Groundwater Sample Results,
 Combined Level 2 and Level 4 Laboratory Report, Electronic Data Deliverable, and the Sample Location Report, SDG 1800643
 Naval Weapons Industrial Reserve Plant Calverton Riverhead, New York

August 2019

April 17, 2018

Vista Work Order No. 1800643

Ms. Kristi Francisco

Tetra Tech
5700 Lake Wright Drive, Suite 309
Norfolk, VA 23502
Dear Ms. Francisco,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on April 10, 2018. This sample set was analyzed on a rush turn-around time, under your Project Name '112G08005-WE05'. The SDG Number is WE05.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Mayer
Laboratory Director

SDG Number WE05

Vista Work Order No. 1800643

Case Narrative

Sample Condition on Receipt:

One groundwater sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

PFAS Isotope Dilution Method

The aqueous sample was extracted and analyzed for a selected list of PFAS using Vista's PFAS Isotope Dilution Method. This method is listed on Vista's NELAP certificate as Modifed EPA Method 537.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ of the LOQ concentrations. The LCS/LCSD recoveries were within the acceptance criteria.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

In addition, the laboratory QC officer must read and sign a copy of the Quality Assurance Review Form displayed on the next page of this Attachment. Electronic deliverables are not considered to be complete without the accompanying Quality Assurance Review Form.

Anna Helak \qquad , as the designated Quality Assurance Officer, hereby attest that all electronic deliverables have been thoroughly reviewed and are in agreement with the associated hardcopy data. The enclosed electronic files have been reviewed for accuracy (including significant figures), completeness and format. The laboratory will be responsible for any labor time necessary to correct enclosed electronic deliverables that have been found to be in error. I can be reached at
(96) 673-1520) If there are any questions or problems with the enclosed electronic deliverables.

Signature: \qquad Title: QA. Manager Date: $04 / 16 / 2018$

Revision 9
IS
08/18/16

TABLE OF CONTENTS

Case Narrative. 1
Signed A ttestation Statement. 3
Table of Contents 4
Sample Inventory 5
A nalytical Results 6
Qualifiers 10
Certifications 11
Sample Receipt 12
Extraction Information 14
Sample Data - PFA S Isotope Dilution M ethod 18
IIS A reas, IBs and CCV s 51
ICAL with ICV and IB 75
PFA S Standards 214

Sample Inventory Report

Vista	Client	Sampled	Received	Components/Containers
Sample ID	Sample ID			
$1800643-01$	CA-AQIDW01-20180409	09-Apr-18 16:15	10-Apr-18 09:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

ANALYTICAL RESULTS

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution
E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Reporting Limit/LOQ.
M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration
NA Not applicable
ND Not Detected

TEQ Toxic Equivalency
U Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$17-015-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207717
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	014
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	9077
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

CHAIN OF CUSTODY
1880643
NO.
$0.2^{\circ} \mathrm{C}$
Page 1 of 1

		Vista Work Order \#: $\quad 1800643$			тат 7	
Samples Arrival:	Date/Time 04/10/18 0932		Initials: luns		Location: WR-2 Shelf/Rack: N/a	
Logged In:	Date/Time$04 / 10 / 18 \quad 0958$		Initials: YRAB		Location: WR. Shelf/Rack: E3 \qquad	
Delivered By:	FedEx UPS	On Trac	GSO	DHL	Hand Delivered	Other
Preservation:	(ce)	Blue			Dry Ice	None
Temp ${ }^{\circ} \mathrm{C}$: 0.3	(uncorrected)	Time: 0940 Probe used: Yes \square No,			Thermometer ID: IR-4	
Temp ${ }^{\circ} \mathrm{C}$: 0.2	(corrected)					

Adequate Sample Volume Received?						
Holding Time Acceptable?						
Shipping Container(s) Intact?						
Shipping Custody Seals Intact?						
Shipping Documentation Present?						
Airbill Trk\# 81029107 1072						
Sample Container Intact?						
Sample Custody Seals Intact?						
Chain of Custody / Sample Documentation Present?						
COC Anomaly/Sample Acceptance Form completed?						
If Chlorinated or Drinking Water Samples, Acceptable Preservation?						
Preservation Documented:	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	Trizma	None	Yes	No	NA
Shipping Container	Vista	Client	Retain	urn)		ose

Comments:

EXTRACTION INFORMATION

Prep Expiration: 2018-Apr-23
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mR)
Matrix: Aqueous

Version: 537 (14 Analyte) DoD: DoD QSM 5.1

LabSampID	ARB
$1800643-01$	A

Workorder Due: 17-Apr-18 00:00
TAT: 7
Prep Batch:

Prep Data Entered: $\frac{H N ~ 4 / 12 / 18}{\text { Date and Initials }}$
Initial Sequence: $\quad 5400028$
Comments Location WR-2 E-3 HDPE Bottle, 250 mL

WO Comments: Provide all analytical runs.
MS/MSD per batch, if MS/MSD is not provided - LCS/LCSD.
Pre-Prep Check Out: $\frac{M A(1) / 48}{N / A} \quad$ Prep Check Out: $\frac{N / A}{N / A}$
Pre-Prep Check in: N Prep Check in: N/A

PREPARATION BENCH SHEET

Prepared using: LCMS - SPE Extraction-LCMS

		Date/Initals: $04 / 11 / 18$ MA				BalancelD: HRMS-8					
Cen	VISTA Sample ID	pH Before	$\begin{gathered} \mathrm{pH} \\ \text { After } \end{gathered}$	Chlorine (Cl)	Drops HCl Added	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	IS/NS CHEM/WIT DATE	SPE	RS CHEM/WIT DATE
\square	B8D0070-BLK1 (A)	5	2	0	3	NA	NA	(0.250)	HIN MA 4/II/18	MA $4111 / 18$	HIN MA 4/11/18
\square	B8D0070-BS1	5	2	0	3	T			\square T	T	T
\square	B8D0070-BSD1	6	2	0	3	\checkmark	1	\downarrow			
\square	1800643-01 \downarrow	5	2	0	3	278.07	27.66	10.25041	12	\checkmark	\downarrow

is: $1882203,10 \mathrm{wL}(\mathrm{v4})$ is sup: N / A Ns: $18 \mathrm{Cl} 302,10 \mathrm{uL}(\sqrt{5})$ Rs: $1882206,10 \mathrm{ML}$ (14)	SPE Chem:Strata x-AW $33 \mathrm{um} \frac{200 \mathrm{mq}}{6 \mathrm{~mL}}$ Ele SOLv: 0.5%. NH4OH in MeOH, MeOH Final Volume(s) \qquad $1 m L$	Notes: (A) Samples run thraigh Envi-Carb (Supelco Lot 9129303) MA 04/11/18

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$
Cen $=$ Centrifuged

Batch: B8D0070

LabNumber	WetWeight (Initial)	$\begin{gathered} \text { \% Solids } \\ \text { (Extraction Solids) } \end{gathered}$	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1800643-01	0.25041	N / A	N/A	1000	11-Apr-18 09:50	HN ${ }^{\text {- }}$			Groundwater	537M PFAS DOD (LOQ as
B8D0070-BLK1	0.25	T	T	1000	11-Apr-18 09:50	HN -				QC
B8D0070-BS1	0.25			1000	11-Apr-18 09:50	$\mathrm{HN}^{\text {r }}$	18C1302	F $10-$		QC
B8D0070-BSD1	0.25	v	\downarrow	1000	11-Apr-18 09:50	HN^{-}	18 Cl 1302	10 -		QC

HN 4/218

Sample Data - PFAS Isotope Dilution Method

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-22.qld
Last Altered:	Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:24:52 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$		1.84 e 3	0.250		2.81				
2	5 PFHxA	313.2 > 268.9		3.27 e 3	0.250		3.30				
3	7 PFHpA	363.0 > 318.9		9.23 e 3	0.250		3.92				
4	8 L-PFHxS	$398.9>79.6$	1.25 e 1	1.33 e3	0.250		4.06	3.91	0.117	0.4832	
5	11 L-PFOA	$413>368.7$		1.26 e 4	0.250		4.30				
6	14 PFNA	$463.0>418.8$		1.11 e 4	0.250		4.87				
7	16 L-PFOS	$499>79.9$		3.26 e 3	0.250		4.90				
8	18 PFDA	$513>468.8$		8.65 e 3	0.250		5.24				
9	21 N-MeFOSAA	$570.1>419$		4.89 e 3	0.250		5.39				
10	$22 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		5.97 e 3	0.250		5.55				
11	23 PFUdA	$563.0>518.9$		1.11 e 4	0.250		5.56				

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-22.a
Last Altered:	Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:25:06 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	25 PFDoA	$612.9>569.0$		9.34 e 3	0.250		5.84				
2	27 PFTrDA	$662.9>618.9$		9.34 e 3	0.250		6.10				
3	28 PFTeDA	$712.9>668.8$		5.24 e 3	0.250		6.30				
4	36 13C3-PFBS	302. > 98.8	1.84 e 3	1.26 e 4	0.250	0.121	2.81	2.65	1.83	60.6284	121.3
5	37 13C2-PFHxA	$315>269.8$	3.27 e 3	1.26 e 4	0.250	0.733	3.30	3.14	3.25	17.7262	88.6
6	38 13C4-PFHpA	$367.2>321.8$	9.23 e 3	1.26 e 4	0.250	0.761	3.92	3.76	9.18	48.2281	96.5
7	39 18O2-PFHxS	$403.0>102.6$	1.33 e 3	3.03e3	0.250	0.431	4.06	3.91	5.48	50.8490	101.7
8	40 13C2-6:2 FTS	$429.1>408.9$	3.82e3	1.41 e 4	0.250	0.333	4.38	4.22	3.38	40.6407	81.3
9	41 13C2-PFOA	$414.9>369.7$	1.26 e 4	1.41 e 4	0.250	1.150	4.43	4.28	11.1	38.7663	77.5
10	42 13C5-PFNA	$468.2>422.9$	1.11e4	1.43 e 4	0.250	0.979	4.87	4.71	9.70	39.6331	79.3
11	43 13C8-PFOSA	$506.1>77.7$	1.67 e 3	1.43 e 4	0.250	0.218	4.93	4.78	1.46	26.7274	53.5
12	44 13C8-PFOS	$507.0>79.9$	$3.26 e 3$	3.33е3	0.250	1.047	4.95	4.79	12.3	46.8959	93.8
13	45 13C2-PFDA	$515.1>469.9$	8.65 e 3	1.32 e 4	0.250	0.958	5.24	5.08	8.17	34.1088	68.2
14	46 13C2-8:2 FTS	$529.1>508.7$	2.66 e 3	1.26 e 4	0.250	0.226	5.21	5.05	2.64	46.7152	93.4
15	$47 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	4.89 e 3	1.43 e 4	0.250	0.471	5.39	5.23	4.28	36.3107	72.6
16	48 d5-N-EtFOSAA	$589.3>419$	5.97e3	1.43 e 4	0.250	0.517	5.55	5.38	5.22	40.3994	80.8
17	49 13C2-PFUdA	$565>519.8$	1.11e4	1.43 e 4	0.250	0.960	5.56	5.40	9.71	40.4570	80.9
18	50 13C2-PFDoA	$615.0>569.7$	9.34 e 3	1.43 e 4	0.250	0.840	5.84	5.68	8.17	38.9052	77.8
19	51 d3-N-MeFOSA	$515.2>168.9$		1.43 e 4	0.250	0.097	6.00				
20	52 13C2-PFTeDA	$714.8>669.6$	5.24 e 3	1.43 e 4	0.250	0.510	6.30	6.15	4.58	35.8989	71.8
21	53 d5-N-ETFOSA	$531.1>168.9$		1.43 e 4	0.250	0.138	6.40				
22	54 13C2-PFHxDA	$815>769.7$	5.27 e 3	1.43 e 4	0.250	1.118	6.62	6.47	4.61	16.5044	82.5
23	55 d7-N-MeFOSE	$623.1>58.9$		1.43 e 4	0.250	0.169	6.50				
24	56 d9-N-EtFOSE	$639.2>58.8$		1.43 e 4	0.250	0.161	6.65				
25	57 13C4-PFBA	217. >171.8	9.33 e3	9.33 e 3	0.250	1.000	1.56	1.44	12.5	50.0000	100.0
26	58 13C5-PFHxA	$318>272.9$	$1.26 e 4$	$1.26 e 4$	0.250	1.000	3.30	3.14	12.5	50.0000	100.0
27	59 13C3-PFHxS	$401.9>79.9$	3.03 e 3	3.03e3	0.250	1.000	4.04	3.91	12.5	50.0000	100.0
28	60 13C8-PFOA	$421.3>376$	1.41 e 4	1.41 e 4	0.250	1.000	4.43	4.28	12.5	50.0000	100.0
29	61 13C9-PFNA	$472.2>426.9$	1.43 e 4	1.43 e 4	0.250	1.000	4.87	4.71	12.5	50.0000	100.0
30	62 13C4-PFOS	$503>79.9$	3.33 e 3	3.33 e 3	0.250	1.000	4.95	4.79	12.5	50.0000	100.0
31	63 13C6-PFDA	$519.1>473.7$	1.32 e 4	1.32 e 4	0.250	1.000	5.24	5.08	12.5	50.0000	100.0
32	64 13C7-PFUdA	$570.1>524.8$	1.43 e 4	1.43 e 4	0.250	1.000	5.56	5.40	12.5	50.0000	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Last Altered:	Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:25:06 Pacific Daylight Time

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	65 Total PFHxS	$398.9>79.6$	1.25 e 1	1.33 e 3	0.250		4.05		0.117	0.4832	
34	66 Total PFOA	$413>368.7$	0.00e0	1.26 e 4	0.250		4.30		0.000		
35	67 Total PFOS	$499>79.9$	0.00e0	3.26 e 3	0.250		4.90		0.000		
36	68 Total N-MeFOSAA	$570.1>419$	0.00e0	4.89 e 3	0.250		5.55		0.000		
37	69 Total N-EtFOSAA	$584.2>419$	0.00e0	5.97 e 3	0.250		5.70		0.000		

Dataset: F:\Projects\PFAS.PRO\Results\180412M1\180412M1-22.qld
Last Altered: \quad Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:25:06 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

PFBS

F6:MRM of 2 channels,ES- | $299.0>79.7$ |
| ---: |
| $6.547 \mathrm{e}+001$ |

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES$313.2>119$

13C2-PFHxA

13C4-PFHpA

Total PFHxS

18O2-PFHxS

Dataset: \quad F:\Projects\PFAS.PRO\Results\180412M1\180412M1-22.qld

Last Altered: \quad Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:25:06 Pacific Daylight Time

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

Dataset: \quad F:\Projects\PFAS.PRO\Results\180412M1\180412M1-22.qld

Last Altered: \quad Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:25:06 Pacific Daylight Time

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

PFUdA

13C2-PFUdA
F46:MRM of 1 channel,ES-

N-MeFOSAA

d3-N-MeFOSAA

F50:MRM of 2 channels,ES-

d5-N-EtFOSAA

F53:MRM of 4 channels,ES$612.9>318.8$

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-22
Last Altered:	Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:25:06 Pacific Daylight Time

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

13C2-PFDoA

PFTeDA

13C2-PFTeDA

13C8-PFOS

13C5-PFHxA

13C8-PFOA

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-22.qld
Last Altered:	Saturday, April 14, 2018 17:23:18 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:25:06 Pacific Daylight Time

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

13C3-PFHxS

13C6-PFDA

13C7-PFUdA

F48:MRM of 1 channel,ES-

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-20.qld
Last Altered:	Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:14:22 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDBIPFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	2.47 e 3	1.59 e 3	0.250		2.81	2.65	19.5	41.2216	103.1
2	5 PFHxA	$313.2>268.9$	1.04 e 4	3.03 е3	0.250		3.30	3.14	17.2	41.0067	102.5
3	7 PFHpA	$363.0>318.9$	$8.62 e 3$	9.03 е3	0.250		3.92	3.76	11.9	39.4086	98.5
4	8 L-PFHxS	$398.9>79.6$	2.09 e 3	1.34 e 3	0.250		4.06	3.91	19.5	41.8483	104.6
5	11 L-PFOA	$413>368.7$	1.05 e 4	1.27 e 4	0.250		4.30	4.28	10.3	43.8802	109.7
6	14 PFNA	$463.0>418.8$	9.79 e 3	1.06 e 4	0.250		4.87	4.71	11.6	38.8220	97.1
7	16 L-PFOS	$499>79.9$	2.84 e 3	3.04 e 3	0.250		4.90	4.79	11.7	44.3501	110.9
8	18 PFDA	$513>468.8$	9.56 e 3	8.04 e 3	0.250		5.24	5.08	14.9	44.2732	110.7
9	21 N-MeFOSAA	$570.1>419$	5.79 e 3	5.10 e 3	0.250		5.39	5.23	14.2	39.9880	100.0
10	22 N -EtFOSAA	$584.2>419$	5.21 e 3	5.96 e 3	0.250		5.55	5.39	10.9	43.4170	108.5
11	23 PFUdA	$563.0>518.9$	7.47 e 3	1.03 e 4	0.250		5.56	5.40	9.08	35.0035	87.5

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-20.a
Last Altered:	Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:14:34 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB|PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	25 PFDoA	612.9 > 569.0	1.00 e 4	9.89 e 3	0.250		5.84	5.68	12.7	39.1795	97.9
2	27 PFTrDA	$662.9>618.9$	9.09 e 3	9.89 e 3	0.250		6.10	5.93	11.5	33.2506	83.1
3	28 PFTeDA	$712.9>668.8$	7.83 e 3	5.69 e 3	0.250		6.30	6.15	17.2	43.0682	107.7
4	36 13C3-PFBS	302. > 98.8	1.59 e 3	1.16 e 4	0.250	0.121	2.81	2.65	1.71	56.5658	113.1
5	37 13C2-PFHxA	$315>269.8$	3.03 e 3	1.16 e 4	0.250	0.733	3.30	3.14	3.26	17.7990	89.0
6	38 13C4-PFHpA	$367.2>321.8$	9.03 e 3	1.16 e 4	0.250	0.761	3.92	3.76	9.72	51.0728	102.1
7	39 1802-PFHxS	$403.0>102.6$	1.34 e 3	3.25 e 3	0.250	0.431	4.06	3.90	5.14	47.7163	95.4
8	40 13C2-6:2 FTS	$429.1>408.9$	3.62 e3	1.31 e 4	0.250	0.333	4.38	4.22	3.46	41.6425	83.3
9	41 13C2-PFOA	414.9 > 369.7	1.27 e 4	1.31 e 4	0.250	1.150	4.43	4.27	12.1	42.1800	84.4
10	42 13C5-PFNA	468.2 > 422.9	1.06 e4	1.21 e 4	0.250	0.979	4.87	4.71	11.0	44.8638	89.7
11	43 13C8-PFOSA	$506.1>77.7$	1.75 e 3	1.33 e 4	0.250	0.218	4.93	4.78	1.65	30.1500	60.3
12	44 13C8-PFOS	$507.0>79.9$	3.04 e 3	3.34 e 3	0.250	1.047	4.95	4.79	11.4	43.5137	87.0
13	45 13C2-PFDA	$515.1>469.9$	8.04e3	1.17 e 4	0.250	0.958	5.24	5.08	8.63	36.0025	72.0
14	46 13C2-8:2 FTS	$529.1>508.7$	2.67 e 3	1.16 e 4	0.250	0.226	5.21	5.05	2.87	50.7961	101.6
15	47 d3-N-MeFOSAA	$573.3>419$	5.10 e 3	1.33 e 4	0.250	0.471	5.39	5.23	4.79	40.6297	81.3
16	$48 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	5.96 e 3	1.33 e 4	0.250	0.517	5.55	5.38	5.59	43.2579	86.5
17	49 13C2-PFUdA	$565>519.8$	1.03 e 4	1.33 e 4	0.250	0.960	5.56	5.40	9.67	40.2761	80.6
18	50 13C2-PFDoA	$615.0>569.7$	9.89 e 3	1.33 e 4	0.250	0.840	5.84	5.68	9.28	44.1987	88.4
19	51 d3-N-MeFOSA	$515.2>168.9$		1.33 e 4	0.250	0.097	6.00				
20	52 13C2-PFTeDA	$714.8>669.6$	5.69 e 3	1.33 e 4	0.250	0.510	6.30	6.15	5.35	41.9210	83.8
21	53 d5-N-ETFOSA	$531.1>168.9$		1.33 e 4	0.250	0.138	6.40				
22	54 13C2-PFHxDA	$815>769.7$	5.42e3	1.33 e 4	0.250	1.118	6.62	6.47	5.09	18.1949	91.0
23	55 d7-N-MeFOSE	$623.1>58.9$		1.33 e 4	0.250	0.169	6.50				
24	56 d9-N-EtFOSE	$639.2>58.8$		1.33 e 4	0.250	0.161	6.65				
25	57 13C4-PFBA	$217 .>171.8$	9.01 e 3	9.01 e 3	0.250	1.000	1.56	1.44	12.5	50.0000	100.0
26	58 13C5-PFHXA	$318>272.9$	1.16 e 4	1.16 e 4	0.250	1.000	3.30	3.14	12.5	50.0000	100.0
27	59 13C3-PFHxS	$401.9>79.9$	3.25 e 3	3.25 e 3	0.250	1.000	4.04	3.91	12.5	50.0000	100.0
28	60 13C8-PFOA	$421.3>376$	1.31 e 4	1.31 e 4	0.250	1.000	4.43	4.27	12.5	50.0000	100.0
29	61 13C9-PFNA	$472.2>426.9$	1.21 e 4	1.21 e 4	0.250	1.000	4.87	4.71	12.5	50.0000	100.0
30	62 13C4-PFOS	$503>79.9$	3.34 e 3	3.34 e 3	0.250	1.000	4.95	4.79	12.5	50.0000	100.0
31	63 13C6-PFDA	$519.1>473.7$	1.17 e 4	1.17 e 4	0.250	1.000	5.24	5.08	12.5	50.0000	100.0
32	64 13C7-PFUdA	$570.1>524.8$	1.33 e 4	1.33 e 4	0.250	1.000	5.56	5.40	12.5	50.0000	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Dataset: F:IProjects|PFAS.PRO\Results\180412M1\180412M1-20.qld
Last Altered: Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:14:34 Pacific Daylight Time

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	65 Total PFHxS	398.9 > 79.6	2.09 e 3	1.34 e 3	0.250		4.05		19.5	41.8483	
34	66 Total PFOA	$413>368.7$	1.05 e 4	1.27 e 4	0.250		4.30		10.3	43.8802	
35	67 Total PFOS	$499>79.9$	2.84 e 3	3.04 e 3	0.250		4.90		11.7	44.3501	
36	68 Total N-MeFOSAA	$570.1>419$	5.79 e 3	5.10 e 3	0.250		5.55		14.2	39.9880	
37	69 Total N-EtFOSAA	$584.2>419$	5.21 e 3	$5.96 e 3$	0.250		5.70		10.9	43.4170	

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-20
Last Altered:	Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:14:34 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

```
PFBS
\begin{tabular}{l} 
F6:MRM of 2 channels,ES- \\
\(299.0>79.7\) \\
\(6.118 \mathrm{e}+004\) \\
100 \\
\hline
\end{tabular}
```


PFHxA

13C2-PFHxA

PFHpA

13C4-PFHpA

Total PFHxS

18O2-PFHxS

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-20
Last Altered:	Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:14:34 Pacific Daylight Time

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

Total PFOA

Total PFOA F20:MRM of 2 channels,ES-
$413>368.7$
100
$3.102 e+005$

13C2-PFOA

13C5-PFNA

Total PFOS

13C8-PFOS

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-20
Last Altered:	Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:14:34 Pacific Daylight Time

