_1	$313.0 / 269.0$	1.88	2463.418	97.63	
PFHxA_2	$313.0 / 119.0$	1.88	2587.400	2525.000	97.56
PFHpA_1	$363.0 / 319.0$	2.29	2495.519	2525.000	102.47
PFHpA_2	$363.0 / 169.0$	2.30	2817.037	2500.000	99.82
PFHxS_1	$399.0 / 80.0$	2.31	2588.783	2500.000	112.68
PFHxS_2	$399.0 / 99.0$	2.31	2664.789	2525.000	102.53
PFOA_1	$413.0 / 369.0$	2.70	2417.656	2525.000	105.54
PFOA_2	$413.0 / 169.0$	2.70	2335.294	2500.000	96.71
PFNA_1	$463.0 / 419.0$	3.10	2565.841	2500.000	93.41
PFNA_2	$463.0 / 219.0$	3.10	2764.549	2500.000	102.63
PFOS_1	$499.0 / 80.0$	3.09	2518.142	2500.000	110.58
PFOS_2	$499.0 / 99.0$	3.09	2497.601	2500.000	100.73
PFDA_1	$513.0 / 469.0$	3.45	2635.256	2500.000	99.90
PFDA_2	$513.0 / 219.0$	3.45	2646.230	2500.000	105.41
PFUnA_1	$563.0 / 519.0$	3.78	2414.150	2500.000	105.85
PFUnA_2	$563.0 / 269.0$	3.77	2391.483	2500.000	96.57
PFDoA_1	$613.0 / 569.0$	4.06	2673.453	2500.000	95.66
PFDoA_2	$613.0 / 319.0$	4.06	2661.099	2500.000	106.94
PFTrDA_1	$663.0 / 619.0$	4.30	2652.096	2500.000	106.44
PFTrDA_2	$663.0 / 169.0$	4.30	2819.508	2500.000	106.08
PFTeDA_1	$713.0 / 669.0$	4.52	2676.099	2500.000	112.78
PFTeDA_2	$713.0 / 169.0$	4.52	2758.981	2500.000	107.04
NMeFOSAA_1	$570.0 / 419.0$	3.61	2762.014	2500.000	110.36
NMeFOSAA_2	$570.0 / 512.0$	3.61	2819.237	2500.000	110.48
NEtFOSAA_1	$584.0 / 419.0$	3.77	2109.109	2500.000	112.77
NEtFOSAA_2	$584.0 / 483.0$	3.77	2005.679	2500.000	84.36
PFBA	$213.0 / 169.0$	1.16	2472.093	2500.000	80.23
		2500.000	98.88		

Sample Name	KC74 ICC	Injection Vial	10
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 18: 57: 42$	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C4-PFBA	$217.0 / 172.0$	1.15	227.400	90.96	
13C2-PFDoA	$615.0 / 570.0$	4.05	224.269	250.000	89.71
d3-MeFOSAA	$573.0 / 419.0$	3.60	230.860	250.000	92.34
d5-EtFOSAA	$589.0 / 419.0$	3.76	269.310	250.000	107.72
13C5-PFHxA	$318.0 / 273.0$	1.87	225.470	250.000	90.19
13C4-PFHpA	$367.0 / 322.0$	2.28	237.594	250.000	95.04
13C8-PFOA	$421.0 / 376.0$	2.69	245.122	250.000	98.05
13C9-PFNA	$472.0 / 427.0$	3.08	237.106	250.000	94.84
13C6-PFDA	$519.0 / 474.0$	3.44	245.415	250.000	98.17
13C7-PFUnA	$570.0 / 525.0$	3.76	236.907	250.000	94.76
13C2-PFTeDA	$715.0 / 670.0$	4.52	239.656	250.000	95.86
13C3-PFBS	$302.0 / 99.0$	1.54	218.741	250.000	94.18
13C3-PFHxS	$402.0 / 99.0$	2.30	208.327	232.250	88.09
13C8-PFOS	$507.0 / 99.0$	3.08	236.699	236.500	98.93

