Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Method: F:IProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 08:43:15

Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36

Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID: ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 18A3007

Dataset: F:IProjectsIPFAS.PRO\Results\180201M21180201M2-CRV.qld

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID: ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 $18 A 3007$

PFHpA

F15:MRM of 2 channels,ES-

13C8-PFOS
F34:MRM of 1 channel,ES.
$507.0>79.9$

13C5-PFNA
F27:MRM of 1 channel,ES$468.2>422.9$

Dataset: F:IProjects\PFAS.PRO\Results1180201M21180201M2-CRV.qid

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID: ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 $18 A 3007$

F44:MRM of 2 channels,ES-
$549.1>80.1$

Vista Analytical Laboratory

Dataset:

F:IProjects\PFAS.PRO\Results1180201M21180201M2-CRV.qid
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID: ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 $18 A 3007$

13C2-PFUdA

13C2-PFUdA

13C2-PFDoA

$$
\begin{array}{r}
\text { F54:MRM of } 2 \text { channels,ES- } \\
615.0>569.7
\end{array}
$$

100

d3-N-MeFOSA

13C2-PFTeDA
F61:MRM of 2 channels,ES-
$714.8>669.6$

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID; ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 $18 A 3007$

d5-N-ETFOSA

13C2-PFHxDA

F63:MRM of 1 channel,ES- F63:MRM of 1 channel, ES-
F63:MRM of 1 channel, ES-
$815>769.7$

Vista Analytical Laboratory

Dataset
F:IProjects\PFAS.PRO\Results1180201M21180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID: ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 $18 A 3007$

Dataset:	F:IProjectsIPFAS.PROIResults1180201M21180201M2-CRV.qld
Last Altered:	Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:	Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_3, Date: 01-Feb-2018, Time: 11:03:45, ID; ST180201M2-2 PFC CS-1 18A3008, Description: PFC CS-1 $18 A 3008$

Dataset:

F:IProjectsIPFAS.PROIResults1180201M21180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_3, Date: 01-Feb-2018, Time: 11:03:45, ID: ST180201M2-2 PFC CS-1 18A3008, Description: PFC CS-1 18A3008

13C4-PFHpA

1802-PFHxS

13C2-PFOA

F21:MRM of 1 channel,ES-

13C2-PFOA

F21:MRM of 1 channel,ES-

13C8-PFOS
F34:MRM of 1 channel,ES-

13C5-PFNA
F27:MRM of 1 channel,ES-

Dataset: F:IProjectsIPFAS.PROIResultsl180201M2\180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_3, Date: 01-Feb-2018, Time: 11:03:45, ID: ST180201M2-2 PFC CS-1 18A3008, Description: PFC CS-1 18A3008

13C8-PFOS

F36:MRM of 2 channels,ES-

13C2-PFDA

13C8-PFOS

Dataset:	F:IProjectsIPFAS.PRO\|Results1180201M21180201M2-CRV.qld
Last Altered:	Friday, February 02, 2018 08:56:36 Paciic Standard Time
Printed:	Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_3, Date: 01-Feb-2018, Time: 11:03:45, ID: ST180201M2-2 PFC CS-1 18A3008, Description: PFC CS-1 18A3008

Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_3, Date: 01-Feb-2018, Time: 11:03:45, ID: ST180201M2-2 PFC CS-1 18A3008, Description: PFC CS-1 18A3008

PFTEDA
F60:MRM of 2 channeis,ES-
$712.9>668.8$
100 PFTeDA $1.459 \mathrm{e}+004$
6.42
$6-11 \mathrm{e} 2$
14583
bb

F60:MRM of 2 channels, ES-

N-EtFOSA
F40:MRM of 2 channels,ES-
$526.1>168.9$
$8.049 \mathrm{e}+003$

F40:MRM of 2 channels,ES-
$526.1>219$

PFHxDA
F62:MRM of 2 channels,ES-
$813.1>768.6$
100
PFHxDA $8.501 \mathrm{e}+003$
6.70
2.69 e 2
8
8495
bb

d7-N-MeFOSE

d9-N-EtFOSE
F58:MRM of 1 channel,ES$639.2>58.8$ $5.177 \mathrm{e}+005$

Dataset:

Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_3, Date: 01-Feb-2018, Time: 11:03:45, ID: ST180201M2-2 PFC CS-1 18A3008, Description: PFC CS-1 18A3008

Dataset:	F:IProjects\PFAS.PRO\Results\180201M2\180201M2-CRV.qld
Last Altered:	Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:	Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_4, Date: 01-Feb-2018, Time: 11:15:12, ID: ST180201M2-3 PFC CS0 18A3009, Description: PFC CS0 $18 A 3009$

13C3-PFBA

PFPeA

PFBS

F6:MRM of 2 channels,ES-
$299.0>99.0$

F11:MRM of 2 channels,ES-

F8:MRM of 2 channels,ES-

PFPeS

Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_4, Date: 01-Feb-2018, Time: 11:15:12, ID: ST180201M2-3 PFC CS0 18A3009, Description: PFC CS0 $18 A 3009$

13C4-PFHpA

1802-PFHxS

F23:MRM of 2 channels,ES-

13C2-PFOA

F20:MRM of 2 channels,ES-

13C2-PFOA

F25:MRM of 2 channels,ES-

13C8-PFOS

13C5-PFNA

Name: 180201M2_4, Date: 01-Feb-2018, Time: 11:15:12, ID: ST180201M2-3 PFC CS0 18A3009, Description: PFC CS0 $18 A 3009$

13C8-PFOS
F34:MRM of 1 channel,ES$507.0>79.9$

PFDA
F36:MRM of 2 channels,ES-
$513>468.8$
PFDA $3.745 \mathrm{e}+004$
5.41
1.39 e 3
37310
bb
566.85

13C2-PFDA

F37:MRM of 1 channel,ES-

$$
\begin{array}{r}
515.1>469.9 \\
100-\quad 3.211 \mathrm{e}+005
\end{array}
$$

(100-4

Dataset:	F:IProjectsIPFAS.PRO\Results\180201M21180201M2-CRV.qid
Last Altered:	Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:	Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_4, Date: 01-Feb-2018, Time: 11:15:12, ID: ST180201M2-3 PFC CS0 18A3009, Description: PFC CS0 18 A3009

Name: 180201M2_4, Date: 01-Feb-2018, Time: 11:15:12, ID: ST180201M2-3 PFC CS0 18A3009, Description: PFC CS0 $18 A 3009$

d7-N-MeFOSE

d9-N-EtFOSE

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_4, Date: 01-Feb-2018, Time: 11:15:12, ID: ST180201M2-3 PFC CS0 18A3009, Description: PFC CS0 18 A3009

13C6-PFDA

F39:MRM of 1 channel,ES$519.1>473.7$

13C7-PFUdA

F48:MRM of 1 channel,ES$570.1>524.8$ $3.562 \mathrm{e}+005$

13C2-4:2 FTS
F12:MRM of 1 channel,ES$329.2>308.9$ $8.653 e+004$

Last Altered:	Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:	Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_5, Date: 01-Feb-2018, Time: 11:26:39, ID: ST180201M2-4 PFC CS1 18A3010, Description: PFC CS1 18 A3010

F15:MRM of 2 channels,ES-

100		$363.0>169.0$
	PFHpA	$4.201 \mathrm{e}+003$
100	4.11	
	1.77 e 2	
\%-	4198	
	bb	
	4198.00	
	TT1	min

4.0004 .200

1802-PFHxS

13C2-PFOA

13C2-PFOA

Name: 180201M2_5, Date: 01-Feb-2018, Time: 11:26:39, ID: ST180201M2-4 PFC CS1 18A3010, Description: PFC CS1 18 A3010

PFDA		
F36:MRM of 2 channels,ES-		
		$513>468.8$
1007	PFDA	$5.697 \mathrm{e}+004$
	5.41	T
	2.42 e 3	
\%-	56737	
	bb	
	2608.33	

8:2 FTS
F41:MRM of 2 channels,ES-
$527>506.9$
$100-676 \mathrm{e}+004$
10-1

PFNS		
F44:MRM of 2 channels,ES-		
		$549.1>80.1$
00	PFNS5.464.59 e 211627MM	$1.163 \mathrm{e}+004$

d3-N-MeFOSAA
F49:MRM of 1 channel,ES-

$1259 \mathrm{e}+005$

Dataset:
F:JProjects\PFAS.PRO\Results1180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02,2018 08:57:12 Pacific Standard Time

Name: 180201M2_5, Date: 01-Feb-2018, Time: 11:26:39, ID: ST180201M2-4 PFC CS1 18A3010, Description: PFC CS1 18 A3010

13C2-PFUdA
F46:MRM of 1 channel,ES $565>519.8$

F52:MRM of 2 channels,ES-
$598.8>98.7$

13C2-PFDoA

F35:MRM of 2 channels, ES$512.1>219$ $1.765 \mathrm{e}+004$

d3-N-MeFOSA

13C2-PFTeDA

Name: 180201M2_5, Date: 01-Feb-2018, Time: 11:26:39, ID: ST180201M2-4 PFC CS1 18A3010, Description: PFC CS1 18 A3010

F60:MRM of 2 channels,ES-

13C2-PFTeDA

d5-N-ETFOSA

PFHxDA
F62:MRM of 2 channels,ES-
$813.1>768.6$
100 PFHxDA $3.205 \mathrm{e}+004$
6.70
9.79 e 2
31973
bb
31973.00

13C2-PFHxDA

13C2-PFHxDA

d7-N-MeFOSE

F56:MRM of 1 channel,ES-
F56:MRM of 1 channel,ES-
$623.1>58.9$

Dataset: F:IProjectsIPFAS.PROIResults\180201M21180201M2-CRV.qld

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_5, Date: 01-Feb-2018, Time: 11:26:39, ID: ST180201M2-4 PFC CS1 18A3010, Description: PFC CS1 18 A3010

13C6-PFDA

F39:MRM of 1 channel,ES-
F39:MRM of 1 channel, ES-
$519.1>473.7$

13C7-PFUdA

13C2-4:2 FTS

Dataset: F:IProjectsIPFAS.PRO\Results\180201M2|180201M2-CRV.qld

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2 6, Date: 01-Feb-2018, Time: 11:38:09, ID: ST180201M2-5 PFC CS2 18A3011, Description: PFC CS2 $18 A 3011$

13C3-PFPeA
F5:MRM of 1 channel,ES-
$266 .>221.8$

Dataset:
F:JProjects\PFAS.PRO\Results\180201M2|180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_6, Date: 01-Feb-2018, Time: 11:38:09, ID: ST180201M2-5 PFC CS2 18A3011, Description: PFC CS2 $18 A 3011$

F23:MRM of 2 channels,ES-

F25:MRM of 2 channeis,ES.

Dataset: F:IProjectsIPFAS.PROIResults) 180201 M2l180201M2-CRV. qld

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_6, Date: 01-Feb-2018, Time: 11:38:09, ID: ST180201M2-5 PFC CS2 18A3011, Description: PFC CS2 $18 A 3011$

13C8-PFOSA

F33:MRM of 1 channel,ES-
$506.1>77.7$
$6.810 \mathrm{e}+004$

F31:MRM of 2 channels,ES-

13C8-PFOS

PFDA

F36:MRM of 2 channels,ES-

13C2-PFDA
F37:MRM of 1 channel,ES-

F44:MRM of 2 channels,ES-
$549.1>80$. $2.564 \mathrm{e}+004$

F47:MRM of 2 channels,ES-

13C8-PFOS d3-N-MeFOSAA

Dataset:	F:IProjectsIPFAS.PROIResults\180201M2\180201M2-CRV.qid
Last Altered:	Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:	Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_6, Date: 01-Feb-2018, Time: 11:38:09, ID: ST180201M2-5 PFC CS2 18A3011, Description: PFC CS2 18 A3011

13C2-PFUdA

13C2-PFUdA

13C2-PFDoA

F35:MRM of 2 channels, ES-
$512.1>219$

d3-N-MeFOSA
F38:MRM of 1 channel,ES-
$515.2>168.9$

13C2-PFTeDA
F61:MRM of 2 channels,ES-
F61:MRM of 2 channels,ES-
$714.8>669.6$

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_6, Date: 01-Feb-2018, Time: 11:38:09, ID: ST180201M2-5 PFC CS2 18A3011, Description: PFC CS2 $18 A 3011$

F60:MRM of 2 channels,ES-
$712.9>369$

13C2-PFTeDA

d5-N-ETFOSA

Abstract

in

13C2-PFHxDA

13C2-PFHxDA

d7-N-MeFOSE

F56:MRM of 1 channel,ES-
F56:MRM of 1 channel, ES-
$623.1>58.9$

d9-N-EtFOSE

F58:MRM of 1 channel,ES$639.2>58.8$ $3.957 e+005$

Dataset: F:IProjectsIPFAS.PRO\Results1180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_6, Date: 01-Feb-2018, Time: 11:38:09, ID: ST180201M2-5 PFC CS2 18A3011, Description: PFC CS2 18A3011

Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_7, Date: 01-Feb-2018, Time: 11:49:38, ID: ST180201M2-6 PFC CS3 18A3012, Description: PFC CS3 18 A3012

13C3-PFPeA

F6:MRM of 2 channels,ES-

F8:MRM of 2 channels,ES-

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_7, Date: 01-Feb-2018, Time: 11:49:38, ID: ST180201M2-6 PFC CS3 18A3012, Description: PFC CS3 18 A3012

PFHpA

F15:MRM of 2 channels,ES-
(1007

F15:MRM of 2 channels, ES.

1802-PFHxS

13C2-PFOA

F2O:MRM of 2 channels, ES-

13C2-PFOA

13C8-PFOS

13C5-PFNA
F27:MRM of 1 channel,ES-
$468.2>422.9$

Dataset:
F:IProjectsIPFAS.PRO\Results|180201M2\180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_7, Date: 01-Feb-2018, Time: 11:49:38, ID: ST180201M2-6 PFC CS3 18A3012, Description: PFC CS3 18 A3012

F31:MRM of 2 channels,ES-

13C8-PFOS

F41:MRM of 2 channels, ES-

13C2-PFDA

d3-N-MeFOSAA

F49:MRM of 1 channel,ES-
$573.3>419$

Name: 180201M2 7, Date: 01-Feb-2018, Time: 11:49:38, ID: ST180201M2-6 PFC CS3 18A3012, Description: PFC CS3 18 A3012

d5-N-EtFOSAA

13C2-PFUdA

F52:MRM of 2 channels,ES-

Dataset: F:IProjectsIPFAS.PRO\Results\180201M21180201M2-CRV.qld

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_7, Date: 01-Feb-2018, Time: 11:49:38, ID: ST180201M2-6 PFC CS3 18A3012, Description: PFC CS3 $18 A 3012$
PFTEDA
F60:MRM of 2 channels,ES-
$712.9>668.8$
$100 \quad$ PFTeDA $2.531 e^{+}+005$
6.41
1.01 e 4
251894
bb
251894.00
0

Dataset: FilProjectsIPFAS.PRO\Resultsl180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_7, Date: 01-Feb-2018, Time: 11:49:38, ID: ST180201M2-6 PFC CS3 18A3012, Description: PFC CS3 18A3012

13C6-PFDA
F39:MRM of 1 channel,ES-

13C7-PFUdA
F48:MRM of 1 channel,ES$570.1>524.8$ $3.162 \mathrm{e}+005$

13C2-4:2 FTS
F12:MRM of 1 channel,ES $329.2>308.9$

Dataset: F:IProjectsIPFAS.PROIResults|180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_8, Date: 01-Feb-2018, Time: 12:01:08, ID: ST180201M2-7 PFC CS4 18A3013, Description: PFC CS4 18A3013

13C3-PFPeA
F5:MRM of 1 channel,ES-
$266 .>221.8$

F6:MRM of 2 channels,ES-

13C3-PFBS

F7:MRM of 1 channel,ES

13C3-PFBS
F7:MRM of 1 channei,ES-

13C2-PFHxA
F9:MRM of 1 channel,ES-
$315>269.8$

PFPeS

F14:MRM of 2 channels,ES-
annels, ES-
$349.1>99$

13C3-PFBS
F7:MRM of 1 channel,ES-

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_8, Date: 01-Feb-2018, Time: 12:01:08, ID: ST180201M2-7 PFC CS4 18A3013, Description: PFC CS4 $18 A 3013$

13C4-PFHpA

1802-PFHxS

F23:MRM of 2 channels,ES-

13C2-PFOA

F20:MRM of 2 channels,ES-

PFNA

13C5-PFNA

Dataset:
F:IProjects\PFAS.PRO\Results1180201M21180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_8, Date: 01-Feb-2018, Time: 12:01:08, ID: ST180201M2-7 PFC CS4 18A3013, Description: PFC CS4 18 A3013

13C8-PFOS
F34:MRM of 1 channel,ES-
$507.0>79.9$
100

PFDA		
F36:MRM of 2 channels,ES-		
	PFDA	$1.430 \mathrm{e}+006$
1007	5.40	
	5.89 e 4	
\%	1423389	
	bb	
	24193.09	

13C2-PFDA

Name: 180201M2_8, Date: 01-Feb-2018, Time: 12:01:08, ID: ST180201M2-7 PFC CS4 18A3013, Description: PFC CS4 $18 A 3013$

d5-N-EtFOSAA

13C2-PFUdA

13C2-PFUdA

d3-N-MeFOSA

13C2-PFTeDA

Dataset: F:IProjectsIPFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_8, Date: 01-Feb-2018, Time: 12:01:08, ID: ST180201M2-7 PFC CS4 18A3013, Description: PFC CS4 18A3013

F40:MRM of 2 channels, ES-
$526.1>219$

d5-N-ETFOSA
F43:MRM of 1 channel,ES-

$$
\begin{aligned}
& \text { F62:MRM of } 2 \text { channels,ES- }
\end{aligned}
$$

13C2-PFHxDA

F63:MRM of 1 channel,ES-

d9-N-EtFOSE

Last Altered:

Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_8, Date: 01-Feb-2018, Time: 12:01:08, ID: ST180201M2-7 PFC CS4 18A3013, Description: PFC CS4 18A3013

Last Altered:

Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_9, Date: 01-Feb-2018, Time: 12:12:35, ID: ST180201M2-8 PFC CS5 18A3014, Description: PFC CS5 18 A3014

13C3-PFBS

00

Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time

Printed:

 Friday, February 02, 2018 08:57:12 Pacific Standard TimeName: 180201M2_9, Date: 01-Feb-2018, Time: 12:12:35, ID: ST180201M2-8 PFC CS5 18A3014, Description: PFC CS5 18 A3014

F15:MRM of 2 channels,ES-

13C4-PFHpA

1802-PFHxS

13C2-PFOA

F21:MRM of 1 channel,ES-
$414.9>369.7$
$3.096 \mathrm{e}+005$

13C8-PFOS

13C5-PFNA
F27:MRM of 1 channel,ES-

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_9, Date: 01-Feb-2018, Time: 12:12:35, ID: ST180201M2-8 PFC CS5 18A3014, Description: PFC CS5 18 A3014

F36:MRM of 2 channels, ES-

F41:MRM of 2 channels,ES-

F44:MRM of 2 channels,ES-

N-MeFOSAA

F47:MRM of 2 channels,ES-

d3-N-MeFOSAA

Dataset: F:|Projects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_9, Date: 01-Feb-2018, Time: 12:12:35, ID: ST180201M2-8 PFC CS5 18A3014, Description: PFC CS5 18 A3014

13C2-PFUdA
F46:MRM of 1 channel,ES-

F52:MRM of 2 channels,ES-

13C2-PFUdA
F46:MRM of 1 channel,ES-

F53:MRM of 4 channels,ES-

13C2-PFDoA

F35:MRM of 2 channels,ESF35:MRM of 2 chancli > 219

d3-N-MeFOSA

F59:MRM of 2 channels,ES-

13C2-PFTeDA

Dataset: FilProjectsIPFAS.PROIResultsl180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_9, Date: 01-Feb-2018, Time: 12:12:35, ID: ST180201M2-8 PFC CS5 18A3014, Description: PFC CS5 $18 A 3014$

F40:MRM of 2 channels, ES-

d5-N-ETFOSA

13C2-PFHxDA

d7-N-MeFOSE

d9-N-EtFOSE

Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_9, Date: 01-Feb-2018, Time: 12:12:35, ID; ST180201M2-8 PFC CS5 18A3014, Description: PFC CS5 18 A3014

13C7-PFUdA

13C2-4:2 FTS
F12:MRM of 1 channel,ES-
$329.2>308.9$
$1.025 \mathrm{e}+005$

Name: 180201M2_10, Date: 01-Feb-2018, Time: 12:24:05, ID: ST180201M2-9 PFC CS6 18A3015, Description: PFC CS6 $18 A 3015$

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_10, Date: 01-Feb-2018, Time: 12:24:05, ID: ST180201M2-9 PFC CS6 18A3015, Description: PFC CS6 18 A3015

13C4-PFHpA

1802-PFHxS
F19:MRM of 1 channel,ES-

6:2 FTS

F23:MRM of 2 channels,ESF23:MRM of 2 channels,ES-

13C2-PFOA

F20:MRM of 2 channels,ES

13C2-PFOA

F25:MRM of 2 channels,ES-
$449>98.7$

13C8-PFOS

F34:MRM of 1 channel,ES

PFNA

F26:MRM of 2 channels, ES-

F26:MRM of 2 channeis,ES

13C5-PFNA
F27:MRM of 1 channel,ES-

Dataset:
F:IProjects|PFAS.PROIResults1180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_10, Date: 01-Feb-2018, Time: 12:24:05, ID: ST180201M2-9 PFC CS6 18A3015, Description: PFC CS6 $18 A 3015$

F41:MRM of 2 channels,ES-
F41:MRM of 2 channels,ES-
$527>80$

F44:MRM of 2 channels,ES-
$549.1>80.1$
$1,193 e+006$

13C8-PFOS

F34:MRM of 1 channel,ES-

F47:MRM of 2 channels,ES
$570.1>483.0$

d3-N-MeFOSAA
F49:MRM of 1 channel,ES-

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_10, Date: 01-Feb-2018, Time: 12:24:05, ID: ST180201M2-9 PFC CS6 18A3015, Description; PFC CS6 $18 A 3015$

 d5-N-EtFOSAA

F45:MRM of 2 channels,ES-

13C2-PFUdA

PFDS

F52:MRM of 2 channels,ES-

13C2-PFUdA

F46:MRM of 1 channel,ES-
$565>519.8$

F53:MRM of 4 channels,ES-

13C2-PFDoA

F35:MRM of 2 channels,ES-
$512.1>219$ $1.863 e+006$

F59:MRM of 2 channels,ES-
$662.9>319$

13C2-PFTEDA
F61:MRM of 2 channels, ES

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_10, Date: 01-Feb-2018, Time: 12:24:05, ID: ST180201M2-9 PFC CS6 18A3015, Description: PFC CS6 18A3015

13C2-PFHxDA

d9-N-EtFOSE
F58:MRM of 1 channel,ES-

Dataset: \quad F:IProjectsIPFAS.PRO\Results\180201M21180201M2-CRV.qId

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_10, Date: 01-Feb-2018, Time: 12:24:05, ID: ST180201M2-9 PFC CS6 18A3015, Description: PFC CS6 18A3015

13C6-PFDA

F39:MRM of 1 channel,ES-
F39:MRM of 1 channel,ES
$519.1>473.7$

13C7-PFUdA

F48:MRM of 1 channel,ES-

13C2-4:2 FTS
F12:MRM of 1 channel,ES.
F12.MRM of 1 channel,ES $329.2>308.9$

Dataset: F:IProjectsIPFAS.PROIResults|180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_11, Date: 01-Feb-2018, Time: 12:35:34, ID: ST180201M2-10 PFC CS7 18A3016, Description: PFC CS7 18A3016

Dataset: F:IProjectsIPFAS.PROIResultsi180201M21180201M2-CRV.qid

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_11, Date: 01-Feb-2018, Time: 12:35:34, ID: ST180201M2-10 PFC CS7 18A3016, Description: PFC CS7 18 A3016

13C2-PFOA

13C8-PFOS
F34:MRM of 1 channel,ES-

F26:MRM of 2 channels,ES-

13C5-PFNA
F27:MRM of 1 channel, ES-

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_11, Date: 01-Feb-2018, Time: 12:35:34, ID: ST180201M2-10 PFC CS7 18A3016, Description: PFC CS7 $18 A 3016$

F29:MRM of 2 channels,ES$498.1>478$ $00-\quad 5.327 \mathrm{e}+004$

 F31:MRM of 2 channels,ES-

13C8-PFOS

F36:MRM of 2 channels.ES-

PFNS

F44:MRM of 2 channels,ES

F44:MRM of 2 channels,ES$549.1>80.1$

F47:MRM of 2 channels,ES-

Dataset:	F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered:	Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:	Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_11, Date: 01-Feb-2018, Time: 12:35:34, ID: ST180201M2-10 PFC CS7 18A3016, Description: PFC CS7 18 A3016

d5-N-EtFOSAA

F51:MRM of 1 channel.ES-

13C2-PFUdA

F46:MRM of 1 channei,ES

PFDS

F52:MRM of 2 channels,ES-
$598.8>98.7$

13C2-PFUdA
F46:MRM of 1 channel,ES-

PFDOA
F53:MRM of 4 channels,ES-
$612.9>569.0$

13C2-PFDoA

F54:MRM of 2 channels,ES.

$$
\begin{array}{r}
615.0>569.7
\end{array}
$$

F59:MRM of 2 channels,ES-
$662.9>319$

13C2-PFTeDA
F61:MRM of 2 channels,ES-

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_11, Date: 01-Feb-2018, Time: 12:35:34, ID: ST180201M2-10 PFC CS7 18A3016, Description: PFC CS7 $18 A 3016$

F60:MRM of 2 channels,ES-

13C2-PFTeDA
F61:MRM of 2 channels, ES-

d5-N-ETFOSA
F43:MRM of 1 channel,ES-

F62:MRM of 2 channels, ES-

13C2-PFHxDA
F63:MRM of 1 channel,ES-

13C2-PFHxDA

d7-N-MeFOSE

Dataset: F:IProjects\PFAS.PRO\Results\180201M2\180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 08:57:12 Pacific Standard Time

Name: 180201M2_11, Date: 01-Feb-2018, Time: 12:35:34, ID: ST180201M2-10 PFC CS7 18A3016, Description: PFC CS7 $18 A 3016$

13C7-PFUdA
F48:MRM of 1 channel,ES-
$570.1>524.8$

Last Altered: Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:25:15 Pacific Standard Time

Method: F:IProjectsIPFAS.PROMMethDBIPFAS FULL 80C 020118.mdb 02 Feb 2018 09:02:54
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36
Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV 18A3006

Last Altered: Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:25:15 Pacific Standard Time

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV $18 A 3006$

Dataset: F:IProjectsIPFAS.PROIResults\180201M21180201M2-13.qid
Last Altered: Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 09:25:15 Pacific Standard Time

Method: F:IProjectsIPFAS.PROIMethDB\PFAS_FULL_80C_020118.mdb 02 Feb 2018 09:02:54
Calibration: F:IProjects\PFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36
Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV $18 A 3006$

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV $18 A 3006$

13C4-PFHpA

F16:MRM of 1 channel,ES-

1802-PFHxS

13C2-PFOA

13C8-PFOS

F34:MRM of 1 channel, ES-
$507.0>79.9$

13C5-PFNA
F27:MRM of 1 channel,ES-

Dataset: FilProjectsIPFAS.PROIResults1180201M2l180201M2-13.qid
Last Altered. Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed; Friday, February 02, 2018 09:25:15 Pacific Standard Time

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV 18A3006

13C8-PFOS

F36:MRM of 2 channels,ES-

13C2-PFDA

F41:MRM of 2 channels,ES-

F47:MRM of 2 channels,ES.

Dataset: F:IProjectsIPFAS.PRO\Results\180201M2\180201M2-13.qld
Last Altered: Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 09:25:15 Pacific Standard Time

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV $18 A 3006$

13C2-PFUdA

F35:MRM of 2 channels,ES-

d3-N-MeFOSA
F38:MRM of 1 channel, ES.

F59:MRM of 2 channels,ES-

13C2-PFTeDA

F61:MRM of 2 channels,ES.

Dataset: F:|Projects\PFAS.PRO\Results\180201M2\180201M2-13.qid
Last Altered: Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed: \quad Friday, February 02, 2018 09:25:15 Pacific Standard Time

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV $18 A 3006$
$\left.\begin{array}{l}\text { PFTeDA } \\ \text { F60:MRM of } 2 \text { channels,ES- } \\ 712.9>668.8 \\ 100 \\ \text { PFTeDA } 2.573 \mathrm{e}+005 \\ 6.40 \\ 1.05 \mathrm{e} 4 \\ 256127 \\ \text { bb } \\ 2\end{array}\right]$
F60:MRM of 2 channels,ES-

13C2-PFTeDA
 F61:MRM of 2 channels,ES.

 d5-N-ETFOSA
 F43:MRM of 1 channel, ES-

F40:MRM of 2 channels,ES-

13C2-PFHxDA

13C2-PFHxDA
F63.MRM of 1 channel,ES-

d9-N-EtFOSE
F58:MRM of 1 channel, ES-
$639.2>58.8$

Dataset: F.IProjects|PFAS.PROIResults\180201M21180201M2-13.qld
Last Altered: Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed: Friday, February 02, 2018 09:25:15 Pacific Standard Time

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV 18A3006

$\begin{array}{r}\text { 13C6-PFDA } \\ \text { F39:MRM of } 1 \text { channeI,ES- } \\ 519.1>473.7 \\ 100 \\ \hline\end{array}$

13C7-PFUdA
F48:MRM of 1 channel,ES-
570.1>524.8

13C2-4:2 FTS
F12:MRM of 1 channel,ES-

Dataset:	F:\Projects\PFAS.PRO\Results\180201M2\180201M2-12.qld
Last Altered:	Friday, February 02, 2018 09:29:53 Pacific Standard Time
Printed:	Friday, February 02, 2018 09:30:13 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_020118.mdb 02 Feb 2018 09:02:54

Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36

Name: 180201M2_12, Date: 01-Feb-2018, Time: 12:47:03, ID: IPA, Description: IPA

4:2 FTS

13C3-PFBS

PFHxA

13C2-PFHxA

F9:MRM of 1 channel,ES-
F9:MRM of 1 channel,ES-
$315>269.8$

PFPeS

13C3-PFBS

Dataset: \quad F:\Projects\PFAS.PRO\Results\180201M2\180201M2-12.qld

Last Altered: Friday, February 02, 2018 09:29:53 Pacific Standard Time
Printed: Friday, February 02, 2018 09:30:13 Pacific Standard Time

Name: 180201M2_12, Date: 01-Feb-2018, Time: 12:47:03, ID: IPA, Description: IPA

13C4-PFHpA

L-PFHxS

F17:MRM of 2 channels,ES-
 F17:MRM of 2 channels,ES-

1802-PFHxS

13C2-PFOA

13C2-PFOA

Dataset:	F:\Projects\PFAS.PRO\Results\180201M2\180201M2-12.qld
Last Altered:	Friday, February 02, 2018 09:29:53 Pacific Standard Time
Printed:	Friday, February 02, 2018 09:30:13 Pacific Standard Time

Name: 180201M2_12, Date: 01-Feb-2018, Time: 12:47:03, ID: IPA, Description: IPA

13C8-PFOSA

F33:MRM of 1 channel,ES$506.1>77.7$

L-PFOS

F31:MRM of 2 channels,ES-

F31:MRM of 2 channels,ES-

13C8-PFOS
F34:MRM of 1 channel,ES-
$-\quad 507.0>79.9$

PFDA
F36:MRM of 2 channels,ES-
$513>468.8$
$1.761 \mathrm{e}+003$
F36:MRM of 2 channels,ES-

13C2-PFDA
F37:MRM of 1 channel,ES-
$515.1>469.9$

F41:MRM of 2 channels,ES-
$527>80$

13C2-PFDA

PFNS

F44:MRM of 2 channels,ES-
$549.1>80.1$
$4.678 \mathrm{e}+002$
F44:MRM of 2 channels,ES$549.1>80.1$

13C8-PFOS

Dataset:	F:\Projects\PFAS.PRO\Results\180201M2\180201M2-12.qld
Last Altered:	Friday, February 02, 2018 09:29:53 Pacific Standard Time
Printed:	Friday, February 02, 2018 09:30:13 Pacific Standard Time

Name: 180201M2_12, Date: 01-Feb-2018, Time: 12:47:03, ID: IPA, Description: IPA

d5-N-EtFOSAA

F51:MRM of 1 channel,ES-
$589.3>419$

F45:MRM of 2 channels,ES$563.0>269$

13C2-PFUdA

13C2-PFUdA

F35:MRM of 2 channels,ES-

d3-N-MeFOSA
F38:MRM of 1 channel,ES-
$515.2>168.9$

F59:MRM of 2 channels,ES$662.9>319$

13C2-PFTeDA

Dataset:	F:\Projects\PFAS.PRO\Results\180201M2\180201M2-12.qld
Last Altered:	Friday, February 02, 2018 09:29:53 Pacific Standard Time
Printed:	Friday, February 02, 2018 09:30:13 Pacific Standard Time

Name: 180201M2_12, Date: 01-Feb-2018, Time: 12:47:03, ID: IPA, Description: IPA

13C2-PFTeDA

F61:MRM of $\begin{array}{r}2 \text { channels,ES- } \\ 714.8>669.6 \\ 2.059 e+001\end{array}$

F40:MRM of 2 channels,ES-

d5-N-ETFOSA

13C2-PFHxDA

13C2-PFHxDA

d7-N-MeFOSE

N-EtFOSE

Dataset: \quad F:\Projects\PFAS.PRO\Results\180201M2\180201M2-12.qld

Last Altered: Friday, February 02, 2018 09:29:53 Pacific Standard Time
Printed: Friday, February 02, 2018 09:30:13 Pacific Standard Time

Name: 180201M2_12, Date: 01-Feb-2018, Time: 12:47:03, ID: IPA, Description: IPA

13C6-PFDA

F39:MRM of 1 channel,ES-
$-\quad 519.1>473.7$

13C7-PFUdA
F48:MRM of 1 channel,ES-

13C3-PFHxS

13C2-4:2 FTS
F12:MRM of 1 channel,ES-

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
16G1221	br-PFOSK anion	12-Jul-16	** Vendor **	14-Oct-20	19-Oct-17 08:16 by INJ	0.431
17G1209	FOSA-I	12-Jul-17	** Vendor **	30-Sep-21	13-Jul-17 09:08 by INJ	0.4
17G1312	PFTeDA	13-Jul-17	** Vendor **	30-Sep-21	17-Jul-17 16:23 by INJ	0.4
17G1313	PFTrDA	13-Jul-17	** Vendor **	02-May-22	17-Jul-17 16:22 by INJ	0.4
17G1323	br-PFHxSK	13-Jul-17	** Vendor **	04-Jan-22	17-Jul-17 16:16 by INJ	0.44
17G1325	L-PFDS	13-Jul-17	** Vendor **	17-Feb-22	17-Jul-17 16:11 by INJ	0.415
17G1326	L-PFHpS	13-Jul-17	** Vendor **	18-Oct-21	17-Jul-17 16:08 by INJ	0.42
17G1805	PFDA	18-Jul-17	** Vendor **	31-May-21	18-Jul-17 12:37 by INJ	0.4
17G1806	PFHxA	18-Jul-17	** Vendor **	02-Dec-21	18-Jul-17 12:37 by INJ	0.4
17G1807	MeFOSAA	18-Jul-17	** Vendor **	11-Jan-22	18-Jul-17 12:37 by INJ	0.4
17G1808	EtFOSAA	18-Jul-17	** Vendor **	11-Jan-22	18-Jul-17 12:37 by INJ	0.4
17G1809	PFBA	18-Jul-17	** Vendor **	29-May-22	18-Jul-17 12:37 by INJ	0.4
17G1810	PFODA	18-Jul-17	** Vendor **	29-Apr-21	18-Jul-17 12:37 by INJ	0.4
17G1811	L-PFBS	18-Jul-17	** Vendor **	02-Dec-21	18-Jul-17 12:37 by INJ	0.454
17G1812	8:2FTS	18-Jul-17	** Vendor **	12-Dec-21	18-Jul-17 12:37 by INJ	0.418
17G1813	6:2FTS	18-Jul-17	** Vendor **	20-Apr-22	18-Jul-17 12:36 by INJ	0.422
17 H 0820	PFDoA	08-Aug-17	** Vendor **	31-May-21	08-Aug-17 11:02 by INJ	0.4
17 H 0821	PFNA	08-Aug-17	** Vendor **	30-Sep-21	08-Aug-17 11:03 by INJ	0.4
17 H 0822	PFPeA	08-Aug-17	** Vendor **	14-Jun-22	08-Aug-17 11:05 by INJ	0.4
17 H 0823	PFOA	08-Aug-17	** Vendor **	17-Feb-22	08-Aug-17 11:06 by INJ	0.4
17H0824	PFUdA	08-Aug-17	** Vendor **	18-Oct-21	08-Aug-17 11:08 by INJ	0.4
17 H 0825	PFHxDA	08-Aug-17	** Vendor **	25-May-21	08-Aug-17 11:09 by INJ	0.4
17 H 0826	PFHpA	08-Aug-17	** Vendor **	02-Dec-21	08-Aug-17 11:12 by INJ	0.4
17 H 0827	N-EtFOSA-M	08-Aug-17	** Vendor **	05-Jul-22	08-Aug-17 11:13 by INJ	2
17 H 0828	N-MeFOSA-M	08-Aug-17	** Vendor **	05-Jul-22	08-Aug-17 11:15 by INJ	2
17H0829	N-EtFOSE-M	08-Aug-17	** Vendor **	24-Apr-22	08-Aug-17 11:16 by INJ	2
17H0830	N-MeFOSE-M	08-Aug-17	** Vendor **	24-Apr-22	08-Aug-17 11:17 by INJ	2
Descrip					18-Oct-19	
Standar	e:			ared:	18-Oct-17	
Solvent				ared By:	Isaac N . Johnson	
Final V	$\mathrm{e}(\mathrm{mls}):$			artment:	LCMS	
Vials:				Edit:	19-Oct-17 08:19 by INJ	
PFOS and PFHxS linear and branched components						
Analyte			CAS Number		Concentration Units	
L-PFDS					$1 \mathrm{ug} / \mathrm{mL}$	
6:2 FTS				27619-97-2	$1 \mathrm{ug} / \mathrm{mL}$	
L-PFTeDA					$1 \mathrm{ug} / \mathrm{mL}$	
L-PFPeA					$1 \mathrm{ug} / \mathrm{mL}$	
L-PFOSA					$1 \mathrm{ug} / \mathrm{mL}$	
L-PFOS					$0.789 \mathrm{ug} / \mathrm{mL}$	
L-PFODA					$1 \mathrm{ug} / \mathrm{mL}$	
L-PFOA					$1 \mathrm{ug} / \mathrm{mL}$	
L-PFNA					$1 \mathrm{ug} / \mathrm{mL}$	

Page 1 of 3

Analytical Standard Record
Vista Analytical Laboratory
17 J 1820

Description:	PFC NS Stock	Expires:	18-Oct-19	
Standard Type:	Analyte Spike	Prepared:	18-Oct-17	
Solvent:	MeOH	Prepared By:	Isaac N . Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	19-Oct-17 08:19	INJ
PFOS and PFHxS linear and branched components				
Analyte		CAS Number	Concentration	Units
L-PFHxS			0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFUnA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHpA			1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA		31506-32-8	5	ug/mL
L-PFDoA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFBS			1	$\mathrm{ug} / \mathrm{mL}$
L-PFBA			1	$\mathrm{ug} / \mathrm{mL}$
L-8:2FTS			1	$\mathrm{ug} / \mathrm{mL}$
L-6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE		1691-99-2	5	$\mathrm{ug} / \mathrm{mL}$
EtFOSAA		2991-50-6	1	$\mathrm{ug} / \mathrm{mL}$
EtFOSA		4151-50-2	5	ug/mL
Br -PFHxS		3871-99-6	0.189	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS		39108-34-4	1	$\mathrm{ug} / \mathrm{mL}$
L-PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
PFHxS		355-46-4	1	$\mathrm{ug} / \mathrm{mL}$
Total PFHxS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS			1	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$
PFUnA		2058-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFTrDA		72629-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFTeDA		376-06-7	1	$\mathrm{ug} / \mathrm{mL}$
PFPeA		2706-90-3	1	$\mathrm{ug} / \mathrm{mL}$
PFOSA		754-91-6	1	$\mathrm{ug} / \mathrm{mL}$
PFOS		1763-23-1	1	ug/mL
PFODA		16517-11-6	1	$\mathrm{ug} / \mathrm{mL}$
L-PFTrDA			1	$\mathrm{ug} / \mathrm{mL}$
PFNA		375-95-1	1	$\mathrm{ug} / \mathrm{mL}$
Total PFUnA			1	$\mathrm{ug} / \mathrm{mL}$
PFHxDA		67905-19-5	1	ug/mL

Analytical Standard Record

Vista Analytical Laboratory
17 J 1820

Description:	PFC NS Stock	Expires:	18-Oct-19	
Standard Type:	Analyte Spike	Prepared:	18-Oct-17	
Solvent:	MeOH	Prepared By:	Isaac N . Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	19-Oct-17 08:19	INJ
PFOS and PFHxS linear and branched components				
Analyte		CAS Number	Concentration	Units
PFHxA		307-24-4	1	$\mathrm{ug} / \mathrm{mL}$
PFHpS		375-92-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHpA		375-85-9	1	$\mathrm{ug} / \mathrm{mL}$
PFDS		335-77-3	1	$\mathrm{ug} / \mathrm{mL}$
PFDoA		307-55-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDA		335-76-2	1	$\mathrm{ug} / \mathrm{mL}$
PFBS		375-73-5	1	$\mathrm{ug} / \mathrm{mL}$
PFBA		375-22-4	1	$\mathrm{ug} / \mathrm{mL}$
MeFOSE		24448-09-7	5	$\mathrm{ug} / \mathrm{mL}$
MeFOSAA		2355-31-9	1	$\mathrm{ug} / \mathrm{mL}$
PFOA		335-67-1	1	$\mathrm{ug} / \mathrm{mL}$

br-PFOSK
 Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:

LOT NUMBER:
CONCENTRATION:

SOLVENTS):
DATE PREPARED: (mmldarmsy)
LAST TESTED: (mmodisym)
EXPIRY DATE: (mmidadyyy)
RECOMMENDED STORAGE:
br-PFOSK
brPFOSK1015
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
Methanol
10/13/2015
10/14/2015
10/14/2020
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\sqrt{\sum_{n=1}^{n} u\left(y_{x} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com ${ }^{\star *}$

Table A: br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

| Isomer | $\begin{array}{c}\text { Name }\end{array}$ | $\begin{array}{c}\text { Percent } \\ \text { Composition } \\ \text { by }\end{array}$ |
| :---: | :--- | :--- | :---: |
| 1 | Potassium perfluoro-1-octanesulfonate | Structure |$]$

** Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Date: $\frac{10 / 15 / 2015}{(m m n d d y y y y)}$

Fiqure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)
140ct2015_brPFOSK_001
brPFOSK1015 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Fiqure 1:
 LC: Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatograp	ic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 45% ($80: 20 \mathrm{MeOH}: A C N) / 55 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 12 min and hold for 2 min . Return to initial conditions over 0.5 min . Time: 16 min	Source: Electrospray (negative) Capillary Voltage $(\mathrm{kV})=2.00$ Cone Voltage (V) $=60.00$ Cone Gas Flow (l / hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad br-PFOSK; LC/MS Data (SIR)

140ct2015_brPFOSK_003
brPFOSK1015 $1 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 2:

LC: Waters Acquity Ultra Performance LC
MS: Micromass Quattro micro API MS
Chromatographic Conditions:

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 3:

Injection: On-column

Mobile phase: Same as Figure 2
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.06 \mathrm{e}-3$
Collision Energy (eV) $=11-50$ (variable)

PRODUCT CODE: COMPOUND:

STRUCTURE:

Perfluoro-1-octanesulfonamide

MOLECULAR FORMULA: CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoduys)
EXPIRY DATE: (mmdadswy)
RECOMMENDED STORAGE: Refrigerate ampoule

LOT NUMBER: FOSA09161

CAS \#:
754-91-6

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

MOLECULAR WEIGHT:
SOLVENT(S): Isopropanol

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mmodarym)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc.,
please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: \quad FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatograp	hic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: 50\% (80:20 MeOH:ACN)/50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.50$ Cone Voltage (V) $=40.00$ Cone Gas Flow ($/ / h r$ r) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu 1 / \mathrm{min}$	

$17 G 1209$

Figure 2: FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ FOSA-I)	
		Collision Gas (mbar) $=3.20 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=30$
Flow:	$300 \mu \mathrm{lmin}$	

PRODUCT CODE: COMPOUND:

LOT NUMBER: PFTeDA0916

GAS \#:
376-06-7

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED: (nmodaymy)
EXPIRY DATE: (mndadryy)
RECOMMENDED STORAGE:
$\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT (S):
714.11

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of PFDOA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$ and $\sim 0.2 \%$ of PFPeDA $\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{10}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient Start: 65% ($80: 20 \mathrm{MeOH}: A C N) / 35 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

$$
1761312
$$

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFTeDA)}$
Mobile phase:	(socratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)
Flow:	$300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.20 \mathrm{e}-3$
Collision Energy (eV) $=14$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFTrDA
Perfluoro-n-tridecanoic acid

LOT NUMBER: PFTrDA0517

GAS \#:
72629-94-8

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (midodymy)
EXPIRY DATE: (mmbadymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/02/2017
05/02/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of PFUdA $\left(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\right), \sim 0.4 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad $\frac{05 / 04 / 2017}{(m \text { mod } / 2 x y)}$

[^0]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=22.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow ($/ / h r$) $=650$

1761313

Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFTrDA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS.Parameters

Collision Gas (mbar) $=3.17 \mathrm{e}-3$
Collision Energy (eV) $=15$

br-PFHxSK

Potassium Perfluorohexanesulfonate

Solution/Mixture of Linear and

 Branched Isomers
PRODUCT CODE:

LOT NUMBER:

CONCENTRATION:

SOLVENTS):

DATE PREPARED: (mmddyymy)
LAST TESTED: (mmidarysy)
EXPIRY DATE: (mmddolymy)
RECOMMENDED STORAGE:
br-PFHxSK
brPFHxSK0117
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$45.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFHxS anion)
Methanol
01/03/2017
01/04/2017
01/04/2022
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ of perfluoro- 1 -pentanesulfonate and $\sim 0.2 \%$ of perfluoro- 1 -octanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}$-NMR)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
1	Potassium perfluoro-1-hexanesulfonate	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}$	81.1
2	Potassium 1-trifluoromethylperfluoropentanesulfonate ${ }^{* *}$		2.9
3	Potassium 2-trifluoromethylperfluoropentanesulfonate	$\begin{gathered} \mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CFCF}_{2} \mathrm{SO}_{3}^{-} \cdot \mathrm{K}^{+} \\ \mathrm{CF}_{3} \end{gathered}$	1.4
4	Potassium 3-trifluoromethylperfluoropentanesulfonate		5.0
5	Potassium 4-trifluoromethylperfluoropentanesulfonate		8.9
6	Potassium 3,3-di(trifluoromethyl)perfluorobutanesulfonate		0.2
7	Other Unidentified Isomers		0.5

* Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: \quad Waters Acquity Ultra Performance LC	
MS: \quad Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield R_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient Start: 20\% (80:20 MeOH:ACN) / 80\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 50% organic over 14 min . Ramp to 90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 20 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=50.00$ Cone Gas Flow ($/ / h r$) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu / /$ miń	

$$
17 G 1323
$$

Figure 2: \quad br-PFHxSK; LC/MS Data (SIR)

Conditions for Figure 2:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	periment: SIR (6 channels)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 20% (80:20 MeOH:ACN) / 80\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) = variable (15-62)
	Ramp to 50% organic over 14 min . Ramp to	Cone Gas Flow (l/hr) = 60
	90% organic over 3 min and hold for 1.5 min	Desolvation Gas Flow (1/hr) $=750$
	before returning to initial conditions in 0.5 min .	
	Time: 20 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

STRUCTURE:

L-PFDS

Sodium perfluoro-1-decanesulfonate

LOT NUMBER: LPFDS0217

CAS \#:
2806-15-7

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidalym)
EXPIRY DATE: (mm(ddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDS anion)
>98\%
02/17/2017
02/17/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 622.13
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro-1-dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{r}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFDS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquits Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Figure 2: L-PFDS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ (500 ng/ml L-PFDS)	
		Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=50$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

LOT NUMBER:
 LPFHpS1016

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmidarmex)
EXPIRY DATE: (mmbdasyy)
$\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.6 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFHpS anion) >98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):
472.10

Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of L-PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)$ and $\sim 0.1 \%$ of L-PFOS $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

$$
1761326
$$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{r} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1:
L-PFHpS; LC/MS Data (TIC and Mass Spectrum)
18oct2016_LPFHpS_001
LPFHpS1016 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55\% (80:20 MeOH:ACN)/45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	Ramp to 90% organic over 7 min and hold	Cone Gas Flow (l/hr) $=60$
	for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$$
17 G 1326
$$

Figure 2: L-PFHpS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

MS Parameters
 Collision Gas $($ mbar $)=3.43 \mathrm{e}-3$
 Collision Energy $(\mathrm{eV})=35$

PRODUCT CODE: COMPOUND:

STRUCTURE:

PFDA
Perfluoro-n-decanoic acid

LOT NUMBER: PFDA0516

GAS \#:
335-76-2

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddymy)
EXPIRY DATE: (mmoddyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)
>98\%
05/31/2016
05/31/2021
Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of Perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
$\frac{06 / 13 / 2016}{(m m / d d / y y y y)}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(v\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{w} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFDA)
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAC buffer)	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=13$

WELLINGTON
LABORATORIES

PRODUCT CODE:
COMPOUND:

STRUCTURE:

PFHxA
Perfluoro-n-hexanoic acid

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddadysy)
EXPIRY DATE: (mmodumy)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/02/2016
12/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 314.05
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 1.0 \%$ of branched isomers.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots . x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxA; LC/MS Data (TIC and Mass Spectrum)

| $02 \mathrm{dec} 2016 _$PFHxA_002 |
| :--- | :--- | :--- |
| PFHxA1216 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column: Acquity UPLC BEH Shield RP_{18}		
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN)/50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (I/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu 1 / \mathrm{min}$	

Figure 2: \quad PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: \begin{tabular}{ll}

\& | Direct loop |
| :--- |
| $10 \mu \mathrm{l}(500$ |

Mobile phase:

\& | Isocratic 8 |
| :--- |
| (both with |

Flow: \& $300 \mu \mathrm{l} / \mathrm{min}$
\end{tabular}

Form\#:27, Issued 2004-11-10
Revision\#3, Revised 2015-03-24

MS Parameters

Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Collision Energy (eV) $=10$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

CAS \#:
2355-31-9

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodaysy)
EXPIRY DATE: (mmiddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
01/11/2017
01/11/2022
Refrigerate ampoule

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{01 / 12 / 2017}{(\text { mmidod } / 2 m y)}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{f}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 65\% (80:20 MeOH:ACN) / 35\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7.5 min and hold for	Cone Gas Flow (l/hr) $=50$
	1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ N-MeFOSAA)	MS Parameters
		Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu 1 / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

N-EtFOSAA

N -ethylperfluoro-1-octanesulfonamidoacetic acid

STRUCTURE:
CAS \#:
2991-50-6

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoduryy)
EXPIRY DATE: (mmbdysyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
01/11/2017
01/11/2022
Refrigerate ampoule

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{01 / 12 / 2017}{(m m(d) d W y y)}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{i}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{2} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

Plobrcectatimal
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatograp	Conditions	MS Parameters
Column:	$\begin{aligned} & \text { Acquity UPLC BEH Shield RP } \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \end{aligned}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: 65% ($80: 20 \mathrm{MeOH}: A C N) / 35 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=35.00$ Cone Gas Flow ($/ / \mathrm{hr}$) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Note: N-EtFOSA is formed by fragmentation of N-EtFOSAA.

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N-EtFOSAA)}$	MS Parameters

WELLINGTON

LABORATORIES

PRODUCT CODE: COMPOUND:

STRUCTURE:

PFBA
Perfluoro-n-butanoic acid

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/ddywy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
05/29/2017
05/29/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 214.04
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1} x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFBA; LC/MS Data (TIC and Mass Spectrum)

$17 G 1809$

Figure 2: \quad PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFBA)	
		Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=10$
Flow:	$300 \mu \mathrm{lmin}$	

PRODUCT CODE:
 COMPOUND:

Perfluoro-n-octadecanoic acid

LOT NUMBER: PFODA0416

CAS \#:
16517-11-6

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodysm)
EXPIRY DATE: (mmbda/hyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/29/2016
04/29/2021

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(v\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:		
MS:	Waters Acquity Ultra Performance LC Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1000 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 70\% (80:20 MeOH:ACN) / 30\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 95\% organic over 6 min and hold for	Cone Gas Flow (l/hr) $=50$
	2.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFODA)}$	MS Parameters
Mobile phase:	Isocratic $90 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 10 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.39 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=15$
Flow:	$300 \mu / / \mathrm{min}$	

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

LOT NUMBER:
Potassium perfluoro-1-butanesulfonate

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduyyy)
EXPIRY DATE: (mmdadswy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{~F}_{3} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
12/02/2016
12/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LCIMS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \text { Acquity UPLC BEH Shield RP } \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: 40\% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow $(1 / h r)=750$

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{I}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFBS})$	
		Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=25$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:

 COMPOUND:

8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate

LOT NUMBER: $82 F T S 1216$

GAS \#:
Not available

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	550.16
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT (S):	Methanol
	$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$	$(8: 2 \mathrm{FTS}$ anion)		
CHEMICAL PURITY:	$>98 \%$			
LAST TESTED: (mm/ddrysy)	$12 / 12 / 2016$			
EXPIRY DATE: (mmiddyyy)	$12 / 12 / 2021$			
RECOMMENDED STORAGE:	Refrigerate ampoule			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1:
8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

$\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 85% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=30.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow ($1 / \mathrm{hr}$) $=750$

Figure 2: \quad 8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ 8:2FTS)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=30$

WELLINGTON
LA B ORATORIES

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE:

COMPOUND:

STRUCTURE:

6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorooctane sulfonate

CAS \#:
Not available

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	450.15
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT(S):	Methanol
	$47.4 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$	(6:2FTS anion)		
CHEMICAL PURITY:	>98\%			
LAST TESTED: (mmodiryy)	04/20/2017			
EXPIRY DATE: (mmodolyys)	04/20/2022			
RECOMMENDED STORAGE:	Refrigerate ampo			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad $\frac{04 / 24 / 2017}{(m m i d d y b y y)}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad 6:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 ```LC: Waters Acquity Ultra Performance LC```
 MS: \quad Micromass Quattro micro API MS

Chromatograp	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 85% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=30.00$ Cone Gas Flow $(1 / h r)=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$17 G 1813$

Figure 2: \quad 6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ 6:2FTS)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=25$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

Perfluoro-n-dodecanoic acid

LOT NUMBER: PFDoA0516

GAS \#:
307-55-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mnoddryyy)
EXPIRY DATE: (mmbadsyyy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

>98\%

$$
05 / 31 / 2016
$$

$$
05 / 31 / 2021
$$

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{f}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{2}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDoA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	ment Full Scan (150-85
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with 10 mM NH	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 7.5 min and hold for	Cone Gas Flow $(1 / h r)=100$
	1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / m i n$	

Figure 2: PFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFDoA)
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

 COMPOUND:STRUCTURE:

Perfluoro-n-nonanoic acid

LOT NUMBER: PFNA0916

GAS \#:
375-95-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 464.08
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of perfluoro-n-octanoic acid (PFOA) and $<0.1 \%$ of perfluoro-n-heptanoic acid (PFHpA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad
10/11/2016
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)

30sept2016_PFNA_001	30-Sep-2016	10:52:58
PFNA0916 $25 \mathrm{ug} / \mathrm{ml}$		
100		

\section*{Conditions for Figure 1:
 | LC: | Waters Acquity Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (I/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:

Perfluoro-n-pentanoic acid

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{5} \mathrm{HF}_{9} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mnddodrym)	$06 / 14 / 2017$
EXPIRY DATE: (mmmddrym)	$06 / 14 / 2022$
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT(S): Methanol Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydrido - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/ddlyyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 30% ($80: 20 \mathrm{MeOH}: A C N) / 70 \% \mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH OAc buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / h r$) $=60$
Desolvation Gas Flow $(1 / h r)=750$

Flow:
$300 \mu 1 / \mathrm{min}$

Figure 2: \quad PFPeA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0217

GAS \#:

335-67-1

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{i}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc, (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
 Column: Acquity UPLC BEH Shield RP ${ }_{18}$

 $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (225-850 amu)Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH
Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu 1 / \mathrm{min}$

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFOA})$
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	
Flow:	$300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=10$

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

PFUdA
Perfluoro-n-undecanoic acid

LOT NUMBER: PFUdA1016

CAS \#: 2058-94-8

STRUCTURE:

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP_{18}	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 55% (80:20 MeOH:ACN)/45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow $(1 / h r)=65$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFUdA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\text { Collision Gas }(\mathrm{mbar})=3.24 \mathrm{e}-3$ $\text { Collision Energy }(\mathrm{eV})=11$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:

Perfluoro-n-hexadecanoic acid

LOT NUMBER: PFHxDA0516

GAS \#:
67905-19-5

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddidys)
EXPIRY DATE: (mmodornmy)
RECOMMENDED STORAGE:
$\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/25/2016
05/25/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):
814.13

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.4 \%$ of PFODA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 05/27/2016 (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{r}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxDA; LC/MS Data (TIC and Mass Spectrum)

25may2016_PFHxDA_001	25-May-2016	16:22:02
PFHxDA0516 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $\mathrm{RP}_{\text {is }}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $70 \%(80: 20 \mathrm{MeOH}: A C N) / 30 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 95% organic over 6 min and hold for 2.5 min
before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (250-1250 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=25.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad PFHxDA; LC/MS/MS Data (Selected MRM Transitions)
25may2016_PFHxDA_003

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFHxDA)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.66 \mathrm{e}-3$
Collision Energy (eV) $=15$

PRODUCT CODE: COMPOUND:

STRUCTURE:

Perfluoro-n-heptanoic acid
PFHpA

MOLECULAR FORMULA:
$\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
$>98 \%$

EXPIRY DATE: (mmldalyyy)
RECOMMENDED STORAGE:

12/02/2016
12/02/2021
Store ampoule in a cool, dark place

LOT NUMBER: PFHpA1216

GAS \#:
375-85-9

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water (<1\%)

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
$12 / 12 / 2016$
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{i}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHpA; LC/MS Data (TIC and Mass Spectrum)
02dec2016_PFHpA_002
PFHpA1216 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
\(\left.$$
\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\
10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFHpA})\end{array}
$$

Mobile phase: \& \begin{array}{l}Isocratic 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}

(both with 10 \mathrm{mM} \mathrm{NH}

4\end{array} \mathrm{OAc} buffer)\end{array}\right\}\)| | $300 \mu \mathrm{l} / \mathrm{min}$ |
| :--- | :--- |

MS Parameters

Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0717M

GAS \#:
4151-50-2

MOLECULAR FORMULA: CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mnlodryyy)
EXPIRY DATE: (mmodarym)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/05/2017
07/05/2022

MOLECULAR WEIGHT: 527.20
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{1}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad N-EtFOSA-M; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC. \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: $45 \% \mathrm{H}_{2} \mathrm{O} / 55 \%$ (80:20 MeOH:ACN) (both with 10 mM NH OAc buffer)
	Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
	Time: 10 min
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage (V) $=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad N-EtFOSA-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N}-$ EtFOSA-M)
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH A OAc buffer)	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas $(\mathrm{mbar})=3.43 \mathrm{e}-3$
Collision Energy (eV) $=30$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

N-MeFOSA-M
N -methylperfluoro-1-octanesulfonamide

LOT NUMBER: NMeFOSA0717M

CAS \#:
31506-32-8

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mmidulyw	07/05/2017
EXPIRY DATE: (mmdodsw)	07/05/2022
RECOMMENDED STORAGE:	Store ampoule in a cool, dark pla

MOLECULAR WEIGHT: SOLVENT(S):

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad N-MeFOSA-M; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 45\% $\mathrm{H}_{2} \mathrm{O} / 55 \%$ (80:20 MeOH:ACN)	Capillary Voltage (kV) $=2.50$
	(both with 10 mM NH	Cone Voltage (V) $=40.00$
	Ramp to 90% organic over 7.5 min and hold for	Cone Gas Flow (l/hr) $=50$
	1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: N-MeFOSA-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ N-MeFOSA-M)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters
Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=30$

PRODUCT CODE:

 COMPOUND:STRUCTURE:

N-EtFOSE-M
2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol

CAS \#:
1691-99-2

MOLECULAR FORMULA: CONCENTRATION:
 CHEMICAL PURITY:
 LAST TESTED: (mmodidyar)

EXPIRY DATE: (mmiddyyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/24/2017 (HRGC/LRMS)
04/21/2017 (LC/MS)
04/24/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 571.25
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 04/26/2017
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{r}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

Chromatographic Conditions:

Column:	$30 \mathrm{~m} \mathrm{DB}-5(0.25 \mathrm{~mm}$ id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector:	$250^{\circ} \mathrm{C}$ (Splitless Injection)
Oven:	$100^{\circ} \mathrm{C}(5 \mathrm{~min})$
	$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
	$325^{\circ} \mathrm{C}(20 \mathrm{~min})$
Ionization:	$\mathrm{El}+$
Detector:	$250^{\circ} \mathrm{C}$
	Full Scan $(50-1000 \mathrm{amu})$

Figure 2: N-EtFOSE-M; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 2:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 60\% MeOH / 40\% $\mathrm{H}_{2} \mathrm{O}$
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=40.00$
Cone Gas Flow ($/ / h r$) $=100$
Desolvation Gas Flow ($/ / h r$) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$

Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ N-EtFOSE-M)

Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$ Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=33$

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

N-MeFOSE-M
2-(N -methylperfluoro-1-octanesulfonamido)-ethanol
LOT NUMBER:
NMeFOSE0417M

MOLECULAR FORMULA:	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$	MOLECULAR WEIGHT:	557.22
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmodysys)	04/24/2017 (HRGC/LRMS)		
	04/21/2017 (LC/MS)		
EXPIRY DATE: (mmodysmm)	04/24/2022		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains,

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad N-MeFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

Chromatographic Conditions:

Column:	$30 \mathrm{~m} \mathrm{DB}-5(0.25 \mathrm{~mm}$ id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector:	$250^{\circ} \mathrm{C}$ (Splitless Injection)
Oven:	$100^{\circ} \mathrm{C}(5 \mathrm{~min})$
	$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
	$325^{\circ} \mathrm{C}(20 \mathrm{~min})$
Ionization:	$\mathrm{El}+$
Detector:	$250^{\circ} \mathrm{C}$
	Full Scan $(50-1000 \mathrm{amu})$

Figure 2: N-MeFOSE-M; LC/MS Data (TIC and Mass Spectrum)

| 21apr2017_NMeFOSEM_005 |
| :--- | :--- | :--- |
| NMeFOSE0417M $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 2:

LC: \quad Waters Acquity Ultra Performance LC
MS: Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $60 \% \mathrm{MeOH} / 40 \% \mathrm{H}_{2} \mathrm{O}$
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min
$300 \mu 1 / \mathrm{min}$
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.50$
Cone Voltage (V) $=40.00$
Cone Gas Flow $(1 / h r)=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 3:
N-MeFOSE-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 3:

Injection: Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ N-MeFOSE-M)

Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=35$

Analytical Standard Record

Vista Analytical Laboratory

Analyte	CAS Number	Concentration
13C3-PFBS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFTeDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-6:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFPeA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFHpA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFNA	1.25	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory
17L0402

Description:	PFC - IS	Expires:	04-Dec-18	
Standard Type:	Reagent	Prepared:	04-Dec-17	
Solvent:	MeOH	Prepared By:	Kyle Byrd-Fisher	
Final Volume (mls):	20	Department:	LCMS	
Vials:	Last Edit:	12-Dec-17 09:51 by AEW		
Analyte		CAS Number	Concentration	Units
13C8-PFOS			1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOSA			1.25	$\mathrm{ug} / \mathrm{mL}$
18O2-PFHxS			1.25	$\mathrm{ug} / \mathrm{mL}$
d3-MeFOSAA		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-PFUnA			1.25	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE: COMPOUND:

STRUCTURE:

MPFHxA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexanoic acid

LOT NUMBER: MPFHxA1116

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddymy)
EXPIRY DATE: (mmidd $/$ yyy $)$
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/22/2016
11/22/2021

MOLECULAR WEIGHT: 316.04 SOLVENT(S): Methanol Water ($<1 \%$)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n-hexanoic acid and $\sim 0.3 \%$ of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

M2PFHxDA
Perfluoro-n-[1, $2{ }^{-13} \mathrm{C}_{2}$ hexadecanoic acid

LOT NUMBER: M2PFHxDA1112

Not available

STRUCTURE:

GAS \#:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurys)
EXPIRY DATE: (mmuddyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
01/07/2016 01/07/2021

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:
816.11

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{-}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)

\section*{Conditions for Figure 1:
 | LC: | Waters Acquity Ultra Performance LC
 MS: |
| :--- | :--- |
| Micromass Quattro micro API MS | |}

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $60 \%(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 100% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters
Experiment: Full Scan (225-1200 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=25.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu 1 / \mathrm{min}$

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2PFHxDA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=15 \end{aligned}$
Flow:	$300 \mu / / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: d3NMeFOSAA0517
N -methyl-d3-perfluoro-1-octanesulfonamidoacetic acid
CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmodism)
EXPIRY DATE: (mndadrmy)
RECOMMENDED STORAGE: Refrigerate ampoule
$\mathrm{C}_{n 1} \mathrm{D}_{3} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$

$$
50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
$$

>98\%
05/19/2017
05/19/2022

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 98 \%{ }^{2} \mathrm{H}_{3}$
574.23

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

$17 K 0802$

Figure 1: \quad d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

| 19may2017_d3NMeFOSAA_004 |
| :--- | :--- | :--- |
| d3NMEFOSAA0517 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

$17 K 0802$
Figure 2: \quad d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ d3-N-MeFOSAA)	MS Parameters
		Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Mobile phase:	Isocratic 80\% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu / / m i n$	

CERTIFICATE OF ANALYSIS

PRODUCT CODE:	d5-N-EtFOSAA COMPOUND:	L-ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid	
STRUCTURE:		LAS \#:	Not available

MOLECULAR FORMULA:	$\mathrm{C}_{12} \mathrm{D}_{5} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$	MOLECULAR WEIGHT:	590.26 CONCENTRATION:
	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$	ISOTOPIC PURITY:	$\geq 98 \%{ }^{2} \mathrm{H}_{5}$
LAST TESTED: $(m m / / d d y y y y)$	$11 / 22 / 2016$		
EXPIRY DATE: (mm/lddyyy)	$11 / 22 / 2021$		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyys)

INTENDED USE:

$17 K 0803$

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

17K0803

Figure 1: \quad d5-N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

| 22nov2016_d5NEtFOSAA_002 |
| :--- | :--- | :--- |
| d5NEtFOSAA1116 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{16}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage $(\mathrm{V})=35.00$ Cone Gas Flow (I/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ d5-N-EtFOSAA) $)$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=20$

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

M3PFBA
Perfluoro-n-[2,3,4- ${ }^{13} \mathrm{C}_{3}$]butanoic acid

LOT NUMBER: M3PFBA0516

CAS \#: \quad Not available

MOLECULAR WEIGHT: 217.02
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(2,3,4- ${ }^{13} \mathrm{C}_{3}$)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-[$\left[{ }^{13} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 07/08/2016 (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(v\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M3PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M3PFBA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.62 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=10 \end{aligned}$
Flow:	$300 \mu / / m i n$	

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

M2-8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{-13} \mathrm{C}_{2}\right]$ decane sulfonate
CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/spy)
EXPIRY DATE: (mm/ddysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-8:2FTS anion)
>98\%
07/05/2017
07/05/2022

Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native $8: 2$ FTS and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 07/07/2017 (mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

7-KO8O5

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.
EXPIRY DATE / PERIOD OF VALIDITY:
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

$17 K 0805$

Figure 1: M2-8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC Micromass Quattro micro API MS	
MS:	Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	MS Parameters

$17 K 0805$

Figure 2: M2-8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{M2-8:2FTS)}$	Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=30$
Flow:	$300 \mu 1 / \mathrm{min}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:
M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2{ }^{-13} \mathrm{C}_{2}\right]$ octane sulfonate
CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/ysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-6:2FTS anion)
>98\%
02/17/2017
02/17/2022
Refrigerate ampoule

MOLECULAR WEIGHT:
452.13

SOLVENT(S): Methanol

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $6: 2$ FTS contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

$17 K 0807$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{h}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2-6:2FTS; LC/MS Data (TIC and Mass Spectrum)

| 17feb2017_M262FTS_002 |
| :--- | :--- | :--- |
| M262FTSO217 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source:Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=30.00$
Cone Gas Flow $(1 / h r)=50$
Desolvation Gas Flow (l/hr) $=750$

$$
17 K 0807
$$

Figure 2:

> M2-6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:MPFNA
Perfluoro-n-[1,2,3,4,5- $\left.{ }^{13} \mathrm{C}_{5}\right]$ nonanoic acid

LOT NUMBER: MPFNA0916

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:	$\begin{aligned} & { }^{13} \mathrm{C}_{5}{ }_{5} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \end{aligned}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mmddumm)	09/30/2016
EXPIRY DATE: (mmddol/wy)	09/30/2021
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,5-{ }^{13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^1]
INTENDED USE:

17×0810

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: MPFNA; LC/MS Data (TIC and Mass Spectrum)
30sept2016_MPFNA_001
MPFNA0916 $25 \mathrm{ug} / \mathrm{ml}$
100

$17 K 0810$

Figure 2: MPFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ MPFNA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=11 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

```
M2PFTeDA
Perfluoro-n- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right.\) tetradecanoic acid
```


LOT NUMBER: M2PFTeDA0217

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmiduymy)
EXPIRY DATE: (mmbdaryyy) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{gl} / \mathrm{ml}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
03/01/2017

MOLECULAR WEIGHT:
SOLVENT (S):
ISOTOPIC PURITY:

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
716.10

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
($1,2-{ }^{13} \mathrm{C}_{2}$)

ADDIONAL INFORMATION:

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only, This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{2} x_{L}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

$$
17 K 0812
$$

Figure 1: M2PFTeDA; LC/MS Data (TIC and Mass Spectrum)

$171<0812$

Figure 2: M2PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

MPFUdA
Perfluoro-n-[1, $2{ }^{-13} \mathrm{C}_{2}$]undecanoic acid

LOT NUMBER: MPFUdA1116

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmiddyyy)
EXPIRY DATE: (mmldarhy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{9} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/22/2016
11/22/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 566.08
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1-^{13} \mathrm{C}_{1}-$ PFUdA ($\sim 1 \%$; see Figure 2$), 2{ }^{-13} \mathrm{C}_{1}-$ PFUdA $(\sim 1 \%)$, and PFUdA $(\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{1207 /(\text { mmiddywn) }}{}$

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFUdA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: MPFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFUdA)}$	MS Parameters

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

M4PFH pA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$]heptanoic acid

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmodurym)
EXPIRY DATE: (mmidduyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/03/2017
05/03/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 368.03
SOLVENT(S): Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M4PFHPA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: M4PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M4PFHpA)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.46 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=9 \end{aligned}$
Flow:	$300 \mu / \mathrm{min}$	

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

LOT NUMBER: MPFDoA0517

CAS \#: Not available

MOLECULAR FORMULA:

CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmoddymex)
EXPIRY DATE: (mmbdaryw)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/23/2017
05/23/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 616.08
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^2]
INTENDED USE:

17 k 96

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots, The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFDoA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient Start: 60% ($80: 20 \mathrm{MeOH}: A C N$) / $40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=20.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: MPFDoA; LC/MS/MS Data (Selected MRM Transitions)

| Conditions for Figure 2: | |
| :--- | :--- | :--- |
| Injection: Direct loop injection
 $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFDoA})$ | MS Parameters |

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

MPFHxS

Sodium perfluoro-1-hexane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate

LOT NUMBER: MPFHxS0217

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/ddrysy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{ONa}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt) $47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFHxS anion) $>98 \%$
02/17/2017
02/17/2022

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:
426.10

Methanol
$>94 \%\left({ }^{18} \mathrm{O}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The response factor for MPFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)$ has been observed to be up to 10% lower than for PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)$ when both compounds are injected together. This difference may vary between instruments.
- Contains $\sim 1.0 \%$ of sodium perfluoro- 1 -octane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate (${ }^{18} \mathrm{O}_{2}$-PROS).
- Due to the isotopic purity of the starting material $\left({ }^{18} \mathrm{O}_{2}>94 \%\right)$, MPFHxS contains $\sim 0.3 \%$ of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By: $\frac{\text { B.G. Ehittim }}{\text { B. } \frac{03 / 02 / 2017}{(m m / d d y y y y)}}$ Date:

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc, are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad MPFHxS; LC/MS Data (TIC and Mass Spectrum)

| 17feb2017_MPFHxS_001 |
| :--- | :--- | :--- |
| MPFHxS0217 $10 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	
	Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=50.00$
	Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($1 / h r$) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$17 K 0818$
Figure 2: MPFHxS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ MPFHxS $)$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$
	(both with 10 mM NH 4 OAc buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (aV) $=30$

PRODUCT CODE:

COMPOUND:

M8PFOS
Sodium perfluoro-1-[$\left.{ }^{[3} \mathrm{C}_{8}\right]$ octanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/smy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}
$$

$$
48.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad(\mathrm{Na} \text { salt })
$$

$$
46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} \text { (M8PFOS anion) }
$$

$$
>97 \%
$$

$$
09 / 30 / 2016
$$

$$
09 / 30 / 2021
$$

Store ampoule in a cool, dark place

LOT NUMBER: M8PFOS0916

CAS \#: Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

MOLECULAR WEIGHT: 530.05
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>99 \%{ }^{13} \mathrm{C}$
(${ }^{13} \mathrm{C}_{\mathrm{B}}$)

- See page 2 for further details.
- Contains $\sim 0.6 \%$ of sodium perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonate ($\left({ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}\right), \sim 1.0 \%$ of chlorohexadecafluoro-1-[$\left[^{3} \mathrm{C}_{8}\right]$ octanesulfonate, and $\sim 1.5 \%$ of sodium perfluoro-1-[${ }^{13} \mathrm{C}_{4}$]octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad M8PFOS; LC/MS Data (TIC and Mass Spectrum)

$17 k 0819$

Figure 2: M8PFOS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M8PFOS})\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { socratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array} \\ & 30 \mathrm{OAc} \text { buffer) }\end{array}\right\}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=40$

PRODUCT CODE: COMPOUND:

M3PFBS
Sodium perfluoro- $1-\left[2,3,4-{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate
STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmodurym) EXPIRY DATE: (muddy RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}$
MOLECULAR WEIGHT:
SOLVENT(S): Methanol
$46.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFBS anion)
>98\%
05/24/2017
05/24/2022
Store ampoule in a cool, dark place
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(2,3,4-{ }_{-13} \mathrm{C}_{3}\right)$

GAS \#: \quad Not available

LOT NUMBER: M3PFBS0815
-

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/ddyyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBS; LC/MS Data (TIC and Mass Spectrum)
20aug2015_M3PFBS_003
M3PFBS0815 $10 \mathrm{ug} / \mathrm{ml}$
100

Figure 2: M3PFBS; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE: COMPOUND:

M8FOSA-I
Perfluoro-1-[$\left.{ }^{[3} \mathrm{C}_{8}\right]$ octanesulfonamide

LOT NUMBER: M8FOSA10171

CAS \#: Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.1 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonamide and $\sim 0.01 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{l}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 85% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage $(\mathrm{V})=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Flow: $\quad 300 \mu / / m i n$

$17 K 3038$

Figure 2: M8FOSA-1; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{M8FOSA-1)}$	
		Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=30$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

MPFDA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]decanoic acid

STRUCTURE:

LOT NUMBER: MPFDA0717

CAS \#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{19} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	516.07 CONCENTRATION:
	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT (S):	Methanol CHEMICAL PURITY:
	$>98 \%$	Water $(<1 \%)$	
LAST TESTED: (mm/ddyyyy)	$07 / 13 / 2017$		$\geq 99 \%{ }^{13} \mathrm{C}$
EXPIRY DATE: (mm/dd/yyy)	$07 / 13 / 2022$		$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of ${ }^{13} \mathrm{C}_{1}$-PFNA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)
13july2017_MPFDA_001
MPFDA0717 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 55% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

$$
17 \times 3039
$$

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:
COMPOUND:

M2PFOA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]octanoic acid

STRUCTURE:

MOLECULAR WEIGHT:
SOLVENT(S): Methanol

ISOTOPIC PURITY:
416.05

Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com ${ }^{\star \star}$

Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient
Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow $(1 / h r)=750$

$$
17 K 3040
$$

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:M3PFPeA
Perfluoro-n-[3,4,5- $\left.-^{13} \mathrm{C}_{3}\right]$ pentanoic acid

LOT NUMBER: M3PFPeA0417

GAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodamm)
EXPIRY DATE: (mmldadywy)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}
$$

$$
50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
$$

>98\%
04/20/2017
04/20/2022

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:	267.02 SOLVENTS): Methanol ISOTOPIC PURITY:
	Water $(<1 \%)$
	$\geq 99 \%{ }^{13} \mathrm{C}$
	$\left(3,4,5-{ }^{-13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro- $n-\left[{ }^{3} \mathrm{C}_{3}\right]$ butanoic acid and 0.05% of perfluoro- 1 -pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFPeA; LC/MS Data (TIC and Mass Spectrum)
20apr2017_M3PFPeA_001
M3PFPeAO417 $25 \mathrm{ug} / \mathrm{ml}$
100

\section*{Conditions for Figure 1:
 | LC: | Waters Acquits Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

```
Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP }\mp@subsup{P}{18}{
    1.7 \mum, 2.1 < 100 mm
```

Mobile phase: Gradient
Start: 40% ($80: 20 \mathrm{MeOH}: A C N) / 60 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for
2 min before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan ($150-850 \mathrm{amu})$
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow ($/ / h r$) $=60$
Desolvation Gas Flow ($/ / h r$) $=750$

$17 K 3041$

Figure 2: M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)
20apr2017_M3PFPeA_003

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ (500 ng/ml M3PFPeA)	Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile ph	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=9$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Analytical Standard Record

Vista Analytical Laboratory
17K2502

Parent Standards used in this standard:					
Standard Des		Prepared	Prepared By	Expires	(mls)
17J0526 13C		05-Oct-17	** Vendor **	31-May-21	0.5
17J0527 13C		05-Oct-17	** Vendor **	05-Jul-22	0.51
17J1018 13C		10-Oct-17	** Vendor **	12-Apr-22	0.5
17J1019 13C		10-Oct-17	** Vendor **	27-Aug-19	0.5
$17 \mathrm{~J} 1020 \quad 13 \mathrm{C}$		10-Oct-17	** Vendor **	23-May-22	0.5
17J1021 13C		10-Oct-17	** Vendor **	13-Jul-22	0.5
17 J 1022 13C		10-Oct-17	** Vendor **	05-Jul-22	0.53
17 J 1023 13C		10-Oct-17	** Vendor **	19-May-22	0.525
$17 \mathrm{~J} 1024 \quad 13 \mathrm{C}$		10-Oct-17	** Vendor **	02-Aug-18	0.5
Description:	PFC-RS	Expires:	25-Nov-19		
Standard Type:	Reagent	Prepared:	25-Nov-17		
Solvent:	MeOH	Prepared By:	Isaac N. Johnson		
Final Volume (mls):	20	Department:	LCMS		
Vials:	1	Last Edit:	25-Nov-17 10:25	INJ	
Analyte		CAS Number	Concentration	Units	
13C9-PFNA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C8-PFOA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C7-PFUnA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C6-PFDA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C5-PFHxA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C4-PFOS			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C4-PFBA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C3-PFHxS			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-FOUEA			1.25	$\mathrm{ug} / \mathrm{mL}$	

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE: COMPOUND:

M6PFDA
Perfluoro-n-[1,2,3,4,5,6- ${ }^{13} \mathrm{C}_{6}$]decanoic acid

LOT NUMBER: M6PFDA0516

CAS \#: \quad Not available

MOLECULAR FORMULA:

CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmddadyyy)
EXPIRY DATE: (mmdodymy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& { }^{13} \mathrm{C}_{6}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{18} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{\mu g} / \mathrm{ml} \\
& \\
& >98 \% \\
& 05 / 31 / 2016 \\
& 05 / 31 / 2021 \\
& \text { Store ampoule in a cool, dark place }
\end{aligned}
$$

MOLECULAR WEIGHT: 520.04
SOLVENT(S):
ISOTOPIC PURITY:

Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,5,6- ${ }^{13} \mathrm{C}_{6}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)

\section*{Conditions for Figure 1:
 | LC: | Waters Acquity Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN)/50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / h r$) $=50$ Desolvation Gas Flow ($/ / \mathrm{hr}$) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

1750526

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)
31may2016 M6PFDA_002

PRODUCT CODE:
COMPOUND:
STRUCTURE:

M8PFOA
Perfluoro-n-[$\left.{ }^{13} \mathrm{C}_{8}\right]$ octanoic acid

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED: (mmoddyyny)

EXPIRY DATE: (mmddymy)
${ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$
$49 \pm 2.45 \mu \mathrm{~g} / \mathrm{ml}$
97.9\% (M8PFOA)
2.1\% (MPFOA [M+4])

07/05/2017
07/05/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of native perfluoro-n-octanoic acid (PFOA) and $\sim 2.1 \%$ of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: M8PFOA; LC/MS Data (TIC and Mass Spectrum)

$$
1750527
$$

Figure 2: M8PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M8PFOA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.28 \mathrm{e}-3$ Collision Energy (eV) $=10$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:

COMPOUND:

STRUCTURE:

MPFBA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ butanoic acid

LOT NUMBER: MPFBA0417

CAS \#: Not available

MOLECULAR WEIGHT: 218.01
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

$$
1751018
$$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots . x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC Micromass Quattro micro API MS	
MS:		
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: $30 \%(80: 20 \mathrm{MeOH}: A C N) / 70 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (kV) $=3.00$ Cone Voltage $(\mathrm{V})=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=100$
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFBA})$	
		Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Collision Energy (eV) $=10$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
COMPOUND:

M5PFHxA
Perfluoro-n- $\left[1,2,3,4,6-{ }^{13} \mathrm{C}_{5}\right.$ hexanoic acid

LOT NUMBER: M5PFHxA0814

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurym)
EXPIRY DATE: (mpldarmys)
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{11} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
08/27/2014 08/27/2019
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENTS):

ISOTOPIC PURITY:
319.02

Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,6-{ }^{13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 03/31/2015
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M5PFHxA; LC/MS Data (TIC and Mass Spectrum)

27aug2014_M5PFHxA_002
M5PFHxA0814 $10 \mathrm{ug} / \mathrm{ml}$
27-Aug-2014
100

\section*{Conditions for Fiqure 1:
 | LC: | Waters Acquity Ultra Performance LC
 MS: |
| :--- | :--- |
| Micromass Quattro micro API MS | |}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:
Gradient
Start: 40% ($80: 20 \mathrm{MeOH}: A C N$) / $60 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NAAC}_{4}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow ($/ \mathrm{hr}$) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: M5PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M5PFHxA)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.54 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=10 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

WELLINGTON

LABORATORIES

CERTIFICATE OF ANALYSIS
DOCUMENTATION

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M9PFNA
Perfluoro- $\mathrm{n}-\left[{ }^{13} \mathrm{C}_{9}\right]$ nonanoic acid

LOT NUMBER: M9PFNA0517

CAS \#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	473.01
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmodysys)	05/23/2017		$\left({ }^{13} \mathrm{C}_{9}\right)$
EXPIRY DATE: (mmbdysyy)	05/23/2022		
RECOMMENDED STORAGE:	Store ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.9 \%$ of ${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)
23may2017_M9PFNA_001
M9PFNA0517 $25 \mathrm{ug} / \mathrm{ml}$
100

\section*{| Conditions for Figure 1: | |
| :--- | :--- |
| LC: | Waters Acquity Ultra Performance LC |
| MS: | Micromass Quattro micro API MS |}

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N$) / $40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)

WELLINGTON

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:
 STRUCTURE:

M7PFUdA

LOT NUMBER: M7PFUdA0717
Perfluoro-n-[1,2,3,4,5,6,7- ${ }^{13} \mathrm{C}_{7}$]undecanoic acid
CAS \#: \quad Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{7}^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	571.04
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
	07/13/2017		(1,2,3,4,5,6,7- ${ }^{13} \mathrm{C}_{7}$)
EXPIRY DATE: (mm/da/yyy)	07/13/2022		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:
Date: \qquad
($\mathrm{mm} / \mathrm{dd} / \mathrm{y} y \mathrm{yy}$)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1^{\prime}}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{i}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 2 min	
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

17 J 1021

Figure 2: \quad M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 7 \mathrm{PFUdA})$	MS Parameters

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

STRUCTURE:

M3PFHxS
Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ hexanesulfonate

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyyy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFHxS anion)
>98\%
07/05/2017
07/05/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFHxS; LC/MS Data (TIC and Mass Spectrum)

$17 J 1022$

Figure 2:
M3PFHxS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M3PFHxS})$	MS Parameters

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE: COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate

STRUCTURE:

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	526.08
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol
CHEMICAL PURITY:	$47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFOS anion)		
CAST TESTED: (mm/ddyyyy)	$>98 \%$	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
EXPIRY DATE: (mm/ddymy)	$05 / 19 / 2017$		$\left(1,2,3,4--^{13} \mathrm{C}_{4}\right)$
RECOMMENDED STORAGE:	$05 / 19 / 2022$	Store ampoule in a cool, dark place	

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.8 \%$ Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFOS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquits Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Figure 2: MPFOS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ MPFOS)	MS Parameters
		Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=40$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:

COMPOUND:

STRUCTURE:

MFOUEA
2H-Perfluoro-[1,2-13 C_{2}]-2-decenoic acid

LOT NUMBER: MFOUEA0716

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyys)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 460.08
SOLVENT(S): Anhydrous Isopropanol $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{i}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MFOUEA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
	Ramp to 90% organic over 7 min and hold
	for 1.5 min before returning to initial conditions in 0.5 min .
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=14.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: MFOUEA; LC/MS/MS Data (Selected MRM Transitions)

Injection:	Direct loop injection
	$10 \mu \mathrm{I}(500 \mathrm{ng} / \mathrm{ml}$ MFOUEA) $)$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=21$
"FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","375-73-
5","PFBS","1.37","ng/L","J","0.875","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","307-24-4","PFHxA","2.81","ng/L","J","1.07","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","375-85-9","PFHpA","4.73","ng/L","","0.289","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","355-46-4","PFHxS","0.684","ng/L","J","0.463","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","335-67-1","PFOA","18.3","ng/L","","0.318","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","1763-23-1","PFOS","13.5","ng/L","","0.394","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","375-95-1","PFNA","7.81","ng/L","","0.396","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","335-76-2","PFDA","0.728","ng/L","J","0.728","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","2355-31-9","MeFOSAA","2.44","ng/L","U","0.806","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44 " ""
"FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","2058-94-
8","PFUnA","33.3","ng/L","","0.513","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","2991-50-6","EtFOSAA","2.44","ng/L","U","0.669","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44" ""
"FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","307-55-
1","PFDoA","2.44","ng/L","U","0.387","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","72629-94-8","PFTrDA","2.44","ng/L","U","0.241","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44","
"FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","376-06-7","PFTeDA","2.44","ng/L","U","0.369","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.256","0.001","2.44", ""
"FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C3-PFBS","13C3-PFBS","89.7","\%R","","-99","NA","","IS","89.7","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C2-PFHxA","13C2-PFHxA","90.3","\%R","","-99","NA","","IS","90.3","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C4-PFHpA","13C4-PFHpA","88.1","\%R","","-99","NA","","IS","88.1","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","18O2-PFHxS","18O2-PFHxS","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C2-PFOA","13C2-PFOA","90.8","\%R","","-99","NA","","IS","90.8","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C8-PFOS","13C8-PFOS","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C5-PFNA","13C5-PFNA","76.0","\%R","","-99","NA","","IS","76.0","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C2-PFDA","13C2-PFDA","89.3","\%R","","-99","NA","","IS","89.3","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","d3-MeFOSAA","d3-MeFOSAA","75.8","\%R","","-99","NA","","IS","75.8","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C2-PFUnA","13C2-PFUnA","85.1","\%R","","-99","NA","","IS","85.1","","-99","NA","YES","100","","0.256","0.001","-99","" "FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","d5-EtFOSAA","d5-

EtFOSAA","71.3","\%R","","-99","NA","","IS","71.3","","-99","NA","YES","100","","0.256","0.001","-99",""
"FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C2-PFDoA","13C2-
PFDoA","68.4","\%R","","-99","NA","","IS","68.4","","-99","NA","YES","100","","0.256","0.001","-99",""
"FC-MW06S-20171212","Modified EPA Method 537","Initial","1701951-01","Vista","13C2-PFTeDA","13C2-
PFTeDA","63.6","\%R","","-99","NA","","IS","63.6","","-99","NA","YES","100","","0.256","0.001","-99",""
"FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","375-73-
5","PFBS","1.16","ng/L","J","0.893","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","307-24-4","PFHxA","29.4","ng/L","","1.09","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","375-85-9","PFHpA","11.5","ng/L","","0.295","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","355-46-4","PFHxS","1.36","ng/L","J","0.472","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","335-67-
1","PFOA","31.1","ng/L","","0.325","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","1763-23-1","PFOS","7.44","ng/L","","0.402","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","375-95-1","PFNA","310","ng/L","","0.404","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","335-76-2","PFDA","66.6","ng/L","","0.743","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","2355-31-9","MeFOSAA","2.49","ng/L","U","0.823","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49 ","
"FC-MW02SR1-20171212","Modified EPA Method 537","Dilution","1701951-02","Vista","2058-94-8","PFUnA","1670","ng/L","D","2.62","LOD","","TRG","","","19.9","LOQ","YES","-99","","0.251","0.001","12.5","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","2991-50-6","EtFOSAA","2.49","ng/L","U","0.683","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49" ""
"FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","307-55-
1","PFDoA","1.08","ng/L","J","0.395","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","72629-94-8","PFTrDA","1.64","ng/L","J","0.246","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","376-06-7","PFTeDA","2.49","ng/L","U","0.377","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.251","0.001","2.49", ""
"FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C3-PFBS","13C3-PFBS","90.1","\%R","","-99","NA","","IS","90.1","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C2-PFHxA","13C2-PFHxA","87.5","\%R","","-99","NA","","IS","87.5","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C4-PFHpA","13C4-PFHpA","80.5","\%R","","-99","NA","","IS","80.5","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","18O2-PFHxS","18O2-PFHxS","93.8","\%R","","-99","NA","","IS","93.8","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C2-PFOA","13C2-PFOA","99.2","\%R","","-99","NA","","IS","99.2","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C8-PFOS","13C8-PFOS","94.1","\%R","","-99","NA","","IS","94.1","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C5-PFNA","13C5-PFNA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C2-PFDA","13C2-PFDA","86.8","\%R","","-99","NA","","IS","86.8","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","d3-MeFOSAA","d3-MeFOSAA","65.6","\%R","","-99","NA","","IS","65.6","","-99","NA","YES","100","","0.251","0.001","-99",""
"FC-MW02SR1-20171212","Modified EPA Method 537","Dilution","1701951-02","Vista","13C2-PFUnA","13C2-PFUnA","78.2","\%R","D","-99","NA","","IS","78.2","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","d5-EtFOSAA","d5-EtFOSAA","55.4","\%R","","-99","NA","","IS","55.4","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C2-PFDoA","13C2-PFDoA","90.8","\%R","","-99","NA","","IS","90.8","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW02SR1-20171212","Modified EPA Method 537","Initial","1701951-02","Vista","13C2-PFTeDA","13C2-PFTeDA","80.0","\%R","","-99","NA","","IS","80.0","","-99","NA","YES","100","","0.251","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","375-73-5","PFBS","2.55","ng/L","U","0.912","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","307-24-4","PFHxA","22.9","ng/L","","1.11","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","375-85-9","PFHpA","36.3","ng/L","","0.301","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","355-46-4","PFHxS","0.806","ng/L","J","0.482","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","335-67-1","PFOA","32.3","ng/L","","0.332","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","1763-23-1","PFOS","1.44","ng/L","J","0.411","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","375-95-1","PFNA","226","ng/L","","0.413","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","335-76-2","PFDA","3.77","ng/L","J","0.759","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","2355-31-9","MeFOSAA","2.55","ng/L","U","0.841","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55 " ""
"FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","2058-94-8","PFUnA","31.5","ng/L","","0.535","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","2991-50-6","EtFOSAA","2.55","ng/L","U","0.698","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55" """
"FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","307-55-1","PFDoA","2.55","ng/L","U","0.403","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","72629-94-8","PFTrDA","2.55","ng/L","U","0.252","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","
"FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","376-06-7","PFTeDA","2.55","ng/L","U","0.385","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55", ""
"FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C3-PFBS","13C3-PFBS","92.7","\%R","","-99","NA","","IS","92.7","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C2-PFHxA","13C2-PFHxA","114","\%R","","-99","NA","","IS","114","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C4-PFHpA","13C4-PFHpA","86.3","\%R","","-99","NA","","IS","86.3","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","18O2-PFHxS","18O2-PFHxS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C2-PFOA","13C2-PFOA","92.6","\%R","","-99","NA","","IS","92.6","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C8-PFOS","13C8-PFOS","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C5-PFNA","13C5-PFNA","92.5","\%R","","-99","NA","","IS","92.5","","-99","NA","YES","100","","0.245","0.001","-99",""
"FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C2-PFDA","13C2-PFDA","97.7","\%R","","-99","NA","","IS","97.7","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","d3-MeFOSAA","d3-MeFOSAA","72.9","\%R","","-99","NA","","IS","72.9","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C2-PFUnA","13C2-PFUnA","72.5","\%R","","-99","NA","","IS","72.5","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","d5-EtFOSAA","d5-EtFOSAA","69.3","\%R","","-99","NA","","IS","69.3","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C2-PFDoA","13C2-PFDoA","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04I-20171212","Modified EPA Method 537","Initial","1701951-03","Vista","13C2-PFTeDA","13C2-PFTeDA","80.3","\%R","","-99","NA","","IS","80.3","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","375-73-5","PFBS","4.81","ng/L","U","0.426","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","307-24-4","PFHxA","0.843","ng/L","J, B","0.638","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81",""
"FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","375-85-9","PFHpA","4.81","ng/L","U","0.513","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","355-46-4","PFHxS","4.81","ng/L","U","0.399","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","335-67-1","PFOA","4.81","ng/L","U","1.04","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","375-95-1","PFNA","4.81","ng/L","U","1.39","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","1763-23-1","PFOS","4.81","ng/L","U","1.00","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","335-76-2","PFDA","4.81","ng/L","U","1.23","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","2355-31-9","MeFOSAA","4.81","ng/L","U","2.93","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81" ""
"FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","2991-50-
6","EtFOSAA","4.81","ng/L","U","1.86","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81", ""
"FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","2058-94-
8","PFUnA","4.81","ng/L","U","0.245","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","307-55-1","PFDoA","4.81","ng/L","U","0.916","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","" "FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","72629-94-8","PFTrDA","4.81","ng/L","U","0.907","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81","
"FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","376-06-7","PFTeDA","4.81","ng/L","U","0.748","LOD","","TRG","","","9.62","LOQ","YES","-99","","0.260","0.001","4.81", ""
"FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","13C2-PFHxA","13C2-
PFHxA","92.6","\%R","","-99","NA","","SURR","92.6","","-99","NA","YES","100","","0.260","0.001","-99",""
"FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","13C2-PFDA","13C2-
PFDA","84.9","\%R","","-99","NA","","SURR","84.9","","-99","NA","YES","100","","0.260","0.001","-99",""
"FT-RW01-20171212","EPA Method 537","Initial","1701951-04","Vista","d5-EtFOSAA","d5-
EtFOSAA","103","\%R","","-99","NA","","SURR","103","","-99","NA","YES","100","","0.260","0.001","-99",""
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","375-73-
5","PFBS","4.94","ng/L","U","0.438","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","307-244","PFHxA","0.838","ng/L","J,

B","0.655","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94",""
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","375-85-
9","PFHpA","4.94","ng/L","U","0.526","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","355-46-4","PFHxS","4.94","ng/L","U","0.410","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","335-67-1","PFOA","4.94","ng/L","U","1.07","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","375-95-1","PFNA","4.94","ng/L","U","1.42","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","1763-23-1","PFOS","4.94","ng/L","U","1.03","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","335-76-2","PFDA","4.94","ng/L","U","1.26","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","2355-31-9","MeFOSAA","4.94","ng/L","U","3.00","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94" ""
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","2991-50-
6","EtFOSAA","4.94","ng/L","U","1.91","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94",
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","2058-94-
8","PFUnA","4.94","ng/L","U","0.252","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","307-55-1","PFDoA","4.94","ng/L","U","0.940","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","" "FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","72629-94-8","PFTrDA","4.94","ng/L","U","0.931","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94","
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","376-06-
7","PFTeDA","4.94","ng/L","U","0.768","LOD","","TRG","","","9.88","LOQ","YES","-99","","0.253","0.001","4.94", ""
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","13C2-PFHxA","13C2-
PFHxA","91.0","\%R","","-99","NA","","SURR","91.0","","-99","NA","YES","100","","0.253","0.001","-99",""
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","13C2-PFDA","13C2-
PFDA","77.5","\%R","","-99","NA","","SURR","77.5","","-99","NA","YES","100","","0.253","0.001","-99",""
"FT-RW01-FRB-20171212","EPA Method 537","Initial","1701951-05","Vista","d5-EtFOSAA","d5-
EtFOSAA","85.9","\%R","","-99","NA","","SURR","85.9","","-99","NA","YES","100","","0.253","0.001","-99",""
"FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","375-73-
5","PFBS","1.97","ng/L","J","0.915","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55",""
"FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","307-24-
4","PFHxA","13.7","ng/L","","1.11","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","375-85-9","PFHpA","3.95","ng/L","J","0.302","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","355-46-4","PFHxS","1.41","ng/L","J","0.484","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","335-67-1","PFOA","15.9","ng/L","","0.333","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","1763-23-1","PFOS","6.60","ng/L","","0.412","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","375-95-1","PFNA","20.3","ng/L","","0.414","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","335-76-2","PFDA","2.99","ng/L","J","0.761","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","2355-31-9","MeFOSAA","2.55","ng/L","U","0.843","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55 " ""
"FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","2058-94-
8","PFUnA","47.5","ng/L","","0.537","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","2991-50-6","EtFOSAA","2.55","ng/L","U","0.700","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55" ""
"FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","307-55-1","PFDoA","2.55","ng/L","U","0.405","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","72629-94-8","PFTrDA","0.382","ng/L","J","0.252","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55", ""
"FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","376-06-7","PFTeDA","2.55","ng/L","U","0.386","LOD","","TRG","","","4.09","LOQ","YES","-99","","0.245","0.001","2.55", ""
"FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C3-PFBS","13C3-PFBS","89.5","\%R","","-99","NA","","IS","89.5","","-99","NA","YES","100","","0.245","0.001","-99"," "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C2-PFHxA","13C2-PFHxA","97.5","\%R","","-99","NA","","IS","97.5","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C4-PFHpA","13C4-PFHpA","87.7","\%R","","-99","NA","","IS","87.7","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","18O2-PFHxS","18O2-PFHxS","97.7","\%R","","-99","NA","","IS","97.7","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C2-PFOA","13C2-PFOA","83.3","\%R","","-99","NA","","IS","83.3","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C8-PFOS","13C8-PFOS","71.2","\%R","","-99","NA","","IS","71.2","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C5-PFNA","13C5-PFNA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C2-PFDA","13C2-PFDA","134","\%R","","-99","NA","","IS","134","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","d3-MeFOSAA","d3-MeFOSAA","70.0","\%R","","-99","NA","","IS","70.0","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C2-PFUnA","13C2-PFUnA","99.1","\%R","","-99","NA","","IS","99.1","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","d5-EtFOSAA","d5-EtFOSAA","72.2","\%R","","-99","NA","","IS","72.2","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C2-PFDoA","13C2-PFDoA","69.3","\%R","","-99","NA","","IS","69.3","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW03SR1-20171212","Modified EPA Method 537","Initial","1701951-06","Vista","13C2-PFTeDA","13C2-PFTeDA","87.4","\%R","","-99","NA","","IS","87.4","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","375-73-5","PFBS","2.48","ng/L","U","0.889","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","307-24-4","PFHxA","2.48","ng/L","U","1.08","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","375-85-9","PFHpA","1.11","ng/L","J","0.294","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","355-46-4","PFHxS","2.48","ng/L","U","0.470","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","335-67-1","PFOA","4.23","ng/L","","0.323","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","1763-23-
1","PFOS","2.12","ng/L","J","0.401","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","375-95-1","PFNA","5.53","ng/L","","0.402","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","335-76-

2","PFDA","2.48","ng/L","U","0.740","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","2355-31-9","MeFOSAA","2.48","ng/L","U","0.819","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48 " ""
"FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","2058-94-
8","PFUnA","2.48","ng/L","U","0.521","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","2991-50-
6","EtFOSAA","2.48","ng/L","U","0.680","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48" ""
"FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","307-55-1","PFDoA","2.48","ng/L","U","0.393","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","72629-94-8","PFTrDA","2.48","ng/L","U","0.245","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48","
"FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","376-06-7","PFTeDA","2.48","ng/L","U","0.375","LOD","","TRG","","","3.97","LOQ","YES","-99","","0.252","0.001","2.48", ""
"FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C3-PFBS","13C3-PFBS","87.7","\%R","","-99","NA","","IS","87.7","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C2-PFHxA","13C2-PFHxA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C4-PFHpA","13C4-PFHpA","81.2","\%R","","-99","NA","","IS","81.2","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","18O2-PFHxS","18O2-PFHxS","86.2","\%R","","-99","NA","","IS","86.2","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C2-PFOA","13C2-PFOA","87.6","\%R","","-99","NA","","IS","87.6","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C8-PFOS","13C8-PFOS","70.6","\%R","","-99","NA","","IS","70.6","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C5-PFNA","13C5-PFNA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C2-PFDA","13C2-PFDA","81.0","\%R","","-99","NA","","IS","81.0","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","d3-MeFOSAA","d3-MeFOSAA","54.4","\%R","","-99","NA","","IS","54.4","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C2-PFUnA","13C2-PFUnA","77.2","\%R","","-99","NA","","IS","77.2","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","d5-EtFOSAA","d5-EtFOSAA","60.3","\%R","","-99","NA","","IS","60.3","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C2-PFDoA","13C2-PFDoA","81.6","\%R","","-99","NA","","IS","81.6","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW04S-20171212","Modified EPA Method 537","Initial","1701951-07","Vista","13C2-PFTeDA","13C2-PFTeDA","52.2","\%R","","-99","NA","","IS","52.2","","-99","NA","YES","100","","0.252","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","375-73-5","PFBS","2.46","ng/L","U","0.881","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","307-24-4","PFHxA","2.46","ng/L","U","1.07","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","375-85-9","PFHpA","4.52","ng/L","","0.291","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","355-46-4","PFHxS","2.46","ng/L","U","0.466","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","335-67-1","PFOA","11.6","ng/L","","0.320","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","1763-23-

1","PFOS","28.9","ng/L","","0.397","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","375-95-1","PFNA","35.0","ng/L","","0.399","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","335-76-2","PFDA","2.46","ng/L","U","0.733","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","2355-31-9","MeFOSAA","2.46","ng/L","U","0.812","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46 " ""
"FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","2058-94-8","PFUnA","6.77","ng/L","","0.517","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","2991-50-6","EtFOSAA","2.46","ng/L","U","0.674","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46" """
"FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","307-55-
1","PFDoA","2.46","ng/L","U","0.390","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","72629-94-8","PFTrDA","2.46","ng/L","U","0.243","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46","
"FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","376-06-7","PFTeDA","2.46","ng/L","U","0.372","LOD","","TRG","","","3.94","LOQ","YES","-99","","0.254","0.001","2.46", ""
"FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C3-PFBS","13C3-PFBS","99.1","\%R","","-99","NA","","IS","99.1","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C2-PFHxA","13C2-PFHxA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C4-PFHpA","13C4-PFHpA","82.3","\%R","","-99","NA","","IS","82.3","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","18O2-PFHxS","18O2-PFHxS","96.6","\%R","","-99","NA","","IS","96.6","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C2-PFOA","13C2-PFOA","97.3","\%R","","-99","NA","","IS","97.3","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C8-PFOS","13C8-PFOS","90.6","\%R","","-99","NA","","IS","90.6","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C5-PFNA","13C5-PFNA","87.9","\%R","","-99","NA","","IS","87.9","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C2-PFDA","13C2-PFDA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","d3-MeFOSAA","d3-MeFOSAA","62.4","\%R","","-99","NA","","IS","62.4","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C2-PFUnA","13C2-PFUnA","57.5","\%R","","-99","NA","","IS","57.5","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","d5-EtFOSAA","d5-EtFOSAA","67.5","\%R","","-99","NA","","IS","67.5","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C2-PFDoA","13C2-PFDoA","86.9","\%R","","-99","NA","","IS","86.9","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW02IR1-20171212","Modified EPA Method 537","Initial","1701951-08","Vista","13C2-PFTeDA","13C2-PFTeDA","65.9","\%R","","-99","NA","","IS","65.9","","-99","NA","YES","100","","0.254","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","375-73-5","PFBS","2.59","ng/L","U","0.928","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","307-24-4","PFHxA","2.59","ng/L","U","1.13","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","375-85-9","PFHpA","2.59","ng/L","U","0.306","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","355-46-

4","PFHxS","2.59","ng/L","U","0.491","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","335-67-
1","PFOA","2.59","ng/L","U","0.338","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","1763-23-1","PFOS","2.59","ng/L","U","0.418","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","375-95-1","PFNA","0.907","ng/L","J","0.420","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","335-76-2","PFDA","2.59","ng/L","U","0.773","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","2355-31-9","MeFOSAA","2.59","ng/L","U","0.855","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59 " ""
"FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","2058-94-8","PFUnA","7.17","ng/L","","0.544","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","2991-50-6","EtFOSAA","2.59","ng/L","U","0.710","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59" ""
"FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","307-55-1","PFDoA","2.59","ng/L","U","0.411","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","72629-94-8","PFTrDA","2.59","ng/L","U","0.256","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59","
"FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","376-06-
7","PFTeDA","2.59","ng/L","U","0.391","LOD","","TRG","","","4.15","LOQ","YES","-99","","0.241","0.001","2.59", ""
"FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C3-PFBS","13C3-PFBS","93.1","\%R","","-99","NA","","IS","93.1","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C2-PFHxA","13C2-PFHxA","92.4","\%R","","-99","NA","","IS","92.4","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C4-PFHpA","13C4-PFHpA","96.4","\%R","","-99","NA","","IS","96.4","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","18O2-PFHxS","18O2-PFHxS","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C2-PFOA","13C2-PFOA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C8-PFOS","13C8-PFOS","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C5-PFNA","13C5-PFNA","95.4","\%R","","-99","NA","","IS","95.4","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C2-PFDA","13C2-PFDA","74.8","\%R","","-99","NA","","IS","74.8","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","d3-MeFOSAA","d3-MeFOSAA","75.5","\%R","","-99","NA","","IS","75.5","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C2-PFUnA","13C2-PFUnA","85.5","\%R","","-99","NA","","IS","85.5","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","d5-EtFOSAA","d5-EtFOSAA","69.0","\%R","","-99","NA","","IS","69.0","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C2-PFDoA","13C2-PFDoA","114","\%R","","-99","NA","","IS","114","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-MW05S-20171212","Modified EPA Method 537","Initial","1701951-09","Vista","13C2-PFTeDA","13C2-PFTeDA","52.2","\%R","","-99","NA","","IS","52.2","","-99","NA","YES","100","","0.241","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","375-73-5","PFBS","1.02","ng/L","J","0.912","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","307-24-

4","PFHxA","27.9","ng/L","","1.11","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","375-85-
9","PFHpA","12.7","ng/L","","0.301","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","355-46-4","PFHxS","1.30","ng/L","J","0.482","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","335-67-1","PFOA","39.3","ng/L","","0.332","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","1763-23-1","PFOS","10.8","ng/L","","0.411","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","375-95-1","PFNA","303","ng/L","","0.413","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","335-76-2","PFDA","64.2","ng/L","","0.759","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","2355-31-9","MeFOSAA","2.55","ng/L","U","0.841","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55 " ""
"FC-DUP07-20171212","Modified EPA Method 537","Dilution","1701951-10","Vista","2058-94-
8","PFUnA","1510","ng/L","D","2.67","LOD","","TRG","","","20.4","LOQ","YES","-99","","0.245","0.001","12.8",""
"FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","2991-50-
6","EtFOSAA","2.55","ng/L","U","0.698","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55" ""
"FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","307-55-1","PFDoA","1.20","ng/L","J","0.403","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","72629-94-
8","PFTrDA","2.02","ng/L","J","0.252","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","376-06-7","PFTeDA","2.55","ng/L","U","0.385","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55", ""
"FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C3-PFBS","13C3-PFBS","99.5","\%R","","-99","NA","","IS","99.5","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C2-PFHxA","13C2-PFHxA","96.0","\%R","","-99","NA","","IS","96.0","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C4-PFHpA","13C4-PFHpA","94.9","\%R","","-99","NA","","IS","94.9","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","18O2-PFHxS","18O2-PFHxS","99.5","\%R","","-99","NA","","IS","99.5","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C2-PFOA","13C2-PFOA","76.7","\%R","","-99","NA","","IS","76.7","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C8-PFOS","13C8-PFOS","74.4","\%R","","-99","NA","","IS","74.4","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C5-PFNA","13C5-PFNA","87.0","\%R","","-99","NA","","IS","87.0","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C2-PFDA","13C2-PFDA","83.2","\%R","","-99","NA","","IS","83.2","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","d3-MeFOSAA","d3-MeFOSAA","67.0","\%R","","-99","NA","","IS","67.0","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Dilution","1701951-10","Vista","13C2-PFUnA","13C2-PFUnA","124","\%R","D","-99","NA","","IS","124","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","d5-EtFOSAA","d5-EtFOSAA","58.6","\%R","","-99","NA","","IS","58.6","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C2-PFDoA","13C2-PFDoA","99.5","\%R","","-99","NA","","IS","99.5","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-DUP07-20171212","Modified EPA Method 537","Initial","1701951-10","Vista","13C2-PFTeDA","13C2-PFTeDA","96.8","\%R","","-99","NA","","IS","96.8","","-99","NA","YES","100","","0.245","0.001","-99",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","375-73-
5","PFBS","4.88","ng/L","U","0.433","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88","" "FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","307-24-4","PFHxA","1.04","ng/L","J, B","0.648","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","375-85-
9","PFHpA","4.88","ng/L","U","0.521","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","355-46-
4","PFHxS","4.88","ng/L","U","0.405","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","335-67-
1","PFOA","4.88","ng/L","U","1.06","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","375-95-
1","PFNA","4.88","ng/L","U","1.41","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","1763-23-
1","PFOS","4.88","ng/L","U","1.02","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","335-76-
2","PFDA","4.88","ng/L","U","1.25","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88","" "FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","2355-31-9","MeFOSAA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88" ""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","2991-50-
6","EtFOSAA","4.88","ng/L","U","1.89","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88", ""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","2058-94-
8","PFUnA","4.88","ng/L","U","0.249","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","307-55-
1","PFDoA","4.88","ng/L","U","0.930","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88","" "FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","72629-94-
8","PFTrDA","4.88","ng/L","U","0.921","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88","
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","376-06-
7","PFTeDA","4.88","ng/L","U","0.759","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88", ""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","13C2-PFHxA","13C2-
PFHxA","94.7","\%R","","-99","NA","","SURR","94.7","","-99","NA","YES","100","","0.256","0.001","-99",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","13C2-PFDA","13C2-
PFDA","77.3","\%R","","-99","NA","","SURR","77.3","","-99","NA","YES","100","","0.256","0.001","-99",""
"FT-DUP08-20171212","EPA Method 537","Initial","1701951-11","Vista","d5-EtFOSAA","d5-
EtFOSAA","118","\%R","","-99","NA","","SURR","118","","-99","NA","YES","100","","0.256","0.001","-99",""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","375-73-
5","PFBS","2.52","ng/L","U","0.903","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52",""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","307-24-
4","PFHxA","2.52","ng/L","U","1.10","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52",""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","375-85-9","PFHpA","0.310","ng/L","J","0.298","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52"," "
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","355-46-4","PFHxS","2.52","ng/L","U","0.478","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","335-67-
1","PFOA","4.22","ng/L","","0.328","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52",""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","1763-23-
1","PFOS","0.443","ng/L","J","0.407","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","375-95-
1","PFNA","1.66","ng/L","J","0.409","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52",""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","335-76-