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

PFUdA

100	F45:MRM of 2 channels,ES	
	PFUdA	$1.702 \mathrm{e}+005$
	5.40	
	7.47e3	
\%-	169309	
\%	MM	
	7904.97	

13C2-PFUdA

d3-N-MeFOSAA

N-EtFOSAA

F50:MRM of 2 channels,ES-		
		$584.2>419$
100	N -EtFOSAA	$1.202 \mathrm{e}+005$
	5.39	
	5.21 e3	
\%-	119689	
	MM 31532.91	
	31532.91	

d5-N-EtFOSAA

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-20
Last Altered:	Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:14:34 Pacific Daylight Time

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

\section*{PFTrDA

13C2-PFDoA

F54:MRM of 2 channels,ES

PFTeDA

13C2-PFTeDA

13C8-PFOS

13C5-PFHxA

13C8-PFOA

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-20.qld
Last Altered:	Saturday, April 14, 2018 17:11:41 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:14:34 Pacific Daylight Time

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

13C3-PFHxS

13C7-PFUdA
F48:MRM of 1 channel,ES-

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-21.qld
Last Altered:	Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:21:19 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDBIPFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:|Projects|PFAS.PRO\CurveDBIC18_VAL-PFĀS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	2.86 e 3	1.87e3	0.250		2.81	2.65	19.1	40.4641	101.2
2	5 PFHxA	313.2 > 268.9	1.31 e 4	3.69 e3	0.250		3.30	3.14	17.8	42.5251	106.3
3	7 PFHpA	$363.0>318.9$	1.04 e 4	1.05 e 4	0.250		3.92	3.76	12.3	40.5597	101.4
4	8 L-PFHxS	$398.9>79.6$	2.43 e 3	1.50 e 3	0.250		4.06	3.90	20.2	43.2501	108.1
5	11 L-PFOA	$413>368.7$	1.22 e 4	1.40 e 4	0.250		4.30	4.27	10.9	46.3309	115.8
6	14 PFNA	$463.0>418.8$	1.15 e 4	1.19 e 4	0.250		4.87	4.71	12.1	40.5860	101.5
7	16 L-PFOS	$499>79.9$	3.05 e 3	3.64 e3	0.250		4.90	4.79	10.5	39.8663	99.7
8	18 PFDA	$513>468.8$	1.14 e 4	9.31 e 3	0.250		5.24	5.08	15.3	45.7117	114.3
9	21 N-MeFOSAA	$570.1>419$	7.45 e 3	5.85 e 3	0.250		5.39	5.23	15.9	44.8704	112.2
10	22 N -EtFOSAA	$584.2>419$	5.33 e3	6.81e3	0.250		5.55	5.39	9.78	38.8243	97.1
11	23 PFUdA	$563.0>518.9$	1.01 e 4	1.14 e 4	0.250		5.56	5.40	11.1	42.7474	106.9

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-21.a
Last Altered:	Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:21:33 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	25 PFDoA	$612.9>569.0$	1.11e4	$9.92 e 3$	0.250		5.84	5.68	14.0	43.1893	108.0
2	27 PFTrDA	$662.9>618.9$	1.03 e 4	9.92e3	0.250		6.10	5.93	13.0	37.6972	94.2
3	28 PFTeDA	$712.9>668.8$	9.03 e 3	5.49e3	0.250		6.30	6.15	20.6	51.6630	129.2
4	36 13C3-PFBS	302. > 98.8	1.87 e 3	1.40 e 4	0.250	0.121	2.81	2.65	1.67	55.5416	111.1
5	37 13C2-PFHxA	$315>269.8$	3.69 e3	1.40 e 4	0.250	0.733	3.30	3.14	3.30	18.0070	90.0
6	38 13C4-PFHpA	$367.2>321.8$	1.05 e 4	1.40 e 4	0.250	0.761	3.92	3.76	9.44	49.5980	99.2
7	39 18O2-PFHxS	$403.0>102.6$	1.50 e 3	3.47 e 3	0.250	0.431	4.06	3.91	5.42	50.3313	100.7
8	40 13C2-6:2 FTS	$429.1>408.9$	3.99 e3	1.47 e 4	0.250	0.333	4.38	4.22	3.40	40.8652	81.7
9	41 13C2-PFOA	$414.9>369.7$	1.40 e 4	1.47 e 4	0.250	1.150	4.43	4.27	11.9	41.5642	83.1
10	42 13C5-PFNA	$468.2>422.9$	1.19 e 4	1.51 e 4	0.250	0.979	4.87	4.71	9.84	40.2017	80.4
11	43 13C8-PFOSA	$506.1>77.7$	1.97 e 3	1.61 e 4	0.250	0.218	4.93	4.78	1.52	27.9006	55.8
12	44 13C8-PFOS	$507.0>79.9$	3.64 e3	3.47 e 3	0.250	1.047	4.95	4.79	13.1	50.1297	100.3
13	45 13C2-PFDA	$515.1>469.9$	9.31 e 3	1.34 e 4	0.250	0.958	5.24	5.08	8.70	36.3190	72.6
14	46 13C2-8:2 FTS	$529.1>508.7$	2.86 e 3	1.40 e 4	0.250	0.226	5.21	5.05	2.56	45.2669	90.5
15	$47 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	5.85 e 3	1.61 e 4	0.250	0.471	5.39	5.23	4.53	38.4581	76.9
16	$48 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	6.81 e 3	1.61 e 4	0.250	0.517	5.55	5.38	5.28	40.8401	81.7
17	49 13C2-PFUdA	$565>519.8$	1.14 e 4	1.61 e 4	0.250	0.960	5.56	5.40	8.87	36.9507	73.9
18	50 13C2-PFDoA	$615.0>569.7$	9.92e3	1.61 e 4	0.250	0.840	5.84	5.68	7.68	36.5870	73.2
19	51 d3-N-MeFOSA	$515.2>168.9$		1.61 e 4	0.250	0.097	6.00				
20	52 13C2-PFTeDA	$714.8>669.6$	5.49 e 3	1.61 e 4	0.250	0.510	6.30	6.15	4.25	33.3327	66.7
21	53 d5-N-ETFOSA	$531.1>168.9$		1.61 e 4	0.250	0.138	6.40				
22	54 13C2-PFHxDA	$815>769.7$	5.82e3	1.61 e 4	0.250	1.118	6.62	6.47	4.51	16.1316	80.7
23	55 d7-N-MeFOSE	$623.1>58.9$		1.61 e 4	0.250	0.169	6.50				
24	56 d9-N-EtFOSE	$639.2>58.8$		1.61 e 4	0.250	0.161	6.65				
25	57 13C4-PFBA	217. >171.8	1.16 e 4	1.16 e 4	0.250	1.000	1.56	1.44	12.5	50.0000	100.0
26	58 13C5-PFHxA	$318>272.9$	1.40 e 4	1.40 e 4	0.250	1.000	3.30	3.14	12.5	50.0000	100.0
27	59 13C3-PFHxS	$401.9>79.9$	3.47 e 3	3.47 e 3	0.250	1.000	4.04	3.90	12.5	50.0000	100.0
28	60 13C8-PFOA	$421.3>376$	1.47 e 4	1.47 e 4	0.250	1.000	4.43	4.27	12.5	50.0000	100.0
29	61 13C9-PFNA	$472.2>426.9$	1.51 e 4	1.51 e 4	0.250	1.000	4.87	4.71	12.5	50.0000	100.0
30	62 13C4-PFOS	$503>79.9$	3.47 e 3	3.47 e 3	0.250	1.000	4.95	4.79	12.5	50.0000	100.0
31	63 13C6-PFDA	$519.1>473.7$	1.34 e 4	1.34 e 4	0.250	1.000	5.24	5.08	12.5	50.0000	100.0
32	64 13C7-PFUdA	$570.1>524.8$	1.61 e 4	1.61 e 4	0.250	1.000	5.56	5.40	12.5	50.0000	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Last Altered:	Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:21:33 Pacific Daylight Time

Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	65 Total PFHxS	$398.9>79.6$	2.43 e3	1.50 e3	0.250		4.05		20.2	43.2501	
34	66 Total PFOA	$413>368.7$	1.22 e 4	1.40 e 4	0.250		4.30		10.9	46.3309	
35	67 Total PFOS	$499>79.9$	3.05 e3	3.64 e3	0.250		4.90		10.5	39.8663	
36	68 Total N-MeFOSAA	$570.1>419$	7.45 e3	5.85 e 3	0.250		5.55		15.9	44.8704	
37	69 Total N-EtFOSAA	$584.2>419$	5.33e3	6.81e3	0.250		5.70		9.78	38.8243	

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-21
Last Altered:	Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:21:33 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

```
PFBS
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{100} & & F6:MRM of 2 channels,ES \(299.0>79.7\) \\
\hline & PFBS & \(7.357 \mathrm{e}+004\) \\
\hline & 2.65 & \\
\hline & 2.86 e 3 & \\
\hline \%- & 73308 & \\
\hline & \[
\begin{gathered}
\text { bb } \\
73308.00
\end{gathered}
\] & \\
\hline
\end{tabular}
```


PFHxA

13C2-PFHxA

PFHpA

13C4-PFHpA

Total PFHxS

18O2-PFHxS

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-21
Last Altered:	Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:21:33 Pacific Daylight Time

Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

Total PFOA

Total PFOA F20:MRM of 2 channels,ES-
$413>368.7$
100

13C2-PFOA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

Dataset: F:\Projects\PFAS.PRO\Results\180412M1\180412M1-21.qld
Last Altered: \quad Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:21:33 Pacific Daylight Time

Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

PFUdA

13C2-PFUdA

d3-N-MeFOSAA

N-EtFOSAA

	F50:MRM of 2 channels,ES-	
		$584.2>419$
100	$\Gamma_{5.39}^{\mathrm{N}-\text { EtFOSAA }}$	$1.226 \mathrm{e}+005$
	5.33 e 3	
\% -	121950	
	MM	
	5775.93	

d5-N-EtFOSAA

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-21
Last Altered:	Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:21:33 Pacific Daylight Time

Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

13C2-PFDoA

F54:MRM of 2 channels,ES-

13C2-PFTeDA

TCDA

13C8-PFOS

13C5-PFHxA

13C8-PFOA

Dataset: \quad F:\Projects\PFAS.PRO\Results\180412M1\180412M1-21.qld

Last Altered: \quad Saturday, April 14, 2018 17:20:50 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:21:33 Pacific Daylight Time

Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

13C3-PFHxS

13C4-PFOS

13C6-PFDA

13C7-PFUdA
F48:MRM of 1 channel,ES-

Quantify Sample Summary Report
MassLynx MassLynx V4.1 SCN945 SCN960

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-23.qld
Last Altered:	Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:29:29 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$		1.85 e 3	0.250		2.81				
2	5 PFHxA	313.2 > 268.9		3.84 e 3	0.250		3.30				
3	7 PFHpA	363.0 > 318.9		1.02 e 4	0.250		3.92				
4	8 L-PFHxS	$398.9>79.6$	1.15 e 1	1.49 e 3	0.250		4.06	3.92	0.0964	0.4386	
5	11 L-PFOA	$413>368.7$	1.61 e 2	1.39 e 4	0.250		4.30	4.28	0.145	0.2030	
6	14 PFNA	$463.0>418.8$	2.49 e 2	1.19 e 4	0.250		4.87	4.71	0.261	0.7683	
7	16 L-PFOS	$499>79.9$	1.47 e 0	3.40 e 3	0.250		4.90	4.80	0.00539	0.1901	
8	18 PFDA	$513>468.8$		9.67 e 3	0.250		5.24				
9	21 N-MeFOSAA	$570.1>419$		6.16 e3	0.250		5.39				
10	22 N -EtFOSAA	$584.2>419$		6.94 e 3	0.250		5.55				
11	23 PFUdA	$563.0>518.9$	1.87 e 2	1.10 e 4	0.250		5.56	5.40	0.212	0.5402	

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-23.a
Last Altered:	Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:29:45 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDBIPFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	25 PFDoA	612.9 > 569.0		1.05 e 4	0.250		5.84				
2	27 PFTrDA	662.9 > 618.9		1.05 e 4	0.250		6.10				
3	28 PFTeDA	$712.9>668.8$		5.30 e 3	0.250		6.30				
4	36 13C3-PFBS	302. > 98.8	1.85 e 3	1.47 e 4	0.250	0.121	2.81	2.65	1.57	52.0242	104.2
5	37 13C2-PFHxA	$315>269.8$	3.84 e 3	1.47 e 4	0.250	0.733	3.30	3.14	3.26	17.7872	89.1
6	38 13C4-PFHpA	$367.2>321.8$	1.02 e 4	1.47 e 4	0.250	0.761	3.92	3.76	8.70	45.6733	91.5
7	39 1802-PFHxS	$403.0>102.6$	1.49 e 3	3.53e3	0.250	0.431	4.06	3.91	5.30	49.0576	98.3
8	40 13C2-6:2 FTS	$429.1>408.9$	4.07 e 3	1.48 e 4	0.250	0.333	4.38	4.22	3.44	41.2672	82.7
9	41 13C2-PFOA	414.9 > 369.7	1.39 e 4	1.48 e 4	0.250	1.150	4.43	4.28	11.8	40.8207	81.8
10	42 13C5-PFNA	468.2 > 422.9	1.19 e 4	1.38 e 4	0.250	0.979	4.87	4.71	10.8	44.0103	88.2
11	43 13C8-PFOSA	$506.1>77.7$	2.29 e 3	1.57 e 4	0.250	0.218	4.93	4.78	1.82	33.3351	66.8
12	44 13C8-PFOS	$507.0>79.9$	3.40 e 3	3.60e3	0.250	1.047	4.95	4.79	11.8	45.0914	90.3
13	45 13C2-PFDA	$515.1>469.9$	9.67 e 3	1.33 e 4	0.250	0.958	5.24	5.08	9.06	37.7348	75.6
14	46 13C2-8:2 FTS	$529.1>508.7$	2.97e3	1.47 e 4	0.250	0.226	5.21	5.05	2.53	44.5981	89.3
15	47 d3-N-MeFOSAA	$573.3>419$	6.16 e 3	1.57 e 4	0.250	0.471	5.39	5.23	4.91	41.5928	83.3
16	$48 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	6.94 e 3	1.57 e 4	0.250	0.517	5.55	5.38	5.53	42.6943	85.5
17	49 13C2-PFUdA	$565>519.8$	1.10 e 4	1.57 e 4	0.250	0.960	5.56	5.40	8.79	36.5776	73.3
18	50 13C2-PFDoA	$615.0>569.7$	1.05 e 4	1.57 e 4	0.250	0.840	5.84	5.68	8.36	39.7539	79.6
19	51 d3-N-MeFOSA	$515.2>168.9$		1.57 e 4	0.250	0.097	6.00				
20	52 13C2-PFTeDA	714.8 > 669.6	5.30 e 3	1.57 e 4	0.250	0.510	6.30	6.15	4.22	33.0628	66.2
21	53 d5-N-ETFOSA	$531.1>168.9$		1.57 e 4	0.250	0.138	6.40				
22	54 13C2-PFHxDA	$815>769.7$	4.75 e 3	1.57 e 4	0.250	1.118	6.62	6.47	3.79	13.5281	67.8
23	55 d7-N-MeFOSE	$623.1>58.9$		1.57 e 4	0.250	0.169	6.50				
24	56 d9-N-EtFOSE	$639.2>58.8$		1.57 e 4	0.250	0.161	6.65				
25	57 13C4-PFBA	$217 .>171.8$	1.22 e 4	1.22 e 4	0.250	1.000	1.56	1.44	12.5	49.9181	100.0
26	58 13C5-PFHXA	$318>272.9$	1.47 e 4	1.47 e 4	0.250	1.000	3.30	3.14	12.5	49.9181	100.0
27	59 13C3-PFHxS	$401.9>79.9$	3.53 e 3	3.53 e 3	0.250	1.000	4.04	3.91	12.5	49.9181	100.0
28	60 13C8-PFOA	$421.3>376$	1.48 e 4	1.48 e 4	0.250	1.000	4.43	4.28	12.5	49.9181	100.0
29	61 13C9-PFNA	$472.2>426.9$	1.38 e 4	1.38 e 4	0.250	1.000	4.87	4.71	12.5	49.9181	100.0
30	62 13C4-PFOS	$503>79.9$	3.60 e 3	3.60 e 3	0.250	1.000	4.95	4.79	12.5	49.9181	100.0
31	63 13C6-PFDA	$519.1>473.7$	1.33 e 4	1.33 e 4	0.250	1.000	5.24	5.08	12.5	49.9181	100.0
32	64 13C7-PFUdA	$570.1>524.8$	1.57 e 4	1.57 e 4	0.250	1.000	5.56	5.40	12.5	49.9181	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Last Altered:	Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:29:45 Pacific Daylight Time

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.
33	65 Total PFHxS	$398.9>79.6$	1.15 e 1	1.49 e 3	0.250	4.05	0.0964	0.4386		
34	66 Total PFOA	$413>368.7$	1.61 e 2	1.39 e 4	0.250	4.30	0.145	0.2030		
35	67 Total PFOS	$499>79.9$	1.47 e 0	3.40 e 3	0.250	4.90	0.00539			
36	68 Total N-MeFOSAA	$570.1>419$	0.00 e 0	6.16 e 3	0.250	0.1901				
37	69 Total N-EtFOSAA	$584.2>419$	0.00 e 0	6.94 e 3	0.250	5.55	0.000			

Dataset:
F:\Projects\PFAS.PRO\Results\180412M1\180412M1-23.qld
Last Altered: Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:29:45 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:	F:\Projects\PFAS.PRO\Results\180412M1\180412M1-23.a
Last Altered:	Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed:	Saturday, April 14, 2018 17:29:45 Pacific Daylight Time

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

Total PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

13C2-PFDA

Dataset: \quad F:\Projects\PFAS.PRO\Results\180412M1\180412M1-23.qld

Last Altered: \quad Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:29:45 Pacific Daylight Time

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

PFUdA

F45:MRM of 2 channels,ES-
$563.0>518.9$
$4.773 \mathrm{e}+003$

13C2-PFUdA
F46:MRM of 1 channel,ES-

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

F50:MRM of 2 channels,ES- $\begin{array}{r}584.2>419 \\ 2.760 \mathrm{e}+002\end{array}$

d5-N-EtFOSAA

PFDoA

F53:MRM of 4 channels,ES-

13C2-PFDoA
F54:MRM of 2 channels,ES$615.0>569.7$

Dataset: \quad F:\Projects\PFAS.PRO\Results\180412M1\180412M1-23.qld
Last Altered: \quad Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:29:45 Pacific Daylight Time

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

13C2-PFDoA

F54:MRM of 2 channels,ES 615.0 > 569.7

PFTeDA

13C2-PFTeDA

13C8-PFOS

13C5-PFHxA

13C8-PFOA

Dataset: F:IProjects|PFAS.PRO\Results\180412M1\180412M1-23.qld
Last Altered: Saturday, April 14, 2018 17:27:52 Pacific Daylight Time
Printed: \quad Saturday, April 14, 2018 17:29:45 Pacific Daylight Time

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-AQIDW01-20180409

13C3-PFHxS

13C4-PFOS

13C7-PFUdA

F48:MRM of 1 channel,ES-

INJECTION INTERNAL STANDARD (IIS) AREAS,

INSTRUMENT BLANKS (IB)

AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\180412M1\180412M1-IIS AREAS.qld
Last Altered: Friday, April 13, 2018 14:31:53 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 14:32:34 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_RS-3-20-18.mdb 20 Mar 2018 13:05:28 Calibration: 13 Apr 2018 14:30:10

Name: 180412M1_4, Date: 12-Apr-2018, Time: 18:27:04, ID: ST180412M1-3 PFC CS0 18D0204, Description: PFC CS0 $18 D 0204$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST180412M1-3 PFC CS0 18D0204	1.43 e 4	100.0	NO
2	2 13C5-PFHxA	ST180412M1-3 PFC CS0 18D0204	1.66 e 4	100.0	NO
3	$313 C 3-P F H x S$	ST180412M1-3 PFC CS0 18D0204	3.79 e 3	100.0	NO
4	$413 C 8-P F O A$	ST180412M1-3 PFC CS0 18D0204	1.57 e 4	100.0	NO
5	$513 C 9-P F N A$	ST180412M1-3 PFC CS0 18D0204	1.54 e 4	100.0	NO
6	$613 C 4-P F O S$	ST180412M1-3 PFC CS0 18D0204	3.58 e 3	100.0	NO
7	$713 C 6-P F D A$	ST180412M1-3 PFC CS0 18D0204	1.50 e 4	100.0	NO
8	$813 C 7-P F U d A$	ST180412M1-3 PFC CS0 18D0204	1.76 e 4	100.0	NO

Name: 180412M1_5, Date: 12-Apr-2018, Time: 18:38:34, ID: ST180412M1-4 PFC CS1 18D0205, Description: PFC CS1 $18 D 0205$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST180412M1-4 PFC CS1 18D0205	1.40 e 4	97.4	NO
2	2 13C5-PFHxA	ST180412M1-4 PFC CS1 18D0205	1.62 e 4	98.0	NO
3	$313 C 3-P F H x S$	ST180412M1-4 PFC CS1 18D0205	3.70 e 3	97.6	NO
4	$413 C 8-P F O A$	ST180412M1-4 PFC CS1 18D0205	1.52 e 4	96.8	NO
5	$513 C 9-P F N A$	ST180412M1-4 PFC CS1 18D0205	1.52 e 4	98.4	NO
6	$613 C 4-P F O S$	ST180412M1-4 PFC CS1 18D0205	3.51 e 3	98.1	NO
7	$713 C 6-P F D A$	ST180412M1-4 PFC CS1 18D0205	1.45 e 4	96.9	NO
8	$813 C 7-P F U d A$	ST180412M1-4 PFC CS1 18D0205	1.82 e 4	103.5	NO

Name: 180412M1_6, Date: 12-Apr-2018, Time: 18:50:03, ID: ST180412M1-5 PFC CS2 18D0206, Description: PFC CS2 $18 D 0206$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST180412M1-5 PFC CS2 18D0206	1.38 e 4	96.3	NO
2	$213 C 5-P F H x A$	ST180412M1-5 PFC CS2 18D0206	1.70 e 4	102.6	NO
3	$313 C 3-P F H x S$	ST180412M1-5 PFC CS2 18D0206	3.69 e 3	97.4	NO
4	$413 C 8-P F O A$	ST180412M1-5 PFC CS2 18D0206	$1.61 e 4$	102.7	NO
5	$513 C 9-P F N A$	ST180412M1-5 PFC CS2 18D0206	$1.42 e 4$	92.2	NO
6	$613 C 4-P F O S$	ST180412M1-5 PFC CS2 18D0206	$3.53 e 3$	98.6	NO
7	$713 C 6-P F D A$	ST180412M1-5 PFC CS2 18D0206	1.44 e 4	96.4	NO
8	$813 C 7-P F U d A ~$	ST180412M1-5 PFC CS2 18D0206	$1.81 e 4$	103.2	NO

Name: 180412M1_7, Date: 12-Apr-2018, Time: 19:01:32, ID: ST180412M1-6 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST180412M1-6 PFC CS3 18D0207	1.43 e 4	99.5	NO
2	$213 C 5-P F H x A$	ST180412M1-6 PFC CS3 18D0207	1.68 e 4	101.6	NO
3	$313 C 3-P F H x S$	ST180412M1-6 PFC CS3 18D0207	3.77 e 3	99.6	NO
4	$413 C 8-P F O A$	ST180412M1-6 PFC CS3 18D0207	1.55 e 4	98.7	NO
5	$513 C 9-P F N A$	ST180412M1-6 PFC CS3 18D0207	1.73 e 4	112.3	NO
6	$613 C 4-P F O S$	ST180412M1-6 PFC CS3 18D0207	$3.81 e 3$	106.4	NO
7	$713 C 6-P F D A$	ST180412M1-6 PFC CS3 18D0207	$1.47 e 4$	98.5	NO
8	$813 C 7-P F U d A$	ST180412M1-6 PFC CS3 18D0207	$1.76 e 4$	99.8	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\180412M1\180412M1-IIS AREAS.qld
Last Altered: Friday, April 13, 2018 14:31:53 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 14:32:34 Pacific Daylight Time