Sample Name	KC70 CCV	Injection Vial	18
Sample ID	KC70 CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 20: 24: 37$	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A_SIS
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Conc. (ng/L)	Target Conc. (ng/L)	Recovery (\%)
13C4-PFBA	$217.0 / 172.0$	1.16	248.790	99.52	
13C2-PFDoA	$615.0 / 570.0$	4.05	244.113	250.000	97.65
d3-MeFOSAA	$573.0 / 419.0$	3.60	265.462	250.000	106.18
d5-EtFOSAA	$589.0 / 419.0$	3.76	324.004	250.000	129.60
13C5-PFHxA	$318.0 / 273.0$	1.87	257.781	250.000	103.11
13C4-PFHpA	$367.0 / 322.0$	2.28	263.493	250.000	105.40
13C8-PFOA	$421.0 / 376.0$	2.69	267.445	250.000	106.98
13C9-PFNA	$472.0 / 427.0$	3.08	256.102	250.000	102.44
13C6-PFDA	$519.0 / 474.0$	3.44	253.726	250.000	101.49
13C7-PFUnA	$570.0 / 525.0$	3.76	263.484	250.000	105.39
13C2-PFTeDA	$715.0 / 670.0$	4.51	244.713	250.000	97.89
13C3-PFBS	$302.0 / 99.0$	1.54	240.434	250.000	103.52
13C3-PFHxS	$402.0 / 99.0$	2.31	232.375	232.250	98.26
13C8-PFOS	$507.0 / 99.0$	3.08	253.275	236.500	105.86

Sample Name	KC74 ICC	Injection Vial	10
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T14:52:23	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.16	PFBS			
PFBS_2	298.9 / 99.0	1.16	PFBS	0.350	0.353	,
PFHxA 1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.67	PFHpA			
PFHpA_2	363.0 / 169.0	1.67	PFHpA	0.010	0.014	,
PFHxS_1	399.0 / 80.0	1.67	PFHxS			
PFHxS_2	399.0 / 99.0	1.67	PFHxS	0.350	0.354	,
PFOA_1	413.0 / 369.0	1.98	PFOA			
PFOA_2	413.0 / 169.0	1.98	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.33	PFNA			
PFNA_2	463.0 / 219.0	2.32	PFNA	0.340	0.386	,
PFOS_1	499.0 / 80.0	2.31	PFOS			
PFOS 2	499.0 / 99.0	2.31	PFOS	0.200	0.216	,
PFDA_1	513.0/469.0	2.66	PFDA			
PFDA_2	513.0 / 219.0	2.67	PFDA	0.040	0.033	,
PFUnA_1	563.0 / 519.0	3.00	PFUnA			
PFUnA_2	563.0 / 269.0	3.01	PFUnA	0.040	0.039	,
PFDoA_1	613.0 / 569.0	3.30	PFDoA			
PFDoA_2	613.0 / 319.0	3.30	PFDoA	0.130	0.127	,
PFTrDA_1	663.0 / 619.0	3.58	PFTrDA			
PFTrDA_2	663.0 / 169.0	3.58	PFTrDA	0.050	0.053	,
PFTeDA_1	713.0 / 669.0	3.82	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.82	PFTeDA	0.030	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.82	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.82	NMeFOSAA	0.700	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.99	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.99	NEtFOSAA	0.050	0.061	,
PFBA	213.0 / 169.0	0.92				