2","PFDA","2.52","ng/L","U","0.752","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","2355-31-9","MeFOSAA","2.52","ng/L","U","0.832","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52 " ""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","2058-94-
8","PFUnA","1.43","ng/L","J","0.530","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52",""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","2991-50-
6","EtFOSAA","2.52","ng/L","U","0.691","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52" ""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","307-55-
1","PFDoA","2.52","ng/L","U","0.400","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","72629-94-8","PFTrDA","2.52","ng/L","U","0.249","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52","
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","376-06-7","PFTeDA","2.52","ng/L","U","0.381","LOD","","TRG","","","4.04","LOQ","YES","-99","","0.248","0.001","2.52", ""
"ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C3-PFBS","13C3-PFBS","95.3","\%R","","-99","NA","","IS","95.3","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C2-PFHxA","13C2-PFHxA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C4-PFHpA","13C4-PFHpA","80.8","\%R","","-99","NA","","IS","80.8","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","18O2-PFHxS","18O2-PFHxS","79.7","\%R","","-99","NA","","IS","79.7","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C2-PFOA","13C2-PFOA","77.9","\%R","","-99","NA","","IS","77.9","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C8-PFOS","13C8-PFOS","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C5-PFNA","13C5-PFNA","93.8","\%R","","-99","NA","","IS","93.8","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C2-PFDA","13C2-PFDA","91.9","\%R","","-99","NA","","IS","91.9","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","d3-MeFOSAA","d3-MeFOSAA","62.4","\%R","","-99","NA","","IS","62.4","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C2-PFUnA","13C2-PFUnA","86.8","\%R","","-99","NA","","IS","86.8","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","d5-EtFOSAA","d5-EtFOSAA","68.9","\%R","","-99","NA","","IS","68.9","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C2-PFDoA","13C2-PFDoA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-20171212","Modified EPA Method 537","Initial","1701951-12","Vista","13C2-PFTeDA","13C2-PFTeDA","71.1","\%R","","-99","NA","","IS","71.1","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","375-73-5","PFBS","2.53","ng/L","U","0.907","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","307-24-4","PFHxA","2.53","ng/L","U","1.10","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","375-85-9","PFHpA","2.53","ng/L","U","0.299","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","355-46-4","PFHxS","2.53","ng/L","U","0.480","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","335-67-1","PFOA","2.53","ng/L","U","0.330","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","1763-23-

1","PFOS","2.53","ng/L","U","0.409","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","375-95-1","PFNA","2.53","ng/L","U","0.410","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","335-76-2","PFDA","2.53","ng/L","U","0.755","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","2355-31-9","MeFOSAA","2.53","ng/L","U","0.836","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53 " ""
"ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","2058-94-8","PFUnA","2.53","ng/L","U","0.532","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","2991-50-6","EtFOSAA","2.53","ng/L","U","0.694","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53"
"ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","307-55-1","PFDoA","2.53","ng/L","U","0.401","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","72629-94-8","PFTrDA","2.53","ng/L","U","0.250","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53","
"ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","376-06-7","PFTeDA","2.53","ng/L","U","0.383","LOD","","TRG","","","4.05","LOQ","YES","-99","","0.247","0.001","2.53", ""
"ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C3-PFBS","13C3-PFBS","96.7","\%R","","-99","NA","","IS","96.7","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C2-PFHxA","13C2-PFHxA","90.2","\%R","","-99","NA","","IS","90.2","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C4-PFHpA","13C4-PFHpA","83.5","\%R","","-99","NA","","IS","83.5","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","18O2-PFHxS","18O2-PFHxS","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C2-PFOA","13C2-PFOA","83.2","\%R","","-99","NA","","IS","83.2","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C8-PFOS","13C8-PFOS","87.2","\%R","","-99","NA","","IS","87.2","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C5-PFNA","13C5-PFNA","92.8","\%R","","-99","NA","","IS","92.8","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C2-PFDA","13C2-PFDA","80.8","\%R","","-99","NA","","IS","80.8","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","d3-MeFOSAA","d3-MeFOSAA","69.9","\%R","","-99","NA","","IS","69.9","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C2-PFUnA","13C2-PFUnA","81.6","\%R","","-99","NA","","IS","81.6","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","d5-EtFOSAA","d5-EtFOSAA","56.0","\%R","","-99","NA","","IS","56.0","","-99","NA","YES","100","","0.247","0.001","-99","" "ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C2-PFDoA","13C2-PFDoA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.247","0.001","-99",""
"ET-MW01S-FRB-20171212","Modified EPA Method 537","Initial","1701951-13","Vista","13C2-PFTeDA","13C2-PFTeDA","57.1","\%R","","-99","NA","","IS","57.1","","-99","NA","YES","100","","0.247","0.001","-99",""
"FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","375-73-5","PFBS","2.55","ng/L","U","0.914","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","307-24-4","PFHxA","2.55","ng/L","U","1.11","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","375-85-9","PFHpA","1.41","ng/L","J","0.302","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","355-46-

4","PFHxS","2.46","ng/L","J","0.483","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","335-67-1","PFOA","4.47","ng/L","","0.332","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","1763-23-1","PFOS","5.85","ng/L","","0.412","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","375-95-1","PFNA","5.67","ng/L","","0.413","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","335-76-2","PFDA","2.55","ng/L","U","0.761","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","2355-31-9","MeFOSAA","2.55","ng/L","U","0.842","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55
"FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","2058-94-8","PFUnA","11.6","ng/L","","0.536","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","2991-50-6","EtFOSAA","2.55","ng/L","U","0.699","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55" ""
"FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","307-55-1","PFDoA","2.55","ng/L","U","0.404","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","72629-94-8","PFTrDA","2.55","ng/L","U","0.252","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55","
"FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","376-06-
7","PFTeDA","2.55","ng/L","U","0.385","LOD","","TRG","","","4.08","LOQ","YES","-99","","0.245","0.001","2.55", ""
"FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C3-PFBS","13C3-PFBS","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C2-PFHxA","13C2-PFHxA","88.9","\%R","","-99","NA","","IS","88.9","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C4-PFHpA","13C4-PFHpA","98.1","\%R","","-99","NA","","IS","98.1","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","18O2-PFHxS","18O2-PFHxS","99.7","\%R","","-99","NA","","IS","99.7","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C2-PFOA","13C2-PFOA","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C8-PFOS","13C8-PFOS","92.9","\%R","","-99","NA","","IS","92.9","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C5-PFNA","13C5-PFNA","76.8","\%R","","-99","NA","","IS","76.8","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C2-PFDA","13C2-PFDA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","d3-MeFOSAA","d3-MeFOSAA","76.7","\%R","","-99","NA","","IS","76.7","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C2-PFUnA","13C2-PFUnA","72.3","\%R","","-99","NA","","IS","72.3","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","d5-EtFOSAA","d5-EtFOSAA","73.9","\%R","","-99","NA","","IS","73.9","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C2-PFDoA","13C2-PFDoA","82.6","\%R","","-99","NA","","IS","82.6","","-99","NA","YES","100","","0.245","0.001","-99","" "FT-PZ-454S-20171212","Modified EPA Method 537","Initial","1701951-14","Vista","13C2-PFTeDA","13C2-PFTeDA","67.8","\%R","","-99","NA","","IS","67.8","","-99","NA","YES","100","","0.245","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","375-73-5","PFBS","2.47","ng/L","U","0.883","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","307-24-

4","PFHxA","2.75","ng/L","J","1.08","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","375-85-9","PFHpA","3.01","ng/L","J","0.292","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","355-46-4","PFHxS","1.26","ng/L","J","0.467","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","335-67-1","PFOA","7.62","ng/L","","0.321","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","1763-23-1","PFOS","2.39","ng/L","J","0.398","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","375-95-1","PFNA","11.4","ng/L","","0.400","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","335-76-2","PFDA","2.47","ng/L","U","0.735","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","2355-31-9","MeFOSAA","2.47","ng/L","U","0.814","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47 ","
"FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","2058-94-8","PFUnA","8.11","ng/L","","0.518","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","2991-50-6","EtFOSAA","2.47","ng/L","U","0.676","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47" ""
"FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","307-55-1","PFDoA","2.47","ng/L","U","0.391","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","72629-94-8","PFTrDA","2.47","ng/L","U","0.244","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47","
"FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","376-06-7","PFTeDA","2.47","ng/L","U","0.372","LOD","","TRG","","","3.95","LOQ","YES","-99","","0.253","0.001","2.47", ""
"FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C3-PFBS","13C3-PFBS","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C2-PFHxA","13C2-PFHxA","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C4-PFHpA","13C4-PFHpA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","18O2-PFHxS","18O2-PFHxS","93.4","\%R","","-99","NA","","IS","93.4","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C2-PFOA","13C2-PFOA","94.7","\%R","","-99","NA","","IS","94.7","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C8-PFOS","13C8-PFOS","79.9","\%R","","-99","NA","","IS","79.9","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C5-PFNA","13C5-PFNA","96.7","\%R","","-99","NA","","IS","96.7","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C2-PFDA","13C2-PFDA","96.3","\%R","","-99","NA","","IS","96.3","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","d3-MeFOSAA","d3-MeFOSAA","63.5","\%R","","-99","NA","","IS","63.5","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C2-PFUnA","13C2-PFUnA","85.1","\%R","","-99","NA","","IS","85.1","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","d5-EtFOSAA","d5-EtFOSAA","78.6","\%R","","-99","NA","","IS","78.6","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C2-PFDoA","13C2-PFDoA","84.7","\%R","","-99","NA","","IS","84.7","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-MW05I-20171212","Modified EPA Method 537","Initial","1701951-15","Vista","13C2-PFTeDA","13C2-

PFTeDA","71.5","\%R","","-99","NA","","IS","71.5","","-99","NA","YES","100","","0.253","0.001","-99",""
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","375-73-
5","PFBS","2.45","ng/L","U","0.876","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45",""
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","307-24-
4","PFHxA","2.45","ng/L","U","1.07","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45",""
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","375-85-9","PFHpA","0.595","ng/L","J","0.289","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","355-46-4","PFHxS","2.45","ng/L","U","0.463","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","335-67-
1","PFOA","6.17","ng/L","","0.319","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","1763-23-
1","PFOS","2.59","ng/L","J","0.395","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","375-95-1","PFNA","2.18","ng/L","J","0.396","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","335-76-2","PFDA","2.45","ng/L","U","0.729","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","2355-31-9","MeFOSAA","2.45","ng/L","U","0.807","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45 ","
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","2058-94-8","PFUnA","2.45","ng/L","U","0.514","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","2991-50-6","EtFOSAA","2.45","ng/L","U","0.670","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45" ""
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","307-55-1","PFDoA","2.45","ng/L","U","0.388","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","72629-94-8","PFTrDA","2.45","ng/L","U","0.242","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45","
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","376-06-
7","PFTeDA","2.45","ng/L","U","0.369","LOD","","TRG","","","3.91","LOQ","YES","-99","","0.255","0.001","2.45", ""
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C3-PFBS","13C3-
PFBS","81.8","\%R","","-99","NA","","IS","81.8","","-99","NA","YES","100","","0.255","0.001","-99",""
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C2-PFHxA","13C2-PFHxA","99.5","\%R","","-99","NA","","IS","99.5","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C4-PFHpA","13C4-PFHpA","86.2","\%R","","-99","NA","","IS","86.2","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","18O2-PFHxS","18O2-PFHxS","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C2-PFOA","13C2-PFOA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C8-PFOS","13C8-PFOS","80.9","\%R","","-99","NA","","IS","80.9","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C5-PFNA","13C5-PFNA","93.8","\%R","","-99","NA","","IS","93.8","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C2-PFDA","13C2-PFDA","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","d3-MeFOSAA","d3-MeFOSAA","65.4","\%R","","-99","NA","","IS","65.4","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C2-PFUnA","13C2-PFUnA","93.1","\%R","","-99","NA","","IS","93.1","","-99","NA","YES","100","","0.255","0.001","-99",""
"ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","d5-EtFOSAA","d5-EtFOSAA","59.7","\%R","","-99","NA","","IS","59.7","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C2-PFDoA","13C2-PFDoA","76.8","\%R","","-99","NA","","IS","76.8","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW02S-20171212","Modified EPA Method 537","Initial","1701951-16","Vista","13C2-PFTeDA","13C2-PFTeDA","58.2","\%R","","-99","NA","","IS","58.2","","-99","NA","YES","100","","0.255","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","375-73-5","PFBS","2.52","ng/L","U","0.902","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","307-24-4","PFHxA","3.59","ng/L","J","1.10","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","375-85-9","PFHpA","1.66","ng/L","J","0.298","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","355-46-4","PFHxS","2.52","ng/L","U","0.477","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","335-67-1","PFOA","5.51","ng/L","","0.328","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","1763-23-1","PFOS","0.862","ng/L","J","0.407","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","375-95-1","PFNA","2.55","ng/L","J","0.408","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","335-76-2","PFDA","2.52","ng/L","U","0.751","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","2355-31-9","MeFOSAA","2.52","ng/L","U","0.831","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52 " ""
"ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","2058-94-
8","PFUnA","2.52","ng/L","U","0.529","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","2991-50-6","EtFOSAA","2.52","ng/L","U","0.690","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52" ""
"ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","307-55-
1","PFDoA","2.52","ng/L","U","0.399","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","72629-94-8","PFTrDA","2.52","ng/L","U","0.249","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52","
"ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","376-06-
7","PFTeDA","2.52","ng/L","U","0.380","LOD","","TRG","","","4.03","LOQ","YES","-99","","0.248","0.001","2.52", ""
"ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C3-PFBS","13C3-PFBS","87.3","\%R","","-99","NA","","IS","87.3","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C2-PFHxA","13C2-PFHxA","97.3","\%R","","-99","NA","","IS","97.3","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C4-PFHpA","13C4-PFHpA","86.5","\%R","","-99","NA","","IS","86.5","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","18O2-PFHxS","18O2-PFHxS","89.4","\%R","","-99","NA","","IS","89.4","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C2-PFOA","13C2-PFOA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C8-PFOS","13C8-PFOS","96.0","\%R","","-99","NA","","IS","96.0","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C5-PFNA","13C5-PFNA","84.8","\%R","","-99","NA","","IS","84.8","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C2-PFDA","13C2-PFDA","84.2","\%R","","-99","NA","","IS","84.2","","-99","NA","YES","100","","0.248","0.001","-99",""
"ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","d3-MeFOSAA","d3-MeFOSAA","90.9","\%R","","-99","NA","","IS","90.9","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C2-PFUnA","13C2-PFUnA","89.6","\%R","","-99","NA","","IS","89.6","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","d5-EtFOSAA","d5-EtFOSAA","71.5","\%R","","-99","NA","","IS","71.5","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C2-PFDoA","13C2-PFDoA","84.7","\%R","","-99","NA","","IS","84.7","","-99","NA","YES","100","","0.248","0.001","-99","" "ET-MW03S-20171212","Modified EPA Method 537","Initial","1701951-17","Vista","13C2-PFTeDA","13C2-PFTeDA","85.5","\%R","","-99","NA","","IS","85.5","","-99","NA","YES","100","","0.248","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","375-73-5","PFBS","1.05","ng/L","J","0.886","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","307-24-4","PFHxA","11.8","ng/L","","1.08","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","375-85-9","PFHpA","16.5","ng/L","","0.292","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","355-46-4","PFHxS","0.584","ng/L","J","0.469","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","335-67-1","PFOA","17.0","ng/L","","0.322","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","1763-23-1","PFOS","8.53","ng/L","","0.399","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","375-95-1","PFNA","256","ng/L","","0.401","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","335-76-2","PFDA","5.74","ng/L","","0.737","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","2355-31-9","MeFOSAA","2.47","ng/L","U","0.817","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47 " ""
"FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","2058-94-8","PFUnA","134","ng/L","","0.520","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","2991-50-6","EtFOSAA","2.47","ng/L","U","0.678","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47" ""
"FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","307-55-
1","PFDoA","2.47","ng/L","U","0.392","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","72629-94-8","PFTrDA","2.47","ng/L","U","0.244","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47","
"FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","376-06-7","PFTeDA","2.47","ng/L","U","0.374","LOD","","TRG","","","3.96","LOQ","YES","-99","","0.253","0.001","2.47", ""
"FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C3-PFBS","13C3-PFBS","95.2","\%R","","-99","NA","","IS","95.2","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C2-PFHxA","13C2-PFHxA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C4-PFHpA","13C4-PFHpA","94.1","\%R","","-99","NA","","IS","94.1","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","18O2-PFHxS","18O2-PFHxS","98.7","\%R","","-99","NA","","IS","98.7","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C2-PFOA","13C2-PFOA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C8-PFOS","13C8-PFOS","98.3","\%R","","-99","NA","","IS","98.3","","-99","NA","YES","100","","0.253","0.001","-99",""
"FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C5-PFNA","13C5-PFNA","83.5","\%R","","-99","NA","","IS","83.5","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C2-PFDA","13C2-PFDA","95.7","\%R","","-99","NA","","IS","95.7","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","d3-MeFOSAA","d3-MeFOSAA","68.0","\%R","","-99","NA","","IS","68.0","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C2-PFUnA","13C2-PFUnA","70.0","\%R","","-99","NA","","IS","70.0","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","d5-EtFOSAA","d5-EtFOSAA","69.4","\%R","","-99","NA","","IS","69.4","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C2-PFDoA","13C2-PFDoA","80.0","\%R","","-99","NA","","IS","80.0","","-99","NA","YES","100","","0.253","0.001","-99","" "FC-PZ05I1-20171212","Modified EPA Method 537","Initial","1701951-18","Vista","13C2-PFTeDA","13C2-PFTeDA","61.4","\%R","","-99","NA","","IS","61.4","","-99","NA","YES","100","","0.253","0.001","-99","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","375-73-5","PFBS","2.49","ng/L","U","0.891","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","307-24-4","PFHxA","10.7","ng/L","","1.09","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","375-85-9","PFHpA","27.9","ng/L","","0.294","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","355-46-4","PFHxS","2.49","ng/L","U","0.472","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","' "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","335-67-1","PFOA","31.9","ng/L","","0.324","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","1763-23-1","PFOS","3.36","ng/L","J","0.402","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","375-95-1","PFNA","866","ng/L","","0.403","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","335-76-2","PFDA","16.5","ng/L","","0.742","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","2355-31-9","MeFOSAA","2.49","ng/L","U","0.822","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49 " ""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","2058-94-8","PFUnA","294","ng/L","","0.523","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","2991-50-6","EtFOSAA","2.49","ng/L","U","0.682","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49" ""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","307-55-1","PFDoA","2.49","ng/L","U","0.394","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","72629-94-8","PFTrDA","2.49","ng/L","U","0.246","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","376-06-7","PFTeDA","2.49","ng/L","U","0.376","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49", " "
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C3-PFBS","13C3-PFBS","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.251","0.001","-99","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C2-PFHxA","13C2-
PFHxA","92.0","\%R","","-99","NA","","IS","92.0","","-99","NA","YES","100","","0.251","0.001","-99","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C4-PFHpA","13C4-
PFHpA","84.9","\%R","","-99","NA","","IS","84.9","","-99","NA","YES","100","","0.251","0.001","-99",""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","18O2-
PFHxS","18O2-
PFHxS","90.3","\%R","","-99","NA","","IS","90.3","","-99","NA","YES","100","","0.251","0.001","-99","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C2-PFOA","13C2-PFOA","86.9","\%R","","-99","NA","","IS","86.9","","-99","NA","YES","100","","0.251","0.001","-99",""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C8-PFOS","13C8-PFOS","76.2","\%R","","-99","NA","","IS","76.2","","-99","NA","YES","100","","0.251","0.001","-99","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C5-PFNA","13C5-PFNA","96.1","\%R","","-99","NA","","IS","96.1","","-99","NA","YES","100","","0.251","0.001","-99","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C2-PFDA","13C2-PFDA","84.6","\%R","","-99","NA","","IS","84.6","","-99","NA","YES","100","","0.251","0.001","-99","" "CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","d3-MeFOSAA","d3-MeFOSAA","63.5","\%R","","-99","NA","","IS","63.5","","-99","NA","YES","100","","0.251","0.001","-99",""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C2-
PFUnA","13C2-
PFUnA","75.1","\%R","","-99","NA","","IS","75.1","","-99","NA","YES","100","","0.251","0.001","-99",""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","d5-EtFOSAA","d5-
EtFOSAA","76.6","\%R","","-99","NA","","IS","76.6","","-99","NA","YES","100","","0.251","0.001","-99",""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C2-
PFDoA","13C2-
PFDoA","67.5","\%R","","-99","NA","","IS","67.5","","-99","NA","YES","100","","0.251","0.001","-99",""
"CV-FLTS-COMBINF-20171213","Modified EPA Method 537","Initial","1701951-19","Vista","13C2-
PFTeDA","13C2-
PFTeDA","61.0","\%R","","-99","NA","","IS","61.0","","-99","NA","YES","100","","0.251","0.001","-99",""
"SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","375-73-
5","PFBS","2.49","ng/L","U","0.891","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49",""
"SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","307-24-
4","PFHxA","16.3","ng/L","","1.08","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","375-85-9","PFHpA","31.2","ng/L","","0.294","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","355-46-4","PFHxS","2.49","ng/L","U","0.471","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","335-67-1","PFOA","46.8","ng/L","","0.324","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","1763-23-
1","PFOS","3.63","ng/L","J","0.402","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49",""
"SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","375-95-1","PFNA","2.49","ng/L","U","0.403","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","335-76-2","PFDA","22.3","ng/L","","0.741","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","2355-31-9","MeFOSAA","2.49","ng/L","U","0.821","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49 ",""
"SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","2058-94-
8","PFUnA","636","ng/L","","0.522","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","2991-50-6","EtFOSAA","2.49","ng/L","U","0.682","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49" ""
"SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","307-55-1","PFDoA","2.49","ng/L","U","0.394","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","72629-94-8","PFTrDA","2.49","ng/L","U","0.246","LOD","","TRG","","","3.98","LOQ","YES","-99","","0.251","0.001","2.49"," "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","376-06-

7","PFTeDA","2.49","ng/L","U","0.376","LOD","","TRG","",",""3.98","LOQ","YES","-99","","0.251","0.001","2.49", "'"
"SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C3-PFBS","13C3-PFBS","85.3","\%R","","-99","NA","","IS","85.3","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C2-PFHxA","13C2-PFHxA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C4-PFHpA","13C4-PFHpA","77.8","\%R","","-99","NA",","IS","77.8","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","18O2-PFHxS","18O2-PFHxS","96.2","\%R","","-99","NA","","IS","96.2","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C2-PFOA","13C2-PFOA","90.4","\%R","","-99","NA","","IS","90.4",","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C8-PFOS","13C8-PFOS","95.3","\%R","","-99","NA","","IS","95.3","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C5-PFNA","13C5-PFNA","65.7","\%R","","-99","NA","","IS","65.7",","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C2-PFDA","13C2-PFDA","68.1","\%R","","-99","NA","","IS","68.1",","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","d3-MeFOSAA","d3-MeFOSAA","73.5","\%R","","-99","NA","","IS","73.5","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C2-PFUnA","13C2-PFUnA","67.4","\%R","",-99","NA",",","S","67.4","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","d5-EtFOSAA","d5-EtFOSAA","63.2","\%R","","-99","NA","","IS","63.2","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C2-PFDoA","13C2-PFDoA","84.7","\%R","",--99","NA","","IS","84.7","","-99","NA","YES","100","","0.251","0.001","-99","" "SA-MW127I-20171213","Modified EPA Method 537","Initial","1701951-20","Vista","13C2-PFTeDA","13C2-PFTeDA","64.8","\%R","","-99","NA","","IS","64.8","","-99","NA","YES","100","","0.251","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","375-73-5","PFBS","2.50","ng/L","U","0.895","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","307-24-4","PFHxA","2.50","ng/L","U","1.09","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","375-85-9","PFHpA","2.50","ng/L","U","0.296","LOD","","TRG","",","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","355-46-4","PFHxS","2.50","ng/L","U","0.474","LOD","","TRG","",","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","335-67-1","PFOA","2.50","ng/L","U","0.326","LOD","","TRG",,","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","1763-23-1","PFOS","2.50","ng/L","U","0.404","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","375-95-1","PFNA","2.50","ng/L","U","0.405","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","335-76-2","PFDA","2.50","ng/L","U","0.745","LOD","","TRG",,","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","2355-31-9","MeFOSAA","2.50","ng/L","U","0.825","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50 " ""
"B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","2058-94-
8","PFUnA","2.50","ng/L","U","0.525","LOD",",",TRG","",","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","2991-50-
6","EtFOSAA","2.50","ng/L","U","0.685","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50" ""
"B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","307-55-1","PFDoA","2.50","ng/L","U","0.396","LOD","","TRG","",","4.00","LOQ","YES","-99",","0.250","0.001","2.50",""
"B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","72629-94-
8","PFTrDA","2.50","ng/L","U","0.247","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","
"B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","376-06-
7","PFTeDA","2.50","ng/L","U","0.378","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50", ""
"B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C3-PFBS","13C3-PFBS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C2-PFHxA","13C2-PFHxA","99.3","\%R","","-99","NA","","IS","99.3","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C4-PFHpA","13C4-PFHpA","94.6","\%R","","-99","NA","","IS","94.6","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","18O2-PFHxS","18O2-PFHxS","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C2-PFOA","13C2-PFOA","85.5","\%R","","-99","NA","","IS","85.5","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C8-PFOS","13C8-PFOS","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C5-PFNA","13C5-PFNA","82.1","\%R","","-99","NA","","IS","82.1","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C2-PFDA","13C2-PFDA","85.4","\%R","","-99","NA","","IS","85.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","d3-MeFOSAA","d3-MeFOSAA","64.4","\%R","","-99","NA","","IS","64.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C2-PFUnA","13C2-PFUnA","53.3","\%R","","-99","NA","","IS","53.3","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","d5-EtFOSAA","d5-EtFOSAA","49.7","\%R","H","-99","NA","","IS","49.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C2-PFDoA","13C2-PFDoA","70.7","\%R","","-99","NA","","IS","70.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BLK1","Modified EPA Method 537","Initial","B7L0182-BLK1","Vista","13C2-PFTeDA","13C2-PFTeDA","60.5","\%R","","-99","NA","","IS","60.5","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","375-735","PFBS","51.7","ng/L","","0.895","LOD","","TRG","129","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50"," "
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","307-244","PFHxA","51.6","ng/L","","1.09","LOD","","TRG","129","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","375-859","PFHpA","51.1","ng/L","","0.296","LOD","","TRG","128","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50" ,""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","355-464","PFHxS","47.4","ng/L","","0.474","LOD","","TRG","119","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50" ""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","335-671","PFOA","46.9","ng/L","","0.326","LOD","","TRG","117","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","1763-23-
1","PFOS","36.8","ng/L","","0.404","LOD","","TRG","92.0","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","375-951","PFNA","43.1","ng/L","","0.405","LOD","","TRG","108","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ,
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","335-76-

2","PFDA","39.2","ng/L","","0.745","LOD","","TRG","98.0","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", " "
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","2355-31-
9","MeFOSAA","56.3","ng/L","H","0.825","LOD","","TRG","141","","4.00","LOQ","YES","40.0","","0.250","0.001", "2.50",""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","2058-94-
8","PFUnA","42.3","ng/L","","0.525","LOD","","TRG","106","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50" ""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","2991-50-
6","EtFOSAA","44.6","ng/L","","0.685","LOD","","TRG","111","","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","307-55-
1","PFDoA","40.7","ng/L","","0.396","LOD","","TRG","102","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50" ""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","72629-94-
8","PFTrDA","51.1","ng/L","","0.247","LOD","","TRG","128","","4.00","LOQ","YES","40.0","","0.250","0.001","2.5 0",""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","376-06-
7","PFTeDA","63.9","ng/L","H","0.378","LOD","","TRG","160","","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C3-PFBS","13C3-PFBS","92.8","\%R","","-99","NA","","IS","92.8","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C2-PFHxA","13C2-PFHxA","97.4","\%R","","-99","NA","","IS","97.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C4-PFHpA","13C4-PFHpA","88.8","\%R","","-99","NA","","IS","88.8","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","18O2-PFHxS","18O2-PFHxS","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C2-PFOA","13C2-PFOA","87.7","\%R","","-99","NA","","IS","87.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C8-PFOS","13C8-PFOS","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C5-PFNA","13C5-PFNA","87.9","\%R","","-99","NA","","IS","87.9","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C2-PFDA","13C2-PFDA","89.7","\%R","","-99","NA","","IS","89.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","d3-MeFOSAA","d3-MeFOSAA","62.1","\%R","","-99","NA","","IS","62.1","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C2-PFUnA","13C2-PFUnA","72.8","\%R","","-99","NA","","IS","72.8","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","d5-EtFOSAA","d5-EtFOSAA","60.5","\%R","","-99","NA","","IS","60.5","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C2-PFDoA","13C2-PFDoA","71.1","\%R","","-99","NA","","IS","71.1","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-BS1","Modified EPA Method 537","Initial","B7L0182-BS1","Vista","13C2-PFTeDA","13C2-PFTeDA","52.0","\%R","","-99","NA","","IS","52.0","","-99","NA","YES","100","","0.250","0.001","-99","" "B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","375-73-5","PFBS","49.3","ng/L","","0.897","LOD","","TRG","123","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","307-24-
4","PFHxA","64.2","ng/L","H","1.09","LOD","","TRG","133","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","375-85-9","PFHpA","74.6","ng/L","","0.296","LOD","","TRG","117","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF-

20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","355-46-
4","PFHxS","45.0","ng/L","","0.474","LOD","","TRG","111","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF-
20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","335-67-
1","PFOA","85.3","ng/L","H","0.326","LOD","","TRG","133","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","1763-23-
1","PFOS","51.8","ng/L","","0.404","LOD","","TRG","121","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF-
20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","375-95-
1","PFNA","1030","ng/L","H","0.406","LOD","","TRG","397","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","335-76-
2","PFDA","69.5","ng/L","H","0.747","LOD","","TRG","132","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","2355-31-
9","MeFOSAA","59.4","ng/L","H","0.827","LOD","","TRG","148","","4.01","LOQ","YES","40.1","CV-FLTS-
COMBINF-20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","2058-94-
8","PFUnA","466","ng/L","H","0.526","LOD","","TRG","429","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","2991-50-
6","EtFOSAA","47.3","ng/L","","0.686","LOD","","TRG","118","","4.01","LOQ","YES","40.1","CV-FLTS-
COMBINF-20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","307-55-
1","PFDoA","36.9","ng/L","","0.397","LOD","","TRG","92.1","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","72629-94-
8","PFTrDA","40.9","ng/L","","0.248","LOD","","TRG","102","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","376-06-
7","PFTeDA","60.6","ng/L","H","0.378","LOD","","TRG","151","","4.01","LOQ","YES","40.1","CV-FLTS-COMBINF-20171213","0.249","0.001","2.51",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C3-PFBS","13C3-
PFBS","88.9","\%R","","-99","NA","","IS","88.9","","-99","NA","YES","100","CV-FLTS-COMBINF-
20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C2-PFHxA","13C2-PFHxA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C4-PFHpA","13C4-PFHpA","90.7","\%R","","-99","NA","","IS","90.7","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","18O2-PFHxS","1802-PFHxS","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C2-PFOA","13C2-PFOA","97.9","\%R","","-99","NA","","IS","97.9","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C8-PFOS","13C8-PFOS","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C5-PFNA","13C5-PFNA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","CV-FLTS-COMBINF-

20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C2-PFDA","13C2-PFDA","77.9","\%R","","-99","NA","","IS","77.9","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","d3-MeFOSAA","d3-MeFOSAA","60.4","\%R","","-99","NA","","IS","60.4","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C2-PFUnA","13C2-PFUnA","54.7","\%R","","-99","NA","","IS","54.7","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","d5-EtFOSAA","d5-EtFOSAA","60.9","\%R","","-99","NA","","IS","60.9","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C2-PFDoA","13C2-PFDoA","81.8","\%R","","-99","NA","","IS","81.8","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MS1","Modified EPA Method 537","Initial","B7L0182-MS1","Vista","13C2-PFTeDA","13C2-PFTeDA","60.1","\%R","","-99","NA","","IS","60.1","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.249","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","375-73-
5","PFBS","53.8","ng/L","H","0.884","LOD","","TRG","136","10.0","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","307-24-
4","PFHxA","61.0","ng/L","","1.08","LOD","","TRG","127","4.62","3.95","LOQ","YES","39.5","CV-FLTS-
COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","375-85-
9","PFHpA","81.9","ng/L","H","0.292","LOD","","TRG","137","15.7","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","355-46-
4","PFHxS","49.4","ng/L","","0.468","LOD","","TRG","124","11.1","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","335-67-
1","PFOA","73.2","ng/L","","0.321","LOD","","TRG","105","23.5","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","1763-23-
1","PFOS","41.1","ng/L","","0.398","LOD","","TRG","95.4","23.7","3.95","LOQ","YES","39.5","CV-FLTS-
COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","375-95-
1","PFNA","942","ng/L","H","0.400","LOD","","TRG","192","69.6","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","335-76-
2","PFDA","62.0","ng/L","","0.736","LOD","","TRG","115","13.8","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","2355-31-
9","MeFOSAA","45.0","ng/L","","0.815","LOD","","TRG","114","26.0","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","2058-94-8","PFUnA","411","ng/L","H","0.518","LOD","","TRG","296","36.7","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","2991-50-
6","EtFOSAA","53.2","ng/L","H","0.676","LOD","","TRG","135","13.4","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","307-55-1","PFDoA","46.4","ng/L","","0.391","LOD","","TRG","117","23.8","3.95","LOQ","YES","39.5","CV-FLTS-

COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","72629-94-
8","PFTrDA","44.2","ng/L","","0.244","LOD","","TRG","112","9.35","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","376-06-
7","PFTeDA","60.1","ng/L","H","0.373","LOD","","TRG","152","0.660","3.95","LOQ","YES","39.5","CV-FLTS-COMBINF-20171213","0.253","0.001","2.47",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C3-PFBS","13C3-PFBS","93.3","\%R","","-99","NA","","IS","93.3","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C2-PFHxA","13C2-PFHxA","97.3","\%R","","-99","NA","","IS","97.3","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C4-PFHpA","13C4-PFHpA","83.4","\%R","","-99","NA","","IS","83.4","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","18O2-PFHxS","18O2-PFHxS","98.0","\%R","","-99","NA","","IS","98.0","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C2-PFOA","13C2-PFOA","87.0","\%R","","-99","NA","","IS","87.0","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C8-PFOS","13C8-PFOS","91.0","\%R","","-99","NA","","IS","91.0","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C5-PFNA","13C5-PFNA","95.3","\%R","","-99","NA","","IS","95.3","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C2-PFDA","13C2-PFDA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","d3-MeFOSAA","d3-MeFOSAA","80.9","\%R","","-99","NA","","IS","80.9","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C2-PFUnA","13C2-PFUnA","68.0","\%R","","-99","NA","","IS","68.0","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","d5-EtFOSAA","d5-EtFOSAA","64.1","\%R","","-99","NA","","IS","64.1","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C2-PFDoA","13C2-PFDoA","91.2","\%R","","-99","NA","","IS","91.2","","-99","NA","YES","100","CV-FLTS-COMBINF-20171213","0.253","0.001","-99",""
"B7L0182-MSD1","Modified EPA Method 537","Initial","B7L0182-MSD1","Vista","13C2-PFTeDA","13C2-
PFTeDA","61.9","\%R","","-99","NA","","IS","61.9","","-99","NA","YES","100","CV-FLTS-COMBINF-
20171213","0.253","0.001","-99",""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","375-73-
5","PFBS","5.00","ng/L","U","0.443","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","307-24-
4","PFHxA","1.02","ng/L","J","0.663","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","375-85-
9","PFHpA","5.00","ng/L","U","0.533","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","355-46-4","PFHxS","5.00","ng/L","U","0.415","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","335-67-
1","PFOA","5.00","ng/L","U","1.08","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","375-95-1","PFNA","5.00","ng/L","U","1.44","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","1763-23-
1","PFOS","5.00","ng/L","U","1.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","335-76-
2","PFDA","5.00","ng/L","U","1.28","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","2355-31-
9","MeFOSAA","5.00","ng/L","U","3.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00" ,""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","2991-50-
6","EtFOSAA","5.00","ng/L","U","1.93","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00", ""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","2058-94-
8","PFUnA","5.00","ng/L","U","0.255","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","307-55-
1","PFDoA","5.00","ng/L","U","0.952","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00","" "B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","72629-94-
8","PFTrDA","5.00","ng/L","U","0.943","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00"," "
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","376-06-7","PFTeDA","5.00","ng/L","U","0.777","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00", ""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","13C2-PFHxA","13C2-
PFHxA","101","\%R","","-99","NA","","SUR","101","","-99","NA","YES","100","","0.250","0.001","-99",""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","13C2-PFDA","13C2-
PFDA","104","\%R","","-99","NA","","SUR","104","","-99","NA","YES","100","","0.250","0.001","-99",""
"B7L0184-BLK1","EPA Method 537","Initial","B7L0184-BLK1","Vista","d5-EtFOSAA","d5-
EtFOSAA","97.9","\%R","","-99","NA","","SUR","97.9","","-99","NA","YES","100","","0.250","0.001","-99",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","375-73-
5","PFBS","68.3","ng/L","","0.443","LOD","","TRG","96.4","","10.0","LOQ","YES","70.8","","0.250","0.001","5.00", ""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","307-24-
4","PFHxA","71.3","ng/L","B","0.663","LOD","","TRG","89.1","","10.0","LOQ","YES","80.0","","0.250","0.001","5.0 0",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","375-85-
9","PFHpA","84.9","ng/L","","0.533","LOD","","TRG","106","","10.0","LOQ","YES","80.0","","0.250","0.001","5.00" ""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","355-46-
4","PFHxS","75.5","ng/L","","0.415","LOD","","TRG","104","","10.0","LOQ","YES","72.8","","0.250","0.001","5.00" ,""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","335-67-
1","PFOA","82.0","ng/L","","1.08","LOD","","TRG","103","","10.0","LOQ","YES","80.0","","0.250","0.001","5.00"," "
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","375-95-
1","PFNA","77.1","ng/L","","1.44","LOD","","TRG","96.3","","10.0","LOQ","YES","80.0","","0.250","0.001","5.00"," "
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","1763-23-
1","PFOS","78.1","ng/L","","1.04","LOD","","TRG","106","","10.0","LOQ","YES","74.0","","0.250","0.001","5.00","" "B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","335-76-
2","PFDA","85.6","ng/L","","1.28","LOD","","TRG","107","","10.0","LOQ","YES","80.0","","0.250","0.001","5.00","
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","2355-31-

9","MeFOSAA","72.5","ng/L","","3.04","LOD","","TRG","90.6","","10.0","LOQ","YES","80.0","","0.250","0.001","5. 00",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","2991-50-
6","EtFOSAA","68.8","ng/L","","1.93","LOD","","TRG","86.0","","10.0","LOQ","YES","80.0","","0.250","0.001","5.0 0",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","2058-94-
8","PFUnA","81.3","ng/L","","0.255","LOD","","TRG","102","","10.0","LOQ","YES","80.0","","0.250","0.001","5.00" ""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","307-55-
1","PFDoA","84.9","ng/L","","0.952","LOD","","TRG","106","","10.0","LOQ","YES","80.0","","0.250","0.001","5.00" ,""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","72629-94-
8","PFTrDA","81.5","ng/L","","0.943","LOD","","TRG","102","","10.0","LOQ","YES","80.0","","0.250","0.001","5.0 0",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","376-06-
7","PFTeDA","78.1","ng/L","","0.777","LOD","","TRG","97.6","","10.0","LOQ","YES","80.0","","0.250","0.001","5.0 0",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","13C2-PFHxA","13C2-
PFHxA","103","\%R","","-99","NA","","SUR","103","","-99","NA","YES","100","","0.250","0.001","-99",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","13C2-PFDA","13C2-
PFDA","107","\%R","","-99","NA","","SUR","107","","-99","NA","YES","100","","0.250","0.001","-99",""
"B7L0184-BS1","EPA Method 537","Initial","B7L0184-BS1","Vista","d5-EtFOSAA","d5-
EtFOSAA","93.3","\%R","","-99","NA","","SUR","93.3","","-99","NA","YES","100","","0.250","0.001","-99",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","375-73-
5","PFBS","68.6","ng/L","","0.455","LOD","","TRG","94.3","","10.3","LOQ","YES","72.7","FT-RW0120171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","307-24-
4","PFHxA","68.5","ng/L","B","0.681","LOD","","TRG","82.3","","10.3","LOQ","YES","82.2","FT-RW0120171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","375-85-
9","PFHpA","78.9","ng/L","","0.547","LOD","","TRG","95.9","","10.3","LOQ","YES","82.2","FT-RW0120171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","355-46-
4","PFHxS","77.1","ng/L","","0.426","LOD","","TRG","103","","10.3","LOQ","YES","74.8","FT-RW01-
20171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","335-67-
1","PFOA","79.7","ng/L","","1.11","LOD","","TRG","96.7","","10.3","LOQ","YES","82.2","FT-RW0120171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","375-95-
1","PFNA","77.4","ng/L","","1.48","LOD","","TRG","94.2","","10.3","LOQ","YES","82.2","FT-RW01-
20171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","1763-23-
1","PFOS","74.4","ng/L","","1.07","LOD","","TRG","97.9","","10.3","LOQ","YES","76.0","FT-RW0120171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","335-76-
2","PFDA","71.7","ng/L","","1.31","LOD","","TRG","87.0","","10.3","LOQ","YES","82.2","FT-RW01-
20171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","2355-31-
9","MeFOSAA","78.2","ng/L","","3.12","LOD","","TRG","95.1","","10.3","LOQ","YES","82.2","FT-RW01-
20171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","2991-50-
6","EtFOSAA","69.9","ng/L","","1.98","LOD","","TRG","85.0","","10.3","LOQ","YES","82.2","FT-RW01-
20171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","2058-94-

8","PFUnA","77.3","ng/L","","0.262","LOD","","TRG","94.1","","10.3","LOQ","YES","82.2","FT-RW0120171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","307-55-
1","PFDoA","77.5","ng/L","","0.978","LOD","","TRG","94.2","","10.3","LOQ","YES","82.2","FT-RW01-
20171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","72629-94-
8","PFTrDA","76.0","ng/L","","0.969","LOD","","TRG","92.5","","10.3","LOQ","YES","82.2","FT-RW0120171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","376-06-
7","PFTeDA","75.0","ng/L","","0.798","LOD","","TRG","91.2","","10.3","LOQ","YES","82.2","FT-RW01-
20171212","0.243","0.001","5.14",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","13C2-PFHxA","13C2-
PFHxA","92.9","\%R","","-99","NA","","SUR","92.9","","-99","NA","YES","100","FT-RW01-
20171212","0.243","0.001","-99",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","13C2-PFDA","13C2-
PFDA","88.3","\%R","","-99","NA","","SUR","88.3","","-99","NA","YES","100","FT-RW01-
20171212","0.243","0.001","-99",""
"B7L0184-MS2","EPA Method 537","Initial","B7L0184-MS2","Vista","d5-EtFOSAA","d5-
EtFOSAA","77.1","\%R","","-99","NA","","SUR","77.1","","-99","NA","YES","100","FT-RW01-
20171212","0.243","0.001","-99",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","375-73-
5","PFBS","71.3","ng/L","","0.431","LOD","","TRG","104","9.78","9.74","LOQ","YES","68.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","307-24-
4","PFHxA","72.4","ng/L","B","0.645","LOD","","TRG","91.9","11.0","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","375-85-
9","PFHpA","77.3","ng/L","","0.519","LOD","","TRG","99.1","3.28","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86","'
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","355-46-
4","PFHxS","75.8","ng/L","","0.404","LOD","","TRG","107","3.81","9.74","LOQ","YES","70.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","335-67-
1","PFOA","78.9","ng/L","","1.05","LOD","","TRG","101","4.35","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","375-95-
1","PFNA","70.2","ng/L","","1.40","LOD","","TRG","90.1","4.45","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","1763-23-
1","PFOS","70.6","ng/L","","1.01","LOD","","TRG","98.0","0.102","9.74","LOQ","YES","72.0","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","335-76-
2","PFDA","72.5","ng/L","","1.25","LOD","","TRG","92.7","6.34","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","2355-31-
9","MeFOSAA","72.6","ng/L","","2.96","LOD","","TRG","93.1","2.13","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","2991-50-
6","EtFOSAA","63.5","ng/L","","1.88","LOD","","TRG","81.5","4.20","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","2058-94-
8","PFUnA","74.6","ng/L","","0.248","LOD","","TRG","95.8","1.79","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","307-55-

1","PFDoA","75.8","ng/L","","0.927","LOD","","TRG","97.3","3.24","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","72629-94-
8","PFTrDA","69.8","ng/L","","0.918","LOD","","TRG","89.6","3.19","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","376-06-
7","PFTeDA","68.8","ng/L","","0.756","LOD","","TRG","88.3","3.23","9.74","LOQ","YES","77.9","FT-RW0120171212","0.257","0.001","4.86",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","13C2-PFHxA","13C2-PFHxA","98.4","\%R","","-99","NA","","SUR","98.4","","-99","NA","YES","100","FT-RW01-20171212","0.257","0.001","-99","'
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","13C2-PFDA","13C2-
PFDA","83.2","\%R","","-99","NA","","SUR","83.2","","-99","NA","YES","100","FT-RW01-20171212","0.257","0.001","-99",""
"B7L0184-MSD2","EPA Method 537","Initial","B7L0184-MSD2","Vista","d5-EtFOSAA","d5-EtFOSAA","93.7","\%R","","-99","NA","","SUR","93.7","","-99","NA","YES","100","FT-RW01-20171212","0.257","0.001","-99",""
"112G08005-WE05","112G08005-WE05","FC-MW06S-20171212","12/12/2017 09:30","AQ","170195101","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 19:34","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW06S-20171212","12/12/2017 09:30","AQ","170195101","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 18:51","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW06S-20171212","12/12/2017 09:30","AQ","170195101","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 16:45","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW06S-20171212","12/12/2017 09:30","AQ","170195101","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 07:23","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02SR1-20171212","12/12/2017 09:31","AQ","170195102","NM","","2.30","Modified EPA Method 537","METHOD","Dilution","12/26/2017 08:50","02/02/2018 08:25","Vista","COA","WET","NA","5","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02SR1-20171212","12/12/2017 09:31","AQ","170195102","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 19:45","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02SR1-20171212","12/12/2017 09:31","AQ","170195102","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 19:03","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02SR1-20171212","12/12/2017 09:31","AQ","170195102","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 16:56","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02SR1-20171212","12/12/2017 09:31","AQ","170195102","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 07:34","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04I-20171212","12/12/2017 09:34","AQ","1701951-

03","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 19:57","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04I-20171212","12/12/2017 09:34","AQ","170195103","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 07:46","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04I-20171212","12/12/2017 09:34","AQ","170195103","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 17:07","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04I-20171212","12/12/2017 09:34","AQ","170195103","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 19:14","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FT-RW01-20171212","12/12/2017 09:50","AQ","170195104","NM","","2.30","EPA Method 537","METHOD","Initial","12/26/2017 09:30","12/28/2017 20:59","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0184","B7L0184","NA","S7L0093","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FT-RW01-FRB-20171212","12/12/2017 09:50","AQ","170195105","NM","","2.30","EPA Method 537","METHOD","Initial","12/26/2017 09:30","12/28/2017
21:11","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0184","B7L0184","NA","S7L0093","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW03SR1-20171212","12/12/2017 10:47","AQ","170195106","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 17:19","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW03SR1-20171212","12/12/2017 10:47","AQ","170195106","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 19:25","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW03SR1-20171212","12/12/2017 10:47","AQ","170195106","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 20:08","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW03SR1-20171212","12/12/2017 10:47","AQ","170195106","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 07:57","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04S-20171212","12/12/2017 10:58","AQ","170195107","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 08:09","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04S-20171212","12/12/2017 10:58","AQ","170195107","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 20:20","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04S-20171212","12/12/2017 10:58","AQ","170195107","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 19:37","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW04S-20171212","12/12/2017 10:58","AQ","170195107","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 17:30","Vista","COA","WET","NA","1","NA","NA","01/01/1900

00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02IR1-20171212","12/12/2017 11:10","AQ","170195108","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 17:42","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02IR1-20171212","12/12/2017 11:10","AQ","170195108","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 08:20","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02IR1-20171212","12/12/2017 11:10","AQ","170195108","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 19:48","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW02IR1-20171212","12/12/2017 11:10","AQ","170195108","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 20:31","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05S-20171212","12/12/2017 11:58","AQ","170195109","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 20:42","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05S-20171212","12/12/2017 11:58","AQ","170195109","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 20:00","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05S-20171212","12/12/2017 11:58","AQ","170195109","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 17:53","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05S-20171212","12/12/2017 11:58","AQ","170195109","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 08:31","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-DUP07-20171212","12/12/2017 12:00","AQ","170195110","NM","","2.30","Modified EPA Method 537","METHOD","Dilution","12/26/2017 08:50","02/02/2018 08:36","Vista","COA","WET","NA","5","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-DUP07-20171212","12/12/2017 12:00","AQ","170195110","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 20:54","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-DUP07-20171212","12/12/2017 12:00","AQ","170195110","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 20:11","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-DUP07-20171212","12/12/2017 12:00","AQ","170195110","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 08:43","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-DUP07-20171212","12/12/2017 12:00","AQ","170195110","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 18:05","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FT-DUP08-20171212","12/12/2017 11:00","AQ","1701951-

11","NM","","2.30","EPA Method 537","METHOD","Initial","12/26/2017 09:30","12/28/2017
21:24","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0184","B7L0184","NA","S7L0093","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-20171212","12/12/2017 12:17","AQ","170195112","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 20:23","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-20171212","12/12/2017 12:17","AQ","170195112","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 18:16","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-20171212","12/12/2017 12:17","AQ","170195112","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 21:05","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-20171212","12/12/2017 12:17","AQ","170195112","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 08:54","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-FRB-20171212","12/12/2017 12:17","AQ","170195113","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 18:28","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-FRB-20171212","12/12/2017 12:17","AQ","170195113","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 09:06","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-FRB-20171212","12/12/2017 12:17","AQ","170195113","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 21:17","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW01S-FRB-20171212","12/12/2017 12:17","AQ","170195113","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 20:34","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FT-PZ-454S-20171212","12/12/2017 12:23","AQ","170195114","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 21:20","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FT-PZ-454S-20171212","12/12/2017 12:23","AQ","170195114","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 19:14","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FT-PZ-454S-20171212","12/12/2017 12:23","AQ","170195114","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 22:03","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FT-PZ-454S-20171212","12/12/2017 12:23","AQ","170195114","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 09:52","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05I-20171212","12/12/2017 13:10","AQ","170195115","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 10:03","Vista","COA","WET","NA","1","NA","NA","01/01/1900

00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05I-20171212","12/12/2017 13:10","AQ","170195115","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 19:25","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05I-20171212","12/12/2017 13:10","AQ","170195115","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 21:32","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-MW05I-20171212","12/12/2017 13:10","AQ","170195115","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 22:14","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW02S-20171212","12/12/2017 13:40","AQ","170195116","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 10:15","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW02S-20171212","12/12/2017 13:40","AQ","170195116","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 19:37","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW02S-20171212","12/12/2017 13:40","AQ","170195116","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 21:43","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW02S-20171212","12/12/2017 13:40","AQ","170195116","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 22:26","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW03S-20171212","12/12/2017 14:13","AQ","170195117","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 22:37","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW03S-20171212","12/12/2017 14:13","AQ","170195117","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 21:55","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW03S-20171212","12/12/2017 14:13","AQ","170195117","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 19:48","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","ET-MW03S-20171212","12/12/2017 14:13","AQ","170195117","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 10:26","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-PZ05I1-20171212","12/12/2017 14:14","AQ","170195118","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 10:38","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-PZ05I1-20171212","12/12/2017 14:14","AQ","170195118","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 20:00","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-PZ05I1-20171212","12/12/2017 14:14","AQ","1701951-

18","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 22:06","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","FC-PZ05I1-20171212","12/12/2017 14:14","AQ","170195118","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 22:49","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","CV-FLTS-COMBINF-20171213","12/13/2017 08:10","AQ","170195119","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 23:00","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","CV-FLTS-COMBINF-20171213","12/13/2017 08:10","AQ","170195119","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 22:18","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","CV-FLTS-COMBINF-20171213","12/13/2017 08:10","AQ","170195119","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 20:11","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","CV-FLTS-COMBINF-20171213","12/13/2017 08:10","AQ","1701951-
19","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 10:49","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","SA-MW127I-20171213","12/13/2017 09:48","AQ","170195120","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 22:29","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","SA-MW127I-20171213","12/13/2017 09:48","AQ","170195120","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 11:01","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","SA-MW127I-20171213","12/13/2017 09:48","AQ","170195120","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 20:23","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","SA-MW127I-20171213","12/13/2017 09:48","AQ","170195120","NM","","2.30","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 23:12","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","12/14/2017 11:03","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BLK1","01/01/1900 00:00","AQ","B7L0182-BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 06:48","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BLK1","01/01/1900 00:00","AQ","B7L0182-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 16:10","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BLK1","01/01/1900 00:00","AQ","B7L0182-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 18:59","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BLK1","01/01/1900 00:00","AQ","B7L0182-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 18:17","Vista","COA","WET","NA","1","NA","NA","01/01/1900

00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BS1","01/01/1900 00:00","AQ","B7L0182-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 18:48","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BS1","01/01/1900 00:00","AQ","B7L0182-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 06:37","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BS1","01/01/1900 00:00","AQ","B7L0182-BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 18:05","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-BS1","01/01/1900 00:00","AQ","B7L0182-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 15:59","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-MS1","01/01/1900 00:00","AQ","B7L0182-
MS1","MS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 19:11","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-MS1","01/01/1900 00:00","AQ","B7L0182-MS1","MS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 07:00","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-MS1","01/01/1900 00:00","AQ","B7L0182-
MS1","MS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 16:22","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-MS1","01/01/1900 00:00","AQ","B7L0182-
MS1","MS","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 18:28","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00",""
"112G08005-WE05","112G08005-WE05","B7L0182-MSD1","01/01/1900 00:00","AQ","B7L0182-
MSD1","MSD","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/18/2018 18:40","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-MSD1","01/01/1900 00:00","AQ","B7L0182-
MSD1","MSD","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/22/2018 16:33","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0182-MSD1","01/01/1900 00:00","AQ","B7L0182-
MSD1","MSD","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/26/2018 07:11","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00",""
"112G08005-WE05","112G08005-WE05","B7L0182-MSD1","01/01/1900 00:00","AQ","B7L0182-
MSD1","MSD","","-99","Modified EPA Method 537","METHOD","Initial","12/26/2017 08:50","01/17/2018 19:22","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0182","B7L0182","NA","S8A0059","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0184-BLK1","01/01/1900 00:00","AQ","B7L0184-
BLK1","MB","","-99","EPA Method 537","METHOD","Initial","12/26/2017 09:30","12/28/2017
14:58","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0184","B7L0184","NA","S7L0093","1701951","01/01/1900 00:00","01/01/1900 00:00",""
"112G08005-WE05","112G08005-WE05","B7L0184-BS1","01/01/1900 00:00","AQ","B7L0184-

BS1","LCS","","-99","EPA Method 537","METHOD","Initial","12/26/2017 09:30","12/28/2017
14:33","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0184","B7L0184","NA","S7L0093","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0184-MS2","01/01/1900 00:00","AQ","B7L0184-MS2","MS","","-99","EPA Method 537","METHOD","Initial","12/26/2017 09:30","12/28/2017 16:38","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0184","B7L0184","NA","S7L0093","1701951","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B7L0184-MSD2","01/01/1900 00:00","AQ","B7L0184-
MSD2","MSD","","-99","EPA Method 537","METHOD","Initial","12/26/2017 09:30","12/28/2017
16:50","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7L0184","B7L0184","NA","S7L0093","1701951","01/01/1900 00:00","01/01/1900 00:00",""

TO:	K. FRANCISCO	DATE: MARCH 19, 2018
FROM:	TERRI L. SOLOMON	COPIES:
SUBJECT:		ORGANIC DATA VALIDATION - POLYFLUOROALKYL SUBSTANCES (PFAS)

Overview

The sample set for NWIRP Calverton, SDG 1701951 consisted of sixteen (16) groundwater samples, two (2) drinking water samples and two (2) FRB samples. All samples were analyzed for polyfluoroalkyl substances (PFAS). Two (2) field duplicate sample pairs, FT-MW 02SR1-20171212 / FC-DUP 07-20171212 and FT-RW 01-20171212 / FT-DUP08-20171212 were included in this SDG. Original sample CV-FLTS-COMBINF-20171213 was included in this SDG and the corresponding field duplicate sample CV-DUP0920171213 was included in SDG 1701951.

The samples were collected by Tetra Tech, Inc. on December 12 and 13, 2017 and analyzed by Vista Analytical Laboratory. All analyses were conducted in accordance with EPA Method 537 Modified analytical and reporting protocols. The data contained in this SDG was validated with regard to the following parameters:

* - Laboratory Fortified Blank (LFB) Results
* - Compound Identification
* - Compound Quantitation
* - Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, and documentation supporting these findings is presented in Appendix C.

PFAS

The 28 day hold time from extraction to analyses was exceeded by three (3) days for pefluorododecanoic acid (PFDoA) for all groundwater samples. The detected and nondetected results reported for PFDoA in the affected samples were qualified as estimated (J) and (UJ) respectively.

The 28 day hold time from extraction to analyses was exceeded by ten (10) days for perfluoroundecanoic acid (PFUnA) for samples FC-MW 02SR 1-20171212 and FC-DUP 07-20171212. The detected results reported for PFUnA in the affected samples were qualified as estimated (J).

The 28 day hold time from extraction to analyses was exceeded by three (3) days for perfluorononanoic acid (PFNA) for sample CV-FLTS-COMBINF-20171213. The detected result reported for PFNA in the affected sample was qualified as estimated (J).

The following compound was detected in a preparation blank (B7L0184-BLK1) at the maximum concentration indicated below:
$\frac{\text { Compound }}{\text { Perfluorohexanoic acid (PFHxA) }{ }^{(1)} \quad \frac{\text { Concentration }}{1.02 \mathrm{ng} / \mathrm{L}} \quad \frac{\text { Action Level }}{<L O Q}}$
(1) Maximum concentration affecting the drinking water samples.

An action level of $5 X$ the maximum concentration was established to evaluate for blank contamination. The detected results less than the action level for the aforementioned compound were qualified as (U) and raised to the limit of detection. The PFHxA result detected above was less than one-third of the method reporting limit. It should be noted that F R B samples are not qualified for laboratory blank contamination.

The matrix spike (MS) percent recoveries (\%Rs) for PFHxA, pentdecafluorooctanoic acid (PFOA), perfluorodecanioc acid (PFDA), n-methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) and perfluorotetradecanoic acid (PFTeDA) were above the quality control limits for sample CV-FLTS-COMBINF20171213. The matrix spike duplicate (MSD) \%Rs for perfluorobutanesulfonic acid (PFBS), perfluoroheptanioc acid (PFHPA), n-ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) and PFTeDA were above the quality control limits. The MS/MSD relative percent differences (RPDs) were within the quality control limits. The detected results for the aforementioned compounds were qualified as estimated (J). The bias could not be determined because one recovery was acceptable and the other was outside the quality control limits.

Field duplicate imprecision (relative percent difference $>30 \%$) was noted for sample pair FT-MW 02SR120171212 / FC-DUP 07-20171212 for perfluorooctane sulfonic acid (PFOS). The detected results reported for PFOS in samples FT-MW02SR 1-20171212 and FC-DUP 07-20171212 were qualified as estimated (J).

Field duplicate imprecision (relative percent difference $>30 \%$) was noted for sample pair CV-FLTS-COMBINF-20171213 / CV-DUP 09-20171213 (SDG 1701951) for PFHpA. The detected result reported for PFHpA in sample CV-FLTS-COMBINF-20171213 was qualified as estimated (J).

Detected results reported below the Limit of Quantitation (LOQ) but above the Method Detection Limit (MDL) were qualified as estimated, (J). Non-detected results were reported to the limit of detection (LOD).

Additional Comments

Samples FC-MW 02SR1-20171212 and FC-DUP 07-20171212 were analyzed at a dilution for PFUnA.
The buffering agent Trizma was added to all drinking water samples.
The OPR (B7L0182-BS1) percent recoveries for MeFOSAA and PFTeDA were above the quality control limits. All groundwater samples were affected. No validation actions were required as all sample results were nondetects.

The MS/MSD percent recoveries for PFNA and PFUnA were above the quality control limits for sample CV-FLTS-COMBINF-20171213. No validation actions were required as the sample results were greater than twenty (20) times the spike added.

The continuing calibration performed on 01/17/18 @ 21:40 had percent recoveries for PF DoA and PFTeDA which exceeded the 130% laboratory quality control limit. All groundwater samples were affected. No validation actions were warranted as the aforementioned sample results in the affected samples were nondetects.

Executive Summary

Laboratory Performance Issues: Several hold times were exceeded. The compound PF HxA was present the laboratory preparation blank. Several MS/MSD percent recoveries were outside the quality control limits.

Other Factors Affecting Data Quality: Field duplicate imprecision was noted for several compounds. Detected results below the LOQ were estimated.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Superfund Methods Data Review" (January 2017), the Environmental Protection Agency document EPA/600/R-08/092, Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", (September 2009) and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (2017). The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc.
Terri L. Solomon
Chemist/Data Validator

Petra Tech, Inc.
J oseph A. Samchuck
Data Validation Manager

Attachments:
Appendix A -Qualified Analytical Results

Appendix B-Results as Reported by the Laboratory Appendix C - Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
\mathbf{J}	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.
$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
$\mathbf{U J}$	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
\mathbf{R}	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
$\mathbf{U R}$	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Appendix A

Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 = GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
$\mathrm{G}=$ Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
$J=$ ICP PDS Recovery Noncompliance; MSA's $r<0.995$
$\mathrm{K}=$ ICP Interference - includes ICS \% R Noncompliance
L = Instrument Calibration Range Exceedance
$\mathrm{M}=$ Sample Preservation Noncompliance
$\mathrm{N}=$ Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
$P=$ Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
$\mathrm{Q}=$ Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$\mathrm{U}=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$\mathrm{V}=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
$\mathrm{W}=$ EMPC result
$\mathrm{X}=$ Signal to noise response drop
$Y=$ Percent solids $<30 \%$
$Z \quad=$ Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE05	NSAMPLE	CV-FLTS-COM	MBINF-	0171213	ET-MW01S-20	17121		ET-MW01S-FR	B-20	1212	ET-MW02S-20	1712	
SDG: 1701951	LAB_ID	1701951-19			1701951-12			1701951-13			1701951-16		
FRACTION: PFAS	SAMP_DATE	12/13/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	TANE	2.49	U		2.52	U		2.53	U		2.45	U	
N-METHYL PERFLUOROO	CTANE	2.49	U		2.52	U		2.53	U		2.45	U	
PENTADECAFLUOROOCT	ANOIC ACID	31.9	J	D	4.22			2.53	U		6.17		
PERFLUOROBUTANESUL	FONIC ACID	2.49	U		2.52	U		2.53	U		2.45	U	
PERFLUORODECANOIC A	CID	16.5	J	D	2.52	U		2.53	U		2.45	U	
PERFLUORODODECANO	C ACID	2.49	UJ	H	2.52	UJ	H	2.53	UJ	H	2.45	UJ	H
PERFLUOROHEPTANOIC	ACID	27.9	J	DG	0.31	J	P	2.53	U		0.595	J	P
PERFLUOROHEXANESUL	FONIC ACID	2.49	U		2.52	U		2.53	U		2.45	U	
PERFLUOROHEXANOIC A	CID	10.7	J	D	2.52	U		2.53	U		2.45	U	
PERFLUORONONANOIC	ACID	866	J	H	1.66	J	P	2.53	U		2.18	J	P
PERFLUOROOCTANE SUL	FONIC ACID	3.36	J	P	0.443	J	P	2.53	U		2.59	J	P
PERFLUOROTETRADECA	NOIC ACID	2.49	U		2.52	U		2.53	U		2.45	U	
PERFLUOROTRIDECANO	C ACID	2.49	U		2.52	U		2.53	U		2.45	U	
PERFLUOROUNDECANOIC	C ACID	294			1.43	J	P	2.53	U		2.45	U	

PROJ_NO: 08005-WE05 SDG: 1701951 FRACTION: PFAS MEDIA: WATER	NSAMPLE	ET-MW03S-20171212			FC-DUP07-20171212			FC-MW02IR1-20171212			FC-MW02SR1-20171212		
	LAB_ID	1701951-17			1701951-10			1701951-08			1701951-02		
	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF				FC-MW02SR1-20171212								
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROOCTANE SULFONAMIDOACETIC ACID		2.52	U		2.55	U		2.46	U		2.49	U	
N-METHYL PERFLUOROOCTANE SULFONAMIDOACETIC ACID													
PENTADECAFLUOROOCTANOIC ACID		5.51			39.3			11.6			31.1		
PERFLUOROBUTANESULFONIC ACID		2.52	U		1.02	J	P	2.46	U		1.16	J	P
PERFLUORODECANOIC ACID		2.52	U		64.2			2.46	U		66.6		
PERFLUORODODECANOIC ACID		2.52	UJ	H	1.2	J	HP	2.46	UJ	H	1.08	J	HP
PERFLUOROHEPTANOIC ACID		1.66	J	P	12.7			4.52			11.5		
PERFLUOROHEXANESULFONIC ACID		2.52	U		1.3	J	P	2.46	U		1.36	J	P
PERFLUOROHEXANOIC ACID		3.59	J	P	27.9			2.46	U		29.4		
PERFLUORONONANOIC ACID		2.55	J	P	303			35			310		
PERFLUOROOCTANE SULFONIC ACID		0.862	J	P	10.8	J	G	28.9			7.44	J	G
PERFLUOROTETRADECANOIC ACID		2.52	U		2.55	U		2.46	U		2.49	U	
PERFLUOROTRIDECANOIC ACID		2.52	U		2.02	J	P	2.46	U		1.64	J	P
PERFLUOROUNDECANOIC ACID		2.52	U		1510	J	H	6.77			1670	J	H

PROJ_NO: 08005-WE05	NSAMPLE	FC-MW03SR1-	-2017		FC-MW04I-201	171212		FC-MW04S-20	17121		FC-MW05I-201	17121	
SDG: 1701951	LAB_ID	1701951-06			1701951-03			1701951-07			1701951-15		
FRACTION: PFAS	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	TANE	2.55	U		2.55	U		2.48	U		2.47	U	
N-METHYL PERFLUOROO SULFONAMIDOACETIC A	CTANE	2.55	U		2.55	U		2.48	U		2.47	U	
PENTADECAFLUOROOC	ANOIC ACID	15.9			32.3			4.23			7.62		
PERFLUOROBUTANESUL	FONIC ACID	1.97	J	P	2.55	U		2.48	U		2.47	U	
PERFLUORODECANOIC	CID	2.99	J	P	3.77	J	P	2.48	U		2.47	U	
PERFLUORODODECANO	C ACID	2.55	UJ	H	2.55	UJ	H	2.48	UJ	H	2.47	UJ	H
PERFLUOROHEPTANOIC	ACID	3.95	J	P	36.3			1.11	J	P	3.01	J	P
PERFLUOROHEXANESUL	FONIC ACID	1.41	J	P	0.806	J	P	2.48	U		1.26	J	P
PERFLUOROHEXANOIC	CID	13.7			22.9			2.48	U		2.75	J	P
PERFLUORONONANOIC	ACID	20.3			226			5.53			11.4		
PERFLUOROOCTANE SU	FONIC ACID	6.6			1.44	J	P	2.12	J	P	2.39	J	P
PERFLUOROTETRADECA	NOIC ACID	2.55	U		2.55	U		2.48	U		2.47	U	
PERFLUOROTRIDECANO	C ACID	0.382	J	P	2.55	U		2.48	U		2.47	U	
PERFLUOROUNDECANO	C ACID	47.5			31.5			2.48	U		8.11		

PROJ_NO: 08005-WE05 SDG: 1701951 FRACTION: PFAS MEDIA: WATER	NSAMPLE	FC-MW05S-20171212			FC-MW06S-20171212			FC-PZ0511-20171212			FT-DUP08-20171212		
	LAB_ID	1701951-09			1701951-01			1701951-18			1701951-11		
	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF										FT-RW01-20171212		
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROOCTANE SULFONAMIDOACETIC ACID		2.59	U		2.44	U		2.47	U		4.88	U	
N-METHYL PERFLUOROOCTANE SULFONAMIDOACETIC ACID		2.59	U		2.44	U		2.47	U		4.88	U	
PENTADECAFLUOROOCTANOIC ACID		2.59	U		18.3			17			4.88	U	
PERFLUOROBUTANESULFONIC ACID		2.59	U		1.37	J	P	1.05	J	P	4.88	U	
PERFLUORODECANOIC ACID		2.59	U		0.728	J	P	5.74			4.88	U	
PERFLUORODODECANOIC ACID		2.59	UJ	H	2.44	UJ	H	2.47	UJ	H	4.88	U	
PERFLUOROHEPTANOIC ACID		2.59	U		4.73			16.5			4.88	U	
PERFLUOROHEXANESULFONIC ACID		2.59	U		0.684	J	P	0.584	J	P	4.88	U	
PERFLUOROHEXANOIC ACID		2.59	U		2.81	J	P	11.8			4.88	U	A
PERFLUORONONANOIC ACID		0.907	J	P	7.81			256			4.88	U	
PERFLUOROOCTANE SULFONIC ACID		2.59	U		13.5			8.53			4.88	U	
PERFLUOROTETRADECANOIC ACID		2.59	U		2.44	U		2.47	U		4.88	U	
PERFLUOROTRIDECANOIC ACID		2.59	U		2.44	U		2.47	U		4.88	U	
PERFLUOROUNDECANOIC ACID		7.17			33.3			134			4.88	U	

PROJ_NO: 08005-WE05	NSAMPLE	FT-PZ-454S-20171212			FT-RW01-20171212			FT-RW01-FRB-20171212			SA-MW127I-20171213		
SDG: 1701951	LAB_ID	1701951-14			1701951-04			1701951-05			1701951-20		
FRACTION: PFAS	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/13/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROOCTANE SULFONAMIDOACETIC ACID		2.55	U		4.81	U		4.94	U		2.49	U	
N-METHYL PERFLUOROOCTANE SULFONAMIDOACETIC ACID		2.55	U		4.81	U		4.94	U		2.49	U	
PENTADECAFLUOROOCTANOIC ACID		4.47			4.81	U		4.94	U		46.8		
PERFLUOROBUTANESULFONIC ACID		2.55	U		4.81	U		4.94	U		2.49	U	
PERFLUORODECANOIC ACID		2.55	U		4.81	U		4.94	U		22.3		
PERFLUORODODECANOIC ACID		2.55	UJ	H	4.81	U		4.94	U		2.49	UJ	H
PERFLUOROHEPTANOIC ACID		1.41	J	P	4.81	U		4.94	U		31.2		
PERFLUOROHEXANESULFONIC ACID		2.46	J	P	4.81	U		4.94	U		2.49	U	
PERFLUOROHEXANOIC ACID		2.55	U		4.81	U	A	0.838	J	P	16.3		
PERFLUORONONANOIC ACID		5.67			4.81	U		4.94	U		2.49	U	
PERFLUOROOCTANE SULFONIC ACID		5.85			4.81	U		4.94	U		3.63	J	P
PERFLUOROTETRADECANOIC ACID		2.55	U		4.81	U		4.94	U		2.49	U	
PERFLUOROTRIDECANOIC ACID		2.55	U		4.81	U		4.94	U		2.49	U	
PERFLUOROUNDECANOIC ACID		11.6			4.81	U		4.94	U		636		

Appendix B

Results as Reported by the Laboratory

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation LCL-UCL- Lower control
Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL- Detection Limit

LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOQ - Limit of quantitatio

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOD - Limit of Detection
LOQ - Limit of quantitation

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOQ - Limit of quantitatio
Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

DL - Detection Limit
LOQ - Limit of quantitatio
Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Appendix C

Support Documentation

ANALYTE		ORIGINAL CV-FLTS-COMBINF-20171213 SDG 1701951	DUPLICATE CV- DUP09-20171213 SDG 1701953	RL	RPD	RPD > 30\%	ORIGINAL SAMPLE CONC $>2 x R L$	DUPLICATE SAMPLE CONC $>2 \times$ RL	DIFFERENCE >2XRL
PENTADECAFLUOROOCTANOIC ACID	PFOA	31.9	28.9	3.98	9.868	FALSE	true	true	FALSE
PERFLUORODECANOIC ACID	PFDA	16.5	15.4	3.98	6.897	FALSE	true	true	FALSE
PERFLUOROHEPTANOIC ACID	PFHpA	27.9	19.7	3.98	34.454	TRUE	true	true	TRUE
PERFLUOROHEXANESULFONIC ACID	PFHxS	2.49	0.761	2.49	106.367	TRUE	FALSE	FALSE	FALSE
PERFLUOROHEXANOIC ACID	PFHxA	10.7	9.84	3.98	8.374	FALSE	true	true	FALSE
PERFLUORONONANOIC ACID	PFNA	866	790	3.98	9.179	FALSE	true	true	TRUE
PERFLUOROOCTANE SULFONIC ACID	PFOS	3.36	2.67	3.98	22.886	FALSE	FALSE	FALSE	FALSE
PERFLUOROUNDECANOIC ACID	PFUnA	294	372	38.9	23.423	FALSE	TRUE	TRUE	TRUE

Vista
Analytical Laboratory
Analytarlaboratory

CHAIN OF CUSTODY

NWIRP Calverton Site 2/Southern Area \qquad Sampler: $\frac{\text { Sacob Birkett }}{\text { (name) }}$
\qquad Tetratech 5700 Lakeliright Drive Suitel02 Project ID: 112 GO8005-WEOS

PO\#:

\qquad SL = Sludge, SO = Soil, WW = Wastewater, B = Blood/Serum, O = Other: \qquad

Analytical Laboratory

Vista Work Order \#: \qquad TAT Std

 "P2-454S"

Irizma Preservation on samples for unmodified 537

Vista Work Order \#: \qquad tat SH

Comments: Trizma preservation on samples for Unmodified 537

Vista Work Order No. 1701951

Case Narrative

Sample Condition on Receipt:

Twenty aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Seventeen samples were extracted and analyzed for a selected list of PFAS using Modified EPA Method 537.

The following samples, as well as the Matrix Spike and Matrix Spike Duplicate, contained particulate and were centrifuged prior to extraction:

Laboratory ID	Sample Name
1701951-02	FC-MW02SR1-20171212
1701951-06	FC-MW03SR1-20171212
1701951-07	FC-MW04S-20171212
1701951-10	FC-DUP07-20171212
1701951-16	ET-MW02S-20171212
1701951-19	CV-FLTS-COMBINF-20171213
1701951-20	SA-MW127I-20171213

Holding Times

The samples were extracted within the method hold times. The re-injections for PFNA and PFDoA in sample "CV-FLTS-COMBINF-20171213", as well as the MS/MSD, were analyzed outside of the hold time. The dilutions for PFUdA in samples "FC-MW02SR1-20171212" and "FC-DUP07-20171212" were analyzed outside the hold time. All other analyses were performed within the hold time.

Quality Control

The Initial Calibration met the method acceptance criteria. The recoveries of PFDoA, PFTrDA and PFTeDA were $>130 \%$ in one of more Continuing Calibration Verifications; these analytes were not detected in the samples. The Continuing Calibration Verifications met the acceptance criteria for all other analytes quantified from the associated runs.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. The recoveries of MeFOSAA and PFTeDA were $>130 \%$ in the OPR. These analytes were not detected in the samples. The recoveries of all other analytes were within the acceptance criteria.

The extracts were re-injected to meet the Calibration Verification acceptance criteria. The results for PFDA,

PFHxS, PFDoA and PFHxA were taken from separate injections of the extracts.
An MS/MSD was performed on sample "CV-FLTS-COMBINF-20171213" The recoveries and/or RPDs were outside of the acceptance criteria for PFBS, PFHxA, PFHpA, PFOA, PFNA, PFDA, MeFOSAA, PFUnA, EtFOSAA and PFTeDA.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

EPA Method 537

Three samples were extracted and analyzed for a selected list of PFAS using EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.
A Laboratory Fortified Blank (LFB) and Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above $1 / 2$ the LOQ. The LFB recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.
A Laboratory Fortified Sample Matrix (LFSM) and Laboratory Fortified Sample Matrix Duplicate (LFSMD) were performed on sample "FT-RW01-20171212". The analyte recoveries and RPDs were within the method acceptance criteria.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag
B7L0182-BLK1	B7L0182-BLK1	Modified EPA Method 537	d5-EtFOSAA	H

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

Sample Inventory Report

Vista Sample ID	Client			
	Sample ID	Sampled	Received	Components/Containers
1701951-01	FC-MW06S-20171212	12-Dec-17 09:30	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-02	FC-MW02SR1-20171212	12-Dec-17 09:31	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-03	FC-MW04I-20171212	12-Dec-17 09:34	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-04	FT-RW01-20171212	MS/MSD12-Dec-17 09:50	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-05	FT-RW01-FRB-20171212	FRB12-Dec-17 09:50	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-06	FC-MW03SR1-20171212	12-Dec-17 10:47	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-07	FC-MW04S-20171212	12-Dec-17 10:58	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-08	FC-MW02IR1-20171212	12-Dec-17 11:10	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-09	FC-MW05S-20171212	12-Dec-17 11:58	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-10	FC-DUP07-20171212	12-Dec-17 12:00	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-11	FT-DUP08-20171212	12-Dec-17 11:00	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-12	ET-MW01S-20171212	12-Dec-17 12:17	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-13	ET-MW01S-FRB-20171212	12-Dec-17 12:17	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-14	FT-PZ-454S-20171212	12-Dec-17 12:23	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-15	FC-MW05I-20171212	12-Dec-17 13:10	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-16	ET-MW02S-20171212	12-Dec-17 13:40	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-17	ET-MW03S-20171212	12-Dec-17 14:13	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-18	FC-PZ05I1-20171212	12-Dec-17 14:14	14-Dec-17 11:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1701951-19	CV-FLTS-COMBINF-20171213	MS/MSD13-Dec-17 08:10	14-Dec-17 11:03	HDPE Bottle, 250 mL

Vista Project: 1701951
Client Project: NWIRP Calverton Site 2 Southern Area112G08005-WE05

Sample Inventory Report

Vista	Client			
Sample ID	Sample ID	Sampled	Received	Components/Containers
1701951-19	CV-FLTS-COMBINF-20171213	MS/MSD13-Dec-17 08:10	14-Dec-17 11:03	HDPE Bottle, 250 mL
			HDPE Bottle, 250 mL	
			HDPE Bottle, 250 mL	
			HDPE Bottle, 250 mL	
$1701951-20$	SA-MW127I-20171213			HDPE Bottle, 250 mL
			HDPE Bottle, 250 mL	

Process Sheet

Workorder: 1701951

Prep Expiration: 2017-Dec-26
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous
Client Matrix: Aqueous

Version: 537 (14 Analyte) DoD: DoD QSM 5.1

Workorder Due:08-Jan-18 00:00
TAT: 25

Prep Batch: \qquad

Prep Data Entered:

Initial Sequence: \qquad

WO Comments: Provide all analytical runs.

MS/MSD per batch, if MS/MSD is not provided - LCS/LCSD.

spike reconnald
Sample Reconciled By: \qquad 122317
Page 1 of 2

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS DOD (LOQ as mRL)

Prepared using: LCMS - SPE Extraction-LCMS

 is sup: NA El Solve: $0.5 \% \mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{MEOH} / \mathrm{MeOH}^{6 \mathrm{ML}}$
Ns: $1751820,10 \mu \mathrm{~L}$ (14)
Final Volumes) lML
Rs: $17 \mathrm{~K} 2502,10 \mu \mathrm{~L}\left(\mathrm{~V}_{1}\right)$

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$
Cen $=$ Gentrified 1701951

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS DOD (LOQ as mRL)
\qquad L Prep Date/Time: 23-Deo-17 08:50

$\begin{aligned} & \text { IS: } 1710402,10 \mu(\mathrm{Vz}) \\ & \text { is sup: } N A \\ & \text { NS: } 1731820,10 \mu 1(\mathrm{V4}) \\ & \text { RS: } \\ & 17 \mathrm{~K} 2502,10 \mu \mathrm{~L} \end{aligned}$	SPE Chem: \qquad Steata X-Aw $33 \mu \mathrm{~mm} \frac{2 \text { comg }}{6 \mathrm{~mL}}$ Ele Solv: 0.5% NH9OH in $\mathrm{MEOH} / \mathrm{MEOH}$ Final Volume(s) \qquad IML	Notes:

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$
$\mathrm{Cen}=$ Gentrifyged 1701951

LabNumber	WetWeight (Initial)	\% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1701951-01	0.2558	$N A$	NA	1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-02	0.25063	$\frac{\text { N }}{1}$	-	1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-03	0.24536			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-06	0.24463			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-07	0.25168			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-08	0.25393			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-09	0.2411			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-10	0.24536			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-12	0.24778			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-13	0.24667			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-14	0.24489			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-15	0.2534			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-16	0.25547			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-17	0.24815			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-18	0.25258			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-19	0.25105			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
1701951-20	0.2512			1000	26-Dec-17 08:50	KC			Aqueous	537M PFAS DOD (LOQ as
B7L0182-BLK1	0.25			1000	26-Dec-17 08:50	KC				QC
B7L0182-BS1	0.25			1000	26-Dec-17 08:50	KC	17J1820	10		QC
B7L0182-MS1	0.24949			1000	26-Dec-17 08:50	KC	17J1820	10		QC
B7L0182-MSD1	0.25319	\checkmark	\checkmark	1000	26-Dec-17 08:50	KC	17 J 1820	$\checkmark 10$		QC

MA 12/27/17

PREPARATION BENCH SHEET

Prepared using: LCMS - SPE Extraction-LCMS

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$
Cen = Centrifuged

PREPARATION BENCH SHEET

Matrix: Aqueous
Method: 537 PFAS DW DoD Unmodified

Prepared using: LCMS - SPE Extraction-LCMS

Chemist:
Prep Date/Time: 26 -Dec-17 08/23
Prep Date/Time: 26 -Dec-17 08/23 0930
\#

		BalancelD: HRMS-8 HN 12/26/17			SS/NSCHEM/WITDATE			SPE		$\underset{\substack{\text { IS } \\ \text { CHEM/WIT } \\ \text { DATE }}}{ }$
Cen	VISTA Sample ID	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)						
\square	1701951-11	284.05	28.15	0.25590	7tc	HN	12.26 .17	HN	$12 / 26 / 17$	\%2 HN 2.26 .19

```
```

SPE Chem: Strata-X 33\mum}\frac{500m2}{6m\

```
```

SPE Chem: Strata-X 33\mum}\frac{500m2}{6m\
Lot\#:517-003138/517-005188
Lot\#:517-003138/517-005188
Ele SOLv: MeOH
Ele SOLv: MeOH
Lolv:MeOH
Lolv:MeOH
Final Volume(s) 1 ML

```
        Final Volume(s) 1 ML
```