Name: 180412M1_8, Date: 12-Apr-2018, Time: 19:13:02, ID: ST180412M1-7 PFC CS4 18D0208, Description: PFC CS4 $18 D 0208$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST180412M1-7 PFC CS4 18D0208	1.47e4	102.9	NO
2	2 13C5-PFHxA	ST180412M1-7 PFC CS4 18D0208	1.65 e 4	99.6	NO
3	3 13C3-PFHxS	ST180412M1-7 PFC CS4 18D0208	3.49 e 3	91.9	NO
4	4 13C8-PFOA	ST180412M1-7 PFC CS4 18D0208	1.52 e 4	97.1	NO
5	5 13C9-PFNA	ST180412M1-7 PFC CS4 18D0208	1.70 e 4	110.0	NO
6	6 13C4-PFOS	ST180412M1-7 PFC CS4 18D0208	3.74 e 3	104.5	NO
7	7 13C6-PFDA	ST180412M1-7 PFC CS4 18D0208	1.51 e 4	101.3	NO
8	8 13C7-PFUdA	ST180412M1-7 PFC CS4 18D0208	1.73 e 4	98.5	NO

Name: 180412M1_9, Date: 12-Apr-2018, Time: 19:24:31, ID: ST180412M1-8 PFC CS5 18D0209, Description: PFC CS5 $18 D 0209$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST180412M1-8 PFC CS5 18D0209	1.47 e 4	102.6	NO
2	2 13C5-PFHxA	ST180412M1-8 PFC CS5 18D0209	1.70 e 4	102.3	NO
3	$313 C 3-P F H x S$	ST180412M1-8 PFC CS5 18D0209	3.83 e 3	101.1	NO
4	$413 C 8-P F O A$	ST180412M1-8 PFC CS5 18D0209	1.56 e 4	99.4	NO
5	$513 C 9-P F N A$	ST180412M1-8 PFC CS5 18D0209	1.55 e 4	100.9	NO
6	$613 C 4-P F O S$	ST180412M1-8 PFC CS5 18D0209	3.84 e 3	107.3	NO
7	$713 C 6-P F D A$	ST180412M1-8 PFC CS5 18D0209	$1.52 e 4$	101.4	NO
8	$813 C 7-P F U d A ~$	ST180412M1-8 PFC CS5 18D0209	1.76 e 4	100.4	NO

Name: 180412M1_10, Date: 12-Apr-2018, Time: 19:36:01, ID: ST180412M1-9 PFC CS6 18D0210, Description: PFC CS6 $18 D 0210$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST180412M1-9 PFC CS6 18D0210	1.40 e 4	97.9	NO
2	$213 C 5-P F H x A$	ST180412M1-9 PFC CS6 18D0210	1.63 e 4	98.5	NO
3	$313 C 3-P F H x S$	ST180412M1-9 PFC CS6 18D0210	3.67 e 3	96.9	NO
4	$413 C 8-P F O A$	ST180412M1-9 PFC CS6 18D0210	1.58 e 4	100.7	NO
5	$513 C 9-P F N A$	ST180412M1-9 PFC CS6 18D0210	1.47 e 4	95.1	NO
6	$613 C 4-P F O S$	ST180412M1-9 PFC CS6 18D0210	3.81 e 3	106.5	NO
7	$713 C 6-P F D A$	ST180412M1-9 PFC CS6 18D0210	1.44 e 4	96.6	NO
8	$813 C 7-P F U d A$	ST180412M1-9 PFC CS6 18D0210	1.66 e 4	94.3	NO

Name: 180412M1_11, Date: 12-Apr-2018, Time: 19:47:30, ID: ST180412M1-10 PFC CS7 18D0211, Description: PFC CS7 $18 D 0211$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST180412M1-10 PFC CS7 18D0211	1.39 e 4	97.3	NO
2	2 13C5-PFHxA	ST180412M1-10 PFC CS7 18D0211	1.57 e 4	94.6	NO
3	$313 C 3-P F H x S$	ST180412M1-10 PFC CS7 18D0211	3.57 e 3	94.2	NO
4	$413 C 8-P F O A$	ST180412M1-10 PFC CS7 18D0211	$1.51 e 4$	96.5	NO
5	$513 C 9-P F N A$	ST180412M1-10 PFC CS7 18D0211	$1.40 e 4$	90.8	NO
6	$613 C 4-P F O S$	ST180412M1-10 PFC CS7 18D0211	3.48 e 3	97.4	NO
7	$713 C 6-P F D A$	ST180412M1-10 PFC CS7 18D0211	$1.29 e 4$	86.3	NO
8	$813 C 7-P F U d A ~$	ST180412M1-10 PFC CS7 18D0211	1.54 e 4	87.4	NO

Quantify Sample Summary Report
Vista Analytical Laboratory

Last Altered: Friday, April 13, 2018 14:31:53 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 14:32:34 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV $18 D 0201$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ICV180412M1-1 PFC ICV 18D0201	1.41 e 4	98.2	NO
2	$213 C 5-P F H x A$	ICV180412M1-1 PFC ICV 18D0201	1.68 e 4	101.1	NO
3	$313 C 3-P F H x S$	ICV180412M1-1 PFC ICV 18D0201	3.88 e 3	102.3	NO
4	$413 C 8-P F O A$	ICV180412M1-1 PFC ICV 18D0201	1.64 e 4	104.7	NO
5	$513 C 9-P F N A$	ICV180412M1-1PFC ICV 18D0201	1.60 e 4	104.0	NO
6	$613 C 4-P F O S$	ICV180412M1-1 PFC ICV 18D0201	3.78 e 3	105.8	NO
7	$713 C 6-P F D A$	ICV180412M1-1 PFC ICV 18D0201	1.41 e 4	94.5	NO
8	$813 C 7-P F U d A$	ICV180412M1-1 PFC ICV 18D0201	1.68 e 4	95.7	NO

Name: 180412M1_14, Date: 12-Apr-2018, Time: 20:22:00, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 180412M1_15, Date: 12-Apr-2018, Time: 20:33:30, ID: B8C0190-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8C0190-BS1 OPR 0.25	1.08 e 4	75.1	NO
2	$213 C 5-P F H x A$	B8C0190-BS1 OPR 0.25	1.28 e 4	77.5	NO
3	$313 C 3-P F H x S$	B8C0190-BS1 OPR 0.25	3.02 e 3	79.6	NO
4	$413 C 8-P F O A$	B8C0190-BS1 OPR 0.25	1.26 e 4	80.2	NO
5	$513 C 9-P F N A$	B8C0190-BS1 OPR 0.25	1.28 e 4	82.8	NO
6	$613 C 4-P F O S$	B8C0190-BS1 OPR 0.25	3.11 e 3	86.9	NO
7	$713 C 6-P F D A$	B8C0190-BS1 OPR 0.25	1.11 e 4	74.3	NO
8	$813 C 7-P F U d A$	B8C0190-BS1 OPR 0.25	1.36 e 4	77.5	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\180412M1\180412M1-IIS AREAS.qld
Last Altered: Friday, April 13, 2018 14:31:53 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 14:32:34 Pacific Daylight Time

Name: 180412M1_16, Date: 12-Apr-2018, Time: 20:44:59, ID: B8C0190-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8C0190-BLK1 Method Blank 0.25	1.06 e 4	73.9	NO
2	$213 C 5-P F H x A$	B8C0190-BLK1 Method Blank 0.25	1.23 e 4	74.3	NO
3	$313 C 3-P F H x S$	B8C0190-BLK1 Method Blank 0.25	2.93 e 3	77.3	NO
4	$413 C 8-P F O A$	B8C0190-BLK1 Method Blank 0.25	1.18 e 4	75.3	NO
5	$513 C 9-P F N A$	B8C0190-BLK1 Method Blank 0.25	1.27 e 4	82.7	NO
6	$613 C 4-P F O S$	B8C0190-BLK1 Method Blank 0.25	2.71 e 3	75.8	NO
7	$713 C 6-P F D A$	B8C0190-BLK1 Method Blank 0.25	1.20 e 4	80.4	NO
8	$813 C 7-P F U d A$	B8C0190-BLK1 Method Blank 0.25	1.46 e 4	83.2	NO

Name: 180412M1_17, Date: 12-Apr-2018, Time: 20:56:29, ID: 1800562-01 CA-06781 0.24584, Description: CA-06781

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1800562-01 CA-06781 0.24584	1.01 e 4	70.2	NO
2	2 13C5-PFHxA	1800562-01 CA-06781 0.24584	1.18 e 4	71.2	NO
3	3 13C3-PFHxS	1800562-01 CA-06781 0.24584	2.90 e 3	76.6	NO
4	4 13C8-PFOA	1800562-01 CA-06781 0.24584	1.23 e 4	78.2	NO
5	5 13C9-PFNA	1800562-01 CA-06781 0.24584	1.16 e 4	75.0	NO
6	6 13C4-PFOS	1800562-01 CA-06781 0.24584	3.12 e 3	87.4	NO
7	7 13C6-PFDA	1800562-01 CA-06781 0.24584	1.05 e 4	70.1	NO
8	8 13C7-PFUdA	1800562-01 CA-06781 0.24584	1.31 e 4	74.6	NO

Name: 180412M1_18, Date: 12-Apr-2018, Time: 21:07:56, ID: 1800562-02 CA-06782 0.2563, Description: CA-06782

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1800562-02$ CA-06782 0.2563	1.03 e 4	72.2	NO
2	2 13C5-PFHxA	$1800562-02$ CA-06782 0.2563	1.17 e 4	70.4	NO
3	$313 C 3-P F H x S$	$1800562-02$ CA-06782 0.2563	3.00 e 3	79.1	NO
4	$413 C 8-P F O A$	$1800562-02$ CA-06782 0.2563	1.20 e 4	76.3	NO
5	$513 C 9-P F N A$	$1800562-02$ CA-06782 0.2563	1.24 e 4	80.3	NO
6	$613 C 4-P F O S$	$1800562-02$ CA-06782 0.2563	3.14 e 3	87.9	NO
7	$713 C 6-P F D A$	$1800562-02$ CA-06782 0.2563	1.18 e 4	78.7	NO
8	$813 C 7-P F U d A$	$1800562-02$ CA-06782 0.2563	1.18 e 4	67.3	NO

Name: 180412M1_19, Date: 12-Apr-2018, Time: 21:19:25, ID: 1800562-03 CA-06783 0.2566, Description: CA-06783

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1800562-03 CA-06783 0.2566	1.04 e 4	73.0	NO
2	2 13C5-PFHxA	1800562-03 CA-06783 0.2566	1.29 e 4	77.8	NO
3	3 13C3-PFHxS	1800562-03 CA-06783 0.2566	3.04 e 3	80.1	NO
4	4 13C8-PFOA	1800562-03 CA-06783 0.2566	1.37 e 4	87.1	NO
5	5 13C9-PFNA	1800562-03 CA-06783 0.2566	1.21 e 4	78.5	NO
6	6 13C4-PFOS	1800562-03 CA-06783 0.2566	3.31 e 3	92.5	NO
7	7 13C6-PFDA	1800562-03 CA-06783 0.2566	1.19 e 4	79.4	NO
8	8 13C7-PFUdA	1800562-03 CA-06783 0.2566	1.36 e 4	77.3	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\180412M1\180412M1-IIS AREAS.qld
Last Altered: Friday, April 13, 2018 14:31:53 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 14:32:34 Pacific Daylight Time

Name: 180412M1_20, Date: 12-Apr-2018, Time: 21:30:55, ID: B8D0070-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8D0070-BS1 OPR 0.25	9.01e3	62.9	NO
2	2 13C5-PFHxA	B8D0070-BS1 OPR 0.25	1.16 e 4	70.1	NO
3	3 13C3-PFHxS	B8D0070-BS1 OPR 0.25	3.13 e 3	82.6	NO
4	4 13C8-PFOA	B8D0070-BS1 OPR 0.25	1.31 e 4	83.2	NO
5	5 13C9-PFNA	B8D0070-BS1 OPR 0.25	1.21 e 4	78.2	NO
6	6 13C4-PFOS	B8D0070-BS1 OPR 0.25	3.34 e 3	93.3	NO
7	7 13C6-PFDA	B8D0070-BS1 OPR 0.25	1.17 e 4	77.9	NO
8	8 13C7-PFUdA	B8D0070-BS1 OPR 0.25	1.33 e 4	75.7	NO

Name: 180412M1_21, Date: 12-Apr-2018, Time: 21:42:24, ID: B8D0070-BSD1 LCSD 0.25, Description: LCSD

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8D0070-BSD1 LCSD 0.25	1.16 e 4	81.2	NO
2	$213 C 5-P F H x A$	B8D0070-BSD1 LCSD 0.25	1.40 e 4	84.3	NO
3	$313 C 3-P F H x S$	B8D0070-BSD1 LCSD 0.25	3.47 e 3	91.4	NO
4	$413 C 8-P F O A$	B8D0070-BSD1 LCSD 0.25	1.47 e 4	93.6	NO
5	$513 C 9-P F N A$	B8D0070-BSD1 LCSD 0.25	1.51 e 4	97.7	NO
6	$613 C 4-P F O S$	B8D0070-BSD1 LCSD 0.25	3.47 e 3	97.0	NO
7	$713 C 6-P F D A$	B8D0070-BSD1 LCSD 0.25	1.34 e 4	89.4	NO
8	$813 C 7-P F U d A$	B8D0070-BSD1 LCSD 0.25	1.61 e 4	91.8	NO

Name: 180412M1_22, Date: 12-Apr-2018, Time: 21:53:54, ID: B8D0070-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8D0070-BLK1 Method Blank 0.25	$9.33 e 3$	65.2	NO
2	2 13C5-PFHxA	B8D0070-BLK1 Method Blank 0.25	$1.26 e 4$	75.9	NO
3	$313 C 3-P F H x S$	B8D0070-BLK1 Method Blank 0.25	$3.03 e 3$	79.8	NO
4	$413 C 8-P F O A$	B8D0070-BLK1 Method Blank 0.25	$1.41 e 4$	90.1	NO
5	$513 C 9-P F N A$	B8D0070-BLK1 Method Blank 0.25	$1.42 e 4$	92.3	NO
6	$613 C 4-P F O S$	B8D0070-BLK1 Method Blank 0.25	$3.33 e 3$	93.0	NO
7	$713 C 6-P F D A$	B8D0070-BLK1 Method Blank 0.25	$1.31 e 4$	87.8	NO
8	$813 C 7-P F U d A$	B8D0070-BLK1 Method Blank 0.25	$1.43 e 4$	81.3	NO

Name: 180412M1_23, Date: 12-Apr-2018, Time: 22:05:24, ID: 1800643-01 CA-AQIDW01-20180409 0.25041, Description: CA-ĀQIDW01-20180409

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1800643-01 CA-AQIDW01-20180409 0....	1.22 e 4	85.4	NO
2	2 13C5-PFHxA	1800643-01 CA-AQIDW01-20180409 0....	1.47 e 4	88.7	NO
3	3 13C3-PFHxS	1800643-01 CA-AQIDW01-20180409 0....	3.53 e 3	93.0	NO
4	4 13C8-PFOA	1800643-01 CA-AQIDW01-20180409 0....	1.48 e 4	94.3	NO
5	5 13C9-PFNA	1800643-01 CA-AQIDW01-20180409 0....	1.38 e 4	89.6	NO
6	6 13C4-PFOS	1800643-01 CA-AQIDW01-20180409 0....	3.60 e 3	100.6	NO
7	7 13C6-PFDA	1800643-01 CA-AQIDW01-20180409 0....	1.33 e 4	89.2	NO
8	8 13C7-PFUdA	1800643-01 CA-AQIDW01-20180409 0....	1.57 e 4	89.2	NO

Quantify Sample Summary Report
Vista Analytical Laboratory

Last Altered: Friday, April 13, 2018 14:31:53 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 14:32:34 Pacific Daylight Time

Name: 180412M1_24, Date: 12-Apr-2018, Time: 22:16:51, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST180412M1-11 PFC CS3 18D0207	1.48 e 4	103.1	NO
2	$213 C 5-P F H x A$	ST180412M1-11 PFC CS3 18D0207	1.76 e 4	106.4	NO
3	$313 C 3-P F H x S$	ST180412M1-11 PFC CS3 18D0207	3.82 e 3	100.9	NO
4	$413 C 8-P F O A$	ST180412M1-11 PFC CS3 18D0207	1.74 e 4	110.7	NO
5	$513 C 9-P F N A$	ST180412M1-11 PFC CS3 18D0207	1.85 e 4	119.9	NO
6	$613 C 4-P F O S$	ST180412M1-11 PFC CS3 18D0207	4.06 e 3	113.5	NO
7	$713 C 6-P F D A$	ST180412M1-11 PFC CS3 18D0207	$1.46 e 4$	97.3	NO
8	$813 C 7-P F U d A$	ST180412M1-11 PFC CS3 18D0207	1.84 e 4	104.7	NO

Name: 180412M1_26, Date: 12-Apr-2018, Time: 22:39:45, ID: IPA, Description: IPA

	\# Name	ID	Area \%Rec	Area Out
1	1 13C4-PFBA	IPA		NO
2	2 13C5-PFHxA	IPA		NO
3	3 13C3-PFHxS	IPA		NO
4	4 13C8-PFOA	IPA		NO
5	5 13C9-PFNA	IPA		NO
6	6 13C4-PFOS	IPA		NO
7	7 13C6-PFDA	IPA		NO
8	8 13C7-PFUdA	IPA		NO

Name: 180412M1_27, Date: 12-Apr-2018, Time: 22:51:12, ID: 180411_DODS1, Description: IPA

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$180411 _D O D S 1$	$1.13 e 4$	78.9	NO
2	$213 C 5-P F H x A$	$180411 _D O D S 1$	1.39 e 4	83.7	NO
3	$313 C 3-P F H x S$	$180411 _D O D S 1$	$3.82 e 3$	100.8	NO
4	$413 C 8-P F O A$	$180411 _D O D S 1$	$1.32 e 4$	84.3	NO
5	$513 C 9-P F N A$	$180411 _D O D S 1$	$1.53 e 4$	99.5	NO
6	$613 C 4-P F O S$	$180411 _D O D S 1$	$3.52 e 3$	98.4	NO
7	$713 C 6-P F D A$	$180411 _D O D S 1$	$1.34 e 4$	89.7	NO
8	$813 C 7-P F U d A$	$180411 _D O D S 1$	$1.60 e 4$	91.1	NO

Quantify Sample Summary Report
Vista Analytical Laboratory

Last Altered: Friday, April 13, 2018 14:31:53 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 14:32:34 Pacific Daylight Time

Name: 180412M1_28, Date: 12-Apr-2018, Time: 23:02:42, ID: 180411_DODS2, Description: IPA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	180411_DODS2	1.13 e 4	79.2	NO
2	2 13C5-PFHxA	180411_DODS2	1.37 e 4	82.5	NO
3	3 13C3-PFHxS	180411_DODS2	3.09 e 3	81.4	NO
4	4 13C8-PFOA	180411_DODS2	1.35 e 4	86.4	NO
5	5 13C9-PFNA	180411_DODS2	1.50 e 4	97.3	NO
6	6 13C4-PFOS	180411_DODS2	3.35 e 3	93.6	NO
7	7 13C6-PFDA	180411_DODS2	1.20 e 4	80.2	NO
8	8 13C7-PFUdA	180411_DODS2	1.52 e 4	86.7	NO

Name: 180412M1_29, Date: 12-Apr-2018, Time: 23:14:12, ID: 180411_EC1, Description: IPA

	\# Name	ID	Area	\%Rec	Area Out
1	1	$13 C 4-P F B A$	$180411 _E C 1$	1.14 e 4	79.8
2	2	$13 C 5-P F H x A$	$180411 _E C 1$	1.38 e 4	83.1
3	3	$13 C 3-P F H x S$	$180411 _E C 1$	3.40 e 3	89.7
4	4	$13 C 8-P F O A$	$180411 _E C 1$	1.43 e 4	91.3
5	5	$13 C 9-P F N A$	$180411 _E C 1$	1.47 e 4	95.7
6	6	$13 C 4-P F O S$	$180411 _E C 1$	3.41 e 3	95.5
7	7	$13 C 6-P F D A$	$180411 _E C 1$	1.24 e 4	83.1
8	8	$13 C 7-P F U d A$	$180411 _E C 1$	1.66 e 4	94.4

Name: 180412M1_30, Date: 12-Apr-2018, Time: 23:25:39, ID: 180411_EC2, Description: IPA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	180411_EC2	1.31 e 4	91.5	NO
2	2 13C5-PFHxA	180411_EC2	1.53 e 4	92.6	NO
3	3 13C3-PFHxS	180411_EC2	3.79 e 3	100.1	NO
4	4 13C8-PFOA	180411_EC2	1.59 e 4	101.1	NO
5	5 13C9-PFNA	180411_EC2	1.53 e 4	99.5	NO
6	6 13C4-PFOS	180411_EC2	3.91 e 3	109.5	NO
7	7 13C6-PFDA	180411_EC2	1.35 e 4	90.5	NO
8	8 13C7-PFUdA	180411_EC2	1.63 e 4	92.8	NO

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C4-PFHpA

L-PFHxS

F17:MRM of 2 channels,ES-
$398.9>79.6$
$1.761 \mathrm{e}+002$

1802-PFHxS

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C2-6:2 FTS

13C2-PFOA

13C2-PFOA

F26:MRM of 2 channels,ES-

13C5-PFNA

F29:MRM of 4 channels,ES-

13C8-PFOSA

L-PFOS

13C8-PFOS

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

F41:MRM of 2 channels,ES-

13C2-8:2 FTS

F47:MRM of 2 channels,ES-

d3-N-MeFOSAA

F50:MRM of 2 channels,ES-

d5-N-EtFOSAA

F45:MRM of 2 channels,ES-

13C2-PFUdA

F52:MRM of 2 channels,ES$598.8>98.7$

13C2-PFUdA

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C2-PFDoA

F35:MRM of 2 channels,ES-

d3-N-MeFOSA

F59:MRM of 2 channels,ES-

13C2-PFDoA

13C2-PFTeDA

F40:MRM of 2 channels,ES-

13C2-PFHxDA

Dataset: Untitled

Last Altered: Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C2-PFHxDA

d7-N-MeFOSE

13C8-PFOA

13C5-PFHxA

13C9-PFNA

13C3-PFHxS

13C4-PFOS

Dataset: Untitled

Last Altered: Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

LC Calibration Standards Review Checklist

Run Log Present:
\# of Samples per Sequence Checked:
Instrument Blank Saved
IIS Area Saved
Reviewed By: \quad Initials/Date

Full Mass Cal. Date: $4 / 2 / 18$
Comments:

Dataset:	F:IProjectsIPFAS.PROIResults\180412M1\180412M1-25.qid
Last Altered:	Tuesday, April 17, 2018 11:24:47 Pacific Daylight Time
Printed:	Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 18D0207

Work Order 1800643

Dataset:
F:IProjects\PFAS.PRO\Results\180412M11180412M1-25.qld
Last Altered: Tuesday, April 17, 2018 11:24:47 Pacific Daylight Time
Printed:
Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 18D0207