Sample Name	KC69 CCV	Injection Vial	16
Sample ID	KC69 CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 15: 55: 07$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.16	PFBS			
PFBS 2	298.9 / 99.0	1.16	PFBS	0.360	0.353	,
PFHxA_1	313.0 / 269.0	1.39	PFHxA			
PFHxA 2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.67	PFHpA			
PFHpA_2	363.0 / 169.0	1.67	PFHpA	0.010	0.014	
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.360	0.354	
PFOA_1	413.0 / 369.0	1.98	PFOA			
PFOA 2	413.0 / 169.0	1.98	PFOA	0.070	0.060	,
PFNA 1	463.0 / 419.0	2.32	PFNA			
PFNA_2	463.0 / 219.0	2.32	PFNA	0.310	0.386	,
PFOS_1	499.0 / 80.0	2.30	PFOS			
PFOS_2	499.0 / 99.0	2.31	PFOS	0.200	0.216	,
PFDA_1	513.0 / 469.0	2.65	PFDA			
PFDA_2	513.0 / 219.0	2.65	PFDA	0.040	0.033	,
PFUnA_1	563.0 / 519.0	2.99	PFUnA			
PFUnA_2	563.0 / 269.0	2.99	PFUnA	0.050	0.039	,
PFDoA_1	613.0 / 569.0	3.29	PFDoA			
PFDoA_2	613.0 / 319.0	3.30	PFDoA	0.120	0.127	,
PFTrDA_1	663.0 / 619.0	3.57	PFTrDA			
PFTrDA 2	663.0 / 169.0	3.57	PFTrDA	0.050	0.053	,
PFTeDA_1	713.0 / 669.0	3.82	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.81	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.81	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.81	NMeFOSAA	0.750	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.98	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.98	NEtFOSAA	0.070	0.061	,
PFBA	213.0 / 169.0	0.92				

Sample Name	KC74 ICC	Injection Vial	10
Sample ID	ICC	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 18: 57: 42$	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS_2	298.9 / 99.0	1.56	PFBS	0.311	0.308	,
PFHxA 1	313.0 / 269.0	1.88	PFHxA			
PFHxA_2	313.0 / 119.0	1.88	PFHxA	0.071	0.078	,
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	2.29	PFHpA	0.023	0.019	,
PFHxS_1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.294	0.287	,
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA_2	413.0 / 169.0	2.70	PFOA	0.059	0.068	,
PFNA_1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.325	0.312	,
PFOS_1	499.0 / 80.0	3.09	PFOS			
PFOS 2	499.0 / 99.0	3.09	PFOS	0.180	0.186	,
PFDA_1	513.0/469.0	3.45	PFDA			
PFDA_2	513.0 / 219.0	3.45	PFDA	0.042	0.041	,
PFUnA_1	563.0 / 519.0	3.78	PFUnA			
PFUnA_2	563.0 / 269.0	3.77	PFUnA	0.054	0.050	,
PFDoA_1	613.0 / 569.0	4.06	PFDoA			
PFDoA_2	613.0 / 319.0	4.06	PFDoA	0.158	0.160	,
PFTrDA_1	663.0 / 619.0	4.31	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.31	PFTrDA	0.067	0.066	,
PFTeDA_1	713.0 / 669.0	4.53	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.52	PFTeDA	0.051	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.61	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.61	NMeFOSAA	0.570	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.77	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.77	NEtFOSAA	0.056	0.073	,
PFBA	213.0 / 169.0	1.15				

Sample Name	KC70 CCV	Injection Vial	18
Sample ID	KC70 CCV	Injection Volume	10.00
Sample Type	Quality Control	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 20: 24: 37$	Data File	AC_11212018_5-369.wiff
Acquisition Method	$5-0369 . d a m$	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS_2	298.9 / 99.0	1.56	PFBS	0.305	0.308	,
PFHxA 1	313.0 / 269.0	1.88	PFHxA			
PFHxA_2	313.0 / 119.0	1.88	PFHxA	0.079	0.078	,
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	2.30	PFHpA	0.021	0.019	,
PFHxS_1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.292	0.287	,
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA_2	413.0 / 169.0	2.70	PFOA	0.061	0.068	,
PFNA_1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.333	0.312	,
PFOS_1	499.0 / 80.0	3.09	PFOS			
PFOS 2	499.0 / 99.0	3.09	PFOS	0.172	0.186	,
PFDA_1	513.0/469.0	3.45	PFDA			
PFDA_2	513.0 / 219.0	3.45	PFDA	0.041	0.041	,
PFUnA_1	563.0 / 519.0	3.78	PFUnA			
PFUnA_2	563.0 / 269.0	3.77	PFUnA	0.048	0.050	,
PFDoA_1	613.0 / 569.0	4.06	PFDoA			
PFDoA_2	613.0 / 319.0	4.06	PFDoA	0.163	0.160	,
PFTrDA_1	663.0 / 619.0	4.30	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.30	PFTrDA	0.068	0.066	,
PFTeDA_1	713.0 / 669.0	4.52	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.52	PFTeDA	0.050	0.048	,
NMeFOSAA_1	570.0 / 419.0	3.61	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	3.61	NMeFOSAA	0.547	0.542	,
NEtFOSAA_1	584.0 / 419.0	3.77	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.77	NEtFOSAA	0.060	0.073	,
PFBA	213.0 / 169.0	1.16				