Final Volume(s)

```
Comments: Assume \(1 \mathrm{~g}=1 \mathrm{~mL}\)

Cen \(=\) Centrifuged
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline LabNumber & WetWeight (Initial) & & \begin{tabular}{l}
\% Solids \\
Extraction Solids)
\end{tabular} & DryWeight & Final & Extracted & Ext By & Spike & SpikeAmount & ClientMatrix & Analysis \\
\hline 1701938-01 & 0.25944 & & NA & NA & 1000 & 26-Dec-17 09:30 & HAC & & & Potable Water & ZArch_537 PFAS DW DoL \\
\hline 1701938-02 & 0.24799 & \(\checkmark\) & T & - & 1000 & 26-Dec-17 09:30 & HAC & & & Potable Water & ZArch_537 PFAS DW DoL \\
\hline 1701938-03 & 0.24345 & \(\checkmark\) & & & 1000 & 26-Dec-17 09:30 & HAC & & & Potable Water & ZArch_537 PFAS DW DoC \\
\hline 1701938-04 & 0.25464 & & & & 1000 & 26-Dec-17 09:30 & HAC & & & Potable Water & ZArch_537 PFAS DW DoL \\
\hline 1701940-01 & 0.24567 & \(\checkmark\) & & & 1000 & 26-Dec-17 09:30 & HAC & & & QC Water & ZArch_ 537 PFAS DW DoL \\
\hline 1701940-02 & 0.25741 & \(\checkmark\) & & & 1000 & 26-Dec-17 09:30 & HAC & & & QC Water & ZArch_537 PFAS DW DoL \\
\hline 1701940-03 & 0.2529 &  & & & 1000 & 26-Dec-17 09:30 & HAC & & & QC Water & ZArch_537 PFAS DW Do工 \\
\hline 1701951-04 & 0.25982 & \(\checkmark\) & & & 1000 & 26-Dec-17 09:30 & HAC & & & Drinking Water & ZArch_537 PFAS DW DoC \\
\hline 1701951-05 & 0.25309 & \(\checkmark\) & & & 1000 & 26-Dec-17 09:30 & HAC & & & Drinking Water & ZArch_ 537 PFAS DW DoL \\
\hline 1701951-11 & 0.2559 & & & & 1000 & 26-Dec-17 09:30 & HAC & & & Drinking Water & ZArch_537 PFAS DW DoL \\
\hline B7L0184-BLK1 & 0.25 & & & & 1000 & 26-Dec-17 09:30 & HAC & & & & QC \\
\hline B7L0184-BS1 & 0.25 & & & & 1000 & 26-Dec-17 09:30 & HAC & 1712601 & 20 & & QC \\
\hline B7L0184-MS1 & 0.25135 & & & & 1000 & 26-Dec-17 09:30 & HAC & 1712601 & 20 & & QC \\
\hline B7L0184-MS2 & 0.24339 & & & & 1000 & 26-Dec-17 09:30 & HAC & 1712601 & \(\checkmark \quad 20\) & & QC \\
\hline B7L0184-MSD1 & 0.25318 & & & & 1000 & 26-Dec-17 09:30 & HAC & 1712601 & \(\checkmark \quad 20\) & & QC \\
\hline B7L0184-MSD2 & 0.25679 & & \(\checkmark\) & \(V\) & 1000 & 26-Dec-17 09:30 & HAC & 1712601 & \(\checkmark \quad 20\) & & QC \\
\hline
\end{tabular}

MA 12/27/17


DL - Detection Limit
LOQ - Limit of quantitatio

LCL-UCL- Lower control limit - upper control limit Results reported to the DL.

When reported, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.


Vista
Analytical Laboratory
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Sample ID: OPR} & \multicolumn{3}{|r|}{Modified EPA Method 537} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Client Data \\
Name: \\
Project:
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Tetra Tech \\
NWIRP Calverton Site 2 Southern Area112G08005
\end{tabular}} & \multirow[b]{2}{*}{Matrix:} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Aqueous}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Laboratory Data \\
Lab Sample:
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{B7L0182-BS1}} & \multirow[b]{2}{*}{Column:} & \multirow[b]{2}{*}{BEH C18} & \\
\hline & & & & & & & & & & & \\
\hline Analyte & & Found (ng/L) & Spike Amt & \% Rec & Limits & Qualifiers & Batch & Extracted & Samp Size & Analyzed & Dilution \\
\hline PFBS & & 51.7 & 40.0 & 129 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFHxA & & 51.6 & 40.0 & 129 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 18-Jan-18 18:05 & 1 \\
\hline PFHpA & & 51.1 & 40.0 & 128 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFHxS & & 47.4 & 40.0 & 119 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 22-Jan-18 15:59 & 1 \\
\hline PFOA & & 46.9 & 40.0 & 117 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFOS & & 36.8 & 40.0 & 92.0 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFNA & & 43.1 & 40.0 & 108 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFDA & & 39.2 & 40.0 & 98.0 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 22-Jan-18 15:59 & 1 \\
\hline MeFOSAA & & 56.3 & 40.0 & 141 & 70-130 & H & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFUnA & & 42.3 & 40.0 & 106 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline EtFOSAA & & 44.6 & 40.0 & 111 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFDoA & & 40.7 & 40.0 & 102 & 70-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 26-Jan-18 06:37 & 1 \\
\hline PFTrDA & & 51.1 & 40.0 & 128 & 60-130 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline PFTeDA & & 63.9 & 40.0 & 160 & 70-130 & H & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline Labeled Stand & & Type & & \% Rec & Limits & Qualifiers & Batch & Extracted & Samp Size & Analyzed & Dilution \\
\hline 13C3-PFBS & & IS & & 92.8 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline 13C2-PFHxA & & IS & & 97.4 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 18-Jan-18 18:05 & 1 \\
\hline 13C4-PFHpA & & IS & & 88.8 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline 18O2-PFHxS & & IS & & 104 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 22-Jan-18 15:59 & 1 \\
\hline 13C2-PFOA & & IS & & 87.7 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline 13C8-PFOS & & IS & & 102 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline 13C5-PFNA & & IS & & 87.9 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline 13C2-PFDA & & IS & & 89.7 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 22-Jan-18 15:59 & 1 \\
\hline d3-MeFOSAA & & IS & & 62.1 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline 13C2-PFUnA & & IS & & 72.8 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline d5-EtFOSAA & & IS & & 60.5 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline 13C2-PFDoA & & IS & & 71.1 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 26-Jan-18 06:37 & 1 \\
\hline 13C2-PFTeDA & & IS & & 52.0 & 50-150 & & B7L0182 & 26-Dec-17 & 0.250 L & 17-Jan-18 18:48 & 1 \\
\hline
\end{tabular}

Vista
Analytical Laboratory
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Sample ID: LFB} & \multicolumn{2}{|l|}{EPA Method 537} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Client Data \\
Name: \\
Project:
\end{tabular}} & & \multirow[b]{2}{*}{05 Matrix:} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Aqueous}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Laboratory Data Lab Sample:}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{B7L0184-BS1}} & \multirow[b]{2}{*}{Column:} & \multirow[b]{2}{*}{BEH C18} & \\
\hline & \begin{tabular}{l}
Tetra Tech \\
NWIRP Calverton Site 2 Southern Area112G08005
\end{tabular} & & & & & & & & & & \\
\hline Analyte & Amt & Found (ng/L) & Spike Amt & \% Rec & Limits & Qualifiers & Batch & Extracted & Samp Size & Analyzed & Dilution \\
\hline PFBS & & 68.3 & 70.8 & 96.4 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFHxA & & 71.3 & 80.0 & 89.1 & 70-130 & B & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFHpA & & 84.9 & 80.0 & 106 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFHxS & & 75.5 & 72.8 & 104 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFOA & & 82.0 & 80.0 & 103 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFNA & & 77.1 & 80.0 & 96.3 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFOS & & 78.1 & 74.0 & 106 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFDA & & 85.6 & 80.0 & 107 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline MeFOSAA & & 72.5 & 80.0 & 90.6 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline EtFOSAA & & 68.8 & 80.0 & 86.0 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFUnA & & 81.3 & 80.0 & 102 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFDoA & & 84.9 & 80.0 & 106 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFTrDA & & 81.5 & 80.0 & 102 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline PFTeDA & & 78.1 & 80.0 & 97.6 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline Labeled Stan & & Type & & \% Rec & Limits & Qualifiers & Batch & Extracted & Samp Size & Analyzed & Dilution \\
\hline 13C2-PFHxA & & SURR & & 103 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline 13C2-PFDA & & SURR & & 107 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline d5-EtFOSAA & & SURR & & 93.3 & 70-130 & & B7L0184 & 26-Dec-17 & 0.250 L & 28-Dec-17 14:33 & 1 \\
\hline
\end{tabular}

\section*{Sample ID: CV-FLTS-COMBINF-20171213}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{ll} 
Name: & T \\
Project: & A \\
Matrix: &
\end{tabular} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Tetra Tech \\
NWIRP Calverton Site 2 Southern Area112G08005 \\
Aqueous
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Lab Sample: \\
QC Batch: Samp Size:
\end{tabular}} & \multicolumn{4}{|r|}{\[
\begin{aligned}
& \text { B7L0182-MS1/B7L0182-MSD1 } \\
& \text { B7L0182 } \\
& 0.249 / 0.253 \text { L }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\hline \text { MSD } \\
\text { Quals } \\
\hline
\end{gathered}
\]} & \multicolumn{4}{|c|}{\begin{tabular}{l}
Source Lab Sample: \\
Date Extracted: Column:
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 1701951-19 } \\
& \text { 26-Dec-17 } \\
& \text { BEH C18 }
\end{aligned}
\]} \\
\hline Analyte & \[
\begin{gathered}
\hline \text { Sample } \\
(\mathrm{ng} / \mathrm{L})
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { MS } \\
(\mathrm{ng} / \mathrm{L}) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
MS \\
Spike Amt
\end{tabular} & \[
\begin{gathered}
\hline \text { MS } \\
\text { \% Rec } \\
\hline
\end{gathered}
\] & & \[
\begin{gathered}
\text { MSD } \\
(\mathrm{ng} / \mathrm{L})
\end{gathered}
\] & \begin{tabular}{l}
MSD \\
Spike Amt
\end{tabular} & \[
\begin{gathered}
\text { MSD } \\
\text { \% Rec } \\
\hline
\end{gathered}
\] & RPD & & \%Rec
Limits L & \[
\begin{aligned}
& \hline \text { RPD } \\
& \text { Limits }
\end{aligned}
\] & MS
Analyzed & \[
\begin{gathered}
\text { MS } \\
\text { Dil } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
MSD \\
Analyzed
\end{tabular} & \[
\begin{gathered}
\hline \text { MSD } \\
\text { Dil } \\
\hline
\end{gathered}
\] \\
\hline PFBS & ND & 49.3 & 40.1 & 123 & & 53.8 & 39.5 & 136 & 10.0 & H & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline PFHxA & 10.7 & 64.2 & 40.1 & 133 & ) H & 61.0 & 39.5 & 127 & 4.62 & & 70-130 & 30 & 18-Jan-18 18:28 & 1 & 18-Jan-18 18:40 & 1 \\
\hline PFHpA & 27.9 & 74.6 & 40.1 & 117 & & 81.9 & 39.5 & 137 & 15.7 & H & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline PFHxS & ND & 45.0 & 40.1 & 111 & & 49.4 & 39.5 & 124 & 11.1 & & 70-130 & 30 & 22-Jan-18 16:22 & 1 & 22-Jan-18 16:33 & 1 \\
\hline PFOA & 31.9 & 85.3 & 40.1 & 133 & H & 73.2 & 39.5 & 105 & 23.5 & & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline PFOS & 3.36 & 51.8 & 40.1 & 121 & & 41.1 & 39.5 & 95.4 & 23.7 & & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline PFNA & \(\rightarrow 866\) & 1030 & 40.1 & 397 & H & 942 & 39.5 & 192 & 69.6 & H & 70-130 & 30 & 26-Jan-18 07:00 & 1 & 26-Jan-18 07:11 & 1 \\
\hline PFDA & 16.5 & 69.5 & 40.1 & 132 & H & 62.0 & 39.5 & 115 & 13.8 & & 70-130 & 30 & 22-Jan-18 16:22 & 1 & 22-Jan-18 16:33 & 1 \\
\hline MeFOSAA & ND & 59.4 & 40.1 & \(148)\) & H & 45.0 & 39.5 & 114 & 26.0 & & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline PFUnA & \(\rightarrow 294\) & 466 & 40.1 & 429 & H & 411 & 39.5 & 296 & 36.7 & H & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline EtFOSAA & ND & 47.3 & 40.1 & 118 & & 53.2 & 39.5 & 135 & 13.4 & H & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline PFDoA & ND & 36.9 & 40.1 & 92.1 & & 46.4 & 39.5 & 117 & 23.8 & & 70-130 & 30 & 26-Jan-18 07:00 & 1 & 26-Jan-18 07:11 & 1 \\
\hline PFTrDA & ND & 40.9 & 40.1 & 102 & & 44.2 & 39.5 & 112 & 9.35 & & 60-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline PFTeDA & ND & 60.6 & 40.1 & 151 & \(\sum \mathrm{H}\) & 60.1 & 39.5 & 152 & 0.660 & H & 70-130 & 30 & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline Labeled Standards & & Type & & \[
\begin{gathered}
\text { MS } \\
\text { \% Rec } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { MS } \\
\text { Quals }
\end{gathered}
\] & & & \[
\begin{gathered}
\hline \text { MSD } \\
\text { \% Rec } \\
\hline
\end{gathered}
\] & & \begin{tabular}{l}
MSD \\
Ouals
\end{tabular} & Limits & & \[
\begin{gathered}
\text { MS } \\
\text { Analyzed } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { MS } \\
\text { Dil }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { MSD } \\
\text { Analyzed } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { MSD } \\
\text { Dil } \\
\hline
\end{gathered}
\] \\
\hline 13C3-PFBS & & IS & & 88.9 & & & & 93.3 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline 13C2-PFHxA & & IS & & 101 & & & & 97.3 & & & 50-150 & & 18-Jan-18 18:28 & 1 & 18-Jan-18 18:40 & 1 \\
\hline 13C4-PFHpA & & IS & & 90.7 & & & & 83.4 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline 18O2-PFHxS & & IS & & 101 & & & & 98.0 & & & 50-150 & & 22-Jan-18 16:22 & 1 & 22-Jan-18 16:33 & 1 \\
\hline 13C2-PFOA & & IS & & 97.9 & & & & 87.0 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline 13C8-PFOS & & IS & & 106 & & & & 91.0 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline 13C5-PFNA & & IS & & 103 & & & & 95.3 & & & 50-150 & & 26-Jan-18 07:00 & 1 & 26-Jan-18 07:11 & 1 \\
\hline 13C2-PFDA & & IS & & 77.9 & & & & 109 & & & 50-150 & & 22-Jan-18 16:22 & 1 & 22-Jan-18 16:33 & 1 \\
\hline d3-MeFOSAA & & IS & & 60.4 & & & & 80.9 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline 13C2-PFUnA & & IS & & 54.7 & & & & 68.0 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline d5-EtFOSAA & & IS & & 60.9 & & & & 64.1 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline 13C2-PFDoA & & IS & & 81.8 & & & & 91.2 & & & 50-150 & & 26-Jan-18 07:00 & 1 & 26-Jan-18 07:11 & 1 \\
\hline 13C2-PFTeDA & & IS & & 60.1 & & & & 61.9 & & & 50-150 & & 17-Jan-18 19:11 & 1 & 17-Jan-18 19:22 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{Sample ID: FT-RW01-20171212} & \multicolumn{2}{|l|}{} \\
\hline \begin{tabular}{l}
Name: \\
Project: \\
Matrix:
\end{tabular} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Tetra Tech \\
NWIRP Calverton Site 2 Southern Area112G08005 Aqueous
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Lab Sample: \\
QC Batch: \\
Samp Size:
\end{tabular}} & \multicolumn{4}{|r|}{\[
\begin{aligned}
& \text { B7L0184-MS2/B7L0184-MSD2 } \\
& \text { B7L0184 } \\
& 0.243 / 0.257 \text { L }
\end{aligned}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
Source Lab Sample: \\
Date Extracted: \\
Column:
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 1701951-04 \\
& 26-\text { Dec-17 } \\
& \text { BEH C18 }
\end{aligned}
\]} \\
\hline Analyte & Sample
\[
(\mathrm{ng} / \mathrm{L})
\] & \[
\begin{gathered}
\hline \mathbf{M S} \\
(\mathrm{ng} / \mathrm{L}) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
MS \\
Spike Amt
\end{tabular} & \[
\begin{gathered}
\hline \text { MS } \\
\text { \% Rec } \\
\hline
\end{gathered}
\] & & \[
\begin{gathered}
\hline \text { MSD } \\
(\mathrm{ng} / \mathrm{L}) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
MSD \\
Spike Amt
\end{tabular} & \[
\begin{gathered}
\hline \text { MSD } \\
\text { \% Rec } \\
\hline
\end{gathered}
\] & RPD & \[
\begin{aligned}
& \text { MSD } \\
& \text { Ouals }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \% \text { Rec } \\
& \text { Limits } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { RPD } \\
& \text { Limits }
\end{aligned}
\] & \begin{tabular}{l}
MS \\
Analyzed
\end{tabular} & \[
\begin{gathered}
\hline \text { MS } \\
\text { Dil } \\
\hline
\end{gathered}
\] & MSD
Analyzed & \[
\begin{gathered}
\hline \text { MSD } \\
\text { Dil } \\
\hline
\end{gathered}
\] \\
\hline PFBS & ND & 68.6 & 72.7 & 94.3 & & 71.3 & 68.9 & 104 & 9.78 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFHxA & 0.843 & 68.5 & 82.2 & 82.3 & B & 72.4 & 77.9 & 91.9 & 11.0 & B & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFHpA & ND & 78.9 & 82.2 & 95.9 & & 77.3 & 77.9 & 99.1 & 3.28 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFHxS & ND & 77.1 & 74.8 & 103 & & 75.8 & 70.9 & 107 & 3.81 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFOA & ND & 79.7 & 82.2 & 96.7 & & 78.9 & 77.9 & 101 & 4.35 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFNA & ND & 77.4 & 82.2 & 94.2 & & 70.2 & 77.9 & 90.1 & 4.45 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFOS & ND & 74.4 & 76.0 & 97.9 & & 70.6 & 72.0 & 98.0 & 0.102 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFDA & ND & 71.7 & 82.2 & 87.0 & & 72.5 & 77.9 & 92.7 & 6.34 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline MeFOSAA & ND & 78.2 & 82.2 & 95.1 & & 72.6 & 77.9 & 93.1 & 2.13 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline EtFOSAA & ND & 69.9 & 82.2 & 85.0 & & 63.5 & 77.9 & 81.5 & 4.20 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFUnA & ND & 77.3 & 82.2 & 94.1 & & 74.6 & 77.9 & 95.8 & 1.79 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFDoA & ND & 77.5 & 82.2 & 94.2 & & 75.8 & 77.9 & 97.3 & 3.24 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFTrDA & ND & 76.0 & 82.2 & 92.5 & & 69.8 & 77.9 & 89.6 & 3.19 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline PFTeDA & ND & 75.0 & 82.2 & 91.2 & & 68.8 & 77.9 & 88.3 & 3.23 & & 70-130 & 30 & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline Labeled Standards & & Type & & \[
\begin{gathered}
\hline \text { MS } \\
\% \text { Rec }
\end{gathered}
\] & \[
\begin{gathered}
\text { MS } \\
\text { Quals }
\end{gathered}
\] & & & \[
\begin{gathered}
\hline \text { MSD } \\
\text { \% Rec } \\
\hline
\end{gathered}
\] & & \begin{tabular}{l}
MSD \\
Ouals
\end{tabular} & Limits & & \[
\begin{gathered}
\text { MS } \\
\text { Analyzed } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { MS } \\
\text { Dil } \\
\hline
\end{gathered}
\] & MSD
Analyzed & \[
\begin{gathered}
\hline \text { MSD } \\
\text { Dil }
\end{gathered}
\] \\
\hline 13C2-PFHxA & & SURR & & 92.9 & & & & 98.4 & & & 70-130 & & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline 13C2-PFDA & & SURR & & 88.3 & & & & 83.2 & & & 70-130 & & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline d5-EtFOSAA & & SURR & & 77.1 & & & & 93.7 & & & 70-130 & & 28-Dec-17 16:38 & 1 & 28-Dec-17 16:50 & 1 \\
\hline
\end{tabular}

Compound 18: 13C2-PFOA

ID
1 B7L0166-BS1 LFB 0.25
2 B7L0184-BS1 LFB 0.25
3 IPA
4 B7L0184-BLK1 LRB 0.25
5 B7L0166-BLK1 LRB 0.25
6 B7L0166-MS1 LFSM 0.25546
7 B7L0166-MSD1 LFSMD 0.25461
8 B7L0166-MS2 LFSM 0.24013
9 B7L0166-MSD2 LFSMD 0.26049
10 B7L0184-MS1 LFSM 0.25135
11 B7L0184-MSD1 LFSMD 0.25318
12 B7L0184-MS2 LFSM 0.24339
13 B7LO184-MSD2 LFSMD 0.25679
14 1701927-01RE1 TOLDO-12072017-RW-2945SE 0.24674
15 1701927-02RE1 TOLDO-12072017-DUP-01 0.26138
16 1701936-01RE1 HORSH-120717-RW-1505 0.25319
17 1701936-03RE1 HORSH-120717-RW-1385 0.23995
18 1701936-05RE1 HORSH-120817-RW-2279 0.25809
19 1701936-07RE1 HORSH-120517-RW-1367 0.2552
20 1701936-09RE1 HORSH-120817-RW-1376 0.25904
21 1701936-11RE1 HORSH-120817-RW-1745 0.26398
22 1701936-13RE1 HORSH-120817-DUP-1745 0.26801
23 1701938-01 REEPDW040 0.25944
24 IPA
25 ST171228G1-10 PFC CS3 53717 L1424
26 IPA
27 1701938-02 REEPDW503 0.24799
\begin{tabular}{lcrrrrrr} 
Name \(\quad\) Type & \multicolumn{2}{c}{ Std. Con RT } & \multicolumn{2}{c}{ Area } & \multicolumn{1}{l}{ IS Area } & \multicolumn{1}{l}{ Ical Area } & Area \(\%\) \\
171228G1_Analyte & 10 & 4.42 & 8134.149 & 8134.149 & 9205.266 & 88.36 \\
171228G1_Analyte & 10 & 4.42 & 7382.15 & 7382.15 & 9205.266 & 80.19 \\
171228G1_Analyte & 10 & & & & 9205.266 & 0.00 \\
171228G1_Analyte & 10 & 4.42 & 7649.749 & 7649.749 & 9205.266 & 83.10 \\
171228G1_Analyte & 10 & 4.42 & 8439.395 & 8439.395 & 9205.266 & 91.68 \\
171228G1_Analyte & 10 & 4.42 & 7667.438 & 7667.438 & 9205.266 & 83.29 \\
171228G1_Analyte & 10 & 4.41 & 8321.361 & 8321.361 & 9205.266 & 90.40 \\
171228G1_Analyte & 10 & 4.41 & 7819.387 & 7819.387 & 9205.266 & 84.94 \\
171228G1_Analyte & 10 & 4.42 & 7477.444 & 7477.444 & 9205.266 & 81.23 \\
171228G1_Analyte & 10 & 4.42 & 8448.588 & 8448.588 & 9205.266 & 91.78 \\
171228G1_Analyte & 10 & 4.42 & 8164.852 & 8164.852 & 9205.266 & 88.70 \\
171228G1_Analyte & 10 & 4.41 & 8132.217 & 8132.217 & 9205.266 & 88.34 \\
171228G1_Analyte & 10 & 4.41 & 8114.574 & 8114.574 & 9205.266 & 88.15 \\
171228G1_Analyte & 10 & 4.41 & 7793.037 & 7793.037 & 9205.266 & 84.66 \\
171228G1_Analyte & 10 & 4.41 & 8724.262 & 8724.262 & 9205.266 & 94.77 \\
171228G1_Analyte & 10 & 4.41 & 7400.02 & 7400.02 & 9205.266 & 80.39 \\
171228G1_Analyte & 10 & 4.41 & 8177.709 & 8177.709 & 9205.266 & 88.84 \\
171228G1_Analyte & 10 & 4.41 & 8173.433 & 8173.433 & 9205.266 & 88.79 \\
171228G1_Analyte & 10 & 4.41 & 7826.231 & 7826.231 & 9205.266 & 85.02 \\
171228G1_Analyte & 10 & 4.41 & 7875.671 & 7875.671 & 9205.266 & 85.56 \\
171228G1_Analyte & 10 & 4.42 & 8241.642 & 8241.642 & 9205.266 & 89.53 \\
171228G1_Analyte & 10 & 4.41 & 8085.475 & 8085.475 & 9205.266 & 87.84 \\
171228G1_Analyte & 10 & 4.41 & 8565.321 & 8565.321 & 9205.266 & 93.05 \\
171228G1_Analyte & 10 & & & & 9205.266 & 0.00 \\
171228G1_Analyte & 10 & 4.41 & 9757.258 & 9757.258 & 9205.266 & 106.00 \\
171228G1_Analyte & 10 & & & & 9205.266 & 0.00 \\
171228G1_Analyte & 10 & 4.41 & 7761.315 & 7761.315 & 9205.266 & 84.31
\end{tabular}
\begin{tabular}{|c|c|}
\hline 28 1701938-03 REEPDW041 0.24345 & 171228G1_ Analyte \\
\hline 29 1701938-04 REEPDW042 0.25464 & 171228G1_ Analyte \\
\hline 30 1701940-01 REEPDWO40FRB 0.24567 & 171228G1_ Analyte \\
\hline 31 1701940-02 REEPDW041FRB 0.25741 & 171228G1_ Analyte \\
\hline 32 1701940-03 REEPDW042FRB 0.2529 & 171228G1_ Analyte \\
\hline 33 1701951-04 FT-RW01-201712120.25982 & 171228G1_ Analyte \\
\hline 34 1701951-05 FT-RW01-FRB-201712120.25309 & 171228G1_ Analyte \\
\hline 35 1701951-11 FT-DUP08-201712120.2559 & 171228G1_ Analyte \\
\hline 36 IPA & 171228G1_ Analyte \\
\hline 37 ST171228G1-11 PFC CS5 537 17L1426 & 171228G1_ Analyte \\
\hline 38 IPA & 171228G1_ Analyte \\
\hline
\end{tabular}

28 1701938-03 REEPDW041 0.24345
38-04 REEPDW042 0.25464
30 1701940-01 REEPDWO40FRB 0.24567
01940-02 REEPDW041FRB 0.25741

1701951-04 FT-RW01-201712120.2598

34 1701951-05 FT-RW01-FRB-20171212 0.25309

36 IPA
S7171228G1-11 PFC CS5 537 17L1426
38 IPA

Compound 19: 13C4-PFOS

ID
1 B7L0166-BS1 LFB 0.25
2 B7L0184-BS1 LFB 0.25
3 IPA
4 B7L0184-BLK1 LRB 0.25
5 B7L0166-BLK1 LRB 0.25
6 B7L0166-MS1 LFSM 0.25546
7 B7L0166-MSD1 LFSMD 0.25461
8 B7L0166-MS2 LFSM 0.24013
9 B7L0166-MSD2 LFSMD 0.26049
10 B7L0184-MS1 LFSM 0.25135
11 B7L0184-MSD1 LFSMD 0.25318
12 B7L0184-MS2 LFSM 0.24339
13 B7L0184-MSD2 LFSMD 0.25679
14 1701927-01RE1 TOLDO-12072017-RW-2945SE 0.24674 15 1701927-02RE1 TOLDO-12072017-DUP-01 0.26138 16 1701936-01RE1 HORSH-120717-RW-1505 0.25319 17 1701936-03RE1 HORSH-120717-RW-1385 0.23995
18 1701936-05RE1 HORSH-120817-RW-2279 0.25809
\begin{tabular}{lrrrrrr} 
Name & \multicolumn{7}{c}{ Type } & \multicolumn{2}{c}{ Std. Con RT } & \multicolumn{2}{c}{ Area } & \multicolumn{1}{l}{ IS Area } & \multicolumn{1}{l}{ Ical Area } & \multicolumn{1}{c}{ Area \(\%\)} \\
171228G1_Analyte & 28.7 & 4.83 & 10274.54 & 10274.54 & 11325.63 & 90.72 \\
171228G1_Analyte & 28.7 & 4.83 & 9038.416 & 9038.416 & 11325.63 & 79.80 \\
171228G1_Analyte & 28.7 & & & & 11325.63 & 0.00 \\
171228G1_Analyte & 28.7 & 4.82 & 9620.383 & 9620.383 & 11325.63 & 84.94 \\
171228G1_Analyte & 28.7 & 4.82 & 9904.74 & 9904.74 & 11325.63 & 87.45 \\
171228G1_Analyte & 28.7 & 4.83 & 9627.918 & 9627.918 & 11325.63 & 85.01 \\
171228G1_Analyte & 28.7 & 4.82 & 10280.79 & 10280.79 & 11325.63 & 90.77 \\
171228G1_Analyte & 28.7 & 4.82 & 9200.448 & 9200.448 & 11325.63 & 81.24 \\
171228G1_Analyte & 28.7 & 4.83 & 10150.81 & 10150.81 & 11325.63 & 89.63 \\
171228G1_Analyte & 28.7 & 4.83 & 9066.489 & 9066.489 & 11325.63 & 80.05 \\
171228G1_Analyte & 28.7 & 4.82 & 10008.71 & 10008.71 & 11325.63 & 88.37 \\
171228G1_Analyte & 28.7 & 4.82 & 9406.242 & 9406.242 & 11325.63 & 83.05 \\
171228G1_Analyte & 28.7 & 4.82 & 9281.271 & 9281.271 & 11325.63 & 81.95 \\
171228G1_Analyte & 28.7 & 4.82 & 10282.61 & 10282.61 & 11325.63 & 90.79 \\
171228G1_Analyte & 28.7 & 4.82 & 10340.64 & 10340.64 & 11325.63 & 91.30 \\
171228G1_Analyte & 28.7 & 4.82 & 9746.272 & 9746.272 & 11325.63 & 86.05 \\
171228G1_Analyte & 28.7 & 4.82 & 9323.36 & 9323.36 & 11325.63 & 82.32 \\
171228G1_Analyte & 28.7 & 4.82 & 9660.278 & 9660.278 & 11325.63 & 85.30
\end{tabular}

19 1701936-07RE1 HORSH-120517-RW-1367 0.2552
20 1701936-09RE1 HORSH-120817-RW-1376 0.25904 21 1701936-11RE1 HORSH-120817-RW-1745 0.26398 22 1701936-13RE1 HORSH-120817-DUP-1745 0.26801
23 1701938-01 REEPDW040 0.25944
24 IPA
25 ST171228G1-10 PFC CS3 537 17L1424 26 IPA
27 1701938-02 REEPDW503 0.24799
28 1701938-03 REEPDW041 0.24345
29 1701938-04 REEPDW042 0.25464
30 1701940-01 REEPDWO40FRB 0.24567
31 1701940-02 REEPDW041FRB 0.25741
32 1701940-03 REEPDW042FRB 0.2529
33 1701951-04 FT-RW01-20171212 0.25982
34 1701951-05 FT-RW01-FRB-20171212 0.25309
35 1701951-11 FT-DUP08-20171212 0.2559
36 IPA
37 ST171228G1-11 PFC CS5 537 17L1426 38 IPA
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{171228G1_ Analyte}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{171228G1_ Analyte} \\
\hline & 171228G1_ Analyte \\
\hline & 171228G1_Analyte \\
\hline & 171228G1_ Analyte \\
\hline & 171228G1_Analyte \\
\hline & 171228G1_ Analyte \\
\hline
\end{tabular}
\begin{tabular}{rrrrrr}
28.7 & 4.82 & 9846.267 & 9846.267 & 11325.63 & 86.94 \\
28.7 & 4.82 & 9892.387 & 9892.387 & 11325.63 & 87.35 \\
28.7 & 4.82 & 10176.75 & 10176.75 & 11325.63 & 89.86 \\
28.7 & 4.82 & 10367.42 & 10367.42 & 11325.63 & 91.54 \\
28.7 & 4.82 & 9852.024 & 9852.024 & 11325.63 & 86.99 \\
28.7 & & & & 11325.63 & 0.00 \\
28.7 & 4.82 & 10712.31 & 10712.31 & 11325.63 & 94.58 \\
28.7 & & & & 11325.63 & 0.00 \\
28.7 & 4.82 & 9338.899 & 9338.899 & 11325.63 & 82.46 \\
28.7 & 4.82 & 9414.109 & 9414.109 & 11325.63 & 83.12 \\
28.7 & 4.82 & 9374.374 & 9374.374 & 11325.63 & 82.77 \\
28.7 & 4.82 & 9473.94 & 9473.94 & 11325.63 & 83.65 \\
28.7 & 4.82 & 9054.453 & 9054.453 & 11325.63 & 79.95 \\
28.7 & 4.82 & 10290.79 & 10290.79 & 11325.63 & 90.86 \\
28.7 & 4.81 & 10221.43 & 10221.43 & 11325.63 & 90.25 \\
28.7 & 4.82 & 9225.396 & 9225.396 & 11325.63 & 81.46 \\
28.7 & 4.82 & 9646.335 & 9646.335 & 11325.63 & 85.17 \\
28.7 & & & & 11325.63 & 0.00 \\
28.7 & 4.81 & 9610.105 & 9610.105 & 11325.63 & 84.85 \\
28.7 & & & & 11325.63 & 0.00
\end{tabular}

Compound 20: d3-N-MeFOSAA
ID
1 B7L0166-BS1 LFB 0.25
2 B7L0184-BS1 LFB 0.25
3 IPA
4 B7L0184-BLK1 LRB 0.25
5 B7L0166-BLK1 LRB 0.25
6 B7L0166-MS1 LFSM 0.25546
7 B7L0166-MSD1 LFSMD 0.25461
8 B7L0166-MS2 LFSM 0.24013
9 B7L0166-MSD2 LFSMD 0.26049
Name Type
171228G1_ Analyte
\(171228 G 1\) Analyte
\begin{tabular}{crrrrr} 
Std. Con RT & \multicolumn{2}{c}{ Area } & \multicolumn{1}{l}{ IS Area } & \multicolumn{1}{c}{ Ical Area } & \multicolumn{1}{c}{ Area \% } \\
40 & 5.18 & 5189.06 & 5189.06 & 6158.85 & 84.25 \\
40 & 5.17 & 5680.777 & 5680.777 & 6158.85 & 92.24 \\
40 & & & & 6158.85 & 0.00 \\
40 & 5.17 & 5370.736 & 5370.736 & 6158.85 & 87.20 \\
40 & 5.18 & 4874.518 & 4874.518 & 6158.85 & 79.15 \\
40 & 5.18 & 4359.906 & 4359.906 & 6158.85 & 70.79 \\
40 & 5.18 & 4966.961 & 4966.961 & 6158.85 & 80.65 \\
40 & 5.17 & 5096.846 & 5096.846 & 6158.85 & 82.76 \\
40 & 5.18 & 5232.019 & 5232.019 & 6158.85 & 84.95
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 10 B7L0184-MS1 LFSM 0.25135 & 171228G1_ Analyte & 40 & 5.18 & 5740.167 & 5740.167 & 6158.85 & 93.20 \\
\hline 11 B7L0184-MSD1 LFSMD 0.25318 & 171228G1_ Analyte & 40 & 5.18 & 5031.104 & 5031.104 & 6158.85 & 81.69 \\
\hline 12 B7L0184-MS2 LFSM 0.24339 & 171228G1_ Analyte & 40 & 5.17 & 5740.905 & 5740.905 & 6158.85 & 93.21 \\
\hline 13 B7L0184-MSD2 LFSMD 0.25679 & 171228G1_ Analyte & 40 & 5.17 & 5760.419 & 5760.419 & 6158.85 & 93.53 \\
\hline 14 1701927-01RE1 TOLDO-12072017-RW-2945SE 0.24674 & 171228G1_ Analyte & 40 & 5.17 & 4736.178 & 4736.178 & 6158.85 & 76.90 \\
\hline 15 1701927-02RE1 TOLDO-12072017-DUP-01 0.26138 & 171228G1_ Analyte & 40 & 5.17 & 5944.765 & 5944.765 & 6158.85 & 96.52 \\
\hline 16 1701936-01RE1 HORSH-120717-RW-1505 0.25319 & 171228G1_ Analyte & 40 & 5.17 & 5250.325 & 5250.325 & 6158.85 & 85.25 \\
\hline 17 1701936-03RE1 HORSH-120717-RW-1385 0.23995 & 171228G1_ Analyte & 40 & 5.17 & 5213.055 & 5213.055 & 6158.85 & 84.64 \\
\hline 18 1701936-05RE1 HORSH-120817-RW-2279 0.25809 & 171228G1_ Analyte & 40 & 5.18 & 4555.667 & 4555.667 & 6158.85 & 73.97 \\
\hline 19 1701936-07RE1 HORSH-120517-RW-1367 0.2552 & 171228G1_ Analyte & 40 & 5.17 & 4581.066 & 4581.066 & 6158.85 & 74.38 \\
\hline 20 1701936-09RE1 HORSH-120817-RW-1376 0.25904 & 171228G1_ Analyte & 40 & 5.17 & 5578.451 & 5578.451 & 6158.85 & 90.58 \\
\hline 21 1701936-11RE1 HORSH-120817-RW-1745 0.26398 & 171228G1_ Analyte & 40 & 5.17 & 5263.742 & 5263.742 & 6158.85 & 85.47 \\
\hline 22 1701936-13RE1 HORSH-120817-DUP-1745 0.26801 & 171228G1_ Analyte & 40 & 5.17 & 4973.241 & 4973.241 & 6158.85 & 80.75 \\
\hline 23 1701938-01 REEPDW040 0.25944 & 171228G1_ Analyte & 40 & 5.17 & 4904.258 & 4904.258 & 6158.85 & 79.63 \\
\hline 24 IPA & 171228G1_ Analyte & 40 & & & & 6158.85 & 0.00 \\
\hline 25 ST171228G1-10 PFC CS3 537 17L1424 & 171228G1_ Analyte & 40 & 5.17 & 6000.766 & 6000.766 & 6158.85 & 97.43 \\
\hline 26 IPA & 171228G1_ Analyte & 40 & & & & 6158.85 & 0.00 \\
\hline 27 1701938-02 REEPDW503 0.24799 & 171228G1_ Analyte & 40 & 5.17 & 4615.947 & 4615.947 & 6158.85 & 74.95 \\
\hline 28 1701938-03 REEPDW041 0.24345 & 171228G1_ Analyte & 40 & 5.17 & 4741.186 & 4741.186 & 6158.85 & 76.98 \\
\hline 29 1701938-04 REEPDW042 0.25464 & 171228G1_ Analyte & 40 & 5.17 & 4095.114 & 4095.114 & 6158.85 & 66.49 \\
\hline 30 1701940-01 REEPDWO40FRB 0.24567 & 171228G1_ Analyte & 40 & 5.17 & 4286.961 & 4286.961 & 6158.85 & 69.61 \\
\hline 31 1701940-02 REEPDW041FRB 0.25741 & 171228G1_ Analyte & 40 & 5.17 & 3874.042 & 3874.042 & 6158.85 & 62.90 \\
\hline 32 1701940-03 REEPDW042FRB 0.2529 & 171228G1_ Analyte & 40 & 5.17 & 4933.611 & 4933.611 & 6158.85 & 80.11 \\
\hline 33 1701951-04 FT-RW01-201712120.25982 & 171228G1_ Analyte & 40 & 5.17 & 4947.003 & 4947.003 & 6158.85 & 80.32 \\
\hline 34 1701951-05 FT-RW01-FRB-201712120.25309 & 171228G1_ Analyte & 40 & 5.17 & 5206.006 & 5206.006 & 6158.85 & 84.53 \\
\hline 35 1701951-11 FT-DUP08-201712120.2559 & 171228G1_ Analyte & 40 & 5.17 & 4205.676 & 4205.676 & 6158.85 & 68.29 \\
\hline 36 IPA & 171228G1_ Analyte & 40 & & & & 6158.85 & 0.00 \\
\hline 37 ST171228G1-11 PFC CS5 537 17L1426 & 171228G1_ Analyte & 40 & 5.17 & 5030.049 & 5030.049 & 6158.85 & 81.67 \\
\hline 38 IPA & 171228G1_ Analyte & 40 & & & & 6158.85 & 0 \\
\hline
\end{tabular}

ID
25 ST171228G1-10 PFC CS3 537 17L1424 26 IPA

27 1701938-02 REEPDW503 0.24799
28 1701938-03 REEPDW041 0.24345
29 1701938-04 REEPDW042 0.25464
30 1701940-01 REEPDWO40FRB 0.24567
31 1701940-02 REEPDW041FRB 0.25741
32 1701940-03 REEPDW042FRB 0.2529
33 1701951-04 FT-RW01-20171212 0.25982
34 1701951-05 FT-RW01-FRB-20171212 0.25309
35 1701951-11 FT-DUP08-20171212 0.2559 36 IPA
37 ST171228G1-11 PFC CS5 537 17L1426 38 IPA

\section*{Compound 19: 13C4-PFOS}

ID
25 ST171228G1-10 PFC CS3 537 17L1424
26 IPA
27 1701938-02 REEPDW503 0.24799
28 1701938-03 REEPDW041 0.24345
29 1701938-04 REEPDW042 0.25464
30 1701940-01 REEPDWO4OFRB 0.24567
31 1701940-02 REEPDW041FRB 0.25741
32 1701940-03 REEPDWO42FRB 0.2529
33 1701951-04 FT-RW01-20171212 0.25982
34 1701951-05 FT-RW01-FRB-20171212 0.25309
35 1701951-11 FT-DUP08-20171212 0.2559 36 IPA
37 ST171228G1-11 PFC CS5 537 17L1426 38 IPA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Type & Std. Con R & & Area & IS Area & Ccal Area & Area \% \\
\hline 171228G1_Analyte & 10 & 4.41 & 9757.258 & 9757.258 & 9757.258 & 100.00 \\
\hline 171228G1_ Analyte & 10 & & & & 9757.258 & 0.00 \\
\hline 171228G1_Analyte & 10 & 4.41 & 7761.315 & 7761.315 & 9757.258 & 79.54 \\
\hline 171228G1_Analyte & 10 & 4.41 & 8358.493 & 8358.493 & 9757.258 & 85.66 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 7717.58 & 7717.58 & 9757.258 & 79.10 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 8374.946 & 8374.946 & 9757.258 & 85.83 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 8435.157 & 8435.157 & 9757.258 & 86.45 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 8430.976 & 8430.976 & 9757.258 & 86.41 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 8793.807 & 8793.807 & 9757.258 & 90.13 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 7846.419 & 7846.419 & 9757.258 & 80.42 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 8001.56 & 8001.56 & 9757.258 & 82.01 \\
\hline 171228G1_ Analyte & 10 & & & & 9757.258 & 0.00 \\
\hline 171228G1_ Analyte & 10 & 4.41 & 7957.802 & 7957.802 & 9757.258 & 81.56 \\
\hline 171228G1_ Analyte & 10 & & & & 9757.258 & 0.00 \\
\hline
\end{tabular}

ST171228G1-10 PFC CS3 537 17L1424
\begin{tabular}{lcrrrrrr} 
Name & \multicolumn{1}{c}{ Type } & \multicolumn{2}{c}{ Std. Con RT } & \multicolumn{2}{c}{ Area } & \multicolumn{2}{c}{ IS Area } \\
\multicolumn{2}{c}{ Ccal Area } & Area \% \\
171228G1_Analyte & 28.7 & 4.82 & 10712.31 & 10712.31 & 10712.31 & 100.00 \\
171228G1_Analyte & 28.7 & & & & 10712.31 & 0.00 \\
171228G1_Analyte & 28.7 & 4.82 & 9338.899 & 9338.899 & 10712.31 & 87.18 \\
171228G1_Analyte & 28.7 & 4.82 & 9414.109 & 9414.109 & 10712.31 & 87.88 \\
171228G1_Analyte & 28.7 & 4.82 & 9374.374 & 9374.374 & 10712.31 & 87.51 \\
171228G1_Analyte & 28.7 & 4.82 & 9473.94 & 9473.94 & 10712.31 & 88.44 \\
171228G1_Analyte & 28.7 & 4.82 & 9054.453 & 9054.453 & 10712.31 & 84.52 \\
171228G1_Analyte & 28.7 & 4.82 & 10290.79 & 10290.79 & 10712.31 & 96.07 \\
171228G1_Analyte & 28.7 & 4.81 & 10221.43 & 10221.43 & 10712.31 & 95.42 \\
171228G1_Analyte & 28.7 & 4.82 & 9225.396 & 9225.396 & 10712.31 & 86.12 \\
171228G1_Analyte & 28.7 & 4.82 & 9646.335 & 9646.335 & 10712.31 & 90.05 \\
171228G1_Analyte & 28.7 & & & & 10712.31 & 0.00 \\
171228G1_Analyte & 28.7 & 4.81 & 9610.105 & 9610.105 & 10712.31 & 89.71 \\
171228G1_Analyte & 28.7 & & & & 10712.31 & 0.00
\end{tabular}

\section*{Compound 20: d3-N-MeFOSAA}

ID
25 ST171228G1-10 PFC CS3 537 17L1424
26 IPA
27 1701938-02 REEPDW503 0.24799
28 1701938-03 REEPDW041 0.24345
29 1701938-04 REEPDW042 0.25464
30 1701940-01 REEPDWO4OFRB 0.24567
31 1701940-02 REEPDW041FRB 0.25741
32 1701940-03 REEPDWO42FRB 0.2529
33 1701951-04 FT-RW01-20171212 0.25982
34 1701951-05 FT-RW01-FRB-20171212 0.25309
35 1701951-11 FT-DUP08-20171212 0.2559
36 IPA
37 ST171228G1-11 PFC CS5 537 17L1426 38 IPA

ST171228G1-10 PFC CS3 53717 L 1424
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name Type & Std. Con R & & Area & IS Area & Ccal Area & Area \% \\
\hline 171228G1_Analyte & 40 & 5.17 & 6000.766 & 6000.766 & 6000.766 & 100 \\
\hline 171228G1_ Analyte & 40 & & & & 6000.766 & 0 \\
\hline 171228G1_Analyte & 40 & 5.17 & 4615.947 & 4615.947 & 6000.766 & 76.92 \\
\hline 171228G1_ Analyte & 40 & 5.17 & 4741.186 & 4741.186 & 6000.766 & 79.01 \\
\hline 171228G1_Analyte & 40 & 5.17 & 4095.114 & 4095.114 & 6000.766 & 68.24 Not in SDG \\
\hline 171228G1_Analyte & 40 & 5.17 & 4286.961 & 4286.961 & 6000.766 & 71.44 \\
\hline 171228G1_ Analyte & 40 & 5.17 & 3874.042 & 3874.042 & 6000.766 & 64.56 Not in SDG \\
\hline 171228G1_ Analyte & 40 & 5.17 & 4933.611 & 4933.611 & 6000.766 & 82.22 \\
\hline 171228G1_ Analyte & 40 & 5.17 & 4947.003 & 4947.003 & 6000.766 & 82.44 \\
\hline 171228G1_ Analyte & 40 & 5.17 & 5206.006 & 5206.006 & 6000.766 & 86.76 \\
\hline 171228G1_Analyte & 40 & 5.17 & 4205.676 & 4205.676 & 6000.766 & 70.09 \\
\hline 171228G1_ Analyte & 40 & & & & 6000.766 & 0.00 \\
\hline 171228G1_ Analyte & 40 & 5.17 & 5030.049 & 5030.049 & 6000.766 & 83.82 \\
\hline 171228G1_ Analyte & 40 & & & & 6000.766 & 0 \\
\hline
\end{tabular}

GM12/29/17
Page 892 of 2104

\section*{Dataset: \\ U:IG1.PROTResultsI20171171228G11171228G1-CRV.qld}

Last Altered:
Friday, December 29, 2017 10:21:25 Pacific Standard Time
Printed: Friday, December 29, 2017 10:22:23 Pacific Standard Time

\section*{Method: U:IG1.PROIMethDBIPFAS_DW_L14_1217.mdb 17 Dec 2017 15:10:41}

Calibration: U:IG1.PROICurveDBIC18_537_Q1_12-28-17_L14.cdb 29 Dec 2017 10:21:25
Compound name: PFBS
Coefficient of Determination: R^2 \(=0.995495\)
Calibration curve: 0.855592 * \(x\)
Response type: Internal Std (Ref 19 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None



\section*{Compound name: PFHxA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997699\)
Calibration curve: \(-0.000537566^{*} x^{\wedge} 2+0.275255^{*} x\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: \(1 / x\), Axis trans: None


Work Order 170195
Page 1164 of 2104

Dataset:
U:IG1.PROIResultsL2017\171228G1\171228G1-CRV.qld
Last Altered:
Friday, December 29, 2017 09:50:14 Pacific Standard Time
Printed: Friday, December 29, 2017 10:16:56 Pacific Standard Time

\section*{Compound name: PFHpA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998320\)
Calibration curve: \(0.895151^{*}\)
Response type: Internal Std ( Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoDFlag & \(x=\) excluded \\
\hline 1. & 1 171228G1_3 & Standard & 0.500 & 4.02 & 423.525 & 9616.197 & 0.440 & 0.5 & -1.6 & NO & 0.998 & NO & bb \\
\hline 2 & 2 171228G1_4 & Standard & 1.000 & 4.01 & 879.697 & 8948.097 & 0.983 & 1.1 & 9.8 & NO & 0.998 & NO & bb \\
\hline 3 & 3 171228G1_5 & Standard & 2.000 & 4.01 & 1715.313 & 9652.695 & 1.777 & 2.0 & -0.7 & NO & 0.998 & NO & bb \\
\hline 4 & 4 171228G1_6 & Standard & 5.000 & 4.02 & 4257.111 & 9585.868 & 4.441 & 5.0 & -0.8 & NO & 0.998 & NO & bb \\
\hline 5 & 5 171228G1_7 & Standard & 10.000 & 4.02 & 8297.640 & 8412.562 & 9.863 & 11.0 & 10.2 & NO & 0.998 & NO & bb \\
\hline \[
6
\] & 6 171228G1_8 & Standard & 25.000 & 4.02 & 19854.434 & 8882.052 & 22.353 & 25.0 & -0.1 & NO & 0.998 & NO & bb \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 50.000 & 4.02 & 40942.176 & 9339.389 & 43.838 & 49.0 & -2.1 & NO & 0.998 & NO & bb \\
\hline 8 & 8 171228G1_10 & Standard & 75.000 & 4.02 & 71359.570 & 11157.446 & 63.957 & 71.4 & -4.7 & NO & 0.998 & NO & bbX \\
\hline \(9+5\) & 9 171228G1_11 & Standard & 100.000 & 4.01 & 71498.180 & 8187.476 & 87.326 & 97.6 & -2.4 & NO & 0.998 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: PFHxS}

Coefficient of Determination: R^2 \(=0.99354\)
Calibration curve: 0.970348 * \(x\)
Response type: Internal Std ( Ref 19 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Force, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4-3 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & COD Flag & \(x=\) excluded \\
\hline 1. & 1 171228G1_3 & Standard & 0.455 & 4.13 & 168.627 & 11543.968 & 0.419 & 0.4 & -5.0 & NO & 0.994 & NO & MM \\
\hline 2 & 2 171228G1_4 & Standard & 0.910 & 4.13 & 330.396 & 11261.563 & 0.842 & 0.9 & -4.6 & NO & 0.994 & NO & MM \\
\hline 3 & 3 171228G1_5 & Standard & 1.820 & 4.13 & 691.087 & 11408.358 & 1.739 & 1.8 & -1.6 & NO & 0.994 & NO & MM \\
\hline 4 & 4 171228G1_6 & Standard & 4.560 & 4.14 & 1754.884 & 11426.986 & 4.408 & 4.5 & -0.4 & NO & 0.994 & NO & MM \\
\hline 5 & 5 171228G1_7 & Standard & 9.120 & 4.14 & 3268.190 & 11556.328 & 8.117 & 8.4 & -8.3 & NO & 0.994 & NO & MM \\
\hline 6 & 6 171228G1_8 & Standard & 22.800 & 4.13 & 8292.395 & 11589.742 & 20.535 & 21.2 & -7.2 & NO & 0.994 & NO & MM \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 45.600 & 4.13 & 17247.771 & 10712.165 & 46.210 & 47.6 & 4.4 & NO & 0.994 & NO & MM \\
\hline 8. & 8 171228G1_10 & Standard & 68.400 & 4.13 & 29636.693 & 11617.523 & 73.215 & 75.5 & 10.3 & NO & 0.994 & NO & MM \\
\hline 9-3: \({ }^{\text {a }}\) & 9 171228G1_11 & Standard & 91.200 & 4.13 & 30942.920 & 10814.080 & 82.121 & 84.6 & -7.2 & NO & 0.994 & NO & MM \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & U:IG1.PROIResultsL20171171228G11171228G1-CRV.qId \\
Last Altered: & Friday, December 29, 2017 09:50:14 Pacific Standard Time \\
Printed: & Friday, December 29, 2017 10:16:56 Pacific Standard Time
\end{tabular}

\section*{Compound name: PFOA}

Coefficient of Determination: R^2 \(=0.99789\)
Calibration curve: 0.846674 * \(x\)
Response type: Internal Std (Ref 18 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline & 1 171228G1_3 & Standard & 0.500 & 4.42 & 444.179 & 9616.197 & 0.462 & 0.5 & 9.1 & NO & 0.998 & NO & bb \\
\hline 2 2- \({ }^{2}\) & 2 171228G1_4 & Standard & 1.000 & 4.42 & 718.656 & 8948.097 & 0.803 & 0.9 & -5.1 & NO & 0.998 & NO & bb \\
\hline \(3 \times\) & 3 171228G1_5 & Standard & 2.000 & 4.42 & 1762.882 & 9652.695 & 1.826 & 2.2 & 7.9 & NO & 0.998 & NO & bb \\
\hline 4 & 4 171228G1_6 & Standard & 5.000 & 4.43 & 3923.357 & 9585.868 & 4.093 & 4.8 & -3.3 & NO & 0.998 & NO & bb \\
\hline  & 5 171228G1_7 & Standard & 10.000 & 4.43 & 7916.375 & 8412.562 & 9.410 & 11.1 & 11.1 & NO & 0.998 & NO & bd \\
\hline 6 & 6 171228G1_8 & Standard & 25.000 & 4.43 & 18722.438 & 8882.052 & 21.079 & 24.9 & -0.4 & NO & 0.998 & NO & bd \\
\hline \[
7 .
\] & 7 171228G1_9 & Standard & 50.000 & 4.42 & 38749.738 & 9339.389 & 41.491 & 49.0 & -2.0 & NO & 0.998 & NO & bd \\
\hline \[
8
\] & 8 171228G1_10 & Standard & 75.000 & 4.42 & 67393.055 & 11157.446 & 60.402 & 71.3 & -4.9 & NO & 0.998 & NO & bbX \\
\hline \(9+3\) & 9 171228G1_11 & Standard & 100.000 & 4.42 & 69834.078 & 8187.476 & 85.294 & 100.7 & 0.7 & NO & 0.998 & NO & bdX \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997958\)
Calibration curve: 0.91166 * \(x\)
Response type: Internal Std (Ref 18 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline  & 1 171228G1_3 & Standard & 0.500 & 4.77 & 412.989 & 9616.197 & 0.429 & 0.5 & -5.8 & NO & 0.998 & NO & bb \\
\hline  & 2 171228G1_4 & Standard & 1.000 & 4.77 & 814.051 & 8948.097 & 0.910 & 1.0 & -0.2 & NO & 0.998 & NO & bb \\
\hline 3 2-5 & 3 171228G1_5 & Standard & 2.000 & 4.77 & 1574.519 & 9652.695 & 1.631 & 1.8 & -10.5 & NO & 0.998 & NO & bb \\
\hline 4 & 4 171228G1_6 & Standard & 5.000 & 4.77 & 4530.199 & 9585.868 & 4.726 & 5.2 & 3.7 & NO & 0.998 & NO & bd \\
\hline 5 & 5 171228G1_7 & Standard & 10.000 & 4.77 & 7958.219 & 8412.562 & 9.460 & 10.4 & 3.8 & NO & 0.998 & NO & bb \\
\hline 6 - & \(6171228 \mathrm{G1}\) 8 & Standard & 25.000 & 4.77 & 19012.078 & 8882.052 & 21.405 & 23.5 & -6.1 & NO & 0.998 & NO & bd \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 50.000 & 4.77 & 43595.273 & 9339.389 & 46.679 & 51.2 & 2.4 & NO & 0.998 & NO & bb \\
\hline 8. 5 - 5 & 8 171228G1_10 & Standard & 75.000 & 4.77 & 67948.430 & 11157.446 & 60.900 & 66.8 & -10.9 & NO & 0.998 & NO & bbX \\
\hline 9 9 & 9 171228G1_11 & Standard & 100.000 & 4.77 & 73826.844 & 8187.476 & 90.170 & 98.9 & -1.1 & NO & 0.998 & NO & bbX \\
\hline
\end{tabular}

Dataset:
U:IG1.PRO\ResultsL2017\171228G1\171228G1-CRV.qld
Last Altered: Friday, December 29, 2017 09:50:14 Pacific Standard Time
Printed:
Friday, December 29, 2017 10:16:56 Pacific Standard Time

\section*{Compound name: PFOS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996677\)
Calibration curve: 1.23232 * x
Response type: Internal Std ( Ref 19 ), Area * (IS Conc. / IS Area
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline  & 1 171228G1_3 & Standard & 0.464 & 4.83 & 233.467 & 11543.968 & 0.580 & 0.5 & 1.5 & NO & 0.997 & NO & MM \\
\hline 2 & 2171228 G 1 _4 & Standard & 0.925 & 4.83 & 386.231 & 11261.563 & 0.984 & 0.8 & -13.6 & NO & 0.997 & NO & MM \\
\hline 3 & 3 171228G1_5 & Standard & 1.850 & 4.83 & 834.709 & 11408.358 & 2.100 & 1.7 & -7.9 & NO & 0.997 & NO & MM \\
\hline 4 & 4 171228G1_6 & Standard & 4.625 & 4.83 & 2041.169 & 11426.986 & 5.127 & 4.2 & -10.1 & NO & 0.997 & NO & MM \\
\hline \[
5
\] & 5 171228G1_7 & Standard & 9.250 & 4.83 & 4210.949 & 11556.328 & 10.458 & 8.5 & -8.3 & NO & 0.997 & NO & MM \\
\hline 6 & 6 171228G1_8 & Standard & 23.100 & 4.83 & 10604.495 & 11589.742 & 26.260 & 21.3 & -7.8 & NO & 0.997 & NO & MM \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 46.200 & 4.83 & 22442.100 & 10712.165 & 60.127 & 48.8 & 5.6 & NO & 0.997 & NO & MM \\
\hline 8 & 8 171228G1_10 & Standard & 69.300 & 4.83 & 36554.102 & 11617.523 & 90.303 & 73.3 & 5.7 & NO & 0.997 & NO & MM \\
\hline \(9-2\) & \(9171228 \mathrm{G1}\) _11 & Standard & 92.400 & 4.83 & 41378.531 & 10814.080 & 109.816 & 89.1 & -3.6 & NO & 0.997 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: PFDA}

Coefficient of Determination: R^2 \(=0.998159\)
Calibration curve: \(-0.00168419{ }^{*} x^{\wedge} 2+0.864678\) * \(x\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 171228G1_3 & Standard & 0.500 & 5.06 & 412.979 & 9616.197 & 0.429 & 0.5 & -0.6 & NO & 0.998 & NO & bb \\
\hline 2 & \(2171228 G 1\) _4 & Standard & 1.000 & 5.06 & 934.373 & 8948.097 & 1.044 & 1.2 & 21.0 & NO & 0.998 & NO & bb \\
\hline 3 & 3 171228G1_5 & Standard & 2.000 & 5.06 & 1761.919 & 9652.695 & 1.825 & 2.1 & 6.0 & NO & 0.998 & NO & bb \\
\hline 4 & 4 171228G1_6 & Standard & 5.000 & 5.07 & 3855.568 & 9585.868 & 4.022 & 4.7 & -6.1 & NO & 0.998 & NO & bb \\
\hline 5 & \(5171228 \mathrm{G1}\) _7 & Standard & 10.000 & 5.07 & 7488.775 & 8412.562 & 8.902 & 10.5 & 5.1 & NO & 0.998 & NO & bd \\
\hline 6 & \(6171228 \mathrm{G1} 8\) & Standard & 25.000 & 5.07 & 17591.451 & 8882.052 & 19.806 & 24.0 & -3.9 & NO & 0.998 & NO & bb \\
\hline 7 & 7 171228G1_9 & Standard & 50.000 & 5.06 & 36737.652 & 9339.389 & 39.336 & 50.4 & 0.9 & NO & 0.998 & NO & bb \\
\hline 8 & 8 171228G1_10 & Standard & 75.000 & 5.06 & 63259.305 & 11157.446 & 56.697 & 77.2 & 2.9 & NO & 0.998 & NO & bbX \\
\hline \(9 \times 3\) & 9 171228G1_11 & Standard & 100.000 & 5.06 & 64960.406 & 8187.476 & 79.341 & 119.6 & 19.6 & NO & 0.998 & NO & bbX \\
\hline
\end{tabular}

Dataset:
U:IG1.PROIResultsL20171171228G1\171228G1-CRV.qid
Last Altered: Friday, December 29, 2017 09:50:14 Pacific Standard Time
Printed: Friday, December 29, 2017 10:16:56 Pacific Standard Time

\section*{Compound name: N-MeFOSAA}

Coefficient of Determination: \(R^{\wedge} 2=0.993308\)
Calibration curve: \(0.00236446{ }^{*} x^{\wedge} 2+2.487433^{*} x\)
Response type: Internal Std (Ref 20 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & Cod Flag & x=excluded \\
\hline 1 & 1 171228G1_3 & Standard & 0.500 & 5.18 & 198.978 & 6359.849 & 1.251 & 0.5 & 0.6 & NO & 0.993 & NO & bb \\
\hline 2 & 2 171228G1_4 & Standard & 1.000 & 5.18 & 367.439 & 6306.363 & 2.331 & 0.9 & -6.4 & NO & 0.993 & NO & bb \\
\hline 33. & 3 171228G1_5 & Standard & 2.000 & 5.19 & 630.117 & 6561.747 & 3.841 & 1.5 & -22.9 & NO & 0.993 & NO & bb \\
\hline 4 & 4 171228G1_6 & Standard & 5.000 & 5.18 & 1759.531 & 5647.429 & 12.463 & 5.0 & -0.3 & NO & 0.993 & NO & bb \\
\hline 5 & 5 171228G1_7 & Standard & 10.000 & 5.19 & 3464.958 & 6393.742 & 21.677 & 8.6 & -13.6 & NO & 0.993 & NO & bb \\
\hline \[
6
\] & \(6171228 \mathrm{G1}\) 8 & Standard & 25.000 & 5.19 & 10409.923 & 6114.826 & 68.096 & 26.7 & 6.8 & NO & 0.993 & NO & bd \\
\hline 7:ir & 7 171228G1_9 & Standard & 50.000 & 5.18 & 18734.965 & 6160.144 & 121.653 & 46.8 & -6.4 & NO & 0.993 & NO & bd \\
\hline 8 & 8 171228G1_10 & Standard & 75.000 & 5.19 & 34180.613 & 6175.573 & 221.392 & 82.5 & 10.0 & NO & 0.993 & NO & bd \\
\hline 9 9xe & 9 171228G1_11 & Standard & 100.000 & 5.18 & 37088.180 & 5709.973 & 259.813 & 95.7 & -4.3 & NO & 0.993 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: N-EtFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997522\)
Calibration curve: 1.71892 * x
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & \# Name & Type & Std. Cone & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & 1 171228G1_3 & Standard & 0.500 & 5.31 & 139.100 & 6359.849 & 0.875 & 0.5 & 1.8 & NO & 0.998 & NO & bb \\
\hline 2 & 2 171228G1_4 & Standard & 1.000 & 5.30 & 233.860 & 6306.363 & 1.483 & 0.9 & -13.7 & NO & 0.998 & NO & bb \\
\hline 3- \({ }^{2}\) & 3 171228G1_5 & Standard & 2.000 & 5.31 & 643.793 & 6561.747 & 3.925 & 2.3 & 14.2 & NO & 0.998 & NO & bb \\
\hline 4 & 4 171228G1_6 & Standard & 5.000 & 5.31 & 1176.526 & 5647.429 & 8.333 & 4.8 & -3.0 & NO & 0.998 & NO & bb \\
\hline 5-20 \({ }^{2}\) & 5 171228G1_7 & Standard & 10.000 & 5.31 & 2651.639 & 6393.742 & 16.589 & 9.7 & -3.5 & NO & 0.998 & NO & bb \\
\hline 6 & \(6171228 \mathrm{G1}\)-8 & Standard & 25.000 & 5.31 & 6766.835 & 6114.826 & 44.265 & 25.8 & 3.0 & NO & 0.998 & NO & bb \\
\hline 7. 72 \(^{\text {a }}\) - & 7 171228G1_9 & Standard & 50.000 & 5.31 & 12695.381 & 6160.144 & 82.436 & 48.0 & -4.1 & NO & 0.998 & NO & bd \\
\hline 8 & 8 171228G1_10 & Standard & 75.000 & 5.31 & 21213.447 & 6175.573 & 137.402 & 79.9 & 6.6 & NO & 0.998 & NO & bb \\
\hline 9-3 & 9 171228G1_11 & Standard & 100.000 & 5.31 & 23728.014 & 5709.973 & 166.222 & 96.7 & -3.3 & NO & 0.998 & NO & bd \\
\hline
\end{tabular}

Dataset:
U:IG1.PRO\ResultsL2017\171228G1\171228G1-CRV.qld
Last Altered:
Friday, December 29, 2017 09:50:14 Pacific Standard Time
Printed: Friday, December 29, 2017 10:16:56 Pacific Standard Time

\section*{Compound name: PFUnA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997590\)
Calibration curve: 0.86949 * \(x\)
Response type: Internal Std (Ref 18 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Fiag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1- 5 & 1 171228G1_3 & Standard & 0.500 & 5.31 & 359.914 & 9616.197 & 0.374 & 0.4 & -13.9 & NO & 0.998 & NO & MM \\
\hline 2 & \(2171228 \mathrm{G1}\)-4 & Standard & 1.000 & 5.31 & 770.120 & 8948.097 & 0.861 & 1.0 & -1.0 & NO & 0.998 & NO & bb \\
\hline 3 & 3 171228G1_5 & Standard & 2.000 & 5.31 & 1639.007 & 9652.695 & 1.698 & 2.0 & -2.4 & NO & 0.998 & NO & bb \\
\hline 4: & 4 171228G1_6 & Standard & 5.000 & 5.31 & 3689.776 & 9585.868 & 3.849 & 4.4 & -11.5 & NO & 0.998 & NO & bb \\
\hline 5 & 5 171228G1_7 & Standard & 10.000 & 5.32 & 8035.258 & 8412.562 & 9.551 & 11.0 & 9.9 & NO & 0.998 & NO & bd \\
\hline 6 & 6 171228G1_8 & Standard & 25.000 & 5.32 & 19702.148 & 8882.052 & 22.182 & 25.5 & 2.0 & NO & 0.998 & NO & bb \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 50.000 & 5.32 & 39955.523 & 9339.389 & 42.782 & 49.2 & -1.6 & NO & 0.998 & NO & bb \\
\hline \[
8
\] & 8 171228G1_10 & Standard & 75.000 & 5.32 & 64680.633 & 11157.446 & 57.971 & 66.7 & -11.1 & NO & 0.998 & NO & bdx \\
\hline \(9 \times 1\) & 9 171228G1_11 & Standard & 100.000 & 5.31 & 69640.461 & 8187.476 & 85.057 & 97.8 & -2.2 & NO & 0.998 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: PFDoA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997723\)
Calibration curve: 0.17695 * x
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 171228G1_3 & Standard & 0.500 & 5.54 & 67.032 & 9616.197 & 0.070 & 0.4 & -21.2 & NO & 0.998 & NO & bb \\
\hline 2 & 2 171228G1_4 & Standard & 1.000 & 5.54 & 142.823 & 8948.097 & 0.160 & 0.9 & -9.8 & NO & 0.998 & NO & bb \\
\hline \[
3
\] & 3 171228G1_5 & Standard & 2.000 & 5.54 & 343.593 & 9652.695 & 0.356 & 2.0 & 0.6 & NO & 0.998 & NO & bb \\
\hline \(4 \geq\) & 4 171228G1_6 & Standard & 5.000 & 5.54 & 764.335 & 9585.868 & 0.797 & 4.5 & -9.9 & NO & 0.998 & NO & bb \\
\hline \[
5
\] & \(5171228 \mathrm{G1} \mathrm{C}^{7}\) & Standard & 10.000 & 5.54 & 1580.828 & 8412.562 & 1.879 & 10.6 & 6.2 & NO & 0.998 & NO & bb \\
\hline 6 & 6 171228G1_8 & Standard & 25.000 & 5.54 & 3765.447 & 8882.052 & 4.239 & 24.0 & -4.2 & NO & 0.998 & NO & bb \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 50.000 & 5.54 & 8446.277 & 9339.389 & 9.044 & 51.1 & 2.2 & NO & 0.998 & NO & bb \\
\hline 8 & 8 171228G1_10 & Standard & 75.000 & 5.54 & 13982.007 & 11157.446 & 12.532 & 70.8 & -5.6 & NO & 0.998 & NO & bdX \\
\hline 9 & \(9171228 \mathrm{G1}\)-11 & Standard & 100.000 & 5.54 & 14085.404 & 8187.476 & 17.204 & 97.2 & -2.8 & NO & 0.998 & NO & bbX \\
\hline
\end{tabular}

Dataset: U:IG1.PROIResultsL2017\171228G11171228G1-CRV.qld
Last Altered: Friday, December 29, 2017 09:50:14 Pacific Standard Time
Printed:
Friday, December 29, 2017 10:16:56 Pacific Standard Time

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999328\)
Calibration curve: 1.42543 * \(x\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: \(1 / \mathrm{x}\), Axis trans: None


\section*{Compound name: PFTeDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999327\)
Calibration curve: \(1.38026^{*} \mathrm{x}\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 171228G1_3 & Standard & 0.500 & 5.90 & 635.856 & 9616.197 & 0.661 & 0.5 & -4.2 & NO & 0.999 & NO & bb \\
\hline 2 & \(2171228 G 1\) _4 & Standard & 1.000 & 5.89 & 1188.867 & 8948.097 & 1.329 & 1.0 & -3.7 & NO & 0.999 & NO & bb \\
\hline 3 & 3 171228G1_5 & Standard & 2.000 & 5.90 & 2797.361 & 9652.695 & 2.898 & 2.1 & 5.0 & NO & 0.999 & NO & bb \\
\hline 4 & 4 171228G1_6 & Standard & 5.000 & 5.90 & 5991.379 & 9585.868 & 6.250 & 4.5 & -9.4 & NO & 0.999 & NO & bd \\
\hline 5 & \(5171228 G 1\) _7 & Standard & 10.000 & 5.90 & 11742.494 & 8412.562 & 13.958 & 10.1 & 1.1 & NO & 0.999 & NO & bd \\
\hline 6 & \(6171228 \mathrm{G1} 8\) & Standard & 25.000 & 5.90 & 30866.508 & 8882.052 & 34.752 & 25.2 & 0.7 & NO & 0.999 & NO & bd \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 50.000 & 5.90 & 64634.898 & 9339.389 & 69.207 & 50.1 & 0.3 & NO & 0.999 & NO & bb \\
\hline \[
8
\] & 8 171228G1_10 & Standard & 75.000 & 5.90 & 110342.953 & 11157.446 & 98.896 & 71.7 & -4.5 & NO & 0.999 & NO & bbX \\
\hline \(9{ }^{9}+3\) & 9 171228G1_11 & Standard & 100.000 & 5.90 & 116548.750 & 8187.476 & 142.350 & 103.1 & 3.1 & NO & 0.999 & NO & bbX \\
\hline
\end{tabular}

Dataset:
U:IG1.PROIResultsL2017\171228G1\171228G1-CRV.qld
Last Altered:
Friday, December 29, 2017 09:50:14 Pacific Standard Time
Printed: Friday, December 29, 2017 10:16:56 Pacific Standard Time

\section*{Compound name: 13C2-PFHxA}

Response Factor: 0.498869
RRF SD: 0.027857 , Relative SD: 5.58404
Response type: Internal Std ( Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline & 1 171228G1_3 & Standard & 10.000 & 3.50 & 4616.387 & 9616.197 & 4.801 & 9.6 & -3.8 & NO & & NO & bb \\
\hline 2 & \(2171228 \mathrm{G1}\)-4 & Standard & 10.000 & 3.50 & 4628.783 & 8948.097 & 5.173 & 10.4 & 3.7 & NO & & NO & bb \\
\hline 3 & \(3171228 \mathrm{G1} 5\) & Standard & 10.000 & 3.50 & 4680.351 & 9652.695 & 4.849 & 9.7 & -2.8 & NO & & NO & bb \\
\hline 4 & \(4171228 \mathrm{G1}\) _6 & Standard & 10.000 & 3.51 & 4689.450 & 9585.868 & 4.892 & 9.8 & -1.9 & NO & & NO & bd \\
\hline \[
5
\] & \(5171228 \mathrm{G1} \mathrm{C}^{7}\) & Standard & 10.000 & 3.51 & 4657.353 & 8412.562 & 5.536 & 11.1 & 11.0 & NO & & NO & bb \\
\hline \[
6
\] & 6 171228G1_8 & Standard & 10.000 & 3.51 & 4204.746 & 8882.052 & 4.734 & 9.5 & -5.1 & NO & & NO & bd \\
\hline \[
7
\] & 7 171228G1_9 & Standard & 10.000 & 3.51 & 4610.188 & 9339.389 & 4.936 & 9.9 & -1.1 & NO & & NO & bb \\
\hline 8 & 8 171228G1_10 & Standard & 10.000 & 3.50 & 5337.031 & 11157.446 & 4.783 & 9.6 & -4.1 & NO & & NO & bbX \\
\hline \(9{ }^{-3}\) & \(9171228 \mathrm{G1} 11\) & Standard & 10.000 & 3.50 & 4315.054 & 8187.476 & 5.270 & 10.6 & 5.6 & NO & & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDA}

Response Factor: 0.582167
RRF SD: 0.0395445, Relative SD: 6.79265
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1-5\% & 1 171228G1_3 & Standard & 10.000 & 5.06 & 5693.775 & 9616.197 & 5.921 & 10.2 & 1.7 & NO & & NO & bd \\
\hline 2.3 & 2 171228G1_4 & Standard & 10.000 & 5.06 & 5300.004 & 8948.097 & 5.923 & 10.2 & 1.7 & NO & & NO & bb \\
\hline 3 c & 3 171228G1_5 & Standard & 10.000 & 5.06 & 5076.118 & 9652.695 & 5.259 & 9.0 & -9.7 & NO & & NO & bb \\
\hline 4 & \(4171228 \mathrm{G1}\) _6 & Standard & 10.000 & 5.06 & 5328.732 & 9585.868 & 5.559 & 9.5 & -4.5 & NO & & NO & bb \\
\hline  & 5 171228G1_7 & Standard & 10.000 & 5.06 & 5303.460 & 8412.562 & 6.304 & 10.8 & 8.3 & NO & & NO & bb \\
\hline  & 6 171228G1_8 & Standard & 10.000 & 5.07 & 4896.271 & 8882.052 & 5.513 & 9.5 & -5.3 & NO & & NO & bb \\
\hline 7.4 & \(7171228 \mathrm{G1}\) _9 & Standard & 10.000 & 5.06 & 5858.713 & 9339.389 & 6.273 & 10.8 & 7.8 & NO & & NO & bb \\
\hline 8 & \(8171228 \mathrm{G1} 10\) & Standard & 10.000 & 5.06 & 5932.525 & 11157.446 & 5.317 & 9.1 & -8.7 & NO & & NO & bbX \\
\hline  & \(9171228 \mathrm{G1} 11\) & Standard & 10.000 & 5.06 & 5164.591 & 8187.476 & 6.308 & 10.8 & 8.4 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: U:IG1.PRO\Results\2017\171228G11171228G1-CRV.qld
Last Altered: Friday, December 29, 2017 09:50:14 Pacific Standard Time
Printed: Friday, December 29, 2017 10:16:56 Pacific Standard Time

\section*{Compound name: d5-N-EtFOSAA}

Response Factor: 1.18231
RRF SD: 0.121591, Relative SD: 10.2843
Response type: Internal Std (Ref 20 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline +4 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline  & 1 171228G1_3 & Standard & 40.000 & 5.30 & 7558.749 & 6359.849 & 47.540 & 40.2 & 0.5 & NO & & NO & bb \\
\hline \(2{ }^{2 \times 2}\) & 2 171228G1_4 & Standard & 40.000 & 5.30 & 7120.129 & 6306.363 & 45.162 & 38.2 & -4.5 & NO & & NO & bb \\
\hline \[
5
\] & 3 171228G1_5 & Standard & 40.000 & 5.30 & 7320.658 & 6561.747 & 44.626 & 37.7 & -5.6 & NO & & NO & bb \\
\hline  & 4 171228G1_6 & Standard & 40.000 & 5.30 & 7496.497 & 5647.429 & 53.097 & 44.9 & 12.3 & NO & & NO & bb \\
\hline  & \(5171228 \mathrm{G1} 17\) & Standard & 40.000 & 5.31 & 6320.259 & 6393.742 & 39.540 & 33.4 & -16.4 & NO & & NO & bb \\
\hline \[
6
\] & 6 171228G1_8 & Standard & 40.000 & 5.31 & 7739.659 & 6114.826 & 50.629 & 42.8 & 7.1 & NO & & NO & bd \\
\hline  & 7 171228G1_9 & Standard & 40.000 & 5.30 & 7650.919 & 6160.144 & 49.680 & 42.0 & 5.0 & NO & & NO & bb \\
\hline 8. & 8 171228G1_10 & Standard & 40.000 & 5.30 & 8251.974 & 6175.573 & 53.449 & 45.2 & 13.0 & NO & & NO & bb \\
\hline  & 9 171228G1_11 & Standard & 40.000 & 5.30 & 5982.135 & 5709.973 & 41.907 & 35.4 & -11.4 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFOA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 18 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & Conc. Flag & CoD & CoD Flag & \(x\)-excluded \\
\hline  & 1 171228G1_3 & Standard & 10.000 & 4.42 & 9616.197 & 9616.197 & 10.000 & 10.0 & 0.0 & NO & & NO & bb \\
\hline 2-T Mex & \(2171228 \mathrm{G1} 4\) & Standard & 10.000 & 4.42 & 8948.097 & 8948.097 & 10.000 & 10.0 & 0.0 & NO & & NO & bb \\
\hline \(35:=\) & 3 171228G1_5 & Standard & 10.000 & 4.42 & 9652.695 & 9652.695 & 10.000 & 10.0 & 0.0 & NO & & NO & bb \\
\hline 4. & 4 171228G1_6 & Standard & 10.000 & 4.42 & 9585.868 & 9585.868 & 10.000 & 10.0 & 0.0 & NO & & NO & bb \\
\hline 5 & \(5171228 \mathrm{G1}{ }^{\text {-7 }}\) & Standard & 10.000 & 4.42 & 8412.562 & 8412.562 & 10.000 & 10.0 & 0.0 & NO & & NO & bd \\
\hline 6 & \(6171228 \mathrm{G1}\) _ 8 & Standard & 10.000 & 4.42 & 8882.052 & 8882.052 & 10.000 & 10.0 & 0.0 & NO & & NO & bb \\
\hline \(77^{2+3}\) & 7 171228G1_9 & Standard & 10.000 & 4.42 & 9339.389 & 9339.389 & 10.000 & 10.0 & 0.0 & NO & & NO & bb \\
\hline 8 & 8 171228G1_10 & Standard & 10.000 & 4.43 & 11157.446 & 11157.446 & 10.000 & 10.0 & 0.0 & NO & & NO & bdX \\
\hline  & 9 171228G1_11 & Standard & 10.000 & 4.42 & 8187.476 & 8187.476 & 10.000 & 10.0 & 0.0 & NO & & NO & bdX \\
\hline
\end{tabular}

Dataset:
U:IG1.PROIResultsL2017\171228G1\171228G1-CRV.qld
\(\begin{array}{ll}\text { Last Altered: } & \text { Friday, December 29, 2017 09:50:14 Pacific Standard Time } \\ \text { Printed: } & \text { Friday, December 29, 2017 10:16:56 Pacific Standard Time }\end{array}\)

Compound name: 13C4-PFOS
Response Factor: 1
RRF SD: 3.92523e-017, Relative SD: 3.92523e-015
Response type: Internal Std (Ref 19 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & W Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=e x c l u d e d\) \\
\hline 1-5: \({ }^{\text {a }}\) & 1 171228G1_3 & Standard & 28.700 & 4.83 & 11543.968 & 11543.968 & 28.700 & 28.7 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 171228G1_4 & Standard & 28.700 & 4.83 & 11261.563 & 11261.563 & 28.700 & 28.7 & 0.0 & NO & & NO & bd \\
\hline 3 & 3 171228G1_5 & Standard & 28.700 & 4.83 & 11408.358 & 11408.358 & 28.700 & 28.7 & 0.0 & NO & & NO & bb \\
\hline \(4 \times 5\) & 4 171228G1_6 & Standard & 28.700 & 4.83 & 11426.986 & 11426.986 & 28.700 & 28.7 & 0.0 & NO & & NO & bb \\
\hline 5. & 5 171228G1_7 & Standard & 28.700 & 4.84 & 11556.328 & 11556.328 & 28.700 & 28.7 & 0.0 & NO & & NO & bd \\
\hline 6 & 6 171228G1_8 & Standard & 28.700 & 4.83 & 11589.742 & 11589.742 & 28.700 & 28.7 & 0.0 & NO & & NO & bb \\
\hline  & 7 171228G1_9 & Standard & 28.700 & 4.83 & 10712.165 & 10712.165 & 28.700 & 28.7 & 0.0 & NO & & NO & bd \\
\hline  & \(8171228 \mathrm{G1}\)-10 & Standard & 28.700 & 4.83 & 11617.523 & 11617.523 & 28.700 & 28.7 & 0.0 & NO & & NO & bb \\
\hline 9: \(=\) \% & 9 171228G1_11 & Standard & 28.700 & 4.83 & 10814.080 & 10814.080 & 28.700 & 28.7 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSAA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std Conc & RT & Area & IS Area & Response & Conc & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1-3 & 1 171228G1_3 & Standard & 40.000 & 5.18 & 6359.849 & 6359.849 & 40.000 & 40.0 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 171228G1_4 & Standard & 40.000 & 5.18 & 6306.363 & 6306.363 & 40.000 & 40.0 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 171228G1_5 & Standard & 40.000 & 5.18 & 6561.747 & 6561.747 & 40.000 & 40.0 & 0.0 & NO & & NO & bd \\
\hline \(4{ }^{4}+2=\) & 4 171228G1_6 & Standard & 40.000 & 5.18 & 5647.429 & 5647.429 & 40.000 & 40.0 & 0.0 & NO & & NO & bd \\
\hline 5 & 5 171228G1_7 & Standard & 40.000 & 5.18 & 6393.742 & 6393.742 & 40.000 & 40.0 & 0.0 & NO & & NO & bb \\
\hline 6 & \(6171228 \mathrm{G1}\)-8 & Standard & 40.000 & 5.18 & 6114.826 & 6114.826 & 40.000 & 40.0 & 0.0 & NO & & NO & bd \\
\hline 7 & 7 171228G1_9 & Standard & 40.000 & 5.18 & 6160.144 & 6160.144 & 40.000 & 40.0 & 0.0 & NO & & NO & bb \\
\hline 8 & 8 171228G1_10 & Standard & 40.000 & 5.18 & 6175.573 & 6175.573 & 40.000 & 40.0 & 0.0 & NO & & NO & bd \\
\hline \(9+5\) & 9 171228G1_11 & Standard & 40.000 & 5.18 & 5709.973 & 5709.973 & 40.000 & 40.0 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

Dataset:
U:IG1.PROIResultsL2017\171228G1\171228G1-CRV.qld
Last Altered: Friday, December 29, 2017 10:21:25 Pacific Standard Time
Printed: Friday, December 29, 2017 10:23:49 Pacific Standard Time

\section*{Method: U:IG1.PROIMethDBIPFAS_DW_L14_1217.mdb 17 Dec 2017 15:10:41}

Calibration: U:IG1.PROICurveDBIC18_537_Q1_12-28-17_L14.cdb 29 Dec 2017 10:21:25
Name: 171228G1_3, Date: 28-Dec-2017, Time: 12:15:18, ID: ST171228G1-1 PFC CS-3 537 17L1418, Description: PFC CS-3 537 17L1418
\begin{tabular}{|c|c|c|c|c|}
\hline & \# Name & CoD & CoD Flag & \%RSD \\
\hline 1. \(=4\) & 1 PFBS & 0.9955 & NO & \\
\hline \(2=\) & 2 PFHXA & 0.9977 & NO & \\
\hline 3 - & 3 PFHpA & 0.9983 & NO & \\
\hline 4 & 4 PFHxS & 0.9935 & NO & \\
\hline Y & 5 PFOA & 0.9979 & NO & \\
\hline 6 & 6 PFNA & 0.9980 & NO & \\
\hline \[
7
\] & 7 PFOS & 0.9967 & NO & \\
\hline \(8=\) & 8 PFDA & 0.9982 & NO & \\
\hline \% & \(9 \mathrm{~N}-\mathrm{MeFOSAA}\) & 0.9933 & NO & \\
\hline 10 & 10 N -EtFOSAA & 0.9975 & NO & \\
\hline 11. & 11 PFUnA & 0.9976 & NO & \\
\hline 12 & 12 PFDoA & 0.9977 & NO & \\
\hline 13 & 13 PFTrDA & 0.9993 & NO & \\
\hline 14 & 14 PFTeDA & 0.9993 & NO & \\
\hline 15 & 15 13C2-PFHXA & & NO & 5.584 \\
\hline \(16=\) & 16 13C2-PFDA & & NO & 6.793 \\
\hline 17 & 17 d5-N-EtFOSAA & & NO & 10.284 \\
\hline 18 & 18 13C2-PFOA & & NO & 0.000 \\
\hline 19 & 19 13C4-PFOS & & NO & 0.000 \\
\hline \(20 \times 2+5\) & \(20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}\) & & NO & 0.000 \\
\hline
\end{tabular}
Dataset: Untitled

Last Altered: Friday, December 29, 2017 10:49:02 Pacific Standard Time Printed Friday, December 29, 2017 10:49:10 Pacific Standard Time

Method: U:IG1.PROIMethDBIPFAS_DW_L14_1217.mdb 17 Dec 2017 15:10:41 Calibration: U:IG1.PROICurveDBIC18_537_Q1_12-28-17_L14.cdb 29 Dec 2017 10:21:25

\section*{Compound name: PFBS}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name &  & Acq. Date & Acq Time \\
\hline 1 & 171228G1_1 & IPA & 28-Dec-17 & 11:50:26 \\
\hline 2 & 171228G1_2 & ICV171228G1-1 PFC ICV 53717 L 1427 & 28-Dec-17 & 12:02:54 \\
\hline 3 & 171228G1_3 & ST171228G1-1 PFC CS-3 53717 L 1418 & 28-Dec-17 & 12:15:18 \\
\hline 4 & 171228G1_4 & ST171228G1-2 PFC CS-2 53717 L 1419 & 28-Dec-17 & 12:27:42 \\
\hline 5 & 171228G1_5 & ST171228G1-3 PFC CS-1 53717 L 2105 & 28-Dec-17 & 12:40:08 \\
\hline 6 & 171228G1_6 & ST171228G1-4 PFC CSO 53717 L 1421 & 28-Dec-17 & 12:52:35 \\
\hline 7 & 171228G1_7 & ST171228G1-5 PFC CS1 53717 L 1422 & 28-Dec-17 & 13:05:01 \\
\hline 8 & 171228G1_8 & ST171228G1-6 PFC CS2 537 17L1423 & 28-Dec-17 & 13:17:29 \\
\hline & 171228G1_9 & ST171228G1-7 PFC CS3 53717 L 1424 & 28-Dec-17 & 13:29:56 \\
\hline 10 & 171228G1_10 & ST171228G1-8 PFC CS4 53717 L 1425 & 28-Dec-17 & 13:42:25 \\
\hline & 171228G1_11 & ST171228G1-9 PFC CS5 537 17L-1426 & 28-Dec-17 & 13:54:49 \\
\hline 12 & 171228G1_12 & IPA & 28-Dec-17 & 14:07:14 \\
\hline
\end{tabular}



Method: U:IG1.PRO\MethDBIPFAS_DW_L14_1217.mdb 17 Dec 2017 15:10:41
Calibration: U:IG1.PROICurveDBIC18_537_Q1_12-28-17_L14.cdb 29 Dec 2017 10:21:25
Name: 171228G1_2, Date: 28-Dec-2017, Time: 12:02:54, ID: ICV171228G1-1 PFC ICV 537 17L1427, Description: PFC ICV 53717 L 1427


Method: U:IQ4.PROMMethDBIPFAS_FULL_80C_011518.mdb 15 Jan 2018 11:38:30
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFĀS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 10:22:57

\section*{Compound name: PFBA}

Correlation coefficient: \(r=0.998579, r^{\wedge} 2=0.997160\)
Calibration curve: 1.33977 * \(x+-0.0328732\)
Response type: Internal Std (Ref 31 ), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None



\section*{Compound name: PFPeA}

Correlation coefficient: \(\mathrm{r}=0.997990, \mathrm{r}^{\wedge} 2=0.995984\)
Calibration curve: \(1.15515^{*} x+-0.0327357\)
Response type: Internal Std ( Ref 32 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset:
U:IQ4.PROIresults1180115M21180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: \(\quad\) Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: PFBS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996395\)
Calibration curve: \(0.00351371^{*} x^{\wedge} 2+1.85665{ }^{*} x+0.254875\)
Response type: Internal Std (Ref 33 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & & & \\
\hline & 1 180115M2_1 & Standard & 0.250 & 2.75 & 57.475 & 1196.924 & 0.600 & 0.2 & -25.6 & NO & 0.996 & NO & MM \\
\hline 24 & 2 180115M2_2 & Standard & 0.500 & 2.75 & 97.312 & 1206.778 & 1.008 & 0.4 & -18.9 & NO & 0.996 & NO & bb \\
\hline 3 \% 5 岛 & 3 180115M2_3 & Standard & 1.000 & 2.75 & 267.604 & 1442.793 & 2.318 & 1.1 & 10.9 & NO & 0.996 & NO & bb \\
\hline \(4 \times\) & 4 180115M2_4 & Standard & 2.000 & 2.75 & 456.564 & 1290.825 & 4.421 & 2.2 & 11.7 & NO & 0.996 & NO & bb \\
\hline  & - 5 180115M2_5 & Standard & 5.000 & 2.74 & 1258.317 & 1432.762 & 10.978 & 5.7 & 14.3 & NO & 0.996 & NO & bb \\
\hline 6 - \({ }^{2}\) & 6 180115M2_6 & Standard & 10.000 & 2.75 & 2824.915 & 1624.717 & 21.734 & 11.3 & 13.3 & NO & 0.996 & NO & bb \\
\hline 7 - 7ax \({ }^{\text {che }}\) & 7 180115M2_7 & Standard & 50.000 & 2.75 & 9832.006 & 1307.205 & 94.017 & 46.4 & -7.2 & NO & 0.996 & NO & bb \\
\hline  & 8180115 M 2 _ 8 & Standard & 100.000 & 2.74 & 21516.695 & 1197.229 & 224.651 & 101.4 & 1.4 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

Compound name: PFHxA
Correlation coefficient: \(\mathrm{r}=0.996265, \mathrm{r}^{\wedge} 2=0.992544\)
Calibration curve: \(1.75438 * x+0.0169924\)
Response type: Internal Std ( Ref 34 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name：PFHpA}

Correlation coefficient： \(\mathrm{r}=0.997692, \mathrm{r}^{\wedge} 2=0.995389\)
Calibration curve： 1.49645 ＊\(x+-0.0592287\)
Response type：Internal Std（Ref 35），Area＊（IS Conc．／IS Area）
Curve type：Linear，Origin：Exclude，Weighting： \(1 / \mathrm{x}\) ，Axis trans：None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \＃Name & Type & Std．Conc & RT & Area & IS Area & Response & Conc． & \％Dev & Conc．Fla & COD & D Fl & xclu \\
\hline 1．tw & 1 180115M2＿1 & Standard & 0.250 & 3.87 & 179.873 & 7169.426 & 0.314 & 0.2 & －0．3 & NO & 0.995 & NO & bb \\
\hline \(2 \times\) & 2 180115M2＿2 & Standard & 0.500 & 3.87 & 469.863 & 8300.460 & 0.708 & 0.5 & 2.5 & NO & 0.995 & NO & bb \\
\hline 3 y 域 & 3180115 M 2 ＿3 & Standard & 1.000 & 3.87 & 1139.616 & 10064.894 & 1.415 & 1.0 & －1．5 & NO & 0.995 & NO & bb \\
\hline 4 ． & 4 180115M2＿4 & Standard & 2.000 & 3.87 & 2080.912 & 8890.794 & 2.926 & 2.0 & －0．3 & NO & 0.995 & NO & bb \\
\hline 5 ． & \(5180115 \mathrm{M} 2 \_5\) & Standard & 5.000 & 3.87 & 5066.119 & 8790.349 & 7.204 & 4.9 & －2．9 & NO & 0.995 & NO & bb \\
\hline 6 ． 4 & 6 180115M2＿6 & Standard & 10.000 & 3.87 & 12529.151 & 9715.788 & 16.120 & 10.8 & 8.1 & NO & 0.995 & NO & bb \\
\hline 7 \％ & 7 180115M2＿7 & Standard & 50.000 & 3.87 & 47028.797 & 8726.845 & 67.362 & 45.1 & －9．9 & NO & 0.995 & NO & bb \\
\hline 8 8， & 8180115 M 2.8 & Standard & 100.000 & 3.86 & 101713.539 & 8149.912 & 156.004 & 104.3 & 4.3 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name：L－PFHxS}

Coefficient of Determination： \(\mathrm{R}^{\wedge} 2=0.999726\)
Calibration curve：\(-0.0119577^{*} x^{\wedge} 2+2.1128 * x+0.0383417\)
Response type：Internal Std（ Ref 36 ），Area＊（ IS Conc．／IS Area ）
Curve type：2nd Order，Origin：Include，Weighting：1／x，Axis trans：None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline －\(x^{4}+44^{4}\) & ne & Type & Std．Conc & RT & Area & IS Area & Response & Conc． & \(\% \mathrm{Dev}\) & c． & CoD & F & exclu \\
\hline 1 为 & 1 180115M2＿1 & Standard & 0.250 & 4.01 & 38.643 & 793.087 & 0.609 & 0.3 & 8.2 & NO & 1.000 & NO & MM \\
\hline \(2{ }^{\text {2 }}\) & 2 180115M2＿2 & Standard & 0.500 & 4.02 & 85.314 & 971.136 & 1.098 & 0.5 & 0.6 & NO & 1.000 & NO & MM \\
\hline 3． 4 4 & 3 180115M2＿3 & Standard & 1.000 & 4.01 & 182.145 & 1035.130 & 2.200 & 1.0 & 2.9 & NO & 1.000 & NO & MM \\
\hline  & 4 180115M2＿4 & Standard & 2.000 & 4.01 & 349.074 & 1074.646 & 4.060 & 1.9 & －3．8 & NO & 1.000 & NO & MM \\
\hline 5 －＋4x cex & 5 180115M2＿5 & Standard & 5.000 & 4.01 & 873.617 & 1083.133 & 10.082 & 4.9 & －2．2 & NO & 1.000 & NO & MM \\
\hline 6 －\({ }^{4}\) & 6180115 M 266 & Standard & 10.000 & 4.01 & 1964.532 & 1211.424 & 20.271 & 10.2 & 1.6 & NO & 1.000 & NO & MM \\
\hline  & 7180115 M 2 ＿7 & Standard & 50.000 & 4.01 & 6470.750 & 1067.766 & 75.751 & 50.0 & －0．1 & NO & 1.000 & NO & MM \\
\hline 8 为 & 8 180115M2＿8 & Standard & 100.000 & 4.01 & 14751.116 & 1041.940 & 176.967 & & & NO & 1.000 & NO & MMXI \\
\hline
\end{tabular}

Dataset:
U:IQ4.PROIresults1180115M2|180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: 6:2 FTS}

Coefficient of Determination: R^2 \(=0.995384\)
Calibration curve: -0.00485621 * \(x^{\wedge} 2+2.92773\) * \(x+-0.123035\)
Response type: Internal Std ( Ref 36 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name - Type} & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. & CoD & D & du \\
\hline & 1 180115M2_1 & Standard & 0.250 & 4.32 & 28.815 & 793.087 & 0.454 & 0.2 & -21.1 & NO & 0.995 & NO & MM \\
\hline 2 & 2 180115M2_2 & Standard & 0.500 & 4.34 & 118.251 & 971.136 & 1.522 & 0.6 & 12.5 & NO & 0.995 & NO & bb \\
\hline 3 - & 3 180115M2_3 & Standard & 1.000 & 4.34 & 221.274 & 1035.130 & 2.672 & 1.0 & -4.4 & NO & 0.995 & NO & bb \\
\hline \(4{ }^{\text {a }}\), 4 & 4 180115M2_4 & Standard & 2.000 & 4.33 & 430.245 & 1074.646 & 5.004 & 1.8 & -12.2 & NO & 0.995 & NO & bb \\
\hline 5 . & 5 180115M2_5 & Standard & 5.000 & 4.32 & 1149.229 & 1083.133 & 13.263 & 4.6 & -7.9 & NO & 0.995 & NO & bb \\
\hline + \({ }^{1}\) & 6 180115M2_6 & Standard & 10.000 & 4.33 & 3333.318 & 1211.424 & 34.395 & 12.0 & 20.3 & NO & 0.995 & NO & bb \\
\hline \(7 \times+5\) & 7 180115M2_7 & Standard & 50.000 & 4.33 & 10895.729 & 1067.766 & 127.553 & 47.3 & -5.4 & NO & 0.995 & NO & bb \\
\hline 8 - & 8180115 M 2 _ 8 & Standard & 100.000 & 4.32 & 20578.084 & 1041.940 & 246.872 & 101.4 & 1.4 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: L-PFOA}

Correlation coefficient: \(r=0.997397, r^{\wedge} 2=0.994801\)
Calibration curve: \(1.11967 * x+0.355683\)
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Área & IS Area & Response & Conc. & \%Dev & ce. & Cob & & , \\
\hline 1 - & 1 180115M2_1 & Standard & 0.250 & 4.38 & 600.230 & 11129.10C & 0.674 & 0.3 & 13.8 & NO & 0.995 & NO & bb \\
\hline - & 2 180115M2_2 & Standard & 0.500 & 4.39 & 831.124 & 12054.782 & 0.862 & 0.5 & -9.6 & NO & 0.995 & NO & bb \\
\hline \(\cdots\) & 3 180115M2_3 & Standard & 1.000 & 4.39 & 1444.660 & 13949.129 & 1.295 & 0.8 & -16.1 & NO & 0.995 & NO & bb \\
\hline  & 4 180115M2_4 & Standard & 2.000 & 4.38 & 2614.963 & 13294.508 & 2.459 & 1.9 & -6.1 & NO & 0.995 & NO & bb \\
\hline 2 & 5 180115M2_5 & Standard & 5.000 & 4.38 & 6889.996 & 12417.951 & 6.936 & 5.9 & 17.5 & NO & 0.995 & NO & bb \\
\hline 6 为 & 6 180115M2_6 & Standard & 10.000 & 4.39 & 14997.181 & 15251.905 & 12.291 & 10.7 & 6.6 & NO & 0.995 & NO & bb \\
\hline  & 7 180115M2_7 & Standard & 50.000 & 4.38 & 52255.660 & 12829.036 & 50.915 & 45.2 & -9.7 & NO & 0.995 & NO & bb \\
\hline 84.4 & 8 180115M2_8 & Standard & 100.000 & 4.38 & 105739.719 & 11359.297 & 116.358 & 103.6 & 3.6 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

\section*{Dataset:}

U:IQ4.PROIresults\180115M2|180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: PFHpS}

Coefficient of Determination: \(R^{\wedge} 2=0.998980\)
Calibration curve: \(-0.001411388^{*} x^{\wedge} 2+0.29869 * x+-0.030036\)
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Fla & COD & D & exclu \\
\hline 1 & 1 180115M2_1 & Standard & 0.250 & 4.49 & 37.480 & 11129.10C & 0.042 & 0.2 & -3.3 & NO & 0.999 & NO & MM \\
\hline 2 & 2 180115M2_2 & Standard & 0.500 & 4.49 & 130.063 & 12054.782 & 0.135 & 0.6 & 10.7 & NO & 0.999 & NO & bb \\
\hline \(3 \quad 2\) & 3 180115M2_3 & Standard & 1.000 & 4.49 & 279.276 & 13949.129 & 0.250 & 0.9 & -5.7 & NO & 0.999 & NO & bb \\
\hline T- & 4180115 M 2 _ 4 & Standard & 2.000 & 4.49 & 558.214 & 13294.508 & 0.525 & 1.9 & -6.3 & NO & 0.999 & NO & bb \\
\hline \(5 \times \mathrm{tax}\) & 5180115 M 2 _5 & Standard & 5.000 & 4.48 & 1514.899 & 12417.951 & 1.525 & 5.3 & 6.8 & NO & 0.999 & NO & bb \\
\hline \(6^{4}+\sqrt{4}\) & 6180115 M 2 _6 & Standard & 10.000 & 4.49 & 3361.794 & 15251.905 & 2.755 & 9.8 & -2.2 & NO & 0.999 & NO & bb \\
\hline  & 7 180115M2_7 & Standard & 50.000 & 4.49 & 11679.672 & 12829.036 & 11.380 & 50.0 & 0.1 & NO & 0.999 & NO & bb \\
\hline 8 - & \(8180115 \mathrm{M} 2 \_8\) & Standard & 100.000 & 4.48 & 25926.199 & 11359.297 & 28.530 & & & NO & 0.999 & NO & bbXI \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Coefficient of Determination: \(R^{\wedge} 2=0.998251\)
Calibration curve: \(0.00123227^{*} x^{\wedge} 2+1.35269\) * \(x+-0.0256811\)
Response type: Internal Std (Ref 39 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & & & F & \\
\hline 1 , & 1 180115M2_1 & Standard & 0.250 & 4.82 & 259.860 & 8611.178 & 0.377 & 0.3 & 19.1 & NO & 0.998 & NO & bb \\
\hline & 2 180115M2_2 & Standard & 0.500 & 4.82 & 449.605 & 10629.969 & 0.529 & 0.4 & -18.1 & NO & 0.998 & NO & bb \\
\hline 3. \({ }^{\text {a }}\) ( \({ }^{\text {a }}\) & 3 180115M2_3 & Standard & 1.000 & 4.82 & 1316.261 & 11370.316 & 1.447 & 1.1 & 8.8 & NO & 0.998 & NO & bb \\
\hline  & 4 180115M2_4 & Standard & 2.000 & 4.81 & 2082.001 & 11056.825 & 2.354 & 1.8 & -12.2 & NO & 0.998 & NO & bb \\
\hline 54 - & 5 180115M2_5 & Standard & 5.000 & 4.81 & 6798.414 & 13849.589 & 6.136 & 4.5 & -9.3 & NO & 0.998 & NO & bb \\
\hline \% & 6 180115M2_6 & Standard & 10.000 & 4.81 & 15373.284 & 12422.833 & 15.469 & 11.3 & 13.4 & NO & 0.998 & NO & bb \\
\hline \(7{ }^{3}\) & 7 180115M2_7 & Standard & 50.000 & 4.81 & 56579.699 & 10235.261 & 69.099 & 48.9 & -2.2 & NO & 0.998 & NO & bb \\
\hline 8 - & 8180115 M 2 _8 & Standard & 100.000 & 4.81 & 119351.391 & 10065.815 & 148.214 & 100.4 & 0.4 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PROTresults\180115M21180115M2-CRV.qld
\(\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, January 16, } 2018 \text { 10:22:57 Pacific Standard Time } \\ \text { Printed: } & \text { Tuesday, January 16, } 2018 \text { 10:29:14 Pacific Standard Time }\end{array}\)

\section*{Compound name: PFOSA}

Correlation coefficient: \(r=0.999519, r^{\wedge} 2=0.999039\)
Calibration curve: 1.2051 * \(x+-0.0242098\)
Response type: Internal Std (Ref 40 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & & & d \\
\hline 14 & 1 180115M2_1 & Standard & 0.250 & 4.87 & 37.636 & 2018.146 & 0.233 & 0.2 & -14.6 & NO & 0.999 & NO & MM \\
\hline 2 + & 2 180115M2_2 & Standard & 0.500 & 4.88 & 105.176 & 2450.537 & 0.536 & 0.5 & -6.9 & NO & 0.999 & NO & bb \\
\hline \(3 \times\) & 3 180115M2_3 & Standard & 1.000 & 4.88 & 323.306 & 3263.926 & 1.238 & 1.0 & 4.8 & NO & 0.999 & NO & bb \\
\hline \(4{ }^{2}\) & 4 180115M2_4 & Standard & 2.000 & 4.88 & 552.892 & 2580.329 & 2.678 & 2.2 & 12.1 & NO & 0.999 & NO & bb \\
\hline 5 - 7 & 5180115 M 2 _5 & Standard & 5.000 & 4.87 & 1393.146 & 2747.783 & 6.338 & 5.3 & 5.6 & NO & 0.999 & NO & bb \\
\hline 6. \({ }^{4}\) - - - & 6 180115M2_6 & Standard & 10.000 & 4.88 & 3058.177 & 3176.006 & 12.036 & 10.0 & 0.1 & NO & 0.999 & NO & bb \\
\hline 7 7- \({ }^{\text {che }}\) & 7180115 M 2 _7 & Standard & 50.000 & 4.88 & 11742.631 & 2461.930 & 59.621 & 49.5 & -1.0 & NO & 0.999 & NO & bb \\
\hline  & 8180115 M 2 _ 8 & Standard & 100.000 & 4.87 & 25960.203 & 1976.078 & 164.215 & 136.3 & 36.3 & NO & 0.999 & NO & bbx \\
\hline
\end{tabular}

\section*{Compound name: L-PFOS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997719\)
Calibration curve: \(0.000945797{ }^{*} x^{\wedge} 2+1.10838 * x+-0.0443788\)
Response type: Internal Std (Ref 41 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%De & & Cod & & luded \\
\hline 145 & 1 180115M2_1 & Standard & 0.250 & 4.89 & 39.696 & 2273.944 & 0.218 & 0.2 & -5.3 & NO & 0.998 & NO & MM \\
\hline 2 , 5t-4 & 2 180115M2_2 & Standard & 0.500 & 4.90 & 100.584 & 2945.228 & 0.427 & 0.4 & -15.0 & NO & 0.998 & NO & MM \\
\hline  & 3 180115M2_3 & Standard & 1.000 & 4.89 & 310.652 & 3464.374 & 1.121 & 1.1 & 5.0 & NO & 0.998 & NO & MM \\
\hline  & 4 180115M2_4 & Standard & 2.000 & 4.89 & 535.144 & 3222.043 & 2.076 & 1.9 & -4.5 & NO & 0.998 & NO & MM \\
\hline 5. \({ }^{\text {a }}\) - & 5 180115M2_5 & Standard & 5.000 & 4.89 & 1476.891 & 2939.392 & 6.281 & 5.7 & 13.6 & NO & 0.998 & NO & MM \\
\hline 6. \({ }^{\text {a }}\) & 6 180115M2_6 & Standard & 10.000 & 4.89 & 3408.097 & 3461.071 & 12.309 & 11.0 & 10.4 & NO & 0.998 & NO & MM \\
\hline 74.8 & 7180115 M 2 _7 & Standard & 50.000 & 4.89 & 12781.024 & 2933.493 & 54.462 & 47.3 & -5.5 & NO & 0.998 & NO & MM \\
\hline 8 - \({ }^{3}\) & 8180115 M 2 8 8 & Standard & 100.000 & 4.89 & 23913.445 & 2455.447 & 121.737 & 101.1 & 1.1 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\180115M2\180115M2-CRV.qld \\
Last Altered: & Tuesday, January 16, 2018 10:22:57 Pacific Standard Time \\
Printed: & Tuesday, January 16, 2018 10:29:14 Pacific Standard Time
\end{tabular}

\section*{Compound name: PFDA}

Coefficient of Determination: R^2 \(=0.996672\)
Calibration curve: 0.0014094 * \(x^{\wedge} 2+1.42444\) * \(x+0.0195565\)
Response type: Internal Std ( Ref 42 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & CoD & D & \\
\hline , & 1 180115M2_1 & Standard & 0.250 & 5.19 & 236.809 & 9117.220 & 0.325 & 0.2 & -14.3 & NO & 0.997 & NO & bb \\
\hline & 2 180115M2_2 & Standard & 0.500 & 5.19 & 522.395 & 9259.429 & 0.705 & 0.5 & -3.8 & NO & 0.997 & NO & bb \\
\hline 3 - 4 & 3 180115M2_3 & Standard & 1.000 & 5.19 & 1297.286 & 10469.260 & 1.549 & 1.1 & 7.3 & NO & 0.997 & NO & bb \\
\hline - & 4 180115M2_4 & Standard & 2.000 & 5.18 & 2358.456 & 11543.967 & 2.554 & 1.8 & -11.2 & NO & 0.997 & NO & bb \\
\hline 5 - , a & 5 180115M2_5 & Standard & 5.000 & 5.18 & 6493.696 & 10095.664 & 8.040 & 5.6 & 12:0 & NO & 0.997 & NO & bb \\
\hline  & 6 180115M2_6 & Standard & 10.000 & 5.19 & 13712.378 & 10322.235 & 16.605 & 11.5 & 15.1 & NO & 0.997 & NO & bb \\
\hline & 7 180115M2_7 & Standard & 50.000 & 5.19 & 49480.613 & 8868.471 & 69.742 & 46.8 & -6.4 & NO & 0.997 & NO & bb \\
\hline 8 , & 8 180115M2_8 & Standard & 100.000 & 5.18 & 124944.242 & 9834.333 & 158.811 & 101.3 & 1.3 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 8:2 FTS}

Coefficient of Determination: \(\mathbf{R}^{\wedge} 2=0.990883\)
Calibration curve: \(-0.00290289^{*} x^{\wedge} 2+0.283311\) * \(x+-0.0505687\)
Response type: Internal Std (Ref 42 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset:
U:IQ4.PROIresults\180115M2|180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed:
Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: N-MeFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999579\)
Calibration curve: -0.00488709 * \({ }^{\wedge} 2+1.70404\) * x + -0.0213461
Response type: Internal Std (Ref 44 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type \({ }_{\text {T }}\) & Std. Conc & RT & Area & IS Area & Response & Conc. & & & CoD & & d \\
\hline & 1 180115M2_1 & Standard & 0.250 & 5.34 & 110.162 & 3668.057 & 0.375 & 0.2 & -6.8 & NO & 1.000 & NO & bb \\
\hline \(2 \times+{ }^{2}\) & 2 180115M2_2 & Standard & 0.500 & 5.34 & 278.179 & 4068.198 & 0.855 & 0.5 & 3.0 & NO & 1.000 & NO & bb \\
\hline 3 l & 3 180115M2_3 & Standard & 1.000 & 5.34 & 608.335 & 4941.718 & 1.539 & 0.9 & -8.2 & NO & 1.000 & NO & bb \\
\hline 4 - 4 ata & 4 180115M2_4 & Standard & 2.000 & 5.33 & 1231.249 & 4259.577 & 3.613 & 2.1 & 7.3 & NO & 1.000 & NO & bb \\
\hline \(5 \times 4\) & 5180115 M 2 _5 & Standard & 5.000 & 5.33 & 3181.715 & 4700.651 & 8.461 & 5.1 & 1.0 & NO & 1.000 & NO & bb \\
\hline 6 \% & 6180115 M 2 _6 & Standard & 10.000 & 5.34 & 6179.386 & 4734.263 & 16.316 & 9.9 & -1.3 & NO & 1.000 & NO & bb \\
\hline 7 C & 7 180115M2_7 & Standard & 50.000 & 5.33 & 28100.633 & 4812.376 & 72.991 & 50.0 & 0.0 & NO & 1.000 & NO & bb \\
\hline 8 - & 8180115 M 2 _ 8 & Standard & 100.000 & 5.33 & 46974.879 & 4204.535 & 139.655 & 131.7 & 31.7 & NO & 1.000 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: N-EtFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999053\)
Calibration curve: \(-0.0014328^{*} x^{\wedge} 2+1.31318\) * \(x+-0.0721789\)
Response type: Internal Std (Ref 45 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline -5, & 1 180115M2_1 & Standard & 0.250 & 5.49 & 100.263 & 4291.856 & 0.292 & 0.3 & 11.0 & NO & 0.999 & NO & bb \\
\hline \% \({ }^{\text {y }}\) & 2 180115M2_2 & Standard & 0.500 & 5.49 & 161.902 & 4807.261 & 0.421 & 0.4 & -24.9 & NO & 0.999 & NO & bb \\
\hline \(3 *+{ }^{2}+\) & 3 180115M2_3 & Standard & 1.000 & 5.49 & 569.706 & 5925.357 & 1.202 & 1.0 & -2.9 & NO & 0.999 & NO & bb \\
\hline 4 4. \({ }^{4}\) & 4 180115M2_4 & Standard & 2.000 & 5.49 & 867.935 & 4489.890 & 2.416 & 1.9 & -5.1 & NO & 0.999 & No & bb \\
\hline 5 , 4t \({ }^{\text {a }}\) & 5 180115M2_5 & Standard & 5.000 & 5.49 & 2512.091 & 5242.137 & 5.990 & 4.6 & -7.2 & NO & 0.999 & NO & bb \\
\hline  & 6 180115M2_6 & Standard & 10.000 & 5.49 & 6584.632 & 5935.848 & 13.866 & 10.7 & 7.4 & NO & 0.999 & NO & bb \\
\hline - x \({ }^{\text {dex }}\) & 7 180115M2_7 & Standard & 50.000 & 5.49 & 21965.389 & 4444.999 & 61.770 & 49.8 & -0.4 & NO & 0.999 & NO & bb \\
\hline 8thets. & 8 180115M2_8 & Standard & 100.000 & 5.48 & 40613.773 & 4340.295 & 116.967 & 100.0 & 0.0 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Dataset}

U:IQ4.PRO|results|180115M2I180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: PFUdA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996917\)
Calibration curve: \(-0.00723799^{*} x^{\wedge} 2+1.36957^{*} x+-0.252476\)
Response type: Internal Std (Ref 46 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & c. & & & \\
\hline 15 & 1 180115M2_1 & Standard & 0.250 & 5.51 & 291.033 & 10659.157 & 0.341 & 0.4 & 73.8 & NO & 0.997 & NO & bbX \\
\hline & 2 180115M2_2 & Standard & 0.500 & 5.51 & 541.356 & 12827.074 & 0.528 & 0.6 & 14.3 & NO & 0.997 & NO & bb \\
\hline & 3 180115M2_3 & Standard & 1.000 & 5.51 & 1323.581 & 14368.888 & 1.151 & 1.0 & 3.1 & NO & 0.997 & NO & bb \\
\hline & 4 180115M2_4 & Standard & 2.000 & 5.50 & 1949.719 & 12801.493 & 1.904 & 1.6 & -20.6 & NO & 0.997 & NO & bb \\
\hline & 5 180115M2_5 & Standard & 5.000 & 5.50 & 5686.633 & 11208.095 & 6.342 & 4.9 & -1.1 & NO & 0.997 & NO & bb \\
\hline 4 & 6180115 M 2 _6 & Standard & 10.000 & 5.51 & 14467.421 & 13602.793 & 13.295 & 10.5 & 4.7 & NO & 0.997 & NO & bb \\
\hline \[
x=
\] & 7180115 M 2 _7 & Standard & 50.000 & 5.50 & 48741.223 & 12174.631 & 50.044 & 49.9 & -0.3 & NO & 0.997 & NO & bb \\
\hline 8 - & 8180115 M 2 _8 & Standard & 100.000 & 5.50 & 109631.352 & 10688.771 & 128.209 & & & NO & 0.997 & NO & bbXI \\
\hline
\end{tabular}

\section*{Compound name: PFDS}

Coefficient of Determination: \(R^{\wedge} 2=0.995370\)
Calibration curve: -0.00111201 * \(x^{\wedge} 2+0.354642\) * \(x+-0.0526574\)
Response type: Internal Std (Ref 46 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & CoD & & , \\
\hline 1 -ty 1 180115M2_1 & Standard & 0.250 & 5.55 & 49.403 & 10659.157 & 0.058 & 0.3 & 24.9 & NO & 0.995 & NO & MM \\
\hline 2 2x.x. 2 180115M2_2 & Standard & 0.500 & 5.56 & 81.719 & 12827.074 & 0.080 & 0.4 & -25.3 & NO & 0.995 & NO & MM \\
\hline 3 - 3 180115M2_3 & Standard & 1.000 & 5.55 & 298.787 & 14368.888 & 0.260 & 0.9 & -11.6 & NO & 0.995 & NO & bb \\
\hline  & Standard & 2.000 & 5.55 & 698.640 & 12801.493 & 0.682 & 2.1 & 4.3 & NO & 0.995 & NO & bb \\
\hline 5.45 180115M2_5 & Standard & 5.000 & 5.55 & 1750.839 & 11208.095 & 1.953 & 5.8 & 15.2 & NO & 0.995 & NO & bb \\
\hline 6.4. 4 6 180115M2_6 & Standard & 10.000 & 5.55 & 3408.681 & 13602.793 & 3.132 & 9.2 & -7.5 & NO & 0.995 & NO & bb \\
\hline  & Standard & 50.000 & 5.55 & 14534.954 & 12174.631 & 14.923 & 50.1 & 0.2 & NO & 0.995 & NO & bb \\
\hline 8 8-8180115M2_8 & Standard & 100.000 & 5.55 & 29850.322 & 10688.771 & 34.909 & & & NO & 0.995 & NO & bbXI \\
\hline
\end{tabular}

Dataset:
U:IQ4.PRO|results\180115M2\180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: PFDoA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996448\)
Calibration curve: \(0.00269229^{*} x^{\wedge} 2+1.39884\) * \(x+0.292328\)
Response type: Internal Std (Ref 47 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & COD & D F & xclua \\
\hline & 1 180115M2_1 & Standard & 0.250 & 5.79 & 300.361 & 6851.029 & 0.548 & 0.2 & -26.9 & NO & 0.996 & NO & bd \\
\hline & 2 180115M2_2 & Standard & 0.500 & 5.79 & 604.702 & 8538.500 & 0.885 & 0.4 & -15.3 & NO & 0.996 & NO & bd \\
\hline W* & 3180115 M 2 _3 & Standard & 1.000 & 5.79 & 1422.547 & 10789.430 & 1.648 & 1.0 & -3.3 & NO & 0.996 & NO & bd \\
\hline \(4- \pm\) & 4 180115M2_4 & Standard & 2.000 & 5.78 & 2700.776 & 9022.085 & 3.742 & 2.5 & 22.7 & NO & 0.996 & NO & bd \\
\hline & \(5180115 \mathrm{M} 2 \ldots 5\) & Standard & 5.000 & 5.78 & 7561.792 & 10734.802 & 8.805 & 6.0 & 20.3 & NO & 0.996 & NO & bd \\
\hline 6 , \%ex & \(6180115 \mathrm{M} 2 \ldots 6\) & Standard & 10.000 & 5.78 & 15299.965 & 12215.312 & 15.657 & 10.8 & 7.6 & NO & 0.996 & NO & bd \\
\hline 7 & 7 180115M2_7 & Standard & 50.000 & 5.78 & 57159.984 & 9999.913 & 71.451 & 46.7 & -6.6 & NO & 0.996 & NO & bb \\
\hline 8 - & 8180115 M 2 _ 8 & Standard & 100.000 & 5.78 & 110208.867 & 8119.767 & 169.661 & 101.3 & 1.3 & NO & 0.996 & NO & bd \\
\hline
\end{tabular}

\section*{Compound name: N-MeFOSA}

Correlation coefficient: \(\mathrm{r}=0.999161, \mathrm{r}^{\wedge} 2=0.998323\)
Calibration curve: 1.1181 * \(x+-0.100317\)
Response type: Internal Std (Ref 48), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|lllllllllllll}
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO|results 1 180115M21180115M2-CRV.qld \\
Last Altered: & Tuesday, January 16, 2018 10:22:57 Pacific Standard Time \\
Printed: & Tuesday, January 16, 2018 10:29:14 Pacific Standard Time
\end{tabular}

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997156\)
Calibration curve: -0.000208194 * \(x^{\wedge} 2+2.13661\) * \(x+0.0644742\)
Response type: Internal Std (Ref 47 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \multicolumn{5}{|l|}{\%Dev Cono. Flag CoD CoD Flag x=excluded} \\
\hline & 1 180115M2_1 & Standard & 0.250 & 6.03 & 345.115 & 6851.029 & 0.630 & 0.3 & 5.8 & NO & 0.997 & NO & bb \\
\hline 2 m & 2 180115M2_2 & Standard & 0.500 & 6.03 & 831.761 & 8538.500 & 1.218 & 0.5 & 8.0 & NO & 0.997 & NO & bb \\
\hline 3 & 3 180115M2_3 & Standard & 1.000 & 6.03 & 1617.529 & 10789.430 & 1.874 & 0.8 & -15.3 & NO & 0.997 & NO & bb \\
\hline 4. & 4 180115M2_4 & Standard & 2.000 & 6.03 & 3191.131 & 9022.085 & 4.421 & 2.0 & 2.0 & NO & 0.997 & NO & bb \\
\hline 5 - & 5 180115M2_5 & Standard & 5.000 & 6.03 & 7888.307 & 10734.802 & 9.185 & 4.3 & -14.6 & NO & 0.997 & NO & bb \\
\hline 6 - & 6 180115M2_6 & Standard & 10.000 & 6.03 & 24356.207 & 12215.312 & 24.924 & 11.6 & 16.5 & NO & 0.997 & NO & bb \\
\hline 7 - \({ }^{\text {ckin }}\) & 7 180115M2_7 & Standard & 50.000 & 6.03 & 82605.594 & 9999.913 & 103.258 & 48.5 & -2.9 & NO & 0.997 & NO & bb \\
\hline  & 8180115 M 2 _ 8 & Standard & 100.000 & 6.03 & 138314.813 & 8119.767 & 212.929 & 100.6 & 0.6 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFTeDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.990929\)
Calibration curve: -0.0220572 * \(x^{\wedge} 2+3.53283^{*} x+-0.322211\)
Response type: Internal Std (Ref 49 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 1S Área & Response & & \%Dev & nc. & COD & CoD Fl & excluded \\
\hline 1 为 & 1 180115M2_1 & Standard & 0.250 & 6.24 & 230.708 & 3811.400 & 0.757 & 0.3 & 22.4 & NO & 0.991 & NO & MM \\
\hline \(2+4\) & 2 180115M2_2 & Standard & 0.500 & 6.24 & 526.336 & 4625.902 & 1.422 & 0.5 & -0.9 & NO & 0.991 & NO & MM \\
\hline \(3 \sim 4.4\) & 3 180115M2_3 & Standard & 1.000 & 6.24 & 1174.005 & 5784.110 & 2.537 & 0.8 & -18.7 & NO & 0.991 & NO & MM \\
\hline  & 4 180115M2_4 & Standard & 2.000 & 6.23 & 2327.498 & 4166.997 & 6.982 & 2.1 & 4.7 & NO & 0.991 & NO & bb \\
\hline  & 5 180115M2_5 & Standard & 5.000 & 6.23 & 5510.744 & 5054.189 & 13.629 & 4.1 & -19.0 & NO & 0.991 & NO & MM \\
\hline  & 6 180115M2_6 & Standard & 10.000 & 6.24 & 15163.117 & 5187.430 & 36.538 & 11.2 & 12.2 & NO & 0.991 & NO & MM \\
\hline \(7 \times\) & 7 180115M2_7 & Standard & 50.000 & 6.23 & 46221.027 & 4785.019 & 120.744 & 49.7 & -0.6 & NO & 0.991 & NO & bb \\
\hline 8 - & 8180115 M 2 _8 & Standard & 100.000 & 6.23 & 113973.711 & 5518.160 & 258.179 & & & NO & 0.991 & NO & bbXI \\
\hline
\end{tabular}

Dataset:
U:IQ4.PROIresultsI180115M2I180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

Compound name: N-EtFOSA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998672\)
Calibration curve: \(7.78779 \mathrm{e}-006\) * \(x^{\wedge} 2+1.00573\) * \(x+-0.161262\)
Response type: Internal Std (Ref 50 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & & & COD & D F & clu \\
\hline 1 & 1 180115M2_1 & Standard & 1.250 & 6.21 & 150.663 & 23192.393 & 0.974 & 1.1 & -9.7 & NO & 0.999 & NO & bb \\
\hline 2 & 2 180115M2_2 & Standard & 2.500 & 6.20 & 406.969 & 25547.748 & 2.389 & 2.5 & 1.4 & NO & 0.999 & NO & bb \\
\hline 3. & 3 180115M2_3 & Standard & 5.000 & 6.20 & 1002.338 & 31434.623 & 4.783 & 4.9 & -1.7 & NO & 0.999 & NO & bb \\
\hline 4 , & 4 180115M2_4 & Standard & 10.000 & 6.20 & 1755.511 & 27705.471 & 9.505 & 9.6 & -3.9 & NO & 0.999 & NO & bb \\
\hline 5 . & 5 180115M2_5 & Standard & 25.000 & 6.20 & 5156.592 & 28494.203 & 27.145 & 27.1 & 8.6 & NO & 0.999 & NO & bb \\
\hline 6 6 \({ }^{2}\) & 6 180115M2_6 & Standard & 50.000 & 6.21 & 11703.195 & 32255.756 & 54.424 & 54.3 & 8.5 & NO & 0.999 & NO & bb \\
\hline 7. & 7 180115M2_7 & Standard & 250.000 & 6.21 & 40516.031 & 25211.236 & 241.059 & 239.4 & -4.2 & NO & 0.999 & NO & bb \\
\hline 8 & 8180115 M 2 & Standard & 500.000 & 6.20 & 83391.828 & 24552.484 & 509.471 & 504.8 & 1.0 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxDA}

Coefficient of Determination: \(R^{\wedge} 2=0.994875\)
Calibration curve: \(-0.000963947{ }^{*} x^{\wedge} 2+0.816406 * x+0.115618\)
Response type: Internal Std ( Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\(\qquad\)
\(\qquad\)

Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: PFODA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998411\)
Calibration curve: \(-0.00110371^{*} x^{\wedge} 2+0.927917^{*} x+0.0174073\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & D Fla & x=excluded \\
\hline 1 & 1 180115M2_1 & Standard & 0.250 & 6.77 & 115.014 & 2113.428 & 0.272 & 0.3 & 9.8 & NO & 0.998 & NO & bb \\
\hline & 2 180115M2_2 & Standard & 0.500 & 6.77 & 242.942 & 2775.093 & 0.438 & 0.5 & -9.4 & NO & 0.998 & NO & MM \\
\hline & 3 180115M2_3 & Standard & 1.000 & 6.77 & 550.045 & 3282.116 & 0.838 & 0.9 & -11.5 & NO & 0.998 & NO & bb \\
\hline & 4 180115M2_4 & Standard & 2.000 & 6.76 & 1100.954 & 2733.865 & 2.014 & 2.2 & 7.8 & NO & 0.998 & NO & bb \\
\hline \(5 \sim\) - & 5180115 M 2 _5 & Standard & 5.000 & 6.76 & 2821.314 & 2890.199 & 4.881 & 5.3 & 5.5 & NO & 0.998 & NO & bb \\
\hline 6 -t & 6180115 M 266 & Standard & 10.000 & 6.76 & 6417.821 & 3217.573 & 9.973 & 10.9 & 8.7 & NO & 0.998 & NO & bb \\
\hline 5 & 7180115 M 2 _7 & Standard & 50.000 & 6.76 & 27476.373 & 3292.356 & 41.728 & 47.7 & -4.7 & NO & 0.998 & NO & bb \\
\hline \(8{ }^{-104}\) & 8180115 M 2 _ 8 & Standard & 100.000 & 6.76 & 50531.801 & 3057.260 & 82.642 & 101.2 & 1.2 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: N-MeFOSE}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.995669\)
Calibration curve: -0.000576302 * \(x^{\wedge} 2+1.20032\) * \(x+-0.665296\)
Response type: Internal Std ( Ref 52 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 5 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & & & cd \\
\hline 1 \% & 1 180115M2_1 & Standard & 1.250 & 6.30 & 174.170 & 20888.145 & 1.251 & 1.6 & 27.8 & NO & 0.996 & NO & bb \\
\hline 2. & 2 180115M2_2 & Standard & 2.500 & 6.30 & 360.986 & 26082.570 & 2.076 & 2.3 & -8.5 & NO & 0.996 & NO & bb \\
\hline 3 & 3 180115M2_3 & Standard & 5.000 & 6.31 & 977.036 & 31250.859 & 4.690 & 4.5 & -10.6 & NO & 0.996 & NO & bb \\
\hline & 4 180115M2_4 & Standard & 10.000 & 6.30 & 2180.307 & 29842.697 & 10.959 & 9.7 & -2.7 & NO & 0.996 & NO & bb \\
\hline 5. & 5 180115M2_5 & Standard & 25.000 & 6.30 & 6234.112 & 30325.629 & 30.836 & 26.6 & 6.3 & NO & 0.996 & NO & bd \\
\hline 6 永 & \(6180115 \mathrm{M} 2 \_6\) & Standard & 50.000 & 6.30 & 11465.369 & 35709.676 & 48.161 & 41.5 & -17.0 & NO & 0.996 & NO & bd \\
\hline \% 4 & 7 180115M2_7 & Standard & 250.000 & 6.31 & 46049.070 & 24759.139 & 278.982 & 267.3 & 6.9 & NO & 0.996 & NO & bb \\
\hline 8 - \({ }^{\text {a }}\) & 8 180115M2_8 & Standard & 500.000 & 6.30 & 86639.500 & 28975.107 & 448.520 & 489.1 & -2.2 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:
U:IQ4.PROIresults1180115M2\180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: \(\quad\) Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: N-EtFOSE}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999660\)
Calibration curve: \(0.00097229^{*} x^{\wedge} 2+1.15972\) * \(x+0.350902\)
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & Co. & & xcluded \\
\hline \(1{ }^{2}\) & 1 180115M2_1 & Standard & 1.250 & 6.45 & 222.976 & 22450.639 & 1.490 & 1.0 & -21.5 & NO & 1.000 & NO & bb \\
\hline 22 & 2 180115M2_2 & Standard & 2.500 & 6.46 & 541.090 & 21303.693 & 3.810 & 3.0 & 19.0 & NO & 1.000 & NO & bb \\
\hline \(3{ }^{4}+4\) & 3 180115M2_3 & Standard & 5.000 & 6.45 & 1251.249 & 31097.133 & 6.036 & 4.9 & -2.4 & NO & 1.000 & NO & bb \\
\hline & 4 180115M2_4 & Standard & 10.000 & 6.45 & 2353.475 & 27869.063 & 12.667 & 10.5 & 5.3 & NO & 1.000 & NO & bb \\
\hline & 5 180115M2_5 & Standard & 25.000 & 6.45 & 5290.171 & 27858.053 & 28.485 & 23.8 & -4.9 & NO & 1.000 & NO & bb \\
\hline \[
1^{6}
\] & 6 180115M2_6 & Standard & 50.000 & 6.46 & 12232.546 & 28613.766 & 64.126 & 52.7 & 5.3 & NO & 1.000 & NO & bd \\
\hline 7 max & 7 180115M2_7 & Standard & 250.000 & 6.46 & 51195.125 & 22170.844 & 346.368 & 247.2 & -1.1 & NO & 1.000 & NO & bb \\
\hline 8 \% & 8180115 M 2 _8 & Standard & 500.000 & 6.45 & 111534.742 & 20270.486 & 825.348 & 501.0 & 0.2 & NO & 1.000 & NO & bd \\
\hline
\end{tabular}

Compound name: 13C3-PFBA
Response Factor: 0.779165
RRF SD: 0.0334129 , Relative SD: 4.2883
Response type: Internal Std (Ref 54 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2- + \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. F & & xcluded \\
\hline \(12 \times 1\) - 180115 M 2 _ 1 & Standard & 12.500 & 1.53 & 8006.990 & 10061.779 & 9.947 & 12.8 & 2.1 & NO & NO & bb \\
\hline 2-4 2 180115M2_2 & Standard & 12.500 & 1.52 & 8945.453 & 11662.093 & 9.588 & 12.3 & -1.6 & NO & NO & bb \\
\hline 3 - 3 180115M2_3 & Standard & 12.500 & 1.52 & 11178.312 & 14677.296 & 9.520 & 12.2 & -2.3 & NO & NO & bb \\
\hline 4 4 , 4 180115M2_4 & Standard & 12.500 & 1.52 & 9860.501 & 12356.659 & 9.975 & 12.8 & 2.4 & NO & NO & bb \\
\hline  & Standard & 12.500 & 1.52 & 10104.886 & 13477.931 & 9.372 & 12.0 & -3.8 & NO & NO & bb \\
\hline  & Standard & 12.500 & 1.52 & 10919.465 & 14699.104 & 9.286 & 11.9 & -4.7 & NO & NO & bb \\
\hline \(7{ }^{\text {\% }}\), \% 7 180115M2_7 & Standard & 12.500 & 1.52 & 9706.659 & 11470.707 & 10.578 & 13.6 & 8.6 & NO & NO & bb \\
\hline  & Standard & 12.500 & 1.52 & 9008.640 & 11668.103 & 9.651 & 12.4 & -0.9 & NO & NO & bb \\
\hline
\end{tabular}

Last Altered:
Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: 13C3-PFPeA}

Response Factor: 0.796717
RRF SD: 0.0707195, Relative SD: 8.87636
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C3-PFBS}

Response Factor: 0.0950157
RRF SD: 0.00787595 , Relative SD: 8.2891
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area )
Curve type: RF


Dataset:
U:IQ4.PRO|results|180115M2|180115M2-CRV.qld
Last Altered:
Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

Compound name: 13C2-PFHxA
Response Factor: 0.636292
RRF SD: 0.0537257, Relative SD: 8.44356
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline (20 \({ }^{2}\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. F & + & xcluded \\
\hline +4x & 1 180115M2_1 & Standard & 5.000 & 3.25 & 2798.348 & 12455.272 & 2.808 & 4.4 & -11.7 & NO & NO & bb \\
\hline 2 L & 2 180115M2_2 & Standard & 5.000 & 3.25 & 3301.620 & 12561.499 & 3.285 & 5.2 & 3.3 & NO & NO & bb \\
\hline \(3 \times 2\) & 3 180115M2_3 & Standard & 5.000 & 3.25 & 4246.745 & 16767.305 & 3.166 & 5.0 & -0.5 & NO & NO & bb \\
\hline Hts \({ }^{\text {chem }}\) & 4 180115M2_4 & Standard & 5.000 & 3.25 & 3760.921 & 14101.621 & 3.334 & 5.2 & 4.8 & NO & NO & bb \\
\hline 5 , 40 & 5 180115M2_5 & Standard & 5.000 & 3.25 & 3739.436 & 15840.523 & 2.951 & 4.6 & -7.2 & NO & NO & bb \\
\hline 60 Wex & 6 180115M2_6 & Standard & 5.000 & 3.25 & 4073.186 & 16157.200 & 3.151 & 5.0 & -1.0 & NO & NO & bb \\
\hline  & 7 180115M2_7 & Standard & 5.000 & 3.25 & 3489.034 & 11804.778 & 3.695 & 5.8 & 16.1 & NO & NO & bb \\
\hline 8 \% \({ }^{\text {a }}\) & 8 180115M2_8 & Standard & 5.000 & 3.24 & 3308.405 & 13507.876 & 3.062 & 4.8 & -3.8 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFHpA}

Response Factor: 0.620752
RRF SD: 0.0575853 , Relative SD: 9.2767
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & 4 Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & . & & \\
\hline 业帾 & 1 180115M2_1 & Standard & 12.500 & 3.87 & 7169.426 & 12455.272 & 7.195 & 11.6 & -7.3 & NO & NO & bb \\
\hline - & 2 180115M2_2 & Standard & 12.500 & 3.87 & 8300.460 & 12561.499 & 8.260 & 13.3 & 6.4 & NO & NO & bb \\
\hline 3 3) & 3 180115M2_3 & Standard & 12.500 & 3.87 & 10064.894 & 16767.305 & 7.503 & 12.1 & -3.3 & NO & NO & bb \\
\hline 4 \% U & 4 180115M2_4 & Standard & 12.500 & 3.87 & 8890.794 & 14101.621 & 7.881 & 12.7 & 1.6 & NO & NO & bb \\
\hline  & \(5180115 \mathrm{M} 2 \_5\) & Standard & 12.500 & 3.87 & 8790.349 & 15840.523 & 6.937 & 11.2 & -10.6 & NO & NO & bb \\
\hline 6 4 \({ }^{\text {a }}\) & 6 180115M2_6 & Standard & 12.500 & 3.87 & 9715.788 & 16157.200 & 7.517 & 12.1 & -3.1 & NO & NO & bb \\
\hline  & 7 180115M2_7 & Standard & 12.500 & 3.87 & 8726.845 & 11804.778 & 9.241 & 14.9 & 19.1 & NO & NO & bb \\
\hline 8 - & 8 180115M2_8 & Standard & 12.500 & 3.86 & 8149.912 & 13507.876 & 7.542 & 12.1 & -2.8 & NO & NO & bb \\
\hline
\end{tabular}
```