	\# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec	Recovery Out
32	35 13C3-PFPeA	266. > 221.8	1.43 e 4	1.76 e 4	0,859	2.54	2.38	10.2	11.8	94.7	NO
33	3613 C 3 -PFBS	302. >98.8	2.14 e 3	1.76 e 4	0.121	2.81	2.65	1.52	12.6	100.6	NO
34	37 13C2-PFHxA	$315>269.8$	4.76 e 3	1.76 e 4	0.733	3.30	3.14	3.37	4.60	92.1	NO
35	38 13C4-PFHpA	$367.2>321.8$	1.31 e 4	1,76e4	0.761	3.92	3.76	9.29	12.2	97.7	NO
36	39 1802-PFHxS	$403.0>102.6$	1.65 e 3	3.82 e 3	0.431	4.06	3.90	5.39	12.5	100.0	NO
37	40 13C2-6:2 FTS	$429.1>408.9$	4.86 e 3	1.74 e 4	0.333	4.38	4.22	3.50	10.5	84.1	NO
38	41 13C2-PFOA	$414.9>369.7$	1.81 e4	1.74 e 4	1.150	4,43	4.27	13.0	11.3	90.7	NO
39	42 13C5-PFNA	$468.2>422.9$	1.64 e 4	1.85 e4	0.979	4.87	4.71	11.1	11.4	90.9	NO
40	43 13C8-PFOSA	$506.1>77.7$	3.92 e 3	1.84 e 4	0.218	4.93	4.78	2.66	12.2	97.5	NO
41	44 13C8-PFOS	$507.0>79.9$	3.88 e 3	3.96 e 3	1.047	4.95	4.79	12.2	11.7	93.6	NO
42	45 13C2-PFDA	$515.1>469.9$	135 e 4	1.43 e 4	0.958	5.24	5.08	11.8	12.4	98.9	NO
43	46 13C2-8:2 FTS	$529.1>508.7$	3.39 e 3	1.76 e 4	0.226	5.21	5.05	2.40	10.6	85.0	No
44	$47 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	7.94 e 3	1.84 e 4	0.471	5.39	5.23	5.39	11.4	91.5	NO
45	$48 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	9.81 e 3	1.84 e 4	0.517	5.55	5.38	6.66	12.9	103.1	NO
46	49 13C2-PFUdA	$565>519.8$	1.54 e 4	1.84 e 4	0.960	5.56	5.40	10.5	10.9	87.2	NO
47	50 13C2-PFDoA	$615.0>569.7$	1.37 e 4	1.84 e 4	0.840	5.84	5.68	9.29	11.1	88.5	NO
48	51 d3-N-MeFOSA	$515.2>168.9$	2.07e4	1.84 e 4	0.097	6.00	5.87	14.0	145	96.5	NO
49	52 13C2-PFTeDA	$714.8>669.6$	6.99 e 3	1.84 e 4	0.510	6.30	6.14	4.75	9.30	74.4	NO
50	53 d5-N-ETFOSA	$531.1>168.9$	2.90 e4	1.84 e 4	0.138	6.40	6.25	19.7	143	95.5	NO
51	54 13C2-PFHxDA	$815>769.7$	6.50 e 3	1.84 e 4	1.118	6.62	6.47	4.42	3.95	79.0	NO
52	$55 \mathrm{d7}$-N-MeFOSE	$623.1>58.9$	$3.61{ }^{4} 4$	1.84 e 4	0.169	6.50	6.34	24.5	145	96.9	NO
53	56 d9-N-EIFOSE	$639.2>58.8$	3.85 e 4	1.84 e 4	0.161	6.65	6.49	26.1	162	108.3	NO
54	57 13C4-PFBA	217. >171.8	1.48 e 4	1.48 e 4	1.000	1.56	1.44	12.5	12.5	100.0	NO
55	58 13C5-PFHxA	$318>272.9$	1.76 e 4	1.76 e 4	1.000	3.30	3.14	12.5	12.5	100.0	NO
56	59 13C3-PFHxS	$401.9>79.9$	3.82 e 3	3.82e3	1.000	4.04	3.90	12.5	12.5	100.0	NO
57	60 13C8-PFOA	$421.3>376$	1.74 e 4	1.74 e 4	1.000	4.43	4.27	12.5	12.5	100.0	NO
58	61 13C9-PFNA	$472.2>426.9$	1.85 e 4	1.85 e4	1.000	4.87	4.71	12.5	12.5	100.0	NO
59	62 13C4-PFOS	$503>79.9$	3.96 e 3	3.96 e3	1.000	4.95	4.79	12.5	12.5	100.0	NO
60	63 13C6-PFDA	$519.1>473.7$	1.43 e 4	1.43 e 4	1.000	5.24	5.08	12.5	12.5	100.0	NO
61	64 13C7-PFUdA	$570.1>524.8$	1.84 e 4	1.84 e 4	1.000	5.56	5.40	12.5	12.5	100.0	NO

Dataset: Untitled
Last Altered: Friday, April 13, 2018 14:36:00 Pacific Daylight Time
Printed: Friday, April 13, 2018 14:36:34 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59

Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Compound name: PFBA

Dataset:	F:IProjectsIPFAS.PROIResults\180412M11180412M1-25.qld
Last Altered:	Tuesday, April 17, 2018 11:24:47 Pacific Daylight Time
Printed:	Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Method: F:IProjectsIPFAS.PRO\MethDBIPFAS_FULL_80C_040318.mdb 13 Apr 2018 14:51:41

Calibration: F:IProjects\PFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

PFBA
F1:MRM of 1 channel,ES-
$213,0>168.8$
100

13C2-PFHxA
F9:MRM of 1 channel,ES-
$315>269.8$

F14:MRM of 2 channels,ES-
$349.1>99$ $4.822 \mathrm{e}+004$

Dataset:	F:IProjectsIPFAS.PROIResults\180412M11180412M1-25,qld
Last Altered:	Tuesday, April 17, 2018 11:24:47 Pacific Daylight Time
Printed:	Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 18 D0207

F23:MRM of 2 channels,ES-
$427.1>80$ $3.906 \mathrm{e}+004$

13C2-PFOA
F21:MRM of 1 channel,ES-
$414.9>369.7$

PFNA
F26:MRM of 2 channels,ES-
$463.0>418.8$
$3.922 \mathrm{e}+005$

13C5-PFNA
F27:MRM of 1 channel,ES$4.236 \mathrm{e}+005$

Dataset:	F:IProjects\PFAS.PRO\Results1180412M11180412M1-25.qld
Last Altered:	Tuesday, April 17,2018 11:24:47 Pacific Daylight Time
Printed:	Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

Vista Analytical Laboratory

Dataset: F:IProjects\PFAS.PROIResults1180412M11180412M1-25.qld

Last Altered: Tuesday, April 17, 2018 11:24:47 Pacific Daylight Time
Printed: Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

F50:MRM of 2 channels, ES-
PFDoA
F53:MRM of 4 channels,ES.
$612.9>569.0$
$4.155 \mathrm{e}+005$

13C2-PFDoA
F54:MRM of 2 channels, ES$615.0>569.7$
$3.532+005$

Dataset:	F:IProjects\PFAS, PRO\Results\180412M11180412M1-25.qid
Last Altered:	Tuesday, April 17, 2018 11:24:47 Pacific Daylight Time
Printed:	Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

F60:MRM of 2 channels,ES
N-EtFOSA
F40:MRM of 2 channels,ES-
$526.1>168.9$
$1.910 \mathrm{e}+005$
100

Dataset: F:IProjectsIPFAS.PROIResults\180412M1\180412M1-25.qld

Last Altered:	Tuesday, April 17, 2018 11:24:47 Pacific Daylight Time
Printed:	Tuesday, April 17, 2018 11:25:31 Pacific Daylight Time

Name: 180412M1_25, Date: 12-Apr-2018, Time: 22:28:17, ID: ST180412M1-11 PFC CS3 18D0207, Description: PFC CS3 18 D0207

13C6-PFDA

F39:MRM of 1 channel,ES-
$519.1>473.7$ $3.343 \mathrm{e}+005$

13C7-PFUdA
F48:MRM of 1 channel,ES-
$570.1>524.8$ $4.382 \mathrm{e}+005$

INITIAL CALIBRATION (ICAL)
 INCLUDING ASSOCIATED

INITIAL CALIBRATION VERIFICATION (ICV) AND INSTRUMENT BLANK (IB)

Dataset:
F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.qid

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFĀS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999917, \mathrm{r}^{\wedge} 2=0.999835$
Calibration curve: $1.17165{ }^{*} \times+0.0472244$

Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999842, \mathrm{r}^{\wedge} 2=0.999684$
Calibration curve: $1.0664^{*} x+0.0408351$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory
Dataset:
F:IProjectsIPFAS.PROIResults1180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: PFPeA

	\# Name	Type	Sid Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Cone. Flag	COD	Cod Flag	x=excluded
10.	10 180412M1_11	Standard	500.000	2.37	557556.438	12878.532	541.168	507.4	1.5	NO	1.000	NO	bb

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999598, \mathrm{r}^{\wedge} 2=0.999197$
Calibration curve: $1.89414^{*} x+-0.0288383$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 4:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999470$
Calibration curve: -0.000405212 * $x^{\wedge} 2+2.37556^{*} x+-0.0593719$
Response type: Internal Std (Ref 36). Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / \mathrm{x}$, Axis trans: None

(ivm	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0,250	3.05	97.068	1976.932	0.614	0.3	13.3	NO	0.999	NO	bb
2	2 180412M1_3	Standard	0.500	3.05	171.095	2012.240	1.063	0.5	-5.5	NO	0.999	NO	bb
3	3 180412M1_4	Standard	1.000	3.05	345.608	2020.388	2.138	0.9	-7.5	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	3.05	704.253	1981.108	4.444	1.9	-5.2	NO	0.999	NO	bb
5	5 180412M1_6	Standard	5.000	3.05	1966.585	1986.397	12.375	5.2	4.8	NO	0.999	NO	bb
6	6 180412M1_7	Standard	10.000	3.05	3674.837	1990.742	23.075	9.8	-2.5	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	3.05	19313.051	2041.284	118.265	50.2	0.5	NO	0.999	NO	bb

Dataset:
F:IProjects\PFAS.PROIResultsI180412M11180412M1-CRV.qid
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 4:2 FTS

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
8	8 180412M1_9	Standard	100.000	3.05	39204.988	2011.619	243.616	104.4	4.4	NO	0.999	NO	MM
9	9 180412M1_10	Standard	250.000	3.05	86156.164	1950,802	552.056	242.4	-3.0	NO	0.999	NO	bb
10	10 180412M1_11	Standard	500.000	3.05	155493.469	1779.008	1092.557	503.1	0.6	NO	0.999	NO	bb

Compound name: PFHxA

Coefficient of Determination: $R^{\wedge} 2=0.998763$
Calibration curve: $-0.000593566^{*} x^{\wedge} 2+1.6809^{*} x+0.0121769$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

551	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	3.14	463.125	4687.334	0.494	0.3	14.7	NO	0.999	NO	bb
2	2 180412M1_3	Standard	0.500	3.14	765.279	4463.879	0.857	0.5	0.6	NO	0.999	NO	bb
3	3 180412M1_4	Standard	1.000	3.14	1581.613	4738.835	1.669	1.0	-1.4	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	3.14	3210.659	4830.748	3.323	2.0	-1.4	NO	0.999	NO	bb
5	5 180412M1_6	Standard	5.000	3.14	7798.987	4854.741	8.032	4.8	-4.4	NO	0.999	NO	bb
6	6 180412M1_7	Standard	10.000	3.14	15262.804	4995.104	15.278	9.1	-8.9	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	3.14	78490.391	4765.423	82.354	49.9	-0.3	NO	0.999	NO	bb
8	8 180412M1_9	Standard	100.000	3.14	162893.672	4690.850	173.629	107.4	7.4	NO	0.999	NO	bb
9	9 180412M1_10	Standard	250.000	3.14	365690.531	4957.260	368.843	239.7	-4.1	NO	0.999	NO	bb
10	10 180412M1_11	Standard	500.000	3.14	696492.313	4996.505	696.980	504.5	0.9	NO	0.999	NO	bb

Compound name: PFPeS

Correlation coefficient: $\mathrm{r}=0.999947, \mathrm{r}^{\wedge} 2=0.999894$
Calibration curve: $1.62535{ }^{*} \times+-0.117866$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	3.33	38.342	1976.932	0.242	0.2	-11.3	NO	1.000	NO	MM
2	2 180412M1_3	Standard	0.500	3.34	114.567	2012.240	0.712	0.5	2.1	NO	1.000	NO	MM
3	3 180412M1_4	Standard	1.000	3.33	262.144	2020.388	1.622	1.1	7.0	NO	1.000	NO	MM
4	4 180412M1_5	Standard	2.000	3.34	504.098	1981.108	3.181	2.0	1.5	NO	1.000	NO	MM
5	5 180412M1_6	Standard	5.000	3.34	1264.059	1986.397	7.954	5.0	-0.7	NO	1.000	NO	bb

Dataset:
F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV.qid
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: PFPeS

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
6	6 180412M1_7	Standard	10.000	3.33	2534.784	1990.742	15.916	9.9	-1.4	NO	1.000	NO	bb
7	7 180412M1_8	Standard	50.000	3,34	13374.106	2041.284	81.898	50.5	0.9	NO	1.000	NO	bb
8	8 180412M1_9	Standard	100.000	3.33	26666,008	2011.619	165.700	102.0	2.0	No	1.000	NO	bb
9	9 180412M1_10	Standard	250.000	3.34	63782.762	1950.802	408.696	251.5	0.6	NO	1.000	NO	bb
10	10 180412M1_11	Standard	500.000	3.34	114738.031	1779.008	806.194	496.1	-0.8	NO	1.000	NO	bb

Compound name: PFHpA

Correlation coefficient: $r=0.999769, r^{\wedge} 2=0.999538$
Calibration curve: $1.208^{*} x+0.0277093$
Response type: Internal Std (Ref 38), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD flag	$x=e x$ cluded
1	1 180412M1_2	Standard	0.250	3.76	284.508	13278.581	0.268	0.2	-20.5	NO	1.000	NO	bb
2	2 180412M1_3	Standard	0.500	3.76	565.072	12454.534	0.567	0.4	-10.7	NO	1.000	No	bb
3	3 180412M1_4	Standard	1.000	3.76	1400.455	12577.205	1.392	1.1	12.9	NO	1.000	NO	bb
4	4 180412M1_5	Standard	2.000	3.76	2403.280	11923.876	2.519	2.1	3.1	NO	1.000	No	bb
5	5 180412M1_6	Standard	5.000	3.76	6050.102	11880.335	6.366	5.2	4.9	NO	1.000	NO	bb
6	6 180412M1_7	Standard	10.000	3.76	12731.982	11789.843	13.499	11.2	11,5	NO	1,000	NO	bb
7	7 180412M1_8	Standard	50.000	3.76	65339.383	13793.957	59.210	49.0	-2.0	No	1.000	NO	bb
8	8 180412M1_9	Standard	100.000	3.76	119328.039	12409.241	120.201	99.5	-0.5	NO	1.000	NO	bb
9	9 180412M1_10	Standard	250.000	3.76	314558.313	12712.665	309.296	256.0	2.4	No	1.000	NO	bb
10	10 180412M1_11	Standard	500.000	3.76	559204.750	11712.302	596.813	494.0	-1.2	NO	1.000	NO	bb

Dataset: F:IProjectsIPFAS.PROIResultsI180412M1\180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: L-PFHxS

Correlation coefficient: $\mathrm{r}=0.999641, \mathrm{r}^{\wedge} 2=0.999282$
Calibration curve: 1.87852 * $x+-0.109873$
Response type: Internal Std (Ref 39), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting. 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	x=excluded
1	$1180412 \mathrm{M1}$ _2	Standard	0.250	3.91	35.864	1527.931	0.293	0.2	-14.1	NO	0.999	NO	MM
2	2 180412M1_3	Standard	0.500	3.90	108.738	1568.844	0.866	0.5	3.9	NO	0.999	NO	MM
3.	3 180412M1_4	Standard	1.000	3.91	202.254	1405.909	1.798	1.0	1.6	NO	0.999	NO	MM
4	4 180412M1_5	Standard	2.000	3.91	499.336	1596.036	3.911	2.1	7.0	NO	0.999	NO	MM
5	5 180412M1_6	Standard	5.000	3.91	1196.678	1780.262	8.402	4.5	-9.4	NO	0.999	NO	MM
6	6 180412M1_7	Standard	10.000	3.90	2469.363	1597.028	19.328	10.3	3.5	NO	0,999	NO	MM
7	7 180412M1_8	Standard	50.000	3.90	13380.876	1630.157	102.604	54.7	9.4	NO	0.999	NO	MM
8	8 180412M1_9	Standard	100.000	3.90	25248.861	1675.668	188.349	100.3	0.3	NO	0.999	NO	MM
9	9 180412M1_10	Standard	250.000	3.91	57703.410	1573.319	458.453	244.1	-2.4	NO	0.999	NO	MM
10	10 180412M1_11	Standard	500.000	3.90	114696.273	1523.943	940.785	500.9	0.2	NO	0.999	NO	MM

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998553$
Calibration curve: -0.00328829 * $x^{\wedge} 2+1.12459$ * $x+0.0184508$
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	4.22	101.374	4862.338	0.261	0.2	-13.8	NO	0.999	NO	bb
2	2 180412M1_3	Standard	0.500	4.21	217.377	4642.121	0.585	0.5	1,0	NO	0.999	NO	bb
3	3 180412M1_4	Standard	1.000	4.22	449.267	4656.256	1.206	1.1	5.9	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	4.22	872.331	4542.417	2.401	2.1	6.6	No	0.999	NO	bb
5	5 180412M1_6	Standard	5.000	4.22	2073.924	4967,122	5.219	4.7	-6.2	NO	0.999	NO	bb
6	6 180412M1_7	Standard	10.000	4,22	4550.660	4786.033	11.885	10.9	9.0	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	4.22	21994.746	5898.290	46.613	48.2	-3.5	NO	0.999	NO	bb
8	8 180412M1_9	Standard	100.000	4.22	42210.234	6577.263	80.220	101.4	1.4	NO	0.999	NO	bb
9	9 180412M1_10	Standard	250.000	4.22	99767.063	8718.205	143.044			NO	0.999	NO	bbxI
10	10 180412M1_11	Siandard	500.000	4.22	174352.000	11749,935	185.482			NO	0.999	NO	bbxI

Last Altered: Friday. April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: L-PFOA

Correlation coefficient: $r=0.998891, r^{\wedge} 2=0.997784$
Calibration curve: 0.933217 * $x+0.0971148$
Response type: Internal Std (Ref 41), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoD Flag	x=excluded
1	1 180412M1_2	Standard	0,250	4.28	384.317	17375.193	0.276	0.2	-23.1	NO	0.998	NO	bb
2	2 180412M1_3	Standard	0.500	4.27	697.162	16543.324	0.527	0.5	-7.9	NO	0.998	NO	MM
3	$3180412 \mathrm{M1}$ _4	Standard	1.000	4.27	1413.776	18351.223	0.963	0.9	-7.2	NO	0.998	NO	bb
4	4 180412M1_5	Standard	2.000	4.27	3203.281	17801.283	2.249	2.3	15.3	NO	0.998	NO	bb
5	5 180412M1_6	Standard	5.000	4.28	6892.519	17982.363	4.791	5.0	0.6	NO	0.998	NO	bb
6	6 180412M1_7	Standard	10.000	4.28	14698.662	18203.990	10.093	10.7	7.1	NO	0.998	NO	bb
7	7 180412M1_8	Standard	50.000	4.27	71717.000	17551.113	51.077	54.6	9.3	NO	0.998	NO	bb
8	8 180412M1_9	Standard	100.000	4.27	136588.047	17065.654	100.046	107.1	7.1	NO	0.998	NO	bb
9	9 180412M1_10	Standard	250.000	4.27	349747.094	18223.658	239.899	257.0	2.8	NO	0.998	NO	bb
10	10 180412M1_11	Standard	500.000	4.27	641636.500	17885.152	448.442	480.4	-3.9	NO	0.998	NO	bb

Compound name: PFHpS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998356$
Calibration curve: $-5.04164 \mathrm{e}-005^{*} x^{\wedge} 2+0.202804^{*} x+-0.00232181$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

[20	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Fiag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	4.39	74.211	17375.193	0.053	0.3	9.9	NO	0.998	NO	bb
2	2 180412M1_3	Standard	0.500	4.38	126.974	16543.324	0.096	0.5	-3.1	NO	0.998	NO	bb
3	3 180412M1_4	Standard	1.000	4.38	342.402	18351.223	0.233	1.2	16.2	NO	0.998	NO	bb
4	4 180412M1_5	Standard	2.000	4.38	485.557	17801.283	0.341	1.7	-15.3	NO	0.998	NO	bb
5	5 180412M1_6	Standard	5.000	4.38	1370.652	17982.363	0.953	4.7	-5.7	NO	0.998	NO	bb
6	6 180412M1_7	Standard	10.000	4.38	2712.310	18203.990	1.862	9.2	-7.8	NO	0.998	NO	bb
7	7 180412M1_8	Standard	50.000	4.38	14385.162	17551.113	10.245	51.2	2.4	NO	0.998	NO	bb
8	8 180412M1_9	Standard	100.000	4.38	28994.688	17065.654	21.238	107.6	7.6	NO	0.998	NO	bb
9	9 180412M1_10	Standard	250.000	4.38	65991.188	18223.658	45.265	237.2	-5.1	NO	0.998	NO	bb
$10 \cdot 8$	10 180412M1_11	Standard	500.000	4.38	128236.742	17885.152	89.625	505.5	1.1	NO	0.998	NO	bb

Dataset: F:IProjectsIPFAS.PROIResults\180412M1\180412M1-CRV.gld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999818, \mathrm{r}^{\wedge} 2=0.999637$
Calibration curve: $1.18721^{*} \mathrm{x}+0.0329161$
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / \mathrm{x}$, Axis trans: None

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.999783, \mathrm{r}^{\wedge} 2=0.999565$
Calibration curve: 1.00842 * $x+-0.0126412$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta Conc	RT	Area	IS Area	Response	Canc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	4.78	76.340	3804.597	0.251	0.3	4.5	NO	1.000	NO	bb
2	2 180412M1_3	Standard	0.500	4.78	111.002	3927.791	0.353	0.4	-27.4	NO	1.000	NO	MM
3	3 180412M1_4	Standard	1.000	4.78	326.250	3791.337	1.076	1.1	7.9	NO	1.000	NO	bb
4	4 180412M1_5	Standard	2.000	4.78	619.273	3847.814	2.012	2.0	0.4	NO	1.000	NO	bb
5	5 180412M1_6	Standard	5.000	4.78	1593.754	3621.776	5.501	5.5	9.3	NO	1.000	NO	MM
6	6 180412M1_7	Standard	10.000	4.78	3109.311	3689.177	10.535	10.5	4.6	NO	1.000	NO	bb
7	7 180412M1_8	Standard	50.000	4.78	15434.711	3823.459	50.461	50.1	0.1	NO	1.000	NO	bb
8	8 180412M1_9	Standard	100.000	4.78	30839.771	3850.831	100.108	99.3	-0.7	NO	1.000	NO	bb
9	9 180412M1_10	Standard	250.000	4.78	69902.883	3374.944	258.904	256.8	2.7	NO	1.000	NO	bb
10	10 180412M1_11	Standard	500.000	4.78	130921.969	3291.725	497.163	493.0	-1.4	NO	1.000	NO	bb

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: L-PFOS

Correlation coefficient: $\mathrm{r}=0.998367, \mathrm{r}^{\wedge} 2=0.996737$
Calibration curve: 1.05556 * $x+-0.0448468$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