Sample Name	KC73 IB	Injection Vial	9
Sample ID	Instrument Blank	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 14: 41: 55$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	N/A	PFBS			
PFBS_2	298.9 / 99.0	N/A	PFBS	N/A	0.353	,
PFHxA 1	313.0 / 269.0	N/A	PFHxA			
PFHxA_2	313.0 / 119.0	N/A	PFHxA	N/A	0.053	,
PFHpA_1	363.0 / 319.0	N/A	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.014	,
PFHxS_1	399.0 / 80.0	N/A	PFHxS			
PFHxS_2	399.0 / 99.0	N/A	PFHxS	N/A	0.354	,
PFOA_1	413.0 / 369.0	N/A	PFOA			
PFOA_2	413.0 / 169.0	N/A	PFOA	N/A	0.060	,
PFNA_1	463.0 / 419.0	N/A	PFNA			
PFNA_2	463.0 / 219.0	N/A	PFNA	N/A	0.386	,
PFOS_1	499.0 / 80.0	N/A	PFOS			
PFOS 2	499.0 / 99.0	N/A	PFOS	N/A	0.216	,
PFDA_1	513.0/469.0	N/A	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.033	,
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.039	,
PFDoA_1	613.0 / 569.0	N/A	PFDoA			
PFDoA_2	613.0 / 319.0	N/A	PFDoA	N/A	0.127	,
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.053	,
PFTeDA_1	713.0 / 669.0	N/A	PFTeDA			
PFTeDA_2	713.0 / 169.0	N/A	PFTeDA	N/A	0.039	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.712	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.061	,
PFBA	213.0 / 169.0	0.93				

Sample Name	CS196PB-FS(0)	Injection Vial	13
Sample ID	Procedural Blank	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T15:23:46	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	N/A	PFBS			
PFBS_2	298.9 / 99.0	N/A	PFBS	N/A	0.353	,
PFHxA 1	313.0 / 269.0	N/A	PFHxA			
PFHxA_2	313.0 / 119.0	N/A	PFHxA	N/A	0.053	,
PFHpA_1	363.0 / 319.0	N/A	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.014	,
PFHxS_1	399.0 / 80.0	N/A	PFHxS			
PFHxS_2	399.0 / 99.0	N/A	PFHxS	N/A	0.354	,
PFOA_1	413.0 / 369.0	1.98	PFOA			
PFOA_2	413.0 / 169.0	1.97	PFOA	0.070	0.060	,
PFNA_1	463.0 / 419.0	N/A	PFNA			
PFNA_2	463.0 / 219.0	N/A	PFNA	N/A	0.386	,
PFOS_1	499.0 / 80.0	N/A	PFOS			
PFOS 2	499.0 / 99.0	N/A	PFOS	N/A	0.216	,
PFDA_1	513.0/469.0	N/A	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.033	,
PFUnA_1	563.0 / 519.0	N/A	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.039	,
PFDoA_1	613.0 / 569.0	N/A	PFDoA			
PFDoA_2	613.0 / 319.0	N/A	PFDoA	N/A	0.127	,
PFTrDA_1	663.0 / 619.0	N/A	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.053	,
PFTeDA_1	713.0 / 669.0	N/A	PFTeDA			
PFTeDA_2	713.0 / 169.0	N/A	PFTeDA	N/A	0.039	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.712	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.061	,
PFBA	213.0 / 169.0	0.92				