Dataset: U:IQ4.PRO\results\180115M21180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed:
Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

```

\section*{Compound name: 1802-PFHxS}

Response Factor: 0.335817
RRF SD: 0.0498507 , Relative SD: 14.8446
Response type: Internal Std ( Ref 56 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%De & c. F & \(F\) & xcluded \\
\hline 1 ded & 1 180115M2_1 & Standard & 12.500 & 4.01 & 793.087 & 2804.372 & 3.535 & 10.5 & -15.8 & NO & NO & bb \\
\hline 2 & 2 180115M2_2 & Standard & 12.500 & 4.01 & 971.136 & 3149.166 & 3.855 & 11.5 & -8.2 & NO & NO & bb \\
\hline 3 & 3 180115M2_3 & Standard & 12.500 & 4.01 & 1035.130 & 3283.306 & 3.941 & 11.7 & -6.1 & NO & NO & bb \\
\hline 4 & 4 180115M2_4 & Standard & 12.500 & 4.01 & 1074.646 & 3088.549 & 4.349 & 13.0 & 3.6 & NO & NO & bb \\
\hline \(5-2+5\) & 5 180115M2_5 & Standard & 12.500 & 4.01 & 1083.133 & 3535.805 & 3.829 & 11.4 & -8.8 & NO & NO & bb \\
\hline & 6 180115M2_6 & Standard & 12.500 & 4.01 & 1211.424 & 3990.885 & 3.794 & 11.3 & -9.6 & NO & NO & bb \\
\hline 7 , & \(7180115 \mathrm{M} 2 \_7\) & Standard & 12.500 & 4.01 & 1067.766 & 2610.740 & 5.112 & 15.2 & 21.8 & NO & NO & bb \\
\hline & 8180115 M 2 _8 & Standard & 12.500 & 4.01 & 1041.940 & 2521.238 & 5.166 & 15.4 & 23.1 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-6:2 FTS}

Response Factor: 0.192395
RRF SD: 0.0380277, Relative SD: 19.7655
Response type: Internal Std ( Ref 57 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Fla & CoD Fla & clu \\
\hline 1 Wata & 1 180115M2_1 & Standard & 12.500 & 4.33 & 1703.521 & 11387.326 & 1.870 & 9.7 & -22.2 & NO & NO & bb \\
\hline . & 2 180115M2_2 & Standard & 12.500 & 4.33 & 2145.071 & 12172.035 & 2.203 & 11.4 & -8.4 & NO & NO & bb \\
\hline +4. & 3 180115M2_3 & Standard & 12.500 & 4.33 & 2487.351 & 13726.202 & 2.265 & 11.8 & -5.8 & NO & NO & bb \\
\hline Wh & 4 180115M2_4 & Standard & 12.500 & 4.33 & 2144.726 & 13300.389 & 2.016 & 10.5 & -16.2 & NO & NO & bb \\
\hline 5 5 & \(5180115 \mathrm{M} 2 \ldots 5\) & Standard & 12.500 & 4.33 & 2742.800 & 12814.540 & 2.675 & 13.9 & 11.2 & NO & NO & bb \\
\hline 6 里, & 6180115 M 2 _6 & Standard & 12.500 & 4.33 & 2540.768 & 15285.250 & 2.078 & 10.8 & -13.6 & NO & NO & bb \\
\hline 7 \% + , & 7 180115M2_7 & Standard & 12.500 & 4.33 & 2945.466 & 11556.618 & 3.186 & 16.6 & 32.5 & NO & NO & bb \\
\hline 8 - & 8 180115M2_8 & Standard & 12.500 & 4.32 & 2820.117 & 11963.216 & 2.947 & 15.3 & 22.5 & NO & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO|resultsl180115M21180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: \(\quad\) Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: 13C2-PFOA}

Response Factor: 1.00125
RRF SD: 0.0485388 , Relative SD: 4.84783
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Compound name: 13C5-PFNA}

Response Factor: 0.810837
RRF SD: 0.0778338, Relative SD: 9.59919
Response type: Internal Std (Ref 58 ), Area * ( IS Conc. / IS Area )
Curve type: RF


Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: 13C8-PFOSA}

Response Factor: 0.196454
RRF SD: 0.0326291 , Relative SD: 16.609
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. Fia & CoD Flag & \(x=\) excluded \\
\hline & 1 180115M2_1 & Standard & 12.500 & 4.88 & 2018.146 & 9597.051 & 2.629 & 13.4 & 7.0 & NO & NO & bb \\
\hline 2 & 2 180115M2_2 & Standard & 12.500 & 4.88 & 2450.537 & 12232.438 & 2.504 & 12.7 & 2.0 & NO & NO & bb \\
\hline & 3 180115M2_3 & Standard & 12.500 & 4.88 & 3263.926 & 16108.975 & 2.533 & 12.9 & 3.1 & NO & NO & bb \\
\hline * & 4 180115M2_4 & Standard & 12.500 & 4.88 & 2580.329 & 15359.841 & 2.100 & 10.7 & -14.5 & NO & NO & bb \\
\hline 5 & 5 180115M2_5 & Standard & 12.500 & 4.87 & 2747.783 & 14601.564 & 2.352 & 12.0 & -4.2 & NO & NO & bb \\
\hline & 6 180115M2_6 & Standard & 12.500 & 4.88 & 3176.006 & 14430.306 & 2.751 & 14.0 & 12.0 & NO & NO & bb \\
\hline 7 \% & 7 180115M2_7 & Standard & 12.500 & 4.88 & 2461.930 & 10068.811 & 3.056 & 15.6 & 24.5 & NO & NO & bb \\
\hline 8 & 8180115 M 2 _8 & Standard & 12.500 & 4.87 & 1976.078 & 14359.005 & 1.720 & 8.8 & -29.9 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOS}

Response Factor: 0.861518
RRF SD: 0.080099, Relative SD: 9.29742
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag CoD & COD F & \(x=\) excluded \\
\hline 1 a & 1 180115M2_1 & Standard & 12.500 & 4.89 & 2273.944 & 3065.292 & 9.273 & 10.8 & -13.9 & NO & NO & bb \\
\hline 2 2 & 2 180115M2_2 & Standard & 12.500 & 4.89 & 2945.228 & 3701.104 & 9.947 & 11.5 & -7.6 & NO & NO & bb \\
\hline \(3 \mathrm{C}=\) & 3 180115M2_3 & Standard & 12.500 & 4.89 & 3464.374 & 4167.454 & 10.391 & 12.1 & -3.5 & NO & NO & bb \\
\hline 3 & 4 180115M2_4 & Standard & 12.500 & 4.89 & 3222.043 & 3259.616 & 12.356 & 14.3 & 14.7 & NO & NO & bb \\
\hline 5 綵 + & 5 180115M2_5 & Standard & 12.500 & 4.89 & 2939.392 & 3538.393 & 10.384 & 12.1 & -3.6 & NO & NO & bb \\
\hline & 6 180115M2_6 & Standard & 12.500 & 4.89 & 3461.071 & 3917.062 & 11.045 & 12.8 & 2.6 & NO & NO & bb \\
\hline 7 7 \% & 7 180115M2_7 & Standard & 12.500 & 4.89 & 2933.493 & 3367.256 & 10.890 & 12.6 & 1.1 & NO & NO & bb \\
\hline 8 - & 8 180115M2_8 & Standard & 12.500 & 4.89 & 2455.447 & 2586.616 & 11.866 & 13.8 & 10.2 & NO & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: U:\Q4.PROIresultsI180115M21180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: \(\quad\) Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

Compound name: 13C2-PFDA
Response Factor: 0.995958
RRF SD: 0.0416295, Relative SD: 4.17985
Response type: Internal Std (Ref 60 ), Area * (is Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \multicolumn{2}{|l|}{\%Dev Conc. Flag \({ }^{\text {a }}\) CoD} & \multicolumn{2}{|l|}{CoD Flag \(x=\) excluded} \\
\hline \(1{ }^{\text {d }}\) - & 1 180115M2_1 & Standard & 12.500 & 5.19 & 9117.220 & 8643.550 & 13.185 & 13.2 & 5.9 & NO & NO & bb \\
\hline 2 m & 2 180115M2_2 & Standard & 12.500 & 5.19 & 9259.429 & 9573.944 & 12.089 & 12.1 & -2.9 & NO & NO & bb \\
\hline \(3 \times 2\) & 3 180115M2_3 & Standard & 12.500 & 5.19 & 10469.260 & 10839.729 & 12.073 & 12.1 & -3.0 & NO & NO & bb \\
\hline 4. & 4 180115M2_4 & Standard & 12.500 & 5.18 & 11543.967 & 11526.396 & 12.519 & 12.6 & 0.6 & NO & NO & bb \\
\hline  & 5 180115M2_5 & Standard & 12.500 & 5.18 & 10095.664 & 10211.842 & 12.358 & 12.4 & -0.7 & NO & NO & bb \\
\hline  & \(6180115 \mathrm{M} 2 \times 6\) & Standard & 12.500 & 5.19 & 10322.235 & 10477.224 & 12.315 & 12.4 & -1.1 & NO & NO & bb \\
\hline \(7{ }^{2} \times 4\) & 7180115 M 2 C 7 & Standard & 12.500 & 5.19 & 8868.471 & 9388.578 & 11.808 & 11.9 & -5.2 & NO & NO & bb \\
\hline  & 8 180115M2_8 & Standard & 12.500 & 5.18 & 9834.333 & 9278.257 & 13.249 & 13.3 & 6.4 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-8:2 FTS}

Response Factor: 0.102966
RRF SD: 0.0196885, Relative SD: 19.1214
Response type: Internal Std (Ref 55 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - 4 - \({ }^{\text {a }}\) & \# Name & Type & Std. Cone & RT. & Area & IS Area & \(\mathrm{Response}_{\text {en }}\) & Conc. & \%Dey & F & D F & cluded \\
\hline 1 1-4 & 1 180115M2_1 & Standard & 12.500 & 5.16 & 1084.677 & 12455.272 & 1.089 & 10.6 & -15.4 & NO & NO & bb \\
\hline 2. \({ }^{\text {a }}\) - & 2 180115M2_2 & Standard & 12.500 & 5.16 & 1447.292 & 12561.499 & 1.440 & 14.0 & 11.9 & NO & NO & bb \\
\hline  & 3 180115M2_3 & Standard & 12.500 & 5.16 & 2016.216 & 16767.305 & 1.503 & 14.6 & 16.8 & NO & NO & bb \\
\hline \(4{ }^{4}\) - \({ }^{\text {a }}\) & 4180115 M 2 _4 & Standard & 12.500 & 5.16 & 1733.439 & 14101.621 & 1.537 & 14.9 & 19.4 & NO & NO & bb \\
\hline  & 5 180115M2_5 & Standard & 12.500 & 5.16 & 1179.393 & 15840.523 & 0.931 & 9.0 & -27.7 & NO & NO & bb \\
\hline  & 6180115 M 2 _6 & Standard & 12.500 & 5.16 & 1581.232 & 16157.200 & 1.223 & 11.9 & -5.0 & NO & NO & bb \\
\hline  & \(7180115 \mathrm{M} 2 \_7\) & Standard & 12.500 & 5.16 & 1661.151 & 11804.778 & 1.759 & 17.1 & 36.7 & NO & NO & bbX \\
\hline 8 8 & 8180115 M 2_8 & Standard & 12.500 & 5.16 & 1868.278 & 13507.876 & 1.729 & 16.8 & 34.3 & NO & NO & bbX \\
\hline
\end{tabular}

Dataset: U:IQ4.PROTresults\180115M21180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSAA}

Response Factor: 0.339955
RRF SD: 0.0639138 , Relative SD: 18.8007
Response type: Internal Std (Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \multicolumn{2}{|l|}{\%Dev Conc. Flag CoD} & \multicolumn{2}{|l|}{- CoD Flag \(x=\) excluded} \\
\hline 1 -z & 1 180115M2_1 & Standard & 12.500 & 5.33 & 3668.057 & 9597.051 & 4.778 & 14.1 & 12.4 & NO & NO & bb \\
\hline 2 , yar & 2 180115M2_2 & Standard & 12.500 & 5.33 & 4068.198 & 12232.438 & 4.157 & 12.2 & -2.2 & NO & NO & bb \\
\hline 3 - + mexat & 3 180115M2_3 & Standard & 12.500 & 5.33 & 4941.718 & 16108.975 & 3.835 & 11.3 & -9.8 & NO & NO & bb \\
\hline 4 - & 4 180115M2_4 & Standard & 12.500 & 5.33 & 4259.577 & 15359.841 & 3.466 & 10.2 & -18.4 & NO & NO & bb \\
\hline 5 - & 5 180115M2_5 & Standard & 12.500 & 5.33 & 4700.651 & 14601.564 & 4.024 & 11.8 & -5.3 & NO & NO & bb \\
\hline 6, morn & 6180115 M 2 _6 & Standard & 12.500 & 5.33 & 4734.263 & 14430.306 & 4.101 & 12.1 & -3.5 & NO & NO & bb \\
\hline 7 arater & 7 180115M2_7 & Standard & 12.500 & 5.33 & 4812.376 & 10068.811 & 5.974 & 17.6 & 40.6 & NO & NO & bb \\
\hline 8 - & \(8180115 \mathrm{M} 2 \_8\) & Standard & 12.500 & 5.33 & 4204.535 & 14359.005 & 3.660 & 10.8 & -13.9 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d5-N-EtFOSAA}

Response Factor: 0.376804
RRF SD: 0.0581665 , Relative SD: 15.4368
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response Conc. & \%Dev & Conc. Flag \({ }^{\text {a }}\) CoD & + CoD Flag & x=excluded \\
\hline  & 1 180115M2_1 & Standard & 12.500 & 5.49 & 4291.856 & 9597.051 & 5.59014 .8 & 18.7 & NO & NO & bb \\
\hline 2 - & 2 180115M2_2 & Standard & 12.500 & 5.49 & 4807.261 & 12232.438 & \(4.912 \quad 13.0\) & 4.3 & NO & NO & bb \\
\hline 3 3 & 3 180115M2_3 & Standard & 12.500 & 5.49 & 5925.357 & 16108.975 & \(4.598 \quad 12.2\) & -2.4 & NO & NO & bb \\
\hline 4 at & 4 180115M2_4 & Standard & 12.500 & 5.48 & 4489.890 & 15359.841 & \(3.654 \quad 9.7\) & -22.4 & NO & NO & bb \\
\hline 94 & 5 180115M2_5 & Standard & 12.500 & 5.48 & 5242.137 & 14601.564 & \(4.488 \quad 11.9\) & -4.7 & NO & NO & bb \\
\hline & 6 180115M2_6 & Standard & 12.500 & 5.48 & 5935.848 & 14430.306 & \(5.142 \quad 13.6\) & 9.2 & NO & NO & bb \\
\hline  & 7 180115M2_7 & Standard & 12.500 & 5.48 & 4444.999 & 10068.811 & \(5.518 \quad 14.6\) & 17.2 & NO & NO & bb \\
\hline 8 - & 8 180115M2_8 & Standard & 12.500 & 5.48 & 4340.295 & 14359.005 & \(3.778 \quad 10.0\) & -19.8 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset:}

U:IQ4.PRO|results|180115M2\180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

Compound name: 13C2-PFUdA
Response Factor: 0.943561
RRF SD: 0.166868 , Relative SD: 17.6849
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - 4 - \({ }^{\text {a }}\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. F & * CoDFlag & \(x=\) excluded \\
\hline \(1+\mathrm{tan}\) \% & 1 180115M2_1 & Standard & 12.500 & 5.51 & 10659.157 & 9597.051 & 13.883 & 14.7 & 17.7 & NO & NO & bb \\
\hline \(2{ }^{2}\) w & 2 180115M2_2 & Standard & 12.500 & 5.51 & 12827.074 & 12232.438 & 13.108 & 13.9 & 11.1 & NO & NO & bb \\
\hline 3 - 7 a & 3 180115M2_3 & Standard & 12.500 & 5.51 & 14368.888 & 16108.975 & 11.150 & 11.8 & -5.5 & NO & NO & bb \\
\hline 4 - \({ }^{4}\) at & 4 180115M2_4 & Standard & 12.500 & 5.50 & 12801.493 & 15359.841 & 10.418 & 11.0 & -11.7 & NO & NO & bb \\
\hline 5.40 & 5 180115M2_5 & Standard & 12.500 & 5.50 & 11208.095 & 14601.564 & 9.595 & 10.2 & -18.6 & NO & NO & bb \\
\hline 6 atay 4 & 6180115 M 2 _6 & Standard & 12.500 & 5.51 & 13602.793 & 14430.306 & 11.783 & 12.5 & -0.1 & NO & NO & bb \\
\hline \(7{ }^{4}+4\) & 7180115 M 2 _7 & Standard & 12.500 & 5.50 & 12174.631 & 10068.811 & 15.114 & 16.0 & 28.1 & NO & NO & bb \\
\hline 8 \% & 8180115M2_8 & Standard & 12.500 & 5.50 & 10688.771 & 14359.005 & 9.305 & 9.9 & -21.1 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDoA}

Response Factor: 0.726172
RRF SD: 0.138899, Relative SD: 19.1275
Response type: Internal Std (Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF


Dataset：U：IQ4．PROIresults\180115M21180115M2－CRV．qld
Last Altered：Tuesday，January 16， 2018 10：22：57 Pacific Standard Time
Printed： Tuesday，January 16， 2018 10：29：14 Pacific Standard Time

\section*{Compound name：d3－N－MeFOSA}

Response Factor：0．118962
RRF SD： 0.0169862 ，Relative SD： 14.2787
Response type：Internal Std（ Ref 61 ），Area＊（IS Conc．／IS Area ）
Curve type：RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \＃Name & Type & Std．Conc & RT & Area & IS Area & Response & Conc． & \％Dev & Conc．Flag & & ， \\
\hline 1 ， & 1 180115M2＿1 & Standard & 150.000 & 5.86 & 15969.864 & 9597.051 & 20.800 & 174.9 & 16.6 & NO & NO & bb \\
\hline \(2 \pm 0\) & 2 180115M2＿2 & Standard & 150.000 & 5.86 & 17622.953 & 12232.438 & 18.008 & 151.4 & 0.9 & NO & NO & bb \\
\hline 3 L & 3 180115M2＿3 & Standard & 150.000 & 5.86 & 21395.508 & 16108.975 & 16.602 & 139.6 & －7．0 & NO & NO & bb \\
\hline \(4 \times 2\) & 4180115 M 2 ＿4 & Standard & 150.000 & 5.86 & 18699.383 & 15359.841 & 15.218 & 127.9 & －14．7 & NO & NO & bb \\
\hline \(5 \times 4\) & 5 180115M2＿5 & Standard & 150.000 & 5.86 & 19396.660 & 14601.564 & 16.605 & 139.6 & －6．9 & NO & NO & bb \\
\hline \(6{ }^{6}\)－\({ }^{2}\) & 6180115 M 2 ＿6 & Standard & 150.000 & 5.86 & 21606.223 & 14430.306 & 18.716 & 157.3 & 4.9 & NO & NO & bb \\
\hline 74 & 7 180115M2＿7 & Standard & 150.000 & 5.86 & 17688.914 & 10068.811 & 21.960 & 184.6 & 23.1 & NO & NO & bb \\
\hline \(8^{4}\) & 8180115 M 28 & Standard & 150.000 & 5.86 & 17051.773 & 14359.005 & 14.844 & 124.8 & －16．8 & NO & NO & bb \\
\hline
\end{tabular}

Compound name：13C2－PFTeDA
Response Factor： 0.371352
RRF SD： 0.056833 ，Relative SD： 15.3043
Response type：Internal Std（Ref 61 ），Area＊（IS Conc．／IS Area）
Curve type：RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \＃Name & Type & Std．Conc & RT & Area & IS Area & Response & Conc． & \％Dev & & D & xcl \\
\hline 1．4 5 最 & 1 180115M2＿1 & Standard & 12.500 & 6.24 & 3811.400 & 9597.051 & 4.964 & 13.4 & 6.9 & NO & NO & bb \\
\hline 2 年 & 2 180115M2＿2 & Standard & 12.500 & 6.24 & 4625.902 & 12232.438 & 4.727 & 12.7 & 1.8 & NO & NO & bb \\
\hline \(3^{\text {\％}}\) 䢒 & 3 180115M2＿3 & Standard & 12.500 & 6.24 & 5784.110 & 16108.975 & 4.488 & 12.1 & －3．3 & NO & NO & bb \\
\hline \(4 * 4\) & 4 180115M2＿4 & Standard & 12.500 & 6.23 & 4166.997 & 15359.841 & 3.391 & 9.1 & －26．9 & NO & NO & MM \\
\hline －47an & 5 180115M2＿5 & Standard & 12.500 & 6.23 & 5054.189 & 14601.564 & 4.327 & 11.7 & －6．8 & NO & NO & bb \\
\hline 4 & 6 180115M2＿6 & Standard & 12.500 & 6.24 & 5187.430 & 14430.306 & 4.494 & 12.1 & －3．2 & NO & NO & MM \\
\hline  & 7 180115M2＿7 & Standard & 12.500 & 6.23 & 4785.019 & 10068.811 & 5.940 & 16.0 & 28.0 & NO & NO & bb \\
\hline 8 －\({ }^{\text {d }}\) & 8 180115M2＿8 & Standard & 12.500 & 6.23 & 5518.160 & 14359.005 & 4.804 & 12.9 & 3.5 & NO & NO & bb \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Dataset: U:\Q4.PRO\results\180115M2\180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

Compound name: d5-N-ETFOSA
Response Factor: 0.17355
RRF SD: 0.0236433, Relative SD: 13.6233
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & anc. F & & xcluded \\
\hline 1 - & 1 180115M2_1 & Standard & 150.000 & 6.21 & 23192.393 & 9597.051 & 30.208 & 174.1 & 16.0 & NO & NO & bb \\
\hline * & 2 180115M2_2 & Standard & 150.000 & 6.22 & 25547.748 & 12232.438 & 26.107 & 150.4 & 0.3 & NO & NO & bb \\
\hline 3.8 & 3 180115M2_3 & Standard & 150.000 & 6.21 & 31434.623 & 16108.975 & 24.392 & 140.5 & -6.3 & NO & NO & bb \\
\hline + & 4 180115M2_4 & Standard & 150.000 & 6.21 & 27705.471 & 15359.841 & 22.547 & 129.9 & -13.4 & NO & NO & bb \\
\hline  & 5 180115M2_5 & Standard & 150.000 & 6.21 & 28494.203 & 14601.564 & 24.393 & 140.6 & -6.3 & NO & NO & bb \\
\hline & 6 180115M2_6 & Standard & 150.000 & 6.22 & 32255.756 & 14430.306 & 27.941 & 161.0 & 7.3 & NO & NO & bb \\
\hline & 7 180115M2_7 & Standard & 150.000 & 6.22 & 25211.236 & 10068.811 & 31.299 & 180.3 & 20.2 & NO & NO & bb \\
\hline 8 - & 8180115 M 2 _ 8 & Standard & 150.000 & 6.21 & 24552.484 & 14359.005 & 21.374 & 123.2 & -17.9 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHxDA}

Response Factor: 0.559258
RRF SD: 0.111637, Relative SD: 19.9617
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 54x \({ }^{\text {a }}\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & , & ch \\
\hline & 1 180115M2_1 & Standard & 5.000 & 6.54 & 2113.428 & 9597.051 & 2.753 & 4.9 & -1.6 & NO & NO & MM \\
\hline & 2 180115M2_2 & Standard & 5.000 & 6.54 & 2775.093 & 12232.438 & 2.836 & 5.1 & 1.4 & NO & NO & bb \\
\hline 3 ta & 3 180115M2_3 & Standard & 5.000 & 6.54 & 3282.116 & 16108.975 & 2.547 & 4.6 & -8.9 & NO & NO & MM \\
\hline 4 \% 4 边 & 4 180115M2_4 & Standard & 5.000 & 6.54 & 2733.865 & 15359.841 & 2.225 & 4.0 & -20.4 & NO & NO & MM \\
\hline 5 \% & 5 180115M2_5 & Standard & 5.000 & 6.54 & 2890.199 & 14601.564 & 2.474 & 4.4 & -11.5 & NO & NO & bb \\
\hline 6 - & 6 180115M2_6 & Standard & 5.000 & 6.54 & 3217.573 & 14430.306 & 2.787 & 5.0 & -0.3 & NO & NO & bb \\
\hline \(7 \times\) & 7 180115M2_7 & Standard & 5.000 & 6.54 & 3292.356 & 10068.811 & 4.087 & 7.3 & 46.2 & NO & NO & MM \\
\hline 8. & 8 180115M2_8 & Standard & 5.000 & 6.54 & 3057.260 & 14359.005 & 2.661 & 4.8 & -4.8 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: U:\Q4.PRO\results1180115M21180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

Compound name: d7-N-MeFOSE
Response Factor: 0.179375
RRF SD: 0.0175828, Relative SD: 9.80226
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & & c. Fla & D Fl & xclu \\
\hline \(1{ }^{\text {w }}\) ata & 1 180115M2_1 & Standard & 150.000 & 6.29 & 20888.145 & 9597.051 & 27.206 & 151.7 & 1.1 & NO & NO & bb \\
\hline \(2-4\) & 2 180115M2_2 & Standard & 150.000 & 6.29 & 26082.570 & 12232.438 & 26.653 & 148.6 & -0.9 & NO & NO & bb \\
\hline \(3 \times \pm\) & 3 180115M2_3 & Standard & 150.000 & 6.29 & 31250.859 & 16108.975 & 24.250 & 135.2 & -9.9 & NO & NO & bb \\
\hline 4. & 4 180115M2_4 & Standard & 150.000 & 6.29 & 29842.697 & 15359.841 & 24.286 & 135.4 & -9.7 & NO & NO & bb \\
\hline 5 5 & 5 180115M2_5 & Standard & 150.000 & 6.29 & 30325.629 & 14601.564 & 25.961 & 144.7 & -3.5 & NO & NO & bb \\
\hline 6 & 6 180115M2_6 & Standard & 150.000 & 6.29 & 35709.676 & 14430.306 & 30.933 & 172.4 & 15.0 & NO & NO & bb \\
\hline 7. & 7 180115M2_7 & Standard & 150.000 & 6.29 & 24759.139 & 10068.811 & 30.737 & 171.4 & 14.2 & NO & No & bb \\
\hline 8 \% & 8180115 M 2 8 8 & Standard & 150.000 & 6.29 & 28975.107 & 14359.005 & 25.224 & 140.6 & -6.3 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d9-N-EtFOSE}

Response Factor: 0.159689
RRF SD: 0.0235867, Relative SD: 14.7704
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4, & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & c. F & D F & xcluded \\
\hline 1. & 1 180115M2_1 & Standard & 150.000 & 6.44 & 22450.639 & 9597.051 & 29.242 & 183.1 & 22.1 & NO & NO & bd \\
\hline & 2 180115M2_2 & Standard & 150.000 & 6.45 & 21303.693 & 12232.438 & 21.770 & 136.3 & -9.1 & NO & NO & bb \\
\hline 3 - \({ }^{\text {a }}\) & 3 180115M2_3 & Standard & 150.000 & 6.44 & 31097.133 & 16108.975 & 24.130 & 151.1 & 0.7 & NO & NO & bb \\
\hline \(4 \%\) & 4 180115M2_4 & Standard & 150.000 & 6.44 & 27869.063 & 15359.841 & 22.680 & 142.0 & -5.3 & NO & NO & bb \\
\hline 5 5 & 5 180115M2_5 & Standard & 150.000 & 6.44 & 27858.053 & 14601.564 & 23.849 & 149.3 & -0.4 & NO & NO & bb \\
\hline & 6180115 M 2 _6 & Standard & 150.000 & 6.44 & 28613.766 & 14430.306 & 24.786 & 155.2 & 3.5 & NO & NO & bb \\
\hline  & 7 180115M2_7 & Standard & 150.000 & 6.45 & 22170.844 & 10068.811 & 27.524 & 172.4 & 14.9 & NO & NO & bb \\
\hline 8 - & 8180115 M 2 _8 & Standard & 150.000 & 6.44 & 20270.486 & 14359.005 & 17.646 & 110.5 & -26.3 & NO & NO & bb \\
\hline
\end{tabular}

Dataset:
U:IQ4.PRO|results|180115M21180115M2-CRV.ald
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed:
Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: 13C4-PFBA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 54 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. F & , & xcluded \\
\hline 1 - 4 & 1 180115M2_1 & Standard & 12.500 & 1.52 & 10061.779 & 10061.779 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 2 & 2 180115M2_2 & Standard & 12.500 & 1.52 & 11662.093 & 11662.093 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline . & 3 180115M2_3 & Standard & 12.500 & 1.52 & 14677.296 & 14677.296 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 4 180115M2_4 & Standard & 12.500 & 1.52 & 12356.659 & 12356.659 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 - & 5 180115M2_5 & Standard & 12.500 & 1.52 & 13477.931 & 13477.931 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 \% & 6 180115M2_6 & Standard & 12.500 & 1.52 & 14699.104 & 14699.104 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline , & 7 180115M2_7 & Standard & 12.500 & 1.52 & 11470.707 & 11470.707 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8. & 8 180115M2_8 & Standard & 12.500 & 1.52 & 11668.103 & 11668.103 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFHxA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 55), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & ne. & & clu \\
\hline 1 第 & 1 180115M2_1 & Standard & 12.500 & 3.25 & 12455.272 & 12455.272 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 - \({ }^{4}\) - & 2 180115M2_2 & Standard & 12.500 & 3.25 & 12561.499 & 12561.499 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 y - & 3 180115M2_3 & Standard & 12.500 & 3.25 & 16767.305 & 16767.305 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(4{ }^{4} \times\) & 4180115 M 2 _4 & Standard & 12.500 & 3.25 & 14101.621 & 14101.621 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 5 180115M2_5 & Standard & 12.500 & 3.24 & 15840.523 & 15840.523 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 - & 6 180115M2_6 & Standard & 12.500 & 3.25 & 16157.200 & 16157.200 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 7- \({ }^{\text {a }}\) & 7 180115M2_7 & Standard & 12.500 & 3.25 & 11804.778 & 11804.778 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 8 180115M2 8 & Standard & 12.500 & 3.24 & 13507.876 & 13507.876 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults\180115M21180115M2-CRV.qld \\
Last Altered: & Tuesday, January 16, 2018 10:22:57 Pacific Standard Time \\
Printed: & Tuesday, January 16, 2018 10:29:14 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 56 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type &  & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc Flag & CoD & \multicolumn{2}{|l|}{CoDFlag \(x=\) excluded} \\
\hline & 1 180115M2_1 & Standard & & 12.500 & 4.01 & 2804.372 & 2804.372 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 180115M2_2 & Standard & & 12.500 & 4.01 & 3149.166 & 3149.166 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 3 180115M2_3 & Standard & & 12.500 & 4.01 & 3283.306 & 3283.306 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 - & 4 180115M2_4 & Standard & & 12.500 & 4.01 & 3088.549 & 3088.549 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 5 180115M2.5 & Standard & & 12.500 & 4.01 & 3535.805 & 3535.805 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 6 180115M2_6 & Standard & & 12.500 & 4.01 & 3990.885 & 3990.885 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \% & 7 180115M2_7 & Standard & & 12.500 & 4.01 & 2610.740 & 2610.740 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & 8 180115M2_8 & Standard & & 12.500 & 4.01 & 2521.238 & 2521.238 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 57 ), Area * ( IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. F & E & \(x=\) excluded \\
\hline 1 and & 1 180115M2_1 & Standard & 12.500 & 4.81 & 9887.708 & 9887.708 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 & 2180115 M 2 _2 & Standard & 12.500 & 4.82 & 14541.915 & 14541.915 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3.3 & 3 180115M2_3 & Standard & 12.500 & 4.81 & 15659.906 & 15659.906 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 4 180115M2_4 & Standard & 12.500 & 4.81 & 14165.005 & 14165.005 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 - & 5180115 M 2 _5 & Standard & 12.500 & 4.81 & 14881.775 & 14881.775 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 \% & 6180115 M 2 6 & Standard & 12.500 & 4.81 & 16690.238 & 16690.238 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \[
7=4
\] & \(7180115 \mathrm{M} 2 \ldots 7\) & Standard & 12.500 & 4.81 & 11566.101 & 11566.101 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 & 8180115 M 2 _ 8 & Standard & 12.500 & 4.81 & 12301.464 & 12301.464 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFOS}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# Name & Type & Conc & RT & Area & IS Area & Response & Conc. & Dev & nc. & D FI & xcl \\
\hline 1-4 \({ }^{\text {a }}\) 180115M2_1 & Standard & 12.500 & 4.89 & 3065.292 & 3065.292 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 2. 2 180115M2_2 & Standard & 12.500 & 4.89 & 3701.104 & 3701.104 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3.3 180115M2_3 & Standard & 12.500 & 4.89 & 4167.454 & 4167.454 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 , 4 180115M2_4 & Standard & 12.500 & 4.89 & 3259.616 & 3259.616 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & Standard & 12.500 & 4.89 & 3538.393 & 3538.393 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 6 6180115 M 2 _6 & Standard & 12.500 & 4.89 & 3917.062 & \(3917.062^{-}\) & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 7 180115M2_7 & Standard & 12.500 & 4.89 & 3367.256 & 3367.256 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 - 8 180115M2_8 & Standard & 12.500 & 4.89 & 2586.616 & 2586.616 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory

\section*{Dataset:}

U:IQ4.PRO|resultsI \(180115 \mathrm{M} 21180115 \mathrm{M} 2-\mathrm{CRV}\).qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

\section*{Compound name: 13C6-PFDA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 60 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & & nc. F & D F & clude \\
\hline \(1-4\) & 1 180115M2_1 & Standard & 12.500 & 5.19 & 8643.550 & 8643.550 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(2=\) & 2 180115M2_2 & Standard & 12.500 & 5.19 & 9573.944 & 9573.944 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 ata & 3 180115M2_3 & Standard & 12.500 & 5.19 & 10839.729 & 10839.729 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(4{ }^{-5}\) & 4 180115M2_4 & Standard & 12.500 & 5.18 & 11526.396 & 11526.396 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 - & 5180115 M 2 _5 & Standard & 12.500 & 5.18 & 10211.842 & 10211.842 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 6, & 6180115 M 2 _6 & Standard & 12.500 & 5.19 & 10477.224 & 10477.224 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 7 180115M2_7 & Standard & 12.500 & 5.19 & 9388.578 & 9388.578 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(8=\) & 8 180115M2_8 & Standard & 12.500 & 5.18 & 9278.257 & 9278.257 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C7-PFUdA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \% Dev & nc. & D & xcli \\
\hline \(1{ }^{1}\) & 1 180115M2_1 & Standard & 12.500 & 5.51 & 9597.051 & 9597.051 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(2 \times 4\) & 2 180115M2_2 & Standard & 12.500 & 5.51 & 12232.438 & 12232.438 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(38^{3 .}\) & 3 180115M2_3 & Standard & 12.500 & 5.51 & 16108.975 & 16108.975 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 ym & 4 180115M2_4 & Standard & 12.500 & 5.50 & 15359.841 & 15359.841 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 - 5 + 4 & 5 180115M2_5 & Standard & 12.500 & 5.50 & 14601.564 & 14601.564 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 - 煮 & 6 180115M2_6 & Standard & 12.500 & 5.51 & 14430.306 & 14430.306 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 7 180115M2_7 & Standard & 12.500 & 5.50 & 10068.811 & 10068.811 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 8. & 8180115 M 2 _ 8 & Standard & 12.500 & 5.50 & 14359.005 & 14359.005 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Last Altered：Tuesday，January 16， 2018 10：22：57 Pacific Standard Time
Printed： Tuesday，January 16， 2018 10：29：14 Pacific Standard Time

Method：U：IQ4．PROIMethDBIPFAS＿FULL＿80C＿011518．mdb 15 Jan 2018 11：38：30
Calibration：U：IQ4．PROICurveDBIC18＿VAL－PFAS＿Q4＿01－15－18－FULL－OLD．cdb 16 Jan 2018 10：22：57
Name：180115M2＿1，Date：16－Jan－2018，Time：00：14：07，ID：ST180115M2－1 PFC CS－2 17L2606，Description：PFC CS－2 17L2606
\begin{tabular}{|c|c|c|c|}
\hline －\({ }^{\text {a }}\) \＃Name & CoD & CoD Flag & \％RSD \\
\hline 1 － 1 PFBA & 0.9972 & NO & \\
\hline 2 2 2 PFPeA & 0.9960 & NO & \\
\hline 3 tax 3 PFBS & 0.9964 & NO & \\
\hline 4 4 PFHxA & 0.9925 & NO & \\
\hline 5 明 5 PFHpA & 0.9954 & NO & \\
\hline 6 6 L－PFHxS & 0.9997 & NO & \\
\hline 7 86：2FTS & 0.9954 & NO & \\
\hline 8 粗 9 L－PFOA & 0.9948 & NO & \\
\hline 9 ata 11 PFHpS & 0.9990 & NO & \\
\hline 10 ． 12 PFNA & 0.9983 & NO & \\
\hline 11 13 PFOSA & 0.9990 & NO & \\
\hline 12 ， 14 L－PFOS & 0.9977 & NO & \\
\hline 13 － 16 PFDA & 0.9967 & NO & \\
\hline 14.1788 .2 FTS & 0.9909 & NO & \\
\hline 15 － 18 N－MeFOSAA & 0.9996 & NO & \\
\hline 16 N－EtFOSAA & 0.9991 & NO & \\
\hline 17．\({ }^{\text {da }}\) ， 20 PFUdA & 0.9969 & NO & \\
\hline 18 2 PFDS & 0.9954 & NO & \\
\hline 19 22 PFDoA & 0.9964 & NO & \\
\hline 20 ： 23 N－MeFOSA & 0.9983 & NO & \\
\hline 21.24 PFTrDA & 0.9972 & NO & \\
\hline 22 － 25 PFTeDA & 0.9909 & NO & \\
\hline 23． 26 N－EtFOSA & 0.9987 & NO & \\
\hline 24.427 PFHxDA & 0.9949 & NO & \\
\hline 25.328 PFODA & 0.9984 & NO & \\
\hline 26 － 4 ＊ 29 N－MeFOSE & 0.9957 & NO & \\
\hline 27． 30 N－EtFOSE & 0.9997 & NO & \\
\hline 28.31 13C3－PFBA & & NO & 4.288 \\
\hline 29 ． 32 13C3－PFPeA & & NO & 8.876 \\
\hline 30 毞 3313 C 3 －PFBS & & NO & 8.289 \\
\hline  & & NO & 8.444 \\
\hline
\end{tabular}

Dataset: U:IQ4.PROIresults\180115M21180115M2-CRV.qld
Last Altered: Tuesday, January 16, 2018 10:22:57 Pacific Standard Time
Printed: Tuesday, January 16, 2018 10:29:14 Pacific Standard Time

Name: 180115M2_1, Date: 16-Jan-2018, Time: 00:14:07, ID: ST180115M2-1 PFC CS-2 17L2606, Description: PFC CS-2 17L2606


\section*{Dataset: Untitled}

Last Altered: Tuesday, January 16, 2018 10:06:30 Pacific Standard Time Printed: Tuesday, January 16, 2018 10:09:05 Pacific Standard Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_80C_011518.mdb 15 Jan 2018 11:38:30 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 09:37:18

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & 10 & Acq Date & Acq Time \\
\hline 1 T W & 180115M2_1 & ST180115M2-1 PFC CS-2 17L2606 & 16-Jan-18 & 00:14:07 \\
\hline 2 & 180115M2_2 & ST180115M2-2 PFC CS-1 17L2607 & 16-Jan-18 & 00:25:32 \\
\hline 3 - \({ }^{\text {a }}\) & 180115M2_3 & ST180115M2-3 PFC CS0 17L2608 & 16-Jan-18 & 00:37:02 \\
\hline \(4{ }^{4}\) - 5 & 180115M2_4 & ST180115M2-4 PFC CS1 17L2609 & 16-Jan-18 & 00:48:46 \\
\hline \[
5
\] & 180115M2_5 & ST180115M2-5 PFC CS2 17 L 2610 & 16-Jan-18 & 01:00:17 \\
\hline 6 & 180115M2_6 & ST180115M2-6 PFC CS3 17 L 2611 & 16-Jan-18 & 01:11:44 \\
\hline \[
7
\] & 180115M2_7 & ST180115M2-7 PFC CS4 17L1208 & 16-Jan-18 & 01:23:11 \\
\hline \[
8
\] & 180115M2_8 & ST180115M2-8 PFC CS5 17L2613 & 16-Jan-18 & 01:34:38 \\
\hline & 180115M2_9 & IPA & 16-Jan-18 & 01:46:05 \\
\hline 10 & 180115M2_10 & ICV180115M2-1 PFC ICV 17L1201 & 16-Jan-18 & 01:57:31 \\
\hline 11 - \% & 180115M2_11 & IPA & 16-Jan-18 & 02:08:58 \\
\hline
\end{tabular}

Method: U:IQ4.PROIMethDBIPFAS_FULL_80C_011518.mdb 15 Jan 2018 11:38:30
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 10:22:57
Name: 180115M2_10, Date: 16-Jan-2018, Time: 01:57:31, ID: ICV180115M2-1 PFC ICV 17L1201, Description: PFC ICV 17L1201


Dataset: U:IQ4.PROTresults1180115M2I180115M2-10.qld
\begin{tabular}{ll} 
Last Altered: & Tuesday, January 16, 2018 10:33:59 Pacific Standard Time \\
Printed: & Tuesday, January 16, 2018 10:34:30 Pacific Standard Time
\end{tabular}

Name: 180115M2_10, Date: 16-Jan-2018, Time: 01:57:31, ID: ICV180115M2-1 PFC ICV 17L1201, Description: PFC ICV 17L1201


Dataset: U:IQ4.PROIresults\180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed:
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 09:08:01 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17

Compound name: PFBA
Correlation coefficient: \(r=0.999912, r^{\wedge} 2=0.999825\)
Calibration curve: \(1.16188^{*} x+0.0241636\)
Response type: Internal Std ( Ref 31 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFPeA}

Correlation coefficient: \(r=0.999917, r^{\wedge} 2=0.999833\)
Calibration curve: 1.01796 * \(x+0.0490163\)
Response type: Internal Std ( Ref 32 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None


Dataset: U:IQ4.PROIresults 1 180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: PFBS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999617\)
Calibration curve: \(-0.00032592{ }^{*} x^{\wedge} 2+1.81726 * x+0.0442359\)
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFHxA}

Correlation coefficient: \(\mathrm{r}=0.996644, \mathrm{r}^{\wedge} 2=0.993300\)
Calibration curve: 1.5776 * \(x+0.158148\)
Response type: Internal Std ( Ref 34 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & & CoD & D & \\
\hline \% & 1 180116M1_1 & Standard & 0.250 & 3.16 & 319.711 & 3223.630 & 0.496 & 0.2 & -14.4 & NO & 0.993 & NO & bb \\
\hline \(4 \times\) & 2 180116M1_2 & Standard & 0.500 & 3.15 & 580.140 & 3375.689 & 0.859 & 0.4 & -11.1 & NO & 0.993 & NO & bb \\
\hline 3 - \({ }^{4}\) & 3 180116M1_3 & Standard & 1.000 & 3.16 & 1127.286 & 3482.693 & 1.618 & 0.9 & -7.4 & NO & 0.993 & NO & bb \\
\hline ¢ & 4 180116M1_4 & Standard & 2.000 & 3.16 & 2255.886 & 3382.451 & 3.335 & 2.0 & 0.7 & NO & 0.993 & NO & bb \\
\hline - 4 . 4 & 5 180116M1_5 & Standard & 5.000 & 3.16 & 5757.562 & 3263.638 & 8.821 & 5.5 & 9.8 & NO & 0.993 & NO & bb \\
\hline & 6 180116M1_6 & Standard & 10.000 & 3.16 & 12380.637 & 3483.716 & 17.769 & 11.2 & 11.6 & NO & 0.993 & NO & bb \\
\hline & 7 180116M1_7 & Standard & 50.000 & 3.16 & 57177.016 & 3021.616 & 94.613 & 59.9 & 19.7 & NO & 0.993 & NO & bb \\
\hline 8 - \({ }^{\text {d }}\) & 8 180116M1_8 & Standard & 100.000 & 3.16 & 104414.156 & 3567.892 & 146.325 & 92.7 & -7.3 & NO & 0.993 & NO & bb \\
\hline  & 9 180116M1_9 & Standard & 250.000 & 3.16 & 269433.281 & 3470.238 & 388.206 & 246.0 & -1.6 & NO & 0.993 & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PRO\resultsI180116M11180116M1-CRV.qld
ast Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.996966, \mathrm{r} 2=0.993941\)
Calibration curve: 1.17636 * \(x+0.12679\)
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & CoD & & xclude \\
\hline 4 & 1 180116M1_1 & Standard & 0.250 & 3.78 & 255.095 & 8450.651 & 0.377 & 0.2 & -14.8 & NO & 0.994 & NO & bb \\
\hline & 2 180116M1_2 & Standard & 0.500 & 3.77 & 429.736 & 8364.292 & 0.642 & 0.4 & -12.4 & NO & 0.994 & NO & bb \\
\hline & 3 180116M1_3 & Standard & 1.000 & 3.78 & 874.351 & 9033.274 & 1.210 & 0.9 & -7.9 & NO & 0.994 & NO & bb \\
\hline 4 . \({ }^{\text {a }}\) & 4 180116M1_4 & Standard & 2.000 & 3.78 & 1633.358 & 8965.800 & 2.277 & 1.8 & -8.6 & NO & 0.994 & No & bb \\
\hline 5 , \({ }^{\text {a }}\) & 5 180116M1_5 & Standard & 5.000 & 3.78 & 4948.742 & 8580.876 & 7.209 & 6.0 & 20.4 & NO & 0.994 & NO & bb \\
\hline 4. & 6 180116M1_6 & Standard & 10.000 & 3.77 & 9563.499 & 9087.307 & 13.155 & 11.1 & 10.8 & NO & 0.994 & NO & bb \\
\hline 7. & 7 180116M1_7 & Standard & 50.000 & 3.78 & 47321.668 & 9092.034 & 65.059 & 55.2 & 10.4 & NO & 0.994 & NO & bb \\
\hline & 8 180116M1_8 & Standard & 100.000 & 3.77 & 96119.359 & 9429.717 & 127.415 & 108.2 & 8.2 & NO & 0.994 & NO & bb \\
\hline 9 9. 4 & 9 180116M1_9 & Standard & 250.000 & 3.77 & 195458.063 & 8839.615 & 276.395 & 234.9 & -6.1 & NO & 0.994 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: L-PFHxS}

Correlation coefficient: \(r=0.996947, r^{\wedge} 2=0.993903\)
Calibration curve: \(1.8399 * x+-0.08335\)
Response type: Internal Std ( Ref 36 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & NO & MM \\
\hline 2 或 & 2 180116M1_2 & Standard & 0.500 & 3.92 & 79.809 & 1162.604 & 0.858 & 0.5 & 2.3 & NO & 0.994 & NO & MM \\
\hline & 3 180116M1_3 & Standard & 1.000 & 3.92 & 137.704 & 1232.114 & 1.397 & 0.8 & -19.5 & NO & 0.994 & NO & MM \\
\hline 4 \% \({ }^{4}\) & 4 180116M1_4 & Standard & 2.000 & 3.92 & 309.202 & 1027.618 & 3.761 & 2.1 & 4.5 & NO & 0.994 & NO & MM \\
\hline 5 5 + \% & 5 180116M1_5 & Standard & 5.000 & 3.92 & 770.193 & 1007.890 & 9.552 & 5.2 & 4.7 & NO & 0.994 & NO & MM \\
\hline 6 & 6 180116M1_6 & Standard & 10.000 & 3.92 & 1562.867 & 1269.069 & 15.394 & 8.4 & -15.9 & NO & 0.994 & NO & MM \\
\hline & 7 180116M1_7 & Standard & 50.000 & 3.92 & 7621.926 & 1117.47¢ & 85.258 & 46.4 & -7.2 & NO & 0.994 & NO & MM \\
\hline 8 8, & 8 180116M1_8 & Standard & 100.000 & 3.92 & 15291.647 & 920.215 & 207.718 & 112.9 & 12.9 & NO & 0.994 & NO & MM \\
\hline 9 9- \({ }^{\text {a }}\) & 9 180116M1_9 & Standard & 250.000 & 3.92 & 37106.273 & 1041.621 & 445.295 & 242.1 & -3.2 & NO & 0.994 & NO & MM \\
\hline
\end{tabular}

Dataset:
U:IQ4.PRO|resultsl180116M11180116M1-CRV.qld

Last Altered:
Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

Compound name: 6:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998668\)
Calibration curve: \(0.00692048{ }^{*} x^{\wedge} 2+1.91686 * x+0.0199382\)
Response type: Internal Std (Ref 36 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & & & , \\
\hline 9max & 1 180116M1_1 & Standard & 0.250 & 4.24 & 49.512 & 1163.872 & 0.532 & 0.3 & 6.7 & NO & 0.999 & NO & MM \\
\hline 2 tax & 2 180116M1_2 & Standard & 0.500 & 4.23 & 89.629 & 1162.604 & 0.964 & 0.5 & -1.7 & NO & 0.999 & NO & bb \\
\hline 3 & 3 180116M1_3 & Standard & 1.000 & 4.24 & 145.436 & 1232.114 & 1.475 & 0.8 & -24.3 & NO & 0.999 & NO & bb \\
\hline 4 & 4 180116M1_4 & Standard & 2.000 & 4.23 & 367.537 & 1027.618 & 4.471 & 2.3 & 15.1 & NO & 0.999 & NO & bb \\
\hline \(5 \times 2\) & 5 180116M1_5 & Standard & 5.000 & 4.24 & 926.146 & 1007.890 & 11.486 & 5.9 & 17.2 & NO & 0.999 & NO & bb \\
\hline & 6 180116M1_6 & Standard & 10.000 & 4.23 & 1833.953 & 1269.069 & 18.064 & 9.1 & -8.9 & NO & 0.999 & NO & bb \\
\hline + \(x^{2}\) & 7 180116M1_7 & Standard & 50.000 & 4.24 & 10095.528 & 1117.47¢ & 112.927 & 49.9 & -0.2 & NO & 0.999 & NO & bb \\
\hline 8.4 & 8 180116M1_8 & Standard & 100.000 & 4.23 & 19222.791 & 920.215 & 261.118 & 100.1 & 0.1 & NO & 0.999 & NO & bb \\
\hline 9 & 9 180116M1_9 & Standard & 250.000 & 4.23 & 39964.934 & 1041.621 & 479.600 & 159.0 & -36.4 & NO & 0.999 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: L-PFOA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999726\)
Calibration curve: \(-7.16737 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+1.04718^{*} \mathrm{x}+0.112994\)
Response type: Internal Std (Ref 38 ), Area * IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & , & F & \\
\hline 4 & 1 180116M1_1 & Standard & 0.250 & 4.29 & 369.764 & 11449.431 & 0.404 & 0.3 & 11.0 & NO & 1.000 & NO & bb \\
\hline 2 y & 2 180116M1_2 & Standard & 0.500 & 4.29 & 637.650 & 13002.049 & 0.613 & 0.5 & -4.5 & NO & 1.000 & NO & bb \\
\hline 3 & 3 180116M1_3 & Standard & 1.000 & 4.29 & 1317.634 & 14277.301 & 1.154 & 1.0 & -0.6 & NO & 1.000 & NO & bb \\
\hline 4 - 4 dex & 4 180116M1_4 & Standard & 2.000 & 4.29 & 1971.440 & 11199.146 & 2.200 & 2.0 & -0.3 & NO & 1.000 & NO & bd \\
\hline 5 - & 5 180116M1_5 & Standard & 5.000 & 4.29 & 5257.171 & 11989.519 & 5.481 & 5.1 & 2.6 & NO & 1.000 & NO & bb \\
\hline & 6 180116M1_6 & Standard & 10.000 & 4.29 & 9391.745 & 12243.932 & 9.588 & 9.1 & -9.5 & NO & 1.000 & NO & bb \\
\hline 7 & 7 180116M1_7 & Standard & 50.000 & 4.29 & 46541.707 & 11080.365 & 52.505 & 50.2 & 0.4 & NO & 1.000 & NO & bb \\
\hline 8 \% & 8 180116M1_8 & Standard & 100.000 & 4.29 & 95594.047 & 11357.656 & 105.209 & 101.1 & 1.1 & NO & 1.000 & NO & bb \\
\hline 9. 女nate & 9 180116M1_9 & Standard & 250.000 & 4.29 & 214226.078 & 10420.163 & 256.985 & 249.6 & -0.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Dataset: U:\Q4.PROIresults\180116M1\180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: PFHpS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998907\)
Calibration curve: \(-0.000515033^{*} x^{\wedge} 2+0.287945{ }^{*} x+-0.0780111\)
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Fla & COD & D & du \\
\hline & 1 180116M1_1 & Standard & 0.250 & 4.40 & 54.283 & 11449.431 & 0.059 & 0.5 & 90.9 & NO & 0.999 & NO & MMX \\
\hline \(2 \times\) & 2 180116M1_2 & Standard & 0.500 & 4.40 & 91.894 & 13002.049 & 0.088 & 0.6 & 15.7 & NO & 0.999 & NO & bb \\
\hline  & 3 180116M1_3 & Standard & 1.000 & 4.40 & 190.161 & 14277.301 & 0.166 & 0.9 & -15.0 & NO & 0.999 & NO & bb \\
\hline & 4 180116M1_4 & Standard & 2.000 & 4.40 & 440.732 & 11199.146 & 0.492 & 2.0 & -0.7 & NO & 0.999 & NO & bb \\
\hline & 5 180116M1_5 & Standard & 5.000 & 4.40 & 1375.000 & 11989.519 & 1.434 & 5.3 & 6.0 & NO & 0.999 & NO & bb \\
\hline , & 6 180116M1_6 & Standard & 10.000 & 4.40 & 2484.676 & 12243.932 & 2.537 & 9.2 & -7.7 & NO & 0.999 & NO & bb \\
\hline  & 7 180116M1_7 & Standard & 50.000 & 4.40 & 11791.681 & 11080.365 & 13.302 & 51.1 & 2.3 & NO & 0.999 & NO & bb \\
\hline - \({ }^{\text {cmay }}\) & 8 180116M1_8 & Standard & 100.000 & 4.40 & 21305.338 & 11357.656 & 23.448 & 99.4 & -0.6 & NO & 0.999 & NO & bb \\
\hline 9 & 9 180116M1_9 & Standard & 250.000 & 4.40 & 53331.574 & 10420.163 & 63.976 & & & NO & 0.999 & NO & bbXI \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999213\)
Calibration curve: \(-0.00113985{ }^{*} x^{\wedge} 2+1.33616\) * \(x+-0.00709813\)
Response type: Internal Std (Ref 39 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# & Type & Std. Conc & RT & Area & IS Area & Response & Conce, & & nc. & CoD & D & xcl \\
\hline  & 1 180116M1_1 & Standard & 0.250 & 4.72 & 336.573 & 10717.531 & 0.393 & 0.3 & 19.7 & NO & 0.999 & NO & bb \\
\hline 4 & 2 180116M1_2 & Standard & 0.500 & 4.72 & 613.169 & 10745.446 & 0.713 & 0.5 & 7.9 & No & 0.999 & NO & bb \\
\hline 6. & 3 180116M1_3 & Standard & 1.000 & 4.72 & 1074.246 & 12645.761 & 1.062 & 0.8 & -19.9 & NO & 0.999 & NO & bb \\
\hline 4 - 4 - & 4 180116M1_4 & Standard & 2.000 & 4.72 & 2115.573 & 9439.675 & 2.801 & 2.1 & 5.3 & NO & 0.999 & NO & bb \\
\hline 50 - & 5 180116M1_5 & Standard & 5.000 & 4.72 & 6471.356 & 12821.122 & 6.309 & 4.7 & -5.1 & NO & 0.999 & NO & bb \\
\hline & 6 180116M1_6 & Standard & 10.000 & 4.72 & 10510.558 & 11142.601 & 11.791 & 8.9 & -11.0 & NO & 0.999 & NO & bb \\
\hline & 7 180116M1_7 & Standard & 50.000 & 4.72 & 52936.535 & 10043.859 & 65.882 & 51.6 & 3.2 & NO & 0.999 & NO & bb \\
\hline 8 -xvs & 8 180116M1_8 & Standard & 100.000 & 4.72 & 112468.070 & 11474.841 & 122.516 & 100.3 & 0.3 & NO & 0.999 & NO & bb \\
\hline 9 9 5 & 9 180116M1_9 & Standard & 250.000 & 4.72 & 229778.922 & 10948.215 & 262.347 & 249.4 & -0.2 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PROIresults|180116M11180116M1-CRV.qld
Last Altered:
Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed:
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: PFOSA}

Coefficient of Determination: \(R^{\wedge} 2=0.999429\)
Calibration curve: -0.00189304 * \(x^{\wedge} 2+1.25215\) * \(x+-0.0907594\)
Response type: Internal Std (Ref 40 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{ompound name: L-PFOS}

Coefficient of Determination: \(R^{\wedge} 2=0.999296\)
Calibration curve: \(-0.000377183^{*} x^{\wedge} 2+1.18185 * x+-0.0427942\)
Response type: Internal Std (Ref 41 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Na & Type & Std. Conc & RT & Area & IS Area & Response & Conc & Dev & nc. & COD & dra & xclu \\
\hline \({ }^{4}+{ }^{2}\) & 1 180116M1_1 & Standard & 0.250 & 4.80 & 64.016 & 2748.249 & 0.291 & 0.3 & 13.0 & NO & 0.999 & NO & MM \\
\hline 2 & 2 180116M1_2 & Standard & 0.500 & 4.80 & 135.412 & 3062.637 & 0.553 & 0.5 & 0.8 & NO & 0.999 & NO & MM \\
\hline 3.2 & 3 180116M1_3 & Standard & 1.000 & 4.80 & 255.868 & 3581.426 & 0.893 & 0.8 & -20.8 & NO & 0.999 & NO & MM \\
\hline 4 - \({ }^{\text {a }}\) & 4 180116M1_4 & Standard & 2.000 & 4.80 & 478.262 & 2753.752 & 2.171 & 1.9 & -6.3 & NO & 0.999 & NO & MM \\
\hline  & 5 180116M1_5 & Standard & 5.000 & 4.80 & 1436.165 & 2607.384 & 6.885 & 5.9 & 17.5 & NO & 0.999 & NO & MM \\
\hline 6. \({ }^{\text {a }}\) & 6 180116M1_6 & Standard & 10.000 & 4.80 & 2563.387 & 2808.887 & 11.407 & 9.7 & -2.8 & NO & 0.999 & NO & MM \\
\hline 7. & 7 180116M1_7 & Standard & 50.000 & 4.80 & 12649.566 & 2788.892 & 56.696 & 48.8 & -2.5 & NO & 0.999 & NO & MM \\
\hline 8 - & 8 180116M1_8 & Standard & 100.000 & 4.80 & 23828.654 & 2574.809 & 115.682 & 101.2 & 1.2 & NO & 0.999 & NO & MM \\
\hline 9 9. & 9 180116M1_9 & Standard & 250.000 & 4.80 & 60560.223 & 2787.223 & 271.597 & 249.8 & -0.1 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

Dataset:
U:\Q4.PRO|results\180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: PFDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999172\)
Calibration curve: 0.00451209 * \(x^{\wedge} 2+1.16201^{*} x+0.0740213\)
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: 8:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997721\)
Calibration curve: \(0.000866712{ }^{*} x^{\wedge} 2+0.17819{ }^{*} x+0.0132104\)
Response type: Internal Std ( Ref 42 ), Area * ( IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & , & & & & \(\mathrm{D}^{\text {c }}\) & D & xclu \\
\hline + & 1 180116M1_1 & Standard & 0.250 & 5.06 & 55.176 & 11939.189 & 0.058 & 0.2 & -0.1 & NO & 0.998 & NO & MM \\
\hline 2 . \({ }^{\text {che }}\) & 2 180116M1_2 & Standard & 0.500 & 5.06 & 67.507 & 10330.241 & 0.082 & 0.4 & -23.3 & NO & 0.998 & NO & bb \\
\hline  & 3 180116M1_3 & Standard & 1.000 & 5.06 & 148.733 & 9086.503 & 0.205 & 1.1 & 6.9 & NO & 0.998 & NO & bb \\
\hline 4 4 5 & 4 180116M1_4 & Standard & 2.000 & 5.06 & 345.407 & 9162.107 & 0.471 & 2.5 & 27.0 & NO & 0.998 & NO & bb \\
\hline 5. \({ }^{\text {a }}\), & 5 180116M1_5 & Standard & 5.000 & 5.07 & 830.481 & 9184.283 & 1.130 & 6.1 & 21.8 & NO & 0.998 & NO & bb \\
\hline 6. \({ }^{\text {c }}\) & 6 180116M1_6 & Standard & 10.000 & 5.06 & 1535.274 & 10128.068 & 1.895 & 10.1 & 0.7 & NO & 0.998 & NO & bb \\
\hline 7.4 & 7 180116M1_7 & Standard & 50.000 & 5.07 & 7280.793 & 8665.843 & 10.502 & 47.8 & -4.5 & NO & 0.998 & NO & bb \\
\hline 8 & 8 180116M1_8 & Standard & 100.000 & 5.06 & 17293.080 & 8071.998 & 26.779 & 100.8 & 0.8 & NO & 0.998 & NO & bb \\
\hline 9 - \({ }^{\text {a }}\) & 9 180116M1_9 & Standard & 250.000 & 5.06 & 39548.992 & 9659.693 & 51.178 & 161.0 & -35.6 & NO & 0.998 & NO & bbX \\
\hline
\end{tabular}

Dataset: U:IQ4.PROIresults|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed:
Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: N-MeFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996422\)
Calibration curve: -0.000436198 * \(x^{\wedge} 2+1.42659\) * \(x+0.0368734\)
Response type: Internal Std ( Ref 44 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / \mathrm{x}\), Axis trans: None


\section*{Compound name: N-EtFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998687\)
Calibration curve: \(-0.000995229^{*} x^{\wedge} 2+1.24486{ }^{*} x+-0.111773\)
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{llllllllllllll}
\hline
\end{tabular}
```

Dataset:
U:IQ4.PRO\results\180116M1\180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

```

\section*{Compound name: PFUdA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999765\)
Calibration curve: \(0.000117185^{*} x^{\wedge} 2+1.20421^{*} x+-0.000421214\)
Response type: Internal Std (Ref 46 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFDS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997540\)
Calibration curve: -0.000152273 * \(x^{\wedge} 2+0.561726\) * \(x+-0.0687212\)
Response type: Internal Std (Ref 47), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: U:IQ4.PROTresults|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time Printed: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: PFDoA}

Coefficient of Determination: R^2 \(=0.994614\)
Calibration curve: -0.0264859 * \(x^{\wedge} 2+3.1618\) * \(x+-0.440243\)
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: N-MeFOSA}

Correlation coefficient: \(r=0.998343, r^{\wedge} 2=0.996689\)
Calibration curve: 0.967469 * \(x+0.364764\)
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. F & CoD & & \\
\hline + \({ }^{2}\) & 1 180116M1_1 & Standard & 1.250 & 5.80 & 176.876 & 18664.809 & 1.421 & 1.1 & -12.6 & NO & 0.997 & NO & bb \\
\hline & 2 180116M1_2 & Standard & 2.500 & 5.79 & 332.038 & 18295.717 & 2.722 & 2.4 & -2.5 & NO & 0.997 & NO & bb \\
\hline & 3 180116M1_3 & Standard & 5.000 & 5.79 & 698.400 & 19197.830 & 5.457 & 5.3 & 5.3 & NO & 0.997 & NO & bb \\
\hline - & 4 180116M1_4 & Standard & 10.000 & 5.80 & 1317.378 & 18358.277 & 10.764 & 10.7 & 7.5 & NO & 0.997 & NO & bb \\
\hline \% & 5 180116M1_5 & Standard & 25.000 & 5.80 & 3557.406 & 19128.270 & 27.896 & 28.5 & 13.8 & NO & 0.997 & NO & bb \\
\hline  & 6 180116M1_6 & Standard & 50.000 & 5.79 & 6815.889 & 19283.318 & 53.019 & 54.4 & 8.8 & NO & 0.997 & NO & bb \\
\hline 7. \({ }^{\text {c }}\) - & 7 180116M1_7 & Standard & 250.000 & 5.80 & 32148.586 & 18067.268 & 266.907 & 275.5 & 10.2 & NO & 0.997 & NO & bb \\
\hline 8 x & 8 180116M1_8 & Standard & 500.000 & 5.79 & 63347.246 & 18870.586 & 503.540 & 520.1 & 4.0 & NO & 0.997 & NO & bb \\
\hline 9 \% & 9 180116M1_9 & Standard & 1250.000 & 5.79 & 144017.594 & 18668.119 & 1157.194 & 1195.7 & -4.3 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}
```

Dataset:
U:IQ4.PROIresults\180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed:
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

```

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.995300\)
Calibration curve: \(-0.000670158^{*} x^{\wedge} 2+2.3193^{*} x+0.0178559\)
Response type: Internal Std (Ref 47 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFTeDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998877\)
Calibration curve: \(0.0126791^{*} x^{\wedge} 2+1.7855^{*} x+0.404941\)
Response type: Internal Std ( Ref 49 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Fla & CoD & D Fi & xcli \\
\hline \(1{ }^{\text {d }}\) & 1 180116M1_1 & Standard & 0.250 & 6.17 & 177.581 & 4512.448 & 0.492 & 0.0 & -80.5 & NO & 0.999 & NO & bbX \\
\hline 2 2-ty & 2 180116M1_2 & Standard & 0.500 & 6.15 & 358.711 & 3698.448 & 1.212 & 0.5 & -9.8 & NO & 0.999 & NO & bb \\
\hline 3 , & 3 180116M1_3 & Standard & 1.000 & 6.15 & 634.376 & 3848.938 & 2.060 & 0.9 & -7.9 & NO & 0.999 & NO & bb \\
\hline & 4 180116M1_4 & Standard & 2.000 & 6.16 & 1465.562 & 3836.873 & 4.775 & 2.4 & 20.3 & NO & 0.999 & NO & bb \\
\hline + & 5 180116M1_5 & Standard & 5.000 & 6.16 & 3364.228 & 4331.780 & 9.708 & 5.0 & 0.6 & NO & 0.999 & NO & bb \\
\hline 6 & 6 180116M1_6 & Standard & 10.000 & 6.16 & 6000.745 & 3979.488 & 18.849 & 9.7 & -3.3 & NO & 0.999 & NO & bb \\
\hline 7 7etuta & 7 180116M1_7 & Standard & 50.000 & 6.16 & 32479.619 & 3342.038 & 121.481 & 50.0 & 0.1 & NO & 0.999 & NO & bb \\
\hline & 8 180116M1_8 & Standard & 100.000 & 6.15 & 59941.289 & 4303.681 & 174.099 & 66.2 & -33.8 & NO & 0.999 & NO & bbX \\
\hline 9 - & 9 180116M1_9 & Standard & 250.000 & 6.15 & 113294.648 & 4158.729 & 340.533 & 107.9 & -56.9 & NO & 0.999 & NO & bbX \\
\hline
\end{tabular}

Dataset: U:IQ4.PROiresults|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed:
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

Compound name: N-EtFOSA
Coefficient of Determination: \(R^{\wedge} 2=0.999777\)
Calibration curve: \(-7.91814 e-005\) * \(x^{\wedge} 2+0.911816\) * \(x+0.224562\)
Response type: Internal Std ( Ref 50 ), Area * ( IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & CoD & CoDFlag & \(x=\) excluded \\
\hline 1 - & 1 180116M1_1 & Standard & 1.250 & 6.17 & 260.452 & 28223.400 & 1.384 & 1.3 & 1.8 & NO & 1.000 & NO & bb \\
\hline 2. 4 - & 2 180116M1_2 & Standard & 2.500 & 6.17 & 465.609 & 28298.604 & 2.468 & 2.5 & -1.6 & NO & 1.000 & NO & bb \\
\hline & 3 180116M1_3 & Standard & 5.000 & 6.17 & 922.511 & 29142.270 & 4.748 & 5.0 & -0.7 & NO & 1.000 & NO & bb \\
\hline 4 ata & 4 180116M1_4 & Standard & 10.000 & 6.17 & 1699.594 & 27914.186 & 9.133 & 9.8 & -2.2 & NO & 1.000 & NO & bb \\
\hline & 5 180116M1_5 & Standard & 25.000 & 6.17 & 4533.878 & 29278.414 & 23.228 & 25.3 & 1.1 & NO & 1.000 & NO & bb \\
\hline & 6 180116M1_6 & Standard & 50.000 & 6.17 & 9180.264 & 29238.688 & 47.096 & 51.6 & 3.3 & NO & 1.000 & NO & bb \\
\hline  & 7 180116M1_7 & Standard & 250.000 & 6.18 & 41044.523 & 28438.600 & 216.490 & 242.3 & -3.1 & NO & 1.000 & NO & bb \\
\hline 4- & 8 180116M1_8 & Standard & 500.000 & 6.17 & 81742.750 & 27681.230 & 442.950 & 507.9 & 1.6 & NO & 1.000 & NO & bb \\
\hline 9. & 9 180116M1_9 & Standard & 1250.000 & 6.17 & 174602.281 & 25805.504 & 1014.913 & 1248.1 & -0.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998292\)
Calibration curve: -0.00121541 * \(x^{\wedge} 2+0.832632\) * \(x+0.0987095\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c & CoD & D & xd \\
\hline & 1 180116M1_1 & Standard & 0.250 & 6.48 & 131.731 & 2287.884 & 0.288 & 0.2 & -9.1 & NO & 0.998 & NO & bb \\
\hline , & 2 180116M1_2 & Standard & 0.500 & 6.48 & 291.158 & 2750.796 & 0.529 & 0.5 & 3.5 & NO & 0.998 & NO & bb \\
\hline & 3 180116M1_3 & Standard & 1.000 & 6.47 & 426.316 & 2497.487 & 0.853 & 0.9 & -9.2 & NO & 0.998 & NO & bb \\
\hline & 4 180116M1_4 & Standard & 2.000 & 6.48 & 978.529 & 2391.055 & 2.046 & 2.3 & 17.4 & NO & 0.998 & NO & bb \\
\hline \% & 5 180116M1_5 & Standard & 5.000 & 6.48 & 2304.914 & 2688.168 & 4.287 & 5.1 & 1.4 & NO & 0.998 & NO & bb \\
\hline 6 +索 & 6 180116M1_6 & Standard & 10.000 & 6.48 & 5019.895 & 3056.490 & 8.212 & 9.9 & -1.1 & NO & 0.998 & NO & bb \\
\hline 7 \% & 7 180116M1_7 & Standard & 50.000 & 6.48 & 22305.412 & 3080.510 & 36.204 & 46.5 & -7.0 & NO & 0.998 & NO & bb \\
\hline \(\cdots\) & 8 180116M1_8 & Standard & 100.000 & 6.47 & 39735.074 & 2676.116 & 74.240 & 105.2 & 5.2 & NO & 0.998 & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 250.000 & 6.47 & 88025.656 & 3344.985 & 131.579 & 246.9 & -1.3 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}
```

Dataset: U:\Q4.PRO\results\180116M1\180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

```

\section*{Compound name: PFODA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.993376\)
Calibration curve: \(-0.00110199^{*} x^{\wedge} 2+0.823967^{*} x+0.015256\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc, Flag & - \(4 \times\) CoD & 2 CoD Flag & \(x=\) excluded \\
\hline 蚛維 & 1 180116M1_1 & Standard & 0.250 & 6.71 & 112.793 & 2287.884 & 0.247 & 0.3 & 12.3 & NO & 0.993 & NO & bb \\
\hline  & 2 180116M1_2 & Standard & 0.500 & 6.70 & 206.991 & 2750.796 & 0.376 & 0.4 & -12.3 & NO & 0.993 & NO & bb \\
\hline 3 l & 3 180116M1_3 & Standard & 1.000 & 6.70 & 465.737 & 2497.487 & 0.932 & 1.1 & 11.5 & NO & 0.993 & NO & bb \\
\hline ate & 4 180116M1_4 & Standard & 2.000 & 6.70 & 917.722 & 2391.055 & 1.919 & 2.3 & 15.9 & NO & 0.993 & NO & bb \\
\hline & 5 180116M1_5 & Standard & 5.000 & 6.71 & 2073.762 & 2688.168 & 3.857 & 4.7 & -6.2 & NO & 0.993 & NO & bb \\
\hline 6 - \({ }^{\text {ata }}\) & 6 180116M1_6 & Standard & 10.000 & 6.71 & 4441.363 & 3056.490 & 7.265 & 8.9 & -10.9 & NO & 0.993 & NO & bb \\
\hline & 7 180116M1_7 & Standard & 50.000 & 6.71 & 20915.785 & 3080.510 & 33.949 & 43.7 & -12.5 & NO & 0.993 & NO & bb \\
\hline 8 8 & 8 180116M1_8 & Standard & 100.000 & 6.70 & 42109.531 & 2676.116 & 78.677 & 112.3 & 12.3 & NO & 0.993 & NO & bb \\
\hline 9 - \({ }^{\text {a }}\) & 9 180116M1_9 & Standard & 250.000 & 6.70 & 90420.867 & 3344.985 & 135.159 & 243.0 & -2.8 & NO & 0.993 & NO & bb \\
\hline
\end{tabular}

Compound name: N-MeFOSE
Correlation coefficient: \(\mathrm{r}=0.998549, \mathrm{r}^{\wedge} 2=0.997101\)
Calibration curve: \(0.949387^{*}\) x + 0.316534
Response type: Internal Std (Ref 52 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & Dev & & CoD & CoD F & xcluded \\
\hline -maty & 1 180116M1_1 & Standard & 1.250 & 6.29 & 218.574 & 25858.709 & 1.268 & 1.0 & -19.8 & NO & 0.997 & NO & bb \\
\hline 2 , & 2 180116M1_2 & Standard & 2.500 & 6.29 & 506.060 & 27276.381 & 2.783 & 2.6 & 3.9 & NO & 0.997 & NO & bb \\
\hline 3 - \({ }^{\text {a }}\) & 3 180116M1_3 & Standard & 5.000 & 6.29 & 1045.355 & 28903.693 & 5.425 & 5.4 & 7.6 & NO & 0.997 & NO & bb \\
\hline 4 - & 4 180116M1_4 & Standard & 10.000 & 6.29 & 1554.576 & 27366.512 & 8.521 & 8.6 & -13.6 & NO & 0.997 & NO & bb \\
\hline & 5 180116M1_5 & Standard & 25.000 & 6.30 & 5382.625 & 32377.256 & 24.937 & 25.9 & 3.7 & NO & 0.997 & NO & bd \\
\hline 6 & 6 180116M1_6 & Standard & 50.000 & 6.30 & 9134.290 & 25632.105 & 53.454 & 56.0 & 11.9 & NO & 0.997 & NO & bb \\
\hline 7 . & 7 180116M1_7 & Standard & 250.000 & 6.30 & 52939.156 & 29830.061 & 266.204 & 280.1 & 12.0 & NO & 0.997 & NO & bb \\
\hline 8 - \({ }^{\text {a }}\) & 8 180116M1_8 & Standard & 500.000 & 6.29 & 105570.414 & 35058.652 & 451.688 & 475.4 & -4.9 & NO & 0.997 & NO & bd \\
\hline 9 & 9 180116M1_9 & Standard & 1250.000 & 6.29 & 213340.188 & 27203.719 & 1176.348 & 1238.7 & -0.9 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}
```

Dataset: U:\Q4.PROIresults\180116M1\180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

```

Compound name: N-EtFOSE
Correlation coefficient: \(\mathrm{r}=0.998665, \mathrm{r}^{\wedge} 2=0.997331\)
Calibration curve: \(1.07655{ }^{*} \times+0.502038\)
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline max & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conce Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 - -1/butsm & 1 180116M1_1 & Standard & 1.250 & 6.45 & 290.612 & 27220.227 & 1.601 & 1.0 & -18.3 & NO & 0.997 & NO & bb \\
\hline 2 & 2 180116M1_2 & Standard & 2.500 & 6.44 & 587.458 & 25274.818 & 3.486 & 2.8 & 10.9 & NO & 0.997 & NO & bb \\
\hline 3.7 atimath & 3 180116M1_3 & Standard & 5.000 & 6.44 & 1066.879 & 29485.193 & 5.428 & 4.6 & -8.5 & NO & 0.997 & NO & bb \\
\hline 4 - & 4 180116M1_4 & Standard & 10.000 & 6.45 & 1937.175 & 25789.371 & 11.267 & 10.0 & -0.0 & NO & 0.997 & NO & bb \\
\hline \[
5
\] & 5 180116M1_5 & Standard & 25.000 & 6.45 & 6079.333 & 30222.031 & 30.173 & 27.6 & 10.2 & NO & 0.997 & NO & bb \\
\hline 6 为 & 6 180116M1_6 & Standard & 50.000 & 6.45 & 11017.960 & 28652.809 & 57.680 & 53.1 & 6.2 & NO & 0.997 & NO & bb \\
\hline 7 & 7 180116M1_7 & Standard & 250.000 & 6.45 & 44678.395 & 26491.758 & 252.975 & 234.5 & -6.2 & NO & 0.997 & NO & bb \\
\hline \[
8
\] & 8 180116M1_8 & Standard & 500.000 & 6.44 & 110892.625 & 28580.506 & 582.001 & 540.2 & 8.0 & NO & 0.997 & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 1250.000 & 6.45 & 234203.828 & 26736.955 & 1313.933 & 1220.0 & -2.4 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBA}

Response Factor: 0.885989
RRF SD: 0.020724, Relative SD: 2.33909
Response type: Internal Std (Ref 54 ). Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & 16. Flag Cob & CoD Flag & \(x=\) excluded \\
\hline 1 - Mrens mad & 1 180116M1_1 & Standard & 12.500 & 1.44 & 9686.104 & 11050.020 & 10.957 & 12.4 & -1.1 & NO & NO & bb \\
\hline 2 Mite & 2 180116M1_2 & Standard & 12.500 & 1.44 & 9490.231 & 10571.813 & 11.221 & 12.7 & 1.3 & NO & NO & bb \\
\hline 3. & 3 180116M1_3 & Standard & 12.500 & 1.42 & 9853.670 & 11595.762 & 10.622 & 12.0 & -4.1 & NO & NO & bb \\
\hline 4 - +5 & 4 180116M1_4 & Standard & 12.500 & 1.43 & 9420.711 & 10569.876 & 11.141 & 12.6 & 0.6 & NO & NO & bb \\
\hline 5 ata & 5 180116M1_5 & Standard & 12.500 & 1.42 & 9738.424 & 10822.726 & 11.248 & 12.7 & 1.6 & NO & NO & bb \\
\hline \(6 \cdots\) & 6 180116M1_6 & Standard & 12.500 & 1.43 & 10224.787 & 11465.634 & 11.147 & 12.6 & 0.7 & NO & NO & bb \\
\hline 7 - & 7 180116M1_7 & Standard & 12.500 & 1.44 & 9889.910 & 10986.499 & 11.252 & 12.7 & 1.6 & NO & NO & bb \\
\hline \[
8 \text { ex }
\] & 8 180116M1_8 & Standard & 12.500 & 1.43 & 10226.978 & 11236.524 & 11.377 & 12.8 & 2.7 & NO & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 12.500 & 1.43 & 9870.156 & 11521.590 & 10.708 & 12.1 & -3.3 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFPeA}

Response Factor: 0.92926
RRF SD: 0.050219 , Relative SD: 5.4042
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Compound name: 13C3-PFBS}

Response Factor: 0.117345
RRF SD: 0.00543451, Relative SD: 4.63124
Response type: Internal Std ( Ref 55 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - \({ }^{\text {a }}\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & \multicolumn{3}{|l|}{Conc \% Dev Conc. Flag CoD} & \multicolumn{2}{|l|}{CoD Flag x excluded} \\
\hline 1 1-matame & 1 180116M1_1 & Standard & 12.500 & 2.66 & 1383.717 & 12073.535 & 1.433 & 12.2 & -2.3 & NO & NO & bb \\
\hline +imet & 2 180116M1_2 & Standard & 12.500 & 2.66 & 1549.968 & 12476.502 & 1.553 & 13.2 & 5.9 & NO & NO & bb \\
\hline Sx & 3 180116M1_3 & Standard & 12.500 & 2.66 & 1476.877 & 12756.279 & 1.447 & 12.3 & -1.3 & NO & NO & bb \\
\hline & 4 180116M1_4 & Standard & 12.500 & 2.66 & 1418.377 & 12144.904 & 1.460 & 12.4 & -0.5 & NO & NO & bb \\
\hline 4xumy & 5 180116M1_5 & Standard & 12.500 & 2.66 & 1407.387 & 12731.519 & 1.382 & 11.8 & -5.8 & NO & NO & bb \\
\hline  & 6 180116M1_6 & Standard & 12.500 & 2.66 & 1515.414 & 13469.731 & 1.406 & 12.0 & -4.1 & No & NO & bb \\
\hline 7 7 & 7 180116M1_7 & Standard & 12.500 & 2.66 & 1407.596 & 11818.463 & 1.489 & 12.7 & 1.5 & NO & NO & bb \\
\hline 8 & 8 180116M1_8 & Standard & 12.500 & 2.66 & 1445.271 & 11344.723 & 1.592 & 13.6 & 8.6 & NO & NO & bb \\
\hline \(9{ }^{2}\) & 9 180116M1_9 & Standard & 12.500 & 2.66 & 1310.550 & 11380.839 & 1.439 & 12.3 & -1.9 & NO & NO & bb \\
\hline
\end{tabular}
```

Dataset: U:\Q4.PROIresultsl180116M1\180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

```

\section*{Compound name: 13C2-PFHxA}

Response Factor: 0.688653
RRF SD: 0.0526107, Relative SD: 7.63966
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Nata & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & ne. & Dev & ne. Flag & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 180116M1_1 & Standard & 5.000 & 3.16 & 3223.630 & 12073.535 & 3.337 & 4.8 & -3.1 & NO & NO & bb \\
\hline 2 ders & 2 180116M1_2 & Standard & 5.000 & 3.15 & 3375.689 & 12476.502 & 3.382 & 4.9 & -1.8 & NO & NO & bb \\
\hline 3 - & 3 180116M1_3 & Standard & 5.000 & 3.16 & 3482.693 & 12756.279 & 3.413 & 5.0 & -0.9 & NO & NO & bb \\
\hline 4 - mothers & 4 180116M1_4 & Standard & 5.000 & 3.16 & 3382.451 & 12144.904 & 3.481 & 5.1 & 1.1 & NO & NO & bb \\
\hline 5 & 5 180116M1_5 & Standard & 5.000 & 3.16 & 3263.638 & 12731.519 & 3.204 & 4.7 & -6.9 & NO & NO & bb \\
\hline 6 - was & 6 180116M1_6 & Standard & 5.000 & 3.15 & 3483.716 & 13469.731 & 3.233 & 4.7 & -6.1 & NO & NO & bb \\
\hline & 7 180116M1_7 & Standard & 5.000 & 3.16 & 3021.616 & 11818.463 & 3.196 & 4.6 & -7.2 & NO & NO & bb \\
\hline & 8 180116M1_8 & Standard & 5.000 & 3.16 & 3567.892 & 11344.723 & 3.931 & 5.7 & 14.2 & NO & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 5.000 & 3.16 & 3470.238 & 11380.839 & 3.811 & 5.5 & 10.7 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFHpA}

Response Factor: 0.726952
RRF SD: 0.0559992 , Relative SD: 7.70329
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD \({ }^{\text {andere }}\) CoD Fla & cluded \\
\hline & 1 180116M1_1 & Standard & 12.500 & 3.78 & 8450.651 & 12073.535 & 8.749 & 12.0 & -3.7 & NO & NO & bb \\
\hline 2 dex & 2 180116M1_2 & Standard & 12.500 & 3.77 & 8364.292 & 12476.502 & 8.380 & 11.5 & -7.8 & NO & NO & bb \\
\hline & 3 180116M1_3 & Standard & 12.500 & 3.77 & 9033.274 & 12756.279 & 8.852 & 12.2 & -2.6 & NO & NO & bb \\
\hline 4 - & 4 180116M1_4 & Standard & 12.500 & 3.78 & 8965.800 & 12144.904 & 9.228 & 12.7 & 1.6 & NO & NO & bb \\
\hline 5 & 5 180116M1_5 & Standard & 12.500 & 3.78 & 8580.876 & 12731.519 & 8.425 & 11.6 & -7.3 & NO & NO & bb \\
\hline 6 \% & 6 180116M1_6 & Standard & 12.500 & 3.77 & 9087.307 & 13469.731 & 8.433 & 11.6 & -7.2 & NO & NO & bb \\
\hline 7 ? \({ }^{\text {a }}\) & 7 180116M1_7 & Standard & 12.500 & 3.78 & 9092.034 & 11818.463 & 9.616 & 13.2 & 5.8 & NO & NO & bb \\
\hline 8 & 8 180116M1_8 & Standard & 12.500 & 3.77 & 9429.717 & 11344.723 & 10.390 & 14.3 & 14.3 & NO & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 12.500 & 3.77 & 8839.615 & 11380.839 & 9.709 & 13.4 & 6.8 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: U:\Q4.PRO|resultsI180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: 1802-PFHxS}

Response Factor: 0.362384
RRF SD: 0.0296798 , Relative SD: 8.19013
Response type: Internal Std ( Ref 56 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & & Dev & nc Flag & CoD & CoD \({ }^{\text {a }}\) & , \\
\hline 1 (tat & 1 180116M1_1 & Standard & 12.500 & 3.92 & 1163.872 & 3454.812 & 4.211 & 11.6 & -7.0 & NO & & NO & bb \\
\hline 2 2 & 2 180116M1_2 & Standard & 12.500 & 3.92 & 1162.604 & 2963.786 & 4.903 & 13.5 & 8.2 & NO & & NO & bb \\
\hline 3 a & 3 180116M1_3 & Standard & 12.500 & 3.92 & 1232.114 & 3145.618 & 4.896 & 13.5 & 8.1 & NO & & NO & bb \\
\hline 4 - 4 ata & 4 180116M1_4 & Standard & 12.500 & 3.92 & 1027.618 & 3060.330 & 4.197 & 11.6 & -7.3 & NO & & NO & bb \\
\hline 5 & 5 180116M1_5 & Standard & 12.500 & 3.92 & 1007.890 & 3105.605 & 4.057 & 11.2 & -10.4 & NO & & NO & bb \\
\hline 6 - & 6 180116M1_6 & Standard & 12.500 & 3.92 & 1269.069 & 3293.453 & 4.817 & 13.3 & 6.3 & NO & & NO & bb \\
\hline  & 7 180116M1_7 & Standard & 12.500 & 3.92 & 1117.47 C & 2861.310 & 4.882 & 13.5 & 7.8 & NO & & NO & bb \\
\hline & 8 180116M1_8 & Standard & 12.500 & 3.92 & 920.215 & 2787.766 & 4.126 & 11.4 & -8.9 & NO & & NO & bb \\
\hline 9 , 9 & 9 180116M1_9 & Standard & 12.500 & 3.92 & 1041.621 & 2782.713 & 4.679 & 12.9 & 3.3 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-6:2 FTS
Response Factor: 0.218317
RRF SD: 0.0316822, Relative SD: 14.512
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. F & , & clud \\
\hline 1 紶 & 1 180116M1_1 & Standard & 12.500 & 4.24 & 2341.250 & 10385.357 & 2.818 & 12.9 & 3.3 & NO & NO & bb \\
\hline \(2+4\) & 2 180116M1_2 & Standard & 12.500 & 4.23 & 2432.881 & 11407.506 & 2.666 & 12.2 & -2.3 & NO & NO & bb \\
\hline 3. & 3 180116M1_3 & Standard & 12.500 & 4.23 & 2341.103 & 12947.326 & 2.260 & 10.4 & -17.2 & NO & NO & bb \\
\hline 4 & 4 180116M1_4 & Standard & 12.500 & 4.23 & 2165.109 & 11403.713 & 2.373 & 10.9 & -13.0 & NO & NO & bb \\
\hline 5. & 5 180116M1_5 & Standard & 12.500 & 4.24 & 2024.808 & 10734.931 & 2.358 & 10.8 & -13.6 & NO & NO & bb \\
\hline 6 - & 6 180116M1_6 & Standard & 12.500 & 4.23 & 2441.641 & 10788.871 & 2.829 & 13.0 & 3.7 & NO & NO & bb \\
\hline 17 - & 7 180116M1_7 & Standard & 12.500 & 4.24 & 2832.089 & 11185.677 & 3.165 & 14.5 & 16.0 & NO & NO & bb \\
\hline 8 8 & 8 180116M1_8 & Standard & 12.500 & 4.23 & 2892.263 & 10750.554 & 3.363 & 15.4 & 23.2 & NO & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 12.500 & 4.23 & 4093.192 & 10268.148 & 4.983 & 22.8 & 82.6 & NO & NO & bbX \\
\hline
\end{tabular}
```