	\# Name	Type	Stid. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1180412M1_2	Standard	0.250	4.79	58.925	3809.206	0.193	0.2	-9.7	NO	0.997	NO	MM
2	2 180412M1_3	Standard	0.500	4.79	121.180	3879.481	0.390	0.4	-17.5	NO	0.997	NO	MM
3	3 180412M1_4	Standard	1.000	4.79	347.011	3923.690	1.105	1.1	9.0	NO	0.997	NO	MM
4	4 180412M1_5	Standard	2.000	4.79	560.376	3905.613	1.793	1.7	-12.9	NO	0.997	NO	MM
5	5 180412M1_6	Standard	5.000	4.79	1614.469	3881.834	5.199	5.0	-0.6	NO	0.997	NO	MM
6	6 180412M1_7	Standard	10.000	4.79	3484.249	3794.469	11.478	10.9	9.2	NO	0.997	NO	MM
7	7 180412M1_8	Standard	50.000	4.79	17003.479	3867.217	54.960	52.1	4.2	NO	0.997	NO	MM
8	8 180412M1_9	Standard	100.000	4.79	32125.773	3914.104	102.596	97.2	-2.8	NO	0.997	NO	MM
9 -	$9180412 \mathrm{M1} 10$	Standard	250.000	4.79	81269.891	3550.716	286.104	271.1	8.4	NO	0.997	NO	MM
10×1	10 180412M1_11	Standard	500.000	4.79	145749.031	3603.874	505.529	479.0	-4.2	NO	0.997	NO	MM

Compound name: PFDA

Coefficient of Determination: $R^{\wedge} 2=0.999664$
Calibration curve: $-0.000114213^{*} x^{\wedge} 2+1.33852^{*} x+0.0655649$
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	0.250	5.08	407.581	12920.214	0.394	0.2	-1.8	NO	1.000	NO	MM
2	2 180412M1_3	Standard	0.500	5.08	736.883	12655.407	0.728	0.5	-1.0	NO	1.000	NO	bb
3	3 180412M1_4	Standard	1.000	5.07	1671.077	14661.358	1.425	1.0	1.6	NO	1.000	NO	bb
4	4 180412M1_5	Standard	2.000	5.08	2737.891	13153.102	2.602	1.9	-5.2	NO	1.000	NO	bb
5	5 180412M1_6	Standard	5.000	5.08	7558.297	13492.313	7.002	5.2	3.7	NO	1.000	NO	bb
6	$6180412 \mathrm{M1}$ _7	Standard	10.000	5.08	14816.645	13921.538	13.304	9.9	-1.0	NO	1.000	NO	MM
7	7 180412M1_8	Standard	50.000	5.08	73681.156	13226.847	69.632	52.2	4.4	NO	1.000	NO	bb
8	8 180412M1_9	Standard	100.000	5.08	153281.422	14238.182	134.569	101.4	1.4	NO	1.000	NO	bb
9	9 180412M1_10	Standard	250.000	5.08	369016.750	14439.042	319.461	243.7	-2.5	NO	1.000	NO	bb
10	10 180412M1_11	Standard	500.000	5.08	691678.625	13421.889	644.170	502.8	0.6	NO	1.000	NO	bb

Dataset:

Last Altered:
Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999393$
Calibration curve: $-0.00567628^{*} x^{\wedge} 2+1.76645^{*} x+-0.0113749$
Response type: Internal Std (Ref 46), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc Flag	COD	CoD Flag	$x=$ excluded
$1 y^{105}$	1 180412M1_2	Standard	0.250	5.06	138.904	3500,403	0.496	0.3	15.0	NO	0.999	NO	bb
2	2 180412M1_3	Standard	0.500	5.05	218.987	3576.784	0.765	0.4	-11.9	NO	0.999	NO	MM
3	3 180412M1_4	Standard	1.000	5.05	499.526	3740.451	1.669	1.0	-4.6	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	5.05	949.750	3144.534	3.775	2.2	7.9	NO	0.999	NO	bb
5	5 180412M1_6	Standard	5.000	5.05	2188.277	3362.617	8.135	4.7	-6.4	NO	0.999	NO	bb
6	6 180412M1_7	Standard	10.000	5.05	4869.706	3606.306	16.879	9.9	-1.2	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	5.05	24040.430	3995.046	75.220	50.9	1.8	NO	0.999	NO	bb
8	8 180412M1_9	Standard	100.000	5.05	46739.695	4894.652	119.364	99.2	-0.8	NO	0.999	NO	bb
9	9 180412M1_10	Standard	250.000	5.05	101550.445	7147.697	177.593			NO	0.999	NO	bbXI
10	10 180412M1_11	Standard	500.000	5.05	176282.047	9654.647	228.235			NO	0.999	NO	bbXI

Compound name: PFNS

Coefficient of Determination: $R^{\wedge} 2=0.999574$
Calibration curve: $-8.16963 e-005^{*} x^{\wedge} 2+0.790266^{*} x+-0.141984$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	x =excluded
1	1 180412M1_2	Standard	0.250	5.14	61.952	3809.206	0.203	0.4	74.8	YES	1.000	NO	bbX
2	2 180412M1_3	Standard	0.500	5.14	97.568	3879.481	0.314	0.6	15.5	NO	1.000	NO	bb
3	3 180412M1_4	Standard	1.000	5:14	163.255	3923.690	0.520	0.8	-16.2	NO	1.000	NO	bb
4	4 180412M1_5	Standard	2.000	5.14	456.663	3905.613	1.462	2.0	1.5	NO	1.000	NO	bb
5	5 180412M1_6	Standard	5.000	5.14	1069.611	3881.834	3.444	4.5	-9.2	NO	1.000	NO	bb
6	6 180412M1_7	Standard	10.000	5.14	2515.534	3794.469	8.287	10.7	6.8	NO	1.000	NO	bb
7	7 180412M1_8	Standard	50.000	5.14	12691,373	3867.217	41.022	52.4	4.7	NO	1.000	NO	bb
8	8 180412M1_9	Standard	100.000	5.14	23606.629	3914.104	75.390	96.5	-3.5	NO	1.000	NO	bb
9	9 180412M1_10	Standard	250.000	5.14	54829.375	3550.716	193.022	250.9	0.4	NO	1.000	NO	bb
10	10 180412M1_11	Standard	500.000	5.14	107988.844	3603.874	374.558	500.0	-0.0	NO	1.000	NO	bb

Dataset:
F:IProjects|PFAS.PROIResults)180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $R^{\wedge} 2=0.998666$
Calibration curve: $-0.000163635^{*} x^{\wedge} 2+1.41496{ }^{*} x+0.06191$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

- a $^{\text {a }}$	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	5.23	211.036	7381.724	0.357	0.2	-16.5	NO	0.999	NO	bb
2	2 180412M1_3	Standard	0.500	5.23	423.462	7562.005	0.700	0.5	-9.8	NO	0.999	NO	bb
3	3 180412M1_4	Standard	1.000	5.23	1034.134	8204.587	1.576	1.1	7.0	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	5.23	2097.229	8111.684	3.232	2.2	12.0	NO	0.999	NO	$b \mathrm{~b}$
5	5 180412M1_6	Standard	5.000	5.23	4347.618	7390.027	7.354	5.2	3.1	NO	0.999	NO	bb
6	6 180412M1_7	Standard	10.000	5.23	10402.759	7705.184	16.876	11.9	19.0	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	5.23	51694.258	8795.677	73.465	52.2	4.4	NO	0.999	NO	bb
8	8 180412M1_9	Standard	100.000	5.23	95992.328	8413.845	142.611	101.9	1.9	NO	0.999	NO	bb
9	9 180412M1_10	Standard	250.000	5.23	223400.188	8528.218	327.443	237.9	-4.8	NO	0.999	NO	bb
10	10 180412M1_11	Standard	500.000	5.23	420601.750	7802.813	673.798	505.7	1.1	NO	0.999	NO	bb

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 $=0.999715$
Calibration curve: $-5.98261 e-005{ }^{*} x^{\wedge} 2+1.00844$ * $x+-0.00487995$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: PFUdA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998191$
Calibration curve: $-9.75727 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+1.0298^{*} \mathrm{x}+0.0729832$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999010$
Calibration curve: $-5.80925 \mathrm{e}-005 * x^{\wedge} 2+0.239142 * x+-0.0310009$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	5.45	31.340	18456.398	0.021	0.2	-12.6	NO	0.999	NO	MM
2	2 180412M1_3	Standard	0.500	5.45	125.062	14034.184	0.111	0.6	19.1	NO	0.999	NO	bb
3	3 180412M1_4	Standard	1.000	5.45	258.469	17058.291	0.189	0.9	-7.8	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	5.45	635.311	16486.967	0.482	2.1	7.2	NO	0.999	NO	bb
5	5 180412M1_6	Standard	5.000	5.45	1509.681	16576,582	1.138	4.9	-2.1	NO	0.999	NO	bb
6	6 180412M1_7	Standard	10.000	5.45	2777.114	15627.048	2.221	9.4	-5.6	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	5.45	16109.899	17509.188	11.501	48.8	-2.4	NO	0.999	NO	bb
8	8 180412M1_9	Standard	100.000	5.45	30081,768	15124.238	24.862	106.9	6.9	NO	0.999	NO	bb
9	9 180412M1_10	Standard	250.000	5.45	72516.555	16669.102	54.379	241.7	-3.3	NO	0.999	NO	bb
10	10 180412M1_11	Standard	500.000	5.45	129032.305	15272.604	105.608	503.3	0.7	NO	0.999	NO	bb

Dataset:
F:IProjectsIPFAS.PROIResultsI180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999158$
Calibration curve: $9.73778 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+1.28783^{*} \mathrm{x}+0.059227$
Response type: Internal Std (Ref 50), Area * (IS Conc, / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	5.68	418.672	14303.356	0,366	0.2	-4.8	NO	0.999	NO	MM
2	2 180412M1_3	Standard	0.500	5.68	783.775	12595.369	0.778	0.6	11.6	NO	0.999	NO	bb
3	3 180412M1_4	Standard	1.000	5.68	1556.325	14580.861	1.334	1.0	-1.0	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	5.68	3159.567	14283.055	2.765	2.1	5.0	NO	0.999	NO	bb
5	5 180412M1_6	Standard	5,000	5.68	7726.447	15909.844	6.070	4.7	-6.7	NO	0.999	NO	MM
6	6 180412M1_7	Standard	10.000	5.68	13880.624	13710.530	12.655	9.8	-2.3	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	5.68	77584.523	16196.083	59.879	46.3	-7.4	NO	0.999	NO	bb
8	8 180412M1_9	Standard	100.000	5.68	152563.109	13777,638	138.416	106.6	6.6	NO	0.999	NO	bb
9	9 180412M1_10	Standard	250.000	5.68	352363.313	13590.670	324.086	247.0	-1.2	NO	0.999	NO	bb
10	10 180412M1_11	Standard	500.000	5.68	732721.875	13688.563	669.100	500.6	0.1	NO	0.999	NO	bb

Compound name: N-MeFOSA

Correlation coefficient: $r=0.999089, \mathrm{r}^{\wedge} 2=0.998179$
Calibration curve: $0.896574^{*} x+0.307732$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

F:IProjectsIPFAS.PROIResultsI180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997791$
Calibration curve: $-0.00042286^{*} x^{\wedge} 2+1.39176$ * $x+-0.0410811$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998549$
Calibration curve: $-0.000787853^{*} x^{\wedge} 2+1.59226^{*} x+0.135857$
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	COD	CoDFlag	$x=$ excluded
1	1 180412M1_2	Standard	0.250	6.15	333.110	8693,006	0.479	0.2	-13.8	NO	0.999	NO	bb
2	2 180412M1_3	Standard	0.500	6.15	603.226	7635.941	0.987	0.5	7.0	NO	0.999	NO	bb
3	3 180412M1_4	Standard	1.000	6.15	1145.368	7897.562	1.813	1.1	5.4	NO	0.999	NO	bb
4	4 180412M1_5	Standard	2.000	6.15	2053.154	9385.261	2.735	1.6	-18.3	NO	0.999	NO	bb
5	5 180412M1_6	Standard	5.000	6.15	4987.198	7202.300	8.656	5.4	7.3	NO	0.999	NO	bb
6	6 180412M1_7	Standard	10.000	6.15	11230.134	8036.246	17.468	10.9	9.4	NO	0.999	NO	bb
7	7 180412M1_8	Standard	50.000	6.15	56873.531	8929.627	79.614	51.2	2.4	NO	0.999	NO	bb
8	8 180412M1_9	Standard	100.000	6.15	109822.539	8675.864	158.230	104.7	4.7	NO	0.999	NO	db
9	9 180412M1_10	Standard	250.000	6.14	261285.984	9843.813	331.790	235.8	-5.7	NO	0.999	NO	db
10	10 180412M1_11	Standard	500.000	6.15	482922.219	9955.998	606.321	508.8	1.8	NO	0.999	NO	db

Dataset:
 F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV. qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: N -EtFOSA

Coefficient of Determination: $R^{\wedge} 2=0.999841$
Calibration curve: $-2.33649 e-005^{*} x^{\wedge} 2+0.872986^{*} x+0.0461319$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$x=e x$ cluded
1	1 180412M1_2	Standard	1.250	6.24	224.059	29596.826	1.136	1.2	-0.2	NO	1.000	NO	bb
2	2 180412M1_3	Standard	2.500	6.23	428.307	28715.805	2.237	2.5	0.4	NO	1.000	NO	MM
3	3 180412M1_4	Standard	5.000	6.23	792.441	28376.305	4.189	4.7	-5.1	No	1.000	NO	bb
4	4 180412M1_5	Standard	10.000	6.23	1656.819	28227.439	8.804	10.0	0.4	NO	1.000	NO	MM
5	5 180412M1_6	Standard	25.000	6.24	4145.826	28324.021	21.956	25.1	0.5	NO	1.000	NO	bb
6	6 180412M1_7	Standard	50.000	6.23	8401,431	27769.570	45.381	52.0	4.0	NO	1.000	NO	bb
7	7 180412M1_8	Standard	250.000	6.23	41902.395	29344.453	214.192	246.9	-1.2	NO	1.000	NO	bb
8	8 180412M1_9	Standard	500.000	6.23	81628.180	27768.916	440.933	512.1	2.4	NO	1.000	NO	bb
9	9 180412M1_10	Standard	1250.000	6.23	186053.766	26837,293	1039.899	1231.8	-1.5	No	1.000	NO	bb
10	10 180412M1_11	Standard	2500.000	6.23	338225.531	24843.971	2042.098	2507.4	0.3	NO	1.000	NO	bo

Compound name: PFHxDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999443$

Catibration curve: -0.000280688 * $x^{\wedge} 2+0.550364$ * $x+0.059562$
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: PFODA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999575$
Calibration curve: -0.000618242 * $\times^{\wedge} 2+1.12274$ * $x+-0.0572034$
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc:	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
$1{ }^{1}$	1 180412M1_2	Standard	0.250	6.70	332.516	7801.947	0.213	0.2	-3.7	NO	1.000	NO	bb
2 cra	2 180412M1_3	Standard	0.500	6.70	660.510	7634.968	0.433	0.4	-12.7	NO	1.000	NO	bb
3	$3180412 \mathrm{M1} \mathrm{_4}$	Standard	1.000	6.70	1630.269	7524.094	1.083	1.0	1.6	NO	1.000	NO	bb
4	4 180412M1_5	Standard	2.000	6.70	3189.397	7732.711	2.062	1.9	-5.5	NO	1.000	NO	bb
5	5 180412M1_6	Standard	5.000	6.70	7611.561	6890.001	5.524	5.0	-0.3	NO	1.000	NO	bb
6	6 180412M1_7	Standard	10.000	6.70	15767.791	7051.974	11.180	10.1	0.6	NO	1.000	NO	bb
7	7 180412M1_8	Standard	50.000	6.70	84224.406	7985.996	52.733	48.3	-3.4	NO	1.000	NO	bd
8	8 180412M1_9	Standard	100.000	6.70	161758.031	7335.567	110.256	104.2	4.2	NO	1.000	NO	MM
9	9 180412M1_10	Standard	250.000	6.70	368963.125	7727.248	238.742	246.0	-1.6	NO	1.000	NO	MM
$10 \times$	10 180412M1_11	Standard	500.000	6.70	645836.625	7920.329	407.708	501.9	0.4	NO	1.000	NO	bb

Compound name: N-MeFOSE

Correlation coefficient: $r=0.999008, r^{\wedge} 2=0.998018$
Calibration curve: $0.936978^{*} x+0.0632936$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

2) 9	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	1.250	6.36	283.741	34476.195	1.235	1.2	-0.0	NO	0.998	NO	bb
2	2 180412M1_3	Standard	2.500	6.35	560.371	34717.695	2.421	2.5	0.7	NO	0.998	NO	bb
3	3 180412M1_4	Standard	5.000	6.35	1096.947	34714.133	4.740	5.0	-0.2	NO	0.998	NO	bb
4	4 180412M1_5	Standard	10.000	6.35	2173.383	35988.875	9.059	9.6	-4.0	NO	0.998	NO	bb
5	5 180412M1_6	Standard	25.000	6.35	5757.574	34757.234	24.848	26.5	58	NO	0.998	NO	bb
6	6 180412M1_7	Standard	50.000	6.35	11089.436	33851.879	49,138	52.4	4.8	NO	0.998	NO	bb
7	7 180412M1_8	Standard	250.000	6.35	56662.008	36557.137	232.494	248.1	-0.8	NO	0.998	NO	bb
8	8 180412M1_9	Standard	500.000	6.35	101216.711	33758.895	449.734	479.9	-4.0	NO	0.998	NO	bb
9	9 180412M1_10	Standard	1250.000	6.35	249935.547	34044.660	1101.210	1175.2	-6.0	NO	0.998	NO	bb
10	10 180412M1_11	Standard	2500.000	6.35	488802.969	30173.070	2429.996	2593.4	3.7	NO	0.998	NO	bb

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.997491, \mathrm{r}^{\wedge} 2=0.994989$
Calibration curve: 1.12141^{*} x + 0.244491
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	1.250	6.51	333.658	33555.383	1.492	1.1	-11.0	NO	0.995	NO	bb
2	2 180412M1_3	Standard	2.500	6.50	539.540	32262.832	2.508	2.0	-19.2	NO	0.995	NO	bb
3	3 180412M1_4	Standard	5.000	6.50	1226.286	35090.871	5.242	4.5	-10.9	NO	0.995	NO	bb
4	4 180412M1_5	Standard	10.000	6.50	2691.363	35000,305	11.534	10.1	0.7	NO	0.995	NO	bb
5	5 180412M1_6	Standard	25.000	6.50	6777.392	33232.809	30.591	27.1	8.2	NO	0.995	NO	MM
6	6 180412M1_7	Standard	50.000	6.50	13997.562	31771.980	66.084	58.7	17.4	NO	0.995	NO	MM
7	7 180412M1_8	Standard	250.000	6.50	67103.734	35079.051	286.939	255.7	2.3	NO	0.995	NO	bb
8	8 180412M1_9	Standard	500.000	6.50	134565.141	30306.809	666.014	593.7	18.7	NO	0.995	NO	bb
9	9 180412M1_10	Standard	1250.000	6.50	284219.219	31561.912	1350.770	1204.3	-3.7	NO	0.995	NO	bb
10	10 180412M1_11	Standard	2500,000	6.50	539275.688	29600.912	2732.732	2436.7	-2,5	NO	0.995	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.887034
RRF SD: 0,0198175 , Relative SD: 2.23413
Response type: Internal Std (Ref 57), Area* (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc, Flag	COD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	12.500	1.44	12432.549	13744.884	11.307	12.7	2.0	NO		NO	bb
2	2 180412M1_3	Standard	12.500	1.44	12303.614	13951.613	11.023	12.4	-0.6	NO		NO	bb
3	3 180412M1_4	Standard	12.500	1.44	12704.602	14321.319	11.089	12.5	0.0	NO		NO	bb
4	4 180412M1_5	Standard	12.500	1.44	12340.111	13953.640	11.055	12.5	-0.3	NO		NO	bb
5	5 180412M1_6	Standard	12.500	1.42	12532.276	13788.243	11.361	12.8	2.5	NO		NO	bb
6	6 180412M1_7	Standard	12.500	1.42	12184.722	14250.937	10.688	12.0	-3.6	NO		NO	bb
7	7 180412M1_8	Standard	12.500	1.44	13399.636	14735,778	11.367	12.8	2.5	NO		NO	bb
8	8 180412M1_9	Standard	12.500	1.44	12672.241	14691.964	10.782	12.2	-2.8	NO		NO	bb
9	9 180412M1_10	Standard	12.500	1.44	12689.992	14013.995	11.319	12.8	2.1	NO		NO	bb
10	10 180412M1_11	Standard	12.500	1.44	12133.231	13927.561	10.890	12.3	-1.8	NO		NO	bb

Dataset: F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.gld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.859497
RRF SD: 0.027966, Relative SD: 3.25377
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C3-PFBS

Response Factor: 0.120621
RRF SD: 0.00414022 , Relative SD: 3.43241
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RI	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	12.500	2.65	1976.932	15950.809	1.549	12.8	2.8	NO		NO	bb
2	2 180412M1_3	Standard	12.500	2.64	2012.240	15716.074	1.600	13.3	6.1	NO		NO	bb
3	3 180412M1_4	Standard	12.500	2.65	2020.388	16573.172	1.524	12.6	1.1	NO		NO	bb
4	4 180412M1_5	Standard	12.500	2.65	1981.108	16234.261	1.525	12.6	1.2	NO		NO	bb
5	5 180412M1_6	Standard	12.500	2.64	1986.397	17001.143	1.460	12.1	-3.1	NO		NO	bb
6	6 180412M1_7	Standard	12.500	2.64	1990.742	16840.588	1.478	12.3	-2.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	2.65	2041.284	16514.162	1.545	12.8	2.5	NO		NO	MM
8	8 180412M1_9	Standard	12.500	2.64	2011.619	16957.393	1.483	12.3	-1.7	NO		NO	bb
9	9 180412M1_10	Standard	12.500	2.64	1950.802	16326.897	1.494	12.4	-0.9	NO		NO	MM
$10 \quad 1$	10 180412M1_11	Standard	12.500	2.64	1779,008	15670.275	1.419	11.8	-5.9	NO		NO	bb

F:IProjectsIPFAS.PRO\Results\180412M1\180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 0.732807
RRF SD: 0.0299221, Relative SD: 4.08322
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sid. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	1 180412M1_2	Standard	5.000	3.14	4687.334	15950.809	3.673	5.0	0.3	NO		NO	bb
2	2 180412M1_3	Standard	5.000	3.14	4463.879	15716.074	3.550	4.8	-3.1	NO		NO	bb
3	3 180412M1_4	Standard	5.000	3.14	4738.835	16573.172	3.574	4.9	-2.5	NO		NO	bb
4	4 180412M1_5	Standard	5.000	3.14	4830.748	16234.261	3.720	5.1	1.5	NO		NO	bb
5	$5180412 \mathrm{M1} 1.6$	Standard	5.000	3.14	4854.741	17001.143	3.569	4.9	-2.6	NO		NO	bb
6	6 180412M1_7	Standard	5.000	3.14	4995.104	16840.588	3.708	5.1	1.2	NO		NO	bb
7	7 180412M1_8	Standard	5.000	3.14	4765.423	16514.162	3.607	4.9	-1.6	NO		NO	bb
8.	8 180412M1_9	Standard	5.000	3.14	4690.850	16957.393	3.458	4.7	-5.6	NO		NO	bb
9	9 180412M1_10	Standard	5.000	3.14	4957.260	16326.897	3.795	5.2	3.6	NO		NO	bb
10	10 180412M1_11	Standard	5.000	3.14	4996.505	15670.275	3.986	5.4	8.8	NO		NO	bb