Sample Name	CS197LCS-FS(0)	Injection Vial	14
Sample ID	Laboratory Control Sample	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	2018-11-20T15:34:13	Data File	AE_11202018_5-369.wiff
Acquisition Method	5-369.dam	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.16	PFBS			
PFBS_2	298.9 / 99.0	1.16	PFBS	0.350	0.353	,
PFHxA 1	313.0 / 269.0	1.39	PFHxA			
PFHxA_2	313.0 / 119.0	1.39	PFHxA	0.050	0.053	,
PFHpA_1	363.0 / 319.0	1.66	PFHpA			
PFHpA_2	363.0 / 169.0	1.66	PFHpA	0.020	0.014	,
PFHxS_1	399.0 / 80.0	1.66	PFHxS			
PFHxS_2	399.0 / 99.0	1.66	PFHxS	0.360	0.354	,
PFOA_1	413.0 / 369.0	1.97	PFOA			
PFOA_2	413.0 / 169.0	1.97	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.31	PFNA			
PFNA_2	463.0 / 219.0	2.31	PFNA	0.340	0.386	,
PFOS_1	499.0 / 80.0	2.30	PFOS			
PFOS 2	499.0 / 99.0	2.30	PFOS	0.200	0.216	,
PFDA_1	513.0/469.0	2.65	PFDA			
PFDA_2	513.0 / 219.0	2.65	PFDA	0.030	0.033	,
PFUnA_1	563.0 / 519.0	2.98	PFUnA			
PFUnA_2	563.0 / 269.0	2.98	PFUnA	0.050	0.039	,
PFDoA_1	613.0 / 569.0	3.28	PFDoA			
PFDoA_2	613.0 / 319.0	3.29	PFDoA	0.110	0.127	,
PFTrDA_1	663.0 / 619.0	3.56	PFTrDA			
PFTrDA_2	663.0 / 169.0	3.56	PFTrDA	0.060	0.053	,
PFTeDA_1	713.0 / 669.0	3.81	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.81	PFTeDA	0.040	0.039	,
NMeFOSAA_1	570.0 / 419.0	2.80	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	2.80	NMeFOSAA	0.750	0.712	,
NEtFOSAA_1	584.0 / 419.0	2.97	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	2.97	NEtFOSAA	0.060	0.061	,
PFBA	213.0 / 169.0	0.92				

Sample Name	J9159-FS(0)	Injection Vial	15
Sample ID	NASB-BLL15-FRB-01-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	Triple Quad 6500+ Low Mass
Acquisition Date	$2018-11-20 T 15: 44: 40$	Data File	AE_11202018_5-369.wiff
Acquisition Method	$5-369 . d a m$	Result Table	18-0671
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	N/A	PFBS			
PFBS_2	298.9 / 99.0	N/A	PFBS	N/A	0.353	,
PFHxA 1	313.0 / 269.0	N/A	PFHxA			
PFHxA_2	313.0 / 119.0	N/A	PFHxA	N/A	0.053	,
PFHpA_1	363.0 / 319.0	N/A	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.014	,
PFHxS_1	399.0 / 80.0	N/A	PFHxS			
PFHxS_2	399.0 / 99.0	N/A	PFHxS	N/A	0.354	,
PFOA_1	413.0 / 369.0	1.95	PFOA			
PFOA 2	413.0 / 169.0	1.96	PFOA	0.060	0.060	,
PFNA_1	463.0 / 419.0	2.30	PFNA			
PFNA_2	463.0 / 219.0	2.29	PFNA	0.500	0.386	,
PFOS_1	499.0 / 80.0	N/A	PFOS			
PFOS 2	499.0 / 99.0	N/A	PFOS	N/A	0.216	,
PFDA_1	513.0/469.0	2.63	PFDA			
PFDA_2	513.0 / 219.0	2.61	PFDA	0.020	0.033	,
PFUnA_1	563.0 / 519.0	2.98	PFUnA			
PFUnA_2	563.0 / 269.0	2.97	PFUnA	0.040	0.039	,
PFDoA_1	613.0 / 569.0	3.28	PFDoA			
PFDoA_2	613.0 / 319.0	3.28	PFDoA	0.140	0.127	,
PFTrDA_1	663.0 / 619.0	3.55	PFTrDA			
PFTrDA_2	663.0 / 169.0	3.55	PFTrDA	0.070	0.053	,
PFTeDA_1	713.0 / 669.0	3.80	PFTeDA			
PFTeDA_2	713.0 / 169.0	3.80	PFTeDA	0.030	0.039	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.712	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.061	,
PFBA	213.0 / 169.0	N/A				