Dataset: U:\Q4.PRO\results\180116M1\180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

```

\section*{Compound name: 13C2-PFOA}

Response Factor: 1.07118
RRF SD: 0.0619022 , Relative SD: 5.77888
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline (x) & \# Name & \({ }^{4}\) Th Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag us : & CoD CoD Flag & x excluded \\
\hline 1 : \({ }^{\text {a }}\) & 1 180116M1_1 & Standard & 12.500 & 4.29 & 11449.431 & 10385.357 & 13.781 & 12.9 & 2.9 & NO & NO & bb \\
\hline 2 2 & 2 180116M1_2 & Standard & 12.500 & 4.29 & 13002.049 & 11407.506 & 14.247 & 13.3 & 6.4 & NO & NO & bb \\
\hline 3 3 & 3 180116M1_3 & Standard & 12.500 & 4.29 & 14277.301 & 12947.326 & 13.784 & 12.9 & 2.9 & NO & NO & bb \\
\hline 4 - 4 亚: & 4 180116M1_4 & Standard & 12.500 & 4.29 & 11199.146 & 11403.713 & 12.276 & 11.5 & -8.3 & NO & NO & bb \\
\hline 5 - 4 de & 5 180116M1_5 & Standard & 12.500 & 4.30 & 11989.519 & 10734.931 & 13.961 & 13.0 & 4.3 & NO & NO & bb \\
\hline  & 6 180116M1_6 & Standard & 12.500 & 4.29 & 12243.932 & 10788.871 & 14.186 & 13.2 & 5.9 & NO & NO & bb \\
\hline & 7 180116M1_7 & Standard & 12.500 & 4.29 & 11080.365 & 11185.677 & 12.382 & 11.6 & -7.5 & NO & NO & bb \\
\hline \[
8
\] & 8 180116M1_8 & Standard & 12.500 & 4.29 & 11357.656 & 10750.554 & 13.206 & 12.3 & -1.4 & NO & NO & bb \\
\hline 9 \% & 9 180116M1_9 & Standard & 12.500 & 4.29 & 10420.163 & 10268.148 & 12.685 & 11.8 & -5.3 & NO & NO & bb \\
\hline
\end{tabular}

Compound name: 13C5-PFNA
Response Factor: 0.968471
RRF SD: 0.0717027, Relative SD: 7.4037
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & chat & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & D & xclưded \\
\hline \(12+\) & 1 180116M1_1 & Standard & & 12.500 & 4.72 & 10717.531 & 11721.332 & 11.430 & 11.8 & -5.6 & NO & NO & bb \\
\hline 2 2, \({ }^{2}\) & 2 180116M1_2 & Standard & & 12.500 & 4.72 & 10745.446 & 11214.854 & 11.977 & 12.4 & -1.1 & NO & NO & bb \\
\hline 3 ater & 3 180116M1_3 & Standard & & 12.500 & 4.72 & 12645.761 & 13094.815 & 12.071 & 12.5 & -0.3 & NO & NO & bb \\
\hline & 4 180116M1_4 & Standard & & 12.500 & 4.72 & 9439.675 & 9620.638 & 12.265 & 12.7 & 1.3 & NO & NO & bb \\
\hline 5 & 5 180116M1_5 & Standard & & 12.500 & 4.72 & 12821.122 & 11574.011 & 13.847 & 14.3 & 14.4 & NO & NO & bb \\
\hline 6 \% \({ }^{\text {a }}\) & 6 180116M1_6 & Standard & & 12.500 & 4.72 & 11142.601 & 11492.758 & 12.119 & 12.5 & 0.1 & NO & NO & bb \\
\hline 7 & 7 180116M1_7 & Standard & & 12.500 & 4.72 & 10043.859 & 11984.002 & 10.476 & 10.8 & -13.5 & NO & NO & bb \\
\hline 8 - & 8 180116M1_8 & Standard & & 12.500 & 4.72 & 11474.841 & 11777.771 & 12.178 & 12.6 & 0.6 & NO & NO & bb \\
\hline 9. & 9 180116M1_9 & Standard & & 12.500 & 4.72 & 10948.215 & 10870.310 & 12.590 & 13.0 & 4.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset: U:IQ4.PRO|results1180116M1180116M1-CRV.qld}

Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: 13C8-PFOSA}

Response Factor: 0.283348
RRF SD: 0.0200449 , Relative SD: 7.0743
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF


Compound name: 13C8-PFOS
Response Factor: 0.99887
RRF SD: 0.129919, Relative SD: 13.0066
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Tex mata & \#Name & Type &  & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & CoD Fl & \(x=\) excluded \\
\hline 1 1 & 1 180116M1_1 & Standard & & 12.500 & 4.81 & 2748.249 & 2792.583 & 12.302 & 12.3 & -1.5 & NO & NO & bb \\
\hline 2 2- & 2 180116M1_2 & Standard & & 12.500 & 4.80 & 3062.637 & 2843.265 & 13.464 & 13.5 & 7.8 & NO & NO & bb \\
\hline & 3 180116M1_3 & Standard & & 12.500 & 4.80 & 3581.426 & 2884.635 & 15.519 & 15.5 & 24.3 & NO & NO & bb \\
\hline 3t.y & 4 180116M1_4 & Standard & & 12.500 & 4.81 & 2753.752 & 2699.778 & 12.750 & 12.8 & 2.1 & NO & NO & bb \\
\hline & 5 180116M1_5 & Standard & & 12.500 & 4.81 & 2607.384 & 2978.699 & 10.942 & 11.0 & -12.4 & No & NO & bb \\
\hline 箱 & 6 180116M1_6 & Standard & & 12.500 & 4.81 & 2808.887 & 3049.198 & 11.515 & 11.5 & -7.8 & NO & NO & bb \\
\hline 4 & 7 180116M1_7 & Standard & & 12.500 & 4.81 & 2788.892 & 2541.166 & 13.719 & 13.7 & 9.9 & NO & NO & bb \\
\hline 8 - \({ }^{\text {a }}\) & 8 180116M1_8 & Standard & & 12.500 & 4.80 & 2574.809 & 3195.924 & 10.071 & 10.1 & -19.3 & NO & NO & bb \\
\hline 9 & 9 180116M1_9 & Standard & & 12.500 & 4.80 & 2787.223 & 2881.351 & 12.092 & 12.1 & -3.2 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PRO|results|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time Printed: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: 13C2-PFDA}

Response Factor: 1.32852
RRF SD: 0.17548, Relative SD: 13.2086
Response type: Internal Std ( Ref 60 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \#Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. Fia & D Fl & xclu \\
\hline & 1 180116M1_1 & Standard & 12.500 & 5.10 & 11939.189 & 8821.698 & 16.917 & 12.7 & 1.9 & NO & NO & bb \\
\hline 4 4 de & 2 180116M1_2 & Standard & 12.500 & 5.09 & 10330.241 & 8328.056 & 15.505 & 11.7 & -6.6 & NO & NO & bb \\
\hline 3 +e- & 3 180116M1_3 & Standard & 12.500 & 5.09 & 9086.503 & 7667.870 & 14.813 & 11.1 & -10.8 & NO & NO & bb \\
\hline \(4-4\) & 4 180116M1_4 & Standard & 12.500 & 5.10 & 9162.107 & 6189.709 & 18.503 & 13.9 & 11.4 & NO & NO & bb \\
\hline 5 - 4xay & 5 180116M1_5 & Standard & 12.500 & 5.10 & 9184.283 & 6495.553 & 17.674 & 13.3 & 6.4 & NO & NO & bb \\
\hline 6 - & 6 180116M1_6 & Standard & 12.500 & 5.09 & 10128.068 & 6185.501 & 20.467 & 15.4 & 23.2 & NO & NO & bb \\
\hline & 7 180116M1_7 & Standard & 12.500 & 5.09 & 8665.843 & 7076.858 & 15.307 & 11.5 & -7.8 & NO & NO & bb \\
\hline 8 - & 8 180116M1_8 & Standard & 12.500 & 5.09 & 8071.998 & 7703.452 & 13.098 & 9.9 & -21.1 & NO & NO & bb \\
\hline 9 9 \({ }^{4}\) & 9 180116M1_9 & Standard & 12.500 & 5.09 & 9659.693 & 7030.358 & 17.175 & 12.9 & 3.4 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-8:2 FTS}

Response Factor: 0.084908
RRF SD: 0.0154575, Relative SD: 18.2049
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. Fl & D Fla & , \\
\hline  & 1 180116M1_1 & Standard & 12.500 & 5.07 & 982.468 & 12073.535 & 1.017 & 12.0 & -4.2 & NO & NO & bb \\
\hline & 2 180116M1_2 & Standard & 12.500 & 5.07 & 1340.280 & 12476.502 & 1.343 & 15.8 & 26.5 & NO & NO & bb \\
\hline & 3 180116M1_3 & Standard & 12.500 & 5.07 & 1150.632 & 12756.279 & 1.128 & 13.3 & 6.2 & NO & NO & bb \\
\hline 4 at & 4 180116M1_4 & Standard & 12.500 & 5.07 & 831.167 & 12144.904 & 0.855 & 10.1 & -19.4 & NO & NO & bb \\
\hline  & 5 180116M1_5 & Standard & 12.500 & 5.07 & 989.605 & 12731.519 & 0.972 & 11.4 & -8.5 & NO & NO & bb \\
\hline - & 6 180116M1_6 & Standard & 12.500 & 5.07 & 913.465 & 13469.731 & 0.848 & 10.0 & -20.1 & NO & NO & bb \\
\hline & 7 180116M1_7 & Standard & 12.500 & 5.07 & 1198.093 & 11818.463 & 1.267 & 14.9 & 19.4 & NO & NO & bb \\
\hline 8.4. \({ }^{\text {a }}\) & 8 180116M1_8 & Standard & 12.500 & 5.07 & 1836.881 & 11344.723 & 2.024 & 23.8 & 90.7 & NO & NO & \(b b X\) \\
\hline 9 \% & 9 180116M1_9 & Standard & 12.500 & 5.07 & 2332.842 & 11380.839 & 2.562 & 30.2 & 141.4 & NO & NO & bbX \\
\hline
\end{tabular}

Dataset: U:IQ4.PRO|results1180116M1I180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSAA}

Response Factor: 0.463029
RRF SD: 0.0437239, Relative SD: 9.443
Response type: Internal Std ( Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline xatamex & \# Name & Type & Std. Conc & RT & Area & IS Area & \multicolumn{4}{|l|}{Response Conc. \%Dev Conc Flag - CoD} & \multicolumn{2}{|l|}{CoD Flag \(x=e x\) cluded} \\
\hline \(1{ }^{\text {E/E }}\) & 1 180116M1_1 & Standard & 12.500 & 5.25 & 4536.339 & 10210.835 & 5.553 & 12.0 & -4.1 & NO & NO & bb \\
\hline 2 - & 2 180116M1_2 & Standard & 12.500 & 5.24 & 4212.159 & 9729.924 & 5.411 & 11.7 & -6.5 & NO & NO & bb \\
\hline 3 & 3 180116M1_3 & Standard & 12.500 & 5.24 & 4742.209 & 10027.175 & 5.912 & 12.8 & 2.1 & NO & NO & bb \\
\hline & 4 180116M1_4 & Standard & 12.500 & 5.24 & 4153.334 & 8580.147 & 6.051 & 13.1 & 4.5 & NO & NO & bb \\
\hline 5 , & 5 180116M1_5 & - Standard & 12.500 & 5.24 & 4062.903 & 11127.871 & 4.564 & 9.9 & -21.1 & NO & NO & bb \\
\hline 6 & 6 180116M1_6 & Standard & 12.500 & 5.24 & 4372.872 & 8984.025 & 6.084 & 13.1 & 5.1 & NO & NO & bb \\
\hline 7 - 4ta & 7 180116M1_7 & Standard & 12.500 & 5.25 & 4465.175 & 9380.541 & 5.950 & 12.9 & 2.8 & NO & NO & bb \\
\hline 8 - & \[
8 \text { 180116M1_8 }
\] & Standard & 12.500 & 5.24 & 4998.960 & 9856.826 & 6.339 & 13.7 & 9.5 & NO & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 12.500 & 5.24 & 4520.222 & 9075.307 & 6.226 & 13.4 & 7.6 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d5-N-EtFOSAA}

Response Factor: 0.540544
RRF SD: 0.0515781 , Relative SD: 9.54189
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc, & \%Dev & C. Fla & CoD F & cl \\
\hline & 1 180116M1_1 & Standard & 12.500 & 5.40 & 5620.763 & 10210.835 & 6.881 & 12.7 & 1.8 & NO & NO & bb \\
\hline 2 - & 2 180116M1_2 & Standard & 12.500 & 5.40 & 5095.419 & 9729.924 & 6.546 & 12.1 & -3.1 & NO & NO & bb \\
\hline 4 & 3 180116M1_3 & Standard & 12.500 & 5.40 & 5070.402 & 10027.175 & 6.321 & 11.7 & -6.5 & NO & NO & bb \\
\hline & 4 180116M1_4 & Standard & 12.500 & 5.40 & 5451.059 & 8580.147 & 7.941 & 14.7 & 17.5 & NO & NO & bb \\
\hline 5 , & 5 180116M1_5 & Standard & 12.500 & 5.40 & 5147.810 & 11127.871 & 5.783 & 10.7 & -14.4 & NO & NO & bb \\
\hline 6 =ate & 6 180116M1_6 & Standard & 12.500 & 5.40 & 5425.866 & 8984.025 & 7.549 & 14.0 & 11.7 & NO & NO & bb \\
\hline & 7 180116M1_7 & Standard & 12.500 & 5.40 & 5032.401 & 9380.541 & 6.706 & 12.4 & -0.8 & NO & NO & bb \\
\hline 8 - & 8 180116M1_8 & Standard & 12.500 & 5.39 & 5167.844 & 9856.826 & 6.554 & 12.1 & -3.0 & NO & NO & bb \\
\hline 9, & \(9180116 \mathrm{M1}\) _9 & Standard & 12.500 & 5.40 & 4741.378 & 9075.307 & 6.531 & 12.1 & -3.3 & NO & NO & bb \\
\hline
\end{tabular}

Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: 13C2-PFUdA}

Response Factor: 1.08065
RRF SD: 0.103788 , Relative SD: 9.60423
Response type: Internal Std ( Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Cone Flag & CoD & CoD Fla & xcluded \\
\hline & 1 180116M1_1 & Standard & 12.500 & 5.42 & 11496.501 & 10210.835 & 14.074 & 13.0 & 4.2 & NO & & NO & bb \\
\hline 2 d & 2 180116M1_2 & Standard & 12.500 & 5.42 & 11539.497 & 9729.924 & 14.825 & 13.7 & 9.7 & NO & & NO & bb \\
\hline 3 - & 3 180116M1_3 & Standard & 12.500 & 5.42 & 10280.838 & 10027.175 & 12.816 & 11.9 & -5.1 & NO & & NO & bb \\
\hline 4. \(\quad\) - & 4 180116M1_4 & Standard & 12.500 & 5.42 & 9928.053 & 8580.147 & 14.464 & 13.4 & 7.1 & NO & & NO & bb \\
\hline 5 a & 5 180116M1_5 & Standard & 12.500 & 5.42 & 9665.206 & 11127.871 & 10.857 & 10.0 & -19.6 & NO & & NO & bb \\
\hline  & 6 180116M1_6 & Standard & 12.500 & 5.42 & 10468.256 & 8984.025 & 14.565 & 13.5 & 7.8 & NO & & NO & bb \\
\hline 7 - \({ }^{\text {a }}\) & 7 180116M1_7 & Standard & 12.500 & 5.42 & 9344.350 & 9380.541 & 12.452 & 11.5 & -7.8 & NO & & NO & bb \\
\hline 8 \% & 8 180116M1_8 & Standard & 12.500 & 5.42 & 11293.555 & 9856.826 & 14.322 & 13.3 & 6.0 & NO & & NO & bb \\
\hline 93 & 9 180116M1_9 & Standard & 12.500 & 5.42 & 9582.808 & 9075.307 & 13.199 & 12.2 & -2.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDoA}

Response Factor: 0.656428
RRF SD: 0.10172, Relative SD: 15.496
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & * Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD CoDF & xcluded. \\
\hline , & 1 180116M1_1 & Standard & 12.500 & 5.70 & 6840.596 & 10210.835 & 8.374 & 12.8 & 2.1 & NO & NO & bb \\
\hline 2 2 & 2 180116M1_2 & Standard & 12.500 & 5.70 & 8875.636 & 9729.924 & 11.402 & 17.4 & 39.0 & NO & NO & bb \\
\hline - & 3 180116M1_3 & Standard & 12.500 & 5.70 & 6389.428 & 10027.175 & 7.965 & 12.1 & -2.9 & NO & NO & bb \\
\hline +4 +a. & 4 180116M1_4 & Standard & 12.500 & 5.70 & 5576.514 & 8580.147 & 8.124 & 12.4 & -1.0 & NO & NO & bb \\
\hline & 5 180116M1_5 & Standard & 12.500 & 5.70 & 6506.571 & 11127.871 & 7.309 & 11.1 & -10.9 & NO & NO & bb \\
\hline & 6 180116M1_6 & Standard & 12.500 & 5.70 & 5168.371 & 8984.025 & 7.191 & 11.0 & -12.4 & NO & NO & bb \\
\hline 4, 4 & 7 180116M1_7 & Standard & 12.500 & 5.70 & 6050.928 & 9380.541 & 8.063 & 12.3 & -1.7 & NO & NO & bb \\
\hline 8 - \({ }^{\text {- }}\) 可 & 8 180116M1_8 & Standard & 12.500 & 5.70 & 5787.021 & 9856.826 & 7.339 & 11.2 & -10.6 & NO & NO & bb \\
\hline \(9 \times 4\) & 9 180116M1_9 & Standard & 12.500 & 5.70 & 5866.489 & 9075.307 & 8.080 & 12.3 & -1.5 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset: U:IQ4.PROIresultsI180116M11180116M1-CRV.qld}

Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

Compound name: d3-N-MeFOSA
Response Factor: 0.162272
RRF SD: 0.0118637 , Relative SD: 7.31097
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline m & \# Name & Type wask & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD \({ }^{\text {a }}\) CoD Flas & cluded \\
\hline 1. & 1 180116M1_1 & Standard & 150.000 & 5.82 & 18664.809 & 10210.835 & 22.849 & 140.8 & -6.1 & NO & NO & bb \\
\hline 2 nexdel & 2 180116M1_2 & Standard & 150.000 & 5.81 & 18295.717 & 9729.924 & 23.504 & 144.8 & -3.4 & NO & NO & bb \\
\hline & 3 180116M1_3 & Standard & 150.000 & 5.81 & 19197.830 & 10027.175 & 23.932 & 147.5 & -1.7 & NO & NO & bb \\
\hline 4-848 & 4 180116M1_4 & Standard & 150.000 & 5.82 & 18358.277 & 8580.147 & 26.745 & 164.8 & 9.9 & NO & NO & bb \\
\hline & 5 180116M1_5 & Standard & 150.000 & 5.82 & 19128.270 & 11127.871 & 21.487 & 132.4 & -11.7 & NO & NO & bb \\
\hline 6 - & 6 180116M1_6 & Standard & 150.000 & 5.82 & 19283.318 & 8984.025 & 26.830 & 165.3 & 10.2 & NO & NO & bb \\
\hline \[
7
\] & 7 180116M1_7 & Standard & 150.000 & 5.82 & 18067.268 & 9380.541 & 24.075 & 148.4 & -1.1 & NO & NO & bb \\
\hline 8 & 8 180116M1_8 & Standard & 150.000 & 5.81 & 18870.586 & 9856.826 & 23.931 & 147.5 & -1.7 & NO & NO & bb \\
\hline 9 & 9 180116M1_9 & Standard & 150.000 & 5.82 & 18668.119 & 9075.307 & 25.713 & 158.5 & 5.6 & NO & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-PFTeDA
Response Factor: 0.415159
RRF SD: 0.0373792 , Relative SD: 9.00357
Response type: Internal Std ( Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & Dev & Conc. Flag & CoD CoD Fi & xcluded \\
\hline 1 ** & 1 180116M1_1 & Standard & 12.500 & 6.16 & 4512.448 & 10210.835 & 5.524 & 13.3 & 6.4 & NO & NO & bb \\
\hline 2 & 2 180116M1_2 & Standard & 12.500 & 6.15 & 3698.448 & 9729.924 & 4.751 & 11.4 & -8.4 & NO & NO & bb \\
\hline 3 matat & 3 180116M1_3 & Standard & 12.500 & 6.15 & 3848.938 & 10027.175 & 4.798 & 11.6 & -7.5 & NO & NO & bb \\
\hline 4 . & 4 180116M1_4 & Standard & 12.500 & 6.15 & 3836.873 & 8580.147 & 5.590 & 13.5 & 7.7 & NO & NO & bb \\
\hline 5 - & 5 180116M1_5 & Standard & 12.500 & 6.16 & 4331.780 & 11127.871 & 4.866 & 11.7 & -6.2 & NO & NO & bb \\
\hline & 6 180116M1_6 & Standard & 12.500 & 6.15 & 3979.488 & 8984.025 & 5.537 & 13.3 & 6.7 & NO & NO & bb \\
\hline 7 dide & 7 180116M1_7 & Standard & 12.500 & 6.16 & 3342.038 & 9380.541 & 4.453 & 10.7 & -14.2 & NO & NO & bb \\
\hline \[
8
\] & 8 180116M1_8 & Standard & 12.500 & 6.15 & 4303.681 & 9856.826 & 5.458 & 13.1 & 5.2 & NO & NO & bb \\
\hline 9 9 & 9 180116M1_9 & Standard & 12.500 & 6.15 & 4158.729 & 9075.307 & 5.728 & 13.8 & 10.4 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset: U:IQ4.PRO|results|180116M11180116M1-CRV.qld}

Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{compound name: d5-N-ETFOSA}

Response Factor: 0.244456
RRF SD: 0.0176848, Relative SD: 7.23434
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF


Compound name: 13C2-PFHxDA
Response Factor: 0.717995
RRF SD: 0.121808 , Relative SD: 16.965
Response type: Internal Std ( Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & & \%Dev & ne. & CoD F & xclu \\
\hline testath & 1 180116M1_1 & Standard & 5.000 & 6.48 & 2287.884 & 10210.835 & 2.801 & 3.9 & -22.0 & NO & NO & bb \\
\hline 2 2 & 2 180116M1_2 & Standard & 5.000 & 6.48 & 2750.796 & 9729.924 & 3.534 & 4.9 & -1.6 & NO & NO & bb \\
\hline & 3 180116M1_3 & Standard & 5.000 & 6.47 & 2497.487 & 10027.175 & 3.113 & 4.3 & -13.3 & NO & NO & bb \\
\hline 4 & 4 180116M1_4 & Standard & 5.000 & 6.48 & 2391.055 & 8580.147 & 3.483 & 4.9 & -3.0 & NO & NO & bb \\
\hline 5 , - & 5 180116M1_5 & Standard & 5.000 & 6.48 & 2688.168 & 11127.871 & 3.020 & 4.2 & -15.9 & NO & NO & bb \\
\hline 4 T & 6 180116M1_6 & Standard & 5.000 & 6.47 & 3056.490 & 8984.025 & 4.253 & 5.9 & 18.5 & NO & NO & bb \\
\hline 7 \% & 7 180116M1_7 & Standard & 5.000 & 6.48 & 3080.510 & 9380.541 & 4.105 & 5.7 & 14.3 & NO & NO & bb \\
\hline  & 8 180116M1_8 & Standard & 5.000 & 6.48 & 2676.116 & 9856.826 & 3.394 & 4.7 & -5.5 & NO & NO & bb \\
\hline 9.18 & 9 180116M1_-9 & Standard & 5.000 & 6.48 & 3344.985 & 9075.307 & 4.607 & 6.4 & 28.3 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset: U:IQ4.PRO|results\180116M1\180116M1-CRV.qld}

Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: d7-N-MeFOSE}

Response Factor: 0.249119
RRF SD: 0.0242624 , Relative SD: 9.73927
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline camex & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Flag CoD & CoD & \(x=\) excluded \\
\hline 1 , & 1 180116M1_1 & Standard & 150.000 & 6.29 & 25858.709 & 10210.835 & 31.656 & 127.1 & -15.3 & NO & NO & bd \\
\hline 2 - & 2 180116M1_2 & Standard & 150.000 & 6.28 & 27276.381 & 9729.924 & 35.042 & 140.7 & -6.2 & NO & NO & bb \\
\hline 3 - & 3 180116M1_3 & Standard & 150.000 & 6.28 & 28903.693 & 10027.175 & 36.032 & 144.6 & -3.6 & NO & NO & bb \\
\hline & 4 180116M1_4 & Standard & 150.000 & 6.29 & 27366.512 & 8580.147 & 39.869 & 160.0 & 6.7 & NO & NO & bb \\
\hline 5 & 5 180116M1_5 & Standard & 150.000 & 6.29 & 32377.256 & 11127.871 & 36.370 & 146.0 & -2.7. & NO & NO & bb \\
\hline 6 成 & 6 180116M1_6 & Standard & 150.000 & 6.29 & 25632.105 & 8984.025 & 35.663 & 143.2 & -4.6 & NO & NO & bb \\
\hline & 7 180116M1_7 & Standard & 150.000 & 6.29 & 29830.061 & 9380.541 & 39.750 & 159.6 & 6.4 & NO & NO & bd \\
\hline 8 - & 8 180116M1_8 & Standard & 150.000 & 6.28 & 35058.652 & 9856.826 & 44.460 & 178.5 & 19.0 & NO & NO & bd \\
\hline 9 9 & 9 180116M1_9 & Standard & 150.000 & 6.29 & 27203.719 & 9075.307 & 37.469 & 150.4 & 0.3 & NO & NO & bb \\
\hline
\end{tabular}

Compound name: d9-N-EtFOSE
Response Factor: 0.23874
RRF SD: 0.0154086, Relative SD: 6.45395
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name \({ }^{\text {a }}\) - & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & D F & xcluded \\
\hline 1 - \({ }^{3}\) & 1 180116M1_1 & Standard & 150.000 & 6.44 & 27220.227 & 10210.835 & 33.323 & 139.6 & -7.0 & NO & NO & bd \\
\hline 2 - & 2 180116M1_2 & Standard & 150.000 & 6.43 & 25274.818 & 9729.924 & 32.470 & 136.0 & -9.3 & NO & NO & bb \\
\hline 4 H & 3 180116M1_3 & Standard & 150.000 & 6.43 & 29485.193 & 10027.175 & 36.757 & 154.0 & 2.6 & NO & NO & bb \\
\hline 4 , य & 4 180116M1_4 & Standard & 150.000 & 6.44 & 25789.371 & 8580.147 & 37.571 & 157.4 & 4.9 & NO & NO & bb \\
\hline 5 a & 5 180116M1_5 & Standard & 150.000 & 6.44 & 30222.031 & 11127.871 & 33.949 & 142.2 & -5.2 & NO & NO & bd \\
\hline  & 6 180116M1_6 & Standard & 150.000 & 6.44 & 28652.809 & 8984.025 & 39.866 & 167.0 & 11.3 & NO & NO & bb \\
\hline 7 -x & 7 180116M1_7 & Standard & 150.000 & 6.44 & 26491.758 & 9380.541 & 35.301 & 147.9 & -1.4 & NO & NO & bb \\
\hline + & 8 180116M1_8 & Standard & 150.000 & 6.44 & 28580.506 & 9856.826 & 36.245 & 151.8 & 1.2 & NO & NO & bb \\
\hline 9 & 9 180116M1_9 & Standard & 150.000 & 6.44 & 26736.955 & 9075.307 & 36.827 & 154.2 & 2.8 & NO & NO & bd \\
\hline
\end{tabular}

Dataset: U:\Q4.PRO|results|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed:
Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

Compound name: 13C4-PFBA
Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 54 ), Area * ( IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C5-PFHXA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 5atm & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc & & & CoDFl & xclu \\
\hline 1 1-2 & 1 180116M1_1 & Standard & 12.500 & 3.16 & 12073.535 & 12073.535 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline - \(\mathrm{c}_{\text {dem }}\) & 2 180116M1_2 & Standard & 12.500 & 3.15 & 12476.502 & 12476.502 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline - & 3 180116M1_3 & Standard & 12.500 & 3.16 & 12756.279 & 12756.279 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \({ }^{4}\) & 4 180116M1_4 & Standard & 12.500 & 3.16 & 12144.904 & 12144.904 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 5 180116M1_5 & Standard & 12.500 & 3.16 & 12731.519 & 12731.519 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 6 180116M1_6 & Standard & 12.500 & 3.16 & 13469.731 & 13469.731 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline We. & 7 180116M1_7 & Standard & 12.500 & 3.16 & 11818.463 & 11818.463 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 零 & 8 180116M1_8 & Standard & 12.500 & 3.15 & 11344.723 & 11344.723 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 & 9 180116M1_9 & Standard & 12.500 & 3.16 & 11380.839 & 11380.839 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PROTresults|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 56 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Cone & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD -COD & Six=excluded \\
\hline 4, + & 1 180116M1_1 & Standard & 12.500 & 3.92 & 3454.812 & 3454.812 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 , & 2 180116M1_2 & Standard & 12.500 & 3.92 & 2963.786 & 2963.786 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 - & 3 180116M1_3 & Standard & 12.500 & 3.92 & 3145.618 & 3145.618 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 边 & 4 180116M1_4 & Standard & 12.500 & 3.92 & 3060.330 & 3060.330 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 (ext & 5 180116M1_5 & Standard & 12.500 & 3.92 & 3105.605 & 3105.605 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline + & 6 180116M1_6 & Standard & 12.500 & 3.92 & 3293.453 & 3293.453 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 \% & 7 180116M1_7 & Standard & 12.500 & 3.92 & 2861.310 & 2861.310 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \[
8
\] & 8 180116M1_8 & Standard & 12.500 & 3.92 & 2787.766 & 2787.766 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 - & 9 180116M1_9 & Standard & 12.500 & 3.92 & 2782.713 & 2782.713 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name \({ }^{\text {ent }}\) & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD CODF & x=excluded \\
\hline  & 1 180116M1_1 & Standard & 12.500 & 4.29 & 10385.357 & 10385.357 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 2 180116M1_2 & Standard & 12.500 & 4.29 & 11407.506 & 11407.506 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 & 3 180116M1_3 & Standard & 12.500 & 4.29 & 12947.326 & 12947.326 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline - 4 & 4 180116M1_4 & Standard & 12.500 & 4.29 & 11403.713 & 11403.713 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 \% & 5 180116M1_5 & Standard & 12.500 & 4.29 & 10734.931 & 10734.931 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 a & 6 180116M1_6 & Standard & 12.500 & 4.29 & 10788.871 & 10788.871 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \[
7=4
\] & 7 180116M1_7 & Standard & 12.500 & 4.29 & 11185.677 & 11185.677 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 & 8 180116M1_8 & Standard & 12.500 & 4.29 & 10750.554 & 10750.554 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 and & 9 180116M1_9 & Standard & 12.500 & 4.29 & 10268.148 & 10268.148 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset:}

U:IQ4.PRO|results|180116M1/180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD \({ }^{-9}\) CoD & cluded \\
\hline \(1{ }^{\text {a }}\), & 1 180116M1_1 & Standard & 12.500 & 4.72 & 11721.332 & 11721.332 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 2 180116M1_2 & Standard & 12.500 & 4.72 & 11214.854 & 11214.854 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 & 3 180116M1_3 & Standard & 12.500 & 4.72 & 13094.815 & 13094.815 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(4=0\) & 4 180116M1_4 & Standard & 12.500 & 4.72 & 9620.638 & 9620.638 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 \% & 5 180116M1_5 & Standard & 12.500 & 4.72 & 11574.011 & 11574.011 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \[
6
\] & 6 180116M1_6 & Standard & 12.500 & 4.72 & 11492.758 & 11492.758 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 7 a & 7 180116M1_7 & Standard & 12.500 & 4.72 & 11984.002 & 11984.002 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 - & 8 180116M1_8 & Standard & 12.500 & 4.72 & 11777.771 & 11777.771 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 max & 9 180116M1_9 & Standard & 12.500 & 4.72 & 10870.310 & 10870.310 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Compound name: 13C4-PFOS
Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4-2m & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoDFlag & \(\mathrm{x}=\) excluded \\
\hline 1 Nater & 1 180116M1_1 & Standard & 12.500 & 4.80 & 2792.583 & 2792.583 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 2 180116M1_2 & Standard & 12.500 & 4.80 & 2843.265 & 2843.265 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 y - \({ }^{\text {a }}\) & 3 180116M1_3 & Standard & 12.500 & 4.80 & 2884.635 & 2884.635 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 4 180116M1_4 & Standard & 12.500 & 4.80 & 2699.778 & 2699.778 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5. & 5 180116M1_5 & Standard & 12.500 & 4.80 & 2978.699 & 2978.699 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 & 6 180116M1_6 & Standard & 12.500 & 4.80 & 3049.198 & 3049.198 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline Tus. & 7 180116M1_7 & Standard & 12.500 & 4.80 & 2541.166 & 2541.166 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 & 8 180116M1_8 & Standard & 12.500 & 4.80 & 3195.924 & 3195.924 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 & 9 180116M1_9 & Standard & 12.500 & 4.80 & 2881.351 & 2881.351 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset: U:IQ4.PRO|results|180116M11180116M1-CRV.qld}

Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{ompound name: 13C6-PFDA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 60 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline W & \# Name & hys. Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & ne, & CoD F & cluded \\
\hline  & 1 180116M1_1 & Standard & 12.500 & 5.10 & 8821.698 & 8821.698 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 2 180116M1_2 & Standard & 12.500 & 5.09 & 8328.056 & 8328.056 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline - 4 & 3 180116M1_3 & Standard & 12.500 & 5.09 & 7667.870 & 7667.870 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 - \({ }^{2}\) & 4 180116M1_4 & Standard & 12.500 & 5.09 & 6189.709 & 6189.709 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 , & 5 180116M1_5 & Standard & 12.500 & 5.10 & 6495.553 & 6495.553 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 - 6 & 6 180116M1_6 & Standard & 12.500 & 5.09 & 6185.501 & 6185.501 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7. \%evatay & 7 180116M1_7 & Standard & 12.500 & 5.10 & 7076.858 & 7076.858 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 . \({ }^{2}\) & 8 180116M1_8 & Standard & 12.500 & 5.09 & 7703.452 & 7703.452 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(9=3\) & 9 180116M1_9 & Standard & 12.500 & 5.09 & 7030.358 & 7030.358 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Compound name: 13C7-PFUdA
Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Fl & & clu \\
\hline 1 , & 1 180116M1_1 & Standard & 12.500 & 5.42 & 10210.835 & 10210.835 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 2 180116M1_2 & Standard & 12.500 & 5.42 & 9729.924 & 9729.924 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline - & 3 180116M1_3 & Standard & 12.500 & 5.42 & 10027.175 & 10027.175 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 max & 4 180116M1_4 & Standard & 12.500 & 5.42 & 8580.147 & 8580.147 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 B & 5 180116M1_5 & Standard & 12.500 & 5.42 & 11127.871 & 11127.871 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 -t \({ }^{\text {a }}\) & 6 180116M1_6 & Standard & 12.500 & 5.42 & 8984.025 & 8984.025 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 7 & 7 180116M1_7 & Standard & 12.500 & 5.42 & 9380.541 & 9380.541 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 - & 8 180116M1_8 & Standard & 12.500 & 5.42 & 9856.826 & 9856.826 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 9 \({ }^{\text {a }}\) & 9 180116M1_9 & Standard & 12.500 & 5.42 & 9075.307 & 9075.307 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PRO|results|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time
Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

\section*{Method: U:IQ4.PROIMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 09:08:01}

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17
Name: 180116M1_1, Date: 16-Jan-2018, Time: 23:13:00, ID: ST180116M1-1 PFC CS-2 18A0806, Description: ST180108M2-1 PFC CS-2 18A0806
\begin{tabular}{|c|c|c|c|c|}
\hline +4xam & \# Name & CoD & CoD Flag & \%RSD \\
\hline 1 - & 1 PFBA & 0.9998 & NO & \\
\hline 2 "man & 2 PFPeA & 0.9998 & NO & \\
\hline 3 20, & 3 PFBS & 0.9996 & NO & \\
\hline \(4{ }^{4} \times\) & 4 PFHxA & 0.9933 & NO & \\
\hline & 5 PFHpA & 0.9939 & NO & \\
\hline  & 6 L-PFHxS & 0.9939 & NO & \\
\hline 7 mexay & \(86: 2 \mathrm{FTS}\) & 0.9987 & NO & \\
\hline 8 84 & 9 L-PFOA & 0.9997 & NO & \\
\hline 9 , & 11 PFHpS & 0.9989 & NO & \\
\hline  & 12 PFNA & 0.9992 & NO & \\
\hline 11* \({ }^{\text {a }}\) & 13 PFOSA & 0.9994 & NO & \\
\hline 12 - & 14 L-PFOS & 0.9993 & NO & \\
\hline 13 - & 16 PFDA & 0.9992 & NO & \\
\hline  & 17 8:2 FTS & 0.9977 & NO & \\
\hline 15 , & \(18 \mathrm{~N}-\mathrm{MeFOSAA}\) & 0.9964 & NO & \\
\hline 16 - \({ }^{\text {a }}\) & 19 N-EtFOSAA & 0.9987 & NO & \\
\hline 17 c & 20 PFUdA & 0.9998 & NO & \\
\hline 18 + & 21 PFDS & 0.9975 & NO & \\
\hline 19 - & 22 PFDoA & 0.9946 & NO & \\
\hline 20 cidy & \(23 \mathrm{~N}-\mathrm{MeFOSA}\) & 0.9967 & NO & \\
\hline 21. & 24 PFTrDA & 0.9953 & NO & \\
\hline 22 -ta & 25 PFTeDA & 0.9989 & NO & \\
\hline \(23 \pm+\pi\) & 26 N -EtFOSA & 0.9998 & NO & \\
\hline 24. & 27 PFHxDA & 0.9983 & NO & \\
\hline 25 w we & 28 PFODA & 0.9934 & NO & \\
\hline 26 wite & \(29 \mathrm{~N}-\mathrm{MeFOSE}\) & 0.9971 & NO & \\
\hline 27. & 30 N -EtFOSE & 0.9973 & NO & \\
\hline 28 . & 31 13C3-PFBA & & NO & 2.339 \\
\hline 29 ctas & 32 13C3-PFPeA & & NO & 5.404 \\
\hline 30, & 33 13C3-PFBS & & NO & 4.631 \\
\hline 31 W & 34 13C2-PFHxA & & NO & 7.640 \\
\hline
\end{tabular}

Dataset: U:\Q4.PRO|results|180116M11180116M1-CRV.qld
Last Altered: Wednesday, January 17, 2018 09:42:17 Pacific Standard Time Printed: Wednesday, January 17, 2018 09:46:51 Pacific Standard Time

Name: 180116M1_1, Date: 16-Jan-2018, Time: 23:13:00, ID: ST180116M1-1 PFC CS-2 18A0806, Description: ST180108M2-1 PFC CS-2 18A0806

Dataset: Untitled

Last Altered: Wednesday, January 17, 2018 10:15:50 Pacific Standard Time Printed: Wednesday, January 17, 2018 10:17:26 Pacific Standard Time

\section*{Method: U:IQ4.PROMMethDB\PFAS FULL 80C 011618.mdb 17 Jan 2018 10:07:37} Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17

\section*{Compound name: PFBA}


Method: U:IQ4.PROIMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 09:08:01 Calibration: U:\Q4.PROICurveDBIC18_VAL-PFAS_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17


Name: 180116M1_12, Date: 17-Jan-2018, Time: 01:19:34, ID: ICV180116M1-1 PFC ICV 18A0805, Description: ICV180108M2-1 PFC ICV 18A0805


Last Altered:
Printed:

Wednesday, January 17, 2018 10:08:48 Pacific Standard Time Wednesday, January 17, 2018 10:12:30 Pacific Standard Time

Name: 180116M1_12, Date: 17-Jan-2018, Time: 01:19:34, ID: ICV180116M1-1 PFC ICV 18A0805, Description: ICV180108M2-1 PFC ICV 18A0805
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4. & \# Name & Trace & Area & IS Area & wt/vol & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec \\
\hline 32 & 35 13C4-PFHpA & 367.2 > 321.8 & 1.00 e 4 & 1.42 e 4 & 1.0000 & 0.727 & 3.77 & 3.77 & 8.80 & 12.105 & 96.8 \\
\hline 33 & 36 1802-PFHxS & \(403.0>102.6\) & 1.24 e 3 & 3.58 e 3 & 1.0000 & 0.362 & 3.92 & 3.91 & 4.31 & 11.903 & 95.2 \\
\hline 34 & 37 13C2-6:2 FTS & \(429.1>408.9\) & 2.32 e 3 & 1.14 e 4 & 1.0000 & 0.218 & 4.23 & 4.23 & 2.55 & 11.671 & 93.4 \\
\hline 35 & \(3813 \mathrm{C} 2-\mathrm{PFOA}\) & \(414.9>369.7\) & 1.14 e 4 & 1.14 e 4 & 1.0000 & 1.071 & 4.29 & 4.28 & 12.5 & 11.716 & 93.7 \\
\hline 36 & 39 13C5-PFNA & 468.2 > 422.9 & 1.23 e 4 & 1.32 e 4 & 1.0000 & 0.968 & 4.72 & 4.71 & 11.7 & 12.035 & 96.3 \\
\hline 37. & 40 13C8-PFOSA & \(506.1>77.7\) & 2.68 e 3 & 1.16 e 4 & 1.0000 & 0.283 & 4.79 & 4.78 & 2.89 & 10.204 & 81.6 \\
\hline 38 & 41 13C8-PFOS & \(507.0>79.9\) & 3.46 e 3 & 2.95 e 3 & 1.0000 & 0.999 & 4.80 & 4.79 & 14.7 & 14.706 & 117.6 \\
\hline 39 & 42 13C2-PFDA & \(515.1>469.9\) & 1.20 e 4 & 7.21 e 3 & 1.0000 & 1.329 & 5.10 & 5.09 & 20.8 & 15.625 & 125.0 \\
\hline 40 & 43 13C2-8:2 FTS & \(529.1>508.7\) & 1.04 e 3 & 1.42 e 4 & 1.0000 & 0.085 & 5.06 & 5.06 & 0.912 & 10.740 & 85.9 \\
\hline 41 & 44 d3-N-MeFOSAA & \(573.3>419\) & 4.70 e 3 & \(1.16 e 4\) & 1.0000 & 0.463 & 5.24 & 5.23 & 5.06 & 10.926 & 87.4 \\
\hline 42 & 45 d5-N-EtFOSAA & \(589.3>419\) & 5.79 e 3 & 1.16 e 4 & 1.0000 & 0.541 & 5.40 & 5.39 & 6.24 & 11.537 & 92.3 \\
\hline 43 & 46 13C2-PFUdA & \(565>519.8\) & 1.37 e 4 & 1.16 e 4 & 1.0000 & 1.081 & 5.42 & 5.41 & 14.7 & 13.611 & 108.9 \\
\hline 44 & 47 13C2-PFDoA & \(615.0>569.7\) & 6.86 e 3 & 1.16 e 4 & 1.0000 & 0.656 & 5.70 & 5.69 & 7.39 & 11.259 & 90.1 \\
\hline 45 & 48 d3-N-MeFOSA & \(515.2>168.9\) & 2.01 e4 & 1.16e4 & 1.0000 & 0.162 & 5.79 & 5.81 & 21.7 & 133.499 & 89.0 \\
\hline 46 & 49 13C2-PFTeDA & \(714.8>669.6\) & 4.59 e 3 & 1.16 e 4 & 1.0000 & 0.415 & 6.16 & 6.15 & 4.94 & 11.907 & 95.3 \\
\hline 47 & 50 d5-N-ETFOSA & \(531.1>168.9\) & 3.03 e 4 & 1.16e4 & 1.0000 & 0.244 & 6.17 & 6.19 & 32.6 & 133.283 & 88.9 \\
\hline 48 & 51 13C2-PFHxDA & \(815>769.7\) & 2.56 e 3 & 1.16 e 4 & 1.0000 & 0.718 & 6.48 & 6.47 & 2.75 & 3.836 & 76.7 \\
\hline 49 & 52 d7-N-MeFOSE & \(623.1>58.9\) & 3.08 e 4 & 1.16e4 & 1.0000 & 0.249 & 6.31 & 6.28 & 33.2 & 133.353 & 88.9 \\
\hline 50 & 53 d9-N-EtFOSE & \(639.2>58.8\) & 2.92 e 4 & 1.16 e 4 & 1.0000 & 0.239 & 6.45 & 6.43 & 31.4 & 131.594 & 87.7 \\
\hline 51 & 54 13C4-PFBA & \(217 .>171.8\) & 1.19 e 4 & 1.19 e 4 & 1.0000 & 1.000 & 1.44 & 1.43 & 12.5 & 12.500 & 100.0 \\
\hline 52 & 55 13C5-PFHXA & \(318>272.9\) & 1.42 e 4 & 1.42 e 4 & 1.0000 & 1.000 & 3.16 & 3.15 & 12.5 & 12.500 & 100.0 \\
\hline 53 = & 56 13C3-PFHxS & \(401.9>79.9\) & 3.58 e 3 & 3.58 e 3 & 1.0000 & 1.000 & 3.92 & 3.91 & 12.5 & 12.500 & 100.0 \\
\hline 54 & 57 13C8-PFOA & \(421.3>376\) & 1.14 e 4 & 1.14 e 4 & 1.0000 & 1.000 & 4.29 & 4.28 & 12.5 & 12.500 & 100.0 \\
\hline 55 & 58 13C9-PFNA & \(472.2>426.9\) & 1.32 e 4 & 1.32 e 4 & 1.0000 & 1.000 & 4.72 & 4.72 & 12.5 & 12.500 & 100.0 \\
\hline 56 & 59 13C4-PFOS & \(503>79.9\) & 2.95 e 3 & 2.95 e3 & 1.0000 & 1.000 & 4.80 & 4.79 & 12.5 & 12.500 & 100.0 \\
\hline 57. & 60 13C6-PFDA & \(519.1>473.7\) & 7.21 e 3 & 7.21 e 3 & 1.0000 & 1.000 & 5.10 & 5.09 & 12.5 & 12.500 & 100.0 \\
\hline 58 - & 61 13C7-PFUdA & \(570.1>524.8\) & 1.16 e 4 & 1.16 e 4 & 1.0000 & 1.000 & 5.42 & 5.41 & 12.5 & 12.500 & 100.0 \\
\hline
\end{tabular}

Dataset: F:IProjectsIPFAS.PROIResults\180118M11180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

Method: F:IProjects|PFAS.PROMMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 13:31:53
Calibration: F:IProjects|PFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-18-18-FULL.cdb 19 Jan 2018 09:30:24

\section*{Compound name: PFBA}

Correlation coefficient: \(r=0.998766, r^{\wedge} 2=0.997534\)
Calibration curve: 1.12321 * x + 0.0746027
Response type: Internal Std ( Ref 31 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFPeA}

Correlation coefficient: \(\mathrm{r}=0.998876, \mathrm{r}^{\wedge} 2=0.997753\)
Calibration curve: \(0.942465^{*} x+0.121253\)
Response type: Internal Std (Ref 32 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Work Order 1701951
Page 1474 of 2104

\section*{Compound name: PFBS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999752\)
Calibration curve: \(-0.000839655^{*} x^{\wedge} 2+1.91091^{*} x+-0.0957011\)
Response type: Internal Std (Ref 33 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \%es & 4 Name & Type & Std. Conc & RT & Area & IS Area & Response & on & Dev & & CoD & D F & clu \\
\hline 1. & 1 180118M1_2 & Standard & 0.250 & 2.57 & 46.403 & 1184.853 & 0.490 & 0.3 & 22.5 & NO & 1.000 & NO & MM \\
\hline 2 2 & 2 180118M1_3 & Standard & 0.500 & 2.58 & 84.431 & 1175.155 & 0.898 & 0.5 & 4.0 & NO & 1.000 & NO & bb \\
\hline \(3-4\) & 3 180118M1_4 & Standard & 1.000 & 2.57 & 164.026 & 1294.367 & 1.584 & 0.9 & -12.1 & NO & 1.000 & NO & bb \\
\hline  & 4 180118M1_5 & Standard & 2.000 & 2.57 & 334.754 & 1239.980 & 3.375 & 1.8 & -9.1 & NO & 1.000 & NO & bb \\
\hline & 5 180118M1_6 & Standard & 5.000 & 2.57 & 898.063 & 1222.566 & 9.182 & 4.9 & -2.7 & NO & 1.000 & NO & bb \\
\hline 6 - 4 & 6 180118M1_7 & Standard & 10.000 & 2.57 & 1903.254 & 1302.228 & 18.269 & 9.7 & -3.5 & NO & 1.000 & NO & bb \\
\hline 7 & 7 180118M1_8 & Standard & 50.000 & 2.57 & 9151.818 & 1232.572 & 92.812 & 49.7 & -0.6 & NO & 1.000 & NO & bb \\
\hline  & 8 180118M1_9 & Standard & 100.000 & 2.57 & 18818.912 & 1268.084 & 185.505 & 101.7 & 1.7 & NO & 1.000 & NO & bb \\
\hline 9. \({ }^{\text {c }}\) & 9 180118M1_10 & Standard & 250.000 & 2.57 & 48362.152 & 1425.323 & 424.133 & 249.3 & -0.3 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxA}

Correlation coefficient: \(\mathrm{r}=0.996965, \mathrm{r} 2=0.993939\)
Calibration curve: 1.54608 * \(x+0.228362\)
Response type: Internal Std ( Ref 34 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: F:IProjectsIPFAS.PRO\Results\180118M11180118M1-CRV.qld
Last Altered:
Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.999711, \mathrm{r}^{\wedge} 2=0.999421\)
Calibration curve: 1.18196 * x + 0.246261
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: \(1 / \mathrm{x}\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & CoD & D & xclu \\
\hline 1 ata & 1 180118M1_2 & Standard & 0.250 & 3.69 & 202.245 & 9221.989 & 0.274 & 0.0 & -90.6 & NO & 0.999 & NO & bbX \\
\hline \(22^{-3}+\) & 2 180118M1_3 & Standard & 0.500 & 3.69 & 528.518 & 9847.466 & 0.671 & 0.4 & -28.2 & NO & 0.999 & NO & bb \\
\hline  & 3 180118M1_4 & Standard & 1.000 & 3.68 & 1055.047 & 9050.854 & 1.457 & 1.0 & 2.4 & NO & 0.999 & NO & bb \\
\hline 4 - 4 sed & 4 180118M1_5 & Standard & 2.000 & 3.68 & 2022.535 & 8772.772 & 2.882 & 2.2 & 11.5 & NO & 0.999 & NO & bb \\
\hline \(5 \times\) 需 & 5 180118M1_6 & Standard & 5.000 & 3.68 & 4706.049 & 8900.424 & 6.609 & 5.4 & 7.7 & NO & 0.999 & NO & bb \\
\hline 6 - 4 - 4 & 6 180118M1_7 & Standard & 10.000 & 3.68 & 10137.116 & 10152.992 & 12.480 & 10.4 & 3.5 & NO & 0.999 & NO & bb \\
\hline \(7^{4+x}\) & 7 180118M1_8 & Standard & 50.000 & 3.68 & 48925.211 & 9974.576 & 61.312 & 51.7 & 3.3 & NO & 0.999 & NO & bb \\
\hline 8 - 4 - & 8 180118M1_9 & Standard & 100.000 & 3.68 & 98413.633 & 10264.402 & 119.848 & 101.2 & 1.2 & NO & 0.999 & NO & bb \\
\hline 9 - \({ }^{\text {atam }}\) & 9 180118M1_10 & Standard & 250.000 & 3.68 & 270087.250 & 11587.292 & 291.361 & 246.3 & -1.5 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: L-PFHxS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996856\)
Calibration curve: \(-0.00222639^{*} x^{\wedge} 2+2.0759^{*} x+-0.300696\)
Response type: Internal Std ( Ref 36 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. & CoD & D & xclu \\
\hline \(1 \times 2\) & 1 180118M1_2 & Standard & 0.250 & 3.84 & 38.358 & 1013.195 & 0.473 & 0.4 & 49.2 & NO & 0.997 & NO & MMX \\
\hline 2 y & 2 180118M1_3 & Standard & 0.500 & 3.84 & 66.364 & 1189.182 & 0.698 & 0.5 & -3.8 & NO & 0.997 & NO & MM \\
\hline  & 3 180118M1_4 & Standard & 1.000 & 3.83 & 192.606 & 1056.759 & 2.278 & 1.2 & 24.4 & NO & 0.997 & NO & MM \\
\hline \(4{ }^{4}\) & 4 180118M1_5 & Standard & 2.000 & 3.83 & 249.350 & 1103.874 & 2.824 & 1.5 & -24.6 & NO & 0.997 & NO & MM \\
\hline 5 & 5 180118M1_6 & Standard & 5.000 & 3.83 & 780.177 & 1319.570 & 7.390 & 3.7 & -25.6 & NO & 0.997 & NO & MM \\
\hline & 6 180118M1_7 & Standard & 10.000 & 3.83 & 1990.649 & 1235.924 & 20.133 & 9.9 & -0.5 & NO & 0.997 & NO & MM \\
\hline 7 7- & 7 180118M1_8 & Standard & 50.000 & 3.83 & 8377.754 & 1108.625 & 94.461 & 48.1 & -3.7 & NO & 0.997 & NO & MM \\
\hline 8.30 & 8 180118M1_9 & Standard & 100.000 & 3.83 & 16920.900 & 1084.545 & 195.023 & 106.2 & 6.2 & NO & 0.997 & NO & MM \\
\hline 90- \({ }^{\text {em }}\) & 9 180118M1_10 & Standard & 250.000 & 3.83 & 41918.746 & 1392.528 & 376.283 & 246.7 & -1.3 & NO & 0.997 & NO & MM \\
\hline
\end{tabular}

Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 6:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998683\)
Calibration curve: \(0.0060392{ }^{*} x^{\wedge} 2+2.60937^{*} x+0.129675\)
Response type: Internal Std (Ref 36 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & Dey & & CoD & \multicolumn{2}{|l|}{CODFlag \(x=\) excluded} \\
\hline & 1 180118M1_2 & Standard & 0.250 & 4.15 & 48.967 & 1013.195 & 0.604 & 0.2 & -27.3 & NO & 0.999 & NO & MM \\
\hline 2 arman & 2 180118M1_3 & Standard & 0.500 & 4.15 & 168.546 & 1189.182 & 1.772 & 0.6 & 25.7 & NO & 0.999 & NO & bb \\
\hline \(3-3\) & 3 180118M1_4 & Standard & 1.000 & 4.14 & 280.280 & 1056.759 & 3.315 & 1.2 & 21.7 & NO & 0.999 & NO & bb \\
\hline & 4 180118M1_5 & Standard & 2.000 & 4.14 & 436.456 & 1103.874 & 4.942 & 1.8 & -8.2 & NO & 0.999 & NO & bb \\
\hline & 5 180118M1_6 & Standard & 5.000 & 4.15 & 1433.901 & 1319.570 & 13.583 & 5.1 & 1.9 & NO & 0.999 & NO & bb \\
\hline \(6-4\) & 6 180118M1_7 & Standard & 10.000 & 4.14 & 2886.458 & 1235.924 & 29.193 & 10.9 & 8.6 & NO & 0.999 & NO & bb \\
\hline 7 ma & 7 180118M1_8 & Standard & 50.000 & 4.14 & 12447.915 & 1108.625 & 140.353 & 48.3 & -3.3 & NO & 0.999 & NO & bb \\
\hline 8. \({ }^{\text {dex }}\) & 8 180118M1_9 & Standard & 100.000 & 4.14 & 28101.162 & 1084.545 & 323.882 & 100.6 & 0.6 & NO & 0.999 & NO & bb \\
\hline 9 - \({ }^{\text {a }}\) & 9 180118M1_10 & Standard & 250.000 & 4.15 & 56343.238 & 1392.528 & 505.764 & 145.1 & -42.0 & NO & 0.999 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: L-PFOA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998391\)
Calibration curve: \(0.0020041^{*} x^{\wedge} 2+0.850209 * x+0.267167\)
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & Conc & OD & & exclud \\
\hline 1 1-tay & 1 180118M1_2 & Standard & 0.250 & 4.21 & 291.916 & 13210.429 & 0.276 & 0.0 & -95.7 & NO & 0.998 & NO & bbX \\
\hline 7 7 at & 2 180118M1_3 & Standard & 0.500 & 4.20 & 663.043 & 12533.280 & 0.661 & 0.5 & -7.4 & NO & 0.998 & NO & bb \\
\hline  & 3 180118M1_4 & Standard & 1.000 & 4.20 & 1156.250 & 14471.168 & 0.999 & 0.9 & -14.1 & NO & 0.998 & NO & bb \\
\hline & 4 180118M1_5 & Standard & 2.000 & 4.20 & 1843.751 & 11511.098 & 2.002 & 2.0 & 1.5 & NO & 0.998 & NO & bb \\
\hline & 5 180118M1_6 & Standard & 5.000 & 4.20 & 6511.923 & 15269.152 & 5.331 & 5.9 & 17.5 & NO & 0.998 & NO & bb \\
\hline " & 6 180118M1_7 & Standard & 10.000 & 4.20 & 11430.950 & 15085.087 & 9.472 & 10.6 & 5.6 & NO & 0.998 & NO & bb \\
\hline 7 4. \({ }^{\text {a }}\) & 7 180118M1_8 & Standard & 50.000 & 4.20 & 54724.012 & 14973.517 & 45.684 & 48.0 & -4.0 & NO & 0.998 & NO & bb \\
\hline 8 - \({ }^{4}\) & 8 180118M1_9 & Standard & 100.000 & 4.20 & 125658.992 & 14777.377 & 106.293 & 100.8 & 0.8 & NO & 0.998 & NO & bb \\
\hline 9 9 & 9 180118M1_10 & Standard & 250.000 & 4.20 & 287700.688 & 17936.301 & 200.502 & 168.5 & -32.6 & NO & 0.998 & NO & bbX \\
\hline
\end{tabular}
                            Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed:
    Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: PFHpS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996565\)
Calibration curve: \(-0.000989347{ }^{*} x^{\wedge} 2+1.15533 * x+-0.25073\)
Response type: Internal Std ( Ref 41 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type m & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & Conc. Flag & \(\mathrm{COD}^{\text {a }}\) & \multicolumn{2}{|l|}{CoD Flag \(\mathrm{x}=\) excluded} \\
\hline \% & 1 180118M1_2 & Standard & 0.250 & 4.32 & 65.807 & 2935.768 & 0.280 & 0.5 & 83.9 & NO & 0.997 & NO & bbX \\
\hline & 2 180118M1_3 & Standard & 0.500 & 4.32 & 102.400 & 3156.818 & 0.405 & 0.6 & 13.7 & NO & 0.997 & NO & bb \\
\hline 3 & 3 180118M1_4 & Standard & 1.000 & 4.31 & 235.703 & 3664.074 & 0.804 & 0.9 & -8.6 & NO & 0.997 & NO & bb \\
\hline & 4 180118M1_5 & Standard & 2.000 & 4.31 & 647.025 & 3382.708 & 2.391 & 2.3 & 14.5 & NO & 0.997 & NO & bb \\
\hline & 5 180118M1_6 & Standard & 5.000 & 4.31 & 1226.254 & 2851.818 & 5.375 & 4.9 & -2.2 & NO & 0.997 & NO & bb \\
\hline 6 & 6 180118M1_7 & Standard & 10.000 & 4.31 & 2630.048 & 3554.643 & 9.249 & 8.3 & -17.2 & NO & 0.997 & NO & bb \\
\hline \(7 \times 7\) & \(7180118 \mathrm{M1} 8\) & Standard & 50.000 & 4.31 & 14732.976 & 3579.305 & 51.452 & 46.6 & -6.8 & NO & 0.997 & NO & bb \\
\hline & 8 180118M1_9 & Standard & 100.000 & 4.31 & 28806.516 & 3186.816 & 112.991 & 108.0 & 8.0 & NO & 0.997 & NO & bb \\
\hline & 9 180118M1_10 & Standard & 250.000 & 4.31 & 67427.547 & 3754.260 & 224.503 & 246.6 & -1.4 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.991105\)
Calibration curve: \(6.82411 \mathrm{e}-005^{*} x^{\wedge} 2+1.04841^{*} x+0.405064\)
Response type: Internal Std (Ref 39 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFOSA}

Correlation coefficient: \(r=0.999319, r^{\wedge} 2=0.998638\)
Calibration curve: 1.02469 * \(x+0.245921\)
Response type: Internal Std ( Ref 40 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & , & xcluded \\
\hline & 1 180118M1_2 & Standard & 0.250 & 4.71 & 45.972 & 2230.248 & 0.258 & 0.0 & -95.4 & NO & 0.999 & NO & MMX \\
\hline \(2 \quad \therefore \quad 80\) & 2 180118M1_3 & Standard & 0.500 & 4.70 & 102.410 & 2042.124 & 0.627 & 0.4 & -25.6 & NO & 0.999 & NO & bb \\
\hline 3 & 3 180118M1_4 & Standard & 1.000 & 4.69 & 220.218 & 2235.724 & 1.231 & 1.0 & -3.8 & NO & 0.999 & NO & bb \\
\hline 4 & 4 180118M1_5 & Standard & 2.000 & 4.69 & 359.360 & 2069.984 & 2.170 & 1.9 & -6.1 & NO & 0.999 & NO & bb \\
\hline 5 - & 5 180118M1_6 & Standard & 5.000 & 4.69 & 1119.452 & 2106.655 & 6.642 & 6.2 & 24.8 & NO & 0.999 & NO & bb \\
\hline 6 & 6 180118M1_7 & Standard & 10.000 & 4.69 & 2223.013 & 2378.393 & 11.683 & 11.2 & 11.6 & NO & 0.999 & NO & bb \\
\hline 7 \% & 7 180118M1_8 & Standard & 50.000 & 4.69 & 10025.400 & 2395.824 & 52.307 & 50.8 & 1.6 & NO & 0.999 & NO & bb \\
\hline 8 - 4 & 8 180118M1_9 & Standard & 100.000 & 4.69 & 19536.793 & 2430.352 & 100.483 & 97.8 & -2.2 & NO & 0.999 & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 250.000 & 4.69 & 55588.324 & 2717.913 & 255.657 & 249.3 & -0.3 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: L-PFOS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998281\)
Calibration curve: -0.000701194 * \(x^{\wedge} 2+1.21055\) * \(x+-0.112546\)
Response type: Internal Std (Ref 41 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & * RT & Area & IS Area & Response & Conc. & \%Dev & & CoI & D Fla & xclu \\
\hline & 1 180118M1_2 & Standard & 0.250 & 4.73 & 57.670 & 2935.768 & 0.246 & 0.3 & 18.3 & NO & 0.998 & NO & MM \\
\hline 2 2 & 2 180118M1_3 & Standard & 0.500 & 4.72 & 146.093 & 3156.818 & 0.578 & 0.6 & 14.2 & NO & 0.998 & NO & MM \\
\hline \(3 m\)-xy & 3 180118M1_4 & Standard & 1.000 & 4.72 & 236.649 & 3664.074 & 0.807 & 0.8 & -24.0 & NO & 0.998 & NO & MM \\
\hline & 4 180118M1_5 & Standard & 2.000 & 4.72 & 444.272 & 3382.708 & 1.642 & 1.5 & -27.5 & NO & 0.998 & NO & MM \\
\hline 5 5 & 5 180118M1_6 & Standard & 5.000 & 4.72 & 1603.861 & 2851.818 & 7.030 & 5.9 & 18.4 & NO & 0.998 & NO & MM \\
\hline 6 4 \({ }^{\text {a }}\), & 6 180118M1_7 & Standard & 10.000 & 4.72 & 3500.120 & 3554.643 & 12.308 & 10.3 & 3.2 & NO & 0.998 & NO & MM \\
\hline 7.3 & 7 180118M1_8 & Standard & 50.000 & 4.72 & 15985.611 & 3579.305 & 55.827 & 47.5 & \(-5.0\) & NO & 0.998 & NO & MM \\
\hline & 8 180118M1_9 & Standard & 100.000 & 4.72 & 29734.006 & 3186.816 & 116.629 & 102.5 & 2.5 & NO & 0.998 & NO & MM \\
\hline 9 & 9 180118M1_10 & Standard & 250.000 & 4.72 & 77534.656 & 3754.260 & 258.156 & 249.4 & -0.3 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180118M11180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: PFDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999432\)
Calibration curve: \(-0.000780615^{*} x^{\wedge} 2+1.3466\) * \(x+0.00748908\)
Response type: Internal Std (Ref 42 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \multicolumn{5}{|l|}{\%Dev Conc. Flag en CoD CoD Flag x=excluded} \\
\hline * & 1 180118M1_2 & Standard & 0.250 & 5.02 & 333.456 & 11220.915 & 0.371 & 0.3 & 8.1 & NO & 0.999 & NO & bb \\
\hline 2 - & 2 180118M1_3 & Standard & 0.500 & 5.01 & 669.635 & 11578.018 & 0.723 & 0.5 & 6.3 & NO & 0.999 & NO & bb \\
\hline 3 - & 3 180118M1_4 & Standard & 1.000 & 5.01 & 1303.494 & 13077.289 & 1.246 & 0.9 & -8.0 & NO & 0.999 & NO & bb \\
\hline Tand & 4 180118M1_5 & Standard & 2.000 & 5.01 & 2364.353 & 11837.361 & 2.497 & 1.9 & -7.5 & NO & 0.999 & NO & bb \\
\hline \(5 \times \ldots\) & 5 180118M1_6 & Standard & 5.000 & 5.01 & 6889.574 & 11638.346 & 7.400 & 5.5 & 10.1 & NO & 0.999 & NO & bb \\
\hline & 6 180118M1_7 & Standard & 10.000 & 5.00 & 10863.809 & 11248.381 & 12.073 & 9.0 & -9.9 & NO & 0.999 & NO & bb \\
\hline & 7 180118M1_8 & Standard & 50.000 & 5.01 & 66064.820 & 12675.076 & 65.152 & 49.8 & -0.4 & NO & 0.999 & NO & bb \\
\hline 8 - & 8 180118M1_9 & Standard & 100.000 & 5.01 & 114660.672 & 11147.298 & 128.575 & 101.4 & 1.4 & NO & 0.999 & NO & bb \\
\hline 9 9 \({ }^{\text {a }}\) & 9 180118M1_10 & Standard & 250.000 & 5.01 & 307848.719 & 13395.402 & 287.271 & 249.4 & -0.2 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 8:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997978\)
Calibration curve: \(-0.000503731^{*} x^{\wedge} 2+0.332424 * x+-0.046692\)
Response type: Internal Std (Ref 42 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Dataset: F:IProjects\PFAS.PROIResults\180118M11180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: N-MeFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.990474\)
Calibration curve: \(0.00121633^{*} x^{\wedge} 2+1.31517{ }^{*} x+-0.0845914\)
Response type: Internal Std (Ref 44 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - \(x^{2}\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline , matm & 1 180118M1_2 & Standard & 0.250 & 5.18 & 65.090 & 2985.703 & 0.273 & 0.3 & 8.6 & NO & 0.990 & NO & bb \\
\hline 2 - & 2 180118M1_3 & Standard & 0.500 & 5.17 & 112.838 & 3644.077 & 0.387 & 0.4 & -28.3 & NO & 0.990 & NO & bb \\
\hline & 3 180118M1_4 & Standard & 1.000 & 5.16 & 253.932 & 3360.004 & 0.945 & 0.8 & -21.8 & NO & 0.990 & NO & bb \\
\hline 4 - & 4 180118M1_5 & Standard & 2.000 & 5.16 & 697.102 & 3142.509 & 2.773 & 2.2 & 8.4 & NO & 0.990 & NO & bb \\
\hline & 5180118 M 1 _6 & Standard & 5.000 & 5.16 & 2118.124 & 3545.096 & 7.469 & 5.7 & 14.3 & NO & 0.990 & NO & bb \\
\hline 6 - & \(6180118 \mathrm{M1}\) _7 & Standard & 10.000 & 5.16 & 3574.920 & 3256.635 & 13.722 & 10.4 & 4.0 & NO & 0.990 & NO & bb \\
\hline \[
7
\] & 7 180118M1_8 & Standard & 50.000 & 5.16 & 17686.707 & 4197.069 & 52.676 & 38.7 & -22.5 & NO & 0.990 & NO & bb \\
\hline 8 - & 8 180118M1_9 & Standard & 100.000 & 5.16 & 45882.086 & 3519.573 & 162.953 & 112.3 & 12.3 & NO & 0.990 & NO & bb \\
\hline 9 - & 9 180118M1_10 & Standard & 250.000 & 5.16 & 110700.992 & 3458.090 & 400.152 & 247.6 & -1.0 & NO & 0.990 & NO & bb \\
\hline
\end{tabular}

Compound name: N-EtFOSAA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.995306\)
Calibration curve: -0.000318333 * \(x^{\wedge} 2+1.2094\) * \(x+-0.0720697\)
Response type: Internal Std (Ref 45 ), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & - Area & IS Area & Response & Conc & \%Dev & Conc. Fla & COD & D & \\
\hline  & 1 180118M1_2 & Standard & 0.250 & 5.34 & 51.976 & 4136.433 & 0.157 & 0.2 & -24.2 & NO & 0.995 & NO & MM \\
\hline 2 & 2 180118M1_3 & Standard & 0.500 & 5.32 & 146.037 & 4482.346 & 0.407 & 0.4 & -20.7 & NO & 0.995 & NO & bb \\
\hline  & 3 180118M1_4 & Standard & 1.000 & 5.32 & 440.670 & 4101.455 & 1.343 & 1.2 & 17.0 & NO & 0.995 & NO & bb \\
\hline 新 & 4 180118M1_5 & Standard & 2.000 & 5.32 & 611.447 & 3356.207 & 2.277 & 1.9 & -2.8 & NO & 0.995 & NO & bb \\
\hline & 5 180118M1_6 & Standard & 5.000 & 5.32 & 2127.833 & 3539.426 & 7.515 & 6.3 & 25.7 & NO & 0.995 & NO & bb \\
\hline 6 - 6 & 6 180118M1_7 & Standard & 10.000 & 5.32 & 3434.155 & 4207.344 & 10.203 & 8.5 & -14.9 & NO & 0.995 & NO & bb \\
\hline * & 7 180118M1_8 & Standard & 50.000 & 5.32 & 18434.148 & 4333.930 & 53.168 & 44.5 & -10.9 & NO & 0.995 & NO & bb \\
\hline \(8{ }^{6}\) & 8 180118M1_9 & Standard & 100.000 & 5.31 & 37667.961 & 3716.367 & 126.696 & 107.9 & 7.9 & NO & 0.995 & NO & bb \\
\hline 9 - at - & 9 180118M1_10 & Standard & 250.000 & 5.32 & 100081.609 & 4466.246 & 280.106 & 247.8 & -0.9 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

Last Altered:
Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: PFUdA}

Coefficient of Determination: \(R^{\wedge} 2=0.9999287\)
Calibration curve: -0.00133748 * \(x^{\wedge} 2+1.26612\) * \(x+-0.028293\)
Response type: Internal Std (Ref 46 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. & COD & D F & excluded \\
\hline \(1-\mathrm{ta}\) & 1 180118M1_2 & Standard & 0.250 & 5.35 & 458.173 & 15542.226 & 0.368 & 0.3 & 25.4 & NO & 0.999 & NO & bb \\
\hline & 2 180118M1_3 & Standard & 0.500 & 5.34 & 465.797 & 12565.826 & 0.463 & 0.4 & -22.3 & NO & 0.999 & NO & bb \\
\hline & 3 180118M1_4 & Standard & 1.000 & 5.33 & 1358.875 & 14148.101 & 1.201 & 1.0 & -2.8 & NO & 0.999 & NO & bb \\
\hline & 4 180118M1_5 & Standard & 2.000 & 5.33 & 2069.105 & 10704.468 & 2.416 & 1.9 & -3.3 & NO & 0.999 & NO & bb \\
\hline 5 & 5 180118M1_6 & Standard & 5.000 & 5.33 & 7196.309 & 14534.348 & 6.189 & 4.9 & -1.3 & NO & 0.999 & NO & bb \\
\hline 6 \% & 6 180118M1_7 & Standard & 10.000 & 5.33 & 13834.292 & 13444.508 & 12.862 & 10.3 & 2.9 & NO & 0.999 & NO & bb \\
\hline \(7{ }^{3}\) & 7 180118M1_8 & Standard & 50.000 & 5.33 & 74625.094 & 14974.295 & 62.294 & 52.1 & 4.2 & NO & 0.999 & NO & bb \\
\hline  & 8 180118M1_9 & Standard & 100.000 & 5.33 & 121933.063 & 13867.754 & 109.907 & 96.7 & -3.3 & NO & 0.999 & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 250.000 & 5.33 & 382704.000 & 20465.912 & 233.745 & 251.4 & 0.6 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFDS}

Coefficient of Determination: \(R^{\wedge} 2=0.993237\)
Calibration curve: \(-0.000344885{ }^{*} \times \wedge 2+0.420964 * x+-0.000554845\)
Response type: Internal Std (Ref 47 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\# Name \({ }_{\text {ase }}\) T Type} & Std. Conc & RT & Area & IS Area & Response & Conc. & \multicolumn{3}{|l|}{\%Dev Conc Flag CoD} & \multicolumn{2}{|l|}{CoD Flag \(\quad\) x excluded} \\
\hline 1 - 1 180118M1_2 & Standard & 0.250 & 5.39 & 85.499 & 9893.501 & 0.108 & 0.3 & 3.2 & NO & 0.993 & NO & bb \\
\hline 2 践 2 180118M1_3 & Standard & 0.500 & 5.38 & 141.148 & 10043.421 & 0.176 & 0.4 & -16.2 & NO & 0.993 & NO & bb \\
\hline 3 - \({ }^{\text {a }}\) - \({ }^{\text {a }}\) 180118M1_4 & Standard & 1.000 & 5.38 & 383.691 & 9790.955 & 0.490 & 1.2 & 16.6 & NO & 0.993 & NO & bb \\
\hline  & Standard & 2.000 & 5.38 & 571.169 & 8348.712 & 0.855 & 2.0 & 1.8 & NO & 0.993 & NO & bb \\
\hline  & Standard & 5.000 & 5.38 & 1652.684 & 11191.94C & 1.846 & 4.4 & -12.0 & NO & 0.993 & NO & bb \\
\hline  & Standard & 10.000 & 5.38 & 3548.905 & 9353.654 & 4.743 & 11.4 & 13.7 & NO & 0.993 & NO & bb \\
\hline 7 70 7 180118M1_8 & Standard & 50.000 & 5.38 & 15014.423 & 10944.460 & 17.148 & 42.2 & -15.6 & NO & 0.993 & NO & bb \\
\hline \(8 \mathrm{c}_{\text {- }}\) - 8 180118M1_9 & Standard & 100.000 & 5.38 & 32755.502 & 9724.193 & 42.106 & 109.9 & 9.9 & NO & 0.993 & NO & bb \\
\hline 9.9.9180118M1_10 & Standard & 250.000 & 5.38 & 80811.016 & 12186.347 & 82.891 & 246.8 & -1.3 & NO & 0.993 & NO & bb \\
\hline
\end{tabular}

Dataset: F:\Projects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld
ast Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed:
Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: PFDoA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999037\)
Calibration curve: \(-0.001843^{*} x^{\wedge} 2+1.87892\) * \(x+-0.0241226\)
Response type: Internal Std ( Ref 47 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline dem & \# Name & Type & cmat & Std. Conc & RT & Area & IS Area & Response & Conc. & \% \% \({ }^{\text {\% }}\) Dev & Conc. \({ }^{\text {F }}\) & CoD & D & cluded \\
\hline & 1 180118M1_2 & Standard & & 0.250 & 5.63 & 299.221 & 9893.501 & 0.378 & 0.2 & -14.4 & NO & 0.999 & NO & bb \\
\hline + & 2 180118M1_3 & Standard & & 0.500 & 5.62 & 758.312 & 10043.421 & 0.944 & 0.5 & 3.1 & NO & 0.999 & NO & bb \\
\hline & 3 180118M1_4 & Standard & & 1.000 & 5.62 & 1371.189 & 9790.955 & 1.751 & 0.9 & -5.5 & NO & 0.999 & NO & bb \\
\hline * & 4 180118M1_5 & Standard & & 2.000 & 5.62 & 2633.308 & 8348.712 & 3.943 & 2.1 & 5.8 & NO & 0.999 & NO & bb \\
\hline & 5 180118M1_6 & Standard & & 5.000 & 5.61 & 8443.216 & 11191.94C & 9.430 & 5.1 & 1.1 & NO & 0.999 & NO & bb \\
\hline & 6 180118M1_7 & Standard & & 10.000 & 5.61 & 15777.884 & 9353.654 & 21.085 & 11.4 & 13.6 & NO & 0.999 & NO & bb \\
\hline 7 年 & 7 180118M1_8 & Standard & & 50.000 & 5.61 & 75041.953 & 10944.460 & 85.708 & 47.9 & -4.2 & NO & 0.999 & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & & 100.000 & 5.61 & 132205.734 & 9724.193 & 169.944 & 100.3 & 0.3 & NO & 0.999 & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & & 250.000 & 5.61 & 346028.656 & 12186.347 & 354.935 & 250.4 & 0.2 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: N-MeFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999505\)
Calibration curve: \(-0.000243814^{*} x^{\wedge} 2+1.15095^{*} x+-0.281066\)
Response type: Internal Std (Ref 48 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Dataset: F:IProjects|PFAS.PROIResults\180118M11180118M1-CRV.qId
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(R^{\wedge} 2=0.995844\)
Calibration curve: \(-0.00306919{ }^{*} x^{\wedge} 2+2.32165\) * \(x+-0.0280397\)
Response type: Internal Std ( Ref 47 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & -rom & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & \multicolumn{3}{|l|}{CoD CoD Flag \(x=\) excluded} \\
\hline 1 - & 1 180118M1_2 & Standard & & 0.250 & 5.87 & 499.499 & 9893.501 & 0.631 & 0.3 & 13.6 & NO & 0.996 & NO & bb \\
\hline masand & 2 180118M1_3 & Standard & & 0.500 & 5.87 & 901.180 & 10043.421 & 1.122 & 0.5 & -0.9 & NO & 0.996 & NO & bb \\
\hline & 3 180118M1_4 & Standard & & 1.000 & 5.87 & 1658.061 & 9790.955 & 2.117 & 0.9 & -7.5 & NO & 0.996 & NO & bb \\
\hline & 4 180118M1_5 & Standard & & 2.000 & 5.87 & 2996.775 & 8348.712 & 4.487 & 1.9 & -2.5 & NO & 0.996 & NO & bb \\
\hline 5 \% & 5 180118M1_6 & Standard & & 5.000 & 5.86 & 9846.838 & 11191.94C & 10.998 & 4.8 & -4.4 & NO & 0.996 & NO & bb \\
\hline 6 \% + & 6 180118M1_7 & Standard & & 10.000 & 5.86 & 18190.943 & 9353.654 & 24.310 & 10.6 & 6.3 & NO & 0.996 & NO & bb \\
\hline & 7 180118M1_8 & Standard & & 50.000 & 5.86 & 84453.227 & 10944.460 & 96.457 & 44.1 & -11.7 & NO & 0.996 & NO & bb \\
\hline \(8 \quad 3\) dran min & 8 180118M1_9 & Standard & & 100.000 & 5.86 & 168229.531 & 9724.193 & 216.251 & 108.8 & 8.8 & NO & 0.996 & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & & 250.000 & 5.86 & 375316.156 & 12186.347 & 384.976 & 245.5 & -1.8 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFTeDA}

Coefficient of Determination: \(R^{\wedge} 2=0.998425\)
Calibration curve: -0.00275286 * \(x^{\wedge} 2+2.43466\) * \(x+-0.000678863\)
Response type: Internal Std (Ref 49 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C-ma & \# Name & Type \({ }^{\text {des }}\) & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & & \\
\hline W4. & 1 180118M1_2 & Standard & 0.250 & 6.09 & 235.263 & 5037.853 & 0.584 & 0.2 & -4.0 & NO & 0.998 & NO & bb \\
\hline & 2 180118M1_3 & Standard & 0.500 & 6.09 & 566.438 & 5022.793 & 1.410 & 0.6 & 15.9 & NO & 0.998 & NO & bb \\
\hline 3 a & 3 180118M1_4 & Standard & 1.000 & 6.08 & 1003.571 & 5471.021 & 2.293 & 0.9 & -5.7 & NO & 0.998 & NO & bb \\
\hline 4 碞 & 4 180118M1_5 & Standard & 2.000 & 6.08 & 2042.652 & 4792.470 & 5.328 & 2.2 & 9.7 & NO & 0.998 & NO & bb \\
\hline 5 Wex & 5 180118M1_6 & Standard & 5.000 & 6.08 & 4811.064 & 4987.284 & 12.058 & 5.0 & -0.4 & NO & 0.998 & NO & bb \\
\hline & 6 180118M1_7 & Standard & 10.000 & 6.08 & 7877.303 & 5020.775 & 19.612 & 8.1 & -18.7 & NO & 0.998 & NO & bb \\
\hline & 7 180118M1_8 & Standard & 50.000 & 6.08 & 53073.254 & 5696.931 & 116.451 & 50.7 & 1.5 & NO & 0.998 & NO & bb \\
\hline \(8{ }^{\text {a }}\) & 8 180118M1_9 & Standard & 100.000 & 6.08 & 85685.117 & 4864.495 & 220.180 & 102.3 & 2.3 & NO & 0.998 & NO & db \\
\hline \(9 \times\) & 9 180118M1_10 & Standard & 250.000 & 6.08 & 233984.891 & 6727.290 & 434.768 & 248.3 & -0.7 & NO & 0.998 & NO & db \\
\hline
\end{tabular}

Dataset: F:IProjects|PFAS.PROIResults\180118M1\180118M1-CRV.qId
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed:
Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: N-EtFOSA}

Coefficient of Determination: \(R^{\wedge} 2=0.999666\)
Calibration curve: -0.000120496 * \(x^{\wedge} 2+0.962768 * x+-0.128086\)
Response type: Internal Std (Ref 50 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Fla & & CoD & cluded \\
\hline & 1 180118M1_2 & Standard & 1.250 & 6.13 & 161.605 & 21657.963 & 1.119 & 1.3 & 3.7 & NO & 1.000 & NO & bb \\
\hline & 2 180118M1_3 & Standard & 2.500 & 6.12 & 346.068 & 23140.080 & 2.243 & 2.5 & -1.4 & NO & 1.000 & NO & bb \\
\hline & 3 180118M1_4 & Standard & 5.000 & 6.12 & 735.740 & 23495.924 & 4.697 & 5.0 & 0.3 & NO & 1.000 & NO & bb \\
\hline & 4 180118M1_5 & Standard & 10.000 & 6.12 & 1374.844 & 21361.910 & 9.654 & 10.2 & 1.7 & NO & 1.000 & NO & bb \\
\hline 5 ber & 5 180118M1_6 & Standard & 25.000 & 6.12 & 3743.706 & 23496.209 & 23.900 & 25.0 & 0.1 & NO & 1.000 & NO & bb \\
\hline \(6{ }^{\text {atam }}\) - & 6 180118M1_7 & Standard & 50.000 & 6.12 & 7648.640 & 24992.623 & 45.905 & 48.1 & -3.8 & NO & 1.000 & NO & bb \\
\hline 7 , & 7 180118M1_8 & Standard & 250.000 & 6.12 & 37304.500 & 24702.057 & 226.527 & 242.8 & -2.9 & NO & 1.000 & NO & bb \\
\hline 8 -ta & 8 180118M1_9 & Standard & 500.000 & 6.12 & 71421.711 & 23172.662 & 462.323 & 513.3 & 2.7 & NO & 1.000 & NO & bb \\
\hline \(9 \times\) & 9 180118M1_10 & Standard & 1250.000 & 6.12 & 174863.219 & 25919.678 & 1011.952 & 1245.3 & -0.4 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997076\)
Calibration curve: -0.000851985 * \(x^{\wedge} 2+0.727571\) * \(x+0.155465\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & COD & D Fia & clu \\
\hline 1 & 1 180118M1_2 & Standard & 0.250 & 6.42 & 136.818 & 2243.896 & 0.305 & 0.2 & -17.8 & NO & 0.997 & NO & bb \\
\hline 2.3 & 2 180118M1_3 & Standard & 0.500 & 6.42 & 232.633 & 2515.967 & 0.462 & 0.4 & -15.6 & NO & 0.997 & NO & bb \\
\hline 3- & 3 180118M1_4 & Standard & 1.000 & 6.42 & 523.195 & 2432.108 & 1.076 & 1.3 & 26.7 & NO & 0.997 & NO & bb \\
\hline 4 毞 & 4 180118M1_5 & Standard & 2.000 & 6.42 & 896.666 & 3031.573 & 1.479 & 1.8 & -8.9 & NO & 0.997 & NO & bb \\
\hline 5 , & 5 180118M1_6 & Standard & 5.000 & 6.42 & 2407.783 & 3077.301 & 3.912 & 5.2 & 3.9 & NO & 0.997 & NO & bb \\
\hline 紋 & 6 180118M1_7 & Standard & 10.000 & 6.42 & 5341.036 & 3099.393 & 8.616 & 11.8 & 17.9 & NO & 0.997 & NO & bb \\
\hline \(7 \times 5\) & 7 180118M1_8 & Standard & 50.000 & 6.42 & 20491.061 & 3239.779 & 31.624 & 45.7 & -8.6 & NO & 0.997 & NO & bb \\
\hline 8 8 & 8 180118M1_9 & Standard & 100.000 & 6.42 & 44007.414 & 3340.108 & 65.877 & 102.7 & 2.7 & NO & 0.997 & NO & bb \\
\hline 9-4.4. & 9 180118M1_10 & Standard & 250.000 & 6.42 & 116565.555 & 4528.296 & 128.708 & 249.7 & -0.1 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld
ast Altered:
Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: PFODA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998863\)
Calibration curve: -0.00176379 * \(x^{\wedge} 2+0.727145\) * \(x+0.0519948\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ama & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & COD & D & xcluded \\
\hline 1 - & 1 180118M1_2 & Standard & 0.250 & 6.66 & 123.982 & 2243.896 & 0.276 & 0.3 & 23.5 & NO & 0.999 & NO & bb \\
\hline 2 & 2 180118M1_3 & Standard & 0.500 & 6.65 & 204.443 & 2515.967 & 0.406 & 0.5 & -2.4 & NO & 0.999 & NO & bb \\
\hline 3 - & 3 180118M1_4 & Standard & 1.000 & 6.65 & 457.650 & 2432.108 & 0.941 & 1.2 & 22.6 & NO & 0.999 & NO & bb \\
\hline 4 , man & 4 180118M1_5 & Standard & 2.000 & 6.65 & 788.671 & 3031.573 & 1.301 & 1.7 & -13.8 & NO & 0.999 & NO & bb \\
\hline  & 5 180118M1_6 & Standard & 5.000 & 6.65 & 2227.081 & 3077.301 & 3.619 & 5.0 & -0.7 & NO & 0.999 & NO & bb \\
\hline & 6 180118M1_7 & Standard & 10.000 & 6.65 & 4390.066 & 3099.393 & 7.082 & 9.9 & -0.9 & NO & 0.999 & NO & bb \\
\hline 7 \% maty & 7 180118M1_8 & Standard & 50.000 & 6.65 & 20839.658 & 3239.779 & 32.162 & 50.3 & 0.6 & NO & 0.999 & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 100.000 & 6.65 & 36779.527 & 3340.108 & 55.057 & 99.8 & -0.2 & NO & 0.999 & NO & bb \\
\hline 9 9 & 9 180118M1_10 & Standard & 250.000 & 6.65 & 109566.594 & 4528.296 & 120.980 & & & NO & 0.999 & NO & bbXI \\
\hline
\end{tabular}

\section*{Compound name: N-MeFOSE}

Correlation coefficient: \(\mathrm{r}=0.999655, \mathrm{r}^{\wedge} 2=0.999310\)
Calibration curve: 0.958394 * \(x+0.409465\)
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: \(1 / \mathrm{x}\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc, & \%Dev & c. & COD & & cluded \\
\hline 1 \% & 1 180118M1_2 & Standard & 1.250 & 6.28 & 172.182 & 17415.396 & 1.483 & 1.1 & -10.4 & NO & 0.999 & NO & bb \\
\hline  & 2 180118M1_3 & Standard & 2.500 & 6.28 & 300.986 & 19984.701 & 2.259 & 1.9 & -22.8 & NO & 0.999 & NO & bb \\
\hline & 3 180118M1_4 & Standard & 5.000 & 6.28 & 719.831 & 20721.902 & 5.211 & 5.0 & 0.2 & NO & 0.999 & NO & bb \\
\hline 4- & 4 180118M1_5 & Standard & 10.000 & 6.28 & 1316.902 & 18123.596 & 10.899 & 10.9 & 9.5 & NO & 0.999 & NO & bb \\
\hline 5 & 5 180118M1_6 & Standard & 25.000 & 6.28 & 3394.358 & 17435.055 & 29.203 & 30.0 & 20.2 & NO & 0.999 & NO & bb \\
\hline & 6 180118M1_7 & Standard & 50.000 & 6.27 & 7919.895 & 23477.758 & 50.600 & 52.4 & 4.7 & NO & 0.999 & NO & bb \\
\hline \(7 \times 4\) & 7 180118M1_8 & Standard & 250.000 & 6.27 & 34673.496 & 21728.279 & 239.367 & 249.3 & -0.3 & NO & 0.999 & NO & bb \\
\hline 8 就 & 8 180118M1_9 & Standard & 500.000 & 6.27 & 72242.891 & 22800.027 & 475.282 & 495.5 & -0.9 & NO & 0.999 & NO & bd \\
\hline 9 & 9 180118M1_10 & Standard & 1250.000 & 6.27 & 201017.609 & 25210.842 & 1196.019 & 1247.5 & -0.2 & NO & 0.999 & NO & bd \\
\hline
\end{tabular}

Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: N-EtFOSE}

Correlation coefficient: \(r=0.997200, r^{\wedge} 2=0.994407\)
Calibration curve: 1.12061 * x + 0.46359
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & CoD & COD Fl & xclud \\
\hline 1 + & 1 180118M1_2 & Standard & 1.250 & 6.43 & 203.407 & 19155.027 & 1.593 & 1.0 & -19.4 & NO & 0.994 & NO & bb \\
\hline & 2 180118M1_3 & Standard & 2.500 & 6.43 & 332.453 & 18968.391 & 2.629 & 1.9 & -22.7 & NO & 0.994 & NO & bb \\
\hline & 3 180118M1_4 & Standard & 5.000 & 6.42 & 692.892 & 17547.807 & 5.923 & 4.9 & -2.6 & NO & 0.994 & NO & bb \\
\hline 4 & 4 180118M1_5 & Standard & 10.000 & 6.43 & 1696.348 & 18566.025 & 13.705 & 11.8 & 18.2 & NO & 0.994 & NO & bb \\
\hline & 5 180118M1_6 & Standard & 25.000 & 6.43 & 4134.430 & 21535.252 & 28.798 & 25.3 & 1.1 & NO & 0.994 & NO & bb \\
\hline 6 & 6 180118M1_7 & Standard & 50.000 & 6.42 & 9707.213 & 21754.430 & 66.933 & 59.3 & 18.6 & NO & 0.994 & NO & bb \\
\hline & \(7180118 \mathrm{M1} \mathrm{\_8}\) & Standard & 250.000 & 6.42 & 38152.457 & 20087.791 & 284.893 & 253.8 & 1.5 & NO & 0.994 & NO & bb \\
\hline 8 . & 8 180118M1_9 & Standard & 500.000 & 6.42 & 88203.984 & 21341.703 & 619.941 & 552.8 & 10.6 & NO & 0.994 & NO & bb \\
\hline & 9 180118M1_10 & Standard & 1250.000 & 6.42 & 208789.781 & 23618.215 & 1326.030 & 1182.9 & -5.4 & NO & 0.994 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBA}

Response Factor: 0.872221
RRF SD: 0.0139435 , Relative SD: 1.59862
Response type: Internal Std (Ref 54 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T/4 & \# Name & Type & 4. & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Fla & D & cluded \\
\hline 1 \% & 1 180118M1_2 & Standard & & 12.500 & 1.29 & 6628.176 & 7669.093 & 10.803 & 12.4 & -0.9 & NO & NO & MM \\
\hline 2 2 & 2 180118M1_3 & Standard & & 12.500 & 1.30 & 6766.416 & 7598.055 & 11.132 & 12.8 & 2.1 & NO & NO & MM \\
\hline 3 \% & 3 180118M1_4 & Standard & & 12.500 & 1.30 & 6783.989 & 7951.014 & 10.665 & 12.2 & -2.2 & NO & NO & MM \\
\hline  & 4 180118M1_5 & Standard & & 12.500 & 1.31 & 6314.151 & 7314.195 & 10.791 & 12.4 & -1.0 & NO & NO & MM \\
\hline 5 \% \({ }^{5}\) & 5 180118M1_6 & Standard & & 12.500 & 1.31 & 6706.746 & 7566.779 & 11.079 & 12.7 & 1.6 & NO & NO & MM \\
\hline 6 , & 6 180118M1_7 & Standard & & 12.500 & 1.31 & 7498.908 & 8593.296 & 10.908 & 12.5 & 0.0 & NO & NO & bb \\
\hline , 앙 & 7 180118M1_8 & Standard & & 12.500 & 1.31 & 7335.596 & 8457.297 & 10.842 & 12.4 & -0.6 & NO & NO & bb \\
\hline 8 - & 8 180118M1_9 & Standard & & 12.500 & 1.32 & 7463.100 & 8372.831 & 11.142 & 12.8 & 2.2 & NO & NO & bb \\
\hline  & 9 180118M1_10 & Standard & & 12.500 & 1.33 & 8867.412 & 10299.271 & 10.762 & 12.3 & -1.3 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C3-PFPeA}

Response Factor: 0.78759
RRF SD: 0.0657094, Relative SD: 8.34309
Response type: Internal Std ( Ref 55 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline mit & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag coD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 - & 1 180118M1_2 & Standard & 12.500 & 2.29 & 8624.307 & 12361.655 & 8.721 & 11.1 & -11.4 & NO & NO & bb \\
\hline & 2 180118M1_3 & Standard & 12.500 & 2.29 & 8386.112 & 10466.128 & 10.016 & 12.7 & 1.7 & NO & NO & bb \\
\hline 3 & 3 180118M1_4 & Standard & 12.500 & 2.29 & 9145.476 & 12489.865 & 9.153 & 11.6 & -7.0 & NO & NO & bb \\
\hline 4 - & 4 180118M1_5 & Standard & 12.500 & 2.30 & 8628.688 & 11243.905 & 9.593 & 12.2 & -2.6 & NO & NO & bb \\
\hline 5 at & 5 180118M1_6 & Standard & 12.500 & 2.29 & 8970.576 & 12256.104 & 9.149 & 11.6 & -7.1 & NO & NO & bb \\
\hline 6 *- \({ }^{4}\) & \(6180118 \mathrm{M1} 1\) 7 & Standard & 12.500 & 2.30 & 10123.032 & 12170.751 & 10.397 & 13.2 & 5.6 & NO & NO & bb \\
\hline  & 7 180118M1_8 & Standard & 12.500 & 2.30 & 9769.188 & 11962.639 & 10.208 & 13.0 & 3.7 & NO & NO & bb \\
\hline 8 - & 8 180118M1_9 & Standard & 12.500 & 2.29 & 10192.470 & 11108.53 C & 11.469 & 14.6 & 16.5 & NO & NO & bb \\
\hline 9.4. & 9 180118M1_10 & Standard & 12.500 & 2.30 & 11607.073 & 14657.479 & 9.899 & 12.6 & 0.5 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBS}

Response Factor: 0.104803
RRF SD: 0.00657207 , Relative SD: 6.2709
Response type: Internal Std ( Ref 55 ), Area * ( IS Conc. / IS Area )
Curve type: RF


\section*{Dataset:}

F:IProjectsIPFAS.PROIResults|180118M1/180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C2-PFHxA}

Response Factor: 0.685181
RRF SD: 0.0660619, Relative SD: 9.64152
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Tugeramix & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Der & \multicolumn{3}{|l|}{Conc. Flag CoD CoD Flag x=excluded} \\
\hline 1 边 & 1 180118M1_2 & Standard & 5.000 & 3.07 & 3061.157 & 12361.655 & 3.095 & 4.5 & -9.6 & NO & NO & bb \\
\hline 2 & 2 180118M1_3 & Standard & 5.000 & 3.07 & 3351.196 & 10466.128 & 4.002 & 5.8 & 16.8 & NO & NO & bb \\
\hline 3 & 3 180118M1_4 & Standard & 5.000 & 3.07 & 3244.312 & 12489.865 & 3.247 & 4.7 & -5.2 & NO & NO & bb \\
\hline \(4=\) & 4 180118M1_5 & Standard & 5.000 & 3.07 & 3263.661 & 11243.905 & 3.628 & 5.3 & 5.9 & NO & NO & bb \\
\hline 5 atx & 5 180118M1_6 & Standard & 5.000 & 3.07 & 3111.942 & 12256.104 & 3.174 & 4.6 & -7.4 & NO & NO & bb \\
\hline 6 \% & 6 180118M1_7 & Standard & 5.000 & 3.07 & 2964.833 & 12170.751 & 3.045 & 4.4 & -11.1 & NO & NO & bb \\
\hline 7 - 19, & 7 180118M1_8 & Standard & 5.000 & 3.07 & 3171.605 & 11962.639 & 3.314 & 4.8 & -3.3 & NO & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 5.000 & 3.07 & 3353.509 & 11108.53C & 3.774 & 5.5 & 10.1 & NO & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 5.000 & 3.07 & 4166.901 & 14657.479 & 3.554 & 5.2 & 3.7 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFHpA}

Response Factor: 0.811173
RRF SD: 0.0797935, Relative SD: 9.8368
Response type: Internal Std ( Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4, & \multicolumn{2}{|l|}{\# Name} & Std. Conc & RT & Area & IS Area & Response & \multicolumn{2}{|l|}{Conc. \%Dev} & \multicolumn{3}{|l|}{Conc. Flag \(\quad\) CoD \(\quad \mathrm{CoD} \mathrm{Flag} x\)-excluded} \\
\hline 1 & 1 180118M1_2 & Standard & 12.500 & 3.69 & 9221.989 & 12361.655 & 9.325 & 11.5 & -8.0 & NO & NO & bb \\
\hline 2 - & 2 180118M1_3 & Standard & 12.500 & 3.69 & 9847.466 & 10466.128 & 11.761 & 14.5 & 16.0 & NO & NO & bb \\
\hline 3 4 & 3 180118M1_4 & Standard & 12.500 & 3.68 & 9050.854 & 12489.865 & 9.058 & 11.2 & -10.7 & NO & NO & bb \\
\hline 4. \({ }^{\text {d }}\) & 4 180118M1_5 & Standard & 12.500 & 3.68 & 8772.772 & 11243.905 & 9.753 & 12.0 & -3.8 & NO & NO & bb \\
\hline 5 边 & 5 180118M1_6 & Standard & 12.500 & 3.68 & 8900.424 & 12256.104 & 9.078 & 11.2 & -10.5 & NO & NO & bb \\
\hline & 6 180118M1_7 & Standard & 12.500 & 3.68 & 10152.992 & 12170.751 & 10.428 & 12.9 & 2.8 & NO & NO & bb \\
\hline & 7 180118M1_8 & Standard & 12.500 & 3.68 & 9974.576 & 11962.639 & 10.423 & 12.8 & 2.8 & NO & NO & bb \\
\hline 8 . & 8 180118M1_9 & Standard & 12.500 & 3.68 & 10264.402 & 11108.53C & 11.550 & 14.2 & 13.9 & NO & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 12.500 & 3.68 & 11587.292 & 14657.479 & 9.882 & 12.2 & -2.5 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 1802-PFHxS}

Response Factor: 0.370858
RRF SD: 0.0371691 , Relative SD: 10.0225
Response type: Internal Std (Ref 56 ), Area * (IS Conc. / IS Area )
Curve type: RF


Compound name: 13C2-6:2 FTS
Response Factor: 0.245544
RRF SD: 0.0473638 , Relative SD: 19.283


Response type: Internal Std (Ref 57 ), Area* (IS Conc. /IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Sonc & RT & Area & IS Area & Response & Conc. & Dev & nc. Fi & CoD Fla & xclud \\
\hline 1 + & 1 180118M1_2 & Standard & 12.50 Q & 4.15 & 2699.295 & 11045.427 & 3.055 & 12.4 & -0.5 & NO & NO & bb \\
\hline 2 毞 & 2 180118M1_3 & Standard & 12.500 & 4.15 & 2502.851 & 12613.450 & 2.480 & 10.1 & -19.2 & NO & NO & bb \\
\hline 3 時 & 3 180118M1_4 & Standard & 12.500 & 14 & 3143.382 & 14387.428 & 2.731 & 11.1 & -11.0 & NO & NO & bb \\
\hline  & 4 180118M1_5 & Standard & 12.500 & 4.74 & 2690.382 & 11420.492 & 2.945 & 12.0 & -4.1 & NO & NO & bb \\
\hline 5 - & 5 180118M1_6 & Standard & 12.500 & & 2975.652 & 10777.910 & 3.451 & 14.1 & 12.4 & NO & NO & bb \\
\hline 6 \% & 6 180118M1_7 & Standard & 12.500 & 4.14 & 3090.315 & 15538.602 & 2.486 & 10.1 & -19.0 & NO & NO & bb \\
\hline 7.3 & 7 180118M1_8 & Standard & 12.500 & 4.14 & 3764.777 & 15096.650 & 3.117 & 12.7 & 1.6 & NO & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 12.500 & 4.14 & 4466.345 & 13016.104 & 4.289 & 17.5 & 39.7 & NO & NO & bb \\
\hline 9 - & 9 180118M1_10 & Standard & 12.500 & 4.15 & 6609.282 & 15015.451 & 5.502 & 22.4 & 79.3 & NO & NO & bbX \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PROTResults|180118M1\180118M1-CRV.ald
ast Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed:
Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C2-PFOA}

Response Factor: 1.1014
RRF SD: 0.148631, Relative SD: 13.4948
Response type: Internal Std ( Ref 57 ), Area * (IS Conc. /IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. Flag & CoD F & clü \\
\hline 1 dext & 1 180118M1_2 & Standard & 12.500 & 4.21 & 13210.429 & 11045.427 & 14.950 & 13.6 & 8.6 & NO & NO & bb \\
\hline 2 & 2 180118M1_3 & Standard & 12.500 & 4.21 & 12533.280 & 12613.450 & 12.421 & 11.3 & -9.8 & NO & NO & bb \\
\hline 3 - & 3 180118M1_4 & Standard & 12.500 & 4.20 & 14471.168 & 14387.428 & 12.573 & 11.4 & -8.7 & NO & NO & bb \\
\hline & 4 180118M1_5 & Standard & 12.500 & 4.20 & 11511.098 & 11420.492 & 12.599 & 11.4 & -8.5 & NO & NO & bb \\
\hline 5 5 & 5 180118M1_6 & Standard & 12.500 & 4.20 & 15269.152 & 10777.910 & 17.709 & 16.1 & 28.6 & NO & NO & bb \\
\hline 6 为 & \(6180118 \mathrm{M1} \mathrm{C}^{7}\) & Standard & 12.500 & 4.20 & 15085.087 & 15538.602 & 12.135 & 11.0 & -11.9 & NO & NO & bb \\
\hline 7 & 7 180118M1_8 & Standard & 12.500 & 4.20 & 14973.517 & 15096.650 & 12.398 & 11.3 & -9.9 & NO & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 12.500 & 4.20 & 14777.377 & 13016.104 & 14.191 & 12.9 & 3.1 & NO & NO & bb \\
\hline 9 , & 9 180118M1_10 & Standard & 12.500 & 4.20 & 17936.301 & 15015.451 & 14.932 & 13.6 & 8.5 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFNA}

Response Factor: 0.931913
RRF SD: 0.0891826 , Relative SD: 9.56983
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag Cod & CoD Flag & \(x=\) excluded \\
\hline  & 1 180118M1_2 & Standard & 12.500 & 4.65 & 10075.711 & 9974.009 & 12.627 & 13.6 & 8.4 & NO & NO & bb \\
\hline 2 & 2 180118M1_3 & Standard & 12.500 & 4.64 & 11524.767 & 12552.051 & 11.477 & 12.3 & -1.5 & NO & NO & bb \\
\hline \(3 *\) & 3 180118M1_4 & Standard & 12.500 & 4.64 & 10933.791 & 12388.794 & 11.032 & 11.8 & -5.3 & NO & NO & bb \\
\hline 4 年 & 4 180118M1_5 & Standard & 12.500 & 4.63 & 12811.041 & 13680.797 & 11.705 & 12.6 & 0.5 & NO & NO & bb \\
\hline \(5 \quad 4\) & 5 180118M1_6 & Standard & 12.500 & 4.63 & 14782.018 & 13627.233 & 13.559 & 14.5 & 16.4 & NO & NO & bb \\
\hline 6 Wex & 6 180118M1_7 & Standard & 12.500 & 4.63 & 14157.063 & 13850.425 & 12.777 & 13.7 & 9.7 & NO & NO & bb \\
\hline \[
7
\] & 7 180118M1_8 & Standard & 12.500 & 4.63 & 13019.187 & 15464.554 & 10.523 & 11.3 & -9.7 & NO & NO & bb \\
\hline 8 \% & 8 180118M1_9 & Standard & 12.500 & 4.63 & 13804.038 & 16580.219 & 10.407 & 11.2 & -10.7 & NO & NO & bb \\
\hline 9 anm & 9 180118M1_10 & Standard & 12.500 & 4.64 & 14864.908 & 17313.514 & 10.732 & 11.5 & -7.9 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects|PFAS.PROIResults\180118M11180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C8-PFOSA}

Response Factor: 0.17608
RRF SD: 0.0276378, Relative SD: 15.6962
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & COD F & \(x\)-excluded \\
\hline 1 & 1 180118M1_2 & Standard & 12.500 & 4.71 & 2230.248 & 16607.514 & 1.679 & 9.5 & -23.7 & No & NO & bbX \\
\hline & 2 180118M1_3 & Standard & 12.500 & 4.70 & 2042.124 & 16973.807 & 1.504 & 8.5 & -31.7 & NO & NO & bbX \\