Compound name: 13C4-PFHpA

Response Factor: 0.761033

RRF SD: 0,0485934, Relative SD: 6.3852
Response type: Internal Std (Ref 58), Area * (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Areà	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	3.76	13278.581	15950.809	10.406	13.7	9.4	NO		NO	bb
2	2 180412M1_3	Standard	12.500	3.76	12454.534	15716.074	9.906	13.0	4.1	NO		NO	bb
3	3 180412M1_4	Standard	12.500	3.76	12577,205	16573.172	9.486	12.5	-0.3	NO		NO	bb
4	4 180412M1_5	Standard	12.500	3.76	11923.876	16234.261	9.181	12.1	-3.5	NO		NO	bb
5	5 180412M1_6	Standard	12.500	3.76	11880.335	17001.143	8.735	11.5	-8.2	NO		NO	MM
6	6 180412M1_7	Standard	12.500	3.76	11789.843	16840.588	8.751	11.5	-8.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	3.76	13793.957	16514.162	10.441	13.7	9.8	NO		NO	bb
8	8 180412M1_9	Standard	12.500	3.76	12409.241	16957.393	9.147	12.0	-3.8	NO		NO	bb
9	9 180412M1_10	Standard	12.500	3.76	12712.665	16326.897	9.733	12.8	2.3	NO		NO	bb
10	10 180412M1_11	Standard	12.500	3.76	11712.302	15670.275	9.343	12.3	-1.8	NO		NO	bb

Dataset: F:IProjectsIPFAS.PROIResults 180412 M11180412M1-CRV. qid
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 1802-PFHxS

Response Factor: 0.431068
RRF SD: 0.0295993, Relative SD: 6.8665
Response type: Internal Std (Ref 59), Area * (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	3.90	1527.931	3674.084	5.198	12.1	-3.5	NO		NO	bb
2	2 180412M1_3	Standard	12.500	3.90	1568.844	3655.116	5.365	12.4	-0.4	NO		NO	bb
3	3 180412M1_4	Standard	12.500	3.90	1405.909	3790.588	4.636	10.8	-14.0	NO		NO	bb
4	4 180412M1_5	Standard	12.500	3.91	1596.036	3700.391	5.391	12.5	0.1	NO		NO	bb
5	5 180412M1_6	Standard	12.500	3.91	1780.262	3691.896	6.028	14.0	11.9	NO		NO	MM
6	6 180412M1_7	Standard	12.500	3.90	1597.028	3784.923	5.274	12.2	-2.1	NO		NO	bb
7	7 180412M1_8	Standard	12.500	3.90	1630.157	3493.132	5.833	13.5	8.3	NO		NO	bb
8	8 180412M1_9	Standard	12.500	3.90	1675.668	3832.103	5.466	12.7	1.4	NO		NO	bb
9	9 180412M1_10	Standard	12.500	3.91	1573.319	3671.971	5.356	12.4	-0.6	NO		NO	bb
10	10 180412M1_11	Standard	12.500	3.90	1523.943	3570.464	5.335	12.4	-1.0	NO		NO	bb

Compound name: 13C2-6:2 FTS

Response Factor: 0.332748
RRF SD: 0.049309 , Relative SD: 14.8187
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:

F:IProjectsIPFAS.PROIResultsI180412M1|180412M1-CRV.qid
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.14954
RRF SD: 0.0299816, Relative SD: 2.60813
Response type: Internal Std (Ref 60), Area * (IS Conc. I IS Area)
Curve type: RF

4	\# Name	Type	Sta Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	12.500	4.27	17375.193	15239.889	14.251	12.4	-0.8	NO		NO	bb
2	2 180412M1_3	Standard	12.500	4.27	16543.324	14973.652	13.810	12.0	-3.9	NO		NO	bb
3	3 180412M1_4	Standard	12.500	4.27	18351.223	15684.143	14.626	12.7	1.8	NO		NO	bb
4	4 180412M1_5	Standard	12.500	4.27	17801.283	15181.911	14.657	12.8	2.0	NO		NO	bb
5	5 180412M1_6	Standard	12.500	4.28	17982.363	16161.127	13.909	12.1	-3.2	NO		NO	bb
6	6 180412M1_7	Standard	12.500	4.27	18203.990	15479.951	14.700	12.8	2.3	NO		NO	bb
7	7 180412M1_8	Standard	12.500	4.27	17551.113	15077.326	14.551	12.7	1.3	NO		NO	bb
8	8 180412M1_9	Standard	12.500	4.27	17065.654	15327.687	13.917	12.1	-3.1	NO		NO	bb
9	9 180412M1_10	Standard	12.500	4.27	18223.658	15791.204	14.425	12.5	0.4	NO		NO	bb
10	10 180412M1_11	Standard	12.500	4.27	17885.152	15058.353	14.847	12.9	3,3	NO		NO	bb

Compound name: 13C5-PFNA

Response Factor: 0.978803
RRF SD: 0.0304992 , Relative SD: 3.11596
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 0.218482
RRF SD: 0.0169685, Relative SD: 7.76654
Response type: Internal Std (Ref 64), Area* (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	12.500	4.78	3804.597	16395.369	2.901	13.3	6.2	NO		NO	bb
2	2 180412M1_3	Standard	12.500	4.78	3927.791	15150.777	3.241	14.8	18.7	NO		NO	bb
3	3 180412M1_4	Standard	12.500	4.78	3791.337	17577.570	2.696	12.3	-1.3	NO		NO	MM
4	4 180412M1_5	Standard	12.500	4.78	3847.814	18186.605	2.645	12.1	-3.2	NO		NO	bb
5	5 180412M1_6	Standard	12.500	4.78	3621.776	18196.930	2.488	11.4	-8.9	NO		NO	bb
6	6 180412M1_7	Standard	12.500	4.78	3689.177	17550.332	2.628	12.0	-3.8	NO		NO	bb
7	7 180412M1_8	Standard	12.500	4.78	3823.459	17318.965	2.760	12.6	1.0	NO		NO	bb
8	8 180412M1_9	Standard	12.500	4.78	3850.831	17641.734	2.728	12.5	-0.1	NO		NO	MM
9	9 180412M1_10	Standard	12.500	4.78	3374.944	16574.436	2.545	11.6	-6.8	NO		NO	bb
10	10 180412M1_11	Standard	12.500	4.78	3291.725	15356.910	2.679	12.3	-1.9	NO		NO	bb

Compound name: 13C8-PFOS
Response Factor: 1.04665
RRF SD: 0.0562026, Relative SD: 5.36976
Response type: Internal Std (Ref 62), Area* (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	12.500	4.79	3809.206	3603.819	13.212	12.6	1.0	NO		NO	bb
2	2 180412M1_3	Standard	12.500	4.79	3879.481	3730.520	12.999	12.4	-0.6	NO		NO	bb
3	3 180412M1_4	Standard	12.500	4.79	3923.690	3575.679	13.717	13.1	4.8	NO		NO	bb
4	4 180412M1_5	Standard	12.500	4.79	3905.613	3451.449	14.145	13.5	8.1	NO		NO	bb
5	5 180412M1_6	Standard	12.500	4.79	3881.834	3527.122	13.757	13.1	5.2	NO		NO	bb
6	$6180412 \mathrm{M1}$ _7	Standard	12.500	4.79	3794.469	3797.220	12.491	11.9	-4.5	NO		NO	bb
7	7 180412M1_8	Standard	12.500	4.79	3867.217	3736.533	12.937	12.4	-1.1	NO		NO	bb
8	8 180412M1_9	Standard	12.500	4.79	3914.104	3836.111	12.754	12.2	-2.5	NO		NO	bb
9	9 180412M1_10	Standard	12.500	4.79	3550.716	3798.137	11.686	11.2	-10.7	NO		NO	bb
10	10 180412M1_11	Standard	12.500	4.79	3603.874	3430.075	13.133	12.5	0.4	NO		NO	bb

Dataset:

F:IProjectsIPFAS.PROIResults1180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 0.958432
RRF SD: 0.0511123 , Relative SD: 5.3329
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoDFlag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	5.08	12920.214	13809.248	11.695	12.2	-2.4	NO		NO	bb
2	2 180412M1_3	Standard	12.500	5.08	12655.407	12512.083	12.643	13.2	5.5	NO		NO	bb
3	3 180412M1_4	Standard	12.500	5.08	14661.358	14955.958	12.254	12.8	2.3	NO		NO	bb
4	4 180412M1_5	Standard	12.500	5.08	13153.102	14486.448	11.349	11.8	-5.3	NO		NO	bb
5	5 180412M1_6	Standard	12.500	5.08	13492.313	14414.429	11.700	12.2	-2.3	NO		NO	bb
6	6 180412M1_7	Standard	12.500	5.08	13921.538	14738.273	11.807	12.3	-1.4	NO		NO	MM
7	7 180412M1_8	Standard	12.500	5.08	13226.847	15071.878	10.970	11.4	-8.4	NO		NO	bb
8	8 180412M1_9	Standard	12.500	5.08	14238.182	15170.095	11.732	12.2	-2.1	NO		NO	bb
9	9 180412M1_10	Standard	12.500	5.08	14439.042	14260.415	12.657	13.2	5.6	NO		NO	bb
10	10 180412M1_11	Standard	12.500	5.08	13421,889	12909.434	12.996	13.6	8.5	NO		NO	MM

Compound name: 13C2-8:2 FTS

Response Factor: 0.226115
RRF SD: 0.0297681, Relative SD: 13.165
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	5.05	3500.403	15950.809	2.743	12.1	-2.9	NO		NO	bb
2	2 180412M1_3	Standard	12.500	5.05	3576.784	15716.074	2.845	12.6	0.7	NO		NO	bb
3	3 180412M1_4	Standard	12.500	5.05	3740.451	16573.172	2.821	12.5	-0.2	NO		NO	MM
4	4 180412M1_5	Standard	12.500	5.05	3144.534	16234.261	2.421	10.7	-14.3	NO		NO	bb
5	5 180412M1_6	Standard	12.500	5.05	3362.617	17001.143	2.472	10.9	-12.5	NO		NO	bb
6	6 180412M1_7	Standard	12.500	5.05	3606.306	16840.588	2.677	11.8	-5.3	NO		NO	bb
7	7 180412M1_8	Standard	12.500	5.05	3995.046	16514.162	3.024	13.4	7.0	NO		NO	bb
8	8 180412M1_9	Standard	12.500	5.05	4894.652	16957.393	3.608	16.0	27.7	NO		NO	bb
9	9 180412M1_10	Standard	12.500	5.05	7147.697	16326.897	5.472	24.2	93.6	NO		NO	bbx V
10	10 180412M1_11	Standard	12.500	5.05	9654.647	15670.275	7.701	34.1	172.5	NO		NO	bbx

Dataset: F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV.gld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.471472
RRF SD: 0.036147, Relative SD: 7.66685
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Canc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	5.23	7381.724	16395.369	5.628	11.9	-4.5	NO		NO	bb
2	2 180412M1_3	Standard	12.500	5.22	7562.005	15150.777	6.239	13.2	5.9	NO		NO	bb
3	3 180412M1_4	Standard	12.500	5.23	8204.587	17577.570	5.835	12.4	-1.0	NO		NO	bb
4	4 180412M1_5	Standard	12.500	5.23	8111.684	18186.605	5.575	11.8	-5.4	NO		NO	MM
$5{ }^{5}$	5 180412M1_6	Standard	12.500	5.23	7390.027	18196.930	5.076	10.8	-13.9	NO		NO	bb
6	6 180412M1_7	Standard	12.500	5.23	7705.184	17550.332	5.488	11.6	-6.9	NO		NO	MM
7	7 180412M1_8	Standard	12.500	5.23	8795.677	17318.965	6.348	13.5	7.7	NO		NO	MM
8	8 180412M1_9	Standard	12.500	5.23	8413.845	17641.734	5.962	12.6	1.2	NO		NO	bb
9	9 180412M1_10	Standard	12.500	5.22	8528.218	16574.436	6.432	13.6	9.1	NO		NO	MM
10	10 180412M1_11	Standard	12.500	5.23	7802.813	15356.910	6.351	13.5	7.8	NO		NO	bb

Compound name: d5-N-EtFOSAA

Response Factor: 0.517167

RRF SD: 0.0257702, Relative SD: 4.98295
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 180412M1_2	Standard	12.500	5.38	8829.215	16395.369	6.731	13.0	4.1	NO		NO	bb
2	2 180412M1_3	Standard	12.500	5.38	8445.769	15150.777	6.968	13.5	7.8	NO		NO	bb
3	3 180412M1_4	Standard	12.500	5.38	9503.621	17577.570	6.758	13.1	4.5	NO		NO	bb
4	4 180412M1_5	Standard	12.500	5.38	9130.507	18186.605	6.276	12.1	-2.9	NO		NO	bb
5	5 180412M1_6	Standard	12.500	5.38	8799.637	18196.930	6.045	11.7	-6.5	NO		NO	bb
6	6 180412M1_7	Standard	12.500	5.38	8914.390	17550.332	6.349	12.3	-1.8	NO		NO	bb
7	7 180412M1_8	Standard	12.500	5.38	9410.251	17318.965	6.792	13.1	5.1	NO		NO	bb
8	8 180412M1_9	Standard	12.500	5.38	9038.717	17641.734	6.404	12.4	-0.9	NO		NO	bb
9	9 180412M1_10	Standard	12.500	5.38	8121.366	16574.436	6.125	11.8	-5.3	NO		NO	bb
10	10 180412M1_11	Standard	12.500	5.38	7613.820	15356.910	6.197	12.0	-4.1	NO		NO	bb

Dataset: F:IProjectsIPFAS.PROIResults1180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C2-PFUdA

Response Factor: 0.959888
RRF SD: 0.0783415 , Relative SD: 8.16153
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDoA

Response Factor: 0.840161

RRF SD: 0.0521041, Relative SD: 6.20168
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: d3-N-MeFOSA

Response Factor: 0.0969387

RRF SD: 0.00672736 , Relative SD: 6.93981
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoO	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	150.000	5.88	19881,256	16395.369	15.158	156.4	4.2	NO		NO	bb
2	2 180412M1_3	Standard	150.000	5.87	19846.855	15150,777	16.374	168.9	12.6	NO		NO	bb
3	3 180412M1_4	Standard	150.000	5.87	19466.199	17577.570	13.843	142.8	-4.8	NO		NO	bb
4	4 180412M1_5	Standard	150.000	5.88	19676.539	18186.605	13.524	139.5	-7.0	NO		NO	bo
5	5 180412M1_6	Standard	150.000	5.88	19441.104	18196.930	13.355	137.8	-8.2	NO		NO	bb
6	6 180412M1_7	Standard	150.000	5.88	19116.365	17550.332	13.615	140.5	-6.4	NO		NO	bb
7	7 180412M1_8	Standard	150.000	5.87	20024.764	17318.965	14.453	149.1	-0.6	NO		NO	bb
8	8 180412M1_9	Standard	150.000	5.87	20202.986	17641.734	14.315	147.7	-1.6	NO		NO	bb
9	9 180412M1_10	Standard	150.000	5.87	20035.076	16574.436	15.110	155.9	3.9	NO		NO	bb
10	10 180412M1_11	Standard	150.000	5.87	19240.549	15356.910	15.661	161.6	7.7	NO		NO	bb

Compound name: 13C2-PFTeDA

Response Factor: 0.510286

RRF SD: 0.0718456, Relative SD: 14.0795
Response type: Internal Std (Ref 64), Area * (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 180412M1_2	Standard	12.500	6.15	8693.006	16395.369	6.628	13.0	3.9	NO		NO	bb
2	2 180412M1_3	Standard	12.500	6.15	7635.941	15150.777	6.300	12.3	-1.2	NO		NO	bb
3	3 180412M1_4	Standard	12.500	6.15	7897.562	17577.570	5.616	11.0	-12.0	NO		NO	bb
4	4 180412M1_5	Standard	12.500	6.15	9385.261	18186.605	6.451	12.6	1.1	NO		NO	bb
5	5 180412M1_6	Standard	12.500	6.15	7202.300	18196.930	4.947	9.7	-22.4	NO		NO	bb
6	6 180412M1_7	Standard	12.500	6.15	8036.246	17550.332	5.724	11.2	-10.3	NO		NO	bo
7	7 180412M1_8	Standard	12.500	6.15	8929.627	17318.965	6.445	12.6	1.0	NO		NO	bb
8	8 180412M1_9	Standard	12.500	6.14	8675.864	17641.734	6.147	12.0	-3.6	NO		NO	bb
9	9 180412M1_10	Standard	12.500	6.15	9843.813	16574.436	7.424	14.5	16.4	NO		NO	bb
10	10 180412M1_11	Standard	12.500	6.14	9955.998	15356.910	8.104	15.9	27.0	NO		NO	bb

Dataset: F:IProjects\PFAS.PROUResults1180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: d5-N-ETFOSA

Response Factor: 0.137593
RRF SD: 0.00954862 , Relative SD: 6.93976
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFHxDA

Response Factor: 1.11809
RRF SD: 0.111468 , Relative SD: 9.96946
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	COD	CODFlag	$x=$ excluded
1	1 180412M1_2	Standard	5.000	6.47	7801.947	16395.369	5.948	5.3	6.4	NO		NO	bb
2	2 180412M1_3	Standard	5.000	6.47	7634.968	15150.777	6.299	5.6	12.7	NO		NO	bb
3.	3 180412M1_4	Standard	5.000	6.47	7524.094	17577.570	5.351	4.8	-4.3	NO		NO	MM
4	4 180412M1_5	Standard	5.000	6.47	7732.711	18186.605	5.315	4.8	-4.9	NO		NO	bb
5	5 180412M1_6	Standard	5.000	6.47	6890.001	18196.930	4.733	4.2	-15.3	NO		NO	MM
6	6 180412M1_7	Standard	5.000	6.47	7051.974	17550.332	5.023	4.5	-10.2	NO		NO	bb
7	7 180412M1_8	Standard	5.000	6.47	7985.996	17318.965	5.764	5.2	3.1	NO		NO	bb
8	8 180412M1_9	Standard	5.000	6.47	7335.567	17641.734	5.198	4.6	-7.0	NO		NO	bb
9	9 180412M1_10	Standard	5.000	6.47	7727.248	16574.436	5.828	5.2	4.2	NO		NO	bb
10	10 180412M1_11	Standard	5.000	6.47	7920.329	15356.910	6.447	5.8	15.3	NO		NO	bb

Vista Analytical Laboratory
Dataset:
F:IProjectsIPFAS.PRO\ResultsI180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: d7-N-MeFOSE

Response Factor: 0.168585
RRF SD: 0.0099523, Relative SD: 5.90343
Response type: Internal Std (Ref 64), Area * (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Cone.	\%Dev	Conc. Flag	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	150.000	6.35	34476,195	16395.369	26.285	155.9	3.9	NO	NO	bb
$2-18$	2 180412M1_3	Standard	150.000	6.35	34717.695	15150.777	28.643	169.9	13.3	NO	NO	bb
3	3 180412M1_4	Standard	150.000	6.35	34714.133	17577.570	24.686	146.4	-2.4	NO	NO	bb
4	4 180412M1_5	Standard	150.000	6.35	35988.875	18186.605	24.736	146.7	-2.2	NO	NO	bb
5	5 180412M1_6	Standard	150.000	6.35	34757.234	18196.930	23.876	141.6	-5.6	NO	NO	bb
6	$6180412 \mathrm{M1}$ _7	Standard	150,000	6.35	33851.879	17550.332	24.111	143.0	-4,7	NO	NO	bb
7	7 180412M1_8	Standard	150.000	6.35	36557.137	17318.965	26.385	156.5	4.3	NO	NO	bb
8	8 180412M1_9	Standard	150.000	6.34	33758.895	17641.734	23.920	141.9	-5.4	NO	NO	bb
9	$9180412 \mathrm{M1} 10$	Standard	150.000	6.34	34044.660	16574.436	25.676	152.3	1.5	NO	NO	bb
10.	10 180412M1_11	Standard	150.000	6.34	30173.070	15356.910	24.560	145.7	-2.9	NO	NO	bb

Compound name: d9-N-EtFOSE

Response Factor: 0.160906

RRF SD: 0.010306 , Relative SD: 6.40499
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std, Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
$1-2=0$	1 180412M1_2	Standard	150.000	6.49	33555.383	16395.369	25.583	159.0	6.0	NO		NO	bb
2	2 180412M1_3	Standard	150,000	6.49	32262.832	15150.777	26.618	165.4	10.3	NO		NO	bb
3	3 180412M1_4	Standard	150.000	6.49	35090.871	17577.570	24.954	155.1	3.4	NO		NO	MM
48.20	4 180412M1_5	Standard	150.000	6.49	35000.305	18186.605	24.056	149.5	-0.3	NO		NO	MM
5	5 180412M1_6	Standard	150.000	6.49	33232.809	18196.930	22.829	141.9	-5.4	NO		NO	bb
6	6 180412M1_7	Standard	150.000	6.49	31771.980	17550.332	22.629	140.6	-6.2	NO		NO	bb
7	7 180412M1_8	Standard	150.000	6.49	35079.051	17318.965	25.318	157.3	4.9	NO		NO	bb
8	8 180412M1_9	Standard	150.000	6.49	30306.809	17641.734	21.474	133.5	-11.0	NO		NO	bb
9	9 180412M1_10	Standard	150.000	6.49	31561.912	16574.436	23.803	147.9	-1.4	NO		NO	MM
10	10 180412M1_11	Standard	150.000	6.49	29600.912	15356.910	24,094	149.7	-0.2	NO		NO	bb