Sample Name	KC73 IB	Injection Vial	9
Sample ID	Instrument blank	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 18: 46: 49$	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.58	PFBS			
PFBS_2	298.9 / 99.0	N/A	PFBS	N/A	0.308	
PFHxA_1	313.0 / 269.0	N/A	PFHxA			
PFHxA_2	313.0 / 119.0	1.92	PFHxA	N/A	0.078	
PFHpA_1	363.0 / 319.0	2.31	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.019	
PFHxS_1	399.0 / 80.0	2.33	PFHxS			
PFHxS_2	399.0 / 99.0	2.32	PFHxS	0.220	0.287	,
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA_2	413.0 / 169.0	N/A	PFOA	N/A	0.068	
PFNA_1	463.0 / 419.0	3.11	PFNA			
PFNA_2	463.0 / 219.0	3.10	PFNA	0.201	0.312	,
PFOS_1	499.0 / 80.0	3.08	PFOS			
PFOS_2	499.0 / 99.0	3.10	PFOS	0.126	0.186	,
PFDA_1	513.0 / 469.0	3.46	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.041	
PFUnA_1	563.0 / 519.0	3.78	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.050	
PFDoA_1	613.0 / 569.0	4.07	PFDoA			
PFDoA 2	613.0 / 319.0	4.07	PFDoA	0.259	0.160	
PFTrDA_1	663.0 / 619.0	4.32	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.33	PFTrDA	0.143	0.066	
PFTeDA_1	713.0 / 669.0	4.53	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.54	PFTeDA	0.041	0.048	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.542	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA 2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.073	,
PFBA	213.0 / 169.0	1.17				

Sample Name	CS196PB-FS(0)	Injection Vial	13
Sample ID	Procedural Blank	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 19: 30: 17$	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS_2	298.9 / 99.0	1.53	PFBS	1.677	0.308	
PFHxA_1	313.0 / 269.0	N/A	PFHxA			
PFHxA_2	313.0 / 119.0	1.88	PFHxA	N/A	0.078	
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.019	
PFHxS_1	399.0 / 80.0	N/A	PFHxS			
PFHxS_2	399.0 / 99.0	2.29	PFHxS	N/A	0.287	
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA_2	413.0 / 169.0	2.70	PFOA	0.049	0.068	
PFNA_1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.08	PFNA	0.519	0.312	
PFOS_1	499.0 / 80.0	3.03	PFOS			
PFOS_2	499.0 / 99.0	N/A	PFOS	N/A	0.186	
PFDA_1	513.0 / 469.0	3.45	PFDA			
PFDA_2	513.0 / 219.0	N/A	PFDA	N/A	0.041	
PFUnA_1	563.0 / 519.0	3.78	PFUnA			
PFUnA_2	563.0 / 269.0	N/A	PFUnA	N/A	0.050	
PFDoA_1	613.0 / 569.0	4.06	PFDoA			
PFDoA 2	613.0 / 319.0	N/A	PFDoA	N/A	0.160	
PFTrDA_1	663.0 / 619.0	4.30	PFTrDA			
PFTrDA_2	663.0 / 169.0	N/A	PFTrDA	N/A	0.066	
PFTeDA_1	713.0 / 669.0	4.52	PFTeDA			
PFTeDA_2	713.0 / 169.0	N/A	PFTeDA	N/A	0.048	
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.542	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA 2	584.0 / 483.0	3.68	NEtFOSAA	N/A	0.073	
PFBA	213.0 / 169.0	1.16				