\hline & 3 180118M1_4 & Standard & 12.500 & 4.69 & 2235.724 & 11763.054 & 2.376 & 13.5 & 7.9 & NO & NO & bb \\
\hline & 4 180118M1_5 & Standard & 12.500 & 4.69 & 2069.984 & 9840.114 & 2.630 & 14.9 & 19.5 & NO & NO & bb \\
\hline 5 & 5 180118M1_6 & Standard & 12.500 & 4.69 & 2106.655 & 13945.345 & 1.888 & 10.7 & -14.2 & NO & NO & bb \\
\hline 6 \% \({ }^{\text {a }}\) - & \(6180118 \mathrm{M1} 1\) 7 & Standard & 12.500 & 4.69 & 2378.393 & 16448.322 & 1.807 & 10.3 & -17.9 & NO & NO & bb \\
\hline  & 7 180118M1_8 & Standard & 12.500 & 4.69 & 2395.824 & 12998.784 & 2.304 & 13.1 & 4.7 & NO & NO & bb \\
\hline 8 为 & 8 180118M1_9 & Standard & 12.500 & 4.69 & 2430.352 & 10435.265 & 2.911 & 16.5 & 32.3 & NO & NO & MMX \\
\hline 9 \({ }^{4}\) & 9 180118M1_10 & Standard & 12.500 & 4.69 & 2717.913 & 17313.598 & 1.962 & 11.1 & -10.8 & NO & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOS}

Response Factor: 1.04689
RRF SD: 0.137734 , Relative SD: 13.1565
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area )
Curve type: RF


Dataset: F:IProjects|PFAS.PROIResults\180118M11180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C2-PFDA}

Response Factor: 1.17828
RRF SD: 0.162991, Relative SD: 13.8329
Response type: Internal Std ( Ref 60 ), Area * ( IS Conc. / IS Area )
Curve type: RF


Compound name: 13C2-8:2 FT
Response Factor: 0.127327
RRF SD: 0.0243727, Relative SD: 19.1417
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area )
Curve type: RF


Dataset: F:IProjects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSAA}

Response Factor: 0.276007
RRF SD: 0.0551431 , Relative SD: 19.9789
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & & De & nc. Flag & CoD & COD Fl & excluded \\
\hline , 4 & 1 180118M1_2 & Standard & 12.500 & 5.17 & 2985.703 & 16607.514 & 2.247 & 8.1 & -34.9 & NO & & NO & \(b b X\) \\
\hline 2 & 2 180118M1_3 & Standard & 12.500 & 5.16 & 3644.077 & 16973.807 & 2.684 & 9.7 & -22.2 & NO & & NO & bb \\
\hline & 3 180118M1_4 & Standard & 12.500 & 5.16 & 3360.004 & 11763.054 & 3.571 & 12.9 & 3.5 & NO & & NO & bb \\
\hline - & 4 180118M1_5 & Standard & 12.500 & 5.16 & 3142.509 & 9840.114 & 3.992 & 14.5 & 15.7 & NO & & NO & bb \\
\hline & 5 180118M1_6 & Standard & 12.500 & 5.15 & 3545.096 & 13945.345 & 3.178 & 11.5 & -7.9 & NO & & NO & bb \\
\hline 6 & 6 180118M1_7 & Standard & 12.500 & 5.15 & 3256.635 & 16448.322 & 2.475 & 9.0 & -28.3 & NO & & NO & bb \\
\hline 7 - & \(7180118 \mathrm{M1}\) _8 & Standard & 12.500 & 5.15 & 4197.069 & 12998.784 & 4.036 & 14.6 & 17.0 & NO & & NO & bb \\
\hline & 8 180118M1_9 & Standard & 12.500 & 5.15 & 3519.573 & 10435.265 & 4.216 & 15.3 & 22.2 & NO & & NO & bb \\
\hline 9 - & 9 180118M1_10 & Standard & 12.500 & 5.16 & 3458.090 & 17313.598 & 2.497 & 9.0 & -27.6 & NO & & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: d5-N-EtFOSAA}

Response Factor: 0.295555
RRF SD: 0.0472832 , Relative SD: 15.9981
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc Flag CoD & CoD Flag & \(x=e x c l u d e d\) \\
\hline & 1 180118M1_2 & Standard & 12.500 & 5.32 & 4136.433 & 16607.514 & 3.113 & 10.5 & -15.7 & NO & NO & bb \\
\hline 2 -4 \({ }^{\text {che }}\) & 2 180118M1_3 & Standard & 12.500 & 5.32 & 4482.346 & 16973.807 & 3.301 & 11.2 & -10.7 & NO & NO & bb \\
\hline 3 & 3 180118M1_4 & Standard & 12.500 & 5.31 & 4101.455 & 11763.054 & 4.358 & 14.7 & 18.0 & NO & NO & bb \\
\hline 4 4en & 4 180118M1_5 & Standard & 12.500 & 5.31 & 3356.207 & 9840.114 & 4.263 & 14.4 & 15.4 & NO & NO & bb \\
\hline & 5 180118M1_6 & Standard & 12.500 & 5.31 & 3539.426 & 13945.345 & 3.173 & 10.7 & -14.1 & NO & NO & bb \\
\hline 6 & 6 180118M1_7 & Standard & 12.500 & 5.31 & 4207.344 & 16448.322 & 3.197 & 10.8 & -13.5 & NO & NO & bb \\
\hline 7 \% & 7 180118M1_8 & Standard & 12.500 & 5.31 & 4333.930 & 12998.784 & 4.168 & 14.1 & 12.8 & NO & NO & bb \\
\hline & 8 180118M1_9 & Standard & 12.500 & 5.31 & 3716.367 & 10435.265 & 4.452 & 15.1 & 20.5 & NO & NO & bb \\
\hline 9 mex & 9 180118M1_10 & Standard & 12.500 & 5.31 & 4466.246 & 17313.598 & 3.225 & 10.9 & -12.7 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects|PFAS.PRO\Results)180118M11180118M1-CRV.ald
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C2-PFUdA}

Response Factor: 1.05437
RRF SD: 0.191491, Relative SD: 18.1616
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Wama & F Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & D & xclu \\
\hline & 1 180118M1_2 & Standard & 12.500 & 5.34 & 15542.226 & 16607.514 & 11.698 & 11.1 & -11.2 & NO & NO & bb \\
\hline "ter & 2 180118M1_3 & Standard & 12.500 & 5.34 & 12565.826 & 16973.807 & 9.254 & 8.8 & -29.8 & NO & NO & bb \\
\hline & 3 180118M1_4 & Standard & 12.500 & 5.33 & 14148.101 & 11763.054 & 15.034 & 14.3 & 14.1 & NO & NO & bb \\
\hline & 4 180118M1_5 & Standard & 12.500 & 5.33 & 10704.468 & 9840.114 & 13.598 & 12.9 & 3.2 & NO & NO & bb \\
\hline  & 5 180118M1_6 & Standard & 12.500 & 5.33 & 14534.348 & 13945.345 & 13.028 & 12.4 & -1.2 & NO & NO & bb \\
\hline & 6 180118M1_7 & Standard & 12.500 & 5.33 & 13444.508 & 16448.322 & 10.217 & 9.7 & -22.5 & NO & NO & bb \\
\hline 7 7 & 7 180118M1_8 & Standard & 12.500 & 5.33 & 14974.295 & 12998.784 & 14.400 & 13.7 & 9.3 & NO & NO & bb \\
\hline  & 8 180118M1_9 & Standard & 12.500 & 5.33 & 13867.754 & 10435.265 & 16.612 & 15.8 & 26.0 & NO & NO & bb \\
\hline 9 9, & 9 180118M1_10 & Standard & 12.500 & 5.33 & 20465.912 & 17313.598 & 14.776 & 14.0 & 12.1 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDoA}

Response Factor: 0,746346
RRF SD: 0.134402 , Relative SD: 18.008
Response type: Internal Std ( Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF


Dataset: F:IProjects|PFAS.PROIResults\180118M11180118M1-CRV.qld
ast Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSA}

Response Factor: 0.0983556
RRF SD: 0.0180888 , Relative SD: 18.3912
Response type: Internal Std ( Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Cone & RT & Area & IS Area & Response & \multicolumn{2}{|l|}{Conc. \% \(\%\) Dev} & Conc. Flag & \multicolumn{2}{|l|}{CoD CoD Flag \(x=\) excluded} \\
\hline 1 - \({ }^{2}\) & 1 180118M1_2 & Standard & 150.000 & 5.76 & 14980.832 & 16607.514 & 11.276 & 114.6 & -23.6 & NO & NO & MM \\
\hline & 2 180118M1_3 & Standard & 150.000 & 5.75 & 16001.392 & 16973.807 & 11.784 & 119.8 & -20.1 & NO & NO & bb \\
\hline The & 3 180118M1_4 & Standard & 150.000 & 5.74 & 15583.063 & 11763.054 & 16.559 & 168.4 & 12.2 & NO & NO & bb \\
\hline & 4 180118M1_5 & Standard & 150.000 & 5.74 & 14787.801 & 9840.114 & 18.785 & 191.0 & 27.3 & NO & NO & bb \\
\hline & 5 180118M1_6 & Standard & 150.000 & 5.74 & 15817.274 & 13945.345 & 14.178 & 144.1 & -3.9 & NO & NO & bb \\
\hline 6 & \(6180118 \mathrm{M1}\) _7 & Standard & 150.000 & 5.74 & 16636.686 & 16448.322 & 12.643 & 128.5 & -14.3 & NO & NO & bb \\
\hline 7 \% & 7 180118M1_8 & Standard & 150.000 & 5.74 & 15942.258 & 12998.784 & 15.331 & 155.9 & 3.9 & NO & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 150.000 & 5.74 & 15285.314 & 10435.265 & 18.310 & 186.2 & 24.1 & NO & NO & bb \\
\hline \(9{ }^{4}\) & 9 180118M1_10 & Standard & 150.000 & 5.74 & 19273.289 & 17313.598 & 13.915 & 141.5 & -5.7 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFTeDA}

Response Factor: 0.389695
RRF SD: 0.077281, Relative SD: 19.8312
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4. & \# Name & \({ }^{4}\) Type & T, & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Fla & \multicolumn{2}{|l|}{COD Flag \(x=\) excluded} \\
\hline 1. & 1 180118M1_2 & Standard & & 12.500 & 6.09 & 5037.853 & 16607.514 & 3.792 & 9.7 & -22.2 & NO & NO & bb \\
\hline 2 4 & 2 180118M1_3 & Standard & & 12.500 & 6.09 & 5022.793 & 16973.807 & 3.699 & 9.5 & -24.1 & NO & NO & bb \\
\hline \(3{ }^{3}\) ate & 3 180118M1_4 & Standard & & 12.500 & 6.08 & 5471.021 & 11763.054 & 5.814 & 14.9 & 19.4 & NO & NO & bb \\
\hline 4 , mid wiven & 4 180118M1_5 & Standard & & 12.500 & 6.08 & 4792.470 & 9840.114 & 6.088 & 15.6 & 25.0 & NO & NO & bb \\
\hline 5 , & 5 180118M1_6 & Standard & & 12.500 & 6.08 & 4987.284 & 13945.345 & 4.470 & 11.5 & -8.2 & NO & NO & bb \\
\hline 6 ? \({ }^{\text {a }}\) & 6180118 M 1 _7 & Standard & & 12.500 & 6.08 & 5020.775 & 16448.322 & 3.816 & 9.8 & -21.7 & NO & NO & bb \\
\hline 7 7 & 7 180118M1_8 & Standard & & 12.500 & 6.08 & 5696.931 & 12998.784 & 5.478 & 14.1 & 12.5 & NO & NO & bb \\
\hline 8 - & 8 180118M1_9 & Standard & & 12.500 & 6.08 & 4864.495 & 10435.265 & 5.827 & 15.0 & 19.6 & NO & NO & bb \\
\hline 0 - way & 9 180118M1_10 & Standard & & 12.500 & 6.08 & 6727.290 & 17313.598 & 4.857 & 12.5 & -0.3 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld

Last Altered:
Printed:
Friday, January 19, 2018 09:30:24 Pacific Standard Time Friday, January 19, 2018 09:31:01 Pacific Standard Time

Compound name: d5-N-ETFOSA
Response Factor: 0.144982
RRF SD: 0.0287357 , Relative SD: 19.8201
Response type: Internal Std ( Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & \(\mathrm{CoD} \quad \mathrm{CoDF}\) & xcluced \\
\hline 1 \% & 1 180118M1_2 & Standard & 150.000 & 6.15 & 21657.963 & 16607.514 & 16.301 & 112.4 & -25.0 & NO & NO & bb \\
\hline & 2 180118M1_3 & Standard & 150.000 & 6.14 & 23140.080 & 16973.807 & 17.041 & 117.5 & -21.6 & NO & NO & bb \\
\hline \(\pm\) - bema & 3 180118M1_4 & Standard & 150.000 & 6.14 & 23495.924 & 11763.054 & 24.968 & 172.2 & 14.8 & NO & NO & bb \\
\hline & 4 180118M1_5 & Standard & 150.000 & 6.13 & 21361.910 & 9840.114 & 27.136 & 187.2 & 24.8 & NO & NO & bb \\
\hline 5 exsw & 5 180118M1_6 & Standard & 150.000 & 6.13 & 23496.209 & 13945.345 & 21.061 & 145.3 & -3.2 & NO & NO & bb \\
\hline  & 6 180118M1_7 & Standard & 150.000 & 6.13 & 24992.623 & 16448.322 & 18.993 & 131.0 & -12.7 & NO & NO & bb \\
\hline & 7 180118M1_8 & Standard & 150.000 & 6.14 & 24702.057 & 12998.784 & 23.754 & 163.8 & 9.2 & NO & NO & bb \\
\hline 8 - & 8 180118M1_9 & Standard & 150.000 & 6.14 & 23172.662 & 10435.265 & 27.758 & 191.5 & 27.6 & NO & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 150.000 & 6.13 & 25919.678 & 17313.598 & 18.713 & 129.1 & -14.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{ompound name: 13C2-PFHxDA}

Response Factor: 0.58659
RRF SD: 0.116691, Relative SD: 19.8931
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Fla & CoD & D & exclu \\
\hline & 1 180118M1_2 & Standard & 5.000 & 6.42 & 2243.896 & 16607.514 & 1.689 & 2.9 & -42.4 & NO & & NO & bbX \\
\hline 2 , & 2 180118M1_3 & Standard & 5.000 & 6.42 & 2515.967 & 16973.807 & 1.853 & 3.2 & -36.8 & NO & & NO & bbX \\
\hline 3 3 4 & 3 180118M1_4 & Standard & 5.000 & 6.42 & 2432.108 & 11763.054 & 2.584 & 4.4 & -11.9 & NO & & NO & MM \\
\hline 4 & 4 180118M1_5 & Standard & 5.000 & 6.42 & 3031.573 & 9840.114 & 3.851 & 6.6 & 31.3 & NO & & NO & MM \\
\hline 5 - & 5 180118M1_6 & Standard & 5.000 & 6.42 & 3077.301 & 13945.345 & 2.758 & 4.7 & -6.0 & NO & & NO & bb \\
\hline & \(6180118 \mathrm{M1} 1\) 7 & Standard & 5.000 & 6.42 & 3099.393 & 16448.322 & 2.355 & 4.0 & -19.7 & NO & & NO & MM \\
\hline & 7 180118M1_8 & Standard & 5.000 & 6.42 & 3239.779 & 12998.784 & 3.115 & 5.3 & 6.2 & NO & & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 5.000 & 6.42 & 3340.108 & 10435.265 & 4.001 & 6.8 & 36.4 & NO & & NO & bbX \\
\hline 9 & 9 180118M1_10 & Standard & 5.000 & 6.42 & 4528.296 & 17313.598 & 3.269 & 5.6 & 11.5 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: F:\Projects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld
Last Altered:
Printed:
Friday, January 19, 2018 09:30:24 Pacific Standard Time

Compound name: d7-N-MeFOSE
Response Factor: 0.138019
RRF SD: 0.0259656 , Relative SD: 18.813
Response type: Internal Std ( Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & ne. Flag & CoD & CoD Flag & \(x\)-excluded \\
\hline 1 , ...ctes. & 1 180118M1_2 & Standard & 150.000 & 6.27 & 17415.396 & 16607.514 & 13.108 & 95.0 & -36.7 & NO & & NO & bbX \\
\hline 40. \({ }^{\text {a }}\) & 2 180118M1_3 & Standard & 150.000 & 6.26 & 19984.701 & 16973.807 & 14.717 & 106.6 & -28.9 & NO & & NO & bdX \\
\hline 3 & 3 180118M1_4 & Standard & 150.000 & 6.26 & 20721.902 & 11763.054 & 22.020 & 159.5 & 6.4 & NO & & NO & bb \\
\hline 4 & 4 180118M1_5 & Standard & 150.000 & 6.26 & 18123.596 & 9840.114 & 23.023 & 166.8 & 11.2 & NO & & NO & bd \\
\hline  & \(5180118 \mathrm{M1} 16\) & Standard & 150.000 & 6.26 & 17435.055 & 13945.345 & 15.628 & 113.2 & -24.5 & NO & & NO & bd \\
\hline 6 & 6 180118M1_7 & Standard & 150.000 & 6.26 & 23477.758 & 16448.322 & 17.842 & 129.3 & -13.8 & NO & & NO & bb \\
\hline 4 & 7 180118M1_8 & Standard & 150.000 & 6.26 & 21728.279 & 12998.784 & 20.895 & 151.4 & 0.9 & NO & & NO & bb \\
\hline 8 - \({ }^{\text {\% }}\) & 8 180118M1_9 & Standard & 150.000 & 6.26 & 22800.027 & 10435.265 & 27.311 & 197.9 & 31.9 & NO & & NO & bb \\
\hline 9 - & 9 180118M1_10 & Standard & 150.000 & 6.26 & 25210.842 & 17313.598 & 18.202 & 131.9 & -12.1 & NO & & NO & bd \\
\hline
\end{tabular}

\section*{Compound name: d9-N-EtFOSE}

Response Factor: 0.133334
RRF SD: 0.0223292 , Relative SD: 16.7469
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD \({ }^{\text {CoD }}\) & excluded \\
\hline 4 & 1 180118M1_2 & Standard & 150.000 & 6.42 & 19155.027 & 16607.514 & 14.417 & 108.1 & -27.9 & NO & NO & bdX \\
\hline & 2 180118M1_3 & Standard & 150.000 & 6.42 & 18968.391 & 16973.807 & 13.969 & 104.8 & -30.2 & NO & NO & \(b b X\) \\
\hline 3 & 3 180118M1_4 & Standard & 150.000 & 6.42 & 17547.807 & 11763.054 & 18.647 & 139.9 & -6.8 & NO & NO & bd \\
\hline 4 - - \({ }^{\text {\% }}\) & 4 180118M1_5 & Standard & 150.000 & 6.42 & 18566.025 & 9840.114 & 23.585 & 176.9 & 17.9 & NO & NO & bb \\
\hline 5 & 5 180118M1_6 & Standard & 150.000 & 6.42 & 21535.252 & 13945.345 & 19.303 & 144.8 & -3.5 & NO & NO & bb \\
\hline 6 边 & 6 180118M1_7 & Standard & 150.000 & 6.41 & 21754.430 & 16448.322 & 16.532 & 124.0 & -17.3 & NO & NO & bb \\
\hline & 7 180118M1_8 & Standard & 150.000 & 6.41 & 20087.791 & 12998.784 & 19.317 & 144.9 & -3.4 & NO & NO & bb \\
\hline & 8 180118M1_9 & Standard & 150.000 & 6.41 & 21341.703 & 10435.265 & 25.564 & 191.7 & 27.8 & NO & NO & bb \\
\hline 9 - & 9 180118M1_10 & Standard & 150.000 & 6.41 & 23618.215 & 17313.598 & 17.052 & 127.9 & -14.7 & NO & NO & bd \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed:
Friday, January 19, 2018 09:31:01 Pacific Standard Time

Compound name: 13C4-PFBA
Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 54 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type. & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag \({ }^{\text {cos }}\) Cob & CoDFlag & \(x=\) excluded \\
\hline & 1 180118M1_2 & Standard & 12.500 & 1.29 & 7669.093 & 7669.093 & 12.500 & 12.5 & 0.0 & NO & NO & MM \\
\hline cost & 2 180118M1_3 & Standard & 12.500 & 1.30 & 7598.055 & 7598.055 & 12.500 & 12.5 & 0.0 & NO & NO & MM \\
\hline - & 3 180118M1_4 & Standard & 12.500 & 1.30 & 7951.014 & 7951.014 & 12.500 & 12.5 & 0.0 & NO & NO & MM \\
\hline & 4 180118M1_5 & Standard & 12.500 & 1.30 & 7314.195 & 7314.195 & 12.500 & 12.5 & 0.0 & NO & NO & MM \\
\hline & 5 180118M1_6 & Standard & 12.500 & 1.31 & 7566.779 & 7566.779 & 12.500 & 12.5 & 0.0 & NO & NO & MM \\
\hline & 6 180118M1_7 & Standard & 12.500 & 1.32 & 8593.296 & 8593.296 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 & 7 180118M1_8 & Standard & 12.500 & 1.32 & 8457.297 & 8457.297 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 - & 8 180118M1_9 & Standard & 12.500 & 1.32 & 8372.831 & 8372.831 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 - & 9 180118M1_10 & Standard & 12.500 & 1.33 & 10299.271 & 10299.271 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFHxA}

\section*{Response Factor: 1}

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 56 ), Area * (IS Conc. / IS Area )
Curve type: RF


Compound name: 13C8-PFOA
Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & \({ }^{\text {a }}\) Std. Conc & RT & Area & IS Area & Response & Conc. & Dev. & Conc, Flag & CoD CoD Flag & excluded \\
\hline 1-5matim & 1 180118M1_2 & Standard & 12.500 & 4.21 & 11045.427 & 11045.427 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 単 & 2 180118M1_3 & Standard & 12.500 & 4.21 & 12613.450 & 12613.450 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 & 3 180118M1_4 & Standard & 12.500 & 4.20 & 14387.428 & 14387.428 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 - 4 & 4 180118M1_5 & Standard & 12.500 & 4.20 & 11420.492 & 11420.492 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 5 180118M1_6 & Standard & 12.500 & 4.20 & 10777.910 & 10777.910 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 6 180118M1_7 & Standard & 12.500 & 4.20 & 15538.602 & 15538.602 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 7 180118M1_8 & Standard & 12.500 & 4.20 & 15096.650 & 15096.650 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 \% & 8 180118M1_9 & Standard & 12.500 & 4.20 & 13016.104 & 13016.104 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 , & 9 180118M1_10 & Standard & 12.500 & 4.20 & 15015.451 & 15015.451 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset:}

F:IProjectsIPFAS.PROTResults\180118M1180118M1-CRV.qld
Last Altered:
Friday, January 19, 2018 09:30:24 Pacific Standard Time
Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & \multicolumn{2}{|l|}{Conc. \% \% ev} & Conc. Flag & \multicolumn{2}{|l|}{\(\mathrm{CoD} \mathrm{CoD} \mathrm{Flag}{ }^{\text {a }}\) - x -excluded} \\
\hline 1 1-m & 1 180118M1_2 & Standard & 12.500 & 4.65 & 9974.009 & 9974.009 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 2-xay & 2 180118M1_3 & Standard & 12.500 & 4.64 & 12552.051 & 12552.051 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 - 4 er atay & 3 180118M1_4 & Standard & 12.500 & 4.63 & 12388.794 & 12388.794 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 tex & 4 180118M1_5 & Standard & 12.500 & 4.63 & 13680.797 & 13680.797 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 & 5 180118M1_6 & Standard & 12.500 & 4.63 & 13627.233 & 13627.233 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 6 180118M1_7 & Standard & 12.500 & 4.63 & 13850.425 & 13850.425 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 mitate & 7 180118M1_8 & Standard & 12.500 & 4.63 & 15464.554 & 15464.554 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 12.500 & 4.63 & 16580.219 & 16580.219 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 12.500 & 4.64 & 17313.514 & 17313.514 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFOS}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline , & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag \(\quad\) COD & OD F & \(x=\) excluded \\
\hline 1. \({ }^{\text {d }}\), & 1 180118M1_2 & Standard & 12.500 & 4.73 & 2620.023 & 2620.023 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 4 4 & 2 180118M1_3 & Standard & 12.500 & 4.72 & 3352.441 & 3352.441 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 , & 3 180118M1_4 & Standard & 12.500 & 4.72 & 3017.950 & 3017.950 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 Hy & 4 180118M1_5 & Standard & 12.500 & 4.72 & 3071.438 & 3071.438 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 - & 5 180118M1_6 & Standard & 12.500 & 4.72 & 2808.995 & 2808.995 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 \% & 6 180118M1_7 & Standard & 12.500 & 4.72 & 4291.462 & 4291.462 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 & 7 180118M1_8 & Standard & 12.500 & 4.72 & 3225.207 & 3225.207 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 & 8 180118M1_9 & Standard & 12.500 & 4.72 & 2642.108 & 2642.108 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 12.500 & 4.72 & 4242.597 & 4242.597 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: \(\quad\) F:IProjects\PFAS.PRO\Results\180118M1\180118M1-CRV.gld
Last Altered: Friday, January 19, 2018 09:30:24 Pacific Standard Time Printed: Friday, January 19, 2018 09:31:01 Pacific Standard Time

\section*{Compound name: 13C6-PFDA}

\section*{Response Factor: 1}

RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 60 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 40, 4. & \# Name & Type & Std. Conc & RT & - Area & IS Area & Response & Conc \% \%Dev & Conc. Flag CoD CoD Flag & \(\mathrm{x}=\) excluded \\
\hline * \({ }^{3}\) & 1 180118M1_2 & Standard & 12.500 & 5.02 & 7212.510 & 7212.510 & 12.500 & 12.50 .0 & NO NO & bb \\
\hline 2 2-4 & 2 180118M1_3 & Standard & 12.500 & 5.01 & 10647.363 & 10647.363 & 12.500 & 12.50 .0 & NO NO & bb \\
\hline & 3 180118M1_4 & Standard & 12.500 & 5.00 & 11171.487 & 11171.487 & 12.500 & \(12.5 \quad 0.0\) & NO NO & bb \\
\hline 4 & 4 180118M1_5 & Standard & 12.500 & 5.01 & 10998.669 & 10998.669 & 12.500 & 12.50 .0 & No NO & bb \\
\hline 5 & 5 180118M1_6 & Standard & 12.500 & 5.01 & 10219.353 & 10219.353 & 12.500 & 12.50 .0 & NO NO & bb \\
\hline 6 , mater & 6 180118M1_7 & Standard & 12.500 & 5.00 & 10522.795 & 10522.795 & 12.500 & 12.50 .0 & NO NO & bb \\
\hline 7 \% \({ }^{\text {a }}\) & 7 180118M1_8 & Standard & 12.500 & 5.01 & 12381.811 & 12381.811 & 12.500 & 12.50 .0 & NO NO & bb \\
\hline & 8 180118M1_9 & Standard & 12.500 & 5.00 & 8602.176 & 8602.176 & 12.500 & 12.50 .0 & NO NO & bb \\
\hline 9 & 9 180118M1_10 & Standard & 12.500 & 5.01 & 11283.332 & 11283.332 & 12.500 & 12.50 .0 & NO NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C7-PFUdA}

\section*{Response Factor: 1}

RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|lllllllllllllllllll}
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\180118M1\180118M1-CRV.qld \\
& \\
Last Altered: & Friday, January 19, 2018 09:30:24 Pacific Standard Time \\
Printed: & Friday, January 19, 2018 09:31:01 Pacific Standard Time
\end{tabular}

Method: F:IProjects\PFAS.PROIMethDBIPFAS_FULL_80C 011618.mdb 17 Jan 2018 13:31:53
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-18-18-FULL.cdb 19 Jan 2018 09:30:24
Name: 180118M1_2, Date: 18-Jan-2018, Time: 15:36:48, ID: ST180118M1-1 PFC CS-2 18A0806, Description: PFC CS-2 18A0806
\begin{tabular}{|c|c|c|c|c|}
\hline 5usmex & \# Name & CoD & CoD Flag & \%RSD \\
\hline 1 … & 1 PFBA & 0.9975 & NO & \\
\hline 2 .anme & 2 PFPeA & 0.9978 & NO & \\
\hline  & 3 PFBS & 0.9998 & NO & \\
\hline 4 & 4 PFHxA & 0.9939 & NO & \\
\hline 5 & 5 PFHpA & 0.9994 & NO & \\
\hline 6 \% \({ }^{6}\) & 6 L-PFHxS & 0.9969 & NO & \\
\hline 7 7 -ames aty & \(86: 2 \mathrm{FTS}\) & 0.9987 & NO & \\
\hline 8 - & 9 L-PFOA & 0.9984 & NO & \\
\hline 9 & 11 PFHpS & 0.9966 & NO & \\
\hline 10 & 12 PFNA & 0.9911 & NO & \\
\hline 11 & 13 PFOSA & 0.9986 & NO & \\
\hline 12. & 14 L-PFOS & 0.9983 & NO & \\
\hline 13 - -af & 16 PFDA & 0.9994 & NO & \\
\hline 14 & 17 8:2 FTS & 0.9980 & NO & \\
\hline 15. & \(18 \mathrm{~N}-\mathrm{MeFOSAA}\) & 0.9905 & NO & \\
\hline 16 am- & 19 N -EtFOSAA & 0.9953 & NO & \\
\hline 17 - \({ }^{\text {chen }}\) & 20 PFUdA & 0.9993 & NO & \\
\hline 18 䢒 & 21 PFDS & 0.9932 & NO & \\
\hline 19 & 22 PFDoA & 0.9990 & NO & \\
\hline 20 - & \(23 \mathrm{~N}-\mathrm{MeFOSA}\) & 0.9995 & NO & \\
\hline 21 - 4 - & 24 PFTrDA & 0.9958 & NO & \\
\hline 22 & 25 PFTeDA & 0.9984 & NO & \\
\hline & 26 N -EtFOSA & 0.9997 & NO & \\
\hline 24 +tw & 27 PFHxDA & 0.9971 & NO & \\
\hline  & 28 PFODA & 0.9989 & NO & \\
\hline 26 & \(29 \mathrm{~N}-\mathrm{MeFOSE}\) & 0.9993 & NO & \\
\hline 27 * & 30 N -EtFOSE & 0.9944 & NO & \\
\hline  & 31 13C3-PFBA & & NO & 1.599 \\
\hline 29 ...ata & \(3213 C 3-P F P e A\) & & NO & 8.343 \\
\hline & 33 13C3-PFBS & & NO & 6.271 \\
\hline 31 & 3413 C 2 -PFHxA & & NO & 9.642 \\
\hline
\end{tabular}

Dataset：F：IProjects\PFAS．PROIResults\180118M11180118M1－CRV．qld
ast Altered：Friday，January 19， 2018 09：30：24 Pacific Standard Time Printed： Friday，January 19， 2018 09：31：01 Pacific Standard Time

Name：180118M1＿2，Date：18－Jan－2018，Time：15：36：48，ID：ST180118M1－1 PFC CS－2 18A0806，Description：PFC CS－2 18A0806
\begin{tabular}{|c|c|c|}
\hline  & CoD CoD Flag & \％RSD \\
\hline 32 t 35 13C4－PFHpA & NO & 9.837 \\
\hline 33． 36 1802－PFHxS & NO & 10.022 \\
\hline 34 － 37 13C2－6：2 FTS & NO & 19.289 \\
\hline 35 W－3813C2－PFOA & NO & 13.495 \\
\hline 36 － 39 13C5－PFNA & NO & 9.570 \\
\hline 37 ， 40 13C8－PFOSA & NO & 15.696 \\
\hline 38 － 41 13C8－PFOS & NO & 13.157 \\
\hline 39 42 13C2－PFDA & NO & 13.833 \\
\hline 40 ， 43 13C2－8：2 FTS & NO & 19.142 \\
\hline 41 44 d3－N－MeFOSAA & NO & 19.979 \\
\hline 42 䉼 45 d5－N－EtFOSAA & NO & 15.998 \\
\hline 43 ter 46 13C2－PFUdA & NO & 18.162 \\
\hline 44 wis 47 13C2－PFDoA & NO & 18.008 \\
\hline 45 ， 48 d3－N－MeFOSA & NO & 18.391 \\
\hline 46 － 49 13C2－PFTeDA & NO & 19.831 \\
\hline 47．\({ }^{\text {d }}\)－ 50 d5－N－ETFOSA & NO & 19.820 \\
\hline 48 － 51 13C2－PFHxDA & NO & 19.893 \\
\hline 49＊\({ }^{\text {a }}\) ， \(52 \mathrm{~d} 7-\mathrm{N}-\mathrm{MeFOSE}\) & NO & 18.813 \\
\hline 50 53 d9－N－EtFOSE & NO & 16.747 \\
\hline 51 4n 54 13C4－PFBA & NO & 0.000 \\
\hline 52 － 55 13C5－PFHxA & NO & 0.000 \\
\hline 53 － 56 13C3－PFHxS & NO & 0.000 \\
\hline 54.57 13C8－PFOA & NO & 0.000 \\
\hline 55.58 13C9－PFNA & NO & 0.000 \\
\hline 56 ， 59 13C4－PFOS & NO & 0.000 \\
\hline 57 紋寿 60 13C6－PFDA & NO & 0.000 \\
\hline 58 戈 61 13C7－PFUdA & NO & 0.000 \\
\hline
\end{tabular}

\section*{Dataset: \\ Untitled}

Last Altered: Friday, January 19, 2018 09:46:41 Pacific Standard Time
Printed: Friday, January 19, 2018 09:48:03 Pacific Standard Time

\section*{Method: F:IProjectsIPFAS.PRO\MethDBIPFAS FULL 80C 011818.mdb 18 Jan 2018 19:22:25} Calibration: F:IProjects\PFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-18-18-FULL.cdb 19 Jan 2018 09:30:24

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq.Date & Acq Time \\
\hline  & 180118M1_1 & IPA & 18-Jan-18 & 15:25:26 \\
\hline 2 & 180118M1_2 & ST180118M1-1 PFC CS-2 18A0806 & 18-Jan-18 & 15:36:48 \\
\hline 3 - \({ }^{\text {a }}\) & 180118M1_3 & ST180118M1-2 PFC CS-1 18A0807 & 18-Jan-18 & 15:48:15 \\
\hline \(4 \geq\) & 180118M1_4 & ST180118M1-3 PFC CS0 18A0808 & 18-Jan-18 & 15:59:42 \\
\hline 5 & 180118M1_5 & ST180118M1-4 PFC CS1 18A0809 & 18-Jan-18 & 16:11:12 \\
\hline  & 180118M1_6 & ST180118M1-5 PFC CS2 18A0810 & 18-Jan-18 & 16:22:39 \\
\hline 7. 5 - \(=\) & 180118M1_7 & ST180118M1-6 PFC CS3 18A0811 & 18-Jan-18 & 16:34:06 \\
\hline 8 - \({ }^{\text {P }}\) & 180118M1_8 & ST180118M1-7 PFC CS4 18A0812 & 18-Jan-18 & 16:45:33 \\
\hline 9 9 - & 180118M1_9 & ST180118M1-8 PFC CS5 18A0813 & 18-Jan-18 & 16:57:03 \\
\hline 10 & 180118M1_10 & ST180118M1-9 PFC CS6 18A0814 & 18-Jan-18 & 17:08:30 \\
\hline 11 & 180118M1_11 & ST180118M1-10 PFC CS7 18A0815 & 18-Jan-18 & 17:19:57 \\
\hline 12 & 180118M1_12 & IPA & 18-Jan-18 & 17:31:24 \\
\hline 13 & 180118M1_13 & ICV180118M1-1 PFC ICV 18A0805 & 18-Jan-18 & 17:42:50 \\
\hline 14 & 180118M1_14 & IPA & 18-Jan-18 & 17:54:17 \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180118M1\180118M1-13.qid
Last Altered: Friday, January 19, 2018 09:41:10 Pacific Standard Time
(A) Not included in 5 S .

Printed: Friday, January 19, 2018 09:41:45 Pacific Standard Time

Method: F:IProjects\PFAS.PROMMethDB\PFAS_FULL_80C_011818.mdb 18 Jan 2018 19:22:25
Calibration: F:IProjects\PFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-18-18-FULL.cdb 19 Jan 2018 09:30:24

\section*{\(\stackrel{\infty}{1 \mid>8) 9100}\)}

Name: 180118M1_13, Date: 18-Jan-2018, Time: 17:42:50, ID: ICV180118M1-1 PFC ICV 18A0805, Description: PFC ICV 18A0805


Name: 180118M1_13, Date: 18-Jan-2018, Time: 17:42:50, ID: ICV180118M1-1 PFC ICV 18A0805, Description: PFC ICV 18A0805
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# Name & Trace & Area & IS Area & wt/vol & RRF & Pred.RT & \multicolumn{4}{|l|}{RT YAxis Resp - Conc \%Rec} \\
\hline 32 , 35 13C4-PFHpA & 367.2 > 321.8 & 8.13 e 3 & 1.23 e 4 & 1.0000 & 0.811 & 3.77 & 3.68 & 8.29 & 10.216 & 81.7 \\
\hline 33- 36 18O2-PFHxS & \(403.0>102.6\) & 1.06 e 3 & 3.00 e 3 & 1.0000 & 0.371 & 3.92 & 3.82 & 4.44 & 11.962 & 95.7 \\
\hline 34 - 37 13C2-6:2 FTS & \(429.1>408.9\) & 2.27 e 3 & 1.35 e 4 & 1.0000 & 0.246 & 4.23 & 4.14 & 2.10 & 8.555 & 68.4 \\
\hline 35 - 38 13C2-PFOA & 414.9 > 369.7 & 1.51 e 4 & 1.35 e 4 & 1.0000 & 1.101 & 4.29 & 4.20 & 14.0 & 12.711 & 101.7 \\
\hline 36 39 13C5-PFNA & 468.2 > 422.9 & 1.19 e 4 & 1.23 e 4 & 1.0000 & 0.932 & 4.72 & 4.63 & 12.1 & 12.964 & 103.7 \\
\hline 37 - W 40 13C8-PFOSA & \(506.1>77.7\) & 2.14 e 3 & 1.03 e 4 & 1.0000 & 0.176 & 4.79 & 4.69 & 2.60 & 14.756 & 118.0 \\
\hline 38 检 41 13C8-PFOS & \(507.0>79.9\) & 2.97 e 3 & 3.47 e 3 & 1.0000 & 1.047 & 4.80 & 4.71 & 10.7 & 10.207 & 81.7 \\
\hline \(39.42313 C 2-P F D A\) & \(515.1>469.9\) & 1.06 e 4 & 8.72 e 3 & 1.0000 & 1.178 & 5.10 & 5.00 & 15.2 & 12.859 & 102.9 \\
\hline 40 - 43 13C2-8:2 FTS & \(529.1>508.7\) & 1.64 e 3 & 1.23 e 4 & 1.0000 & 0.127 & 5.06 & 4.98 & 1.67 & 13.147 & 105.2 \\
\hline 41 . \(44 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}\) & \(573.3>419\) & 3.76 e 3 & 1.03 e 4 & 1.0000 & 0.276 & 5.24 & 5.15 & 4.57 & 16.567 & 132.5 \\
\hline 42 - 45 d5-N-EtFOSAA & \(589.3>419\) & 3.43 e 3 & 1.03 e 4 & 1.0000 & 0.296 & 5.40 & 5.31 & 4.17 & 14.101 & 112.8 \\
\hline 43.46 13C2-PFUdA & \(565>519.8\) & 1.34 e 4 & 1.03 e 4 & 1.0000 & 1.054 & 5.42 & 5.33 & 16.3 & 15.495 & 124.0 \\
\hline 44 - 47 13C2-PFDoA & \(615.0>569.7\) & 9.84 e 3 & 1.03 e 4 & 1.0000 & 0.746 & 5.70 & 5.61 & 12.0 & 16.045 & 128.4 \\
\hline 45 - 48 d3-N-MeFOSA & \(515.2>168.9\) & 1.44 e 4 & 1.03 e 4 & 1.0000 & 0.098 & 5.79 & 5.74 & 17.5 & 177.824 & 118.5 \\
\hline 46 - 49 13C2-PFTeDA & \(714.8>669.6\) & 4.84 e 3 & 1.03 e 4 & 1.0000 & 0.390 & 6.16 & 6.08 & 5.89 & 15.121 & 121.0 \\
\hline 47. 4 - 50 d5-N-ETFOSA & \(531.1>168.9\) & 2.30 e 4 & 1.03 e 4 & 1.0000 & 0.145 & 6.17 & 6.13 & 27.9 & 192.757 & 128.5 \\
\hline 48 - 51 13C2-PFHxDA & \(815>769.7\) & 2.99 e 3 & 1.03 e 4 & 1.0000 & 0.587 & 6.48 & 6.41 & 3.63 & 6.191 & 123.8 \\
\hline 49 1- \(52 \mathrm{~d} 7-\mathrm{N}-\mathrm{MeFOSE}\) & \(623.1>58.9\) & 1.85 e 4 & 1.03 e 4 & 1.0000 & 0.138 & 6.31 & 6.26 & 22.5 & 162.719 & 108.5 \\
\hline 50. \(53 \mathrm{~d} 9-\mathrm{N}-\mathrm{EtFOSE}\) & \(639.2>58.8\) & 1.80 e 4 & 1.03 e 4 & 1.0000 & 0.133 & 6.45 & 6.41 & 21.8 & 163.844 & 109.2 \\
\hline 51 - 54 13C4-PFBA & 217. \(>171.8\) & 7.87e3 & 7.87 e 3 & 1.0000 & 1.000 & 1.34 & 1.33 & 12.5 & 12.500 & 100.0 \\
\hline 52 50 13C5-PFHxA & \(318>272.9\) & 1.23 e 4 & 1.23 e 4 & 1.0000 & 1.000 & 3.16 & 3.06 & 12.5 & 12.500 & 100.0 \\
\hline 53. 56 13C3-PFHxS & \(401.9>79.9\) & 3.00 e 3 & 3.00 e 3 & 1.0000 & 1.000 & 3.92 & 3.82 & 12.5 & 12.500 & 100.0 \\
\hline 54 - 57 13C8-PFOA & \(421.3>376\) & 1.35 e 4 & 1.35 e 4 & 1.0000 & 1.000 & 4.29 & 4.20 & 12.5 & 12.500 & 100.0 \\
\hline 55 - 58 13C9-PFNA & 472.2 > 426.9 & 1.23 e 4 & 1.23 e 4 & 1.0000 & 1.000 & 4.72 & 4.63 & 12.5 & 12.500 & 100.0 \\
\hline 56 m 59 13C4-PFOS & \(503>79.9\) & 3.47 e 3 & 3.47 e 3 & 1.0000 & 1.000 & 4.80 & 4.72 & 12.5 & 12.500 & 100.0 \\
\hline 57 - 60 13C6-PFDA & \(519.1>473.7\) & 8.72 e 3 & 8.72 e 3 & 1.0000 & 1.000 & 5.10 & 5.01 & 12.5 & 12.500 & 100.0 \\
\hline 58. 61 13C7-PFUdA & \(570.1>524.8\) & 1.03 e 4 & 1.03 e 4 & 1.0000 & 1.000 & 5.42 & 5.33 & 12.5 & 12.500 & 100.0 \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PROIResults1180125M11180125M1-CRV.qld
Last Altered:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

Method: F:IProjects\PFAS.PROMMethDBIPFAS_FULL_80C_012418.mdb 25 Jan 2018 11:07:33 Calibration: F:IProjects|PFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18


\section*{Compound name: PFBA}

Correlation coefficient: \(r=0.999666, r^{\wedge} 2=0.999331\)
Calibration curve: \(1.16878{ }^{*} x+0.0454111\)
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
\[
\checkmark / \beta_{01} \text {. } 26 / 2018
\]

Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFPeA}

Correlation coefficient: \(r=0.999806, r^{\wedge} 2=0.999611\)
Calibration curve: 0.993518 * \(x+0.0828702\)
Response type: Internal Std (Ref 32 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFPeA}


\section*{Compound name: PFBS}

Coefficient of Determination: R^2 \(=0.999316\)
Calibration curve: 0.000126473 * \(x^{\wedge} 2+1.81075\) * \(x+0.0905384\)
Response type: Internal Std (Ref 33 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4-4 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & Cod & , & cluded \\
\hline  & 1 180125M1_2 & Standard & 0.250 & 2.63 & 72.476 & 1853.057 & 0.489 & 0.2 & -12.0 & NO & 0.999 & NO & bb \\
\hline \(2=42\) & 2 180125M1_3 & Standard & 0.500 & 2.63 & 134.283 & 1696.809 & 0.989 & 0.5 & -0.7 & NO & 0.999 & NO & bb \\
\hline . & 3 180125M1_4 & Standard & 1.000 & 2.64 & 286.211 & 1803.787 & 1.983 & 1.0 & 4.5 & NO & 0.999 & NO & bb \\
\hline & 4 180125M1_5 & Standard & 2.000 & 2.64 & 512.968 & 1685.030 & 3.805 & 2.1 & 2.6 & NO & 0.999 & NO & bb \\
\hline \(5.2{ }^{\text {a }}\) & 5 180125M1_6 & Standard & 5.000 & 2.64 & 1312.093 & 1704.244 & 9.624 & 5.3 & 5.3 & NO & 0.999 & NO & bb \\
\hline - & 6 180125M1_7 & Standard & 10.000 & 2.63 & 2752.326 & 1982.626 & 17.353 & 9.5 & -4.7 & NO & 0.999 & NO & bb \\
\hline \% & 7 180125M1_8 & Standard & 50.000 & 2.59 & 13865.382 & 1753.955 & 98.815 & 54.3 & 8.6 & NO & 0.999 & NO & bb \\
\hline 8. \({ }^{\text {a }}\) & 8 180125M1_9 & Standard & 100.000 & 2.58 & 25227.275 & 1763.934 & 178.771 & 98.0 & -2.0 & NO & 0.999 & NO & bb \\
\hline \[
9.3 \times 1 .
\] & 9 180125M1_10 & Standard & 210.000 & 2.58 & 43126.375 & 285.123 & 378.138 & 205.8 & -2.0 & NO & 0.999 & NO & bb \\
\hline 10 , & 10 180125M1_11 & Standard & 420.000 & 2.58 & 80976.875 & 257.313 & 786.755 & 422.0 & 0.5 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997382\)
Calibration curve: \(-0.00125241^{*} x^{\wedge} 2+1.86165^{*} x+-0.0910354\)
Response type: Internal Std (Ref 34 ), Area * (IS Conc. /IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & \(\mathrm{RT}^{\text {- }}\) & Area & IS Area & Response & Conc. & \%Dev & ne. \(F\) & CoD & D F & cluded \\
\hline 12 tat & 1 180125M1_2 & Standard & 0.250 & 3.12 & 388.253 & 4327.028 & 0.449 & 0.3 & 16.0 & NO & 0.997 & NO & bb \\
\hline 2 & 2 180125M1_3 & Standard & 0.500 & 3.12 & 745.411 & 4093.243 & 0.911 & 0.5 & 7.6 & NO & 0.997 & NO & bb \\
\hline 3 & 3 180125M1_4 & Standard & 1.000 & 3.12 & 1533.336 & 4442.453 & 1.726 & 1.0 & -2.3 & NO & 0.997 & NO & bb \\
\hline 4.2 & 4 180125M1_5 & Standard & 2.000 & 3.13 & 2674.614 & 3661.307 & 3.653 & 2.0 & 0.7 & NO & 0.997 & NO & bb \\
\hline 5 - \(2 \times\) & 5 180125M1_6 & Standard & 5.000 & 3.12 & 7405.277 & 4401.181 & 8.413 & 4.6 & -8.4 & NO & 0.997 & NO & bb \\
\hline \(6 \times 4\) & 6 180125M1_7 & Standard & 10.000 & 3.11 & 14307.619 & 4271.731 & 16.747 & 9.1 & -9.0 & NO & 0.997 & NO & bb \\
\hline 78. & 7 180125M1_8 & Standard & 50.000 & 3.08 & 70067.555 & 4173.145 & 83.951 & 46.6 & -6.8 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

Work Order 1701951 \(\qquad\)

Dataset: F:\Projects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time

\section*{Printed:} Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: PFHxA}


\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.997986, \mathrm{r}^{\wedge} 2=0.995976\)
Calibration curve: 1.31203 * x + 0.0964303
Response type: Internal Std (Ref 35 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & & & \\
\hline +4. & 1 180125M1_2 & Standard & 0.250 & 3.73 & 309.971 & 10734.581 & 0.361 & 0.2 & -19.4 & NO & 0.996 & NO & bb \\
\hline - \({ }^{\text {d }}\) & 2 180125M1_3 & Standard & 0.500 & 3.74 & 627.528 & 11416.730 & 0.687 & 0.5 & -10.0 & NO & 0.996 & NO & bb \\
\hline & 3 180125M1_4 & Standard & 1.000 & 3.74 & 1191.758 & 11333.792 & 1.314 & 0.9 & -7.2 & NO & 0.996 & NO & bb \\
\hline - & 4 180125M1_5 & Standard & 2.000 & 3.74 & 2412.540 & 9497.099 & 3.175 & 2.3 & 17.3 & NO & 0.996 & NO & bb \\
\hline & 5 180125M1_6 & Standard & 5.000 & 3.74 & 5153.271 & 9694.273 & 6.645 & 5.0 & -0.2 & NO & 0.996 & NO & bb \\
\hline & 6 180125M1_7 & Standard & 10.000 & 3.73 & 13357.427 & 10653.151 & 15.673 & 11.9 & 18.7 & NO & 0.996 & NO & bb \\
\hline \% & 7 180125M1_8 & Standard & 50.000 & 3.69 & 57249.250 & 10240.683 & 69.880 & 53.2 & 6.4 & NO & 0.996 & NO & bb \\
\hline & 8 180125M1_9 & Standard & 100.000 & 3.69 & 111714.727 & 10581.890 & 131.965 & 100.5 & 0.5 & NO & 0.996 & NO & bb \\
\hline 9 & 9 180125M1_10 & Standard & 210.000 & 3.69 & 200733.641 & 2018.373 & 248.633 & 189.4 & -9.8 & NO & 0.996 & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & 420.000 & 3.69 & 376083.250 & 1647.698 & 570.619 & 434.8 & 3.5 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: L-PFHxS}

Correlation coefficient: \(\mathrm{r}=0.997578, \mathrm{r}^{\wedge} 2=0.995161\)
Calibration curve: \(1.85739{ }^{*} x+-0.0273852\)
Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline 1 & 1 180125M1_2 & Standard & 0.250 & 3.89 & 48.047 & 1291.943 & 0.465 & 0.3 & 6.0 & NO & 0.995 & NO & MM \\
\hline \(2-5\) & 2 180125M1_3 & Standard & 0.500 & 3.89 & 92.761 & 1338.583 & 0.866 & 0.5 & -3.8 & NO & 0.995 & NO & MM \\
\hline & 3 180125M1_4 & Standard & 1.000 & 3.89 & 200.265 & 1368.078 & 1.830 & 1.0 & -0.0 & NO & 0.995 & NO & MM \\
\hline & 4 180125M1_5 & Standard & 2.000 & 3.89 & 364.211 & 1262.543 & 3.606 & 2.0 & -2.2 & NO & 0.995 & NO & MM \\
\hline & 5 180125M1 6 & Standard & 5.000 & 3.89 & 923.196 & 1463.226 & 7.887 & 4.3 & -14.8 & NO & 0.995 & NO & MM \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld \\
& \\
Last Altered: & Friday, January 26, 2018 09:21:18 Pacific Standard Time \\
Printed: & Friday, January 26, 2018 09:26:09 Pacific Standard Time
\end{tabular}

Compound name: L-PFHxS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name, Type} & Std. Cone & RT & \% Area & IS Area & Response & \multicolumn{2}{|l|}{Conc. \% \% Dev} & \multicolumn{4}{|l|}{Conc. Flag CoD CoD Flag weexcluded} \\
\hline 6 & 6 180125M1_7 & Standard & 10.000 & 3.88 & 2000.136 & 1422.179 & 17.580 & 9.5 & -5.2 & NO & 0.995 & NO & MM \\
\hline m & 7 180125M1_8 & Standard & 50.000 & 3.84 & 10185.841 & 1209.670 & 105.254 & 56.7 & 13.4 & NO & 0.995 & NO & MM \\
\hline & 8 180125M1_9 & Standard & 100.000 & 3.85 & 20869.775 & 1231.511 & 211.831 & 114.1 & 14.1 & NO & 0.995 & NO & MM \\
\hline & 9 180125M1_10 & Standard & 210.000 & 3.84 & 32902.148 & 223.602 & 367.865 & 198.1 & -5.7 & NO & 0.995 & NO & MM \\
\hline 10 . & 10 180125M1_11 & Standard & 420.000 & 3.84 & 64177.070 & 209.419 & 766.132 & 412.5 & -1.8 & NO & 0.995 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 6:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.995295\)
Calibration curve: \(-8.69966 \mathrm{e}-005\) * \(x^{\wedge} 2+0.241453\) * \(x+0.0165164\)
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Dataset: F:|Projects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld
Last Altered:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: L-PFOA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998687\)
Calibration curve: \(-0.000234103^{*} x^{\wedge} 2+0.929144{ }^{*} x+0.149021\)
Response type: Internal Std ( Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & ven & Std. Conc & RT & Area & IS Area & Response & Cone. & \%Dev & c. Flag & COD & & cluded \\
\hline \(1 \times 2\) & 1 180125M1_2 & Standard & & 0.250 & 4.25 & 350.571 & 13666.232 & 0.321 & 0.2 & -26.1 & NO & 0.999 & NO & bb \\
\hline 2 - + & 2 180125M1_3 & Standard & & 0.500 & 4.25 & 690.536 & 15252.614 & 0.566 & 0.4 & -10.3 & NO & 0.999 & NO & bb \\
\hline 3 - & 3 180125M1_4 & Standard & & 1.000 & 4.25 & 1598.777 & 16483.586 & 1.212 & 1.1 & 14.5 & NO & 0.999 & NO & bb \\
\hline 4 - \({ }^{\text {a }}\) & 4 180125M1_5 & Standard & & 2.000 & 4.26 & 2450.947 & 14131.144 & 2.168 & 2.2 & 8.7 & NO & 0.999 & NO & bb \\
\hline 5 \% & 5 180125M1_6 & Standard & & 5.000 & 4.25 & 5876.042 & 14657.059 & 5.011 & 5.2 & 4.8 & NO & 0.999 & NO & bb \\
\hline 6 -3y & 6 180125M1_7 & Standard & & 10.000 & 4.24 & 14341.305 & 18369.568 & 9.759 & 10.4 & 3.7 & NO & 0.999 & NO & bb \\
\hline 7 7.ta & 7 180125M1_8 & Standard & & 50.000 & 4.22 & 64010.469 & 16254.535 & 49.225 & 53.5 & 7.1 & NO & 0.999 & NO & bb \\
\hline 8 \% & 8 180125M1_9 & Standard & & 100.000 & 4.22 & 120948.094 & 16387.031 & 92.259 & 101.7 & 1.7 & NO & 0.999 & NO & bb \\
\hline 9 a & 9 180125M1_10 & Standard & & 210.000 & 4.21 & 215880.984 & 3075.617 & 175.478 & 198.6 & -5.4 & NO & 0.999 & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & & 420.000 & 4.21 & 396210.125 & 2805.478 & 353.068 & 425.4 & 1.3 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHpS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999034\)
Calibration curve: \(-6.1344 e-005^{*} x^{\wedge} 2+1.01558{ }^{*} x+0.00690578\)
Response type: Internal Std (Ref 41 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{\# Name Type Std. Conc RT Area IS Area Response Conc. \%Dev Conc. Flag CoD CoD Flag x=exduded} \\
\hline 1 - trevex & 1 180125M1_2 & Standard & 0.250 & 4.36 & 67.972 & 3833.215 & 0.222 & 0.2 & -15.4 & NO & 0.999 & NO & bb \\
\hline 2 2, & 2 180125M1_3 & Standard & 0.500 & 4.36 & 157.002 & 2993.193 & 0.656 & 0.6 & 27.8 & NO & 0.999 & NO & bb \\
\hline 3 3 \({ }^{\text {a }}\) & 3 180125M1_4 & Standard & 1.000 & 4.36 & 252.308 & 4230.229 & 0.746 & 0.7 & -27.3 & NO & 0.999 & NO & bb \\
\hline 4 , & 4 180125M1_5 & Standard & 2.000 & 4.37 & 667.094 & 3776.813 & 2.208 & 2.2 & 8.4 & NO & 0.999 & NO & bb \\
\hline 5 - & 5 180125M1_6 & Standard & 5.000 & 4.36 & 1550.057 & 3518.063 & 5.507 & 5.4 & 8.4 & NO & 0.999 & NO & bb \\
\hline 6 - 4 , & 6 180125M1_7 & Standard & 10.000 & 4.35 & 3149.948 & 4176.231 & 9.428 & 9.3 & -7.2 & NO & 0.999 & NO & bb \\
\hline 7 7- \({ }^{\text {a }}\) & 7 180125M1_8 & Standard & 50.000 & 4.33 & 15992.317 & 3630.818 & 55.058 & 54.4 & 8.8 & NO & 0.999 & NO & bb \\
\hline 8 \% \({ }^{\text {dex }}\) & 8 180125M1_9 & Standard & 100.000 & 4.33 & 30099.771 & 3793.851 & 99.173 & 98.2 & -1.8 & NO & 0.999 & NO & bb \\
\hline 9 为 & 9 180125M1_10 & Standard & 210.000 & 4.32 & 53677.039 & 651.162 & 206.082 & 205.5 & -2.2 & NO & 0.999 & NO & bb \\
\hline 10 \% & 10 180125M1_11 & Standard & 420.000 & 4.32 & 92717.813 & 554.686 & 417.884 & 422.2 & 0.5 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.995879\)
Calibration curve: -0.000670646 * \(x^{\wedge} 2+1.40666{ }^{*} x+-0.147618\)
Response type: Internal Std (Ref 39 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 23 merta & \# Name & 2- Type & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & Cone. Flag & CoD & D F & cluded \\
\hline Nert & 1 180125M1_2 & Standard & 0.250 & 4.68 & 309.808 & 13638.391 & 0.284 & 0.3 & 22.7 & NO & 0.996 & NO & bb \\
\hline 2 - & 2 180125M1_3 & Standard & 0.500 & 4.68 & 646.598 & 13458.755 & 0.601 & 0.5 & 6.4 & NO & 0.996 & No & bb \\
\hline  & 3 180125M1_4 & Standard & 1.000 & 4.68 & 1633.776 & 16525.070 & 1.236 & 1.0 & -1.6 & NO & 0.996 & NO & bb \\
\hline 4 . \({ }^{2}\) & 4 180125M1_5 & Standard & 2.000 & 4.69 & 2647.577 & 12239.771 & 2.704 & 2.0 & 1.5 & NO & 0.996 & NO & bb \\
\hline 5 5 & 5 180125M1_6 & Standard & 5.000 & 4.68 & 6814.438 & 15424.028 & 5.523 & 4.0 & -19.2 & NO & 0.996 & NO & bb \\
\hline 4 c & 6 180125M1_7 & Standard & 10.000 & 4.67 & 14994.421 & 13702.806 & 13.678 & 9.9 & -1.2 & NO & 0.996 & NO & bb \\
\hline & 7 180125M1_8 & Standard & 50.000 & 4.65 & 77183.938 & 16163.854 & 59.689 & 43.4 & -13.1 & NO & 0.996 & NO & bb \\
\hline 4 & 8 180125M1_9 & Standard & 100.000 & 4.65 & 152206.109 & 14554.074 & 130.725 & 97.6 & -2.4 & NO & 0.996 & NO & bb \\
\hline 9 - & 9 180125M1_10 & Standard & 210.000 & 4.65 & 278502.781 & 2412.236 & 288.636 & 230.7 & 9.8 & NO & 0.996 & NO & bb \\
\hline 10 , & 10 180125M1_11 & Standard & 420.000 & 4.65 & 469700.094 & 2537.961 & 462.675 & 408.6 & -2.7 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFOSA}

Correlation coefficient: \(\mathrm{r}=0.999432, \mathrm{r}^{\wedge} 2=0.998865\)
Calibration curve: 1.10662 * \(x+0.0970099\)
Response type: Internal Std (Ref 40 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: \(1 / \mathrm{x}\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Weme & \multicolumn{2}{|l|}{7 Name Type} & & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Flag & \multicolumn{3}{|l|}{CoD CoD Flag x excluded} \\
\hline \% & 1 180125M1_2 & Standard & & 0.250 & 4.74 & 93.321 & 3413.635 & 0.342 & 0.2 & -11.5 & NO & 0.999 & NO & bb \\
\hline 2 2 & 2 180125M1_3 & Standard & & 0.500 & 4.75 & 171.533 & 4067.377 & 0.527 & 0.4 & -22.3 & NO & 0.999 & NO & bb \\
\hline * & 3 180125M1_4 & Standard & & 1.000 & 4.75 & 415.429 & 4642.212 & 1.119 & 0.9 & -7.7 & NO & 0.999 & NO & bb \\
\hline & 4 180125M1_5 & Standard & & 2.000 & 4.75 & 884.320 & 3761.316 & 2.939 & 2.6 & 28.4 & NO & 0.999 & NO & bb \\
\hline 5 , & 5 180125M1_6 & Standard & & 5.000 & 4.75 & 1700.699 & 3458.108 & 6.148 & 5.5 & 9.4 & NO & 0.999 & NO & bb \\
\hline \[
6
\] & 6 180125M1_7 & Standard & & 10.000 & 4.74 & 4314.056 & 4702.252 & 11.468 & 10.3 & 2.8 & NO & 0.999 & NO & bb \\
\hline \[
7
\] & 7 180125M1_8 & Standard & & 50.000 & 4.71 & 20958.693 & 4732.331 & 55.360 & 49.9 & -0.1 & NO & 0.999 & NO & bb \\
\hline 8 \% \({ }^{2}\) & 8 180125M1_9 & Standard & & 100.000 & 4.71 & 38981.691 & 4269.404 & 114.131 & 103.0 & 3.0 & NO & 0.999 & NO & bb \\
\hline 9 & 9 180125M1_10 & Standard & & 210.000 & 4.71 & 69082.414 & 757.569 & 227.974 & 205.9 & -1.9 & NO & 0.999 & NO & bb \\
\hline 10.0 & 10 180125M1_11 & Standard & & 420.000 & 4.71 & 129451.336 & 742.590 & 435.810 & 393.7 & -6.3 & NO & 0.999 & NO & bbx \\
\hline
\end{tabular}

\title{
Last Altered:
}

Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: L-PFOS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998190\)
Calibration curve: 0.000239982 * \(x^{\wedge} 2+1.02704\) * \(x+0.0316742\)
Response type: Internal Std (Ref 41 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & * Name & Type & 54. & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & COD & D F & cluded \\
\hline 1. We & 1 180125M1_2 & Standard & & 0.250 & 4.76 & 67.630 & 3833.215 & 0.221 & 0.2 & -26.4 & NO & 0.998 & NO & MM \\
\hline 2 - & 2 180125M1_3 & Standard & & 0.500 & 4.76 & 149.799 & 2993.193 & 0.626 & 0.6 & 15.6 & NO & 0.998 & NO & MM \\
\hline \(3 \sim 4\) & 3 180125M1_4 & Standard & & 1.000 & 4.76 & 391.034 & 4230.229 & 1.155 & 1.1 & 9.4 & NO & 0.998 & NO & MM \\
\hline \(4 \times \mathrm{c}\) t & 4 180125M1_5 & Standard & & 2.000 & 4.77 & 564.434 & 3776.813 & 1.868 & 1.8 & -10.6 & NO & 0.998 & NO & MM \\
\hline \[
5
\] & 5 180125M1_6 & Standard & & 5.000 & 4.76 & 1482.963 & 3518.063 & 5.269 & 5.1 & 1.9 & NO & 0.998 & NO & MM \\
\hline 6 . & 6 180125M1_7 & Standard & & 10.000 & 4.75 & 3499.815 & 4176.231 & 10.475 & 10.1 & 1.4 & NO & 0.998 & NO & MM \\
\hline 7 - & 7 180125M1_8 & Standard & & 50.000 & 4.74 & 17154.057 & 3630.818 & 59.057 & 56.7 & 13.4 & NO & 0.998 & NO & MM \\
\hline 8 - \({ }^{\text {a }}\) & 8 180125M1_9 & Standard & & 100.000 & 4.74 & 31572.254 & 3793.851 & 104.024 & 99.0 & -1.0 & NO & 0.998 & NO & MM \\
\hline 9 & 9 180125M1_10 & Standard & & 210.000 & 4.74 & 56067.051 & 651.162 & 215.258 & 200.2 & -4.7 & NO & 0.998 & NO & MM \\
\hline 10 - & 10 180125M1_11 & Standard & & 420.000 & 4.73 & 106201.367 & 554.686 & 478.655 & 424.0 & 1.0 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: PFDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999185\)
Calibration curve: \(-0.00154494^{*} x^{\wedge} 2+1.58288^{*} x+-0.201026\)
Response type: Internal Std (Ref 42 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - Weter & \# Name \({ }^{\text {c- }}\) & Type & Std. Conc & RT & Area & IS Area & Response & Conc & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 180125M1_2 & Standard & 0.250 & 5.05 & 294.996 & 12213.221 & 0.302 & 0.3 & 27.1 & NO & 0.999 & NO & MM \\
\hline 2 2 & 2 180125M1_3 & Standard & 0.500 & 5.05 & 667.232 & 13253.231 & 0.629 & 0.5 & 5.0 & NO & 0.999 & NO & bb \\
\hline 3.3 & 3 180125M1_4 & Standard & 1.000 & 5.05 & 1560.924 & 14742.522 & 1.323 & 1.0 & -3.6 & NO & 0.999 & NO & bb \\
\hline \(4{ }^{2}+4\) & 4 180125M1_5 & Standard & 2.000 & 5.06 & 3037.312 & 16071.077 & 2.362 & 1.6 & -18.9 & NO & 0.999 & NO & bb \\
\hline 5* & 5 180125M1_6 & Standard & 5.000 & 5.05 & 6493.323 & 10315.772 & 7.868 & 5.1 & 2.5 & NO & 0.999 & NO & bb \\
\hline 6. & 6 180125M1_7 & Standard & 10.000 & 5.04 & 14325.914 & 13473.002 & 13.291 & 8.6 & -14.0 & NO & 0.999 & NO & bb \\
\hline 7 7-x & 7 180125M1_8 & Standard & 50.000 & 5.02 & 81013.383 & 13326.184 & 75.991 & 50.6 & 1.3 & NO & 0.999 & NO & bb \\
\hline 8 - \({ }^{\text {d }}\) & 8 180125M1_9 & Standard & 100.000 & 5.03 & 141107.688 & 12437.072 & 141.822 & 99.4 & -0.6 & NO & 0.999 & NO & bb \\
\hline & 9 180125M1_10 & Standard & 210.000 & 5.03 & 265436.438 & 2470.590 & 268.596 & 214.9 & 2.3 & NO & 0.999 & NO & bb \\
\hline 10.8 & 10 180125M1_11 & Standard & 420.000 & 5.03 & 479963.313 & 3077.022 & 389.958 & 412.8 & -1.7 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 8:2 FTS}

Coefficient of Determination: \(R^{\wedge} 2=0.996250\)
Calibration curve: \(-0.000508287^{\star} x^{\wedge} 2+0.355029 * x+-0.0140533\)
Response type: Internal Std ( Ref 42 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & CoI & D Fl & xcluded \\
\hline \(1-3 \pm\) & 1 180125M1_2 & Standard & 0.250 & 5.03 & 87.528 & 12213.221 & 0.090 & 0.3 & 16.8 & NO & 0.996 & NO & bb \\
\hline 2 + + & 2 180125M1_3 & Standard & 0.500 & 5.03 & 123.859 & 13253.231 & 0.117 & 0.4 & -26.2 & NO & 0.996 & NO & bb \\
\hline 3 3 - \({ }^{2}\) & 3 180125M1_4 & Standard & 1.000 & 5.03 & 381.871 & 14742.522 & 0.324 & 1.0 & -4.7 & NO & 0.996 & NO & bb \\
\hline 4.3 min & 4 180125M1_5 & Standard & 2.000 & 5.03 & 774.348 & 16071.077 & 0.602 & 1.7 & -13.0 & NO & 0.996 & NO & bb \\
\hline 5. 7rata & 5 180125M1_6 & Standard & 5.000 & 5.03 & 1824.499 & 10315.772 & 2.211 & 6.3 & 26.5 & NO & 0.996 & NO & bb \\
\hline 6 . & 6 180125M1_7 & Standard & 10.000 & 5.01 & 3224.001 & 13473.002 & 2.991 & 8.6 & -14.3 & NO & 0.996 & NO & bb \\
\hline 4, \%- & 7 180125M1_8 & Standard & 50.000 & 4.99 & 16748.723 & 13326.184 & 15.710 & 47.5 & -5.0 & NO & 0.996 & NO & bb \\
\hline 4 \({ }^{\text {cre }}\) & 8 180125M1_9 & Standard & 100.000 & 5.00 & 31648.000 & 12437.072 & 31.808 & 105.6 & 5.6 & NO & 0.996 & NO & bb \\
\hline 9 , & 9 180125M1_10 & Standard & 210.000 & 4.99 & 51044.887 & 2470.590 & 51.653 & 206.7 & -1.6 & NO & 0.996 & NO & bb \\
\hline 10 . & 10 180125M1_11 & Standard & 420.000 & 4.99 & 88978.711 & 3077.022 & 72.293 & & & NO & 0.996 & NO & bbXI \\
\hline
\end{tabular}

\section*{Compound name: N-MeFOSAA}

Coefficient of Determination: R^2 \(=0.998422\)
Calibration curve: \(-0.00148701^{*} x^{\wedge} 2+1.56106{ }^{*} x+-0.0316396\)
Response type: Internal Std (Ref 44 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed:
Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: N-EtFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999157\)
Calibration curve: \(-0.000873965^{*} x^{\wedge} 2+1.12213\) * \(x+-0.0632016\)
Response type: Internal Std (Ref 45 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFUdA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.995501\)
Calibration curve: \(-0.00062833^{*} x^{\wedge} 2+1.08341^{*} x+0.257772\)
Response type: Internal Std (Ref 46 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \multicolumn{2}{|l|}{\# Name Ty Type} & Std. Conc & RT & Area & IS Area & Response & \multicolumn{2}{|l|}{Conc \% \(\%\) Dev} & \multicolumn{4}{|l|}{Conc. Flag CoD COD Flag \(x=\) excluded} \\
\hline & 1 180125M1_2 & Standard & 0.250 & 5.37 & 348.009 & 16243.524 & 0.268 & & & YES & 0.996 & NO & bbX \\
\hline 2 & 2 180125M1_3 & Standard & 0.500 & 5.37 & 786.567 & 12389.071 & 0.794 & 0.5 & -1.1 & NO & 0.996 & NO & bb \\
\hline 3 & 3 180125M1_4 & Standard & 1.000 & 5.37 & 1656.199 & 19054.553 & 1.086 & 0.8 & -23.5 & NO & 0.996 & NO & bb \\
\hline 4.45 & 4 180125M1_5 & Standard & 2.000 & 5.37 & 2699.369 & 13306.267 & 2.536 & 2.1 & 5.3 & NO & 0.996 & NO & bb \\
\hline 5 & 5 180125M1_6 & Standard & 5.000 & 5.37 & 6113.451 & 13673.215 & 5.589 & 4.9 & -1.3 & NO & 0.996 & NO & bb \\
\hline 6 & 6 180125M1_7 & Standard & 10.000 & 5.36 & 15232.932 & 13549.074 & 14.053 & 12.8 & 28.3 & NO & 0.996 & NO & bb \\
\hline * & 7 180125M1_8 & Standard & 50.000 & 5.35 & 68955.930 & 18092.631 & 47.641 & 44.9 & -10.2 & NO & 0.996 & NO & bb \\
\hline 8 & 8 180125M1_9 & Standard & 100.000 & 5.35 & 140577.703 & 16765.213 & 104.814 & 102.6 & 2.6 & NO & 0.996 & NO & bb \\
\hline \(9.4-4\) & 9 180125M1_10 & Standard & 210.000 & 5.35 & 235045.375 & 2938.439 & 199.975 & 209.9 & -0.1 & NO & 0.996 & NO & bb \\
\hline 10 +he & 10 180125M1_11 & Standard & 420.000 & 5.35 & 440395.125 & 2910.853 & 378.235 & 485.7 & 15.6 & NO & 0.996 & NO & bbX \\
\hline
\end{tabular}

\section*{Dataset: F:IProjects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld}

Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: PFDS}

Correlation coefficient: \(\mathrm{r}=0.997865, \mathrm{r}^{\wedge} 2=0.995734\)
Calibration curve: 0.364452 * \(x+0.0384523\)
Response type: Internal Std (Ref 47 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline , & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. F & \(0{ }^{\circ}\) & D F & excluy \\
\hline 1.4 & 1 180125M1_2 & Standard & 0.250 & 5.41 & 65.420 & 11067.724 & 0.074 & 0.1 & -61.1 & YES & 0.996 & NO & bbX \\
\hline 2 2 4 & 2 180125M1_3 & Standard & 0.500 & 5.42 & 143.376 & 10700.879 & 0.167 & 0.4 & -29.2 & NO & 0.996 & NO & bb \\
\hline 3 + 4 c & 3 180125M1_4 & Standard & 1.000 & 5.42 & 378.810 & 11579.887 & 0.409 & 1.0 & 1.6 & NO & 0.996 & NO & bb \\
\hline 4 Whay & 4 180125M1_5 & Standard & 2.000 & 5.42 & 786.665 & 11209.014 & 0.877 & 2.3 & 15.1 & NO & 0.996 & NO & bb \\
\hline 5 - & 5 180125M1_6 & Standard & 5.000 & 5.42 & 1813.505 & 11620.383 & 1.951 & 5.2 & 4.9 & NO & 0.996 & NO & bb \\
\hline + & 6 180125M1_7 & Standard & 10.000 & 5.41 & 4362.900 & 12200.239 & 4.470 & 12.2 & 21.6 & NO & 0.996 & NO & bb \\
\hline & 7 180125M1_8 & Standard & 50.000 & 5.40 & 18343.648 & 11585.384 & 19.792 & 54.2 & 8.4 & NO & 0.996 & NO & bb \\
\hline 8 - & 8 180125M1_9 & Standard & 100.000 & 5.40 & 35587.371 & 11776.407 & 37.774 & 103.5 & 3.5 & NO & 0.996 & NO & bb \\
\hline 4 & 9 180125M1_10 & Standard & 210.000 & 5.40 & 61795.676 & 2121.748 & 72.812 & 199.7 & -4.9 & NO & 0.996 & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & 420.000 & 5.40 & 103344.406 & 2443.002 & 105.756 & 290.1 & -30.9 & YES & 0.996 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: PFDoA}

Coefficient of Determination: R^2 \(=0.995048\)
Calibration curve: \(-0.00133232{ }^{*} x^{\wedge} 2+1.81115 * x+-0.00450441\)
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & 2e Type & - & Std. Conc & RT & Area & IS Ärea & Response & Conc & \%Dev & Conc. Flag & COD & - CoD & cluded \\
\hline 4 & 1 180125M1_2 & Standard & & 0.250 & 5.65 & 435.357 & 11067.724 & 0.492 & 0.3 & 9.6 & NO & 0.995 & NO & bb \\
\hline 2 & 2 180125M1_3 & Standard & & 0.500 & 5.65 & 868.394 & 10700.879 & 1.014 & 0.6 & 12.6 & NO & 0.995 & NO & bb \\
\hline 3.3 & 3 180125M1_4 & Standard & & 1.000 & 5.65 & 1332.542 & 11579.887 & 1.438 & 0.8 & -20.3 & NO & 0.995 & NO & bb \\
\hline & 4 180125M1_5 & Standard & & 2.000 & 5.65 & 3384.488 & 11209.014 & 3.774 & 2.1 & 4.5 & NO & 0.995 & NO & bb \\
\hline & 5 180125M1_6 & Standard & & 5.000 & 5.65 & 7196.437 & 11620.383 & 7.741 & 4.3 & -14.2 & NO & 0.995 & NO & bb \\
\hline 53 & 6 180125M1_7 & Standard & & 10.000 & 5.64 & 16923.545 & 12200.239 & 17.339 & 9.6 & -3.6 & NO & 0.995 & NO & bb \\
\hline d & 7 180125M1_8 & Standard & & 50.000 & 5.63 & 91970.875 & 11585.384 & 99.232 & 57.2 & 14.4 & NO & 0.995 & NO & bb \\
\hline 8 & 8 180125M1_9 & Standard & & 100.000 & 5.63 & 164786.953 & 11776.407 & 174.912 & 104.6 & 4.6 & NO & 0.995 & NO & bb \\
\hline 9.34* & 9 180125M1_10 & Standard & & 210.000 & 5.63 & 249029.672 & 2121.748 & 293.425 & 188.0 & -10.5 & NO & 0.995 & NO & bb \\
\hline 10.4 & 10 180125M1_11 & 1 Standard & & 420.000 & 5.63 & 524406.750 & 2443.002 & 536.642 & 436.4 & 3.9 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

\section*{Dataset: F:|Projects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld}

Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed:
Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: N-MeFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999797\)
Calibration curve: \(-0.00019409^{*} x^{\wedge} 2+1.10021^{*} x+0.0141743\)
Response type: Internal Std (Ref 48 ), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# N & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Der & & CoD & D F & xcluded \\
\hline 1 - 5 & 1 180125M1_2 & Standard & 1.250 & 5.76 & 178.832 & 19877.652 & 1.349 & 1.2 & -2.9 & NO & 1.000 & NO & bb \\
\hline 2 , & 2 180125M1_3 & Standard & 2.500 & 5.76 & 355.288 & 18842.969 & 2.828 & 2.6 & 2.4 & NO & 1.000 & NO & bb \\
\hline 3 & 3 180125M1_4 & Standard & 5.000 & 5.76 & 737.545 & 21203.770 & 5.218 & 4.7 & -5.3 & NO & 1.000 & NO & bb \\
\hline 4 - 4x & 4 180125M1_5 & Standard & 10.000 & 5.77 & 1341.628 & 17122.461 & 11.753 & 10.7 & 6.9 & NO & 1.000 & NO & bb \\
\hline 5 - \(\times\) & 5 180125M1_6 & Standard & 25.000 & 5.76 & 3258.343 & 18808.795 & 25.985 & 23.7 & -5.2 & NO & 1.000 & NO & bb \\
\hline 6 & 6 180125M1_7 & Standard & 50.000 & 5.75 & 8343.312 & 21517.822 & 58.161 & 53.4 & 6.7 & NO & 1.000 & NO & bb \\
\hline U & 7 180125M1_8 & Standard & 250.000 & 5.72 & 36648.637 & 21339.939 & 257.606 & 244.7 & -2.1 & NO & 1.000 & NO & bb \\
\hline 8 & 8 180125M1_9 & Standard & 500.000 & 5.72 & 71028.383 & 21121.996 & 504.415 & 503.1 & 0.6 & NO & 1.000 & NO & bb \\
\hline 9 9, & 9 180125M1_10 & Standard & 1050.000 & 5.71 & 122342.164 & 3899.974 & 941.100 & 1049.8 & -0.0 & NO & 1.000 & NO & bb \\
\hline 10 , & 10 180125M1_11 & Standard & 2100.000 & 5.71 & 220546.438 & 4548.952 & 1454.487 & 2099.9 & -0.0 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996784\)
Calibration curve: -0.00097199 * \(x^{\wedge} 2+1.76608{ }^{*} x+0.0094733\)
Response type: Internal Std (Ref 47 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & COD & COD & xcluded \\
\hline 1. & 1 180125M1_2 & Standard & 0.250 & 5.89 & 410.086 & 11067.724 & 0.463 & 0.3 & 2.8 & NO & 0.997 & NO & bb \\
\hline 2 & 2 180125M1_3 & Standard & 0.500 & 5.89 & 913.652 & 10700.879 & 1.067 & 0.6 & 19.8 & NO & 0.997 & NO & bb \\
\hline & 3 180125M1_4 & Standard & 1.000 & 5.89 & 1556.789 & 11579.887 & 1.680 & 0.9 & -5.3 & NO & 0.997 & NO & bb \\
\hline & 4 180125M1_5 & Standard & 2.000 & 5.90 & 3248.780 & 11209.014 & 3.623 & 2.0 & 2.4 & NO & 0.997 & NO & bb \\
\hline 5 & 5 180125M1_6 & Standard & 5.000 & 5.89 & 8684.110 & 11620.383 & 9.341 & 5.3 & 6.0 & NO & 0.997 & NO & bb \\
\hline & 6 180125M1_7 & Standard & 10.000 & 5.89 & 13712.988 & 12200.239 & 14.050 & 8.0 & -20.1 & NO & 0.997 & NO & bb \\
\hline & 7 180125M1_8 & Standard & 50.000 & 5.88 & 71830.906 & 11585.384 & 77.502 & 45.0 & -10.0 & NO & 0.997 & NO & bb \\
\hline 8. & 8 180125M1_9 & Standard & 100.000 & 5.88 & 155464.188 & 11776.407 & 165.017 & 98.8 & -1.2 & NO & 0.997 & NO & bb \\
\hline 9 9-tat & 9 180125M1_10 & Standard & 210.000 & 5.88 & 298011.125 & 2121.748 & 351.139 & 227.2 & 8.2 & NO & 0.997 & NO & bb \\
\hline 10 . & 10 180125M1_11 & Standard & 420.000 & 5.88 & 547494.125 & 2443.002 & 560.268 & 409.5 & -2.5 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjectsIPFAS.PROIResults1180125M11180125M1-CRV.qld
Last Altered:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: PFTeDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998046\)
Calibration curve: \(0.00144968^{*} x^{\wedge} 2+2.49715^{*} x+0.103779\)
Response type: Internal Std (Ref 49 ), Area * ( IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & . & , & & xclu \\
\hline + & 1 180125M1_2 & Standard & 0.250 & 6.11 & 247.860 & 4792.661 & 0.646 & 0.2 & -13.1 & NO & 0.998 & NO & bb \\
\hline 2 - & 2 180125M1_3 & Standard & 0.500 & 6.11 & 487.917 & 5334.590 & 1.143 & 0.4 & -16.8 & NO & 0.998 & NO & bb \\
\hline 3.3 & 3 180125M1_4 & Standard & 1.000 & 6.11 & 1288.327 & 5292.026 & 3.043 & 1.2 & 17.6 & NO & 0.998 & NO & bb \\
\hline \(\cdots\) & 4 180125M1_5 & Standard & 2.000 & 6.11 & 2027.692 & 5029.292 & 5.040 & 2.0 & -1.3 & NO & 0.998 & NO & bb \\
\hline 5. \({ }^{\text {W }}\) & 5 180125M1_6 & Standard & 5.000 & 6.11 & 4641.325 & 4302.676 & 13.484 & 5.3 & 6.8 & NO & 0.998 & NO & bb \\
\hline 6 , maty & 6 180125M1_7 & Standard & 10.000 & 6.10 & 10169.075 & 4556.227 & 27.899 & 11.1 & 10.6 & NO & 0.998 & NO & bb \\
\hline 7. & 7 180125M1_8 & Standard & 50.000 & 6.10 & 50070.457 & 5131.559 & 121.967 & 47.5 & -5.0 & NO & 0.998 & NO & bb \\
\hline 8 - \(x^{4}+{ }^{\text {a }}\) & 8 180125M1_9 & Standard & 100.000 & 6.10 & 115917.695 & 5420.510 & 267.313 & 101.1 & 1.1 & NO & 0.998 & NO & bb \\
\hline 9 9 w & 9 180125M1_10 & Standard & 210.000 & 6.09 & 189318.656 & 1683.738 & 281.099 & 106.0 & -49.5 & YES & 0.998 & NO & bbX \\
\hline 10 \% \({ }^{\text {a }}\) & 10 180125M1_11 & Standard & 420.000 & 6.09 & 295387.344 & 2145.147 & 344.251 & 128.3 & -69.5 & YES & 0.998 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: N-EtFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999699\)
Calibration curve: \(-6.32491 e-005 * x^{\wedge} 2+0.896108 * x+0.22759\)
Response type: Internal Std (Ref 50 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Name & ype & d. Conc & RT & Area & IS Area & Response & Conc. & ev & c. & COD & DFI & cluded \\
\hline  & 1 180125M1_2 & Standard & 1.250 & 6.15 & 245.501 & 29314.545 & 1.256 & 1.1 & -8.2 & NO & 1.000 & NO & bb \\
\hline - 4 & 2 180125M1_3 & Standard & 2.500 & 6.15 & 439.668 & 28559.652 & 2.309 & 2.3 & -7.1 & NO & 1.000 & NO & bb \\
\hline 3 & 3 180125M1_4 & Standard & 5.000 & 6.15 & 998.928 & 31683.512 & 4.729 & 5.0 & 0.5 & NO & 1.000 & NO & bb \\
\hline 4 - 4 2 & 4 180125M1_5 & Standard & 10.000 & 6.15 & 1677.965 & 26943.764 & 9.341 & 10.2 & 1.8 & NO & 1.000 & NO & bb \\
\hline + & 5 180125M1_6 & Standard & 25.000 & 6.15 & 4381.252 & 27439.885 & 23.950 & 26.5 & 6.1 & NO & 1.000 & NO & bb \\
\hline \(\pm\) & 6 180125M1_7 & Standard & 50.000 & 6.14 & 10208.691 & 32332.996 & 47.360 & 52.8 & 5.6 & NO & 1.000 & NO & bb \\
\hline & 7 180125M1_8 & Standard & 250.000 & 6.12 & 47562.891 & 31495.275 & 226.524 & 257.2 & 2.9 & NO & 1.000 & NO & bb \\
\hline 8. \(\mathrm{S}^{2}+4\) & 8 180125M1_9 & Standard & 500.000 & 6.12 & 88559.297 & 30670.613 & 433.115 & 500.8 & 0.2 & NO & 1.000 & NO & bb \\
\hline \(9{ }^{-1}+3\) & 9 180125M1_10 & Standard & 1050.000 & 6.12 & 150401.094 & 5295.445 & 852.059 & 1024.7 & -2.4 & NO & 1.000 & NO & bb \\
\hline \(10 \times 2\) & 10 180125M1_11 & Standard & 2100.000 & 6.12 & 272301.594 & 5068.183 & 1611.830 & 2113.8 & 0.7 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxDA}

Coefficient of Determination: R^2 \(=0.993324\)
Calibration curve: -0.00283125 * \(x^{\wedge} 2+0.833729\) * \(x+0.0271318\)
Response type: Internal Std ( Ref 51 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & \(\mathrm{CoD}^{\text {m }}\) & COD F & xcluded \\
\hline - ve & 1 180125M1_2 & Standard & 0.250 & 6.43 & 192.887 & 3632.566 & 0.265 & 0.3 & 14.5 & NO & 0.993 & NO & bb \\
\hline 2 2 \({ }^{\text {a }}\) & 2 180125M1_3 & Standard & 0.500 & 6.43 & 298.275 & 3325.745 & 0.448 & 0.5 & 1.2 & NO & 0.993 & NO & bb \\
\hline 3.4 & 3 180125M1_4 & Standard & 1.000 & 6.44 & 646.152 & 3761.519 & 0.859 & 1.0 & 0.1 & NO & 0.993 & NO & bb \\
\hline + & 4 180125M1_5 & Standard & 2.000 & 6.43 & 1151.687 & 3273.500 & 1.759 & 2.1 & 4.6 & NO & 0.993 & NO & bb \\
\hline + & 5 180125M1_6 & Standard & 5.000 & 6.43 & 2681.341 & 3603.633 & 3.720 & 4.5 & -10.0 & NO & 0.993 & NO & bb \\
\hline 6 - & 6 180125M1_7 & Standard & 10.000 & 6.43 & 4575.618 & 3397.328 & 6.734 & 8.3 & -17.2 & NO & 0.993 & NO & bb \\
\hline & 7 180125M1_8 & Standard & 50.000 & 6.43 & 27667.635 & 3678.375 & 37.609 & 55.6 & 11.1 & NO & 0.993 & NO & bb \\
\hline & 8 180125M1_9 & Standard & 100.000 & 6.43 & 46111.156 & 4289.067 & 53.754 & 95.3 & -4.7 & NO & 0.993 & NO & bb \\
\hline \(9-1\). & 9 180125M1_10 & Standard & 210.000 & 6.43 & 80689.477 & 1316.149 & 61.307 & 141.4 & -32.7 & YES & 0.993 & NO & bbX \\
\hline 10 , & 10 180125M1_11 & Standard & 420.000 & 6.43 & 151069.578 & 2053.556 & 73.565 & & & NO & 0.993 & YES & bbXI \\
\hline
\end{tabular}

\section*{Compound name: PFODA}

Coefficient of Determination: R^2 \(=0.997286\)
Calibration curve: -0.0015644 * \(x^{\wedge} 2+0.866231\) * \(x+0.00122725\)
Response type: Internal Std (Ref 51), Area (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline , 5 che & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & \(\mathrm{Conc}_{\text {\% }}\) & \%Dev & onc. & CoD & D F & xcluded \\
\hline 1 . \({ }^{\text {a }}\) & 1 180125M1_2 & Standard & 0.250 & 6.66 & 127.346 & 3632.566 & 0.175 & 0.2 & -19.6 & NO & 0.997 & NO & bb \\
\hline 2 & 2 180125M1_3 & Standard & 0.500 & 6.66 & 323.788 & 3325.745 & 0.487 & 0.6 & 12.2 & NO & 0.997 & NO & bb \\
\hline \(3 \times 8\) & 3 180125M1_4 & Standard & 1.000 & 6.67 & 634.517 & 3761.519 & 0.843 & 1.0 & -2.6 & NO & 0.997 & NO & bb \\
\hline \(4{ }^{4}+\) & 4 180125M1_5 & Standard & 2.000 & 6.66 & 1245.095 & 3273.500 & 1.902 & 2.2 & 10.1 & NO & 0.997 & NO & bb \\
\hline 5 - & 5 180125M1_6 & Standard & 5.000 & 6.66 & 2785.529 & 3603.633 & 3.865 & 4.5 & -10.1 & NO & 0.997 & NO & bb \\
\hline  & 6 180125M1_7 & Standard & 10.000 & 6.66 & 6555.881 & 3397.328 & 9.649 & 11.4 & 13.7 & NO & 0.997 & NO & bb \\
\hline  & 7 180125M1_8 & Standard & 50.000 & 6.66 & 27840.299 & 3678.375 & 37.843 & 47.8 & -4.4 & NO & 0.997 & NO & bb \\
\hline 8 - & 8 180125M1_9 & Standard & 100.000 & 6.66 & 61473.844 & 4289.067 & 71.663 & 101.2 & 1.2 & NO & 0.997 & NO & bb \\
\hline + & 9 180125M1_10 & Standard & 210.000 & 6.66 & 102155.234 & 1316.149 & 77.617 & 112.4 & -46.5 & YES & 0.997 & NO & bbX \\
\hline 10 - & 10 180125M1_11 & Standard & 420.000 & 6.66 & 187385.703 & 2053.556 & 91.249 & 141.5 & -66.3 & YES & 0.997 & NO & bbX \\
\hline
\end{tabular}

\title{
Last Alt
}

Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

Compound name: N-MeFOSE
Correlation coefficient: \(r=0.998948, ~ r \wedge 2=0.997896\)
Calibration curve: \(0.994351 * x+0.0138182\)
Response type: Internal Std ( Ref 52 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & Cob & D F & luded \\
\hline 1. & 1 180125M1_2 & Standard & 1.250 & 6.28 & 188.716 & 23019.270 & 1.230 & 1.2 & -2.2 & NO & 0.998 & NO & bb \\
\hline 2.4 & 2 180125M1_3 & Standard & 2.500 & 6.28 & 410.914 & 23396.316 & 2.634 & 2.6 & 5.4 & NO & 0.998 & NO & bb \\
\hline 3 , & 3 180125M1_4 & Standard & 5.000 & 6.28 & 948.814 & 27139.652 & 5.244 & 5.3 & 5.2 & NO & 0.998 & NO & bb \\
\hline \(4{ }^{4}+x^{+}\) & 4 180125M1_5 & Standard & 10.000 & 6.28 & 1354.889 & 25696.836 & 7.909 & 7.9 & -20.6 & NO & 0.998 & NO & bb \\
\hline 5 - \({ }^{\text {a }}\) & 5 180125M1_6 & Standard & 25.000 & 6.28 & 3510.526 & 20923.910 & 25.166 & 25.3 & 1.2 & NO & 0.998 & No & bb \\
\hline 6 - & 6 180125M1_7 & Standard & 50.000 & 6.28 & 11055.075 & 28088.223 & 59.038 & 59.4 & 18.7 & NO & 0.998 & NO & bb \\
\hline 7 7 \({ }^{\text {a }}\) & 7 180125M1_8 & Standard & 250.000 & 6.28 & 45118.223 & 30861.148 & 219.296 & 220.5 & -11.8 & NO & 0.998 & NO & bd \\
\hline 4 & 8 180125M1_9 & Standard & 500.000 & 6.28 & 101369.211 & 28926.580 & 525.654 & 528.6 & 5.7 & NO & 0.998 & NO & bd \\
\hline 9 9 \({ }^{\text {a }}\) - & 9 180125M1_10 & Standard & 1050.000 & 6.28 & 162052.266 & 4784.866 & 1016.030 & 1021.8 & -2.7 & NO & 0.998 & NO & bd \\
\hline 10 \% & 10 180125M1_11 & Standard & 2100.000 & 6.28 & 381569.625 & 5427.411 & 2109.125 & 2121.1 & 1.0 & NO & 0.998 & NO & bd \\
\hline
\end{tabular}

\section*{Compound name: N-EtFOSE}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999858\)
Calibration curve: \(-0.0003002322^{\star} x^{\wedge} 2+1.363244^{*} x+-0.237449\)
Response type: Internal Std (Ref 53 ), Area * IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name} & *tald. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & , & F & xdu \\
\hline +2 & 1 180125M1_2 & Standard & 1.250 & 6.43 & 209.737 & 24639.736 & 1.277 & 1.1 & -11.1 & NO & 1.000 & NO & bbX \\
\hline 2 \% & 2 180125M1_3 & Standard & 2.500 & 6.43 & 441.199 & 21678.172 & 3.053 & 2.4 & -3.4 & NO & 1.000 & NO & MM \\
\hline 3 - \({ }^{\text {d }}\) & 3 180125M1_4 & Standard & 5.000 & 6.43 & 1123.146 & 26901.668 & 6.263 & 4.8 & -4.5 & NO & 1.000 & NO & bb \\
\hline & 4180125 M 1 _ 5 & Standard & 10.000 & 6.43 & 2088.165 & 22072.520 & 14.191 & 10.6 & 6.1 & NO & 1.000 & NO & bb \\
\hline & 5 180125M1_6 & Standard & 25.000 & 6.43 & 4385.262 & 18575.926 & 35.411 & 26.3 & 5.2 & NO & 1.000 & NO & bb \\
\hline \(6=4 \mathrm{~cm}\) & 6 180125M1_7 & Standard & 50.000 & 6.43 & 10413.569 & 23991.047 & 65.109 & 48.5 & -3.1 & NO & 1.000 & NO & bb \\
\hline , & 7 180125M1_8 & Standard & 250.000 & 6.43 & 55757.324 & 26149.014 & 319.844 & 248.4 & -0.6 & NO & 1.000 & NO & bb \\
\hline 8 - \({ }^{\text {d }}\) - & 8 180125M1_9 & Standard & 500.000 & 6.43 & 118009.023 & 29070.570 & 608.910 & 502.4 & 0.5 & NO & 1.000 & NO & bb \\
\hline \(9{ }^{3}+3\) & 9 180125M1_10 & Standard & 1050.000 & 6.43 & 171426.266 & 4677.626 & 1099.444 & 1049.0 & -0.1 & NO & 1.000 & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & 2100.000 & 6.43 & 333815.469 & 4264.320 & 2348.432 & & & NO & 1.000 & NO & bbXI \\
\hline
\end{tabular}
\(\qquad\)

Dataset: F:IProjects\PFAS.PRO\Results1180125M1\180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C3-PFBA}

Response Factor: 0.882166
RRF SD: 0.0143255 , Relative SD: 1.6239
Response type: Internal Std (Ref 54 ), Area * ( IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C3-PFPeA}

\section*{Response Factor: 0.887707}

RRF SD: 0.0356147, Relative SD: 4.01199
Response type: Internal Std ( Ref 55 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline , & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD CoD Flag & \(x=\) excluded \\
\hline 4 & 1 180125M1_2 & Standard & 12.500 & 2.35 & 13088.159 & 15850.322 & 10.322 & 11.6 & -7.0 & NO & NO & bb \\
\hline 2 2 & 2 180125M1_3 & Standard & 12.500 & 2.36 & 13162.983 & 15571.729 & 10.566 & 11.9 & -4.8 & NO & NO & bb \\
\hline 3 - \({ }^{2}\) & 3 180125M1_4 & Standard & 12.500 & 2.36 & 14169.337 & 16095.684 & 11.004 & 12.4 & -0.8 & NO & NO & bb \\
\hline \% & 4 180125M1_5 & Standard & 12.500 & 2.36 & 13103.625 & 14533.362 & 11.270 & 12.7 & 1.6 & NO & NO & bb \\
\hline - -2.4 & 5 180125M1_6 & Standard & 12.500 & 2.36 & 12935.963 & 14866.764 & 10.877 & 12.3 & -2.0 & NO & NO & bb \\
\hline & 6 180125M1_7 & Standard & 12.500 & 2.35 & 14347.213 & 16105.280 & 11.135 & 12.5 & 0.4 & NO & NO & bb \\
\hline & 7 180125M1_8 & Standard & 12.500 & 2.31 & 14354.065 & 15686.091 & 11.439 & 12.9 & 3.1 & NO & NO & bb \\
\hline * & 8 180125M1_9 & Standard & 12.500 & 2.30 & 14174.986 & 16048.404 & 11.041 & 12.4 & -0.5 & NO & NO & bb \\
\hline - & 9 180125M1_10 & Standard & 2.500 & 2.30 & 2386.398 & 2518.953 & 2.368 & 2.7 & 6.7 & NO & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & 2.500 & 2.30 & 2279.383 & 2484.641 & 2.293 & 2.6 & 3.3 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180125M11180125M1-CRV.qld
Last Altered:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

Compound name: 13C3-PFBS
Response Factor: 0.113011
RRF SD: 0.00522699 , Relative SD: 4.62522
Response type: Internal Std (Ref 55 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. F & CODFl & xcluded \\
\hline 1. \({ }^{\text {a }}\) & 1 180125M1_2 & Standard & 12.500 & 2.63 & 1853.057 & 15850.322 & 1.461 & 12.9 & 3.5 & NO & NO & bb \\
\hline 2 ater & 2 180125M1_3 & Standard & 12.500 & 2.63 & 1696.809 & 15571.729 & 1.362 & 12.1 & -3.6 & NO & NO & bb \\
\hline \[
3
\] & 3 180125M1_4 & Standard & 12.500 & 2.63 & 1803.787 & 16095.684 & 1.401 & 12.4 & -0.8 & NO & NO & bb \\
\hline 4 -x.at & 4 180125M1_5 & Standard & 12.500 & 2.64 & 1685.030 & 14533.362 & 1.449 & 12.8 & 2.6 & NO & NO & bb \\
\hline 5. & 5 180125M1_6 & Standard & 12.500 & 2.64 & 1704.244 & 14866.764 & 1.433 & 12.7 & 1.4 & NO & NO & bb \\
\hline 6 6. & 6 180125M1_7 & Standard & 12.500 & 2.63 & 1982.626 & 16105.280 & 1.539 & 13.6 & 8.9 & NO & NO & bb \\
\hline 7 , & 7 180125M1_8 & Standard & 12.500 & 2.59 & 1753.955 & 15686.091 & 1.398 & 12.4 & -1.1 & NO & NO & bb \\
\hline 8.3 & 8 180125M1_9 & Standard & 12.500 & 2.58 & 1763.934 & 16048.404 & 1.374 & 12.2 & -2.7 & NO & NO & bb \\
\hline 9 9. \({ }^{\text {a }}\) & 9 180125M1_10 & Standard & 2.500 & 2.58 & 285.123 & 2518.953 & 0.283 & 2.5 & 0.2 & NO & NO & bb \\
\hline 10. & 10 180125M1_11 & Standard & 2.500 & 2.58 & 257.313 & 2484.641 & 0.259 & 2.3 & -8.4 & NO & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-PFHxA
Response Factor: 0.692325
RRF SD: 0.0698077 , Relative SD: 10.0831
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area )
Curve type: RF

Dataset: \(\quad\) F:IProjects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld

Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C4-PFHpA}

Response Factor: 0.685824
RRF SD: 0.0483731 , Relative SD: 7.05329
Response type: Internal Std ( Ref 55 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Wede & \multicolumn{2}{|l|}{\# Name} & Std. Conc & RT & Area & IS Area & Response & Conc. & \% BDev & Conc. Flag & \multicolumn{3}{|l|}{CoD CoD Flag x=excluded} \\
\hline 1. Wha & 1 180125M1_2 & Standard & 12.500 & 3.74 & 10734.581 & 15850.322 & 8.466 & 12.3 & -1.3 & NO & & NO & bb \\
\hline \(2 \times\) & 2 180125M1_3 & Standard & 12.500 & 3.73 & 11416.730 & 15571.729 & 9.165 & 13.4 & 6.9 & NO & & NO & bb \\
\hline 3 & 3 180125M1_4 & Standard & 12.500 & 3.74 & 11333.792 & 16095.684 & 8.802 & 12.8 & 2.7 & NO & & NO & bb \\
\hline \(4-6\) & 4 180125M1_5 & Standard & 12.500 & 3.74 & 9497.099 & 14533.362 & 8.168 & 11.9 & -4.7 & NO & & NO & bb \\
\hline & 5 180125M1_6 & Standard & 12.500 & 3.74 & 9694.273 & 14866.764 & 8.151 & 11.9 & -4.9 & NO & & NO & bb" \\
\hline \[
6
\] & 6 180125M1_7 & Standard & 12.500 & 3.73 & 10653.151 & 16105.280 & 8.268 & 12.1 & -3.6 & NO & & NO & bb \\
\hline 7 , & 7 180125M1_8 & Standard & 12.500 & 3.69 & 10240.683 & 15686.091 & 8.161 & 11.9 & -4.8 & NO & & NO & bb \\
\hline \[
8
\] & 8 180125M1_9 & Standard & 12.500 & 3.69 & 10581.890 & 16048.404 & 8.242 & 12.0 & -3.9 & NO & & NO & bb \\
\hline \[
9
\] & 9 180125M1_10 & Standard & 2.500 & 3.69 & 2018.373 & 2518.953 & 2.003 & 2.9 & 16.8 & NO & & NO & bb \\
\hline 10 , & 10 180125M1_11 & Standard & 2.500 & 3.69 & 1647.698 & 2484.641 & 1.658 & 2.4 & -3.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 1802-PFHxS}

Response Factor: 0.339521
RRF SD: 0.0261649, Relative SD: 7.70642
Response type: Internal Std (Ref 56 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Cone Flág & COD & CoDF & \(x=\) excluded \\
\hline  & 1 180125M1_2 & Standard & 12.500 & 3.88 & 1291.943 & 3885.833 & 4.156 & 12.2 & -2.1 & NO & & NO & bb \\
\hline \(2 \times 1{ }^{2}\) & 2 180125M1_3 & Standard & 12.500 & 3.89 & 1338.583 & 3706.271 & 4.515 & 13.3 & 6.4 & NO & & NO & bb \\
\hline 3 & 3 180125M1_4 & Standard & 12.500 & 3.89 & 1368.078 & 4072.170 & 4.199 & 12.4 & -1.0 & NO & & NO & bb \\
\hline \(4-2{ }^{4}\) & 4 180125M1_5 & Standard & 12.500 & 3.89 & 1262.543 & 3844.163 & 4.105 & 12.1 & -3.3 & NO & & NO & bb \\
\hline 5 5 & 5 180125M1_6 & Standard & 12.500 & 3.89 & 1463.226 & 3888.284 & 4.704 & 13.9 & 10.8 & NO & & NO & bb \\
\hline \[
6
\] & 6 180125M1_7 & Standard & 12.500 & 3.88 & 1422.179 & 3955.998 & 4.494 & 13.2 & 5.9 & NO & & NO & bb \\
\hline \[
7
\] & 7 180125M1_8 & Standard & 12.500 & 3.84 & 1209.670 & 4006.146 & 3.774 & 11.1 & -11.1 & NO & & NO & bb \\
\hline \[
8
\] & 8 180125M1_9 & Standard & 12.500 & 3.84 & 1231.511 & 4041.679 & 3.809 & 11.2 & -10.3 & NO & & NO & bb \\
\hline \[
9
\] & 9 180125M1_10 & Standard & 2.500 & 3.84 & 223.602 & 604.651 & 0.925 & 2.7 & 8.9 & NO & & NO & bb \\
\hline 10 ? & 10 180125M1_11 & Standard & 2.500 & 3.84 & 209.419 & 644.568 & 0.812 & 2.4 & -4.3 & NO & & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects|PFAS.PROTResults|180125M11180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C2-6:2 FTS}

Response Factor: 0.26588
RRF SD: 0.0336665, Relative SD: 12.6623
Response type: Internal Std ( Ref 57 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4, \}rate & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD CoD & excluded \\
\hline 1 Wher & 1 180125M1_2 & Standard & 12.500 & 4.20 & 4073.234 & 13918.997 & 3.658 & 13.8 & 10.1 & NO & NO & bb \\
\hline \(2{ }^{2}\) & 2 180125M1_3 & Standard & 12.500 & 4.20 & 3212.761 & 13823.768 & 2.905 & 10.9 & -12.6 & NO & NO & bb \\
\hline 3 - 4 - & 3 180125M1_4 & Standard & 12.500 & 4.20 & 4278.834 & 15102.404 & 3.542 & 13.3 & 6.6 & NO & NO & bb \\
\hline \(4-{ }^{-4}\) & 4 180125M1_5 & Standard & 12.500 & 4.20 & 3412.873 & 15059.801 & 2.833 & 10.7 & -14.8 & NO & NO & bb \\
\hline 5 . & 5 180125M1_6 & Standard & 12.500 & 4.20 & 3819.901 & 14143.648 & 3.376 & 12.7 & 1.6 & NO & NO & bb \\
\hline 6 , & 6 180125M1_7 & Standard & 12.500 & 4.18 & 4018.925 & 17663.281 & 2.844 & 10.7 & -14.4 & NO & NO & bb \\
\hline 7 - & 7 180125M1_8 & Standard & 12.500 & 4.16 & 4160.463 & 15007.374 & 3.465 & 13.0 & 4.3 & NO & NO & bb \\
\hline 8- \({ }^{\text {d }}\) & 8 180125M1_9 & Standard & 12.500 & 4.16 & 4506.936 & 14207.905 & 3.965 & 14.9 & 19.3 & NO & NO & bb \\
\hline 9 ) \% & 9 180125M1_10 & Standard & 2.500 & 4.16 & 3312.635 & 2689.905 & 3.079 & 11.6 & 363.2 & NO & NO & bbX \\
\hline 10 - & 10 180125M1_11 & Standard & 2.500 & 4.15 & 5418.768 & 2443.939 & 5.543 & 20.8 & 733.9 & NO & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFOA}

Response Factor: 1.07191
RRF SD: 0.0724677 , Relative SD: 6.76062
Response type: Internal Std (Ref 57 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - \(4 x .3\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. Flag man & COD F & xcluded \\
\hline 1 & 1 180125M1_2 & Standard & 12.500 & 4.25 & 13666.232 & 13918.997 & 12.273 & 11.4 & -8.4 & NO & NO & bb \\
\hline & 2 180125M1_3 & Standard & 12.500 & 4.25 & 15252.614 & 13823.768 & 13.792 & 12.9 & 2.9 & NO & NO & bb \\
\hline 3.1 & 3 180125M1_4 & Standard & 12.500 & 4.25 & 16483.586 & 15102.404 & 13.643 & 12.7 & 1.8 & NO & NO & bb \\
\hline 4 - 3.4 & 4 180125M1_5 & Standard & 12.500 & 4.26 & 14131.144 & 15059.801 & 11.729 & 10.9 & -12.5 & NO & NO & bb \\
\hline \[
15
\] & 5 180125M1_6 & Standard & 12.500 & 4.25 & 14657.059 & 14143.648 & 12.954 & 12.1 & -3.3 & NO & NO & bb \\
\hline & 6 180125M1_7 & Standard & 12.500 & 4.24 & 18369.568 & 17663.281 & 13.000 & 12.1 & -3.0 & NO & NO & bb \\
\hline  & 7 180125M1_8 & Standard & 12.500 & 4.22 & 16254.535 & 15007.374 & 13.539 & 12.6 & 1.0 & NO & NO & bb \\
\hline 8 & 8 180125M1_9 & Standard & 12.500 & 4.22 & 16387.031 & 14207.905 & 14.417 & 13.5 & 7.6 & NO & NO & bb \\
\hline 9.4 & 9 180125M1_10 & Standard & 2.500 & 4.21 & 3075.617 & 2689.905 & 2.858 & 2.7 & 6.7 & NO & NO & bb \\
\hline 10 , & 10 180125M1_11 & Standard & 2.500 & 4.21 & 2805.478 & 2443.939 & 2.870 & 2.7 & 7.1 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960}

Dataset:
F:IProjectsIPFAS.PRO|ResultsI180125M11180125M1-CRV.qld
Last Altered:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed:
Friday, January 26, 2018 09:26:09 Pacific Standard Time

Compound name: 13C5-PFNA
Response Factor: 0.897517
RRF SD: 0.101792, Relative SD: 11.3415
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF


Compound name: 13C8-PFOSA
Response Factor: 0.259861
RRF SD: 0.0322471, Relative SD: 12.4094
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF


Dataset: F:\Projects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld
\begin{tabular}{ll} 
Last Altered: & Friday, January 26, 2018 09:21:18 Pacific Standard Time \\
Printed: & Friday, January 26, 2018 09:26:09 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C8-PFOS}

Response Factor: 0.956538
RRF SD: 0.0863869 , Relative SD: 9.03121