Dataset:
F:IProjects\PFAS.PROIResults1180412M11180412M1-CRV.qld
Last Altered. Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 1.33432e-016, Relative SD: $1.33432 \mathrm{e}-014$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: $1.33432 \mathrm{e}-016$, Relative SD; $1.33432 \mathrm{e}-014$
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	3.14	15950.809	15950.809	12.500	12.5	0.0	NO		NO	bb
2	2 180412M1_3	Standard	12.500	3.14	15716.074	15716.074	12.500	12.5	0.0	NO		NO	bb
3	3 180412M1_4	Standard	12.500	3.14	16573.172	16573.172	12.500	12.5	0.0	NO		No	bb
4	4 180412M1_5	Standard	12.500	3.14	16234.261	16234.261	12.500	12.5	0.0	No		NO	bb
5	5 180412M1_6	Standard	12.500	3.14	17001.143	17001.143	12.500	12.5	0.0	NO		NO	bb
6	6 180412M1_7	Standard	12.500	3.14	16840.588	16840.588	12.500	12.5	0.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	3.14	16514.162	16514.162	12.500	12.5	0.0	NO		No	bb
8	8 180412M1_9	Standard	12.500	3.14	16957.393	16957.393	12.500	12.5	0.0	NO		NO	bb
9	9 180412M1_10	Standard	12.500	3.14	16326.897	16326.897	12.500	12.5	0.0	NO		NO	bb
10	10 180412M1_11	Standard	12.500	3.14	15670.275	15670.275	12,500	12.5	0.0	NO		NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C3-PFHxS
Response Factor: 1
RRF SD: 1.11022e-016, Relative SD: $1.11022 \mathrm{e}-014$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d$
1	1 180412M1_2	Standard	12.500	3.91	3674.084	3674.084	12.500	12.5	0.0	NO		NO	bb
2	2 180412M1_3	Standard	12.500	3.90	3655.116	3655.116	12.500	12.5	0.0	NO		NO	bb
3	3 180412M1_4	Standard	12.500	3.90	3790.588	3790.588	12.500	12.5	0.0	NO		NO	bb
4	4 180412M1_5	Standard	12.500	3.91	3700.391	3700.391	12.500	12.5	0.0	NO		NO	bb
5	5 180412M1_6	Standard	12.500	3.91	3691.896	3691.896	12.500	12.5	0.0	NO		NO	bb
6	6 180412M1_7	Standard	12.500	3.90	3784.923	3784.923	12.500	12.5	0.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	3.90	3493.132	3493.132	12.500	12.5	0.0	NO		NO	bb
8	8 180412M1_9	Standard	12.500	3.90	3832.103	3832.103	12.500	12.5	0.0	NO		NO	bb
9	9 180412M1_10	Standard	12.500	3.90	3671.971	3671.971	12.500	12.5	0.0	NO		NO	bb
10	10 180412M1_11	Standard	12.500	3.90	3570.464	3570.464	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: 8.27511e-017, Relative SD: 8.27511e-015
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:
F:IProjectsIPFAS.PRO\Results1180412M11180412M1-CRV.qid
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 1.33432e-016, Relative SD: $1.33432 \mathrm{e}-014$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 180412M1_2	Standard	12.500	4.71	15895.429	15895.429	12.500	12.5	0.0	NO		NO	bb
2×8	2 180412M1_3	Standard	12.500	4.71	16770.383	16770.383	12.500	12.5	0.0	NO		NO	bb
3	3 180412M1_4	Standard	12.500	4.71	15385.251	15385.251	12.500	12.5	0.0	NO		NO	MM
$4 \leq 0.8$	4 180412M1_5	Standard	12.500	4.71	15157.203	15157.203	12.500	12.5	0.0	NO		NO	bb
5	5 180412M1_6	Standard	12.500	4.71	14202.925	14202.925	12.500	12.5	0.0	NO		NO	bb
6	6 180412M1_7	Standard	12.500	4.71	17304.805	17304.805	12.500	12.5	0.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	4.71	16956.936	16956.936	12.500	12.5	0.0	NO		NO	bb
8	8 180412M1_9	Standard	12.500	4.71	15545.010	15545.010	12.500	12.5	0.0	NO		NO	bb
9	9 180412M1_10	Standard	12.500	4.71	14654.074	14654.074	12.500	12.5	0.0	NO		NO	bb
10	10 180412M1_11	Standard	12.500	4.71	14354.023	14354.023	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: $9.06493 \mathrm{e}-017$, Relative SD: $9.06493 \mathrm{e}-015$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sid Conc	RT	Area	IS Area	Response	Conc.	\%Der	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d ~$
1	1 180412M1_2	Standard	12.500	4.79	3603.819	3603.819	12.500	12.5	0.0	NO		NO	bb
2	2 180412M1_3	Standard	12.500	4.79	3730.520	3730.520	12.500	12.5	0.0	No		NO	bb
3	3 180412M1_4	Standard	12.500	4.79	3575.679	3575.679	12.500	12.5	0.0	NO		NO	bb
4.	4 180412M1_5	Standard	12.500	4.79	3451.449	3451.449	12.500	12.5	0.0	NO		NO	bb
5	5 180412M1_6	Standard	12.500	4.79	3527.122	3527.122	12.500	12.5	0.0	NO		NO	bb
6	6 180412M1_7	Standard	12.500	4.79	3797.220	3797.220	12.500	12.5	0.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	4.79	3736.533	3736.533	12.500	12.5	0.0	NO		NO	bb
8	8 180412M1_9	Standard	12.500	4.79	3836.111	3836.111	12.500	12.5	0.0	NO		NO	bb
9	9 180412M1_10	Standard	12.500	4.79	3798.137	3798.137	12.500	12.5	0.0	NO		NO	bb
10	10 180412M1_11	Standard	12.500	4.79	3430.075	3430.075	12.500	12.5	0.0	NO		NO	bb

Dataset: FiIProjects\PFAS.PROIResults\180412M11180412M1-CRV.ald
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:22:03 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: $9.79125 \mathrm{e}-017$, Relative SD: $9.79125 \mathrm{e}-015$
Response type: Internal Std (Ref 63), Area * (IS Conc. I IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CODFlag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	5.08	13809.248	13809.248	12.500	12.5	0.0	NO		NO	bb
2	$2180412 \mathrm{M1}$ _3	Standard	12.500	5.08	12512.083	12512.083	12.500	12.5	0.0	NO		NO	bb
3	3 180412M1_4	Standard	12.500	5.08	14955.958	14955.958	12.500	12.5	0.0	NO		NO	bb
4	4 180412M1_5	Standard	12.500	5.08	14486.448	14486.448	12.500	12.5	0.0	NO		NO	bb
5	5 180412M1_6	Standard	12.500	5.08	14414.429	14414.429	12.500	12.5	0.0	NO		NO	bb
6	6 180412M1_7	Standard	12.500	5.08	14738.273	14738,273	12.500	12.5	0.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	5.08	15071.878	15071.878	12.500	12.5	0.0	NO		NO	MM
8	8 180412M1_9	Standard	12.500	5,08	15170.095	15170.095	12.500	12.5	0.0	NO		NO	bb
9	9 180412M1_10	Standard	12.500	5.08	14260.415	14260.415	12.500	12.5	0.0	NO		NO	MM
10	10 180412M1_11	Standard	12.500	5.08	12909.434	12909.434	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C7-PFUdA

Response Factor: 1

RRF SD: $3.70074 \mathrm{e}-017$, Relative SD: $3.70074 \mathrm{e}-015$
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 180412M1_2	Standard	12.500	5.40	16395.369	16395.369	12.500	12.5	0.0	NO		NO	bb
2	2 180412M1_3	Standard	12.500	5.40	15150.777	15150.777	12.500	12.5	0.0	No		NO	MM
3	3 180412M1_4	Standard	12.500	5.40	17577.570	17577.570	12.500	12.5	0.0	NO		NO	bb
4	4 180412M1_5	Standard	12.500	5.40	18186.605	18186.605	12.500	12.5	0.0	NO		NO	bb
5	5 180412M1_6	Standard	12.500	5.40	18196.930	18196.930	12.500	12.5	0.0	NO		NO	bb
6	6 180412M1_7	Standard	12.500	5.40	17550.332	17550.332	12.500	12.5	0.0	NO		NO	bb
7	7 180412M1_8	Standard	12.500	5.40	17318.965	17318.965	12.500	12.5	0.0	NO		NO	bb
8	8 180412M1_9	Standard	12.500	5.40	17641.734	17641.734	12.500	12.5	0.0	NO		NO	bb
9	9 180412M1_10	Standard	12.500	5.40	16574.436	16574.436	12.500	12.5	0.0	NO		NO	bb
40	10 180412M1_11	Standard	12.500	5.40	15356.910	15356.910	12.500	12.5	0.0	NO		NO	bb

Dataset: F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV.gld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:23:38 Pacific Daylight Time

Method: F:|ProjectsIPFAS.PRO\MethDBIPFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 18D0202

-	\# Name	IS\#	COD	CODFlag	\%RSD
1	1 PFBA	34	0.9998	NO	
2	2 PFPeA	35	0.9997	NO	
3	3 PFBS	36	0.9992	NO	
4	4 4:2 FTS	36	0.9995	NO	
5	5 PFHxA	37	0.9988	NO	
6	6 PFPeS	36	0.9999	NO	
7	7 PFHpA	38	0.9995	NO	
8	8 L-PFHxS	39	0.9993	NO	
9	10 6:2FTS	40	0.9986	NO	
10	11 L-PFOA	41	0.9978	NO	
11	13 PFHpS	41	0.9984	NO	
12	14 PFNA	42	0.9996	NO	
13	15 PFOSA	43	0.9996	NO	
14	16 L-PFOS	44	0.9967	NO	
15	18 PFDA	45	0.9997	NO	
16	19 8:2 FTS	46	0.9994	NO	
17	20 PFNS	44	0.9996	NO	
18	21 N-MeFOSAA	47	0.9987	NO	
19	22 N-EtFOSAA	48	0.9997	NO	
20	23 PFUdA	49	0.9982	NO	
21	24 PFDS	49	0.9990	NO	
22	25 PFDoA	50	0.9992	NO	
23	26 N-MeFOSA	51	0.9982	NO	
24	27 PFTrDA	50	0.9978	NO	
25	28 PFTeDA	52	0.9985	NO	
26	$29 \mathrm{~N}-\mathrm{EtFOSA}$	53	0.9998	NO	
27	30 PFHxDA	54	0.9994	NO	
28	31 PFODA	54	0.9996	NO	
29	32 N -MeFOSE	55	0.9980	NO	
30	33 N -EtFOSE	56	0.9950	NO	
31	34 13C3-PFBA	57		NO	2.234

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:23:38 Pacific Daylight Time

Name: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 $18 D 0202$

	\# Name	IS\#	COD CoD Flag	\%RSD
32	$3513 C 3-P F P E A$	58	NO	3.254
33.	36 13C3-PFBS	58	NO	3.432
34	37 13C2-PFHXA	58	NO	4.083
35	38 13C4-PFHpA	58	NO	6.385
36	39 1802-PFHxS	59	NO	6.866
37	$4013 \mathrm{C} 2-62 \mathrm{FTS}$	60	NO	14.819
38	41 13C2-PFOA	60	NO	2.608
39	42 13C5-PFNA	61	NO	3.116
40	43 13C8-PFOSA	64	NO	7.767
41	44 13C8-PFOS	62	NO	5.370
42	45 13C2-PFDA	63	NO	5.333
43	46 13C2-8:2 FTS	58	NO	13.165
44	$47 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	64	NO	7.667
45	48 d5-N-EtFOSAA	64	NO	4.983
46	49 13C2-PFUdA	64	NO	8.162
47	50 13C2-PFDoA	64	NO	6.202
48.	51 d3-N-MeFOSA	64	NO	6.940
49	52 13C2-PFTeDA	64	NO	14.079
50	$53 \mathrm{~d} 5-\mathrm{N}$-ETFOSA	64	NO	6.940
51	54 13C2-PFHxDA	64	NO	9.969
52	55 d 7 -N-MeFOSE	64	NO	5.903
53	$56 \mathrm{d9}$-N-EtFOSE	64	NO	6.405
54	57 13C4-PFBA	57	NO	0.000
55	$5813 \mathrm{C} 5-\mathrm{PFHxA}$	58	NO	0.000
56	59 13C3-PFHxS	59	NO	0.000
57	60 13C8-PFOA	60	NO	0.000
58	61 13C9-PFNA	61	NO	0.000
59	62 13C4-PFOS	62	NO	0.000
60	63 13C6-PFDA	63	NO	0.000
61	64 13C7-PFUdA	64	NO	0.000

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:33:27 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:34:15 Pacific Daylight Time

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59 Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Compound name: PFBA

	Name	ID	Acq-Date	Acq, Time
1	180412M1_1	IPA	12-Apr-18	17:52:26
2	180412M1_2	ST180412M1-1 PFC CS-2 1800202	12-Apr-18	18:04:04
3.	180412M1_3	ST180412M1-2 PFC CS-1 18D0203	12-Apr-18	18:15:35
4	180412M1_4	ST180412M1-3 PFC CS0 18D0204	12-Apr-18	18:27:04
5	180412M1_5	ST180412M1-4 PFC CS1 1800205	12-Apr-18	18:38:34
6	180412M1_6	ST180412M1-5 PFC CS2 18D0206	12-Apr-18	18:50:03
7	180412M1_7	ST180412M1-6 PFC CS3 18 D 0207	12-Apr-18	19:01:32
8	180412M1_8	ST 180412M1-7 PFC CS4 18 D 0208	12-Apr-18	19:13:02
9	180412M1_9	ST180412M1-8 PFC CS5 1800209	12-Apr-18	19:24:31
10	180412M1_10	ST180412M1-9 PFC CS6 18 D 0210	12-Apr-18	19:36:01
11	180412M1_11	ST180412M1-10 PFC CS7 18 D 0211	12-Apr-18	19:47:30
12	180412M1_12	IPA	12-Apr-18	19:59:00
13	180412M1_13	ICV180412M1-1 PFC ICV 18D0201	12-Apr-18	20:10:30
14	180412M1_14	IPA	12-Apr-18	20:22:00

Dataset: F:IProjects\PFAS.PROIResults1180412M11180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Method: F:IProjectsIPFAS.PROIMethDBIPFAS FULL 80C 040318.mdb 07 Apr 2018 09:47:59
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999917, \mathrm{r}^{\wedge} 2=0.999835$
Calibration curve: $1.17165^{*} x+0.0472244$
Response type: Internal Std (Ref 34), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

Dataset: F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFPeA
Correlation coefficient: $r=0.999842, r^{\wedge} 2=0.999684$
Calibration curve: $1.0664^{*} x+0.0408351$
Response type: Internal Std (Ref 35), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: F:IProjectsIPFAS.PROIResultsI180412M11180412M1-CRV. qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $\mathrm{r}=0.999598, \mathrm{r}^{\wedge} 2=0.999197$
Calibration curve: 1.89414 * $x+-0.0288383$
Response type: Internal Std (Ref 36), Area * (IS Conc. l IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset:

 F:IProjects\PFAS.PRO\Results\180412M11180412M1-CRV qaldLast Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: 4:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999470$
Calibration curve: $-0.000405212^{*} x^{\wedge} 2+2.37556^{*} x+-0.0593719$
Response type: Internal Std (Ref 36), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFHXA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998763$
Calibration curve: -0.000593566 * $x^{\wedge} 2+1.6809$ * $x+0.0121769$
Response type: Internal Std (Ref 37), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:

F:IProjects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFPeS
Correlation coefficient: $\mathrm{r}=0.999947, \mathrm{r}^{\wedge} 2=0.999894$
Calibration curve: $1.62535^{*} x+-0.117866$
Response type: Internal Std (Ref 36). Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV.qla
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFHpA
Correlation coefficient: $r=0.999769, r^{\wedge} 2=0.999538$
Calibration curve: $1.208{ }^{*} x+0.0277093$
Response type: Internal Std (Ref 38), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / \mathrm{x}$, Axis trans; None

Dataset: F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV qld

Last Altered:
Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: L-PFHxS
Correlation coefficient: $\mathrm{r}=0.999641, \mathrm{r}^{\wedge} 2=0.999282$
Calibration curve: $1.87852^{*} x+-0.109873$
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PROTResults\180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: 6:2 FTS
Coefficient of Determination: $R^{\wedge} 2=0.998553$
Calibration curve: $-0.00328829^{*} x^{\wedge} 2+1.12459$ * $x+0.0184508$
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: L-PFOA
Correlation coefficient. $\mathrm{r}=0.998891, \mathrm{r}^{\wedge} 2=0.997784$
Calibration curve: $0.933217^{*} x+0.0971148$
Response type: Internal Std (Ref 41), Area* (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV.qld

Last Altered:	Friday, April 13,2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFHpS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998356$
Calibration curve: $-5.04164 \mathrm{e}-005^{*} x^{\wedge} 2+0.202804^{*} x+-0.00232181$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F.PProjectsIPFAS.PROIResults\180412M11180412M1-CRV qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFNA
Correlation coefficient: $\mathrm{r}=0.999818, \mathrm{r}^{\wedge} 2=0.999637$
Calibration curve: 1.18721 * $x+0.0329161$
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: Fi/ProjectsIPFAS.PROIResults1180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFOSA
Correlation coefficient: $r=0.999783, r^{\wedge} 2=0.999565$
Calibration curve: 1.00842 * $x+-0.0126412$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PROIResultsI180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: L-PFOS
Correlation coefficient: $r=0,998367, r^{\wedge} 2=0.996737$
Calibration curve: $1.05556^{*} x+-0.0448468$
Response type: Internal Std (Ref 44), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: F:IProjectsIPFAS.PRO\Results\180412M11180412M1-CRV.gid
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFDA
Coefficient of Determination: $R^{\wedge} 2=0.999664$
Calibration curve: $-0.000114213^{*} x^{\wedge} 2+1.33852^{*} x+0.0655649$
Response type: Internal Std (Ref 45), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: F:IProjectsIPFAS.PROIResultsI180412M11180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: 8:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999393$
Calibration curve: $-0.00567628^{*} x^{\wedge} 2+1.76645$ * $x+-0.0113749$
Response type: Internal Std (Ref 46), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjectsIPFAS.PRO\Results\180412M11180412M1-CRV.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Friday, April 13, } 2018 \text { 10:17:47 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, April 13, } 2018 \text { 10:24:41 Pacific Daylight Time }\end{array}$

Compound name: PFNS

Coefficient of Determination: $R^{\wedge} 2=0.999574$
Calibration curve: $-8.16963 e-005^{*} x^{\wedge} 2+0.790266^{*} x+-0.141984$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: FilProjects\PFAS.PROIResults\180412M1\180412M1-CRV.ald
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: N-MeFOSAA
Coefficient of Determination: $R^{\wedge} 2=0.998666$
Calibration curve: $-0.000163635^{*} x^{\wedge} 2+1.41496^{*} x+0.06191$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.qld
$\begin{array}{ll}\text { Last Altered: Friday, April 13, } 2018 \text { 10:17:47 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday April } 13,2018 \text { 10:24:41 Pacific Daylight Time }\end{array}$
Printed:
Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999715$
Calibration curve: $-5.98261 e-005^{*} x^{\wedge} 2+1.00844^{*} x+-0.00487995$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: FiIProjectsIPFAS.PROIResultsI180412M11180412M1-CRV qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFUdA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998191$
Calibration curve: -9.75727e-005 * $x^{\wedge} 2+1.0298$ * $x+0.0729832$
Response type: Internal Std (Ref 49), Area* (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
F:IProjectsIPFAS.PRO\Results 1180412 M 1 180412M1-CRV.qld
Last Altered:
Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: $R^{\wedge} 2=0.999010$
Calibration curve: $-5.80925 e-005^{*} x^{\wedge} 2+0.239142^{*} x+-0.0310009$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: Fi\Projects\PFAS.PROIResults\180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10;24:41 Pacific Daylight Time

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999158$
Calibration curve: $9.73778 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+1.28783^{*} \mathrm{x}+0.059227$
Response type: Internal Std (Ref 50), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: FiIProjects\PFAS.PROIResultsI180412M11180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
 Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: N-MeFOSA

Correlation coefficient: $r=0.999089, r^{\wedge} 2=0.998179$
Calibration curve: $0.896574^{*} x+0.307732$
Response type: Internal Std (Ref 51), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

Dataset: F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Friday, April 13, } 2018 \text { 10:17:47 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, April 13, } 2018 \text { 10:24:41 Pacific Daylight Time }\end{array}$

Compound name: PFTrDA
Coefficient of Determination: $R^{\wedge} 2=0.997791$
Calibration curve: $-0.00042286^{*} x^{\wedge} 2+1.39176{ }^{*} x+-0.0410811$
Response type; Internal Std (Ref 50), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:

F:|Projects\PFAS.PRO\Results1180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998549$
Calibration curve: $-0.000787853^{*} x^{\wedge} 2+1.59226$ * $x+0.135857$
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory Q1

Dataset: F:IProjects\PFAS.PRO\Results\180412M11180412M1-CRV.qld
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999841$
Calibration curve: $-2.33649 e-005{ }^{*} x^{\wedge} 2+0.872986$ * $x+0.0461319$
Response type: Internal Std (Ref 53), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\180412M1|180412M1-CRV.ald

Last Altered:
Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999443$
Calibration curve: $-0.000280688^{*} x^{\wedge} 2+0.550364^{*} x+0.059562$
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset:
F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV.qld
Last Altered:
Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: PFODA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999575$
Calibration curve: -0.000618242 * $x^{\wedge} 2+1.12274^{*} x+-0.0572034$
Response type: Internal Std (Ref 54), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans. None

Dataset: FilProjects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld

Last Altered:
Friday, April 13, 2018 10:17:47 Pacific Daylight Time

Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: N-MeFOSE
Correlation coefficient: $\mathrm{r}=0.999008, \mathrm{r}^{\wedge} 2=0.998018$
Calibration curve: $0.936978^{*} x+0.0632936$
Response type: Internal Sid (Ref 55), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PROIResults\180412M1\180412M1-CRV.ald
Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:24:41 Pacific Daylight Time

Compound name: N-EtFOSE
Correlation coefficient: $\mathrm{r}=0.997491, \mathrm{r}^{\wedge} 2=0.994989$
Calibration curve. $1.12141^{*} x+0.244491$
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59

Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 $18 D 0202$

F6:MRM of 2 channels,ES-

13C3-PFPeA
F5:MRM of 1 channel,ES-
$266 .>221.8$
$3.506 \mathrm{e}+005$

F11:MRM of 2 channels, ES-

Page 140 of 463

Dataset: F:IProjects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 18D0202

F23:MRM of 2 channels, ES-
$427.1>80$

F15:MRM of 2 channels, ES-

F17:MRM of 2 channels,ES-

18O2-PFHxS

F20:MRM of 2 channels,ES-
$413>169$

13C5-PFNA
F27:MRM of 1 channet,ES$468.2>422.9$ $3.820 \mathrm{e}+005$

Dataset:	F:IProjectsIPFAS.PROIResults I1 80412M11180412M1-CRV.ald
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 $18 D 0202$

F31:MRM of 2 channels, ES-

13C8-PFOS

13C8-PFOS

d3-N-MeFOSAA
F49:MRM of 1 channel, ES-
$573.3>419$ $1.610 \mathrm{e}+005$

Name: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 18 D 0202

N-EtFOSAA
F50:MRM of 2 channels,ES-
$584.2>419$
$4.537 \mathrm{e}+003$
F50:MRM of 2 channels, ES-

d5-N-EtFOSAA

F51:MRM of 1 channel, ES-
$589.3>419$
$2.046 \mathrm{e}+005$

13C2-PFDoA

F54:MRM of 2 channels,ES

13C2-PFUdA

F35:MRM of 2 channels, ES-

d3-N-MeFOSA

F59:MRM of 2 channels,ES-

13C2-PFDoA

F54:MRM of 2 channels,ES$615.0>569.7$

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time

Printed:

 Friday, April 13, 2018 10:27;36 Pacific Daylight TimeName: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 18 D 0202

PFTEDA	
F60:MRM of 2 channels, ES-	
100 PFTeDA 8.272e+003	
3.33 e 2	- 6.15
$\%$ - 8039	
8039.00	
	गोगोगm min

13C2-PFHxDA

d9-N-EtFOSE

F58:MRM of 1 channel,ES$639.2>58.8$

Dataset: F:IProjectsIPFAS. PROXResults\180412M1\180412M1-CRV. qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time

Name: 180412M1_2, Date: 12-Apr-2018, Time: 18:04:04, ID: ST180412M1-1 PFC CS-2 18D0202, Description: PFC CS-2 18 D0202

Name: 180412M1_3, Date: 12-Apr-2018, Time: 18:15:35, ID: ST180412M1-2 PFC CS-1 18D0203, Description: PFC CS-1 18 D 0203

13C3-PFBA

F2:MRM of 1 channel,ES-

13C3-PFPeA

F5:MRM of 1 channel, ES

13C3-PFBS

F8:MRM of 2 channels, ES-

13C2-PFHxA

Name: 180412M1_3, Date: 12-Apr-2018, Time: 18:15:35, ID: ST180412M1-2 PFC CS-1 18D0203, Description; PFC CS-1 18 DO 203

Abstract

\section*{6:2 FTS}

F17:MRM of 2 channels,ES.