Sample Name	CS197LCS-FS(0)	Injection Vial	14	
Sample ID	Laboratory Control Sample	Injection Volume	10.00	
Sample Type	Unknown	Instrument Name	QTRAP 5500	
Acquisition Date	2018-11-21T19:41:10	Data File	AC_11212018_5-369.wiff	
Acquisition Method	5-0369.dam	Result Table	18-0671A	
Sample Comment				

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS_2	298.9 / 99.0	1.56	PFBS	0.303	0.308	
PFHxA_1	313.0 / 269.0	1.88	PFHxA			
PFHxA 2	313.0 / 119.0	1.88	PFHxA	0.075	0.078	
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	2.29	PFHpA	0.020	0.019	
PFHxS 1	399.0 / 80.0	2.31	PFHxS			
PFHxS_2	399.0 / 99.0	2.31	PFHxS	0.269	0.287	
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA 2	413.0 / 169.0	2.70	PFOA	0.062	0.068	
PFNA_1	463.0 / 419.0	3.09	PFNA			
PFNA_2	$463.0 / 219.0$	3.09	PFNA	0.308	0.312	
PFOS_1	499.0 / 80.0	3.09	PFOS			
PFOS_2	499.0 / 99.0	3.09	PFOS	0.175	0.186	
PFDA_1	$513.0 / 469.0$	3.45	PFDA			
PFDA_2	513.0 / 219.0	3.45	PFDA	0.041	0.041	
PFUnA_1	563.0 / 519.0	3.77	PFUnA			
PFUnA_2	563.0 / 269.0	3.77	PFUnA	0.051	0.050	
PFDoA_1	$613.0 / 569.0$	4.06	PFDoA			
PFDoA_2	$613.0 / 319.0$	4.06	PFDoA	0.159	0.160	
PFTrDA_1	$663.0 / 619.0$	4.31	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.30	PFTrDA	0.063	0.066	
PFTeDA_1	$713.0 / 669.0$	4.52	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.52	PFTeDA	0.049	0.048	.
NMeFOSAA_1	$570.0 / 419.0$	3.61	NMeFOSAA			
NMeFOSAA 2	$570.0 / 512.0$	3.61	NMeFOSAA	0.548	0.542	
NEtFOSAA_1	584.0 / 419.0	3.77	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	3.77	NEtFOSAA	0.068	0.073	
PFBA	213.0 / 169.0	1.16				

Sample Name	J9159-FS(0)	Injection Vial	15
Sample ID	NASB-BLL15-FRB-01-110118	Injection Volume	10.00
Sample Type	Unknown	Instrument Name	QTRAP 5500
Acquisition Date	$2018-11-21 T 19: 52: 01$	Data File	AC_11212018_5-369.wiff
Acquisition Method	5-0369.dam	Result Table	18-0671A
Sample Comment			