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c. \({ }^{\text {F }}\) & CoD F & xclud \\
\hline - \({ }^{3}\) & 1 180125M1_2 & Standard & 12.500 & 4.76 & 3833.215 & 4036.982 & 11.869 & 12.4 & -0.7 & NO & NO & bb \\
\hline 2-ath & 2 180125M1_3 & Standard & 12.500 & 4.76 & 2993.193 & 3951.047 & 9.470 & 9.9 & -20.8 & NO & NO & bb \\
\hline 3 , \(x\). & 3 180125M1_4 & Standard & 12.500 & 4.76 & 4230.229 & 4526.797 & 11.681 & 12.2 & -2.3 & NO & NO & bb \\
\hline 4.45 & 4 180125M1_5 & Standard & 12.500 & 4.77 & 3776.813 & 3745.977 & 12.603 & 13.2 & 5.4 & NO & NO & bb \\
\hline Whrom & 5 180125M1_6 & Standard & 12.500 & 4.76 & 3518.063 & 3487.810 & 12.608 & 13.2 & 5.5 & NO & NO & bb \\
\hline 6 ceste & 6 180125M1_7 & Standard & 12.500 & 4.76 & 4176.231 & 4049.564 & 12.891 & 13.5 & 7.8 & NO & NO & bb \\
\hline 3 & 7 180125M1_8 & Standard & 12.500 & 4.73 & 3630.818 & 3871.251 & 11.724 & 12.3 & -1.9 & NO & NO & bb \\
\hline 8 & 8 180125M1_9 & Standard & 12.500 & 4.74 & 3793.851 & 3593.117 & 13.198 & 13.8 & 10.4 & NO & NO & bb \\
\hline 9 Werem & 9 180125M1_10 & Standard & 2.500 & 4.73 & 651.162 & 655.946 & 2.482 & 2.6 & 3.8 & NO & NO & bb \\
\hline 10 , & 10 180125M1_11 & Standard & 2.500 & 4.73 & 554.686 & 623.842 & 2.223 & 2.3 & -7.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDA}

\section*{Response Factor: 1.14225}

RRF SD: 0.188256, Relative SD: 16.4811
Response type: Internal Std (Ref 60 ), Area * (IS Conc. / IS Area)
Curve type: RF


Dataset: F:IProjects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C2-8:2 FTS}

Response Factor: 0.173743
RRF SD: 0.0163075, Relative SD: 9.38596
Response type: Internal Std (Ref 55 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & & xcluded \\
\hline 1-2 & 1 180125M1_2 & Standard & 12.500 & 5.02 & 2936.641 & 15850.322 & 2.316 & 13.3 & 6.6 & NO & NO & bb \\
\hline 2 2-me & 2 180125M1_3 & Standard & 12.500 & 5.03 & 2326.787 & 15571.729 & 1.868 & 10.8 & -14.0 & NO & NO & bb \\
\hline \(3 \times 2\) & 3 180125M1_4 & Standard & 12.500 & 5.02 & 2846.249 & 16095.684 & 2.210 & 12.7 & 1.8 & NO & NO & bb \\
\hline 4 - & 4 180125M1_5 & Standard & 12.500 & 5.03 & 2412.049 & 14533.362 & 2.075 & 11.9 & -4.5 & NO & NO & bb \\
\hline + \({ }^{\text {d }}\) & 5 180125M1_6 & Standard & 12.500 & 5.03 & 2346.928 & 14866.764 & 1.973 & 11.4 & -9.1 & NO & NO & bb \\
\hline + + + \({ }^{2}\) & 6 180125M1_7 & Standard & 12.500 & 5.02 & 2894.764 & 16105.280 & 2.247 & 12.9 & 3.5 & NO & NO & bb \\
\hline 7 + & 7 180125M1_8 & Standard & 12.500 & 4.99 & 2716.763 & 15686.091 & 2.165 & 12.5 & -0.3 & NO & NO & bb \\
\hline \[
8
\] & 8 180125M1_9 & Standard & 12.500 & 5.00 & 3236.141 & 16048.404 & 2.521 & 14.5 & 16.1 & NO & NO & bb \\
\hline 9 , & 9 180125M1_10 & Standard & 2.500 & 4.99 & 2278.664 & 2518.953 & 2.262 & 13.0 & 420.7 & NO & NO & bbX \\
\hline \(10 \times\) & 10 180125M1_11 & Standard & 2.500 & 4.99 & 3450.177 & 2484.641 & 3.472 & 20.0 & 699.2 & NO & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSAA}

Response Factor: 0.422146
RRF SD: 0.0635588 , Relative SD: 15.0561
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF


Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: d5-N-EtFOSAA}

Response Factor: 0.430813
RRF SD: 0.0557187 , Relative SD: 12.9334
Response type: Internal Std ( Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline , & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & WeD CoD Flag & \(x=e x c l u d e d\) \\
\hline 1.7 ates & 1 180125M1_2 & Standard & 12.500 & 5.35 & 6949.490 & 15448.239 & 5.623 & 13.1 & 4.4 & NO & NO & bb \\
\hline \(2 \times \pm\) & 2 180125M1_3 & Standard & 12.500 & 5.35 & 6655.562 & 15499.804 & 5.367 & 12.5 & -0.3 & NO & NO & bb \\
\hline \(3-1+2\) & 3 180125M1_4 & Standard & 12.500 & 5.35 & 8370.170 & 17491.867 & 5.981 & 13.9 & 11.1 & NO & NO & bb \\
\hline  & 4 180125M1_5 & Standard & 12.500 & 5.36 & 6421.964 & 12499.089 & 6.422 & 14.9 & 19.3 & NO & NO & bb \\
\hline  & 5 180125M1_6 & Standard & 12.500 & 5.35 & 7291.768 & 17059.645 & 5.343 & 12.4 & -0.8 & NO & NO & bb \\
\hline \(6{ }^{6}+\) & 6 180125M1_7 & Standard & 12.500 & 5.34 & 7574.845 & 20083.063 & 4.715 & 10.9 & -12.5 & NO & NO & bb \\
\hline \[
7
\] & 7 180125M1_8 & Standard & 12.500 & 5.33 & 7467.949 & 16461.711 & 5.671 & 13.2 & 5.3 & NO & NO & bb \\
\hline 8 , 4, & 8 180125M1_9 & Standard & 12.500 & 5.33 & 6619.863 & 16492.871 & 5.017 & 11.6 & -6.8 & NO & NO & bb \\
\hline 9 . P & 9 180125M1_10 & Standard & 2.500 & 5.33 & 1178.022 & 2554.815 & 1.153 & 2.7 & 7.0 & NO & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & 2.500 & 5.33 & 871.253 & 2758.609 & 0.790 & 1.8 & -26.7 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFUdA}

\section*{Response Factor: 0.980178}

RRF SD: 0.160585 , Relative SD: 16.3833
Response type: Internal Std ( Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std Cona & RT & Area & IS Area & Response & Conc. & \%Dev & & D F & cluded \\
\hline 1 & 1 180125M1_2 & Standard & 12.500 & 5.37 & 16243.524 & 15448.239 & 13.144 & 13.4 & 7.3 & NO & NO & bb \\
\hline 2 2, & 2 180125M1_3 & Standard & 12.500 & 5.37 & 12389.071 & 15499.804 & 9.991 & 10.2 & -18.5 & NO & NO & bb \\
\hline \(3 \times 8\) & 3 180125M1_4 & Standard & 12.500 & 5.37 & 19054.553 & 17491.867 & 13.617 & 13.9 & 11.1 & NO & NO & bb \\
\hline 4 & 4 180125M1_5 & Standard & 12.500 & 5.37 & 13306.267 & 12499.089 & 13.307 & 13.6 & 8.6 & NO & NO & bb \\
\hline + & 5 180125M1_6 & Standard & 12.500 & 5.37 & 13673.215 & 17059.645 & 10.019 & 10.2 & -18.2 & NO & NO & bb \\
\hline & 6 180125M1_7 & Standard & 12.500 & 5.37 & 13549.074 & 20083.063 & 8.433 & 8.6 & -31.2 & NO & NO & bb \\
\hline 4twe & 7 180125M1_8 & Standard & 12.500 & 5.35 & 18092.631 & 16461.711 & 13.738 & 14.0 & 12.1 & NO & NO & bb \\
\hline & 8 180125M1_9 & Standard & 12.500 & 5.35 & 16765.213 & 16492.871 & 12.706 & 13.0 & 3.7 & NO & NO & bb \\
\hline +新 & 9 180125M1_10 & Standard & 2.500 & 5.35 & 2938.439 & 2554.815 & 2.875 & 2.9 & 17.3 & NO & NO & bb \\
\hline 10 \% trest & 10 180125M1_11 & Standard & 2.500 & 5.35 & 2910.853 & 2758.609 & 2.638 & 2.7 & 7.7 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset:}

F:IProjects\PFAS.PROIResults\180125M11180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C2-PFDoA}

Response Factor: 0.738817
RRF SD: 0.0977861 , Relative SD: 13.2355
Response type: Internal Std ( Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type \({ }^{\text {a }}\) & Std Conc & RT & Area & IS Area & Response & Conc. & \%Dev & c.Flag CoD & CoD Flag & -x=excluded \\
\hline 1 - 4 , + m & 1 180125M1_2 & Standard & 12.500 & 5.65 & 11067.724 & 15448.239 & 8.955 & 12.1 & -3.0 & NO & NO & bb \\
\hline +ex & 2 180125M1_3 & Standard & 12.500 & 5.65 & 10700.879 & 15499.804 & 8.630 & 11.7 & -6.6 & NO & NO & bb \\
\hline & 3 180125M1_4 & Standard & 12.500 & 5.65 & 11579.887 & 17491.867 & 8.275 & 11.2 & -10.4 & NO & NO & bb \\
\hline 4 . \({ }^{\text {a }}\) & 4 180125M1_5 & Standard & 12.500 & 5.66 & 11209.014 & 12499.089 & 11.210 & 15.2 & 21.4 & NO & NO & bb \\
\hline & 5 180125M1_6 & Standard & 12.500 & 5.65 & 11620.383 & 17059.645 & 8.515 & 11.5 & -7.8 & NO & NO & bb \\
\hline . & 6 180125M1_7 & Standard & 12.500 & 5.64 & 12200.239 & 20083.063 & 7.594 & 10.3 & -17.8 & NO & NO & bb \\
\hline a & 7 180125M1_8 & Standard & 12.500 & 5.63 & 11585.384 & 16461.711 & 8.797 & 11.9 & -4.7 & NO & NO & bb \\
\hline \(8 \times\) & 8 180125M1_9 & Standard & 12.500 & 5.63 & 11776.407 & 16492.871 & 8.925 & 12.1 & -3.4 & NO & NO & bb \\
\hline 9. & 9 180125M1_10 & Standard & 2.500 & 5.63 & 2121.748 & 2554.815 & 2.076 & 2.8 & 12.4 & NO & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & 2.500 & 5.63 & 2443.002 & 2758.609 & 2.214 & 3.0 & 19.9 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSA}

Response Factor: 0.108425
RRF SD: 0.0148188 , Relative SD: 13.6673
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: RF


Dataset: F:IProjects|PFAS.PROIResults\180125M11180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C2-PFTeDA}

Response Factor: 0.309849
RRF SD: 0.0539272 , Relative SD: 17.4043
Response type: Internal Std ( Ref 61 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline T \({ }^{2}\) 20 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & nc. & CoD Flag & \(x=\) excluded \\
\hline 1 - \({ }^{+5}\) & 1 180125M1_2 & Standard & 12.500 & 6.11 & 4792.661 & 15448.239 & 3.878 & 12.5 & 0.1 & NO & NO & bb \\
\hline 2 2, & 2 180125M1_3 & Standard & 12.500 & 6.11 & 5334.590 & 15499.804 & 4.302 & 13.9 & 11.1 & NO & NO & bb \\
\hline 3 - & 3 180125M1_4 & Standard & 12.500 & 6.11 & 5292.026 & 17491.867 & 3.782 & 12.2 & -2.4 & NO & NO & bb \\
\hline \% & 4 180125M1_5 & Standard & 12.500 & 6.11 & 5029.292 & 12499.089 & 5.030 & 16.2 & 29.9 & NO & NO & bb \\
\hline \(5 . \quad 2\) & 5 180125M1_6 & Standard & 12.500 & 6.11 & 4302.676 & 17059.645 & 3.153 & 10.2 & -18.6 & NO & NO & bb \\
\hline \[
6
\] & 6 180125M1_7 & Standard & 12.500 & 6.10 & 4556.227 & 20083.063 & 2.836 & 9.2 & -26.8 & NO & NO & bb \\
\hline 7 - & 7 180125M1_8 & Standard & 12.500 & 6.09 & 5131.559 & 16461.711 & 3.897 & 12.6 & 0.6 & NO & NO & bb \\
\hline \%-4 & 8 180125M1_9 & Standard & 12.500 & 6.09 & 5420.510 & 16492.871 & 4.108 & 13.3 & 6.1 & NO & NO & bb \\
\hline 9 & 9 180125M1_10 & Standard & 2.500 & 6.09 & 1683.738 & 2554.815 & 1.648 & 5.3 & 112.7 & NO & NO & bbX \\
\hline 10 ? & 10 180125M1_11 & Standard & 2.500 & 6.09 & 2145.147 & 2758.609 & 1.944 & 6.3 & 151.0 & NO & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: d5-N-ETFOSA}

Response Factor: 0.15507
RRF SD: 0.0143234 , Relative SD: 9.23673
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF


Last Altered:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

Compound name: 13C2-PFHxDA
Response Factor: 0.55955
RRF SD: 0.0744005 , Relative SD: 13.2965
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF


Compound name: d7-N-MeFOSE
Response Factor: 0.139175
RRF SD: 0.0227372, Relative SD: 16.337
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# Name & Type & T Std. Conc \({ }^{2}\) & RT & Area & IS Area & Response & Conc. & \%Dev & & & cluded \\
\hline  & Standard & 150.000 & 6.27 & 23019.270 & 15448.239 & 18.626 & 133.8 & -10.8 & NO & NO & bb \\
\hline 2 2 2 180125M1_3 & Standard & 150.000 & 6.27 & 23396.316 & 15499.804 & 18.868 & 135.6 & -9.6 & NO & NO & bd \\
\hline 3.4 180125M1_4 & Standard & 150.000 & 6.28 & 27139.652 & 17491.867 & 19.394 & 139.4 & -7.1 & NO & NO & bb \\
\hline 4.4 ¢ 4 180125M1_5 & Standard & 150.000 & 6.27 & 25696.836 & 12499.089 & 25.699 & 184.6 & 23.1 & NO & NO & bb \\
\hline 5 - 5 180125M1_6 & Standard & 150.000 & 6.27 & 20923.910 & 17059.645 & 15.331 & 110.2 & -26.6 & NO & NO & bb \\
\hline ไ. 6 180125M1_7 & Standard & 150.000 & 6.27 & 28088.223 & 20083.063 & 17.483 & 125.6 & -16.3 & NO & NO & bb \\
\hline 7.4 & Standard & 150.000 & 6.27 & 30861.148 & 16461.711 & 23.434 & 168.4 & 12.3 & NO & NO & bd \\
\hline 8 8 8 180125M1_9 & Standard & 150.000 & 6.27 & 28926.580 & 16492.871 & 21.924 & 157.5 & 5.0 & NO & NO & bb \\
\hline 9 9_\% \({ }^{\text {a }}\) 180125M1_10 & Standard & 30.000 & 6.27 & 4784.866 & 2554.815 & 4.682 & 33.6 & 12.1 & NO & NO & bb \\
\hline 10 - 10 180125M1_11 & Standard & 30.000 & 6.27 & 5427.411 & 2758.609 & 4.919 & 35.3 & 17.8 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d9-N-EtFOSE}

Response Factor: 0.127573
RRF SD: 0.0202723 , Relative SD: 15.8908
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C4-PFBA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 54 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline + \({ }^{\text {a }}\) & \# Name & Type & Std. Conc & RT & \({ }^{4} \mathrm{n}\) Area & IS Area & Response & Conc. & \%Dev & , & & duded \\
\hline + & 1 180125M1_2 & Standard & 12.500 & 1.40 & 13683.070 & 13683.070 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 -tat & 2 180125M1_3 & Standard & 12.500 & 1.40 & 13333.805 & 13333.805 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 3 180125M1_4 & Standard & 12.500 & 1.40 & 14715.758 & 14715.758 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4.45 & 4 180125M1_5 & Standard & 12.500 & 1.40 & 12623.360 & 12623.360 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(5 \times 85\) & 5 180125M1_6 & Standard & 12.500 & 1.40 & 13249.311 & 13249.311 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 6.4 \({ }^{\text {a }}\) & 6 180125M1_7 & Standard & 12.500 & 1.40 & 13972.816 & 13972.816 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 7 2 - 6 & 7 180125M1_8 & Standard & 12.500 & 1.35 & 14086.326 & 14086.326 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8. 3 , \({ }^{\text {a }}\) & 8 180125M1_9 & Standard & 12.500 & 1.34 & 13840.253 & 13840.253 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 - \({ }^{\text {a }}\) & 9 180125M1_10 & Standard & 2.500 & 1.34 & 2410.990 & 2410.990 & 2.500 & 2.5 & 0.0 & NO & NO & bb \\
\hline 10 x \({ }^{4}\) & 10 180125M1_11 & Standard & 2.500 & 1.34 & 2535.000 & 2535.000 & 2.500 & 2.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Compound name: 13C5-PFHxA
Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Whem \({ }^{2}\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc \({ }_{\text {, }}\) & \%Dev & Conc. F & DF & xcli \\
\hline 4. \({ }^{4}+\) & 1 180125M1_2 & Standard & 12.500 & 3.12 & 15850.322 & 15850.322 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2- \({ }^{\text {2 }}\) - & 2 180125M1_3 & Standard & 12.500 & 3.12 & 15571.729 & 15571.729 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 3 180125M1_4 & Standard & 12.500 & 3.12 & 16095.684 & 16095.684 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(4 \times\) & 4 180125M1_5 & Standard & 12.500 & 3.12 & 14533.362 & 14533.362 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4et & 5 180125M1_6 & Standard & 12.500 & 3.12 & 14866.764 & 14866.764 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 6 180125M1_7 & Standard & 12.500 & 3.12 & 16105.280 & 16105.280 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline +4x & 7 180125M1_8 & Standard & 12.500 & 3.07 & 15686.091 & 15686.091 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline +43 & 8 180125M1_9 & Standard & 12.500 & 3.07 & 16048.404 & 16048.404 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 & 9 180125M1_10 & Standard & 2.500 & 3.07 & 2518.953 & 2518.953 & 2.500 & 2.5 & 0.0 & NO & NO & bb \\
\hline 10. & 10 180125M1_11 & Standard & 2.500 & 3.07 & 2484.641 & 2484.641 & 2.500 & 2.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 56 ), Area * (IS Conc. / IS Area )
Curve type: RF


Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C8-PFOA}

Response Factor:
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name \({ }^{\text {a }}\), Type} & Std. Conc & RT & Area & 15 Area & Response & \multicolumn{3}{|l|}{Conc. \%Dev Conc Flag} & D & xcluded \\
\hline 4-4.4. & 1 180125M1_2 & Standard & 12.500 & 4.25 & 13918.997 & 13918.997 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline T, & 2 180125M1_3 & Standard & 12.500 & 4.25 & 13823.768 & 13823.768 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline twhe & 3 180125M1_4 & Standard & 12.500 & 4.25 & 15102.404 & 15102.404 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 tab \% & 4 180125M1_5 & Standard & 12.500 & 4.25 & 15059.801 & 15059.801 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 - & 5 180125M1_6 & Standard & 12.500 & 4.25 & 14143.648 & 14143.648 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \% & 6 180125M1_7 & Standard & 12.500 & 4.24 & 17663.281 & 17663.281 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline , & 7 180125M1_8 & Standard & 12.500 & 4.21 & 15007.374 & 15007.374 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 & 8 180125M1_9 & Standard & 12.500 & 4.22 & 14207.905 & 14207.905 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(\cdots\) & 9 180125M1_10 & Standard & 2.500 & 4.21 & 2689.905 & 2689.905 & 2.500 & 2.5 & 0.0 & NO & NO & bb \\
\hline 10.3 & 10 180125M1_11 & Standard & 2.500 & 4.21 & 2443.939 & 2443.939 & 2.500 & 2.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF

\(\qquad\)

Dataset:
F:IProjects|PFAS.PROTResults|180125M1|180125M1-CRV.qld
Last Altered:
Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C4-PFOS}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 59 ), Area * ( IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C6-PFDA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 60 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Dataset: F:IProjects\PFAS.PRO\Results\180125M1\180125M1-CRV.qld \\ Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time}

Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

\section*{Compound name: 13C7-PFUdA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 61 ), Area * IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc Flag & CoD & Cob Flag & \(x\)-excluded \\
\hline 1.4 & 1 180125M1_2 & Standard & 12.500 & 5.37 & 15448.239 & 15448.239 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 - \({ }^{\text {a }}\) & 2 180125M1_3 & Standard & 12.500 & 5.37 & 15499.804 & 15499.804 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 3 \({ }^{\text {a }}\) - at & 3 180125M1_4 & Standard & 12.500 & 5.37 & 17491.867 & 17491.867 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 4 180125M1_5 & Standard & 12.500 & 5.37 & 12499.089 & 12499.089 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 5 180125M1_6 & Standard & 12.500 & 5.37 & 17059.645 & 17059.645 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 6 180125M1_7 & Standard & 12.500 & 5.36 & 20083.063 & 20083.063 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 180125M1_8 & Standard & 12.500 & 5.35 & 16461.711 & 16461.711 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 - \({ }^{\text {a }}\), & 8 180125M1_9 & Standard & 12.500 & 5.35 & 16492.871 & 16492.871 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \[
19
\] & 9 180125M1_10 & Standard & 2.500 & 5.35 & 2554.815 & 2554.815 & 2.500 & 2.5 & 0.0 & NO & & NO & bb \\
\hline 10 - & 10 180125M1_11 & Standard & 2.500 & 5.35 & 2758.609 & 2758.609 & 2.500 & 2.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

Last Altered: Friday, January 26, 2018 10:18:34 Pacific Standard Time
Printed: Friday, January 26, 2018 10:18:48 Pacific Standard Time

Method: F:IProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_012518.mdb 26 Jan 2018 09:01:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline - & Name & ID & Acq Date & Acq. Time \\
\hline 1 & 180125M1_1 & IPA & 25-Jan-18 & 15:18:35 \\
\hline 2 & 180125M1_2 & ST180125M1-1 PFC CS-2 18A1904 & 25-Jan-18 & 15:30:09 \\
\hline 3. & 180125M1_3 & ST180125M1-2 PFC CS-1 18A1905 & 25-Jan-18 & 15:41:39 \\
\hline 4 & 180125M1_4 & ST180125M1-3 PFC CSO 18A1906 & 25-Jan-18 & 15:53:10 \\
\hline 5 & 180125M1_5 & ST180125M1-4 PFC CS1 18A1907 & 25-Jan-18 & 16:04:39 \\
\hline 6 & 180125M1_6 & ST180125M1-5 PFC CS2 18A1908 & 25-Jan-18 & 16:16:09 \\
\hline 7 F & 180125M1_7 & ST180125M1-6 PFC CS3 18A1909 & 25-Jan-18 & 16:27:39 \\
\hline 8 & 180125M1_8 & ST180125M1-7 PFC CS4 18A1910 & 25-Jan-18 & 16:39:08 \\
\hline  & 180125M1_9 & ST180125M1-8 PFC CS5 18A1911 & 25-Jan-18 & 16:50:34 \\
\hline 10 & 180125M1_10 & ST180125M1-9 PFC CS6 18A2403 & 25-Jan-18 & 17:02:04 \\
\hline 11 & 180125M1_11 & ST180125M1-10 PFC CS7 18A2404 & 25-Jan-18 & 17:13:34 \\
\hline \[
12
\] & 180125M1_12 & IPA & 25-Jan-18 & 17:25:03 \\
\hline 13 & 180125M1_13 & ICV180125M1-1 PFC ICV 18A1903 & 25-Jan-18 & 17:36:33 \\
\hline 14.4 & 180125M1_14 & IPA & 25-Jan-18 & 17:48:00 \\
\hline
\end{tabular}

Dataset: F:IProjectsIPFAS.PROIResults\180125M11180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: Friday, January 26, 2018 09:26:09 Pacific Standard Time

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_012418.mdb 25 Jan 2018 11:07:33
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18
Name: 180125M1_2, Date: 25-Jan-2018, Time: 15:30:09, ID: ST180125M1-1 PFC CS-2 18A1904, Description: PFC CS-2 18A1904
\begin{tabular}{|c|c|c|c|}
\hline He\# Name & CoD & & \%RSD \\
\hline 1 , 1 PFBA & 0.9993 & NO & \\
\hline 2 2 PFPeA & 0.9996 & NO & \\
\hline 3 3 3 PFBS & 0.9993 & NO & \\
\hline 4 , 4 Prat 4 PFA & 0.9974 & NO & \\
\hline 4 - 5 PFHpA & 0.9960 & NO & \\
\hline 6.6 L-PFHxS & 0.9952 & NO & \\
\hline 7. 86.2 FTS & 0.9953 & NO & \\
\hline CW 9 L-PFOA & 0.9987 & NO & \\
\hline 9 -tat 11 PFHpS & 0.9990 & NO & \\
\hline 10. 12 PFNA & 0.9959 & NO & \\
\hline 11 - 13 PFOSA & 0.9989 & NO & \\
\hline 12 ) 14 L-PFOS & 0.9982 & NO & \\
\hline 13 W 16 PFDA & 0.9992 & NO & \\
\hline 14 - 17 8:2 FTS & 0.9963 & NO & \\
\hline 15. 18 N-MeFOSAA & 0.9984 & NO & \\
\hline 16 . & 0.9992 & NO & \\
\hline 17 . 20 PFUdA & 0.9955 & NO & \\
\hline 21 PFDS & 0.9957 & NO & \\
\hline 19 - 22 PFDoA & 0.9950 & NO & \\
\hline \(20.323 \mathrm{~N}-\mathrm{MeFOSA}\) & 0.9998 & NO & \\
\hline 21.424 PFTrDA & 0.9968 & NO & \\
\hline 22.22 PFTeDA & 0.9980 & NO & \\
\hline \(23.426 \mathrm{~N}-\mathrm{EtFOSA}\) & 0.9997 & NO & \\
\hline 24 * 27 PFHxDA & 0.9933 & NO & \\
\hline 25 - 2 t 28 PFODA & 0.9973 & NO & \\
\hline 26 - 29 N-MeFOSE & 0.9979 & NO & \\
\hline 27.30 N-EtFOSE & 0.9999 & NO & \\
\hline 28 - 31 13C3-PFBA & & NO & 1.624 \\
\hline 29 - \(3213 \mathrm{C} 3-\mathrm{PFPeA}\) & & NO & 4.012 \\
\hline 30 , \({ }^{\text {dety }} 3313 \mathrm{C} 3-\mathrm{PFBS}\) & & NO & 4.625 \\
\hline  & & NO & 10.083 \\
\hline
\end{tabular}

Dataset: F:IProjects|PFAS.PRO\Results\180125M11180125M1-CRV.qld
Last Altered: Friday, January 26, 2018 09:21:18 Pacific Standard Time
Printed: \(\quad\) Friday, January 26, 2018 09:26:09 Pacific Standard Time

Name: 180125M1_2, Date: 25-Jan-2018, Time: 15:30:09, ID: ST180125M1-1 PFC CS-2 18A1904, Description: PFC CS-2 18A1904


Dataset: F:IProjectsIPFAS.PROTResults1180125M11180125M1-13.qld
Last Altered: Friday, January 26, 2018 09:30:43 Pacific Standard Time
Printed: Friday, January 26, 2018 09:31:10 Pacific Standard Time

\section*{(A) No 85 available.}

Method: F:|Projects|PFAS.PROMMethDB\PFAS_FULL_80C_012518.mdb 26 Jan 2018 09:01:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18

Name: 180125M1_13, Date: 25-Jan-2018, Time: 17:36:33, ID: ICV180125M1-1 PFC ICV 18A1903, Description: PFC ICV 18A1903



Name: 180125M1_13, Date: 25-Jan-2018, Time: 17:36:33, ID: ICV180125M1-1 PFC ICV 18A1903, Description: PFC ICV 18A1903


Dataset: F:IProjectsIPFAS.PROIResults\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Method: F:IProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 08:43:15} Calibration: F:|Projects|PFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36

\section*{Compound name: PFBA}

Correlation coefficient: \(\mathrm{r}=0.999588, \mathrm{r}^{\wedge} 2=0.999176\)
Calibration curve: \(1.15301^{*} x+0.0290072\)
Response type: Internal Std (Ref 34 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFPeA}

Correlation coefficient: \(r=0.999459, \mathrm{r}^{\wedge} 2=0.998919\)
Calibration curve: \(0.921641^{*} x+0.120981\)
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: F:IProjects|PFAS.PROIResults\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: PFPeA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4. W Name & Type & Std Cone & RT & Area & IS Area & Response & onc, & \%D & Ac. F & Cod & CoD & d \\
\hline 10. & -4. 10 180201M2_11 & Standard & 500.000 & 2.69 & 357330.969 & 9927.790 & 449.913 & 488.0 & -2.4 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFBS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999372\)
Calibration curve: \(0.000720487^{*} x^{\wedge} 2+1.50907{ }^{*} x+0.184842\)
Response type: Internal Std (Ref 36 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 . & 1 180201M2 & Standard & 0.250 & 2.99 & 55.924 & 1433.712 & 0.488 & 0.2 & -19.8 & NO & 0.999 & NO & MM \\
\hline 2 - & 2 180201M2_3 & Standard & 0.500 & 2.99 & 114.197 & 1551.910 & 0.920 & 0.5 & -2.6 & NO & 0.999 & NO & bb \\
\hline 8 & 3 180201M2_4 & Standard & 1.000 & 2.98 & 197.640 & 1514.292 & 1.631 & 1.0 & -4.2 & NO & 0.999 & NO & bb \\
\hline & 4 180201M2_5 & Standard & 2.000 & 2.98 & 401.874 & 1492.356 & 3.366 & 2.1 & 5.3 & NO & 0.999 & NO & bb \\
\hline 部 & 5 180201M2_6 & Standard & 5.000 & 2.98 & 1011.305 & 1480.229 & 8.540 & 5.5 & 10.4 & NO & 0.999 & NO & bb \\
\hline 6 6. \({ }^{2}\) & 6 180201M2_7 & Standard & 10.000 & 2.98 & 2112.059 & 1572.907 & 16.785 & 10.9 & 9.4 & NO & 0.999 & NO & bb \\
\hline 7 & 7 180201M2_8 & Standard & 50.000 & 2.97 & 9241.729 & 1491.415 & 77.458 & 50.0 & 0.0 & NO & 0.999 & NO & bb \\
\hline 8 - 5 ats & 8 180201M2_9 & Standard & 100.000 & 2.97 & 19325.635 & 1464.832 & 164.913 & 104.0 & 4.0 & NO & 0.999 & NO & bb \\
\hline & 9 180201M2_10 & Standard & 250.000 & 2.97 & 45481.453 & 1395.219 & 407.476 & 241.9 & -3.2 & NO & 0.999 & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 500.000 & 2.97 & 85698.891 & 1138.420 & 940.985 & 502.8 & 0.6 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Compound name: 4:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999451\)
Calibration curve: \(0.000203044^{*} x^{\wedge} 2+1.61794{ }^{*} x+0.159207\)
Response type: Internal Std (Ref 36 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline then ter & 1 180201M2_2 & Standard & 0.250 & 3.40 & 50.736 & 1433.712 & 0.442 & 0.2 & -30.0 & YE8 & 0.999 & NO & MM \\
\hline 2 tan & 2 180201M2_3 & Standard & 0.500 & 3.39 & 119.567 & 1551.910 & 0.963 & 0.5 & -0.6 & NO & 0.999 & NO & bb \\
\hline Cx+y & 3 180201M2_4 & Standard & 1.000 & 3.39 & 244.639 & 1514.292 & 2.019 & 1.1 & 15.0 & NO & 0.999 & NO & bb \\
\hline 4 - 4 d & 4 180201M2_5 & Standard & 2.000 & 3.39 & 441.763 & 1492.356 & 3.700 & 2.2 & 9.4 & NO & 0.999 & NO & bb \\
\hline & 5 180201M2_6 & Standard & 5.000 & 3.38 & 1001.657 & 1480.229 & 8.459 & 5.1 & 2.5 & NO & 0.999 & NO & bb \\
\hline 楼 & \(6180201 \mathrm{M} 2 \_7\) & Standard & 10.000 & 3.38 & 2056.812 & 1572.907 & 16.346 & 10.0 & -0.1 & NO & 0.999 & NO & bb \\
\hline 4 & 7 180201M2 8 & Standard & 50.000 & 3.38 & 10091.644 & 1491.415 & 84.581 & 51.8 & 3.7 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjectsIPFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: 4:2 FTS}


\section*{Compound name: PFHxA}

Coefficient of Determination: \(R^{\wedge} 2=0.999268\)
Calibration curve: \(-0.000163281^{*} x^{\wedge} 2+1.50548\) * \(x+0.113411\)
Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: PFPeS
Correlation coefficient: \(\mathrm{r}=0.997255, \mathrm{r} \wedge 2=0.994517\)
Calibration curve: \(1.92826{ }^{*} x+-0.169565\)
Response type: Internal Std ( Ref 36 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline 1-4.2 4 & 1 180201M2_2 & Standard & 0.250 & 3.69 & 45.912 & 1433.712 & 0.400 & 0.3 & 18.2 & NO & 0.995 & NO & MM \\
\hline & 2 180201M2_3 & Standard & 0.500 & 3.68 & 89.330 & 1551.910 & 0.720 & 0.5 & -7.8 & NO & 0.995 & NO & bb \\
\hline & 3 180201M2_4 & Standard & 1.000 & 3.68 & 212.781 & 1514.292 & 1.756 & 1.0 & -0.1 & NO & 0.995 & NO & bb \\
\hline \(4{ }^{4}+3\) & 4 180201M2_5 & Standard & 2.000 & 3.68 & 470.903 & 1492.356 & 3.944 & 2.1 & 6.7 & NO & 0.995 & NO & bb \\
\hline & 5 180201M2 6 & Standard & 5.000 & 3.67 & 1109.698 & 1480.229 & 9.371 & 4.9 & -1.0 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PROIResultsI180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: PFPeS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type & Std. Conc & \multicolumn{2}{|l|}{RT \({ }_{\text {a }}\) Area} & IS Area & Response & Conc. & \multicolumn{2}{|l|}{\%Dev Conc. Flag} & \multicolumn{3}{|l|}{CoD CoD Flag x=excluded} \\
\hline \%-\% & 6 180201M2_7 & Standard & 10.000 & 3.67 & 2337.649 & 1572.907 & 18.577 & 9.7 & -2.8 & NO & 0.995 & NO & bb \\
\hline \[
5
\] & 7 180201M2_8 & Standard & 50.000 & 3.67 & 11096.020 & 1491.415 & 92.999 & 48.3 & -3.4 & NO & 0.995 & NO & bb \\
\hline \[
8
\] & 8 180201M2_9 & Standard & 100.000 & 3.66 & 21066.156 & 1464.832 & 179.766 & 93.3 & -6.7 & NO & 0.995 & NO & bb \\
\hline \(x+38\) & 9 180201M2_10 & Standard & 250.000 & 3.66 & 48596.195 & 1395.219 & 435.381 & 225.9 & -9.6 & NO & 0.995 & NO & bb \\
\hline 10 . & 10 180201M2_11 & Standard & 500.000 & 3.66 & 93530.148 & 1138.420 & 1026.973 & 532.7 & 6.5 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.999876, \mathrm{r}^{\wedge} 2=0.99975\)
Calibration curve: 1.33885 * x + -0.0298888
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & - Std Conc & - RT & Area & IS Area & esponse & Conc & & & & & \\
\hline 1 - & 1 180201M2_2 & Standard & 0.250 & 4.12 & 205.343 & 8537.186 & 0.301 & 0.2 & -1.2 & NO & 1.000 & NO & bb \\
\hline 2 , & 2 180201M2_3 & Standard & 0.500 & 4.12 & 468.266 & 8665.500 & 0.675 & 0.5 & 5.4 & NO & 1.000 & NO & bb \\
\hline & 3 180201M2_4 & Standard & 1.000 & 4.11 & 887.099 & 8295.039 & 1.337 & 1.0 & 2.1 & NO & 1.000 & NO & bb \\
\hline T+ + \% & 4 180201M2_5 & Standard & 2.000 & 4.11 & 2028.035 & 8948.312 & 2.833 & 2.1 & 6.9 & NO & 1.000 & NO & bb \\
\hline & 5 180201M2_6 & Standard & 5.000 & 4.10 & 4822.485 & 9472.876 & 6.364 & 4.8 & -4.5 & NO & 1.000 & NO & bb \\
\hline 6. 2 det & 6 180201M2_7 & Standard & 10.000 & 4.10 & 9014.292 & 9280.252 & 12.142 & 9.1 & -9.1 & NO & 1.000 & NO & bb \\
\hline 7 m & 7 180201M2_8 & Standard & 50.000 & 4.10 & 42484.176 & 8132.475 & 65.300 & 48.8 & -2.4 & NO & 1.000 & NO & bb \\
\hline & 8 180201M2_9 & Standard & 100.000 & 4.10 & 88190.313 & 8029.674 & 137.288 & 102.6 & 2.6 & NO & 1.000 & NO & bb \\
\hline 9 ater & 9 180201M2_10 & Standard & 250.000 & 4.10 & 203692.563 & 7548.560 & 337.304 & 252.0 & 0.8 & NO & 1.000 & NO & bb \\
\hline 10 . & 10 180201M2_11 & Standard & 500.000 & 4.09 & 370149.844 & 6944.875 & 666.228 & 497.6 & -0.5 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: L-PFHxS}

Correlation coefficient: \(r=0.999731, r^{\wedge} 2=0.999462\)
Calibration curve: 1.66977 * \(x+0.0985786\)
Response type: Internal Std (Ref 39 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & \multicolumn{6}{|l|}{IS Area Response Conc \%Dev Conc. Flag CoD} & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 , \({ }^{\text {a }}\), & 1 180201M2_2 & Standard & 0.250 & 4.26 & 35.073 & 1056.209 & 0.415 & 0.2 & -24.2 & NO & 0.999 & NO & MM \\
\hline 2 . & 2 180201M2_3 & Standard & 0.500 & 4.25 & 83.448 & 1160.678 & 0.899 & 0.5 & -4.2 & NO & 0.999 & NO & MM \\
\hline 3 arstay & 3 180201M2_4 & Standard & 1.000 & 4.25 & 157.708 & 1082.664 & 1.821 & 1.0 & 3.1 & NO & 0.999 & NO & MM \\
\hline  & 4 180201M2_5 & Standard & 2.000 & 4.24 & 305.706 & 1135.339 & 3.366 & 2.0 & -2.2 & NO & 0.999 & NO & MM \\
\hline 5 . & 5 180201M2_6 & Standard & 5.000 & 4.24 & 818.170 & 1105.755 & 9.249 & 5.5 & 9.6 & NO & 0.999 & NO & MM \\
\hline \[
6
\] & 6 180201M2_7 & Standard & 10.000 & 4.24 & 1665.759 & 1096.692 & 18.986 & 11.3 & 13.1 & NO & 0.999 & NO & MM \\
\hline \[
{ }^{7}+\sec =
\] & 7 180201M2_8 & Standard & 50.000 & 4.24 & 7835.177 & 1126.976 & 86.905 & 52.0 & 4.0 & NO & 0.999 & NO & MM \\
\hline 8 . & 8 180201M2_9 & Standard & 100.000 & 4.23 & 14767.560 & 1094.272 & 168.692 & 101.0 & 1.0 & NO & 0.999 & NO & MM \\
\hline \[
9
\] & 9 180201M2_10 & Standard & 250.000 & 4.23 & 34389.738 & 1016.523 & 422.884 & 253.2 & 1.3 & NO & 0.999 & NO & MM \\
\hline \[
10
\] & 10 180201M2_11 & Standard & 500.000 & 4.23 & 68657.250 & 1044.222 & 821.871 & 492.1 & -1.6 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 6:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998757\)
Calibration curve: \(-8.65385 \mathrm{e}-005\) * \(x^{\wedge} 2+0.263083\) * \(x+0.00293198\)
Response type: Internal Std (Ref 41 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline & 1 180201M2_2 & Standard & 0.250 & 4.58 & 67.229 & 15180.339 & 0.055 & 0.2 & -20.3 & NO & 0.999 & NO & bb \\
\hline 3 4 dr & 2 180201M2_3 & Standard & 0.500 & 4.56 & 123.138 & 13847.419 & 0.111 & 0.4 & -17.7 & NO & 0.999 & NO & bb \\
\hline 3 3 & 3 180201M2_4 & Standard & 1.000 & 4.57 & 356.080 & 13183.470 & 0.338 & 1.3 & 27.3 & NO & 0.999 & NO & bb \\
\hline - \({ }^{\text {eng }}\) & 4 180201M2_5 & Standard & 2.000 & 4.56 & 586.612 & 13426.970 & 0.546 & 2.1 & 3.3 & NO & 0.999 & NO & bb \\
\hline C. & 5 180201M2_6 & Standard & 5.000 & 4.56 & 1263.803 & 12850.056 & 1.229 & 4.7 & -6.6 & NO & 0.999 & NO & bb \\
\hline 6 \% & 6 180201M2_7 & Standard & 10.000 & 4.56 & 3116.245 & 12564.818 & 3.100 & 11.8 & 18.2 & NO & 0.999 & NO & bb \\
\hline \[
7 \mathrm{~F}, \mathrm{a}+\mathrm{c}
\] & 7 180201M2_8 & Standard & 50.000 & 4.56 & 11981.239 & 11610.387 & 12.899 & 49.8 & -0.3 & NO & 0.999 & NO & bb \\
\hline 8 - & 8 180201M2_9 & Standard & 100.000 & 4.56 & 26238.688 & 12445.125 & 26.354 & 103.7 & 3.7 & NO & 0.999 & NO & bb \\
\hline 9 ata & 9 180201M2_10 & Standard & 250.000 & 4.55 & 54837.234 & 11793.541 & 58.122 & 239.8 & -4.1 & NO & 0.999 & NO & bb \\
\hline 10 + & 10 180201M2_11 & Standard & 500.000 & 4.55 & 92294.516 & 10408.093 & 110.845 & 505.3 & 1.1 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: F:\Projects\PFAS.PRO\Results\180201M21180201M2-CRV.qid
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: L-PFOA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999666\)
Calibration curve: \(0.000195402^{*} x^{\wedge} 2+0.967507{ }^{*} x+0.0573653\)
Response type: Internal Std ( Ref 41 ), Area * ( IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type & Std. Cone & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & CoD & D F & xcl \\
\hline + + cos & 1 180201M2_2 & Standard & 0.250 & 4.63 & 320.028 & 15180.339 & 0.264 & 0.2 & -14.8 & NO & 1.000 & NO & bb \\
\hline - minde & 2 180201M2_3 & Standard & 0.500 & 4.62 & 499.409 & 13847.419 & 0.451 & 0.4 & -18.7 & NO & 1.000 & NO & bb \\
\hline 3 , & 3 180201M2_4 & Standard & 1.000 & 4.62 & 1188.344 & 13183.470 & 1.127 & 1.1 & 10.5 & NO & 1.000 & NO & bb \\
\hline 4-x & 4 180201M2_5 & Standard & 2.000 & 4.62 & 2321.047 & 13426.970 & 2.161 & 2.2 & 8.7 & NO & 1.000 & NO & bb \\
\hline 3 & 5 180201M2_6 & Standard & 5.000 & 4.61 & 5169.790 & 12850.056 & 5.029 & 5.1 & 2.7 & NO & 1.000 & NO & bb \\
\hline 6.4.terts & 6 180201M2_7 & Standard & 10.000 & 4.61 & 10867.396 & 12564.818 & 10.811 & 11.1 & 10.9 & NO & 1.000 & NO & bb \\
\hline 7 did & 7 180201M2_8 & Standard & 50.000 & 4.61 & 47224.406 & 11610.387 & 50.843 & 51.9 & 3.9 & NO & 1.000 & NO & bb \\
\hline \[
8
\] & 8 180201M2_9 & Standard & 100.000 & 4.61 & 95549.547 & 12445.125 & 95.971 & 97.2 & -2.8 & NO & 1.000 & NO & bb \\
\hline 吅䢒 & 9 180201M2_10 & Standard & 250.000 & 4.60 & 238264.297 & 11793.541 & 252.537 & 248.5 & -0.6 & NO & 1.000 & NO & bb \\
\hline 10 . & 10 180201M2_11 & Standard & 500.000 & 4.60 & 444474.906 & 10408.093 & 533.809 & 501.0 & 0.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHpS}

Coefficient of Determination: \(R^{\wedge} 2=0.998404\)
Calibration curve: \(-0.000351604{ }^{*} x^{\wedge} 2+1.0357\) * \(x+-0.223659\)
Response type: Internal Std (Ref 44 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: F:IProjectsIPFAS.PROTResults\180201M2\180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: PFNA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997025\)
Calibration curve: \(-0.00027373^{*} x^{\wedge} 2+1.17487\) * \(x+0.141309\)
Response type: Internal Std ( Ref 42 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & Reme & Sey : Area & IS Area & Response & onc. & Dev & nc. & CoD & CODFl & xcluded \\
\hline 1. & 1 180201M2_2 & Standard & 0.250 & 5.05 & 328.290 & 10855.060 & 0.378 & 0.2 & -19.4 & NO & 0.997 & NO & bb \\
\hline \[
2
\] & 2 180201M2_3 & Standard & 0.500 & 5.05 & 565.966 & 11105.828 & 0.637 & 0.4 & -15.6 & NO & 0.997 & NO & bb \\
\hline 3 & 3 180201M2_4 & Standard & 1.000 & 5.04 & 1116.923 & 10172.259 & 1.373 & 1.0 & 4.8 & NO & 0.997 & NO & bb \\
\hline \(4{ }^{4}+5\) & 4 180201M2_5 & Standard & 2.000 & 5.04 & 2379.856 & 10992.008 & 2.706 & 2.2 & 9.2 & NO & 0.997 & NO & bb \\
\hline \%-3 & 5 180201M2_6 & Standard & 5.000 & 5.04 & 6883.418 & 12525.866 & 6.869 & 5.7 & 14.7 & NO & 0.997 & NO & bb \\
\hline 6 - & 6 180201M2_7 & Standard & 10.000 & 5.04 & 10363.709 & 11422.679 & 11.341 & 9.6 & -4.5 & NO & 0.997 & NO & bb \\
\hline Hex \({ }^{2}\) & 7 180201M2_8 & Standard & 50.000 & 5.04 & 50737.699 & 9457.981 & 67.057 & 57.7 & 15.5 & NO & 0.997 & NO & bb \\
\hline 8 - \({ }^{\text {a }}\) & 8 180201M2_9 & Standard & 100.000 & 5.03 & 99274.172 & 10766.577 & 115.257 & 100.3 & 0.3 & NO & 0.997 & NO & bb \\
\hline 9 9, & 9 180201M2_10 & Standard & 250.000 & 5.03 & 268166.688 & 12927.568 & 259.297 & 233.3 & -6.7 & NO & 0.997 & NO & bb \\
\hline 10 & 10 180201M2_11 & Standard & 500.000 & 5.03 & 458492.813 & 10876.807 & 526.916 & 508.6 & 1.7 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFOSA}

Correlation coefficient: \(\mathrm{r}=0.999294, \mathrm{r}^{\wedge} 2=0.998588\)
Calibration curve: 1.03954 * \(x+0.15214\)
Response type: Internal Std ( Ref 43 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: \(1 / \mathrm{x}\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\checkmark\) & \# Name & Type & Std. Cone & RT & Area & IS Area & Response & Conc. & \multicolumn{3}{|l|}{\%Dev Conc. Flag CoD} & \multicolumn{2}{|l|}{CoD Flag \(x=\) excluded} \\
\hline 1-4.4. & 1 180201M2_2 & Standard & 0.250 & 5.11 & 77.926 & 2908.301 & 0.335 & 0.2 & -29.7 & NO & 0.999 & NO & bb \\
\hline & 2 180201M2_3 & Standard & 0.500 & 5.10 & 167.526 & 3222.731 & 0.650 & 0.5 & -4.3 & NO & 0.999 & NO & bb \\
\hline 4 4 & 3 180201M2_4 & Standard & 1.000 & 5.10 & 338.944 & 3008.096 & 1.408 & 1.2 & 20.9 & NO & 0.999 & NO & bb \\
\hline & 4 180201M2_5 & Standard & 2.000 & 5.10 & 555.831 & 2726.330 & 2.548 & 2.3 & 15.3 & NO & 0.999 & NO & bb \\
\hline - & 5 180201M2_6 & Standard & 5.000 & 5.10 & 1216.500 & 2933.252 & 5.184 & 4.8 & -3.2 & NO & 0.999 & NO & bb \\
\hline 6 & 6 180201M2_7 & Standard & 10.000 & 5.09 & 2767.181 & 3030.171 & 11.415 & 10.8 & 8.3 & NO & 0.999 & NO & bb \\
\hline & 7 180201M2_8 & Standard & 50.000 & 5.09 & 11524.962 & 3081.776 & 46.746 & 44.8 & -10.4 & NO & 0.999 & NO & bb \\
\hline (andyw & 8 180201M2_9 & Standard & 100.000 & 5.09 & 24615.586 & 2954.469 & 104.146 & 100.0 & 0.0 & NO & 0.999 & NO & bb \\
\hline \[
9
\] & 9 180201M2_10 & Standard & 250.000 & 5.09 & 58462.555 & 2694.043 & 271.258 & 260.8 & 4.3 & NO & 0.999 & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 500.000 & 5.08 & 100147.328 & 2440.696 & 512.904 & 493.3 & -1.3 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO|Results\180201M21180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: L-PFOS}

Coefficient of Determination: \(R^{\wedge} 2=0.999700\)
Calibration curve: -0.000302712 * \(x^{\wedge} 2+1.09506\) * \(x+0.00573512\)
Response type: Internal Std (Ref 44 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFDA}

Coefficient of Determination: \(R^{\wedge} 2=0.995894\)
Calibration curve: \(5.47654 \mathrm{e}-006^{*} x^{\wedge} 2+1.19216^{*} x+0.18128\)
Response type: Internal Std (Ref 45 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fim & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1.84 & 1 180201M2_2 & Standard & 0.250 & 5.42 & 419.944 & 11641.184 & 0.451 & 0.2 & -9.5 & NO & 0.996 & NO & bb \\
\hline 2 ved & 2 180201M2_3 & Standard & 0.500 & 5.42 & 693.899 & 12949.461 & 0.670 & 0.4 & -18.0 & NO & 0.996 & NO & bb \\
\hline 3 3 \(x^{4} \mathrm{x}=\) & 3 180201M2_4 & Standard & 1.000 & 5.41 & 1388.925 & 11726.376 & 1.481 & 1.1 & 9.0 & NO & 0.996 & NO & bb \\
\hline 4 , *2 & 4 180201M2_5 & Standard & 2.000 & 5.41 & 2415.564 & 13257.169 & 2.278 & 1.8 & -12.1 & NO & 0.996 & NO & bb \\
\hline 5 - \({ }^{\text {a }}\) & 5 180201M2_6 & Standard & 5.000 & 5.41 & 6013.211 & 12165.767 & 6.178 & 5.0 & 0.6 & NO & 0.996 & NO & bb \\
\hline 6 Eratit & 6 180201M2_7 & Standard & 10.000 & 5.40 & 12651.417 & 10837.155 & 14.593 & 12.1 & 20.9 & NO & 0.996 & NO & bb \\
\hline 7. 4. bx & 7 180201M2_8 & Standard & 50.000 & 5.40 & 58887.707 & 11210.779 & 65.660 & 54.9 & 9.8 & NO & 0.996 & NO & bb \\
\hline  & 8 180201M2_9 & Standard & 100.000 & 5.40 & 104220.281 & 10225.794 & 127.399 & 106.7 & 6.7 & NO & 0.996 & NO & bb \\
\hline 44. & 9 180201M2_10 & Standard & 250.000 & 5.40 & 228302.969 & 10531.019 & 270.989 & 226.9 & -9.2 & NO & 0.996 & NO & bb \\
\hline 10 & 10 180201M2_11 & Standard & 500.000 & 5.39 & 510512.125 & 10475.140 & 609.195 & 509.7 & 1.9 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjectsIPFAS.PROTResults1180201M2\180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: 8:2 FTS}

Coefficient of Determination: \(R^{\wedge} 2=0.998259\)
Calibration curve: \(-0.000385715^{*} x^{\wedge} 2+0.324873 * x+-0.0128103\)
Response type: Internal Std ( Ref 41 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFNS}

Coefficient of Determination: \(R^{\wedge} 2=0.998790\)
Calibration curve: \(-0.000310309^{*} x^{\wedge} 2+0.89006\) * \(x+0.0327266\)
Response type: Internal Std (Ref 44 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Wer & \# Name & Type & 3 & Std. Conc & RT & Area & IS Area & \multicolumn{5}{|l|}{Response Conc. \%Dev Conc. Flag CoD CoD Flag x=excluded} & \multicolumn{2}{|l|}{CoD Flag \(\mathrm{x}=\) excluded} \\
\hline 1.atid & 1 180201M2_2 & Standard & & 0.250 & & & 3137.675 & & & & NO & 0.999 & NO & \\
\hline 2 2 & 2 180201M2_3 & Standard & & 0.500 & 5.47 & 119.572 & 3080.948 & 0.485 & 0.5 & 1.7 & NO & 0.999 & NO & MM \\
\hline 3 & 3 180201M2_4 & Standard & & 1.000 & 5.47 & 225.814 & 3232.771 & 0.873 & 0.9 & -5.5 & NO & 0.999 & NO & MM \\
\hline \[
54+5
\] & 4 180201M2_5 & Standard & & 2.000 & 5.46 & 459.069 & 3242.907 & 1.770 & 2.0 & -2.4 & NO & 0.999 & NO & MM \\
\hline 5 : witata & 5 180201M2_6 & Standard & & 5.000 & 5.46 & 999.624 & 2934.418 & 4.258 & 4.8 & -4.9 & NO & 0.999 & NO & MM \\
\hline 6 . & 6 180201M2_7 & Standard & & 10.000 & 5.46 & 2506.720 & 3221.173 & 9.728 & 10.9 & 9.3 & NO & 0.999 & NO & MM \\
\hline 7 \% \(1 / 4\) & 7 180201M2_8 & Standard & & 50.000 & 5.45 & 10629.116 & 3061.044 & 43.405 & 49.6 & -0.8 & NO & 0.999 & NO & MM \\
\hline 8 - \({ }^{\text {des }}\) & 8 180201M2_9 & Standard & & 100.000 & 5.45 & 21781.516 & 2990.104 & 91.057 & 106.2 & 6.2 & NO & 0.999 & NO & bb \\
\hline \(9+\cdots\) & 9 180201M2_10 & Standard & & 250.000 & 5.45 & 47476.277 & 3049.938 & 194.579 & 238.4 & -4.6 & NO & 0.999 & NO & MM \\
\hline 10.10 & 10 180201M2_11 & Standard & & 500.000 & 5.45 & 86626.492 & 2920.493 & 370.770 & 505.7 & 1.1 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name：N－MeFOSAA}

Coefficient of Determination： \(\mathrm{R}^{\wedge} 2=0.998624\)
Calibration curve：\(-0.000363125^{*} x^{\wedge} 2+1.42776\)＊\(x+-0.075006\)
Response type：Internal Std（Ref 47 ），Area＊（IS Conc．／IS Area）
Curve type：2nd Order，Origin：Include，Weighting： \(1 / x\) ，Axis trans：None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline 1 Etelat & 1 180201M2＿2 & Standard & 0.250 & 5.56 & 210.447 & 5277.298 & 0.498 & 0.4 & 60.7 & YES & 0.999 & NO & bbX \\
\hline 2 为 & 2 180201M2＿3 & Standard & 0.500 & 5.56 & 247.218 & 5755.686 & 0.537 & 0.4 & －14．3 & NO & 0.999 & NO & bb \\
\hline 3. & 3 180201M2＿4 & Standard & 1.000 & 5.56 & 526.404 & 4977.270 & 1.322 & 1.0 & －2．1 & NO & 0.999 & NO & bb \\
\hline 4 为 & 4 180201M2＿5 & Standard & 2.000 & 5.55 & 1314.370 & 5351.252 & 3.070 & 2.2 & 10.2 & NO & 0.999 & NO & bb \\
\hline 5 & 5 180201M2＿6 & Standard & 5.000 & 5.55 & 2918.092 & 5465.481 & 6.674 & 4.7 & －5．3 & NO & 0.999 & NO & bb \\
\hline 6 － F － & 6 180201M2＿7 & Standard & 10.000 & 5.55 & 5891.524 & 5434.169 & 13.552 & 9.6 & －4．3 & NO & 0.999 & NO & bb \\
\hline 7 － & 7 180201M2＿8 & Standard & 50.000 & 5.55 & 29003.156 & 5006.550 & 72.413 & 51.4 & 2.9 & NO & 0.999 & NO & bb \\
\hline 8 ． & 8 180201M2＿9 & Standard & 100.000 & 5.54 & 60351.309 & 5101.554 & 147.875 & 106.5 & 6.5 & NO & 0.999 & NO & bb \\
\hline 9 9．wnder & 9 180201M2＿10 & Standard & 250.000 & 5.54 & 125367.289 & 4926.247 & 318.111 & 237.2 & －5．1 & NO & 0.999 & NO & bb \\
\hline 10. & 10 180201M2＿11 & Standard & 500.000 & 5.54 & 251506.266 & 4997.280 & 629.108 & 505.7 & 1.1 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Compound name：N－EtFOSAA
Coefficient of Determination： \(\mathrm{R}^{\wedge} 2=0.999653\)
Calibration curve：-0.000347341 ＊\(\wedge^{\wedge} 2+1.08324\)＊\(x+-0.0568299\)
Response type：Internal Std（Ref 48 ），Area＊（IS Conc．／IS Area）
Curve type：2nd Order，Origin：Include，Weighting： \(1 / x\) ，Axis trans：None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fabay \(x^{2}\) & \＃Name & Type & Std．Conc & RT & Wixa Area & IS Area & Response & Conc． & \％Dev & c． & CoD & DFl & clu \\
\hline 1 ，\({ }^{\text {atm }}\) & 1 180201M2＿2 & Standard & 0.250 & 5.72 & 128.376 & 6164.870 & 0.260 & 0.3 & 17.1 & NO & 1.000 & NO & bb \\
\hline 2 部 & 2 180201M2＿3 & Standard & 0.500 & 5.71 & 178.817 & 6123.357 & 0.365 & 0.4 & －22．1 & NO & 1.000 & NO & bb \\
\hline 3.4 & 3 180201M2＿4 & Standard & 1.000 & 5.71 & 483.747 & 6029.236 & 1.003 & 1.0 & －2．1 & NO & 1.000 & NO & bb \\
\hline 4. & 4 180201M2＿5 & Standard & 2.000 & 5.71 & 1077.277 & 6259.932 & 2.151 & 2.0 & 2.0 & NO & 1.000 & NO & bb \\
\hline & 5 180201M2＿6 & Standard & 5.000 & 5.70 & 2057.843 & 5914.638 & 4.349 & 4.1 & －18．5 & NO & 1.000 & NO & bb \\
\hline 6 & 6 180201M2＿7 & Standard & 10.000 & 5.70 & 5564.857 & 6288.980 & 11.061 & 10.3 & 3.0 & NO & 1.000 & NO & bb \\
\hline & 7 180201M2＿8 & Standard & 50.000 & 5.70 & 24438.742 & 5807.799 & 52.599 & 49.4 & －1．2 & NO & 1.000 & NO & bb \\
\hline 8 － & 8 180201M2＿9 & Standard & 100.000 & 5.69 & 48485.758 & 5766.029 & 105.111 & 100.3 & 0.3 & NO & 1.000 & NO & bb \\
\hline \[
9
\] & 9 180201M2＿10 & Standard & 250.000 & 5.69 & 107230.797 & 5336.983 & 251.150 & 252.3 & 0.9 & NO & 1.000 & NO & bb \\
\hline 10 ， & 10 180201M2＿11 & Standard & 500.000 & 5.69 & 191416.422 & 5273.983 & 453.681 & 498.6 & －0．3 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PROTResults1180201M2|180201M2-CRV.qld

Last Altere
Printed:

Friday, February 02, 2018 08:56:36 Pacific Standard Time Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: PFUdA}

Coefficient of Determination: \(R^{\wedge} 2=0.997854\)
Calibration curve: \(-0.000256831^{*} x^{\wedge} 2+1.1318^{*} x+0.0323822\)
Response type: Internal Std ( Ref 49 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & d. Conc & RT & Area & IS Area & Response & Conc. & \%Dey & Conc. Flag & \(\mathrm{CoD}^{\text {\% }}\) & D & cluded \\
\hline & 1 180201M2_2 & Standard & 0.250 & 5.73 & 410.345 & 15200.801 & 0.337 & 0.3 & 7.8 & NO & 0.998 & NO & bb \\
\hline 2 m & 2 180201M2_3 & Standard & 0.500 & 5.73 & 926.525 & 15563.569 & 0.744 & 0.6 & 25.8 & NO & 0.998 & NO & bb \\
\hline \(3=4\) & 3 180201M2_4 & Standard & 1.000 & 5.73 & 1203.429 & 13426.738 & 1.120 & 1.0 & -3.9 & NO & 0.998 & NO & bb \\
\hline , & 4 180201M2_5 & Standard & 2.000 & 5.73 & 1702.760 & 13117.037 & 1.623 & 1.4 & -29.7 & NO & 0.998 & NO & bb \\
\hline & 5 180201M2_6 & Standard & 5.000 & 5.72 & 5908.609 & 12485.801 & 5.915 & 5.2 & 4.1 & NO & 0.998 & NO & bb \\
\hline 6 - 1 det & 6 180201M2_7 & Standard & 10.000 & 5.72 & 11529.538 & 12698.962 & 11.349 & 10.0 & 0.2 & NO & 0.998 & NO & bb \\
\hline 7 7- & 7 180201M2_8 & Standard & 50.000 & 5.72 & 59433.605 & 15075.656 & 49.279 & 44.0 & -12.1 & NO & 0.998 & NO & bb \\
\hline 8 \% & 8 180201M2_9 & Standard & 100.000 & 5.71 & 117748.523 & 12250.399 & 120.148 & 108.8 & 8.8 & NO & 0.998 & NO & bb \\
\hline 9 - - dax & 9 180201M2_10 & Standard & 250.000 & 5.71 & 263070.063 & 12438.353 & 264.374 & 247.5 & -1.0 & NO & 0.998 & NO & bb \\
\hline & 10 180201M2_11 & Standard & 500.000 & 5.71 & 426579.938 & 10626.814 & 501.773 & 500.1 & 0.0 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFDS}

Coefficient of Determination: \(R^{\wedge} 2=0.994051\)
Calibration curve: \(-1.47 \mathrm{e}-005{ }^{*} \mathrm{x}^{\wedge} 2+0.346528\) * \(\mathrm{x}+-0.012366\)
Response type: Internal Std ( Ref 50 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# Name & Type & Std Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & CoD & D & xclu \\
\hline - 1 180201M2_2 & Standard & 0.250 & 5.77 & 65.641 & 11960.537 & 0.069 & 0.2 & -6.5 & NO & 0.994 & NO & bb \\
\hline 2 . 2 180201M2_3 & Standard & 0.500 & 5.78 & 149.453 & 13796.158 & 0.135 & 0.4 & -14.7 & NO & 0.994 & NO & bb \\
\hline \% 3 180201M2_4 & Standard & 1.000 & 5.77 & 307.968 & 10290.432 & 0.374 & 1.1 & 11.5 & NO & 0.994 & NO & bb \\
\hline 4 180201M2_5 & Standard & 2.000 & 5.77 & 589.220 & 10609.885 & 0.694 & 2.0 & 2.0 & NO & 0.994 & NO & bb \\
\hline 5 . \({ }^{\text {c* }} 5\) 180201M2_6 & Standard & 5.000 & 5.76 & 1526.004 & 12375.247 & 1.541 & 4.5 & -10.3 & NO & 0.994 & NO & bb \\
\hline 6 - 6180201 M 2 _7 & Standard & 10.000 & 5.76 & 3019.841 & 9151.438 & 4.125 & 11.9 & 19.4 & NO & 0.994 & NO & bb \\
\hline  & Standard & 50.000 & 5.76 & 13522.194 & 8795.715 & 19.217 & 55.6 & 11.2 & NO & 0.994 & NO & bb \\
\hline 8 180201M2_9 & Standard & 100.000 & 5.76 & 25528.313 & 11266.216 & 28.324 & 82.1 & -17.9 & NO & 0.994 & NO & bb \\
\hline 9 9. 9 180201M2_10 & Standard & 250.000 & 5.75 & 62397.008 & 8564.437 & 91.070 & 265.8 & 6.3 & NO & 0.994 & NO & bb \\
\hline  & Standard & 500.000 & 5.75 & 117945.922 & 8779.890 & 167.921 & 495.0 & -1.0 & NO & 0.994 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PROIResults1180201M2\180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: PFDoA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997264\)
Calibration curve: \(-0.000708969^{*} x^{\wedge} 2+1.83544 * x+-0.0621147\)
Response type: Internal Std (Ref 50 ), Area * ( IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: N-MeFOSA}

Correlation coefficient: \(r=0.998754, r^{\wedge} 2=0.997509\)
Calibration curve: 0.965539 * \(x+0.338146\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4-3 & \# Name & Type & +40 & Std. Cone & & Area & IS Area & Response & Conc. & \%Dev & Conc. & + COD & CoD & xcluded \\
\hline & 1 180201M2_2 & Standard & & 1.250 & 5.93 & 144.167 & 15934.890 & 1.357 & 1.1 & -15.6 & NO & 0.998 & NO & bb \\
\hline 2 & 2 180201M2_3 & Standard & & 2.500 & 5.94 & 289.506 & 16124.691 & 2.693 & 2.4 & -2.4 & NO & 0.998 & NO & bb \\
\hline \(3{ }^{+5}+2\) & 3 180201M2_4 & Standard & & 5.000 & 5.94 & 550.742 & 16184.368 & 5.104 & 4.9 & -1.3 & NO & 0.998 & NO & bb \\
\hline & 4 180201M2_5 & Standard & & 10.000 & 5.94 & 1185.626 & 15804.994 & 11.252 & 11.3 & 13.0 & NO & 0.998 & NO & bb \\
\hline 5 5. 1 - & 5 180201M2_6 & Standard & & 25.000 & 5.93 & 2727.323 & 16229.670 & 25.207 & 25.8 & 3.0 & NO & 0.998 & NO & bb \\
\hline 6. \({ }^{\text {d }}\) & 6 180201M2_7 & Standard & & 50.000 & 5.93 & 5726.789 & 15531.838 & 55.307 & 56.9 & 13.9 & NO & 0.998 & NO & bb \\
\hline & 7 180201M2_8 & Standard & & 250.000 & 5.93 & 26739.990 & 14765.406 & 271.648 & 281.0 & 12.4 & NO & 0.998 & NO & bb \\
\hline & 8 180201M2_9 & Standard & & 500.000 & 5.93 & 51787.793 & 14944.372 & 519.806 & 538.0 & 7.6 & NO & 0.998 & NO & bb \\
\hline 9 - & 9 180201M2_10 & Standard & & 1250.000 & 5.93 & 121315.047 & 14927.584 & 1219.036 & 1262.2 & 1.0 & NO & 0.998 & NO & bb \\
\hline 10 - . - & 10 180201M2_11 & Standard & & 2500.000 & 5.93 & 220969.891 & 14241.318 & 2327.417 & 2410.1 & -3.6 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(R^{\wedge} 2=0.998862\)
Calibration curve: \(-0.00612122{ }^{*} x^{\wedge} 2+4.14698\) * \(x+0.107854\)
Response type: Internal Std (Ref 52 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Then Std Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=e x c l u d e d\) \\
\hline & 1 180201M2_2 & Standard & 0.250 & 6.24 & 490.574 & 5245.019 & 1.169 & 0.3 & 2.4 & NO & 0.999 & NO & bb \\
\hline 2 - \({ }^{\text {anes }}\) & 2 180201M2_3 & Standard & 0.500 & 6.23 & 1025.122 & 5728.347 & 2.237 & 0.5 & 2.8 & NO & 0.999 & NO & bb \\
\hline \(3+5\) & 3 180201M2_4 & Standard & 1.000 & 6.23 & 1770.611 & 5075.495 & 4.361 & 1.0 & 2.7 & NO & 0.999 & NO & bb \\
\hline & 4 180201M2_5 & Standard & 2.000 & 6.23 & 3334.091 & 5616.486 & 7.420 & 1.8 & -11.6 & NO & 0.999 & NO & bb \\
\hline 5 - & 5 180201M2_6 & Standard & 5.000 & 6.22 & 8856.109 & 5545.823 & 19.961 & 4.8 & -3.6 & NO & 0.999 & NO & bb \\
\hline & 6 180201M2_7 & Standard & 10.000 & 6.22 & 17730.619 & 5109.631 & 43.375 & 10.6 & 6.0 & NO & 0.999 & NO & bb \\
\hline 7 - & 7 180201M2_8 & Standard & 50.000 & 6.22 & 86487.398 & 5383.240 & 200.826 & 52.5 & 4.9 & NO & 0.999 & NO & bb \\
\hline 8 - & 8 180201M2_9 & Standard & 100.000 & 6.22 & 154284.313 & 5661.808 & 340.625 & 95.6 & -4.4 & NO & 0.999 & NO & bb \\
\hline - & 9 180201M2_10 & Standard & 250.000 & 6.21 & 318701.313 & 6057.532 & 657.655 & 253.2 & 1.3 & NO & 0.999 & NO & bb \\
\hline 10 . & 10 180201M2_11 & Standard & 500.000 & 6.21 & 686576.000 & 6843.993 & 1253.976 & & & NO & 0.999 & NO & dbXI \\
\hline
\end{tabular}

\section*{Compound name: PFTeDA}

Coefficient of Determination: \(R^{\wedge} 2=0.996729\)
Calibration curve: \(-0.00151355{ }^{*} x^{\wedge} 2+2.14066 * x+0.339985\)
Response type: Internal Std ( Ref 52 ), Area * ( IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & Type & 5w. Std. Conc & RT & 2. Area & 13. IS Area & Response & Conc & \%Dev & Conc Flag. & \multicolumn{3}{|l|}{CoD CoD Flag \(x=\) excluded} \\
\hline - 4.72 & 1 180201M2_2 & Standard & 0.250 & 6.42 & 324.566 & 5245.019 & 0.774 & 0.2 & -19.0 & NO & 0.997 & NO & bb \\
\hline 2.4 & 2 180201M2_3 & Standard & 0.500 & 6.42 & 610.869 & 5728.347 & 1.333 & 0.5 & -7.2 & NO & 0.997 & NO & bb \\
\hline & 3 180201M2_4 & Standard & 1.000 & 6.42 & 941.610 & 5075.495 & 2.319 & 0.9 & -7.5 & NO & 0.997 & NO & bb \\
\hline 4.8 tax & 4 180201M2_5 & Standard & 2.000 & 6.41 & 2246.256 & 5616.486 & 4.999 & 2.2 & 9.0 & NO & 0.997 & NO & bb \\
\hline 5 ade & 5 180201M2_6 & Standard & 5.000 & 6.41 & 5041.827 & 5545.823 & 11.364 & 5.2 & 3.4 & NO & 0.997 & NO & bb \\
\hline 6 - \({ }^{\text {a }}\) & 6 180201M2_7 & Standard & 10.000 & 6.41 & 10107.482 & 5109.631 & 24.727 & 11.5 & 14.9 & NO & 0.997 & NO & bb \\
\hline 7 7 0, & 7 180201M2_8 & Standard & 50.000 & 6.41 & 48881.230 & 5383.240 & 113.503 & 55.0 & 10.0 & NO & 0.997 & NO & bb \\
\hline 8. & 8 180201M2_9 & Standard & 100.000 & 6.41 & 92287.109 & 5661.808 & 203.749 & 102.4 & 2.4 & NO & 0.997 & NO & bb \\
\hline 9 - & 9 180201M2_10 & Standard & 250.000 & 6.40 & 198182.656 & 6057.532 & 408.959 & 227.5 & -9.0 & NO & 0.997 & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 500.000 & 6.40 & 386713.125 & 6843.993 & 706.300 & 523.7 & 4.7 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjectsIPFAS.PROIResults\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: N-EtFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999817\)
Calibration curve: \(-3.34121 e-006{ }^{*} x^{\wedge} 2+0.865695 * x+0.289617\)
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3 & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & , & CoD & COD & xcluded \\
\hline 1-x+w & 1 180201M2_2 & Standard & 1.250 & 6.26 & 200.513 & 23440.152 & 1.283 & 1.1 & -8.2 & NO & 1.000 & NO & bb \\
\hline 2 max & 2 180201M2_3 & Standard & 2.500 & 6.26 & 361.267 & 23665.994 & 2.290 & 2.3 & -7.6 & NO & 1.000 & NO & bb \\
\hline & 3 180201M2_4 & Standard & 5.000 & 6.26 & 686.620 & 22391.053 & 4.600 & 5.0 & -0.4 & NO & 1.000 & NO & bb \\
\hline  & 4 180201M2_5 & Standard & 10.000 & 6.26 & 1343.923 & 22542.172 & 8.943 & 10.0 & -0.0 & NO & 1.000 & NO & bb \\
\hline 5 ater & 5 180201M2_6 & Standard & 25.000 & 6.26 & 3599.853 & 22500.492 & 23.998 & 27.4 & 9.6 & NO & 1.000 & NO & bb \\
\hline 6 - 394 & 6 180201M2_7 & Standard & 50.000 & 6.25 & 7118.709 & 22910.971 & 46.607 & 53.5 & 7.0 & NO & 1.000 & NO & bb \\
\hline " \({ }^{3}+3\) & 7 180201M2_8 & Standard & 250.000 & 6.26 & 32412.738 & 22048.441 & 220.510 & 254.6 & 1.9 & NO & 1.000 & NO & bb \\
\hline & 8 180201M2_9 & Standard & 500.000 & 6.25 & 63266.188 & 22431.035 & 423.071 & 489.3 & -2.1 & NO & 1.000 & NO & bb \\
\hline 9 - & 9 180201M2_10 & Standard & 1250.000 & 6.25 & 145732.797 & 20330.299 & 1075.238 & 1247.7 & -0.2 & NO & 1.000 & NO & bb \\
\hline 10 , & 10 180201M2_11 & Standard & 2500.000 & 6.25 & 265946.969 & 18589.168 & 2145.983 & 2502.8 & 0.1 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxDA}

Coefficient of Determination: \(R^{\wedge} 2=0.999282\)
Calibration curve: -0.000546352 * \(x^{\wedge} 2+0.663826\) * \(x+0.129998\)
Response type: Internal Std (Ref 54 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & \multicolumn{2}{|r|}{Area IS Area} & \multicolumn{3}{|l|}{Response Conc. \%Dev} & \multicolumn{2}{|l|}{Conc. Flag CoD} & \multicolumn{2}{|l|}{CoD Flag \(x\)-excluded} \\
\hline Nax \({ }^{4}\) & 1 180201M2_2 & Standard & 0.250 & 6.70 & 158.732 & 2927.053 & 0.271 & 0.2 & -14.9 & NO & 0.999 & NO & bb \\
\hline * & 2 180201M2_3 & Standard & 0.500 & 6.70 & 269.357 & 3177.656 & 0.424 & 0.4 & -11.4 & NO & 0.999 & NO & bb \\
\hline 3 , 3 ? & 3 180201M2_4 & Standard & 1.000 & 6.70 & 452.490 & 2907.611 & 0.778 & 1.0 & -2.3 & NO & 0.999 & NO & bb \\
\hline 4 - \({ }^{\text {a }}\) & 4 180201M2_5 & Standard & 2.000 & 6.70 & 979.145 & 3008.532 & 1.627 & 2.3 & 13.0 & NO & 0.999 & NO & bb \\
\hline 5 \% & 5 180201M2_6 & Standard & 5.000 & 6.70 & 2233.745 & 2993.088 & 3.732 & 5.4 & 9.0 & NO & 0.999 & NO & bb \\
\hline (M) M & 6 180201M2_7 & Standard & 10.000 & 6.69 & 4068.251 & 2766.564 & 7.353 & 11.0 & 9.8 & NO & 0.999 & NO & bb \\
\hline 7 7 & 7 180201M2_8 & Standard & 50.000 & 6.69 & 19997.895 & 3188.611 & 31.358 & 49.0 & -2.0 & NO & 0.999 & NO & bb \\
\hline 㳔 & 8 180201M2_9 & Standard & 100.000 & 6.69 & 40855.063 & 3394.128 & 60.185 & 98.4 & -1.6 & NO & 0.999 & NO & bb \\
\hline  & 9 180201M2_10 & Standard & 250.000 & 6.69 & 92265.750 & 3485.095 & 132.372 & 251.1 & 0.4 & NO & 0.999 & NO & bb \\
\hline 10. & 10 180201M2_11 & Standard & 500.000 & 6.68 & 168234.203 & 3984.295 & 211.122 & & & NO & 0.999 & NO & bbXI \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PROIResults\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: PFODA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999107\)
Calibration curve: \(-0.000503172^{*} x^{\wedge} 2+0.717508{ }^{*} x+0.0259502\)
Response type: Internal Std (Ref 54 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Compound name: N-MeFOSE}

Coefficient of Determination: \(R^{\wedge} 2=0.997739\)
Calibration curve: -0.000734466 * \(x^{\wedge} 2+1.13064\) * \(x+0.263653\)
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Wate & \# Name & Wask Type &  & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & COD & D F & excluded \\
\hline 1 - & 1 180201M2_2 & Standard & & 1.250 & 6.33 & 184.547 & 16441.795 & 1.684 & 1.3 & 0.6 & NO & 0.998 & NO & bbX \\
\hline 2 - & 2 180201M2_3 & Standard & & 2.500 & 6.33 & 329.264 & 15620.593 & 3.162 & 2.6 & 2.7 & NO & 0.998 & NO & bb \\
\hline \(3 \times 4\) & 3 180201M2_4 & Standard & & 5.000 & 6.33 & 626.798 & 17932.805 & 5.243 & 4.4 & -11.7 & NO & 0.998 & NO & bb \\
\hline 4 4, & 4 180201M2_5 & Standard & & 10.000 & 6.32 & 1328.342 & 16106.033 & 12.371 & 10.8 & 7.8 & NO & 0.998 & NO & bb \\
\hline 4 & 5 180201M2_6 & Standard & & 25.000 & 6.33 & 2837.834 & 16361.470 & 26.017 & 23.1 & -7.5 & NO & 0.998 & NO & bb \\
\hline & 6 180201M2_7 & Standard & & 50.000 & 6.33 & 7609.881 & 18751.580 & 60.874 & 55.6 & 11.2 & NO & 0.998 & NO & bb \\
\hline 7 7 & 7 180201M2_8 & Standard & & 250.000 & 6.33 & 29034.457 & 18959.506 & 229.709 & 240.5 & -3.8 & NO & 0.998 & NO & bb \\
\hline 8 & 8 180201M2_9 & Standard & & 500.000 & 6.33 & 51295.734 & 19978.916 & 385.124 & 508.1 & 1.6 & NO & 0.998 & NO & bb \\
\hline + & 9 180201M2_10 & Standard & & 1250.000 & 6.33 & 131914.625 & 16907.701 & 1170.307 & & & NO & 0.998 & NO & bbXl \\
\hline 10 & 10 180201M2_11 & Standard & & 2500.000 & 6.33 & 267828.375 & 17665.924 & 2274.110 & & & NO & 0.998 & NO & bbXI \\
\hline
\end{tabular}

\section*{Dataset:}

F:IProjects\PFAS.PRO\Results\180201M2\180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Compound name: N-EtFOSE
Correlation coefficient: \(\mathrm{r}=0.999435, \mathrm{r}^{\wedge} 2=0.998871\)
Calibration curve: 1.19168 * \(\mathrm{x}+-0.396104\)
Response type: Internal Std (Ref 56 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. & CoD & CoD & \(x=\) excluded \\
\hline 1 - & 1 180201M2_2 & Standard & 1.250 & 6.47 & 143.915 & 18513.486 & 1.166 & 1.3 & 4.9 & NO & 0.999 & NO & bb \\
\hline 2 (xady & 2 180201M2_3 & Standard & 2.500 & 6.47 & 273.451 & 20288.641 & 2.022 & 2.0 & -18.8 & NO & 0.999 & NO & bb \\
\hline 3 . & 3 180201M2_4 & Standard & 5.000 & 6.47 & 606.951 & 17693.893 & 5.145 & 4.7 & -7.0 & NO & 0.999 & NO & bb \\
\hline 4 3 & 4 180201M2_5 & Standard & 10.000 & 6.47 & 1349.301 & 16696.051 & 12.122 & 10.5 & 5.0 & NO & 0.999 & NO & bb \\
\hline 5 , & 5 180201M2_6 & Standard & 25.000 & 6.47 & 3228.591 & 16082.565 & 30.113 & 25.6 & 2.4 & NO & 0.999 & NO & bb \\
\hline \[
6
\] & 6 180201M2_7 & Standard & 50.000 & 6.47 & 7208.168 & 16678.395 & 64.828 & 54.7 & 9.5 & NO & 0.999 & NO & bb \\
\hline & 7 180201M2_8 & Standard & 250.000 & 6.48 & 31446.287 & 14775.413 & 319.243 & 268.2 & 7.3 & NO & 0.999 & NO & bd \\
\hline \[
8-1+
\] & 8 180201M2_9 & Standard & 500.000 & 6.47 & 76468.148 & 19715.496 & 581.787 & 488.5 & -2.3 & NO & 0.999 & NO & bb \\
\hline 9 - 4 \% & 9 180201M2_10 & Standard & 1250.000 & 6.47 & 161448.719 & 16417.523 & 1475.089 & 1238.2 & -0.9 & NO & 0.999 & NO & bd \\
\hline 10 , & 10 180201M2_11 & Standard & 2500.000 & 6.47 & 285436.438 & 18310.961 & 2338.242 & 1962.5 & -21.5 & NO & 0.999 & NO & bbX \\
\hline
\end{tabular}

Compound name: 13C3-PFBA
Response Factor: 0.87955
RRF SD: 0.0206589 , Relative SD: 2.34881
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline W & \# Name & Type & d. Conc & RT & 2. Area & 15 Area & Response & Conc. & \%Dev & ne. Fla & CoD Fla & relu \\
\hline 1 & 1 180201M2_2 & Standard & 12.500 & 1.74 & 9389.637 & 10615.242 & 11.057 & 12.6 & 0.6 & NO & NO & bb \\
\hline 2 , & 2 180201M2_3 & Standard & 12.500 & 1.74 & 9983.384 & 11525.407 & 10.828 & 12.3 & -1.5 & NO & NO & bb \\
\hline 7) & 3 180201M2_4 & Standard & 12.500 & 1.73 & 9986.440 & 11192.208 & 11.153 & 12.7 & 1.4 & NO & NO & bb \\
\hline 4 : 4 - & 4 180201M2_5 & Standard & 12.500 & 1.73 & 9690.016 & 11288.905 & 10.730 & 12.2 & -2.4 & NO & NO & bb \\
\hline +304 & 5 180201M2_6 & Standard & 12.500 & 1.73 & 9520.578 & 10775.118 & 11.045 & 12.6 & 0.5 & NO & NO & bb \\
\hline 6 , may & 6 180201M2_7 & Standard & 12.500 & 1.73 & 9923.568 & 11219.852 & 11.056 & 12.6 & 0.6 & NO & NO & bb \\
\hline 7 & 7 180201M2_8 & Standard & 12.500 & 1.72 & 9588.937 & 10630.448 & 11.275 & 12.8 & 2.6 & NO & NO & bb \\
\hline 8 & 8 180201M2_9 & Standard & 12.500 & 1.72 & 9692.715 & 10644.079 & 11.383 & 12.9 & 3.5 & NO & NO & bb \\
\hline & 9 180201M2_10 & Standard & 12.500 & 1.72 & 9046.232 & 10752.428 & 10.516 & 12.0 & -4.3 & NO & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 12.500 & 1.72 & 9078.827 & 10410.137 & 10.901 & 12.4 & -0.8 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: 13C3-PFPeA}

Response Factor: 0.894466
RRF SD: 0.0504434 , Relative SD: 5.63949
Response type: Internal Std ( Ref 58 ), Area * ( IS Conc. / IS Area)
Curve type: RF


Compound name: 13C3-PFBS
Response Factor: 0.12012
RRF SD: 0.00746188, Relative SD: 6.21203
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ta & \# Name & Type & Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc Flag \({ }^{\text {a }}\) COD & \multicolumn{2}{|l|}{CoD Flag x excluded} \\
\hline 1 vesm & 1 180201M2_2 & Standard & 12.500 & 2.99 & 1433.712 & 13053.771 & 1.373 & 11.4 & -8.6 & NO & NO & bb \\
\hline & 2 180201M2_3 & Standard & 12.500 & 2.98 & 1551.910 & 12714.314 & 1.526 & 12.7 & 1.6 & NO & NO & bb \\
\hline \$1. & 3 180201M2_4 & Standard & 12.500 & 2.98 & 1514.292 & 11731.575 & 1.613 & 13.4 & 7.5 & NO & NO & bb \\
\hline & 4 180201M2_5 & Standard & 12.500 & 2.98 & 1492.356 & 12374.524 & 1.507 & 12.5 & 0.4 & NO & NO & bb \\
\hline , & 5 180201M2_6 & Standard & 12.500 & 2.97 & 1480.229 & 12778.301 & 1.448 & 12.1 & -3.6 & NO & NO & bb \\
\hline (4n) & 6 180201M2_7 & Standard & 12.500 & 2.97 & 1572.907 & 11963.210 & 1.643 & 13.7 & 9.5 & NO & NO & bb \\
\hline 4 \(x^{4}\) 4 & 7 180201M2_8 & Standard & 12.500 & 2.97 & 1491.415 & 12150.538 & 1.534 & 12.8 & 2.2 & NO & NO & bb \\
\hline & 8 180201M2_9 & Standard & 12.500 & 2.97 & 1464.832 & 11938.145 & 1.534 & 12.8 & 2.1 & NO & NO & bb \\
\hline & 9180201 M 2 _10 & Standard & 12.500 & 2.97 & 1395.219 & 11730.422 & 1.487 & 12.4 & -1.0 & NO & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 12.500 & 2.96 & 1138.420 & 10548.270 & 1.349 & 11.2 & -10.2 & NO & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & F:IProjects|PFAS.PROIResults1180201M21180201M2-CRV.qld \\
Last Altered: & Friday, February 02, 2018 08:56:36 Pacific Standard Time \\
Printed: & Friday, February 02, 2018 09:17:01 Pacific Standard Time
\end{tabular}

Compound name: 13C2-PFHxA
Response Factor: 0.70037
RRF SD: 0.0318753 , Relative SD: 4.5512
Response type: Internal Std ( Ref 58 ), Area * ( IS Conc. / IS Area )
Curve type: RF


Compound name: 13C4-PFHpA
Response Factor: 0.692662
RRF SD: 0.0428966 , Relative SD: 6.19301
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline * \({ }^{\text {a }}\) \# Name & Type & C & \({ }^{R}\) & Ar Area & - IS Area & sponse & Conc. & \%Dev & Conc. Flag CoD , & CoD Flag & \(x=\) excluded \\
\hline 1. 4 tit \({ }^{\text {* }} 180201 \mathrm{M} 2\) 2 & Standard & 12.500 & 4.12 & 8537.186 & 13053.771 & 8.175 & 11.8 & -5.6 & NO & NO & bb \\
\hline 2 ¢ \({ }^{\text {at }}\) 180201M2_3 & Standard & 12.500 & 4.12 & 8665.500 & 12714.314 & 8.519 & 12.3 & -1.6 & NO & NO & bb \\
\hline (4) 4 3 180201M2_4 & Standard & 12.500 & 4.11 & 8295.039 & 11731.575 & 8.838 & 12.8 & 2.1 & NO & NO & bb \\
\hline \% ** 4 180201M2_5 & Standard & 12.500 & 4.11 & 8948.312 & 12374.524 & 9.039 & 13.0 & 4.4 & NO & NO & bb \\
\hline 9/ty 5 180201M2_6 & Standard & 12.500 & 4.10 & 9472.876 & 12778.301 & 9.267 & 13.4 & 7.0 & NO & NO & bb \\
\hline 6 180201M2_7 & Standard & 12.500 & 4.10 & 9280.252 & 11963.210 & 9.697 & 14.0 & 12.0 & NO & NO & bb \\
\hline 7.7180201 M 2 _8 & Standard & 12.500 & 4.10 & 8132.475 & 12150.538 & 8.366 & 12.1 & -3.4 & NO & NO & bb \\
\hline 8 - \(8180201 \mathrm{M} 2 \_9\) & Standard & 12.500 & 4.10 & 8029.674 & 11938.145 & 8.408 & 12.1 & -2.9 & NO & NO & bb \\
\hline 9 -3 9 180201M2_10 & Standard & 12.500 & 4.10 & 7548.560 & 11730.422 & 8.044 & 11.6 & -7.1 & NO & NO & bb \\
\hline 10 , 10 180201M2_11 & Standard & 12.500 & 4.09 & 6944.875 & 10548.270 & 8.230 & 11.9 & -4.9 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered:
Printed:
Friday, February 02, 2018 08:56:36 Pacific Standard Time

Compound name: 1802-PFHxS
Response Factor: 0.342508
RRF SD: 0.0221743, Relative SD: 6.47408
Response type: Internal Std ( Ref 59 ), Area * ( IS Conc. / IS Area )
Curve type: RF


Compound name: 13C2-6:2 FTS
Response Factor: 0.262225
notused.
RRF SD: 0.043559 , Relative SD: 16.6113
Response type: Internal Std ( Ref 60 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{} \\
\hline 1 16 & 1 180201M2_2 & Standard & 12.500 & 4.58 & 2784.271 & 12442.034 & & & -14.7 & NO & NO & bb \\
\hline 4 & 2 180201M2_3 & Standard & 12.500 & 4.57 & 2767.150 & 13927.616 & 2.484 & 9.5 & -24.2 & NO & NO & bb \\
\hline 4, & 3 180201M2_4 & Standard & 12.500 & 4.57 & 2745.963 & 11536.977 & 2.975 & 11.3 & -9.2 & NO & NO & bb \\
\hline & 4 180201M2_5 & Standard & 12.500 & 4.57 & 3297.972 & 12101.027 & 3.407 & 13.0 & 3.9 & NO & NO & bb \\
\hline \(5^{46}\) & 5 180201M2_6 & Standard & 12.500 & 4.56 & 3054.882 & 12723.628 & 3.001 & 11.4 & -8.4 & NO & NO & bb \\
\hline & 6 180201M2_7 & Standard & 12.500 & 4.56 & -3528.889 & 11188.508 & 3.943 & 15.0 & 20.3 & NO & NO & bb \\
\hline 7 7 & 7 180201M2_8 & Standard & 12.500 & 4.56 & 3374.424 & 11408.001 & 3.697 & 14.1 & 12.8 & NO & NO & bb \\
\hline 8 4 & 8 180201M2_9 & Standard & 12.500 & 4.55 & 3935.611 & 12553.944 & 3.919 & 14.9 & 19.6 & NO & NO & bb \\
\hline 4-4TM & 9 180201M2_10 & Standard & 12.500 & 4.55 & 5095.900 & 10956.082 & 5.814 & 22.2 & 77.4 & NO & NO & bbX \\
\hline 10 & 10 180201M2_11 & Standard & 12.500 & 4.55 & 6681.250 & 10933.043 & 7.639 & 29.1 & 133.0 & NO & NO & bbX \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PROIResults\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Compound name: 13C2-PFOA
Response Factor: 1.06371
RRF SD: 0.0843462 , Relative SD: 7.92947
Response type: Internal Std (Ref 60 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C5-PFNA}

Response Factor: 0.948668
RRF SD: 0.130033 , Relative SD: 13.7069
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area )
Curve type: RF


Dataset: F:IProjectsIPFAS.PROTResultsI180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: 13C8-PFOSA}

Response Factor: 0.211397
RRF SD: 0.0210985, Relative SD: 9.98052
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline W & \# Name & Type & 4, Std. Conc & & Area & IS Area & Response & Conc. & \%Bev & Conc. Flag & CoD CoD Flag & \(x=\) excluded \\
\hline 1 \% & 1 180201M2_2 & Standard & 12.500 & 5.11 & 2908.301 & 14040.942 & 2.589 & 12.2 & -2.0 & NO & NO & bb \\
\hline 2 2-4 & 2 180201M2_3 & Standard & 12.500 & 5.10 & 3222.731 & 14541.990 & 2.770 & 13.1 & 4.8 & NO & NO & bb \\
\hline 3 , & 3 180201M2_4 & Standard & 12.500 & 5.10 & 3008.096 & 14561.118 & 2.582 & 12.2 & -2.3 & NO & NO & bb \\
\hline \(4 \times 4\) & 4 180201M2_5 & Standard & 12.500 & 5.10 & 2726.330 & 15664.660 & 2.176 & 10.3 & -17.7 & NO & NO & bb \\
\hline & 5 180201M2_6 & Standard & 12.500 & 5.10 & 2933.252 & 15069.432 & 2.433 & 11.5 & -7.9 & NO & NO & bb \\
\hline 6 . \({ }^{\text {a }}\) & 6 180201M2_7 & Standard & 12.500 & 5.09 & 3030.171 & 13351.479 & 2.837 & 13.4 & 7.4 & NO & NO & bb \\
\hline \[
7
\] & 7 180201M2_8 & Standard & 12.500 & 5.09 & 3081.776 & 13593.405 & 2.834 & 13.4 & 7.2 & NO & NO & bb \\
\hline 8 -ta & 8 180201M2_9 & Standard & 12.500 & 5.09 & 2954.469 & 11830.616 & 3.122 & 14.8 & 18.1 & NO & NO & bb \\
\hline 9 - & 9 180201M2_10 & Standard & 12.500 & 5.08 & 2694.043 & 13747.411 & 2.450 & 11.6 & -7.3 & NO & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 12.500 & 5.08 & 2440.696 & 11590.088 & 2.632 & 12.5 & -0.4 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOS}

Response Factor: 1.01419
RRF SD: 0.065144, Relative SD: 6.42324
Response type: Internal Std (Ref 62 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & (4) & \# Name & Type & Std Conc & RT & Area & IS Area & Response & Conc. & \%Dev & & CoDF & clu \\
\hline & 10 & 1 180201M2_2 & Standard & 12.500 & 5.13 & 3137.675 & 3057.167 & 12.829 & 12.6 & 1.2 & NO & NO & bb \\
\hline & + & ( 2 180201M2_3 & Standard & 12.500 & 5.12 & 3080.948 & 3123.843 & 12.328 & 12.2 & -2.8 & NO & NO & bb \\
\hline 3 & & 3 180201M2_4 & Standard & 12.500 & 5.12 & 3232.771 & 3301.509 & 12.240 & 12.1 & -3.5 & NO & NO & bb \\
\hline 4 & \% \({ }^{3}\) & 4 180201M2_5 & Standard & 12.500 & 5.12 & 3242.907 & 3164.052 & 12.812 & 12.6 & 1.1 & NO & NO & bb \\
\hline & x & 5 180201M2_6 & Standard & 12.500 & 5.11 & 2934.418 & 3293.697 & 11.136 & 11.0 & -12.2 & NO & NO & bb \\
\hline & - mery & [ 6180201 M 2 _7 & Standard & 12.500 & 5.11 & 3221.173 & 3159.861 & 12.743 & 12.6 & 0.5 & NO & NO & bb \\
\hline & & 7 180201M2_8 & Standard & 12.500 & 5.11 & 3061.044 & 3024.667 & 12.650 & 12.5 & -0.2 & NO & NO & bb \\
\hline & - 4 - 4 & \(8180201 \mathrm{M} 2 \_9\) & Standard & 12.500 & 5.11 & 2990.104 & 2885.224 & 12.954 & 12.8 & 2.2 & NO & NO & bb \\
\hline 9 & - & 9 180201M2_10 & Standard & 12.500 & 5.10 & 3049.938 & 3019.031 & 12.628 & 12.5 & -0.4 & NO & NO & bb \\
\hline & 0 dex & * 10 180201M2_11 & Standard & 12.500 & 5.10 & 2920.493 & 2525.752 & 14.454 & 14.3 & 14.0 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjects|PFAS.PROIResults\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Compound name: 13C2-PFDA
Response Factor: 1.09868
RRF SD: 0.0750681 , Relative SD: 6.83258
Response type: Internal Std ( Ref 63 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C2-8:2 FTS}

Response Factor: 0.194071
RRF SD: 0.0386563 , Relative SD: 19.9187
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF
notused.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 180201M2 2 & Standard & 12.500 & 5.40 & 1986.494 & 13053.771 & 1.902 & & -21.6 & NO & NO & bb \\
\hline 2 ata & 2 180201M2 3 & Standard & 12.500 & 5.40 & 1941.495 & 12714.314 & .009 & 9.8 & -21.3 & NO & NO & bb \\
\hline & 3 180201M2_4 & Standard & 12.500 & 5.39 & 2234.294 & 11731.575 & 2.381 & 12.3 & -1.9 & NO & NO & bb \\
\hline 4.4 & 4 180201M2_5 & Standard & 12.500 & 5.38 & 2639.042 & 12374.524 & 2.666 & 13.7 & 9.9 & NO & NO & bb \\
\hline & 5 180201M2_6 & Standard & 12.500 & 5.38 & 2283.470 & 12778.301 & 2.234 & 11.5 & -7.9 & NO & NO & bb \\
\hline 64\% & 6 180201M2_7 & Standard & 12.500 & 5.38 & 2041.762 & 11963.210 & 2.133 & 11.0 & -12.1 & NO & NO & bb \\
\hline \% & 7 180201M2_8 & Standard & 12.500 & 5.88 & 2895.652 & 12150.538 & 2.979 & 15.3 & 22.8 & NO & NO & bb \\
\hline + & 8 180201M2_9 & Standard & 12.580 & 5.37 & 3059.593 & 11938.145 & 3.204 & 16.5 & 32.1 & NO & NO & bb \\
\hline 9 & 9 180201M2_10 & Standard & 2.500 & 5.37 & 3779.445 & 11730.422 & 4.027 & 20.8 & 66.0 & NO & NO & bbX \\
\hline 10 , & 10 180201M2_11 & Standard & 12.500 & 5.37 & 5268.761 & 10548.270 & 6.244 & 32.2 & 157.4 & NO & NO & bbX \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSAA}

Response Factor: 0.381381
RRF SD: 0.0334256, Relative SD: 8.76438
Response type: Internal Std (Ref 64 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4. & \# Name \({ }^{\text {d }}\), & Type & Conc & RT & Win Area & W IS Area & Response & Conc. & \%Dev & Conc. F & COD Fl & \(x=\) excluded \\
\hline \(1-4.4\) & 1 180201M2_2 & Standard & 12.500 & 5.56 & 5277.298 & 14040.942 & 4.698 & 12.3 & -1.5 & NO & NO & bb \\
\hline & 2 180201M2_3 & Standard & 12.500 & 5.56 & 5755.686 & 14541.990 & 4.947 & 13.0 & 3.8 & NO & NO & bb \\
\hline 3 - & 3 180201M2_4 & Standard & 12.500 & 5.55 & 4977.270 & 14561.118 & 4.273 & 11.2 & -10.4 & NO & NO & bb \\
\hline 4 - 4 & 4 180201M2_5 & Standard & 12.500 & 5.55 & 5351.252 & 15664.660 & 4.270 & 11.2 & -10.4 & NO & NO & bb \\
\hline 5 - 4 d & 5 180201M2_6 & Standard & 12.500 & 5.55 & 5465.481 & 15069.432 & 4.534 & 11.9 & -4.9 & NO & NO & bb \\
\hline + + tey & 6 180201M2_7 & Standard & 12.500 & 5.54 & 5434.169 & 13351.479 & 5.088 & 13.3 & 6.7 & NO & NO & bb \\
\hline 7 . & 7 180201M2_8 & Standard & 12.500 & 5.54 & 5006.550 & 13593.405 & 4.604 & 12.1 & -3.4 & NO & NO & bb \\
\hline 8 - \({ }^{2}\) & 8 180201M2_9 & Standard & 12.500 & 5.54 & 5101.554 & 11830.616 & 5.390 & 14.1 & 13.1 & NO & NO & bb \\
\hline 9 - & 9 180201M2_10 & Standard & 12.500 & 5.53 & 4926.247 & 13747.411 & 4.479 & 11.7 & -6.0 & NO & NO & bb \\
\hline 10.0 & 10 180201M2_11 & Standard & 12.500 & 5.53 & 4997.280 & 11590.088 & 5.390 & 14.1 & 13.1 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d5-N-EtFOSAA}

Response Factor: 0.429525
RRF SD: 0.0334994 , Relative SD: 7.79918
Response type: Internal Std ( Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Conc & R & Are & Area & ons & Onc, & Dev & c. & D El & clu \\
\hline 1 3 & 1 180201M2_2 & Standard & 12.500 & 5.71 & 6164.870 & 14040.942 & 5.488 & 12.8 & 2.2 & NO & NO & bb \\
\hline 4 \({ }^{4}\) & 2 180201M2_3 & Standard & 12.500 & 5.71 & 6123.357 & 14541.990 & 5.264 & 12.3 & -2.0 & NO & NO & bb \\
\hline 3.4 & 3 180201M2_4 & Standard & 12.500 & 5.70 & 6029.236 & 14561.118 & 5.176 & 12.1 & -3.6 & NO & NO & bb \\
\hline 4.404 & 4 180201M2_5 & Standard & 12.500 & 5.70 & 6259.932 & 15664.660 & 4.995 & 11.6 & -7.0 & NO & NO & bb \\
\hline 5 - & 5 180201M2_6 & Standard & 12.500 & 5.70 & 5914.638 & 15069.432 & 4.906 & 11.4 & -8.6 & NO & NO & bb \\
\hline 6. \(\quad 4.144\) & 6 180201M2_7 & Standard & 12.500 & 5.70 & 6288.980 & 13351.479 & 5.888 & 13.7 & 9.7 & NO & NO & bb \\
\hline \(7 * 5\) & 7 180201M2_8 & Standard & 12.500 & 5.69 & 5807.799 & 13593.405 & 5.341 & 12.4 & -0.5 & NO & NO & bb \\
\hline & 8 180201M2_9 & Standard & 12.500 & 5.69 & 5766.029 & 11830.616 & 6.092 & 14.2 & 13.5 & NO & NO & bb \\
\hline 4, & 9 180201M2_10 & Standard & 12.500 & 5.68 & 5336.983 & 13747.411 & 4.853 & 11.3 & -9.6 & NO & NO & bb \\
\hline 10 . & 10 180201M2_11 & Standard & 12.500 & 5.68 & 5273.983 & 11590.088 & 5.688 & 13.2 & 5.9 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: F:IProjectsIPFAS.PROIResults1180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Compound name: 13C2-PFUdA
Response Factor: 0.965819
RRF SD: 0.101927 , Relative SD: 10.5534
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C2-PFDoA}

Response Factor: 0.767108
RRF SD: 0.120664 , Relative SD: 15.7297
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std Conc & \multicolumn{3}{|l|}{RT Area IS Area} & \multicolumn{4}{|l|}{Response Conc. \%Dev Conc. Flag CoD} & F & \\
\hline & 1 180201M2_2 & Standard & 12.500 & 6.00 & 11960.537 & 14040.942 & 10.648 & 13.9 & 11.0 & NO & NO & bb \\
\hline 2 14. \({ }^{4}\) & 2 180201M2_3 & Standard & 12.500 & 6.00 & 13796.158 & 14541.990 & 11.859 & 15.5 & 23.7 & NO & NO & bb \\
\hline & 3 180201M2_4 & Standard & 12.500 & 6.00 & 10290.432 & 14561.118 & 8.834 & 11.5 & -7.9 & NO & NO & bb \\
\hline & 4 180201M2_5 & Standard & 12.500 & 6.00 & 10609.885 & 15664.660 & 8.466 & 11.0 & -11.7 & NO & NO & bb \\
\hline & 5 180201M2_6 & Standard & 12.500 & 5.99 & 12375.247 & 15069.432 & 10.265 & 13.4 & 7.1 & NO & NO & bb \\
\hline - & 6 180201M2_7 & Standard & 12.500 & 5.99 & 9151.438 & 13351.479 & 8.568 & 11.2 & -10.6 & NO & NO & bb \\
\hline W & 7 180201M2_8 & Standard & 12.500 & 5.99 & 8795.715 & 13593.405 & 8.088 & 10.5 & -15.6 & NO & NO & bb \\
\hline 8 ,4, & 8 180201M2_9 & Standard & 12.500 & 5.98 & 11266.216 & 11830.616 & 11.904 & 15.5 & 24.1 & NO & NO & bb \\
\hline 9 - & 9 180201M2_10 & Standard & 12.500 & 5.98 & 8564.437 & 13747.411 & 7.787 & 10.2 & -18.8 & NO & NO & bb \\
\hline 10. & 10 180201M2_11 & Standard & 12.500 & 5.98 & 8779.890 & 11590.088 & 9.469 & 12.3 & -1.2 & NO & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & F:IProjectsIPFAS.PROIResults\180201M2\180201M2-CRV. qld \\
Last Altered: & Friday, February 02, 2018 08:56:36 Pacific Standard Time
\end{tabular}

Printed: Friday February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSA}

Response Factor: 0.0939039
RRF SD: 0.00625118 , Relative SD: 6.65699
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7haxay & \# Name & ype & Std, Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD CoD Flag & x=excluded \\
\hline 1. & 1 180201M2_2 & Standard & 150.000 & 5.95 & 15934.890 & 14040.942 & 14.186 & 151.1 & 0.7 & NO & NO & bb \\
\hline 2 . +4 & 2 180201M2_3 & Standard & 150.000 & 5.95 & 16124.691 & 14541.990 & 13.860 & 147.6 & -1.6 & NO & NO & bb \\
\hline 3 - 4 - 4 为 & 3 180201M2_4 & Standard & 150.000 & 5.95 & 16184.368 & 14561.118 & 13.893 & 148.0 & -1.4 & NO & NO & bb \\
\hline 4 - & 4 180201M2_5 & Standard & 150.000 & 5.95 & 15804.994 & 15664.660 & 12.612 & 134.3 & -10.5 & NO & NO & bb \\
\hline 5 - & 5 180201M2_6 & Standard & 150.000 & 5.95 & 16229.670 & 15069.432 & 13.462 & 143.4 & -4.4 & NO & NO & bb \\
\hline 6 , & 6 180201M2_7 & Standard & 150.000 & 5.95 & 15531.838 & 13351.479 & 14.541 & 154.9 & 3.2 & NO & NO & bb \\
\hline \[
7 \text {, }
\] & 7 180201M2_8 & Standard & 150.000 & 5.95 & 14765.406 & 13593.405 & 13.578 & 144.6 & -3.6 & NO & NO & bb \\
\hline 8 , & 8 180201M2_9 & Standard & 150.000 & 5.95 & 14944.372 & 11830.616 & 15.790 & 168.1 & 12.1 & NO & NO & bb \\
\hline 9 ata & 9 180201M2_10 & Standard & 150.000 & 5.95 & 14927.584 & 13747.411 & 13.573 & 144.5 & -3.6 & NO & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 150.000 & 5.95 & 14241.318 & 11590.088 & 15.359 & 163.6 & 9.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFTeDA}

Response Factor: 0.413102
RRF SD: 0.0736644 , Relative SD: 17.832
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF

```

Dataset:
F:IProjects\PFAS.PRO\Results\180201M2\180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed:
Friday, February 02, 2018 09:17:01 Pacific Standard Time

```

\section*{Compound name: d5-N-ETFOSA}

Response Factor: 0.134029
RRF SD: 0.0111919 , Relative SD: 8.35039
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 1r4er & 1 180201M2_2 & Standard & 150.000 & 6.27 & 23440.152 & 14040.942 & 20.868 & 155.7 & 3.8 & NO & & NO & bb \\
\hline  & 2 180201M2_3 & Standard & 150.000 & 6.27 & 23665.994 & 14541.990 & 20.343 & 151.8 & 1.2 & NO & & NO & db \\
\hline 3 3xabe & 3 180201M2_4 & Standard & 150.000 & 6.27 & 22391.053 & 14561.118 & 19.222 & 143.4 & -4.4 & NO & & NO & bb \\
\hline 4 - & 4 180201M2_5 & Standard & 150.000 & 6.27 & 22542.172 & 15664.660 & 17.988 & 134.2 & -10.5 & NO & & NO & bb \\
\hline 5 (x) & 5 180201M2_6 & Standard & 150.000 & 6.27 & 22500.492 & 15069.432 & 18.664 & 139.3 & -7.2 & NO & & NO & bb \\
\hline 6. & 6 180201M2_7 & Standard & 150.000 & 6.27 & 22910.971 & 13351.479 & 21.450 & 160.0 & 6.7 & NO & & NO & bb \\
\hline 7 - & 7 180201M2_8 & Standard & 150.000 & 6.27 & 22048.441 & 13593.405 & 20.275 & 151.3 & 0.8 & NO & & NO & bb \\
\hline \[
8
\] & 8 180201M2_9 & Standard & 150.000 & 6.27 & 22431.035 & 11830.616 & 23.700 & 176.8 & 17.9 & NO & & NO & bb \\
\hline 9 9. \({ }^{\text {a }}\) - & 9 180201M2_10 & Standard & 150.000 & 6.27 & 20330.299 & 13747.411 & 18.486 & 137.9 & -8.1 & NO & & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 150.000 & 6.27 & 18589.168 & 11590.088 & 20.049 & 149.6 & -0.3 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-PFHxDA
Response Factor: 0.555424
RRF SD: 0.0776459 , Relative SD: 13.9796
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\# Name} & Std Conc & \multicolumn{2}{|l|}{RT Area} & 15 Area & \multicolumn{4}{|l|}{Response Conc. \%Dev Conc. Flag} & \multicolumn{2}{|l|}{CoD Flag \(x\)-excluded} \\
\hline 1 * & 1 180201M2_2 & Standard & 5.000 & 6.70 & 2927.053 & 14040.942 & 2.606 & 4.7 & -6.2 & NO & NO & bb \\
\hline 2 20x & 2 180201M2_3 & Standard & 5.000 & 6.70 & 3177.656 & 14541.990 & 2.731 & 4.9 & -1.6 & NO & NO & bb \\
\hline 3 , & 3 180201M2_4 & Standard & 5.000 & 6.70 & 2907.611 & 14561.118 & 2.496 & 4.5 & -10.1 & NO & NO & bb \\
\hline 4. & 4 180201M2_5 & Standard & 5.000 & 6.70 & 3008.532 & 15664.660 & 2.401 & 4.3 & -13.6 & NO & NO & bb \\
\hline \(5 \times\) & 5 180201M2_6 & Standard & 5.000 & 6.70 & 2993.088 & 15069.432 & 2.483 & 4.5 & -10.6 & NO & NO & bb \\
\hline  & 6 180201M2_7 & Standard & 5.000 & 6.69 & 2766.564 & 13351.479 & 2.590 & 4.7 & -6.7 & NO & NO & bb \\
\hline 7. & 7 180201M2_8 & Standard & 5.000 & 6.69 & 3188.611 & 13593.405 & 2.932 & 5.3 & 5.6 & NO & NO & bb \\
\hline 8 - & 8 180201M2_9 & Standard & 5.000 & 6.69 & 3394.128 & 11830.616 & 3.586 & 6.5 & 29.1 & NO & NO & bb \\
\hline 9 9- & 9 180201M2_10 & Standard & 5.000 & 6.69 & 3485.095 & 13747.411 & 3.169 & 5.7 & 14.1 & NO & NO & bb \\
\hline 10. & 10 180201M2_11 & Standard & 5.000 & 6.69 & 3984.295 & 11590.088 & 4.297 & 7.7 & 54.7 & NO & NO & bbX \\
\hline
\end{tabular}

Dataset: F:IProjects\PFAS.PRO\Results\180201M2\180201M2-CRV.qld
ast Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Compound name: d7-N-MeFOSE
Response Factor: 0.106939
RRF SD: 0.0179061, Relative SD: 16.7442
Response type: Internal Std ( Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline d & \# Name & Type &  & Std. Cone & RT & Area & IS Area & ponse & Conc. & \%Dev & c. Fla & & clu \\
\hline \(1.2{ }^{\text {a }}\) & 1 180201M2_2 & Standard & & 150.000 & 6.31 & 16441.795 & 14040.942 & 14.637 & 136.9 & -8.7 & NO & NO & bb \\
\hline 4 & 2 180201M2_3 & Standard & & 150.000 & 6.32 & 15620.593 & 14541.990 & 13.427 & 125.6 & -16.3 & NO & NO & bb \\
\hline 4-ax & 3 180201M2_4 & Standard & & 150.000 & 6.31 & 17932.805 & 14561.118 & 15.394 & 144.0 & -4.0 & NO & NO & bb \\
\hline 4 - & 4 180201M2_5 & Standard & & 150.000 & 6.32 & 16106.033 & 15664.660 & 12.852 & 120.2 & -19.9 & NO & NO & bd \\
\hline 5 . & 5 180201M2_6 & Standard & & 150.000 & 6.32 & 16361.470 & 15069.432 & 13.572 & 126.9 & -15.4 & NO & NO & bb \\
\hline & 6180201 M 2 _7 & Standard & & 150.000 & 6.31 & 18751.580 & 13351.479 & 17.556 & 164.2 & 9.4 & NO & NO & bb \\
\hline & 7 180201M2_8 & Standard & & 150.000 & 6.31 & 18959.506 & 13593.405 & 17.434 & 163.0 & 8.7 & NO & NO & bb \\
\hline 8 - \({ }^{\text {a }}\) - & 8 180201M2_9 & Standard & & 150.000 & 6.31 & 19978.916 & 11830.616 & 21.109 & 197.4 & 31.6 & NO & NO & bb \\
\hline & 9 180201M2_10 & Standard & & 150.000 & 6.31 & 16907.701 & 13747.411 & 15.374 & 143.8 & -4.2 & NO & NO & bb \\
\hline 10 - 1 & 10 180201M2_11 & Standard & & 150.000 & 6.31 & 17665.924 & 11590.088 & 19.053 & 178.2 & 18.8 & NO & NO & bd \\
\hline
\end{tabular}

\section*{Compound name: d9-N-EtFOSE}

Response Factor: 0.106989
RRF SD: 0.0174539 , Relative SD: 16.3138
Response type: Internal Std (Ref 64 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Dataset:}

F:IProjects\PFAS.PROTResults\180201M2\180201M2-CRV.qld
Last Altered:
Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Compound name: 13C4-PFBA
Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C5-PFHxA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 58 ), Area * ( IS Conc. / IS Area )
Curve type: RF


\section*{Dataset: F:IProjects\PFAS.PRO\Results|180201M21180201M2-CRV.qld}

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: RF


Compound name: 13C8-PFOA
Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 60 ), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Dataset: F:IProjectsIPFAS.PROIResults\180201M21180201M2-CRV.qId}

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 61 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline W & \# Name & Type & d. Conc & RT & Area & IS Area & sponse & Conc. & \%Dev & Conc. Flag & , CoDFlag & \(x=\) excluded \\
\hline 5 & 1 180201M2_2 & Standard & 12.500 & 5.05 & 9544.361 & 9544.361 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 , & 2 180201M2_3 & Standard & 12.500 & 5.05 & 13668.581 & 13668.581 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 arm & 3 180201M2_4 & Standard & 12.500 & 5.04 & 12050.521 & 12050.521 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(4 \quad 3\) & 4 180201M2_5 & Standard & 12.500 & 5.04 & 12800.386 & 12800.386 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 50 & 5 180201M2_6 & Standard & 12.500 & 5.04 & 11484.225 & 11484.225 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline + & 6 180201M2_7 & Standard & 12.500 & 5.04 & 13735.241 & 13735.241 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 7 180201M2_8 & Standard & 12.500 & 5.03 & 11131.926 & 11131.926 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 - \({ }^{\text {c }}\) - \({ }^{\text {a }}\) & 8 180201M2_9 & Standard & 12.500 & 5.03 & 11595.314 & 11595.314 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \[
9
\] & 9 180201M2_10 & Standard & 12.500 & 5.03 & 11479.413 & 11479.413 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 10.4 & 10 180201M2_11 & Standard & 12.500 & 5.03 & 10797.500 & 10797.500 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFOS}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 62 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2-x & \# Name & Type & 7eatay & Std. Cone & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x\)-excluded \\
\hline & 1 180201M2_2 & Standard & & 12.500 & 5.13 & 3057.167 & 3057.167 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 2 & 2 180201M2_3 & Standard & & 12.500 & 5.12 & 3123.843 & 3123.843 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 3 180201M2_4 & Standard & & 12.500 & 5.12 & 3301.509 & 3301.509 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \(4 \times 4\) & 4 180201M2_5 & Standard & & 12.500 & 5.12 & 3164.052 & 3164.052 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline & 5 180201M2_6 & Standard & & 12.500 & 5.11 & 3293.697 & 3293.697 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 - \({ }^{\text {ck }}\) & 6 180201M2_7 & Standard & & 12.500 & 5.11 & 3159.861 & 3159.861 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7. & 7 180201M2_8 & Standard & & 12.500 & 5.11 & 3024.667 & 3024.667 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 , & 8 180201M2_9 & Standard & & 12.500 & 5.11 & 2885.224 & 2885.224 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \[
9
\] & 9 180201M2_10 & Standard & & 12.500 & 5.10 & 3019.031 & 3019.031 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \[
10
\] & 10 180201M2_11 & Standard & & 12.500 & 5.10 & 2525.752 & 2525.752 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results1180201M21180201M2-CRV.qld \\
& \\
Last Altered: & Friday, February 02, 2018 08:56:36 Pacific Standard Time \\
Printed: & Friday, February 02, 2018 09:17:01 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C6-PFDA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 63 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & * IS Area & Response & Conc. & \%Dev & Conc. Flag CoD & CoD Flag & \(x=\) excluded \\
\hline 1-4 & 1 180201M2_2 & Standard & 12.500 & 5.42 & 11031.247 & 11031.247 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 - & 2 180201M2_3 & Standard & 12.500 & 5.41 & 12232.998 & 12232.998 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 & 3 180201M2_4 & Standard & 12.500 & 5.40 & 10804.623 & 10804.623 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 4 & 4 180201M2_5 & Standard & 12.500 & 5.41 & 10814.363 & 10814.363 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline  & 5 180201M2_6 & Standard & 12.500 & 5.41 & 9895.229 & 9895.229 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline & 6 180201M2_7 & Standard & 12.500 & 5.40 & 10806.639 & 10806.639 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 \%edem & 7 180201M2_8 & Standard & 12.500 & 5.40 & 10528.153 & 10528.153 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 - 4 ata & 8 180201M2_9 & Standard & 12.500 & 5.40 & 9126.640 & 9126.640 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9 9 & 9 180201M2_10 & Standard & 12.500 & 5.40 & 10084.041 & 10084.041 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 10 - & 10 180201M2_11 & Standard & 12.500 & 5.39 & 9524.107 & 9524.107 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C7-PFUdA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 64 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std Conc & ) RT & Area & 4. IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 - & 1 180201M2_2 & Standard & 12.500 & 5.73 & 14040.942 & 14040.942 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 , & 2 180201M2_3 & Standard & 12.500 & 5.73 & 14541.990 & 14541.990 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 3 - 4 a & 3 180201M2_4 & Standard & 12.500 & 5.73 & 14561.118 & 14561.118 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 4 - & 4 180201M2_5 & Standard & 12.500 & 5.72 & 15664.660 & 15664.660 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 5 \% & 5 180201M2_6 & Standard & 12.500 & 5.72 & 15069.432 & 15069.432 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \[
6
\] & 6 180201M2_7 & Standard & 12.500 & 5.72 & 13351.479 & 13351.479 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7 7, \({ }^{\text {a }}\), & 7 180201M2_8 & Standard & 12.500 & 5.72 & 13593.405 & 13593.405 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 8 & 8 180201M2_9 & Standard & 12.500 & 5.71 & 11830.616 & 11830.616 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 9. \({ }^{10} 4\) & 9 180201M2_10 & Standard & 12.500 & 5.71 & 13747.411 & 13747.411 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 10. & 10 180201M2_11 & Standard & 12.500 & 5.71 & 11590.088 & 11590.088 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Dataset: F:IProjectsIPFAS.PROIResults1180201M21180201M2-CRV.qld}

Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Compound name: 13C2-4:2 FTS
Response Factor: 0.311876
RRF SD: 0.113937, Relative SD: 36.5327
Response type: Internal Std (Ref 58 ), Area * (IS Conc. / IS Area)
Curve type: RF


Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 08:43:15
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36
Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID: ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 18A3007


Dataset: F:IProjects|PFAS.PROIResults\180201M21180201M2-CRV.qld
Last Altered: Friday, February 02, 2018 08:56:36 Pacific Standard Time
Printed: Friday, February 02, 2018 09:17:01 Pacific Standard Time

Name: 180201M2_2, Date: 01-Feb-2018, Time: 10:52:18, ID: ST180201M2-1 PFC CS-2 18A3007, Description: PFC CS-2 18A3007


Last Altered: Friday, February 02, 2018 09:22:24 Pacific Standard Time
Printed: Friday, February 02, 2018 09:23:43 Pacific Standard Time

Method: F:IProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 09:02:54 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36

\section*{Compound name: PFBA}
\begin{tabular}{|lllll|}
\hline & Name & ID & & Acq-Date
\end{tabular}

Last Altered: Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed: Friday, February 02, 2018 09:25:15 Pacific Standard Time

Method: F:IProjects|PFAS.PROMMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 09:02:54 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV 18A3006


Dataset: F:IProjects\PFAS.PRO\Results\180201M21180201M2-13.qld
Last Altered:
Friday, February 02, 2018 09:04:08 Pacific Standard Time
Printed: Friday, February 02, 2018 09:25:15 Pacific Standard Time

Name: 180201M2_13, Date: 01-Feb-2018, Time: 12:58:32, ID: ICV180201M2-1 PFC ICV 18A3006, Description: PFC ICV 18A3006


Last Altered: Friday, December 29, 2017 11:27:43 Pacific Standard Time Printed: Friday, December 29, 2017 11:27:43 Pacific Standard Time
Friday, December 29, 2017 11:27:57 Pacific Standard Time

Method: U:IG1.PRO\MethDBIPFAS_DW_L14_1217.mdb 17 Dec 2017 15:10:41
Calibration: U:IG1.PROICurveDBIC18_537_Q1_12-28-17_L14.cdb 29 Dec 2017 10:21:25
Name: 171228G1_37, Date: 28-Dec-2017, Time: 19:20:00, ID: ST171228G1-10 PFC CS 3 537 17L1424, Description: PFC CS3 53717 L1424



Last Altered: Friday, December 29, 2017 11:28:47 Pacific Standard Time

Method: U:IG1.PROIMethDBIPFAS_DW_L14_1217.mdb 17 Dec 2017 15:10:41
Calibration: U:IG1.PROICurveDBIC18_537_Q1_12-28-17_L14.cdb 29 Dec 2017 10:21:25
Name: 171228G1_49, Date: 28-Dec-2017, Time: 21:49:11, ID: ST171228G1-11 PFC CS5 537 17L1426, Description: PFC CS5 537 17L1426



Method: U:IG1.PRO\MethDBIPFAS_DW_L14_1217.mdb 17 Dec 2017 15:10:41 Calibration: U:IG1.PROICurveDBIC18_537_Q1_12-28-17_L14.cdb 29 Dec 2017 10:21:25

\section*{Compound name: PFBS}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & 1 D & Acq. Date & Acq. Time \\
\hline 1 & 171228G1_1 & IPA & 28-Dec-17 & 11:50:26 \\
\hline 2 & 171228G1_2 & ICV171228G1-1 PFC ICV 53717 L 1427 & 28-Dec-17 & 12:02:54 \\
\hline 3 & 171228G1_3 & ST171228G1-1 PFC CS-3 53717 L 1418 & 28-Dec-17 & 12:15:18 \\
\hline 4 & 171228G1_4 & ST171228G1-2 PFC CS-2 53717 L 1419 & 28-Dec-17 & 12:27:42 \\
\hline 5 - \({ }^{\text {a }}\) - & 171228G1_5 & ST171228G1-3 PFC CS-1 53717 L 2105 & 28-Dec-17 & 12:40:08 \\
\hline 6 6-3 & 171228G1_6 & ST171228G1-4 PFC CS0 53717 L 1421 & 28-Dec-17 & 12:52:35 \\
\hline \(7{ }^{\text {7 }}\) & 171228G1_7 & ST171228G1-5 PFC CS1 537 17L1422 & 28-Dec-17 & 13:05:01 \\
\hline 8 & 171228G1_8 & ST171228G1-6 PFC CS2 537 17L1423 & 28-Dec-17 & 13:17:29 \\
\hline 9 9 \({ }^{\text {a }}\) & 171228G1_9 & ST171228G1-7 PFC CS3 53717 L 1424 & 28-Dec-17 & 13:29:56 \\
\hline 10 & 171228G1_10 & ST171228G1-8 PFC CS4 537 17L1425 & 28-Dec-17 & 13:42:25 \\
\hline 11 & 171228G1_11 & ST171228G1-9 PFC CS5 53717 L 1426 & 28-Dec-17 & 13:54:49 \\
\hline 12 & 171228G1_12 & IPA & 28-Dec-17 & 14:07:14 \\
\hline 13 & 171228G1_13 & B7L0166-BS1 LFB 0.25 & 28-Dec-17 & 14:21:09 \\
\hline 14 & 171228G1_14 & B7L0184-BS1 LFB 0.25 & 28-Dec-17 & 14:33:34 \\
\hline 15 & 171228G1_15 & IPA & 28-Dec-17 & 14:45:59 \\
\hline 16 & 171228G1_16 & B7L0184-BLK1 LRB 0.25 & 28-Dec-17 & 14:58:27 \\
\hline 17 & 171228G1_17 & B7L0166-BLK1 LRB 0.25 & 28-Dec-17 & 15:10:54 \\
\hline 18 & 171228G1_18 & B7L0166-MS1 LFSM 0.25546 & 28-Dec-17 & 15:23:22 \\
\hline 19 & 171228G1_19 & B7L0166-MSD1 LFSMD 0.25461 & 28-Dec-17 & 15:35:51 \\
\hline 20 & 171228G1_20 & B7L0166-MS2 LFSM 0.24013 & 28-Dec-17 & 15:48:20 \\
\hline 21 & 171228G1_21 & B7L0166-MSD2 LFSMD 0.26049 & 28-Dec-17 & 16:00:45 \\
\hline 22 & 171228G1_22 & B7L0184-MS1 LFSM 0.25135 & 28-Dec-17 & 16:13:10 \\
\hline 23 & 171228G1_23 & B7L0184-MSD1 LFSMD 0.25318 & 28-Dec-17 & 16:25:40 \\
\hline 24 & 171228G1_24 & B7L0184-MS2 LFSM 0.24339 & 28-Dec-17 & 16:38:08 \\
\hline 25 & 171228G1_25 & B7L0184-MSD2 LFSMD 0.25679 & 28-Dec-17 & 16:50:34 \\
\hline 26 [1] & 171228G1_26 & 1701927-01RE1 TOLDO-12072017-RW-2945... & 28-Dec-17 & 17:03:02 \\
\hline 27 & 171228G1_27 & 1701927-02RE1 TOLDO-12072017-DUP-01 0... & 28-Dec-17 & 17:15:30 \\
\hline 28 & 171228G1_28 & 1701936-01RE1 HORSH-120717-RW-1505 0.... & 28-Dec-17 & 17:27:57 \\
\hline 29 & 171228G1_29 & 1701936-03RE1 HORSH-120717-RW-1385 0... & 28-Dec-17 & 17:40:23 \\
\hline & 171228G1_30 & 1701936-05RE1 HORSH-120817-RW-2279 0... & 28-Dec-17 & 17:52:49 \\
\hline 31. & 171228G1 31 & 1701936-07RE1 HORSH-120517-RW-1367 0... & 28-Dec-17 & 18:05:19 \\
\hline
\end{tabular}

\section*{Dataset: \\ Untitled}

Last Altered: Friday, December 29, 2017 11:30:01 Pacific Standard Time
Printed:
Friday, December 29, 2017 11:30:58 Pacific Standard Time

\section*{Compound name: PFBS}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq. Date & Acq. Time \\
\hline 32 & 171228G1_32 & 1701936-09RE1 HORSH-120817-RW-1376 0... & 28-Dec-17 & 18:17:47 \\
\hline 33 & 171228G1_33 & 1701936-11RE1 HORSH-120817-RW-1745 0... & 28-Dec-17 & 18:30:12 \\
\hline 34 & 171228G1_34 & 1701936-13RE1 HORSH-120817-DUP-1745 0.. & 28-Dec-17 & 18:42:36 \\
\hline 35 & 171228G1_35 & 1701938-01 REEPDW040 0.25944 & 28-Dec-17 & 18:55:02 \\
\hline 36 & 171228G1_36 & IPA & 28-Dec-17 & 19:07:31 \\
\hline 37 & 171228G1_37 & ST171228G1-10 PFC CS3 53717 L 1424 & 28-Dec-17 & 19:20:00 \\
\hline 38 & 171228G1_38 & IPA & 28-Dec-17 & 19:32:26 \\
\hline 39 & 171228G1_39 & 1701938-02 REEPDW503 0.24799 & 28-Dec-17 & 19:44:53 \\
\hline 40 & 171228G1_40 & 1701938-03 REEPDW041 0.24345 & 28-Dec-17 & 19:57:17 \\
\hline 41 & 171228G1_41 & 1701938-04 REEPDW042 0.25464 & 28-Dec-17 & 20:09:42 \\
\hline 42 & 171228G1_42 & 1701940-01 REEPDWO40FRB 0.24567 & 28-Dec-17 & 20:22:07 \\
\hline 43 & 171228G1_43 & 1701940-02 REEPDW041FRB 0.25741 & 28-Dec-17 & 20:34:32 \\
\hline 44 & 171228G1_44 & 1701940-03 REEPDW042FRB 0.2529 & 28-Dec-17 & 20:46:58 \\
\hline 45 & 171228G1_45 & 1701951-04 FT-RW01-20171212 0.25982 & 28-Dec-17 & 20:59:25 \\
\hline 46 & 171228G1_46 & 1701951-05 FT-RW01-FRB-201712120.25309 & 28-Dec-17 & 21:11:52 \\
\hline 47. & 171228G1_47 & 1701951-11 FT-DUP08-201712120.2559 & 28-Dec-17 & 21:24:19 \\
\hline 48 & 171228G1_48 & IPA & 28-Dec-17 & 21:36:44 \\
\hline 49 - & 171228G1_49 & ST171228G1-11 PFC CS5 537 17L1426 & 28-Dec-17 & 21:49:11 \\
\hline \(50-3\) & 171228G1_50 & IPA & 28-Dec-17 & 22:01:39 \\
\hline
\end{tabular}

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 13:31:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFĀS_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17

Name: 180117M1_2, Date: 17-Jan-2018, Time: 16:07:34, ID: ST180117M1-1 PFC CS0 18A0808, Description: Sf180108A2-S-PFC CS0 18A0808


Quantify Sample Summary
Vista Analytical Laboratory
Dataset:
F:IProjects\PFAS.PRO\Results\180117M11180117M1-2.qld
Last Altered:
Printed:
Thursday, January 18, 2018 08:44:25 Pacific Standard Time

Name: 180117M1_2, Date: 17-Jan-2018, Time: 16:07:34, ID: ST180117M1-1 PFC CS0 18A0808, Description: ST180108M2-3 PFC CS0 18A0808


Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 13:31:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17

Name: 180117M1_14, Date: 17-Jan-2018, Time: 18:25:17, ID: ST180117M1-2 PFC CS3 18A0811, Description: SF48040042-0 PFC CS3 18A0811


Quantify Sample Summary
Vista Analytical Laboratory
Dataset
F:IProjectsIPFAS.PRO\Results\180117M11180117M1-14.qld
Last Altered:
Thursday, January 18, 2018 08:48:44 Pacific Standard Time
Printed: Thursday, January 18, 2018 08:49:20 Pacific Standard Time

Name: 180117M1_14, Date: 17-Jan-2018, Time: 18:25:17, ID: ST180117M1-2 PFC CS3 18A0811, Description: ST180108M2-6 PFC CS3 18A0811
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ficter & \# Name & Trace & Area & IS Area & wt/vol & RRF & PredRT & RT & y Axis Resp. & Conc. & \%Rec & \\
\hline 32 & 35 13C4-PFHpA & \(367.2>321.8\) & 8.85 e 3 & 1.25 e 4 & 1.0000 & 0.727 & 3.77 & 3.74 & 8.84 & 12.156 & 97.2 & 50-150 \\
\hline 33 & 36 1802-PFHxS & \(403.0>102.6\) & 9.27 e 2 & 3.02 e 3 & 1.0000 & 0.362 & 3.92 & 3.88 & 3.84 & 10.604 & 84.8 & \\
\hline 34 & 37 13C2-6:2 FTS & \(429.1>408.9\) & 2.57 e 3 & 1.10 e 4 & 1.0000 & 0.218 & 4.23 & 4.20 & 2.91 & 13.325 & 106.6 & \\
\hline 35 & \(3813 \mathrm{C} 2-\mathrm{PFOA}\) & \(414.9>369.7\) & 1.13 e 4 & 1.10 e 4 & 1.0000 & 1.071 & 4.29 & 4.25 & 12.8 & 11.980 & 95.8 & \\
\hline 36 & 39 13C5-PFNA & \(468.2>422.9\) & 1.07 e 4 & 1.16 e 4 & 1.0000 & 0.968 & 4.72 & 4.68 & 11.5 & 11.900 & 95.2 & \\
\hline 37 & 40 13C8-PFOSA & \(506.1>77.7\) & 2.63 e 3 & 1.17 e 4 & 1.0000 & 0.283 & 4.79 & 4.75 & 2.81 & 9.918 & 79.3 & \\
\hline 38 & 41 13C8-PFOS & \(507.0>79.9\) & 3.02 e 3 & 3.02e3 & 1.0000 & 0.999 & 4.80 & 4.76 & 12.5 & 12.507 & 100.1 & \\
\hline 39. & 42 13C2-PFDA & \(515.1>469.9\) & 1.05 e 4 & 8.14 e 3 & 1.0000 & 1.329 & 5.10 & 5.05 & 16.1 & 12.110 & 96.9 & \\
\hline 40 & 43 13C2-8:2 FTS & \(529.1>508.7\) & 1.36 e 3 & 1.25 e 4 & 1.0000 & 0.085 & 5.06 & 5.03 & 1.35 & 15.942 & 127.5 & \\
\hline 41 & 44 d3-N-MeFOSAA & \(573.3>419\) & 4.47 e 3 & 1.17 e 4 & 1.0000 & 0.463 & 5.24 & 5.20 & 4.78 & 10.318 & 82.5 & \\
\hline 42 & 45 d5-N-EtFOSAA & \(589.3>419\) & 5.57e3 & 1.17e4 & 1.0000 & 0.541 & 5.40 & 5.35 & 5.95 & 11.004 & 88.0 & \\
\hline 43 & 46 13C2-PFUdA & \(565>519.8\) & 1.17 e 4 & 1.17 e 4 & 1.0000 & 1.081 & 5.42 & 5.38 & 12.5 & 11.534 & 92.3 & \\
\hline 44.3 & 47 13C2-PFDoA & \(615.0>569.7\) & 6.52e3 & 1.17 e 4 & 1.0000 & 0.656 & 5.70 & 5.66 & 6.97 & 10.611 & 84.9 & \\
\hline 45 & \(48 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}\) & \(515.2>168.9\) & 1.78 e 4 & 1.17 e 4 & 1.0000 & 0.162 & 5.79 & 5.81 & 19.0 & 117.268 & 78.2 & \\
\hline 46 & 49 13C2-PFTeDA & \(714.8>669.6\) & 3.39 e 3 & 1.17 e 4 & 1.0000 & 0.415 & 6.16 & 6.12 & 3.62 & 8.727 & 69.8 & \\
\hline 47. & \(50 \mathrm{~d} 5-\mathrm{N}-\mathrm{ETFOSA}\) & \(531.1>168.9\) & 2.80 e 4 & 1.17 e 4 & 1.0000 & 0.244 & 6.17 & 6.19 & 29.9 & 122.271 & 81.5 & \\
\hline 48 & 51 13C2-PFHxDA & \(815>769.7\) & 2.27 e 3 & 1.17 e 4 & 1.0000 & 0.718 & 6.48 & 6.44 & 2.42 & 3.374 & 67.5 & \\
\hline 49 & \(52 \mathrm{~d} 7-\mathrm{N}-\mathrm{MeFOSE}\) & \(623.1>58.9\) & 3.11 e 4 & \(1.17 e 4\) & 1.0000 & 0.249 & 6.31 & 6.28 & 33.2 & 133.253 & 88.8 & \\
\hline 50 & 53 d9-N-EtFOSE & \(639.2>58.8\) & 2.26 e 4 & 1.17 e 4 & 1.0000 & 0.239 & 6.45 & 6.43 & 24.1 & 100.946 & 67.3 & \(V\) \\
\hline 51 & 54 13C4-PFBA & 217. > 171.8 & 1.16 e 4 & 1.16 e 4 & 1.0000 & 1.000 & 1.44 & 1.41 & 12.5 & 12.500 & 100.0 & \\
\hline 52 & 55 13C5-PFHxA & \(318>272.9\) & 1.25 e 4 & 1.25 e 4 & 1.0000 & 1.000 & 3.16 & 3.12 & 12.5 & 12.500 & 100.0 & \\
\hline 53 & 56 13C3-PFHxS & \(401.9>79.9\) & 3.02 e 3 & 3.02 e 3 & 1.0000 & 1.000 & 3.92 & 3.88 & 12.5 & 12.500 & 100.0 & \\
\hline 54 & 57 13C8-PFOA & \(421.3>376\) & 1.10 e 4 & 1.10 e 4 & 1.0000 & 1.000 & 4.29 & 4.25 & 12.5 & 12.500 & 100.0 & \\
\hline 55 & 58 13C9-PFNA & \(472.2>426.9\) & 1.16 e 4 & \(1.16 e 4\) & 1.0000 & 1.000 & 4.72 & 4.68 & 12.5 & 12.500 & 100.0 & \\
\hline 56 & 59 13C4-PFOS & \(503>79.9\) & 3.02e3 & 3.02 e 3 & 1.0000 & 1.000 & 4.80 & 4.76 & 12.5 & 12.500 & 100.0 & \\
\hline 57 & 60 13C6-PFDA & \(519.1>473.7\) & 8.14 e 3 & 8.14 e 3 & 1.0000 & 1.000 & 5.10 & 5.05 & 12.5 & 12.500 & 100.0 & \\
\hline 58 - & 61 13C7-PFUdA & \(570.1>524.8\) & 1.17e4 & \[
1.17 \mathrm{e} 4
\] & 1.0000 & 1.000 & 5.42 & 5.37 & 12.5 & 12.500 & 100.0 & \\
\hline
\end{tabular}

Method: F:IProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 13:31:53
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFĀ_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17


Name: 180117M1_31, Date: 17-Jan-2018, Time: 21:40:22, ID: ST180117M1-3 PFC CS3 18A0811, Description: 8f4801081N2-6PFC CS3 18A0811


Quantify Sample Summary
Vista Analytical Laboratory
Dataset:
F:IProjectsIPFAS.PROIResults\180117M11180117M1-31.qld
Last Altered: Thursday, January 18, 2018 09:05:53 Pacific Standard Time
Printed:
Thursday, January 18, 2018 09:06:12 Pacific Standard Time

Name: 180117M1_31, Date: 17-Jan-2018, Time: 21:40:22, ID: ST180117M1-3 PFC CS3 18A0811, Description: ST180108M2-6 PFC CS3 18A0811


Method: F:IProjects|PFAS.PROIMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 13:31:53
Calibration: F:IProjectsIPFAS.PROICurveDBIC-18_VAL-PFĀS_Q4_01-16-18-FULL.cdb 17 Jan 2018 09:42:17
Name: 180117M1_46, Date: 18-Jan-2018, Time: 00:32:30, ID: ST180117M1-4 PFC CS3 18A0811, Description: SF480408A2-6-PFC CS3 18 A0811
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wivol & RRF & Pred RT & RT & y Axis Resp. & Conc. & \%Rec & \multirow[b]{2}{*}{70130} \\
\hline 1. \(x^{3}\) - & 1 PFBA & \(213.0>168.8\) & 9.59 e 3 & 1.01 e 4 & 1.0000 & & 1.44 & 1.41 & 11.8 & 10.156 & 101.6 & \\
\hline 2 & 2 PFPeA & \(263.1>218.9\) & 9.84 e 3 & 1.16 e 4 & 1.0000 & & 2.39 & 2.36 & 10.6 & 10.374 & 103.7 & \\
\hline 3 & 3 PFBS & \(299.0>79.7\) & 2.08 e 3 & 1.44 e 3 & 1.0000 & & 2.66 & 2.62 & 18.1 & 9.963 & 99.6 & \\
\hline 4 & 4 PFHXA & \(313.2>268.9\) & 1.24 e 4 & 3.78 e 3 & 1.0000 & & 3.16 & 3.12 & 16.4 & 10.286 & 102.9 & \\
\hline 5. & 5 PFHpA & \(363.0>318.9\) & 1.11e4 & 1.05 e 4 & 1.0000 & & 3.77 & 3.73 & 13.2 & 11.088 & 110.9 & \\
\hline 6 & 6 L-PFHxS & \(398.9>79.6\) & 1.72 e 3 & 9.02 e 2 & 1.0000 & & 3.92 & 3.88 & 23.8 & 13.001 & 130.0 & \\
\hline 7 & \(86: 2 \mathrm{FTS}\) & \(427.1>407\) & 2.16 e 3 & 9.02 e 2 & 1.0000 & & 4.23 & 4.20 & 29.9 & 14.786 & 147.9 & \\
\hline & 9 L-PFOA & \(413>368.7\) & 1.09 e 4 & 1.18 e 4 & 1.0000 & & 4.29 & 4.25 & 11.6 & 10.970 & 109.7 & \\
\hline 9 & 11 PFHpS & \(449>80.0\) & 2.58 e 3 & 1.18 e 4 & 1.0000 & & 4.40 & 4.36 & 2.74 & 9.964 & 99.6 & \\
\hline 10 & 12 PFNA & \(463.0>418.8\) & 1.01e4 & 1.08 e 4 & 1.0000 & & 4.72 & 4.68 & 11.8 & 8.868 & 88.7 & \\
\hline 11 & 13 PFOSA & \(498.1>77.8\) & 2.00 e 3 & 2.40 e 3 & 1.0000 & & 4.79 & 4.75 & 10.4 & 8.502 & 85.0 & \\
\hline 12 & 14 L-PFOS & \(499>79.9\) & 2.38 e 3 & 2.83 e 3 & 1.0000 & & 4.79 & 4.76 & 10.5 & 8.989 & 89.9 & \\
\hline 13 & 16 PFDA & \(513>468.8\) & 1.09 e 4 & 9.91 e 3 & 1.0000 & & 5.10 & 5.05 & 13.8 & 11.283 & 112.8 & \\
\hline 14 & 17 8:2 FTS & \(527>506.9\) & 2.17 e 3 & 9.91 e 3 & 1.0000 & & 5.06 & 5.02 & 2.74 & 14.318 & - 43.2 & \\
\hline 15 5-x & 18 N -MeFOSAA & \(570.1>419\) & 6.13 e 3 & 4.05 e 3 & 1.0000 & & 5.24 & 5.20 & 18.9 & 13.293 & 132.9 & \\
\hline 16 = & \(19 \mathrm{~N}-\mathrm{EtFOSAA}\) & \(584.2>419\) & 4.26 e 3 & 4.26 e 3 & 1.0000 & & 5.40 & 5.35 & 12.5 & 10.209 & 102.1 & \\
\hline 17 & 20 PFUdA & \(563.0>518.9\) & 1.19 e 4 & 1.17 e 4 & 1.0000 & & 5.42 & 5.37 & 12.6 & 10.471 & 104.7 & \\
\hline \(18 \times\) & 21 PFDS & \(598.8>80\) & 3.16 e 3 & 7.17e3 & 1.0000 & & 5.46 & 5.41 & 5.52 & 9.974 & 99.7 & \\
\hline 19 & 22 PFDoA & \(612.9>569.0\) & 1.19 e 4 & 7.17 e 3 & 1.0000 & & 5.70 & 5.65 & 20.7 & 7.102 & 71.0 & \\
\hline 20 & \(23 \mathrm{~N}-\mathrm{MeFOSA}\) & \(512.1>168.9\) & 6.45 e 3 & 1.78 e 4 & 1.0000 & & 5.79 & 5.78 & 54.4 & 55.896 & 111.8 & \\
\hline 21 & 24 PFTrDA & \(662.9>618.9\) & 1.16e4 & 7.17 e 3 & 1.0000 & & 5.94 & 5.89 & 20.3 & 8.760 & 87.6 & \\
\hline 22 & 25 PFTeDA & \(712.9>668.8\) & 6.37 e 3 & 3.09 e 3 & 1.0000 & & 6.16 & 6.11 & 25.8 & 12.996 & 130.0 & \\
\hline 23 - & 26 N-EtFOSA & \(526.1>168.9\) & 8.74 e 3 & 2.72 e 4 & 1.0000 & & 6.17 & 6.17 & 48.2 & 52.818 & 105.6 & \\
\hline 24 - & 27 PFHxDA & \(813.1>768.6\) & 4.24 e 3 & 2.66 e 3 & 1.0000 & & 6.48 & 6.43 & 7.96 & 9.576 & 95.8 & \\
\hline 25 - & 28 PFODA & \(913.1>868.8\) & 4.74 e 3 & 2.66 e 3 & 1.0000 & & 6.71 & 6.67 & 8.90 & 10.946 & 109.5 & \\
\hline 26 : & 29 N-MeFOSE & \(616.1>58.9\) & 9.36 e 3 & 2.53 e 4 & 1.0000 & & 6.31 & 6.29 & 55.6 & 58.201 & 116.4 & \\
\hline 27. & 30 N -EtFOSE & \(630.1>58.9\) & 1.10 e 4 & 2.39 e 4 & 1.0000 & & 6.45 & 6.44 & 69.3 & 63.902 & 127.8 & \\
\hline 28 & 31 13C3-PFBA & \(216.1>171.8\) & 1.01 e 4 & 1.15 e 4 & 1.0000 & 0.886 & 1.44 & 1.41 & 11.0 & 12.447 & 99.6 & \(50-130\) \\
\hline 29 & 32 13C3-PFPeA & 266. \(>221.8\) & 1.16 e 4 & 1.29 e 4 & 1.0000 & 0.929 & 2.39 & 2.35 & 11.2 & 12.080 & 96.6 & \\
\hline 30 & 33 13C3-PFBS & 302. > 98.8 & 1.44 e 3 & 1.29 e 4 & 1.0000 & 0.117 & 2.66 & 2.62 & 1.39 & 11.851 & 94.8 & \\
\hline 31. & 34 13C2-PFHxA & \(315>269.8\) & 3.78 e 3 & 1.29 e 4 & 1.0000 & 0.689 & 3.16 & 3.12 & 3.66 & 5.318 & 106.4 & \(V\) \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:

Name: 180117M1_46, Date: 18-Jan-2018, Time: 00:32:30, ID: ST180117M1-4 PFC CS3 18A0811, Description: ST180108M2-6 PFC CS3 18A0811


\section*{Dataset: Untitled}

Last Altered: Thursday, January 18, 2018 14:49:09 Pacific Standard Time Printed: \(\quad\) Thursday, January 18, 2018 14:49:58 Pacific Standard Time

Method: F:|Projects|PFAS.PROMMethDBIPFAS_FULL_80C_011618.mdb 17 Jan 2018 13:31:53 Calibration: F:IProjects|PFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 10:22:57

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq. Date & Acq. Time \\
\hline 1 & 180117M1_1 & IPA & 17-Jan-18 & 15:56:08 \\
\hline 2 & 180117M1_2 & ST180117M1-1 PFC CS0 18A0808 & 17-Jan-18 & 16:07:34 \\
\hline 3 & 180117M1_3 & IPA & 17-Jan-18 & 16:19:01 \\
\hline 4 & 180117M1_4 & 1701965-08 7090.11662 & 17-Jan-18 & 16:30:28 \\
\hline 5 & 180117M1_5 & 1701965-09 9050.11622 & 17-Jan-18 & 16:41:54 \\
\hline 6 & 180117M1_6 & 1701965-10 7810.11915 & 17-Jan-18 & 16:53:22 \\
\hline 7 & 180117M1_7 & 1701965-117890.12127 & 17-Jan-18 & 17:04:49 \\
\hline 8 & 180117M1_8 & 1701965-12 7100.12143 & 17-Jan-18 & 17:16:18 \\
\hline 9 & 180117M1_9 & 1701965-13 Field Blank 10.11521 & 17-Jan-18 & 17:27:47 \\
\hline 10 & 180117M1_10 & 1701965-14 Field Blank 20.12027 & 17-Jan-18 & 17:39:18 \\
\hline 11 & 180117M1_11 & 1701974-01 MTBE_4999 0.26225 & 17-Jan-18 & 17:50:48 \\
\hline 12 & 180117M1_12 & 1701974-02 MTBE_15027 0.25729 & 17-Jan-18 & 18:02:18 \\
\hline 13 & 180117M1_13 & IPA & 17-Jan-18 & 18:13:47 \\
\hline 14 & 180117M1_14 & ST180117M1-2 PFC CS3 18A0811 & 17-Jan-18 & 18:25:17 \\
\hline 15 & 180117M1_15 & IPA & 17-Jan-18 & 18:36:47 \\
\hline 16 & 180117M1_16 & B7L0182-BS1 OPR 0.25 & 17-Jan-18 & 18:48:16 \\
\hline 17 & 180117M1_17 & B7L0182-BLK1 Method Blank 0.25 & 17-Jan-18 & 18:59:44 \\
\hline 18 & 180117M1_18 & B7L0182-MS1 Matrix Spike 0.24949 & 17-Jan-18 & 19:11:11 \\
\hline 19 & 180117M1_19 & B7L0182-MSD1 Matrix Spike Dup 0.25319 & 17-Jan-18 & 19:22:38 \\
\hline 20 & 180117M1_20 & 1701951-01 FC-MW06S-201712120.2558 & 17-Jan-18 & 19:34:05 \\
\hline 21 & 180117M1_21 & 1701951-02 FC-MW02SR1-20171212 0.25063 & 17-Jan-18 & 19:45:32 \\
\hline 22 & 180117M1_22 & 1701951-03 FC-MW041-201712120.24536 & 17-Jan-18 & 19:57:01 \\
\hline 23 & 180117M1_23 & 1701951-06 FC-MW03SR1-201712120.24463 & 17-Jan-18 & 20:08:31 \\
\hline 24 & 180117M1_24 & 1701951-07 FC-MW04S-201712120.25168 & 17-Jan-18 & 20:20:00 \\
\hline 25 & 180117M1_25 & 1701951-08 FC-MW02IR1-201712120.25393 & 17-Jan-18 & 20:31:29 \\
\hline 26 & 180117M1_26 & 1701951-09 FC-MW05S-20171212 0.2411 & 17-Jan-18 & 20:42:56 \\
\hline 27 & 180117M1_27 & 1701951-10 FC-DUP07-20171212 0.24536 & 17-Jan-18 & 20:54:26 \\
\hline 28 & 180117M1_28 & 1701951-12 ET-MW01S-201712120.24778 & 17-Jan-18 & 21:05:56 \\
\hline 29 & 180117M1_29 & 1701951-13 ET-MW01S-FRB-201712120.24667 & 17-Jan-18 & 21:17:24 \\
\hline 30 & 180117M1_30 & IPA & 17-Jan-18 & 21:28:54 \\
\hline 31 & 180117M1_31 & ST180117M1-3 PFC CS3 18A0811 & 17-Jan-18 & 21:40:22 \\
\hline
\end{tabular}

Last Altered: Thursday, January 18, 2018 14:49:09 Pacific Standard Time Printed: Thursday, January 18, 2018 14:49:58 Pacific Standard Time

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq.Date & Acq. Time \\
\hline 32 & 180117M1_32 & IPA & 17-Jan-18 & 21:51:49 \\
\hline 33 & 180117M1_33 & 1701951-14 FT-PZ-454S-201712120.24489 & 17-Jan-18 & 22:03:20 \\
\hline 34 & 180117M1_34 & 1701951-15 FC-MW05I-201712120.2534 & 17-Jan-18 & 22:14:46 \\
\hline 35 & 180117M1_35 & 1701951-16 ET-MW02S-201712120.25547 & 17-Jan-18 & 22:26:16 \\
\hline 36 & 180117M1_36 & 1701951-17 ET-MW03S-201712120.24815 & 17-Jan-18 & 22:37:46 \\
\hline 37. & 180117M1_37 & 1701951-18 FC-PZ0511-201712120.25258 & 17-Jan-18 & 22:49:15 \\
\hline 38 & 180117M1_38 & 1701951-19 CV-FLTS-COMBINF-20171213 0.2... & 17-Jan-18 & 23:00:45 \\
\hline 39 & 180117M1_39 & 1701951-20 SA-MW127I-20171213 0.2512 & 17-Jan-18 & 23:12:06 \\
\hline 40 & 180117M1_40 & B7L0176-BS1 OPR 0.25 & 17-Jan-18 & 23:23:33 \\
\hline 41 & 180117M1_41 & B7L0176-BLK1 Method Blank 0.25 & 17-Jan-18 & 23:35:03 \\
\hline 42 & 180117M1_42 & 1701971-01 WT1712111000JLB 0.25825 & 17-Jan-18 & 23:46:33 \\
\hline 43 & 180117M1_43 & 1701971-02 WT1712111020JLB 0.2498 & 17-Jan-18 & 23:58:02 \\
\hline 44 & 180117M1_44 & 1701971-03 WR1712111055JLB 0.26096 & 18-Jan-18 & 00:09:32 \\
\hline 45 & 180117M1_45 & IPA & 18-Jan-18 & 00:21:01 \\
\hline 46 & 180117M1_46 & ST180117M1-4 PFC CS3 18A0811 & 18-Jan-18 & 00:32:30 \\
\hline 47 & 180117M1_47 & IPA & 18-Jan-18 & 00:43:57 \\
\hline 48 & 180117M1_48 & 1701971-04 WR1712111130JLB 0.25902 & 18-Jan-18 & 00:55:26 \\
\hline 49 & 180117M1_49 & 1701971-05 WR1712111145JLB 0.25518 & 18-Jan-18 & 01:06:55 \\
\hline 50 & 180117M1_50 & 1701971-06 WR1712111155JLB 0.25422 & 18-Jan-18 & 01:18:16 \\
\hline 51 & 180117M1_51 & 1701971-07 WIRR1712111230JLB 0.26055 & 18-Jan-18 & 01:29:43 \\
\hline 52 & 180117M1_52 & 1701971-08 WR1712111440JLB 0.25461 & 18-Jan-18 & 01:41:12 \\
\hline 53 & 180117M1_53 & 1701971-09 WR1712111500JLB 0.25848 & 18-Jan-18 & 01:52:41 \\
\hline 54 & 180117M1_54 & 1701971-10 WT1712111525JLB 0.26049 & 18-Jan-18 & 02:04:10 \\
\hline 55 & 180117M1_55 & 1701971-11 WR1712121140MK 0.25838 & 18-Jan-18 & 02:15:40 \\
\hline 56 & 180117M1_56 & 1701971-12 FB1712121145MK 0.25983 & 18-Jan-18 & 02:27:10 \\
\hline 57 & 180117M1_57 & 1701971-13 WR1712121305MK 0.26029 & 18-Jan-18 & 02:38:39 \\
\hline 58 & 180117M1_58 & 1701971-14 WT1712121330MK 0.25692 & 18-Jan-18 & 02:50:08 \\
\hline 59 & 180117M1_59 & IPA & 18-Jan-18 & 03:01:38 \\
\hline 60 & 180117M1_60 & ST180117M1-5 PFC CS3 18A0811 & 18-Jan-18 & 03:13:08 \\
\hline 61 & 180117M1_61 & IPA & 18-Jan-18 & 03:24:38 \\
\hline 62 & 180117M1_62 & 1701971-15 WR1712131545JLB 0.25303 & 18-Jan-18 & 03:36:09 \\
\hline 63 & 180117M1_63 & B7L0191-BS1 OPR 0.25 & 18-Jan-18 & 03:47:34 \\
\hline 64 & 180117M1_64 & B7L0191-BLK1 Method Blank 0.25 & 18-Jan-18 & 03:59:00 \\
\hline 65 & 180117M1_65 & 1701961-01 WT1712140815MK 0.2608 & 18-Jan-18 & 04:10:27 \\
\hline
\end{tabular}

Last Altered: Thursday, January 18, 2018 14:49:09 Pacific Standard Time Printed: Thursday, January 18, 2018 14:49:58 Pacific Standard Time

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq. Date & Acq.Time \\
\hline 66 & 180117M1_66 & 1701961-02 WT1712140830MK 0.26446 & 18-Jan-18 & 04:21:56 \\
\hline 67 & 180117M1_67 & 1701961-03 WT1712140845MK 0.26111 & 18-Jan-18 & 04:33:26 \\
\hline 68 & 180117M1_68 & 1701961-04 WT1712140900MK 0.25908 & 18-Jan-18 & 04:44:55 \\
\hline 69 & 180117M1_69 & 1701961-05 WT1712140925MK 0.25748 & 18-Jan-18 & 04:56:26 \\
\hline 70 & 180117M1_70 & 1701961-06 WT1712140940MK 0.25732 & 18-Jan-18 & 05:07:54 \\
\hline 71 & 180117M1_71 & 1701961-07 WT1712140955MK 0.26416 & 18-Jan-18 & 05:19:21 \\
\hline 72 & 180117M1_72 & 1701961-08 WT1712141010MK 0.25507 & 18-Jan-18 & 05:30:51 \\
\hline 73 & 180117M1_73 & 1701961-09 WR1712141025MK 0.26308 & 18-Jan-18 & 05:42:20 \\
\hline 74 & 180117M1_74 & IPA & 18-Jan-18 & 05:53:49 \\
\hline 75 & 180117M1_75 & ST180117M1-6 PFC CS3 18A0811 & 18-Jan-18 & 06:05:18 \\
\hline 76 & 180117M1_76 & IPA & 18-Jan-18 & 06:16:48 \\
\hline
\end{tabular}

\section*{Dataset:}

Z:IProjectsIPFAS.PRO\Results\180118M11180118M1-30.qld
Last Altered: Thursday, January 25, 2018 08:43:34 Pacific Standard Time
Printed: Thursday, January 25, 2018 08:43:59 Pacific Standard Time

\section*{Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_011818.mdb 18 Jan 2018 19:22:25}

\section*{Calibration: Z:IProjects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_01-18-18-FULL.cdb 19 Jan 2018 09:30:24}

Name: 180118M1_30, Date: 18-Jan-2018, Time: 20:57:46, ID: ST180118M1-11 PFC CS3 18A0811, Description: PFC CS3 18A0811
\begin{tabular}{|lllllllrrrrrr}
\hline & \# Name & Trace & Area & IS Area & RRF & Divisor1 & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec \\
1 & 4 PFHxA & \(313.2>268.9\) & 1.30 e 4 & 3.94 e 3 & & 1.0000 & 3.16 & 3.06 & 16.5 & 10.5 & 105.4 \\
2 & 34 & \(13 C 2-\) PFHXA & \(315>269.8\) & 3.94 e 3 & 1.45 e 4 & 0.685 & 1.0000 & 3.16 & 3.05 & 3.40 & 4.96 & 99.2 \\
3 & 55 & 313 C5-PFHxA & \(318>272.9\) & 1.45 e 4 & 1.45 e 4 & 1.000 & 1.0000 & 3.16 & 3.06 & 12.5 & 12.5 & 100.0 \\
\hline
\end{tabular}

\section*{Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_011818.mdb 18 Jan 2018 19:22:25} Calibration: Z:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀ_Q4_01-18-18-FULL.cdb 19 Jan 2018 09:30:24

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq.Date & Acq.Time \\
\hline 1 & 180118M1_1 & IPA & 18-Jan-18 & 15:25:26 \\
\hline 2 & 180118M1_2 & ST180118M1-1 PFC CS-2 18A0806 & 18-Jan-18 & 15:36:48 \\
\hline 3 & 180118M1_3 & ST180118M1-2 PFC CS-1 18A0807 & 18-Jan-18 & 15:48:15 \\
\hline 4 & 180118M1_4 & ST180118M1-3 PFC CS0 18A0808 & 18-Jan-18 & 15:59:42 \\
\hline 5 & 180118M1_5 & ST180118M1-4 PFC CS1 18A0809 & 18-Jan-18 & 16:11:12 \\
\hline 6 & 180118M1_6 & ST180118M1-5 PFC CS2 18A0810 & 18-Jan-18 & 16:22:39 \\
\hline 7 & 180118M1_7 & ST180118M1-6 PFC CS3 18A0811 & 18-Jan-18 & 16:34:06 \\
\hline 8 & 180118M1_8 & ST180118M1-7 PFC CS4 18A0812 & 18-Jan-18 & 16:45:33 \\
\hline 9 & 180118M1_9 & ST180118M1-8 PFC CS5 18A0813 & 18-Jan-18 & 16:57:03 \\
\hline 10 & 180118M1_10 & ST180118M1-9 PFC CS6 18A0814 & 18-Jan-18 & 17:08:30 \\
\hline 11 & 180118M1_11 & ST180118M1-10 PFC CS7 18A0815 & 18-Jan-18 & 17:19:57 \\
\hline 12 & 180118M1_12 & IPA & 18-Jan-18 & 17:31:24 \\
\hline 13 & 180118M1_13 & ICV180118M1-1 PFC ICV 18A0805 & 18-Jan-18 & 17:42:50 \\
\hline 14 & 180118M1_14 & IPA & 18-Jan-18 & 17:54:17 \\
\hline 15 & 180118M1_15 & B7L0182-BS1 OPR 0.25 & 18-Jan-18 & 18:05:44 \\
\hline 16 & 180118M1_16 & B7L0182-BLK1 Method Blank 0.25 & 18-Jan-18 & 18:17:13 \\
\hline 17 & 180118M1_17 & B7L0182-MS1 Matrix Spike 0.24949 & 18-Jan-18 & 18:28:43 \\
\hline 18 & 180118M1_18 & B7L0182-MSD1 Matrix Spike Dup 0.25319 & 18-Jan-18 & 18:40:12 \\
\hline 19 & 180118M1_19 & 1701951-01 FC-MW06S-201712120.2558 & 18-Jan-18 & 18:51:35 \\
\hline 20 & 180118M1_20 & 1701951-02 FC-MW02SR1-201712120.25063 & 18-Jan-18 & 19:03:02 \\
\hline 21 & 180118M1_21 & 1701951-03 FC-MW04I-201712120.24536 & 18-Jan-18 & 19:14:27 \\
\hline 22 & 180118M1_22 & 1701951-06 FC-MW03SR1-201712120.24463 & 18-Jan-18 & 19:25:54 \\
\hline 23 & 180118M1_23 & 1701951-07 FC-MW04S-201712120.25168 & 18-Jan-18 & 19:37:24 \\
\hline 24 & 180118M1_24 & 1701951-08 FC-MW02IR1-201712120.25393 & 18-Jan-18 & 19:48:54 \\
\hline 25 & 180118M1_25 & 1701951-09 FC-MW05S-201712120.2411 & 18-Jan-18 & 20:00:24 \\
\hline 26 & 180118M1_26 & 1701951-10 FC-DUP07-201712120.24536 & 18-Jan-18 & 20:11:50 \\
\hline 27 & 180118M1_27 & 1701951-12 ET-MW01S-201712120.24778 & 18-Jan-18 & 20:23:20 \\
\hline 28 & 180118M1_28 & 1701951-13 ET-MW01S-FRB-201712120.24667 & 18-Jan-18 & 20:34:49 \\
\hline 29 & 180118M1_29 & IPA & 18-Jan-18 & 20:46:16 \\
\hline 30 & 180118M1_30 & ST180118M1-11 PFC CS3 18A0811 & 18-Jan-18 & 20:57:46 \\
\hline 31 & 180118M1_31 & IPA & 18-Jan-18 & 21:09:16 \\
\hline 32 & 180118M1_32 & 1701951-14 FT-PZ-454S-201712120.24489 & 18-Jan-18 & 21:20:43 \\
\hline
\end{tabular}

Last Altered: Thursday, January 25, 2018 08:45:42 Pacific Standard Time
Printed: Thursday, January 25, 2018 08:47:10 Pacific Standard Time

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq.Date & Acq. Time \\
\hline 33 & 180118M1_33 & 1701951-15 FC-MW05I-20171212 0.2534 & 18-Jan-18 & 21:32:13 \\
\hline 34 & 180118M1_34 & 1701951-16 ET-MW02S-201712120.25547 & 18-Jan-18 & 21:43:40 \\
\hline 35 & 180118M1_35 & 1701951-17 ET-MW03S-201712120.24815 & 18-Jan-18 & 21:55:06 \\
\hline 36 & 180118M1_36 & 1701951-18 FC-PZ05I1-201712120.25258 & 18-Jan-18 & 22:06:36 \\
\hline 37 & 180118M1_37 & 1701951-19 CV-FLTS-COMBINF-20171213 0.2... & 18-Jan-18 & 22:18:03 \\
\hline 38 & 180118M1_38 & 1701951-20 SA-MW127I-20171213 0.2512 & 18-Jan-18 & 22:29:33 \\
\hline 39 & 180118M1_39 & IPA & 18-Jan-18 & 22:41:03 \\
\hline 40 & 180118M1_40 & 1701971-01@40X WT1712111000JLB 0.25825 & 18-Jan-18 & 22:52:30 \\
\hline 41 & 180118M1_41 & 1701971-01@10X WT1712111000JLB 0.25825 & 18-Jan-18 & 23:04:00 \\
\hline 42 & 180118M1_42 & IPA & 18-Jan-18 & 23:15:26 \\
\hline 43 & 180118M1_43 & 1701971-02 WT1712111020JLB 0.2498 & 18-Jan-18 & 23:26:56 \\
\hline 44 & 180118M1_44 & IPA & 18-Jan-18 & 23:38:22 \\
\hline 45 & 180118M1_45 & ST180118M1-12 PFC CS3 18A0811 & 18-Jan-18 & 23:49:46 \\
\hline 46 & 180118M1_46 & IPA & 19-Jan-18 & 00:01:12 \\
\hline
\end{tabular}

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS FULL 80C 011618.mdb 17 Jan 2018 13:31:53
Calibration: Z:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 10:22:57
Name: 180122M2_2, Date: 22-Jan-2018, Time: 15:36:21, ID: ST180122M2-1 PFC CS0 17L2608, Description: PFC CS0 17L2608
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec & Recovery Out \\
\hline 1 & 1 PFBA & \(213.0>168.8\) & 8.71 e 2 & 9.15 e 3 & & 1.44 & 1.45 & 1.19 & 0.913 & 91.3 & NO \\
\hline 2 & 2 PFPeA & \(263.1>218.9\) & 8.92 e 2 & 1.04 e 4 & & 2.39 & 2.39 & 1.08 & 0.960 & 96.0 & NO \\
\hline 3 & 3 PFBS & \(299.0>79.7\) & 1.90 e 2 & 1.50 e 3 & & 2.66 & 2.67 & 1.58 & 0.712 & 71.2 & NO \\
\hline 4 & 4 PFHxA & 313.2 > 268.9 & 1.04 e 3 & 3.71 e 3 & & 3.16 & 3.18 & 1.39 & 0.785 & 78.5 & NO \\
\hline 5 & 5 PFHpA & \(363.0>318.9\) & 9.45 e 2 & 9.11 e 3 & & 3.77 & 3.80 & 1.30 & 0.907 & 90.7 & NO \\
\hline 6 & 6 L-PFHxS & \(398.9>79.6\) & 1.52 e 2 & 1.11 e 3 & & 3.92 & 3.95 & 1.72 & 0.799 & 79.9 & NO \\
\hline 7 & 7 Br -PFHxS & \(398.9>79.6\) & & 1.11 e 3 & & 3.76 & & & & & NO \\
\hline 8 & 8 6:2 FTS & \(427.1>407\) & 2.65 e 2 & 1.11 e 3 & & 4.23 & 4.26 & 2.99 & 1.06 & 106.5 & NO \\
\hline 9 & 9 L-PFOA & \(413>368.7\) & 1.39 e 3 & 1.29 e 4 & & 4.29 & 4.32 & 1.34 & 0.883 & 88.3 & NO \\
\hline 10 & 10 Br -PFOA & \(413>368.7\) & 6.86e1 & 1.29 e 4 & & 4.20 & 4.24 & 0.0665 & & & NO \\
\hline 11 & 11 PFHpS & \(449>80.0\) & 1.95 e 2 & 1.29 e 4 & & 4.40 & 4.43 & 0.189 & 0.735 & 73.5 & NO \\
\hline 12 & 12 PFNA & \(463.0>418.8\) & 1.09 e 3 & 9.81 e 3 & & 4.72 & 4.75 & 1.39 & 1.05 & 104.6 & NO \\
\hline 13 & 13 PFOSA & \(498.1>77.8\) & 2.41 e 2 & 2.60 e 3 & & 4.79 & 4.82 & 1.16 & 0.982 & 98.2 & NO \\
\hline 14 & 14 L-PFOS & \(499>79.9\) & 2.47 e 2 & 2.46 e 3 & & 4.79 & 4.83 & 1.26 & 1.17 & 117.4 & NO \\
\hline 15 & 15 Br -PFOS & \(499>79.9\) & & 2.46 e 3 & & 4.65 & & & & & NO \\
\hline 16 & 16 PFDA & \(513>468.8\) & 1.14 e 3 & 1.06 e 4 & & 5.10 & 5.13 & 1.35 & 0.931 & 93.1 & NO \\
\hline 17 & 17 8:2 FTS & \(527>506.9\) & 1.97 e 2 & 1.06 e 4 & & 5.06 & 5.10 & 0.233 & 1.01 & 101.1 & NO \\
\hline 18 & \(18 \mathrm{~N}-\mathrm{MeFOSAA}\) & \(570.1>419\) & 6.18 e 2 & 4.60 e 3 & & 5.24 & 5.27 & 1.68 & 1.00 & 100.1 & NO \\
\hline 19 & \(19 \mathrm{~N}-\mathrm{EtFOSAA}\) & \(584.2>419\) & 4.68 e 2 & 5.16 e 3 & & 5.40 & 5.43 & 1.13 & 0.919 & 91.9 & NO \\
\hline 20 & 20 PFUdA & \(563.0>518.9\) & 9.99 e 2 & 1.05 e 4 & & 5.42 & 5.45 & 1.19 & 1.06 & 106.1 & NO \\
\hline 21 & 21 PFDS & \(598.8>80\) & 2.36 e 2 & 8.59 e 3 & & 5.46 & 5.49 & 0.343 & 1.12 & 112.0 & NO \\
\hline 22 & 22 PFDoA & \(612.9>569.0\) & 1.22 e 3 & 8.59 e 3 & & 5.70 & 5.73 & 1.77 & 1.05 & 105.5 & NO \\
\hline 23 & 23 N-MeFOSA & \(512.1>168.9\) & 5.81 e 2 & 1.75 e 4 & & 5.79 & 5.80 & 5.00 & 4.56 & 91.2 & NO \\
\hline 24 & 24 PFTrDA & \(662.9>618.9\) & 1.28 e 3 & 8.59 e 3 & & 5.94 & 5.98 & 1.86 & 0.838 & 83.8 & NO \\
\hline 25 & 25 PFTeDA & \(712.9>668.8\) & 8.76 e 2 & 4.18 e 3 & & 6.16 & 6.19 & 2.62 & 0.838 & 83.8 & NO \\
\hline 26 & \(26 \mathrm{~N}-\mathrm{EtFOSA}\) & \(526.1>168.9\) & 8.00 e 2 & 2.50 e 4 & & 6.17 & 6.19 & 4.80 & 4.93 & 98.7 & NO \\
\hline 27 & 27 PFHxDA & \(813.1>768.6\) & 4.22 e 2 & 2.79 e 3 & & 6.48 & 6.51 & 0.755 & 0.784 & 78.4 & NO \\
\hline 28 & 28 PFODA & \(913.1>868.8\) & 4.09 e 2 & 2.79 e 3 & & 6.71 & 6.74 & 0.732 & 0.771 & 77.1 & NO \\
\hline 29 & \(29 \mathrm{~N}-\mathrm{MeFOSE}\) & \(616.1>58.9\) & 7.08 e 2 & 2.34 e 4 & & 6.31 & 6.33 & 4.54 & 4.35 & 86.9 & NO \\
\hline 30 & \(30 \mathrm{~N}-\mathrm{EtFOSE}\) & \(630.1>58.9\) & 6.42 e 2 & 1.86 e 4 & & 6.45 & 6.48 & 5.17 & 4.14 & 82.7 & NO \\
\hline 31 & 31 13C3-PFBA & \(216.1>171.8\) & 9.15 e 3 & 1.01 e 4 & 0.779 & 1.44 & 1.44 & 11.3 & 14.5 & 115.7 & NO \\
\hline 32 & 32 13C3-PFPeA & 266. \(>221.8\) & 1.04 e 4 & 1.20 e 4 & 0.797 & 2.39 & 2.39 & 10.8 & 13.6 & 108.4 & NO \\
\hline
\end{tabular}

Name: 180122M2 2, Date: 22-Jan-2018, Time: 15:36:21, ID: ST180122M2-1 PFC CSO 17L2608, Description: PFC CSO 17L2608
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec & Recovery Out \\
\hline 33 & 33 13C3-PFBS & 302. > 98.8 & 1.50 e 3 & 1.20 e 4 & 0.095 & 2.66 & 2.67 & 1.57 & 16.5 & 132.0 & NO \\
\hline 34 & 34 13C2-PFHxA & \(315>269.8\) & 3.71 e 3 & 1.20 e 4 & 0.636 & 3.16 & 3.17 & 3.87 & 6.08 & 121.7 & NO \\
\hline 35 & 35 13C4-PFHpA & \(367.2>321.8\) & 9.11 e 3 & 1.20 e 4 & 0.621 & 3.77 & 3.80 & 9.49 & 15.3 & 122.3 & NO \\
\hline 36 & 36 18O2-PFHxS & 403.0 > 102.6 & 1.11 e 3 & 3.12 e 3 & 0.336 & 3.92 & 3.95 & 4.44 & 13.2 & 105.8 & NO \\
\hline 37 & 37 13C2-6:2 FTS & \(429.1>408.9\) & 2.77 e 3 & 1.20 e 4 & 0.192 & 4.23 & 4.27 & 2.90 & 15.0 & 120.4 & NO \\
\hline 38 & 38 13C2-PFOA & 414.9 > 369.7 & 1.29 e 4 & 1.20 e 4 & 1.001 & 4.29 & 4.32 & 13.5 & 13.5 & 107.7 & NO \\
\hline 39 & 39 13C5-PFNA & 468.2 > 422.9 & 9.81 e 3 & 1.01 e 4 & 0.811 & 4.72 & 4.75 & 12.1 & 14.9 & 119.3 & NO \\
\hline 40 & 40 13C8-PFOSA & \(506.1>77.7\) & 2.60 e 3 & 1.26 e 4 & 0.196 & 4.79 & 4.81 & 2.57 & 13.1 & 104.7 & NO \\
\hline 41 & 41 13C8-PFOS & \(507.0>79.9\) & 2.46 e 3 & 3.10 e 3 & 0.862 & 4.80 & 4.83 & 9.92 & 11.5 & 92.1 & NO \\
\hline 42 & 42 13C2-PFDA & \(515.1>469.9\) & 1.06 e 4 & 8.86 e 3 & 0.996 & 5.10 & 5.12 & 14.9 & 15.0 & 119.8 & NO \\
\hline 43 & 43 13C2-8:2 FTS & \(529.1>508.7\) & 1.36 e 3 & 1.20 e 4 & 0.103 & 5.06 & 5.10 & 1.42 & 13.8 & 110.4 & NO \\
\hline 44 & 44 d3-N-MeFOSAA & \(573.3>419\) & 4.60 e 3 & 1.26 e 4 & 0.340 & 5.24 & 5.28 & 4.55 & 13.4 & 107.0 & NO \\
\hline 45 & \(45 \mathrm{~d} 5-\mathrm{N}\)-EtFOSAA & \(589.3>419\) & 5.16 e 3 & 1.26 e 4 & 0.377 & 5.40 & 5.43 & 5.11 & 13.6 & 108.4 & NO \\
\hline 46 & 46 13C2-PFUdA & \(565>519.8\) & 1.05 e 4 & 1.26 e 4 & 0.944 & 5.42 & 5.45 & 10.4 & 11.0 & 87.8 & NO \\
\hline 47 & 47 13C2-PFDoA & \(615.0>569.7\) & 8.59 e 3 & 1.26 e 4 & 0.726 & 5.70 & 5.73 & 8.50 & 11.7 & 93.7 & NO \\
\hline 48 & \(48 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}\) & \(515.2>168.9\) & 1.75 e 4 & 1.26 e 4 & 0.119 & 5.79 & 5.83 & 17.3 & 145 & 96.8 & NO \\
\hline 49 & 49 13C2-PFTeDA & \(714.8>669.6\) & 4.18 e 3 & 1.26 e 4 & 0.371 & 6.16 & 6.19 & 4.13 & 11.1 & 89.0 & NO \\
\hline 50 & 50 d5-N-ETFOSA & \(531.1>168.9\) & 2.50 e 4 & 1.26 e 4 & 0.174 & 6.17 & 6.20 & 24.7 & 143 & 95.0 & NO \\
\hline 51 & 51 13C2-PFHxDA & \(815>769.7\) & 2.79 e 3 & 1.26 e 4 & 0.559 & 6.48 & 6.51 & 2.76 & 4.94 & 98.7 & NO \\
\hline 52 & \(52 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}\) & \(623.1>58.9\) & 2.34 e 4 & 1.26 e 4 & 0.179 & 6.31 & 6.31 & 23.2 & 129 & 86.1 & NO \\
\hline 53 & \(53 \mathrm{~d} 9-\mathrm{N}-\mathrm{EtFOSE}\) & \(639.2>58.8\) & 1.86 e 4 & 1.26 e 4 & 0.160 & 6.45 & 6.47 & 18.5 & 116 & 77.0 & NO \\
\hline 54 & 54 13C4-PFBA & 217. \(>171.8\) & 1.01 e 4 & 1.01 e 4 & 1.000 & 1.44 & 1.45 & 12.5 & 12.5 & 100.0 & NO \\
\hline 55 & 55 13C5-PFHxA & \(318>272.9\) & 1.20 e 4 & 1.20 e 4 & 1.000 & 3.16 & 3.17 & 12.5 & 12.5 & 100.0 & NO \\
\hline 56 & 56 13C3-PFHxS & \(401.9>79.9\) & 3.12 e 3 & 3.12 e 3 & 1.000 & 3.92 & 3.95 & 12.5 & 12.5 & 100.0 & NO \\
\hline 57 & 57 13C8-PFOA & \(421.3>376\) & 1.20 e 4 & 1.20 e 4 & 1.000 & 4.29 & 4.32 & 12.5 & 12.5 & 100.0 & NO \\
\hline 58 & 58 13C9-PFNA & \(472.2>426.9\) & 1.01 e 4 & 1.01 e 4 & 1.000 & 4.72 & 4.76 & 12.5 & 12.5 & 100.0 & NO \\
\hline 59 & 59 13C4-PFOS & \(503>79.9\) & 3.10 e 3 & 3.10 e 3 & 1.000 & 4.80 & 4.83 & 12.5 & 12.5 & 100.0 & NO \\
\hline 60 & 60 13C6-PFDA & \(519.1>473.7\) & 8.86e3 & 8.86 e 3 & 1.000 & 5.10 & 5.13 & 12.5 & 12.5 & 100.0 & NO \\
\hline 61 & 61 13C7-PFUdA & \(570.1>524.8\) & 1.26 e 4 & 1.26 e 4 & 1.000 & 5.42 & 5.45 & 12.5 & 12.5 & 100.0 & NO \\
\hline
\end{tabular}

Last Altered: Monday, January 29, 2018 15:23:59 Pacific Standard Time
Printed: Monday, January 29, 2018 15:24:09 Pacific Standard Time

Method: Z:\Projects\PFAS.PRO\MethDB\PFAS FULL 80C 011618.mdb 17 Jan 2018 13:31:53
Calibration: Z:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 10:22:57
Name: 180122M2_19, Date: 22-Jan-2018, Time: 18:51:19, ID: ST180122M2-2 PFC CS3 17L2611, Description: PFC CS3 17L2611
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec & Recovery Out \\
\hline 1 & 1 PFBA & 213.0 > 168.8 & 9.79e3 & 9.23 e 3 & & 1.44 & 1.45 & 13.3 & 9.92 & 99.2 & NO \\
\hline 2 & 2 PFPeA & \(263.1>218.9\) & 9.30 e 3 & 1.15 e 4 & & 2.39 & 2.41 & 10.1 & 8.75 & 87.5 & NO \\
\hline 3 & 3 PFBS & \(299.0>79.7\) & 2.17 e 3 & 1.42 e 3 & & 2.66 & 2.69 & 19.2 & 10.0 & 100.0 & NO \\
\hline 4 & 4 PFHxA & \(313.2>268.9\) & 1.20 e 4 & 3.33 e 3 & & 3.16 & 3.19 & 18.0 & 10.2 & 102.5 & NO \\
\hline 5 & 5 PFHpA & \(363.0>318.9\) & 1.02 e 4 & 9.51 e 3 & & 3.77 & 3.81 & 13.4 & 8.96 & 89.6 & NO \\
\hline 6 & 6 L-PFHxS & \(398.9>79.6\) & 1.64 e 3 & 1.16 e 3 & & 3.92 & 3.96 & 17.6 & 8.76 & 87.6 & NO \\
\hline 7 & 7 Br -PFHxS & \(398.9>79.6\) & & 1.16 e 3 & & 3.76 & & & & & NO \\
\hline 8 & 8 6:2 FTS & \(427.1>407\) & 2.65 e 3 & 1.16 e 3 & & 4.23 & 4.28 & 28.4 & 9.92 & 99.2 & NO \\
\hline 9 & 9 L-PFOA & \(413>368.7\) & 1.20 e 4 & 1.53 e 4 & & 4.29 & 4.33 & 9.76 & 8.40 & 84.0 & NO \\
\hline 10 & 10 Br -PFOA & \(413>368.7\) & & 1.53 e 4 & & 4.20 & & & & & NO \\
\hline 11 & 11 PFHpS & \(449>80.0\) & 2.79 e 3 & 1.53 e 4 & & 4.40 & 4.44 & 2.27 & 8.01 & 80.1 & NO \\
\hline 12 & 12 PFNA & \(463.0>418.8\) & 1.11e4 & 9.79 e 3 & & 4.72 & 4.77 & 14.2 & 10.4 & 104.1 & NO \\
\hline 13 & 13 PFOSA & \(498.1>77.8\) & 2.41 e 3 & 2.81 e 3 & & 4.79 & 4.83 & 10.7 & 8.91 & 89.1 & NO \\
\hline 14 & 14 L-PFOS & \(499>79.9\) & 2.93e3 & 3.27 e 3 & & 4.79 & 4.85 & 11.2 & 10.1 & 100.6 & NO \\
\hline 15 & 15 Br -PFOS & \(499>79.9\) & & 3.27 e 3 & & 4.65 & & & & & NO \\
\hline 16 & 16 PFDA & \(513>468.8\) & 1.32 e 4 & 1.22 e 4 & & 5.10 & 5.14 & 13.6 & 9.44 & 94.4 & NO \\
\hline 17 & 17 8:2 FTS & \(527>506.9\) & 2.19 e 3 & 1.22 e 4 & & 5.06 & 5.11 & 2.25 & 8.93 & 89.3 & NO \\
\hline 18 & \(18 \mathrm{~N}-\mathrm{MeFOSAA}\) & \(570.1>419\) & 7.08e3 & 4.67 e 3 & & 5.24 & 5.29 & 19.0 & 11.5 & 115.2 & NO \\
\hline 19 & \(19 \mathrm{~N}-\mathrm{EtFOSAA}\) & \(584.2>419\) & 5.80 e 3 & 5.31 e 3 & & 5.40 & 5.45 & 13.7 & 10.6 & 105.8 & NO \\
\hline 20 & 20 PFUdA & \(563.0>518.9\) & 1.13 e 4 & 1.25 e 4 & & 5.42 & 5.46 & 11.4 & 8.91 & 89.1 & NO \\
\hline 21 & 21 PFDS & \(598.8>80\) & 2.75 e 3 & 1.03 e 4 & & 5.46 & 5.51 & 3.34 & 9.86 & 98.6 & NO \\
\hline 22 & 22 PFDoA & \(612.9>569.0\) & 1.55 e 4 & 1.03 e 4 & & 5.70 & 5.74 & 18.9 & 13.0 & 129.5 & NO \\
\hline 23 & 23 N-MeFOSA & \(512.1>168.9\) & 6.22 e 3 & 1.61 e 4 & & 5.79 & 5.83 & 57.8 & 51.8 & 103.5 & NO \\
\hline 24 & 24 PFTrDA & \(662.9>618.9\) & 1.25 e 4 & 1.03 e 4 & & 5.94 & 5.99 & 15.2 & 7.09 & 70.9 & NO \\
\hline 25 & 25 PFTeDA & \(712.9>668.8\) & 9.85 e 3 & 3.98 e 3 & & 6.16 & 6.20 & 31.0 & 9.41 & 94.1 & NO \\
\hline 26 & \(26 \mathrm{~N}-\mathrm{EtFOSA}\) & \(526.1>168.9\) & 8.18 e 3 & 2.50 e 4 & & 6.17 & 6.21 & 49.0 & 48.9 & 97.8 & NO \\
\hline 27 & 27 PFHxDA & \(813.1>768.6\) & 3.85 e 3 & 2.64 e 3 & & 6.48 & 6.52 & 7.29 & 8.88 & 88.8 & NO \\
\hline 28 & 28 PFODA & \(913.1>868.8\) & 5.46e3 & 2.64 e 3 & & 6.71 & 6.75 & 10.3 & 11.3 & 112.8 & NO \\
\hline 29 & 29 N-MeFOSE & \(616.1>58.9\) & 7.65 e 3 & 1.71 e 4 & & 6.31 & 6.33 & 67.0 & 58.0 & 116.0 & NO \\
\hline 30 & \(30 \mathrm{~N}-\mathrm{EtFOSE}\) & \(630.1>58.9\) & 7.97 e 3 & 2.25 e 4 & & 6.45 & 6.48 & 53.1 & 43.9 & 87.8 & NO \\
\hline 31 & 31 13C3-PFBA & \(216.1>171.8\) & 9.23 e 3 & 1.09 e 4 & 0.779 & 1.44 & 1.45 & 10.6 & 13.6 & 108.9 & NO \\
\hline 32 & 32 13C3-PFPeA & 266. \(>221.8\) & 1.15 e 4 & 1.17 e 4 & 0.797 & 2.39 & 2.41 & 12.3 & 15.5 & 124.0 & NO \\
\hline
\end{tabular}

Name: 180122M2_19, Date: 22-Jan-2018, Time: 18:51:19, ID: ST180122M2-2 PFC CS3 17L2611, Description: PFC CS3 17L2611
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec & Recovery Out \\
\hline 33 & 33 13C3-PFBS & 302. > 98.8 & 1.42 e 3 & 1.17 e 4 & 0.095 & 2.66 & 2.69 & 1.51 & 15.9 & 127.5 & NO \\
\hline 34 & 34 13C2-PFHxA & \(315>269.8\) & 3.33 e 3 & 1.17 e 4 & 0.636 & 3.16 & 3.19 & 3.56 & 5.60 & 111.8 & NO \\
\hline 35 & 35 13C4-PFHpA & \(367.2>321.8\) & 9.51 e 3 & 1.17 e 4 & 0.621 & 3.77 & 3.81 & 10.2 & 16.4 & 131.2 & NO \\
\hline 36 & 36 18O2-PFHxS & 403.0 > 102.6 & 1.16 e 3 & 3.06 e 3 & 0.336 & 3.92 & 3.96 & 4.76 & 14.2 & 113.5 & NO \\
\hline 37 & 37 13C2-6:2 FTS & \(429.1>408.9\) & 2.28 e 3 & 1.18 e 4 & 0.192 & 4.23 & 4.28 & 2.42 & 12.6 & 100.7 & NO \\
\hline 38 & 38 13C2-PFOA & 414.9 > 369.7 & 1.53 e 4 & 1.18 e 4 & 1.001 & 4.29 & 4.33 & 16.3 & 16.2 & 130.0 & NO \\
\hline 39 & 39 13C5-PFNA & 468.2 > 422.9 & 9.79 e 3 & 1.11 e 4 & 0.811 & 4.72 & 4.76 & 11.0 & 13.6 & 108.8 & NO \\
\hline 40 & 40 13C8-PFOSA & \(506.1>77.7\) & 2.81e3 & 1.17 e 4 & 0.196 & 4.79 & 4.83 & 3.00 & 15.3 & 122.1 & NO \\
\hline 41 & 41 13C8-PFOS & \(507.0>79.9\) & 3.27 e 3 & 3.07e3 & 0.862 & 4.80 & 4.84 & 13.3 & 15.4 & 123.6 & NO \\
\hline 42 & 42 13C2-PFDA & \(515.1>469.9\) & 1.22 e 4 & 1.06 e 4 & 0.996 & 5.10 & 5.14 & 14.4 & 14.5 & 115.6 & NO \\
\hline 43 & 43 13C2-8:2 FTS & \(529.1>508.7\) & 1.66 e 3 & 1.17 e 4 & 0.103 & 5.06 & 5.11 & 1.77 & 17.2 & 137.8 & NO \\
\hline 44 & 44 d3-N-MeFOSAA & \(573.3>419\) & 4.67 e 3 & 1.17 e 4 & 0.340 & 5.24 & 5.28 & 4.98 & 14.7 & 117.3 & NO \\
\hline 45 & \(45 \mathrm{~d} 5-\mathrm{N}\)-EtFOSAA & \(589.3>419\) & 5.31 e 3 & 1.17 e 4 & 0.377 & 5.40 & 5.44 & 5.67 & 15.0 & 120.4 & NO \\
\hline 46 & 46 13C2-PFUdA & \(565>519.8\) & 1.25 e 4 & 1.17 e 4 & 0.944 & 5.42 & 5.46 & 13.3 & 14.1 & 112.8 & NO \\
\hline 47 & 47 13C2-PFDoA & \(615.0>569.7\) & 1.03 e 4 & 1.17 e 4 & 0.726 & 5.70 & 5.74 & 11.0 & 15.2 & 121.2 & NO \\
\hline 48 & 48 d3-N-MeFOSA & \(515.2>168.9\) & 1.61 e 4 & 1.17 e 4 & 0.119 & 5.79 & 5.85 & 17.2 & 145 & 96.6 & NO \\
\hline 49 & 49 13C2-PFTeDA & 714.8 > 669.6 & 3.98 e 3 & 1.17 e 4 & 0.371 & 6.16 & 6.20 & 4.25 & 11.4 & 91.5 & NO \\
\hline 50 & 50 d5-N-ETFOSA & \(531.1>168.9\) & 2.50 e 4 & 1.17 e 4 & 0.174 & 6.17 & 6.22 & 26.7 & 154 & 102.7 & NO \\
\hline 51 & 51 13C2-PFHxDA & \(815>769.7\) & 2.64 e 3 & 1.17 e 4 & 0.559 & 6.48 & 6.52 & 2.82 & 5.04 & 100.8 & NO \\
\hline 52 & \(52 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}\) & \(623.1>58.9\) & 1.71 e 4 & 1.17 e 4 & 0.179 & 6.31 & 6.32 & 18.3 & 102 & 68.0 & NO \\
\hline 53 & 53 d9-N-EtFOSE & \(639.2>58.8\) & 2.25 e4 & 1.17 e 4 & 0.160 & 6.45 & 6.47 & 24.0 & 150 & 100.3 & NO \\
\hline 54 & 54 13C4-PFBA & 217. > 171.8 & 1.09 e 4 & 1.09 e 4 & 1.000 & 1.44 & 1.45 & 12.5 & 12.5 & 100.0 & NO \\
\hline 55 & 55 13C5-PFHxA & \(318>272.9\) & 1.17 e 4 & 1.17 e 4 & 1.000 & 3.16 & 3.19 & 12.5 & 12.5 & 100.0 & NO \\
\hline 56 & 56 13C3-PFHxS & \(401.9>79.9\) & 3.06e3 & 3.06 e 3 & 1.000 & 3.92 & 3.96 & 12.5 & 12.5 & 100.0 & NO \\
\hline 57 & 57 13C8-PFOA & \(421.3>376\) & 1.18 e 4 & 1.18 e 4 & 1.000 & 4.29 & 4.33 & 12.5 & 12.5 & 100.0 & NO \\
\hline 58 & 58 13C9-PFNA & 472.2 > 426.9 & 1.11 e 4 & 1.11 e 4 & 1.000 & 4.72 & 4.76 & 12.5 & 12.5 & 100.0 & NO \\
\hline 59 & 59 13C4-PFOS & \(503>79.9\) & 3.07 e 3 & 3.07e3 & 1.000 & 4.80 & 4.85 & 12.5 & 12.5 & 100.0 & NO \\
\hline 60 & 60 13C6-PFDA & \(519.1>473.7\) & 1.06 e 4 & 1.06 e 4 & 1.000 & 5.10 & 5.14 & 12.5 & 12.5 & 100.0 & NO \\
\hline 61 & 61 13C7-PFUdA & \(570.1>524.8\) & 1.17 e 4 & 1.17 e 4 & 1.000 & 5.42 & 5.46 & 12.5 & 12.5 & 100.0 & NO \\
\hline
\end{tabular}

Last Altered: Monday, January 29, 2018 15:28:17 Pacific Standard Time

Method: Z:\Projects\PFAS.PRO\MethDB\PFAS FULL 80C 011618.mdb 17 Jan 2018 13:31:53
Calibration: Z:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 10:22:57
Name: 180122M2_29, Date: 22-Jan-2018, Time: 20:46:10, ID: ST180122M2-3 PFC CS3 17L2611, Description: PFC CS3 17L2611
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec & Recovery Out & \\
\hline 1 & 1 PFBA & \(213.0>168.8\) & 1.04 e 4 & 1.03 e 4 & & 1.44 & 1.45 & 12.7 & 9.51 & 95.1 & NO & \\
\hline 2 & 2 PFPeA & \(263.1>218.9\) & 1.08 e 4 & 1.19 e 4 & & 2.39 & 2.42 & 11.3 & 9.80 & 98.0 & NO & \\
\hline 3 & 3 PFBS & \(299.0>79.7\) & 2.48 e 3 & 1.43 e 3 & & 2.66 & 2.69 & 21.7 & 11.3 & 112.9 & NO & \\
\hline 4 & 4 PFHxA & 313.2 > 268.9 & 1.20 e 4 & 3.72 e 3 & & 3.16 & 3.19 & 16.1 & 9.19 & 91.9 & NO & \\
\hline 5 & 5 PFHpA & \(363.0>318.9\) & 1.08 e 4 & 9.34 e 3 & & 3.77 & 3.81 & 14.4 & 9.69 & 96.9 & NO & \\
\hline 6 & 6 L-PFHxS & \(398.9>79.6\) & 1.89 e 3 & 1.25 e 3 & & 3.92 & 3.96 & 18.9 & 9.46 & 94.6 & NO & \\
\hline 7 & 7 Br -PFHxS & \(398.9>79.6\) & & 1.25 e 3 & & 3.76 & & & & & NO & \\
\hline 8 & 8 6:2 FTS & \(427.1>407\) & 2.99 e 3 & 1.25 e 3 & & 4.23 & 4.27 & 29.9 & 10.4 & 104.3 & NO & \\
\hline 9 & 9 L-PFOA & \(413>368.7\) & 1.15 e 4 & 1.36 e 4 & & 4.29 & 4.33 & 10.5 & 9.09 & 90.9 & NO & \\
\hline 10 & 10 Br -PFOA & \(413>368.7\) & & 1.36 e 4 & & 4.20 & & & & & NO & \\
\hline 11 & 11 PFHpS & \(449>80.0\) & 3.13 e 3 & 1.36 e 4 & & 4.40 & 4.44 & 2.87 & 10.2 & 102.0 & NO & \\
\hline 12 & 12 PFNA & \(463.0>418.8\) & 1.21 e 4 & 1.18 e 4 & & 4.72 & 4.76 & 12.8 & 9.39 & 93.9 & NO & \\
\hline 13 & 13 PFOSA & \(498.1>77.8\) & 2.75 e 3 & 2.88 e 3 & & 4.79 & 4.83 & 11.9 & 9.93 & 99.3 & NO & \\
\hline 14 & 14 L-PFOS & \(499>79.9\) & 2.53 e 3 & 3.18 e 3 & & 4.79 & 4.84 & 9.94 & 8.94 & 89.4 & NO & \\
\hline 15 & 15 Br -PFOS & \(499>79.9\) & & 3.18 e 3 & & 4.65 & & & & & NO & \\
\hline 16 & 16 PFDA & \(513>468.8\) & 1.10 e 4 & 9.06 e 3 & & 5.10 & 5.14 & 15.2 & 10.6 & 105.7 & NO & \\
\hline 17 & 17 8:2 FTS & \(527>506.9\) & 2.58 e 3 & 9.06 e 3 & & 5.06 & 5.11 & 3.55 & 15.0 & 150.4 & YES & * \\
\hline 18 & \(18 \mathrm{~N}-\mathrm{MeFOSAA}\) & \(570.1>419\) & 7.66 e 3 & 5.47 e 3 & & 5.24 & 5.29 & 17.5 & 10.6 & 106.2 & NO & \\
\hline 19 & \(19 \mathrm{~N}-\mathrm{EtFOSAA}\) & \(584.2>419\) & 5.62 e 3 & 5.97 e 3 & & 5.40 & 5.44 & 11.8 & 9.11 & 91.1 & NO & \\
\hline 20 & 20 PFUdA & \(563.0>518.9\) & 1.08 e 4 & 1.23 e 4 & & 5.42 & 5.46 & 11.0 & 8.59 & 85.9 & NO & \\
\hline 21 & 21 PFDS & \(598.8>80\) & 3.19 e 3 & 1.04 e 4 & & 5.46 & 5.50 & 3.82 & 11.3 & 113.3 & NO & \\
\hline 22 & 22 PFDoA & \(612.9>569.0\) & 1.62 e 4 & 1.04 e 4 & & 5.70 & 5.73 & 19.5 & 13.4 & 133.7 & YES & * No sample results reported \\
\hline 23 & 23 N-MeFOSA & \(512.1>168.9\) & 6.26 e 3 & 1.73 e 4 & & 5.79 & 5.82 & 54.2 & 48.6 & 97.1 & NO & \\
\hline 24 & 24 PFTrDA & \(662.9>618.9\) & 1.26 e 4 & 1.04 e 4 & & 5.94 & 5.99 & 15.1 & 7.03 & 70.3 & NO & \\
\hline 25 & 25 PFTeDA & \(712.9>668.8\) & 8.41 e 3 & 4.51 e 3 & & 6.16 & 6.20 & 23.3 & 7.00 & 70.0 & YES & * \\
\hline 26 & \(26 \mathrm{~N}-\mathrm{EtFOSA}\) & \(526.1>168.9\) & 8.77 e 3 & 2.58 e 4 & & 6.17 & 6.20 & 51.0 & 50.8 & 101.7 & NO & \\
\hline 27 & 27 PFHxDA & \(813.1>768.6\) & 4.86 e 3 & 2.44 e 3 & & 6.48 & 6.51 & 9.94 & 12.2 & 122.1 & NO & \\
\hline 28 & 28 PFODA & \(913.1>868.8\) & 5.27e3 & 2.44 e 3 & & 6.71 & 6.74 & 10.8 & 11.8 & 117.7 & NO & \\
\hline 29 & 29 N-MeFOSE & \(616.1>58.9\) & 7.22 e 3 & 2.12 e 4 & & 6.31 & 6.33 & 51.1 & 44.1 & 88.1 & NO & \\
\hline 30 & \(30 \mathrm{~N}-\mathrm{EtFOSE}\) & \(630.1>58.9\) & 9.84 e 3 & 2.60 e 4 & & 6.45 & 6.48 & 56.7 & 46.7 & 93.5 & NO & \\
\hline 31 & 31 13C3-PFBA & \(216.1>171.8\) & 1.03 e 4 & 1.16 e 4 & 0.779 & 1.44 & 1.46 & 11.1 & 14.2 & 113.9 & NO & \\
\hline 32 & 32 13C3-PFPeA & 266. \(>221.8\) & 1.19 e 4 & 1.26 e 4 & 0.797 & 2.39 & 2.41 & 11.9 & 14.9 & 119.2 & NO & MJT1/29/2018 \\
\hline
\end{tabular}

Name: 180122M2_29, Date: 22-Jan-2018, Time: 20:46:10, ID: ST180122M2-3 PFC CS3 17L2611, Description: PFC CS3 17L2611
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec & Recovery Out \\
\hline 33 & 33 13C3-PFBS & 302. > 98.8 & 1.43 e 3 & 1.26 e 4 & 0.095 & 2.66 & 2.69 & 1.43 & 15.0 & 120.1 & NO \\
\hline 34 & 34 13C2-PFHxA & \(315>269.8\) & 3.72 e 3 & 1.26 e 4 & 0.636 & 3.16 & 3.19 & 3.70 & 5.81 & 116.2 & NO \\
\hline 35 & 35 13C4-PFHpA & \(367.2>321.8\) & 9.34 e 3 & 1.26 e 4 & 0.621 & 3.77 & 3.81 & 9.29 & 15.0 & 119.7 & NO \\
\hline 36 & 36 18O2-PFHxS & 403.0 > 102.6 & 1.25 e 3 & 3.36 e 3 & 0.336 & 3.92 & 3.96 & 4.65 & 13.8 & 110.8 & NO \\
\hline 37 & 37 13C2-6:2 FTS & \(429.1>408.9\) & 2.64 e 3 & 1.04 e 4 & 0.192 & 4.23 & 4.28 & 3.17 & 16.5 & 131.7 & NO \\
\hline 38 & 38 13C2-PFOA & \(414.9>369.7\) & 1.36 e 4 & 1.04 e 4 & 1.001 & 4.29 & 4.33 & 16.3 & 16.3 & 130.6 & NO \\
\hline 39 & 39 13C5-PFNA & 468.2 > 422.9 & 1.18 e 4 & 1.19 e 4 & 0.811 & 4.72 & 4.76 & 12.4 & 15.3 & 122.6 & NO \\
\hline 40 & 40 13C8-PFOSA & \(506.1>77.7\) & 2.88 e 3 & 1.16 e 4 & 0.196 & 4.79 & 4.83 & 3.11 & 15.8 & 126.6 & NO \\
\hline 41 & 41 13C8-PFOS & \(507.0>79.9\) & 3.18 e 3 & 3.48 e 3 & 0.862 & 4.80 & 4.84 & 11.4 & 13.3 & 106.1 & NO \\
\hline 42 & 42 13C2-PFDA & \(515.1>469.9\) & 9.06 e 3 & 7.98 e 3 & 0.996 & 5.10 & 5.13 & 14.2 & 14.3 & 114.1 & NO \\
\hline 43 & 43 13C2-8:2 FTS & \(529.1>508.7\) & 1.31 e 3 & 1.26 e 4 & 0.103 & 5.06 & 5.11 & 1.30 & 12.7 & 101.4 & NO \\
\hline 44 & 44 d3-N-MeFOSAA & \(573.3>419\) & 5.47 e 3 & 1.16 e 4 & 0.340 & 5.24 & 5.28 & 5.90 & 17.3 & 138.8 & NO \\
\hline 45 & \(45 \mathrm{~d} 5-\mathrm{N}\)-EtFOSAA & \(589.3>419\) & 5.97 e 3 & 1.16 e 4 & 0.377 & 5.40 & 5.44 & 6.45 & 17.1 & 136.8 & NO \\
\hline 46 & 46 13C2-PFUdA & \(565>519.8\) & 1.23 e 4 & 1.16 e 4 & 0.944 & 5.42 & 5.46 & 13.3 & 14.1 & 112.8 & NO \\
\hline 47 & 47 13C2-PFDoA & \(615.0>569.7\) & 1.04 e 4 & 1.16 e 4 & 0.726 & 5.70 & 5.73 & 11.2 & 15.5 & 123.9 & NO \\
\hline 48 & \(48 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}\) & \(515.2>168.9\) & 1.73 e 4 & 1.16 e 4 & 0.119 & 5.79 & 5.84 & 18.7 & 157 & 104.8 & NO \\
\hline 49 & 49 13C2-PFTeDA & \(714.8>669.6\) & 4.51 e 3 & 1.16 e 4 & 0.371 & 6.16 & 6.20 & 4.86 & 13.1 & 104.8 & NO \\
\hline 50 & 50 d5-N-ETFOSA & \(531.1>168.9\) & 2.58 e 4 & 1.16 e 4 & 0.174 & 6.17 & 6.22 & 27.8 & 160 & 106.9 & NO \\
\hline 51 & 51 13C2-PFHxDA & \(815>769.7\) & 2.44 e 3 & 1.16 e 4 & 0.559 & 6.48 & 6.51 & 2.64 & 4.72 & 94.3 & NO \\
\hline 52 & \(52 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}\) & \(623.1>58.9\) & 2.12 e 4 & 1.16 e 4 & 0.179 & 6.31 & 6.32 & 22.9 & 128 & 85.0 & NO \\
\hline 53 & 53 d9-N-EtFOSE & \(639.2>58.8\) & 2.60 e 4 & 1.16 e 4 & 0.160 & 6.45 & 6.47 & 28.1 & 176 & 117.3 & NO \\
\hline 54 & 54 13C4-PFBA & 217. > 171.8 & 1.16 e 4 & 1.16 e 4 & 1.000 & 1.44 & 1.45 & 12.5 & 12.5 & 100.0 & NO \\
\hline 55 & 55 13C5-PFHxA & \(318>272.9\) & 1.26 e 4 & 1.26 e 4 & 1.000 & 3.16 & 3.19 & 12.5 & 12.5 & 100.0 & NO \\
\hline 56 & 56 13C3-PFHxS & \(401.9>79.9\) & 3.36 e 3 & 3.36 e 3 & 1.000 & 3.92 & 3.96 & 12.5 & 12.5 & 100.0 & NO \\
\hline 57 & 57 13C8-PFOA & \(421.3>376\) & 1.04 e 4 & 1.04 e 4 & 1.000 & 4.29 & 4.33 & 12.5 & 12.5 & 100.0 & NO \\
\hline 58 & 58 13C9-PFNA & 472.2 > 426.9 & 1.19 e 4 & 1.19 e 4 & 1.000 & 4.72 & 4.76 & 12.5 & 12.5 & 100.0 & NO \\
\hline 59 & 59 13C4-PFOS & \(503>79.9\) & 3.48e3 & 3.48 e 3 & 1.000 & 4.80 & 4.84 & 12.5 & 12.5 & 100.0 & NO \\
\hline 60 & 60 13C6-PFDA & \(519.1>473.7\) & 7.98 e 3 & 7.98 e 3 & 1.000 & 5.10 & 5.13 & 12.5 & 12.5 & 100.0 & NO \\
\hline 61 & 61 13C7-PFUdA & \(570.1>524.8\) & 1.16 e 4 & 1.16 e 4 & 1.000 & 5.42 & 5.46 & 12.5 & 12.5 & 100.0 & NO \\
\hline
\end{tabular}

Last Altered: Monday, January 29, 2018 15:32:26 Pacific Standard Time
Printed: Monday, January 29, 2018 15:33:21 Pacific Standard Time

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_011618.mdb 17 Jan 2018 13:31:53 Calibration: Z:|Projects\PFAS.PROCurveDBIC18_VAL-PFAS_Q4_01-15-18-FULL-OLD.cdb 16 Jan 2018 10:22:57

Compound name: PFBA
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID & Acq.Date & Acq. Time \\
\hline 1 & 180122M2_1 & IPA & 22-Jan-18 & 15:08:21 \\
\hline 2 & 180122M2_2 & ST180122M2-1 PFC CSO 17L2608 & 22-Jan-18 & 15:36:21 \\
\hline 3 & 180122M2_3 & IPA & 22-Jan-18 & 15:47:47 \\
\hline 4 & 180122M2_4 & B7L0182-BS1 OPR 0.25 & 22-Jan-18 & 15:59:16 \\
\hline 5 & 180122M2_5 & B7L0182-BLK1 Method Blank 0.25 & 22-Jan-18 & 16:10:41 \\
\hline 6 & 180122M2_6 & B7L0182-MS1 Matrix Spike 0.24949 & 22-Jan-18 & 16:22:07 \\
\hline 7 & 180122M2_7 & B7L0182-MSD1 Matrix Spike Dup 0.25319 & 22-Jan-18 & 16:33:34 \\
\hline 8 & 180122M2_8 & 1701951-01 FC-MW06S-201712120.2558 & 22-Jan-18 & 16:45:02 \\
\hline 9 & 180122M2_9 & 1701951-02 FC-MW02SR1-201712120.25063 & 22-Jan-18 & 16:56:28 \\
\hline 10 & 180122M2_10 & 1701951-03 FC-MW04I-201712120.24536 & 22-Jan-18 & 17:07:57 \\
\hline 11 & 180122M2_11 & 1701951-06 FC-MW03SR1-201712120.24463 & 22-Jan-18 & 17:19:24 \\
\hline 12 & 180122M2_12 & 1701951-07 FC-MW04S-201712120.25168 & 22-Jan-18 & 17:30:54 \\
\hline 13 & 180122M2_13 & 1701951-08 FC-MW02IR1-201712120.25393 & 22-Jan-18 & 17:42:23 \\
\hline 14 & 180122M2_14 & 1701951-09 FC-MW05S-201712120.2411 & 22-Jan-18 & 17:53:53 \\
\hline 15 & 180122M2_15 & 1701951-10 FC-DUP07-201712120.24536 & 22-Jan-18 & 18:05:22 \\
\hline 16 & 180122M2_16 & 1701951-12 ET-MW01S-201712120.24778 & 22-Jan-18 & 18:16:51 \\
\hline 17 & 180122M2_17 & 1701951-13 ET-MW01S-FRB-201712120.24667 & 22-Jan-18 & 18:28:20 \\
\hline 18 & 180122M2_18 & IPA & 22-Jan-18 & 18:39:49 \\
\hline 19 & 180122M2_19 & ST180122M2-2 PFC CS3 17L2611 & 22-Jan-18 & 18:51:19 \\
\hline 20 & 180122M2_20 & IPA & 22-Jan-18 & 19:02:49 \\
\hline 21 & 180122M2_21 & 1701951-14 FT-PZ-454S-201712120.24489 & 22-Jan-18 & 19:14:18 \\
\hline 22 & 180122M2_22 & 1701951-15 FC-MW05I-201712120.2534 & 22-Jan-18 & 19:25:47 \\
\hline 23 & 180122M2_23 & 1701951-16 ET-MW02S-201712120.25547 & 22-Jan-18 & 19:37:16 \\
\hline 24 & 180122M2_24 & 1701951-17 ET-MW03S-201712120.24815 & 22-Jan-18 & 19:48:47 \\
\hline 25 & 180122M2_25 & 1701951-18 FC-PZ05I1-201712120.25258 & 22-Jan-18 & 20:00:13 \\
\hline 26 & 180122M2_26 & 1701951-19 CV-FLTS-COMBINF-20171213 0.2... & 22-Jan-18 & 20:11:43 \\
\hline 27 & 180122M2_27 & 1701951-20 SA-MW127I-20171213 0.2512 & 22-Jan-18 & 20:23:12 \\
\hline 28 & 180122M2_28 & IPA & 22-Jan-18 & 20:34:41 \\
\hline 29 & 180122M2_29 & ST180122M2-3 PFC CS3 17L2611 & 22-Jan-18 & 20:46:10 \\
\hline 30 & 180122M2_30 & IPA & 22-Jan-18 & 20:57:39 \\
\hline
\end{tabular}

Dataset:
F:IProjects|PFAS.PRO\Results1180125M1\180125M1-63.qld
Last Altered:
Printed:
Friday, January 26, 2018 10:11:00 Pacific Standard Time Friday, January 26, 2018 10:11:17 Pacific Standard Time

Method: F:|ProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_012518.mdb 26 Jan 2018 09:01:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18

Name: 180125M1_63, Date: 26-Jan-2018, Time: 03:10:28, ID: ST180125M1-13 PFC CS0 18A1906, Description: PFC CS0 18A1906 JA1/26/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & witvol & RRF & Pred.RT & RT & y Axis Resp. & Conc. & \%Rec & \\
\hline  & 1 PFBA & \(213.0>168.8\) & 1.54 e 3 & 1.54 e 4 & 1.0000 & & 1.29 & 1.34 & 1.25 & 1.032 & 103.2 & \(76-130\) \\
\hline 3:30] & 2 PFPeA & \(263.1>218.9\) & 1.53 e 3 & 1.81e4 & 1.0000 & & 2.27 & 2.30 & 1.06 & 0.981 & 98.1 & \\
\hline 3.4 & 3 PFBS & \(299.0>79.7\) & 3.63 e 2 & 2.36 e 3 & 1.0000 & & 2.56 & 2.58 & 1.93 & 1.014 & 101.4 & \\
\hline 4 - & 4 PFHxA & \(313.2>268.9\) & 1.86 e 3 & 5.13 e 3 & 1.0000 & & 3.05 & 3.07 & 1.82 & 1.025 & 102.5 & \\
\hline & 5 PFHpA & \(363.0>318.9\) & 1.52 e 3 & 1.40 e 4 & 1.0000 & & 3.68 & 3.68 & 1.36 & 0.961 & 96.1 & \\
\hline 6 & 6 L-PFHxS & \(398.9>79.6\) & 2.31 e 2 & 1.69 e 3 & 1.0000 & & 3.80 & 3.84 & 1.71 & 0.933 & 93.3 & \\
\hline  & \(86: 2 \mathrm{FTS}\) & \(427.1>407\) & 3.22 e 2 & 2.06 e 4 & 1.0000 & & 4.15 & 4.16 & 0.195 & 0.740 & 74.0 & \\
\hline Cute & 9 L-PFOA & \(413>368.7\) & 1.65 e 3 & 2.06 e 4 & 1.0000 & & 4.20 & 4.21 & 0.999 & 0.915 & 91.5 & \\
\hline  & 11 PFHpS & \(449>80.0\) & 3.95 e 2 & 4.69 e 3 & 1.0000 & & 4.30 & 4.32 & 1.05 & 1.029 & 102.9 & \\
\hline 10. 3 : & 12 PFNA & \(463.0>418.8\) & 1.99 e 3 & 1.89 e 4 & 1.0000 & & 4.65 & 4.65 & 1.32 & 1.041 & 104.1 & \\
\hline  & 13 PFOSA & \(498.1>77.8\) & 4.79 e 2 & 5.22 e 3 & 1.0000 & & 4.70 & 4.70 & 1.15 & 0.949 & 94.9 & \\
\hline \(12 \times\) & 14 L-PFOS & \(499>79.9\) & 4.40 e 2 & 4.69 e 3 & 1.0000 & & 4.75 & 4.73 & 1.17 & 1.111 & 111.1 & \\
\hline 13. \({ }^{\text {a }}\) & 16 PFDA & \(513>468.8\) & 1.89 e 3 & 1.64 e 4 & 1.0000 & & 5.03 & 5.02 & 1.44 & 1.036 & 103.6 & \\
\hline 14. W & 17 8:2 FTS & \(527>506.9\) & 3.77 e 2 & 1.64 e 4 & 1.0000 & & 5.00 & 4.99 & 0.287 & 0.848 & 84.8 & \\
\hline 15 - \({ }^{\text {a }}\) & 18 N-MeFOSAA & \(570.1>419\) & 8.67 e 2 & 8.49 e 3 & 1.0000 & & 5.20 & 5.17 & 1.28 & 0.839 & 83.9 & \\
\hline 16 - \({ }^{17}\) & \(19 \mathrm{~N}-\mathrm{EtFOSAA}\) & \(584.2>419\) & 6.01 e 2 & 8.97e3 & 1.0000 & & 5.30 & 5.33 & 0.838 & 0.804 & 80.4 & \\
\hline 17 - 1 & 20 PFUdA & \(563.0>518.9\) & 2.28 e 3 & 2.50 e 4 & 1.0000 & & 5.36 & 5.34 & 1.14 & 0.812 & 81.2 & \\
\hline 18.4 & 21 PFDS & \(598.8>80\) & 4.49 e 2 & 1.67 e 4 & 1.0000 & & 5.40 & 5.39 & 0.336 & 0.816 & 81.6 & \\
\hline \(19 \times 2\) & 22 PFDoA & \(612.9>569.0\) & 1.69 e 3 & 1.67 e 4 & 1.0000 & & 5.65 & 5.62 & 1.26 & 0.701 & 70.1 & \\
\hline 20 - & 23 N-MeFOSA & \(512.1>168.9\) & 9.53 e 2 & 2.53 e 4 & 1.0000 & & 5.70 & 5.71 & 5.66 & 5.135 & 102.7 & \\
\hline 21 - & 24 PFTrDA & \(662.9>618.9\) & 2.09 e 3 & 1.67 e 4 & 1.0000 & & 5.90 & 5.87 & 1.56 & 0.881 & 88.1 & \\
\hline 22. 4 2 & 25 PFTeDA & \(712.9>668.8\) & 1.60 e 3 & 6.87 e 3 & 1.0000 & & 6.12 & 6.09 & 2.90 & 1.121 & 112.1 & \\
\hline  & 26 N -EtFOSA & \(526.1>168.9\) & 1.19 e 3 & 3.79 e 4 & 1.0000 & & 6.12 & 6.12 & 4.68 & 4.976 & 99.5 & \\
\hline \[
24
\] & 27 PFHxDA & \(813.1>768.6\) & 7.76 e 2 & 5.07 e 3 & 1.0000 & & 6.46 & 6.42 & 0.765 & 0.887 & 88.7 & \\
\hline \(25-3\) & 28 PFODA & \(913.1>868.8\) & 9.05 e 2 & 5.07e3 & 1.0000 & & 6.70 & 6.65 & 0.891 & 1.029 & 102.9 & \\
\hline 26 - 2 & \(29 \mathrm{~N}-\mathrm{MeFOSE}\) & \(616.1>58.9\) & 1.02 e 3 & 2.95 e 4 & 1.0000 & & 6.31 & 6.28 & 5.17 & 5.188 & 103.8 & \\
\hline \[
27
\] & 30 N -EtFOSE & \(630.1>58.9\) & 1.22 e 3 & 3.27 e 4 & 1.0000 & & 6.45 & 6.43 & 5.62 & 4.302 & 86.0 &  \\
\hline 28 - & 31 13C3-PFBA & \(216.1>171.8\) & 1.54 e 4 & 1.76 e 4 & 1.0000 & 0.882 & 1.30 & 1.34 & 10.9 & 12.386 & 99.1 & 50-150 \\
\hline 29 - & 32 13C3-PFPeA & 266. > 221.8 & 1.81 e 4 & 2.23 e 4 & 1.0000 & 0.888 & 2.27 & 2.30 & 10.2 & 11.456 & 91.6 & \\
\hline 30 - & 33 13C3-PFBS & 302. > 98.8 & 2.36 e 3 & 2.23 e 4 & 1.0000 & 0.113 & 2.56 & 2.58 & 1.32 & 11.701 & 93.6 & 6 \\
\hline 31. Work & Brdecz-7efteral & \(315>269.8\) & 5.13 e 3 & 2.23 e 4 & 1.0000 & 0.692 & 3.05 & 3.07 & 2.88 & 4.156 & B3.ge &  \\
\hline
\end{tabular}

Last Altered: Friday, January 26, 2018 10:11:00 Pacific Standard Time

Name: 180125M1_63, Date: \(26-J a n-2018\), Time: \(03: 10: 28\), ID: ST180125M1-13 PFC CSO 18A1906, Description: PFC CS0 18A1906


\title{
Method: F:|Projects\PFAS.PROMMethDBIPFAS_FULL_80C_012518.mdb 26 Jan 2018 09:01:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18
}

Name: 180125M1_78, Date: 26-Jan-2018, Time: 06:02:42, ID: ST180125M1-14 PFC CS3 18A1909, Description: PFC CS3 18A1909



Name: 180125M1_78, Date: 26-Jan-2018, Time: 06:02:42, ID: ST180125M1-14 PFC CS3 18A1909, Description: PFC CS3 18A1909

                            Friday, January 26, 2018 10:23:09 Pacific Standard Time

Method: F:IProjects|PFAS.PROIMethDBIPFAS_FULL_80C_012518.mdb 26 Jan 2018 09:01:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18 VAL-PFAS Q4 01-25-18-FULL.cdb 26 Jan 2018 09:21:18

Name: 180125M1_96, Date: 26-Jan-2018, Time: 09:29:20, ID: ST180125M1-15 PFC CS3 18A1909, Description: PFC CS3 18A1909


Name: 180125M1_96, Date: 26-Jan-2018, Time: 09:29:20, ID: ST180125M1-15 PFC CS3 18A1909, Description: PFC CS3 18A1909


Dataset:
F:IProjects\PFAS.PRO\Results\180125M11180125M1-111.qld
Last Altered: Friday, January 26, 2018 13:26:38 Pacific Standard Time
Printed: Friday, January 26, 2018 13:27:19 Pacific Standard Time

Method: F:IProjectsIPFAS.PROMMethDB\PFAS_FULL_80C_012518.mdb 26 Jan 2018 09:01:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18

Name: 180125M1_111, Date: 26-Jan-2018, Time: 12:10:01, ID: ST180125M1-16 PFC CS3 18A1909, Description: PFC CS3 18A1909


Last Altered:
Friday, January 26, 2018 13:26:38 Pacific Standard Time Friday, January 26, 2018 13:27:19 Pacific Standard Time

Name: 180125M1_111, Date: \(26-J a n-2018\), Time: 12:10:01, ID: ST180125M1-16 PFC CS3 18A1909, Description: PFC CS3 18A1909


\section*{Dataset: Untitled}

Last Altered: Friday, January 26, 2018 13:29:42 Pacific Standard Time Printed: Friday, January 26, 2018 13:30:10 Pacific Standard Time

Method: F:IProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_012518.mdb 26 Jan 2018 09:01:53 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_01-25-18-FULL.cdb 26 Jan 2018 09:21:18

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name &  & Acg. Date & Acq Time \\
\hline & 180125M1_1 & IPA & 25-Jan-18 & 15:18:35 \\
\hline 2FETEM & 180125M1_2 & ST180125M1-1 PFC CS-2 18A1904 & 25-Jan-18 & 15:30:09 \\
\hline  & 180125M1_3 & ST180125M1-2 PFC CS-1 18A1905 & 25-Jan-18 & 15:41:39 \\
\hline 4 - \({ }^{2}\) & 180125M1_4 & ST180125M1-3 PFC CS0 18A1906 & 25-Jan-18 & 15:53:10 \\
\hline 5. \({ }^{2}\) & 180125M1_5 & ST180125M1-4 PFC CS1 18A1907 & 25-Jan-18 & 16:04:39 \\
\hline 6\% & 180125M1_6 & ST180125M1-5 PFC CS2 18A1908 & 25-Jan-18 & 16:16:09 \\
\hline 2 \({ }^{\text {a }}\) & 180125M1_7 & ST180125M1-6 PFC CS3 18A1909 & 25-Jan-18 & 16:27:39 \\
\hline 4x \({ }^{\text {a }}\) & 180125M1_8 & ST180125M1-7 PFC CS4 18A1910 & 25-Jan-18 & 16:39:08 \\
\hline 2\% & 180125M1_9 & ST180125M1-8 PFC CS5 18A1911 & 25-Jan-18 & 16:50:34 \\
\hline 10.18 & 180125M1_10 & ST180125M1-9 PFC CS6 18A2403 & 25-Jan-18 & 17:02:04 \\
\hline \(11 \times 5\) & 180125M1_11 & ST180125M1-10 PFC CS7 18A2404 & 25-Jan-18 & 17:13:34 \\
\hline 12 L & 180125M1_12 & IPA & 25-Jan-18 & 17:25:03 \\
\hline \(13.4{ }^{2+5 \%}\) & 180125M1_13 & ICV180125M1-1 PFC ICV 18A1903 & 25-Jan-18 & 17:36:33 \\
\hline  & 180125M1_14 & IPA & 25-Jan-18 & 17:48:00 \\
\hline 15.5 & 180125M1_15 & B8A0097-BS1 OPR 0.25 & 25-Jan-18 & 17:59:33 \\
\hline  & 180125M1_16 & B8A0097-BLK1 Method Blank 0.25 & 25-Jan-18 & 18:10:57 \\
\hline \(17 \%\) \% \({ }^{\text {a }}\) & 180125M1_17 & 1800088-01 WT1801091210MK 0.2722 & 25-Jan-18 & 18:22:24 \\
\hline 18* & 180125M1_18 & 1800088-02 WT 1801091230MK 0.27357 & 25-Jan-18 & 18:33:50 \\
\hline 19 & 180125M1_19 & 1800088-03 WT1801091245MK 0.27139 & 25-Jan-18 & 18:45:17 \\
\hline 20 \%rivem & 180125M1_20 & 1800088-04 WT1801091320MK 0.26532 & 25-Jan-18 & 18:56:44 \\
\hline 21.4 2. & 180125M1_21 & 1800088-05 FB1801091325MK 0.27453 & 25-Jan-18 & 19:08:14 \\
\hline 22.3 & 180125M1_22 & 1800088-06 WT1801091345MK 0.26957 & 25-Jan-18 & 19:19:41 \\
\hline 23. \({ }^{3}\) W & 180125M1_23 & 1800088-07 WT1801091400MK 0.26965 & 25-Jan-18 & 19:31:11 \\
\hline 24 & 180125M1_24 & 1800088-08 WT1801091415MK 0.26689 & 25-Jan-18 & 19:42:41 \\
\hline 25.5 & 180125M1_25 & 1800088-09 WT1801091425MK 0.26573 & 25-Jan-18 & 19:54:08 \\
\hline 26.5 & 180125M1_26 & 1800088-10 WT1801091440MK 0.27009 & 25-Jan-18 & 20:05:38 \\
\hline \(27 \% 4=\) & -180125M1_27 & 1800088-11 WT1801091550MK 0.27098 & 25-Jan-18 & 20:17:07 \\
\hline  & 180125M1_28 & IPA & 25-Jan-18 & 20:28:37 \\
\hline  & 180125M1_29 & ST180125M1-11 PFC CS3 18A1909 & 25-Jan-18 & 20:40:06 \\
\hline \(30 \cdot 5\) & 180125M1_30 & IPA & 25-Jan-18 & 20:51:37 \\
\hline \(31 \pm\) & 180125M1 31 & 1800088-12 WT1801091610MK 0.2709 & 25-Jan-18 & 21:03:05 \\
\hline
\end{tabular}
ork Order 170195

Compound name: PFBA
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & ID. & Acq.Date & Acq Time \\
\hline 32.4 & 180125M1_32 & 1800088-13 WT 1801091655MK 0.26882 & 25-Jan-18 & 21:14:32 \\
\hline  & 180125M1_33 & B8A0095-BS1 OPR 0.25 & 25-Jan-18 & 21:25:59 \\
\hline \(34 \times 8\) & 180125M1_34 & B8A0095-BLK1 Method Blank 0.25 & 25-Jan-18 & 21:37:29 \\
\hline 35. & 180125M1_35 & 1800086-01 SWRAW1801111140CKA 0.25883 & 25-Jan-18 & 21:48:58 \\
\hline  & 180125M1_36 & 1800086-02 SW72PIPE18011145CKA 0.25326 & 25-Jan-18 & 22:00:27 \\
\hline \(37 \mathrm{~T}=\mathrm{ys}\) & 180125M1_37 & 1800086-03 SW48PIPE18011150CKA 0.25811 & 25-Jan-18 & 22:11:57 \\
\hline 38 \% & 180125M1_38 & 1800086-04 WHITEFB1801111155CKA 0.26057 & 25-Jan-18 & 22:23:27 \\
\hline 39 ) & 180125M1_39 & 1800086-05 WINF 1801111350 CKA 0.26195 & 25-Jan-18 & 22:34:56 \\
\hline \(40 \cdot 5\) & 180125M1_40 & 1800086-06 APPLEFB1801111355CKA 0.26264 & 25-Jan-18 & 22:46:26 \\
\hline  & 180125M1_41 & 1800086-07 WEFF1801111400CKA 0.25971 & 25-Jan-18 & 22:57:54 \\
\hline 42 \% & 180125M1_42 & 1800087-01 GW5559180108RAP 0.26262 & 25-Jan-18 & 23:09:24 \\
\hline 43 - \({ }^{3}\) & 180125M1_43 & 1800087-02 GW1216180109RAP 0.26413 & 25-Jan-18 & 23:20:54 \\
\hline \(44^{\circ}\) 5 \({ }^{3}\) & 180125M1_44 & 1800087-03 GW2226180109RAP 0.26128 & 25-Jan-18 & 23:32:23 \\
\hline \(45 \cdot 5\) & 180125M1_45 & IPA & 25-Jan-18 & 23:43:50 \\
\hline 46.3 & 180125M1_46 & ST180125M1-12 PFC CS3 18A1909 & 25-Jan-18 & 23:55:19 \\
\hline 47.4 & 180125M1_47 & IPA & 26-Jan-18 & 00:06:50 \\
\hline 48 \% \({ }^{2}\) & 180125M1_48 & 1800087-04 GW3236180109RAP 0.26128 & 26-Jan-18 & 00:18:16 \\
\hline 49: \({ }^{\text {P }}\) & 180125M1_49 & 1800087-05 GW4549180110RAP 0.26506 & 26-Jan-18 & 00:29:46 \\
\hline \(50 \pm \$\) & 180125M1_50 & 1800087-06 GW5559180110RAP 0.26174 & 26-Jan-18 & 00:41:13 \\
\hline 515 & 180125M1_51 & 1800087-07 GW6569180110RAP 0.26085 & 26-Jan-18 & 00:52:42 \\
\hline 52 & 180125M1_52 & 1800089-01 WR1801101345JLB 0.25333 & 26-Jan-18 & 01:04:12 \\
\hline 53. & 180125M1_53 & 1800089-02 WR1801101440JLB 0.25894 & 26-Jan-18 & 01:15:39 \\
\hline 54 - & 180125M1_54 & B8A0139-BS1 OPR 0.125 & 26-Jan-18 & 01:27:06 \\
\hline , & 180125M1_55 & B8A0139-BLK1 Method Blank 0.125 & 26-Jan-18 & 01:38:33 \\
\hline 56. & 180125M1_56 & B8A0139-MS1 Matrix Spike 0.1202 & 26-Jan-18 & 01:50:03 \\
\hline 57. & 180125M1_57 & B8A0139-MSD1 Matrix Spike Dup 0.11944 & 26-Jan-18 & 02:01:32 \\
\hline 58 \% & 180125M1_58 & 1800161-01 REEPDW114 0.12037 & 26-Jan-18 & 02:13:01 \\
\hline 59, & 180125M1_59 & 1800161-02 REEPDW115 0.12024 & 26-Jan-18 & 02:24:31 \\
\hline 60 & 180125M1_60 & 1800161-03 REEPDW116 0.11886 & 26-Jan-18 & 02:36:00 \\
\hline 61. & 180125M1_61 & 1800161-04 REEPDW117 0.12198 & 26-Jan-18 & 02:47:29 \\
\hline 62 & 180125M1_62 & IPA & 26-Jan-18 & 02:58:59 \\
\hline 63.4 & 180125M1_63 & ST180125M1-13 PFC CS0 18A1906 & 26-Jan-18 & 03:10:28 \\
\hline 64 & 180125M1_64 & IPA & 26-Jan-18 & 03:21:58 \\
\hline 65 \% & 180125M1_65 & 1800161-05 REEPDW118 0.1203 & 26-Jan-18 & 03:33:27 \\
\hline
\end{tabular}

Work Order 1701951
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, January 26, 2018 13:29:42 Pacific Standard Time \\
Printed: & Friday, January 26, 2018 13:30:10 Pacific Standard Time
\end{tabular}

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline 5 \(\times\) \% & Name & 10. & Acq.Date & Acq Time \\
\hline 66. & 180125M1_66 & 1800163-01 REEPDW114FRB 0.11677 & 26-Jan-18 & 03:44:57 \\
\hline 67. & 180125M1_67 & 1800163-02 REEPDW115FRB 0.11851 & 26-Jan-18 & 03:56:26 \\
\hline 68. & +180125M1_68 & 1800163-03 REEPDW116FRB 0.12178 & 26-Jan-18 & 04:07:56 \\
\hline \[
69
\] & 180125M1_69 & 1800163-04 REEPDW117FRB 0.12142 & 26-Jan-18 & 04:19:25 \\
\hline 70.3 & 180125M1_70 & 1800163-05 REEPDW118FRB 0.11535 & 26-Jan-18 & 04:30:56 \\
\hline 71. & 180125M1_71 & 1800165-01 REEPDW119 0.12133 & 26-Jan-18 & 04:42:22 \\
\hline 72. & 180125M1_72 & 1800165-02 REEPDW120 0.12087 & 26-Jan-18 & 04:53:49 \\
\hline 73 . & 180125M1_73 & 1800165-03 REEPDW511 0.12014 & 26-Jan-18 & 05:05:16 \\
\hline  & 180125M1_74 & 1800165-04 REEPDW121 0.12033 & 26-Jan-18 & 05:16:43 \\
\hline 75 \% & 180125M1_75 & 1800165-05 REEPDW122 0.11924 & 26-Jan-18 & 05:28:12 \\
\hline \[
76
\] & 180125M1_76 & 1800165-06 REEPDW123 0.11954 & 26-Jan-18 & 05:39:42 \\
\hline \[
177
\] & 180125M1_77 & IPA & 26-Jan-18 & 05:51:12 \\
\hline 78. & 180125M1_78 & ST180125M1-14 PFC CS3 18A1909 & 26-Jan-18 & 06:02:42 \\
\hline \[
79
\] & 180125M1_79 & IPA & 26-Jan-18 & 06:14:11 \\
\hline \[
80
\] & 180125M1_80 & B8A0036-BS1 OPR 0.25 & 26-Jan-18 & 06:25:42 \\
\hline 81. & 180125M1_81 & B7L0182-BS1 OPR 0.25 & 26-Jan-18 & 06:37:11 \\
\hline 82. & 180125M1_82 & B7L0182-BLK1 Method Blank 0.25 & 26-Jan-18 & 06:48:40 \\
\hline \[
83
\] & 180125M1_83 & B7L0182-MS1 Matrix Spike 0.24949 & 26-Jan-18 & 07:00:10 \\
\hline \[
84:
\] & 180125M1_84 & B7L0182-MSD1 Matrix Spike Dup 0.25319 & 26-Jan-18 & 07:11:39 \\
\hline \[
85
\] & 180125M1_85 & 1701951-01 FC-MW06S-20171212 0.2558 & 26-Jan-18 & 07:23:05 \\
\hline 86 & 180125M1_86 & 1701951-02 FC-MW02SR1-201712120.25063 & 26-Jan-18 & 07:34:36 \\
\hline 87 & 180125M1_87 & 1701951-03 FC-MW04I-201712120.24536 & 26-Jan-18 & 07:46:04 \\
\hline \[
88
\] & 180125 M 1 -88 & 1701951-06 FC-MW03SR1-20171212 0.24463 & 26-Jan-18 & 07:57:33 \\
\hline \[
89
\] & 180125M1_89 & 1701951-07 FC-MW04S-201712120.25168 & 26-Jan-18 & 08:09:03 \\
\hline \[
90
\] & 180125M1_90 & 1701951-08 FC-MW02IR1-201712120.25393 & 26-Jan-18 & 08:20:30 \\
\hline \[
91
\] & 180125M1_91 & 1701951-09 FC-MW05S-20171212 0.2411 & 26-Jan-18 & 08:31:57 \\
\hline \[
92
\] & 180125M1_92 & 1701951-10 FC-DUP07-201712120.24536 & 26-Jan-18 & 08:43:26 \\
\hline \[
93
\] & 180125M1_93 & 1701951-12 ET-MW01S-201712120.24778 & 26-Jan-18 & 08:54:53 \\
\hline \[
94
\] & 180125M1_94 & 1701951-13 ET-MW01S-FRB-201712120.24667 & 26-Jan-18 & 09:06:22 \\
\hline \[
95
\] & 180125M1_95 & IPA & 26-Jan-18 & 09:17:51 \\
\hline 96 & 180125M1_96 & ST180125M1-15 PFC CS3 18A1909 & 26-Jan-18 & 09:29:20 \\
\hline \[
97
\] & 180125M1_97 & IPA & 26-Jan-18 & 09:40:51 \\
\hline 98.4 & 180125M1_98 & 1701951-14 FT-PZ-454S-20171212 0.24489 & 26-Jan-18 & 09:52:17 \\
\hline 99 W & 180125M1 99 & 1701951-15 FC-MW05I-201712120.2534 & 26-Jan-18 & 10:03:46 \\
\hline
\end{tabular}

\footnotetext{
Work Order 170195
}
\(\begin{array}{ll}\text { Last Altered: } & \text { Friday, January 26, } 2018 \text { 13:29:42 Pacific Standard Time } \\ \text { Printed: } & \text { Friday, January 26, } 2018 \text { 13:30:10 Pacific Standard Time }\end{array}\) Printed:

\section*{Compound name: PFBA}


Last Altered:
Printed:
Friday, February 02, 2018 09:11:04 Pacific Standard Time Friday, February 02, 2018 09:47:22 Pacific Standard Time

Method: F:IProjects|PFAS.PROIMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 09:02:54
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36
Name: 180201M2_102, Date: 02-Feb-2018, Time: 06:30:11, ID: ST180201M2-15 PFC CS0 18A3009, Description: PFC CS0 18A3009

\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\180201M21180201M2-102.qld \\
Last Altered: & Friday, February 02, 2018 09:11:04 Pacific Standard Time \\
Printed: & Friday, February 02, 2018 09:47:22 Pacific Standard Time \\
\hline
\end{tabular}

Name: 180201M2_102, Date: 02-Feb-2018, Time: 06:30:11, ID: ST180201M2-15 PFC CS0 18A3009, Description: PFC CS0 18A3009


\section*{Method: F:IProjects\PFAS.PROMMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 09:02:54 Calibration: F:IProjects\PFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36}

Name: 180201M2_115, Date: 02-Feb-2018, Time: 08:59:21, ID: ST180201M2-16 PFC CS3 18A3012, Description: PFC CS3 18A3012


Name: 180201M2_115, Date: 02-Feb-2018, Time: 08:59:21, ID: ST180201M2-16 PFC CS3 18A3012, Description: PFC CS3 18A3012


Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_020118.mdb 02 Feb 2018 09:02:54 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_02-01-18-FULL.cdb 02 Feb 2018 08:56:36

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \(12 \sim 4\) & 180201M2_1 & IPA & 01-Feb-18 & 10:40:54 \\
\hline 24. & 180201M2_2 & ST180201M2-1 PFC CS-2 18A3007 & 01-Feb-18 & 10:52:18 \\
\hline  & 180201M2_3 & ST180201M2-2 PFC CS-1 18A3008 & 01-Feb-18 & 11:03:45 \\
\hline 4.5 & 180201M2_4 & ST180201M2-3 PFC CSO 18A3009 & 01-Feb-18 & 11:15:12 \\
\hline  & 180201M2_5 & ST180201M2-4 PFC CS1 18A3010 & 01-Feb-18 & 11:26:39 \\
\hline 6 6. \({ }^{3}\) & 180201M2_6 & ST180201M2-5 PFC CS2 18A3011 & 01-Feb-18 & 11:38:09 \\
\hline  & 180201M2_7 & ST180201M2-6 PFC CS3 18A3012 & 01-Feb-18 & 11:49:38 \\
\hline 8. & 180201 M 2 _8 & ST180201M2-7 PFC CS4 18A3013 & 01-Feb-18 & 12:01:08 \\
\hline 9 5\% Mitit & 180201M2_9 & ST180201M2-8 PFC CS5 18A3014 & 01-Feb-18 & 12:12:35 \\
\hline 10.4.20 & 180201M2_10 & ST180201M2-9 PFC CS6 18A3015 & 01-Feb-18 & 12:24:05 \\
\hline 11- 2 2\% & 180201M2_11 & ST180201M2-10 PFC CS7 18A3016 & 01-Feb-18 & 12:35:34 \\
\hline 12. & 180201M2_12 & IPA & 01-Feb-18 & 12:47:03 \\
\hline & 180201M2_13 & ICV180201M2-1 PFC ICV 18A3006 & 01-Feb-18 & 12:58:32 \\
\hline 14.3 & 180201M2_14 & IPA & 01-Feb-18 & 13:10:02 \\
\hline \(15 \times 4\) & 180201M2_15 & B8A0134-BS1 OPR 0.25 & 01-Feb-18 & 13:21:29 \\
\hline 16.4 & 180201M2_16 & B8A0134-BLK1 Method Blank 0.25 & 01-Feb-18 & 13:33:00 \\
\hline 17 \% & 180201M2_17 & B8A0134-MS1 Matrix Spike 0.22205 & 01-Feb-18 & 13:44:26 \\
\hline 18. & 180201M2_18 & B8A0134-MSD1 Matrix Spike Dup 0.2339 & 01-Feb-18 & 13:55:56 \\
\hline \(19 \mathrm{st} \mathrm{\%}\) & 180201M2_19 & 1800141-01 WT1801151310AB 0.24161 & 01-Feb-18 & 14:07:25 \\
\hline 20 \% & 180201M2_20 & 1800144-01 WT1801181520MK 0.25508 & 01-Feb-18 & 14:18:56 \\
\hline 21. & 180201M2_21 & 1800144-02 WT1801181540MK 0.24911 & 01-Feb-18 & 14:30:23 \\
\hline \[
22
\] & 180201M2_22 & 1800144-03 MW-09-180118JLB 0.25454 & 01-Feb-18 & 14:41:53 \\
\hline 23.4 & 180201M2_23 & 1800153-01 FT-TW507-1924 0.23859 & 01-Feb-18 & 14:53:20 \\
\hline 24 - \({ }^{\text {a }}\) & 180201M2_24 & 1800153-02 FT-TW510-1520 0.24548 & 01-Feb-18 & 15:04:46 \\
\hline 25 - \({ }^{2}\) & 180201M2_25 & 1800153-03 FT-TW511-1722 0.24264 & 01-Feb-18 & 15:16:13 \\
\hline 26 ( \({ }^{2}\) & 180201M2_26 & 1800153-04 FT-TW513-2025 0.23397 & 01-Feb-18 & 15:27:40 \\
\hline 27 \% \({ }^{2}\) & 180201M2_27 & 1800153-05 FT-Dup03-20180118 0.24917 & 01-Feb-18 & 16:09:28 \\
\hline 28 \% & 180201M2_28 & 1800153-06 FT-TW507-1924-FRB 0.25367 & 01-Feb-18 & 16:20:57 \\
\hline 29 \({ }^{2}\) & 180201 M 2 _29 & 1800153-07 FT-EB01-20180116 0.25433 & 01-Feb-18 & 16:32:26 \\
\hline 30 : & 8 180201M2_30 & 1800153-08 FT-EB02-20180117 0.25791 & 01-Feb-18 & 16:43:47 \\
\hline 31. & 180201M2 31 & 1800153-09 FT-EB03-201801180.23434 & 01-Feb-18 & 16:55:14 \\
\hline
\end{tabular}

Last Altered: Friday, February 02, 2018 09:50:10 Pacific Standard Time

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline  & Name & ID & Acg, Date & Acg Time \\
\hline 32 \% & 180201M2_32 & 1800153-10 FT-FRB01-20180116 0.25664 & 01-Feb-18 & 17:06:41 \\
\hline \(33{ }^{+1}\) & 180201M2_33 & 1800153-11 FT-FRB02-20180117 0.25152 & 01-Feb-18 & 17:18:08 \\
\hline 34 \% & 180201M2_34 & B8A0132-BS1 OPR 0.25 & 01-Feb-18 & 17:29:38 \\
\hline 35. & 180201M2_35 & B8A0132-BLK1 Method Blank 0.25 & 01-Feb-18 & 17:41:04 \\
\hline 36 & 180201M2_36 & 1800145-01 WT1801161430AB 0.26882 & 01-Feb-18 & 17:52:34 \\
\hline 37. & 180201M2_37 & IPA & 01-Feb-18 & 18:04:03 \\
\hline \[
38
\] & 180201M2_38 & ST180201M2-11 PFC CS3 18A3012 & 01-Feb-18 & 18:15:33 \\
\hline  & 180201M2_39 & IPA & 01-Feb-18 & 18:26:59 \\
\hline \(40.3=2\) & 180201M2_40 & 1800145-02 WT1801161450AB 0.26602 & 01-Feb-18 & 18:38:29 \\
\hline 41 & 180201M2_41 & 1800145-03 WT1801161505AB 0.27119 & 01-Feb-18 & 18:49:54 \\
\hline 42 & 180201M2_42 & 1800145-04 WT1801161515AB 0.27769 & 01-Feb-18 & 19:01:20 \\
\hline 43 \% & 180201M2_43 & B8A0178-BS1 OPR 1 & 01-Feb-18 & 19:12:50 \\
\hline 44. & 180201M2_44 & B8A0178-BLK1 Method Blank 1 & 01-Feb-18 & 19:24:19 \\
\hline 45 \% & 180201M2_45 & B8A0178-MS1 Matrix Spike 1.17 & 01-Feb-18 & 19:35:49 \\
\hline 46 : 4 & 180201M2_46 & B8A0178-MSD1 Matrix Spike Dup 1.16 & 01-Feb-18 & 19:47:18 \\
\hline 47 & 180201M2_47 & 1800131-01 PITTS-03-SB01-0-2 1.11 & 01-Feb-18 & 19:58:47 \\
\hline 48 & 180201M2_48 & 1800131-02 PITTS-03-SB01-19-21 1.11 & 01-Feb-18 & 20:10:16 \\
\hline \[
49
\] & 180201M2_49 & 1800131-03 PITTS-03-SB02-0-2 1.14 & 01-Feb-18 & 20:21:42 \\
\hline 50. - W & 180201M2_50 & 1800131-04 PITTS-03-SB02-13-15 1.14 & 01-Feb-18 & 20:33:13 \\
\hline \[
51
\] & 180201M2_51 & 1800131-05 PITTS-05-SB01-0-2 1.12 & 01-Feb-18 & 20:44:39 \\
\hline 52. & 180201M2_52 & 1800131-06 PITTS-05-SB01-8-10 1.1 & 01-Feb-18 & 20:56:10 \\
\hline 53. & 180201M2_53 & 1800131-07 PITTS-05-SB02-0-2 1.15 & 01-Feb-18 & 21:07:38 \\
\hline 54.4 & 180201M2_54 & IPA & 01-Feb-18 & 21:19:07 \\
\hline 55. & 180201M2_55 & ST180201M2-12 PFC CS0 18A3009 & 01-Feb-18 & 21:30:38 \\
\hline 56 \% \% = & 180201M2_56 & IPA & 01-Feb-18 & 21:42:04 \\
\hline 57 & 180201M2_57 & 1800131-08 PITTS-05-SB02-13-15 1.12 & 01-Feb-18 & 21:53:33 \\
\hline \[
58
\] & 180201M2_58 & 1800131-09 PITTS-21-SB02-0-2 1.18 & 01-Feb-18 & 22:05:02 \\
\hline \[
59
\] & 180201M2_59 & 1800131-10 PITTS-21-SB02-3-5 1.17 & 01-Feb-18 & 22:16:31 \\
\hline 60 \% \({ }^{\text {c }}\) - & 180201M2_60 & 1800131-11 PITTS-SO-DUP01-010918 1.16 & 01-Feb-18 & 22:28:01 \\
\hline \[
61
\] & 180201M2_61 & 1800131-12 PITTS-SO-DUP02-011018 1.17 & 01-Feb-18 & 22:39:30 \\
\hline \[
62
\] & 180201M2_62 & B8A0180-BS1 OPR 1 & 01-Feb-18 & 22:50:56 \\
\hline \[
63
\] & 180201M2_63 & B8A0180-BLK1 Method Blank 1 & 01-Feb-18 & 23:02:23 \\
\hline \[
64
\] & 180201M2_64 & B8A0180-MS1 Matrix Spike 1.28 & 01-Feb-18 & 23:13:51 \\
\hline 65 - & 180201 M 2 _65 & B8A0180-MSD1 Matrix Spike Dup 1.26 & 01-Feb-18 & 23:25:20 \\
\hline
\end{tabular}

Work Order 1701951
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Quantify Compound Summary Report Vista Analytical Laboratory} \\
\hline Dataset: Untitled & & & \\
\hline \begin{tabular}{l}
Last Altered: Friday, F \\
Printed: Friday, F
\end{tabular} & ary 02, 2018 09:50:10 Pacific Standard ary 02, 2018 09:52:21 Pacific Standard & & \\
\hline \multicolumn{4}{|l|}{Compound name: PFBA} \\
\hline \multicolumn{4}{|l|}{} \\
\hline 66. \({ }^{\text {a }}\), 180201M2_66 & 1800132-01 PITTS-01-SB02-0-2 1.27 & 01-Feb-18 & 23:36:50 \\
\hline 7. \({ }^{\text {che }}\) 180201M2_67 & 1800132-02 PITTS-01-SB02-11-13 1.19 & 01-Feb-18 & 23:48:20 \\
\hline \(8.2{ }^{\text {b }}\) 180201M2_68 & 1800132-03 PITTS-04-SB01-0-2 1.39 & 01-Feb-18 & 23:59:46 \\
\hline 69 W* \({ }^{\text {W }}\) - 180201M2_69 & 1800132-04 PITTS-04-SB02-0-2 1.26 & 02-Feb-18 & 00:11:13 \\
\hline 70.4. & 1800132-05 PITTS-07-SB02-0-2 1.13 & 02-Feb-18 & 00:22:40 \\
\hline 4 \({ }^{\text {dex }}\) - \(180201 \mathrm{M} 2 \_71\) & IPA & 02-Feb-18 & 00:34:07 \\
\hline 72.4 - 180201M2_72 & ST180201M2-13 PFC CS3 18A3012 & 02-Feb-18 & 00:45:37 \\
\hline 73 (x) 180201M2_73 & IPA & 02-Feb-18 & 00:57:06 \\
\hline 4 - \% W \({ }^{\text {a }}\) 180201M2_74 & 1800132-06 PITTS-07-SB02-3-5 1.13 & 02-Feb-18 & 01:08:36 \\
\hline 75 : \({ }^{\text {PWe }}\) 180201M2_75 & 1800132-07 PITTS-07-SB03-0-2 1.36 & 02-Feb-18 & 01:20:05 \\
\hline 76. W. \({ }^{\text {a }}\) 180201M2_76 & 1800132-08 PITTS-07-SB03-5.5-7.5 1.12 & 02-Feb-18 & 01:31:34 \\
\hline 77. L W: \({ }^{\text {a }}\) 180201M2_77 & 1800132-09 PITTS-21-SB01-0-2 1.37 & 02-Feb-18 & 01:43:04 \\
\hline 78 . & 1800132-10 PITTS-SO-DUP03-011018 1.08 & 02-Feb-18 & 01:54:34 \\
\hline  & 1800132-11 PITTS-SO-DUP04-011018 1.14 & 02-Feb-18 & 02:06:03 \\
\hline 80. . - 180201M2_80 & 1800132-12 PITTS-SO-DUP05-0111181.43 & 02-Feb-18 & 02:17:33 \\
\hline \(81 \times 1\) W 180201M2_81 & 1800132-13 PITTS-04-SB03-0-2 1.27 & 02-Feb-18 & 02:29:03 \\
\hline 82 - 180201M2_82 & B8A0149-BS1 OPR 1 & 02-Feb-18 & 02:40:31 \\
\hline 83 tw : \({ }^{\text {S }}\) 180201M2_83 & B8A0149-BLK1 Method Blank 1.03 & 02-Feb-18 & 02:51:59 \\
\hline 84 - W \% \({ }^{\text {a }}\) 180201M2_84 & B8A0149-MS1 Matrix Spike 1.17 & 02-Feb-18 & 03:03:28 \\
\hline  & B8A0149-MSD1 Matrix Spike Dup 1.18 & 02-Feb-18 & 03:14:57 \\
\hline 86 . & 1800129-01 PITTS-06-SB01-0-2 1.26 & 02-Feb-18 & 03:26:24 \\
\hline 87 : 4 縎 180201 M 2 _87 & 1800129-02 PITTS-06-SB01-4-6 1.15 & 02-Feb-18 & 03:37:53 \\
\hline  & IPA & 02-Feb-18 & 03:49:23 \\
\hline 89.4 180201M2_89 & ST180201M2-14 PFC CS3 18A3012 & 02-Feb-18 & 04:00:53 \\
\hline 90. & IPA & 02-Feb-18 & 04:12:22 \\
\hline 91. d \(^{\text {a }}\) 180201M2_91 & 1800129-03 PITTS-07-SB01-0-2 1.23 & 02-Feb-18 & 04:23:51 \\
\hline 92 : \({ }^{\text {a }}\) : 180201 M 2 _92 & 1800129-04 PITTS-07-SB01-5-7 1.06 & 02-Feb-18 & 04:35:21 \\
\hline 93. \({ }^{\text {a }}\) 180201M2_93 & 1800129-05 PITTS-08-SB01-0-2 1.32 & 02-Feb-18 & 04:46:50 \\
\hline  & 1800129-06 PITTS-08-SB01-13-15 1.19 & 02-Feb-18 & 04:58:21 \\
\hline 95 . \({ }^{\text {a }}\) 180201M2_95 & 1800129-08 PITTS-09-SB01-0-2 1.21 & 02-Feb-18 & 05:09:50 \\
\hline 96.*** 180201M2_96 & 1800129-09 PITTS-09-SB01-13-15 1.12 & 02-Feb-18 & 05:21:20 \\
\hline 97. & 1800129-11 PITTS-20-SB01-0-2 1.26 & 02-Feb-18 & 05:32:49 \\
\hline 98 * 180201M2_98 & 1800129-12 PITTS-20-SB01-13-15 1.1 & 02-Feb-18 & 05:44:16 \\
\hline 99 - 180201M2_99 & 1800148-01 01SB01 10-12' 1.27 & 02-Feb-18 & 05:55:45 \\
\hline
\end{tabular}

\footnotetext{
Work Order 1701951
}

Dataset: Untitled
Last Altered: Friday, February 02, 2018 09:50:10 Pacific Standard Time

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & 10 & Acq. Date & Acq, Time \\
\hline 100 \% \({ }^{\text {a }}\) & 180201M2_100 & 1800148-02 01SB02 1.5-2.5' 1.27 & 02-Feb-18 & 06:07:15 \\
\hline 101. & 180201M2_101 & IPA & 02-Feb-18 & 06:18:44 \\
\hline 102 & 180201M2_102 & ST180201M2-15 PFC CSO 18A3009 & 02-Feb-18 & 06:30:11 \\
\hline 103. & 180201M2_103 & IPA & 02-Feb-18 & 06:41:41 \\
\hline 104 , & 180201M2_104 & 1800148-03 01SB02 9.5-11.5' 1.22 & 02-Feb-18 & 06:53:08 \\
\hline 105 & 180201M2_105 & 1800148-04 01SB03 1.5-2.5' 1.19 & 02-Feb-18 & 07:04:38 \\
\hline 106 \% \({ }^{\text {- }}\) & 180201M2_106 & 1800148-05 01SB03 10-12' 1.26 & 02-Feb-18 & 07:16:08 \\
\hline  & 180201M2_107 & 1800148-06 07SB01 1.5-2' 1.26 & 02-Feb-18 & 07:27:35 \\
\hline 108 dty & 180201M2_108 & 1800148-07 07SB01 13-15' 1.29 & 02-Feb-18 & 07:39:05 \\
\hline 109 : & 180201M2_109 & 1800148-08 07SB02 1-2' 1.24 & 02-Feb-18 & 07:50:32 \\
\hline 110 찬 & 180201M2_110 & 1800148-09 07SB02 10-12' 1.26 & 02-Feb-18 & 08:02:01 \\
\hline \[
111
\] & 180201M2_111 & 1800148-10 04SB09 13-15' 1.17 & 02-Feb-18 & 08:13:31 \\
\hline 112 & 180201M2_112 & 1701951-02@5X FC-MW02SR1-20171212 0.2... & 02-Feb-18 & 08:25:01 \\
\hline \[
113
\] & 180201M2_113 & 1701951-10@5X FC-DUP07-20171212 0.24536 & 02-Feb-18 & 08:36:27 \\
\hline 114 \% & 180201M2_114 & IPA & 02-Feb-18 & 08:47:55 \\
\hline 115. & 180201M2_115 & ST180201M2-16 PFC CS3 18A3012 & 02-Feb-18 & 08:59:21 \\
\hline 116: & 180201M2_116 & IPA & 02-Feb-18 & 09:10:52 \\
\hline 117 & 180201M2_117 & 1800131_RT & 02-Feb-18 & 09:22:20 \\
\hline 118. & 180201M2_118 & 180131_RTD & 02-Feb-18 & 09:33:47 \\
\hline \[
119
\] & 180201M2_119 & 180131_RTZ & 02-Feb-18 & 09:45:14 \\
\hline 120 \% & 180201M2_120 & 180131_RTZD & & \\
\hline 121 & 180201M2_121 & 180131_C & & \\
\hline 122 \% = \% & 180201M2_122 & 180131_CD & & \\
\hline 123. & 180201M2_123 & 180131_CTZ & & \\
\hline 124:3y & 180201M2_124 & 180131_CTZD & & \\
\hline
\end{tabular}

Calverton
SDG 1701951

Sample Identification
Compound
Sample volume (L)
Internal standard concentration
Concentration using quadratic/calibration curve

Curve PFUdA


PFDA result Conc \(=x / w t\)
result reported

FC-MW06S-20171212

PERFLUOROUNDECANOIC ACID (PFUnA)
0.256
1.25
10.26646

Area*(IS concentration/IS area) 2540*(12.5/6380)

Calibration curve ( y ) \(=0.000117185^{*} x^{\wedge} 2+1.20421^{*} x+-0.000421214\)
\(33.27641 \mathrm{ng} / \mathrm{L}\)
\(33.3 \mathrm{ng} / \mathrm{L}\)
\begin{tabular}{|c|c|}
\hline cround wazer & \\
\hline Ground water & No \\
\hline Ground water & No \\
\hline Ground water & No \\
\hline Water for C C s & \\
\hline Ground water & \\
\hline
\end{tabular}
```


[^0]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^1]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^2]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