Results Summary

Analyte	MRM Transition	RT	Ratio Group	Calculated Ion ratio	Expected Ion Ratio	Ratio OK
PFBS_1	298.9 / 80.0	1.56	PFBS			
PFBS_2	298.9 / 99.0	1.53	PFBS	1.217	0.308	
PFHxA_1	313.0 / 269.0	1.89	PFHxA			
PFHxA_2	313.0 / 119.0	1.86	PFHxA	0.060	0.078	,
PFHpA_1	363.0 / 319.0	2.29	PFHpA			
PFHpA_2	363.0 / 169.0	N/A	PFHpA	N/A	0.019	
PFHxS_1	399.0 / 80.0	2.34	PFHxS			
PFHxS_2	399.0 / 99.0	N/A	PFHxS	N/A	0.287	
PFOA_1	413.0 / 369.0	2.70	PFOA			
PFOA_2	413.0 / 169.0	2.70	PFOA	0.062	0.068	,
PFNA_1	463.0 / 419.0	3.10	PFNA			
PFNA_2	463.0 / 219.0	3.09	PFNA	0.214	0.312	,
PFOS_1	499.0 / 80.0	3.07	PFOS			
PFOS_2	499.0 / 99.0	3.08	PFOS	0.138	0.186	,
PFDA_1	513.0 / 469.0	3.45	PFDA			
PFDA_2	513.0 / 219.0	3.45	PFDA	0.083	0.041	
PFUnA_1	563.0 / 519.0	3.77	PFUnA			
PFUnA_2	563.0 / 269.0	3.77	PFUnA	0.105	0.050	
PFDoA_1	613.0 / 569.0	4.06	PFDoA			
PFDoA 2	613.0 / 319.0	4.06	PFDoA	0.162	0.160	,
PFTrDA_1	663.0 / 619.0	4.30	PFTrDA			
PFTrDA_2	663.0 / 169.0	4.30	PFTrDA	0.065	0.066	,
PFTeDA_1	713.0 / 669.0	4.52	PFTeDA			
PFTeDA_2	713.0 / 169.0	4.52	PFTeDA	0.045	0.048	,
NMeFOSAA_1	570.0 / 419.0	N/A	NMeFOSAA			
NMeFOSAA_2	570.0 / 512.0	N/A	NMeFOSAA	N/A	0.542	,
NEtFOSAA_1	584.0 / 419.0	N/A	NEtFOSAA			
NEtFOSAA_2	584.0 / 483.0	N/A	NEtFOSAA	N/A	0.073	,
PFBA	213.0 / 169.0	1.16				

$$
\begin{aligned}
& \text { NASB-BLL15-MW03 Monitoring well } \\
& \text { NASB-BL15-MW01 Monitoring well }
\end{aligned}
$$

3015821.113899129 .63 N624701609008 WE21
301521.11
3891929.63
N26700169008 WE22
$\begin{array}{llll}3015693.65 \\ 38993933.1 & \text { N624770160909008 WE21 } \\ \text { WE21 }\end{array}$ 3015627.83 389965.63 N6247016090008 WE21

SAMPLE_MATRIX_DESC
SAMPLE_MATRIX
Sround water
Sround water
Ground water
Ground water
Ground water

SAMPLE_TYPE
Field duplicate
Field duplicate
Normal (Regular
Normal (Regular)
Normal (Regular
Normal (Reguar)
Normal (Regular) Normal (Regular)
Normal (Regular)

[^0]: © This document is the property of Zef Scientific and intended for Zef Scientific Inc trained engineers use only. No copying, all or partial, is permitted without prior authorization.

[^1]: * - "C" = Sample is Consumed

[^2]: * - Final Dilution is any HPLC, dilutions, or other manipulation

[^3]: Total Oil = [Sample Volume (uL) / Aliquot Volume (uL)] * [Aliquot Weight (mg)]
 Dilution Factor $=[$ Sample Volume $(\mathrm{uL}) /$ Aliqot Volume $(\mathrm{uL}))] *$ Prior Dilution Factor

[^4]: "L" :Linear
 "Br": branched
 "L/Br": Linear/Branched
 "-": Not detected

[^5]: © This document is the property of Zef Scientific and intended for Zef Scientific Inc trained engineers use only. No copying, all or partial, is permitted without prior authorization.

[^6]: Total Oil $=[$ Sample Volume (uL) / Aliquot Volume (uL)] * [Aliquot Weight (mg)]
 Dilution Factor $=[$ Sample Volume $(\mathrm{uL}) /$ Aliqot Volume $(\mathrm{uL}))] *$ Prior Dilution Factor

[^7]: Crossed out injections are not related to SDG 18-0671. JRT 11/26/2018