Name: 180412M1_3, Date: 12-Apr-2018, Time: 18:15:35, ID: ST180412M1-2 PFC CS-1 18D0203, Description: PFC CS-1 18 D 0203

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M1\180412M1-CRV, qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_3, Date: 12-Apr-2018, Time: 18:15:35, ID: ST180412M1-2 PFC CS-1 18D0203, Description: PFC CS-1 18 D 0203

F50:MRM of 2 channels, ES-

(| $584.2>483.0$ |
| ---: |
| $5.599 \mathrm{e}+002$ |

13C2-PFDoA
F54:MRM of 2 channels,ES-

13C2-PFUdA

13C2-PFUdA

N-MeFOSA
F35:MRM of 2 channels,ES
$512.1>168.9$
$5.222 \mathrm{e}+003$

d3-N-MeFOSA
F38:MRM of 1 channel,ES $515.2>168.9$

13C2-PFDoA
F54:MRM of 2 channels, ES$615.0>569.7$ $3.235 \mathrm{e}+005$

Dataset:	F:IProjectsIPFAS.PROIResults\180412M1\180412M1-CRV.ald
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_3, Date: 12-Apr-2018, Time: 18:15:35, ID: ST180412M1-2 PFC CS-1 18D0203, Description: PFC CS-1 18 D 0203

F60:MRM of 2 channels, ES-

F40:MRM of 2 channels,ES$526.1>219$ $5.993 e+003$

d5-N-ETFOSA

N-EtFOSE
F57:MRM of 1 channel,ES. $630.1>58.9$ $1.327 \mathrm{e}+004$

d9-N-EtFOSE
F58:MRM of 1 channel,ES$639.2>58.8$ $7.766 \mathrm{e}+005$

Dataset: F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_3, Date: 12-Apr-2018, Time: 18:15:35, ID: ST180412M1-2 PFC CS-1 18D0203, Description: PFC CS-1 18D0203

13C6-PFDA

F39:MRM of 1 channel, ES-
$519.1>473.7$
$2.820 \mathrm{e}+005$

13C7-PFUdA

Last Altered: Printed:

Friday, April 13, 2018 10:17:47 Pacific Daylight Time Friday, April 13, 2018 10:27:36 Pacific Daylight Time

F6:MRM of 2 channels,ES$299.0>99.0$

F11:MRM of 2 channels, ES-
$327.2>81.1$

F8:MRM of 2 channels,ES-
$313.2>119$

PFPES
F14:MRM of 2 channels, ES-
$349.1>80.1$
$1007\left[\begin{array}{c}\text { PFPeS } \\ 7.894 \mathrm{e}+003 \\ 3.33 \\ 2.62 \mathrm{e} 2 \\ 7888 \\ \text { MM } \\ 7888.00\end{array}\right.$

F14:MRM of 2 channels,ES.
$349.1>99$
100
PFPeS $4.862 \mathrm{e}+003$
3.33
1.40 e 2
4764
bb
4764.00
0.500

Dataset: F.IProjectsIPFAS.PROIResultsI180412M11180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_4, Date: 12-Apr-2018, Time: 18:27:04, ID: ST180412M1-3 PFC CS0 18D0204, Description: PFC CSO 18 D 0204

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time

Name: 180412M1_4, Date: 12-Apr-2018, Time: 18:27:04, ID: ST180412M1-3 PFC CS0 18D0204, Description: PFC CS0 18 D0204

F29:MRM of 4 channeis, ES-

F41:MRM of 2 channels, ES-
$527>80$

d3-N-MeFOSAA
F49:MRM of 1 channel,ES$573.3>419$

Dataset:	F:IProjectsIPFAS.PROIResults\180412M1I180412M1-CRV qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_4, Date: 12-Apr-2018, Time: 18:27;04, ID: ST180412M1-3 PFC CS0 18D0204, Description: PFC CS0 $18 D 0204$

N-EtFOSAA
F50:MRM of 2 channels, ES-
$584.2>419$
$1.588 \mathrm{e}+004$
F50:MRM of 2 channels, ES-

13C2-PFDoA
F54:MRM of 2 channels,ES-
$615.0>569.7$
$3.974 \mathrm{e}+005$
F54:MRM of 2 channels,ES-
$615.0>569.7$
$3.974 \mathrm{e}+005$
F54:MRM of 2 channels,ES-
$615.0>569.7$
$3.974 \mathrm{e}+005$

PFUdA

F45:MRM of 2 channels,ES-
$563.0>518.9$ $3.006 \mathrm{e}+004$

F52:MRM of 2 channels, ES

13C2-PFUdA
F46:MRM of 1 channel, ES-

F35:MRM of 2 channels, ES F35.MRM of 2 channels, $512.1>219$

d3-N-MeFOSA

PFTrDA
F59:MRM of 2 channels,ES$662.9>618.9$ $3.461 e+004$

F59:MRM of 2 channels, ES-

13C2-PFDoA

F54:MRM of 2 channels, ES. $615.0>569.7$ $3.974 \mathrm{e}+005$

Dataset:	F:IProjectsIPFAS.PRO\Results1180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_4, Date: 12-Apr-2018, Time: 18:27:04, ID: ST180412M1-3 PFC CS0 18D0204, Description: PFC CS0 18D0204

d5-N-ETFOSA

d7-N-MeFOSE

d9-N-EtFOSE
F58:MRM of 1 channel,ES-

Dataset:	F:IProjectsIPFAS.PROIResultsi180412M11180412M1-CRV. ald
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_4, Date: 12-Apr-2018, Time: 18:27:04, ID: ST180412M1-3 PFC CS0 18D0204, Description: PFC CS0 18D0204

Dataset F:IProjectsIPFAS.PROIResultsI180412M1\180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_5, Date: 12-Apr-2018, Time: 18:38:34, ID: ST180412M1-4 PFC CS1 18D0205, Description: PFC CS1 18 D 0205

F14:MRM of 2 channels,ES-
$349.1>99$
100
$\left[\begin{array}{ll}\text { PFPeS } & 9.273 \mathrm{e}+003 \\ 3.34 \\ 3.20 \mathrm{e} 2 \\ 9235 \\ \mathrm{bb} \\ 9235.00\end{array}\right.$
$3.500 \quad 4.000$

13C3-PFBS
F7:MRM of 1 channel, ES-
$302 .>98.8$

Name: 180412M1_5, Date: 12-Apr-2018, Time: 18:38:34, ID: ST180412M1-4 PFC CS1 18D0205, Description: PFC CS1 18 D0205

Vista Analytical Laboratory

Dataset:	FIProjectsIPFAS.PROIResults\180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_5, Date: 12-Apr-2018, Time: 18:38:34, ID: ST180412M1-4 PFC CS1 18D0205, Description: PFC CS1 18D0205

Dataset:	F.IProjectsIPFAS.PROIResults\|180412M11180412M1-CRV. qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_5, Date: 12-Apr-2018, Time: 18:38:34, ID: ST180412M1-4 PFC CS1 18D0205, Description: PFC CS1 18 D0205

F50:MRM of 2 channeis, ES.
(100)

PFDoA
F53:MRM of 4 channels,ES-
$612.9>569.0$
$8.668 \mathrm{e}+004$

13C2-PFDoA
F54:MRM of 2 channels, ES-
$615.0>569.7$

13C2-PFUdA
F46:MRM of 1 channel, ES-
$565>519.8$
3.890 .

13C2-PFUdA

d3-N-MeFOSA

F54:MRM of 2 channels,ES- $\begin{aligned} & 615.0>569.7 \\ & 3.840 \mathrm{e}+005\end{aligned}$

Dataset:	F.lProjectsIPFAS.PROIResults 180412 M1 1180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_5, Date: 12-Apr-2018, Time: 18:38:34, ID: ST180412M1-4 PFC CS1 18D0205, Description: PFC CS1 $18 D 0205$

13C2-PFTeDA

F61:MRM of 2 channels,ES$714.8>669,6$

F40:MRM of 2 channels,ES$526.1>219$

d5-N-ETFOSA
F43:MRM of 1 channel, ES-
$531.1>168.9$

13C2-PFHxDA
F63:MRM of 1 channel,ES$815>769.7$ $1.724 \mathrm{e}+005$

d7-N-MeFOSE

d9-N-EtFOSE

Dataset:	F:IProjects\PFAS.PROTResults\180412M1\180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13,2018 10:27:36 Pacific Daylight Time

Name: 180412M1_5, Date: 12-Apr-2018, Time: 18:38:34, ID: ST180412M1-4 PFC CS1 18D0205, Description: PFC CS1 $18 D 0205$

13C7-PFUdA

F48:MRM of 1 channel,ES$570.1>524.8$ $4.519 \mathrm{e}+005$

Dataset:	F:IProjects\PFAS.PROIResults\180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_6, Date: 12-Apr-2018, Time: 18:50:03, ID: ST180412M1-5 PFC CS2 18D0206, Description: PFC CS2 18 D0206

13C3-PFPeA

13C3-PFBS
13C3-PFBS
F7:MRM of 1 channel,ES-
$302>98.8$

13C3-PFBS
PFHxA

F8:MRM of 2 channels,ES.

13C2-PFHxA
F9:MRM of 1 channel,ES.
$315>269.8$
$1.316 \mathrm{e}+005$

Dataset:	F./Projects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_6, Date; 12-Apr-2018, Time: 18:50:03, ID: ST180412M1-5 PFC CS2 18D0206, Description: PFC CS2 18 D0206

13C2-PFOA
F21:MRM of 1 channel,ES$414.9>369.7$ $4.945 e+005$

Dataset:	F:IProjects\PFAS.PROIResults 1 180412M1\180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_6, Date: 12-Apr-2018, Time: 18:50:03, ID: ST180412M1-5 PFC CS2 18D0206, Description: PFC CS2 1800206

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M1\180412M1-CRV.qid
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_6, Date: 12-Apr-2018, Time: 18:50:03, ID: ST180412M1-5 PFC CS2 18D0206, Description: PFC CS2 18 D0206

PFDoA
F53:MRM of 4 channels, ES-
$612.9>569.0$
$2.144 \mathrm{e}+005$

13C2-PFUdA
F46:MRM of 1 channel,ES-

Dataset:	F:IProjects\PFAS,PRO\Results\180412M1I180412M1-CRV.ald
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_6, Date: 12-Apr-2018, Time: 18:50:03, ID: ST180412M1-5 PFC CS2 18D0206, Description: PFC CS2 18 D0206

Dataset: Fi:ProjectsIPFAS.PROIResults\180412M11180412M1-CRV.qld

Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_6, Date: 12-Apr-2018, Time: 18:50:03, ID: ST180412M1-5 PFC CS2 18D0206, Description: PFC CS2 18 D 0206

Dataset: F:IProjectsIPFAS,PROIResults\180412M11180412M1-CRV.qid

Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_7, Date: 12-Apr-2018, Time: 19:01:32, ID: ST180412M1-6 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

13C3-PFPeA
F5:MRM of 1 channel,ES-
$266 .>221.8$

13C3-PFBS
F7:MRM of 1 channel, ES-
$302 .>98.8$
$4.862 e+004$

13C2-PFHxA

F9:MRM of 1 chanmel,ES-
$315>269.8$
$1348 \mathrm{e}+005$
PFPeS
F14:MRM of 2 channels, ES-
$349.1>80.1$

$\begin{array}{r}\text { F14:MRM of } 2 \text { channels, ES. } \\ 349.1>99 \\ 100 \\ \text { PFPeS } \\ 4.523 \mathrm{e}+004 \\ 3.33 \\ 1.52 \mathrm{e} 3 \\ 44782 \\ \mathrm{bb} \\ 548.67 \\ \hline\end{array}$
13C3-PFBS
F7:MRM of 1 channel,ES-
$302,>98.8$
$4.862 \mathrm{e}+004$
Printed: Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_7, Date: 12-Apr-2018, Time: 19:01:32, ID: ST180412M1-6 PFC CS3 18D0207, Description: PFC CS3 18 D 0207

Dataset:	F:IProjects\PFAS.PROIResults\180412M1\180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_7, Date: 12-Apr-2018, Time: 19:01:32, ID: ST180412M1-6 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

F31:MRM of 2 channels,ES-

13C8-PFOS
F34:MRM of 1 channel,ES-
$507.0>79.9$

13C2-PFDA
F37:MRM of 1 channel,ES-

13C2-8:2 FTS
F42:MRM of 1 channel, ES-

Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_7, Date: 12-Apr-2018, Time: 19:01:32, ID: ST180412M1-6 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

N-EtFOSAA
 F50:MRM of 2 channels,ES- $\begin{array}{r}584.2>419 \\ 1.858 \mathrm{e}+005\end{array}$

F50:MRM of 2 channels, ES$584.2>483.0$ $1.216 \mathrm{e}+004$

d5-N-EtFOSAA

13C2-PFDOA

13C2-PFUdA

d3-N-MeFOSA

Name: 180412M1_7, Date: 12-Apr-2018, Time: 19:01:32, ID: ST180412M1-6 PFC CS3 18D0207, Description: PFC CS3 18D0207

13C2-PFTeDA

F61:MRM of 2 channels,ES-

13C2-PFHxDA

F63:MRM of 1 channel, ES-

13C2-PFHxDA
F63:MRM of 1 channel,ES-

d7-N-MeFOSE

Dataset:	F:IProjects\PFAS.PRO\Results\180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_7, Date: 12-Apr-2018, Time: 19:01:32, ID: ST180412M1-6 PFC CS3 18D0207, Description: PFC CS3 $18 D 0207$

13C7-PFUdA
F48:MRM of 1 channel,ES$570.1>524.8$ $4.102 \mathrm{e}+005$

Last Altered:
Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:

Name: 180412M1_8, Date: 12-Apr-2018, Time: 19:13:02, ID: ST180412M1-7 PFC CS4 18D0208, Description: PFC CS4 18D0208

13C3-PFPeA
F5:MRM of 1 channel, ES-
$266 .>221.8$

13C3-PFBS
F7:MRM of 1 channel,ES-
$302 .>98.8$
$4.948 \mathrm{e}+004$

PFHxA
F8:MRM of 2 channels,ES$313.2>268.9$
(100-7

F8:MRM of 2 channels,ES-
$313.2>119$

13C2-PFHxA
F9:MRM of 1 channel, ES-

PFPeS

F14:MRM of 2 channels,ES$349.1>80.1$

F14:MRM of 2 channels, ES-
$349.1>99$

13C3-PFBS
F7:MRM of 1 channel,ES-
302. > 98.8

Name: 180412M1_8, Date: 12-Apr-2018, Time: 19:13:02, ID: ST180412M1-7 PFC CS4 18D0208, Description: PFC CS4 18D0208

13C2-PFOA
F21:MRM of 1 channel,ES-

PFHpS
F25:MRM of 2 channels, ES. $449>80.0$
$3.883 \mathrm{e}+005$
1007

13C2-PFOA
F21:MRM of 1 channet,ES-
$414.9>369.7$

F26:MRM of 2 channels,ES-

$$
463.0>219.0
$$

(1007

13C5-PFNA

F27:MRM of 1 channel, ES$468.2>422.9$
$4.338 \mathrm{e}+005$

Dataset:	F:IProjectsIPFAS,PROIResults\180412M1I180412M1-CRV, qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_8, Date: 12-Apr-2018, Time: 19:13:02, ID: ST180412M1-7 PFC CS4 18D0208, Description: PFC CS4 18 D 0208

F29:MRM of 4 channels.ES-

13C8-PFOSA

F33:MRM of 1 channel,ES$506.1>77.7$ $9.848 \mathrm{e}+004$

13C8-PFOS
F34:MRM of 1 channel,ES$507.0>79.9$
100
$1.003 \mathrm{e}+005$

F36:MRM of 2 channels, ES-

13C2-PFDA

F37:MRM of 1 channel,ES-
$515.1>469.9$
$\begin{array}{rl}515.1 & >469.9 \\ 100 & 3.274 \mathrm{e}+005\end{array}$

F41:MRM of 2 channels,ES-

13C2-8:2 FTS

F42:MRM of 1 channel,ES-
F42.MRM of 1 channel, ES-
$529.1>508.7$

F44:MRM of 2 channels,ES$549.1>99.1$

13C8-PFOS
F34:MRM of 1 channel,ES$\begin{array}{rr} & 507.0>79.9 \\ 100-\quad 1.003 \mathrm{e}+005\end{array}$

F47:MRM of 2 channels,ES$570.1>483.0$

d3-N-MeFOSAA
F49:MRM of 1 channel,ES$573.3>419$ $2.040 \mathrm{e}+005$

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_8, Date: 12-Apr-2018, Time: 19:13:02, ID: ST180412M1-7 PFC CS4 18D0208, Description: PFC CS4 $18 D 0208$

N-EtFOSAA F50:MRM of 2 channels,ES- $584.2>419$ $8.561 \mathrm{e}+005$
 F50:MRM of 2 channels,ES$584.2>483.0$ $5.266 \mathrm{e}+004$

F52:MRM of 2 channels,ES-

13C2-PFUdA

F46:MRM of 1 channel ES

13C2-PFUdA

N-MeFOSA F35:MRM of 2 channels, ES- $512.1>168.9$ $6.709 \mathrm{e}+005$

F35:MRM of 2 channels, ES.
$512.1>219$

Dataset:	F:IProjectsIPFAS.PROIResults 180412 M11180412M1-CRV.qId
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_8, Date: 12-Apr-2018, Time: 19:13:02, ID: ST180412M1-7 PFC CS4 18D0208, Description: PFC CS4 18 D 0208

13C2-PFTeDA

13C2-PFHxDA
F63:MRM of 1 channel,ES-

13C2-PFHxDA

d9-N-EtFOSE

F58:MRM of 1 channel,ES$639.2>58.8$

Dataset: F.IProjects\PFAS.PROIResults\180412M1\180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_8, Date: 12-Apr-2018, Time: 19:13:02, ID: ST180412M1-7 PFC CS4 18D0208, Description: PFC CS4 18D0208

Dataset:	FilProjectsIPFAS.PROIResultsI180412M11180412M1-CRV qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_9, Date: 12-Apr-2018, Time: 19:24:31, ID: ST180412M1-8 PFC CS5 18D0209, Description: PFC CS5 18 D0209

Dataset: F:IProjects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld

Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_9, Date: 12-Apr-2018, Time: 19:24:31, ID: ST180412M1-8 PFC CS5 18D0209, Description: PFC CS5 18 D0209

13C4-PFHpA
F16:MRM of 1 channel, ES

F17:MRM of 2 channels,ES.

1802-PFHxS

F19:MRM of 1 channel,ES-

F20:MRM of 2 channels,ESF25:MRM of 2 channels, ES-
$449>98.7$

13C2-PFOA

F26:MRM of 2 channels, ES
$463.0>219.0$

13C5-PFNA
F27:MRM of 1 channel,ES$468.2>422.9$
$3.858 \mathrm{e}+005$

Dataset:	F:IProjects\PFAS.PRO\Results\180412M11180412M1-CRV qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_9, Date: 12-Apr-2018, Time: 19:24:31, ID: ST180412M1-8 PFC CS5 18D0209, Description: PFC CS5 18 D0209

Dataset: FilProjects\PFAS.PROIResults\180412M1\180412M1-CRV.qld

Last Altered:.	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_9, Date: 12-Apr-2018, Time: 19:24:31, ID: ST180412M1-8 PFC CS5 18D0209, Description: PFC CS5 $18 D 0209$

F50:MRM of 2 channels,ES$584.2>483.0$

d5-N-EtFOSAA

F51:MRM of 1 channel,ES$589.3>419$ $2.052 \mathrm{e}+005$

13C2-PFUdA

d3-N-MeFOSA
F38:MRM of 1 channei,ES$515.2>168.9$

13C2-PFDoA
F54:MRM of 2 channels,ES$615.0>569.7$

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_9, Date: 12-Apr-2018, Time: 19:24:31, ID: ST180412M1-8 PFC CS5 18D0209, Description: PFC CS5 1800209

Dataset: F:IProjectsIPFAS.PROIResults\180412M11180412M1-CRV qid

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Dataset:	F:IProjects\PFAS.PRO\Resultsl180412M1\180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_10, Date: 12-Apr-2018, Time: 19:36:01, ID: ST180412M1-9 PFC CS6 18D0210, Description: PFC CS6 18 D 0210

Dataset: F:IProjectsIPFAS.PRO\Results\180412M1\180412M1-CRV.qld

Last Altered: Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed: \quad Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_10, Date: 12-Apr-2018, Time: 19:36:01, ID: ST180412M1-9 PFC CS6 18D0210, Description: PFC CS6 18 D 0210

13C4-PFHpA

F16:MRM of 1 channel, ES-
$367.2>321.8$

F17:MRM of 2 channels,ES-

1802-PFHxS

F20:MRM of 2 channels,ES-

3C2-PFOA

PFNA

F25:MRM of 2 channels, ES-
$449>98.7$

13C5-PFNA

Dataset:	F:IProjects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_10, Date: 12-Apr-2018, Time: 19:36:01, ID: ST180412M1-9 PFC CS6 18D0210, Description: PFC CS6 $18 D 0210$

13C8-PFOSA

F33:MRM of 1 channel, ES-
$506.1>77.7$ $8.677 \mathrm{e}+004$

F31:MRM of 2 channeis,ES-

13C8-PFOS
F34:MRM of 1 channel,ES-

F36:MRM of 2 channels, ESF36.MRM of 2 channels, $513>219$

13C2-PFDA
F37:MRM of 1 channel, ES.
$515.1>469.9$

F41:MRM of 2 channels, ES-

13C2-8:2 FTS

F44:MRM of 2 channels,ES-

13C8-PFOS

Dataset:	F:IProjects\PFAS,PROIResultsI180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_10, Date: 12-Apr-2018, Time: 19:36:01, ID: ST180412M1-9 PFC CS6 18D0210, Description: PFC CS6 $18 D 0210$

Dataset:	F:IProjectsIPFAS,PRO\Results\180412M1\180412M1-CRV qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_10, Date: 12-Apr-2018, Time: 19:36:01, ID: ST180412M1-9 PFC CS6 18D0210, Description: PFC CS6 18 D0210

F60:MRM of 2 channels,ES-

13C2-PFTeDA

F61:MRM of 2 channels,ES. $714.8>669.6$
1007

F40:MRM of 2 channeis,ES

d5-N-ETFOSA
F43:MRM of 1 channel,ES-

PFHxDA
F62:MRM of 2 channels,ES$813.1>768.6$

F62:MRM of 2 channels.ES-
$813.1>219$ $1.918 \mathrm{e}+005$

13C2-PFHxDA
F63:MRM of 1 channel.ES-

13C2-PFHxDA
F63:MRM of 1 channel, ES-
$815>769.7$
$815>769.7$
$1702 \mathrm{e}+005$

d7-N-MeFOSE

N-EtFOSE
F57:MRM of 1 channel,ES-
$630.1>58.9$ $6.738 \mathrm{e}+006$

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M11180412M1-CRV, qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_10, Date: 12-Apr-2018, Time: 19:36:01, ID: ST180412M1-9 PFC CS6 18D0210, Description: PFC CS6 $18 D 0210$

13C7-PFUdA

Dataset:	F.IProjectsIPFAS.PROIResults\180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_11, Date: 12-Apr-2018, Time: 19:47:30, ID: ST180412M1-10 PFC CS7 18D0211, Description: PFC CS7 18 D0211

13C3-PFPeA
 F6:MRM of 2 channels, ES-
$299.0>99.0$
$1.266 \mathrm{e}+006$
(

13C3-PFBS
F7:MRM of 1 channel,ES-

13C2-PFHxA
F9:MRM of 1 channel,ES-
$315>269.8$

Dataset:	F:IProjects\PFAS.PRO\Results\180412M1\180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_11, Date: 12-Apr-2018, Time: 19:47:30, ID: ST180412M1-10 PFC CS7 18D0211, Description: PFC CS7 $18 D 0211$

13C2-6:2 FTS
F24:MRM of 1 channel, ES$429.1>408.9$ $3.072 \mathrm{e}+005$

13C4-PFHpA
F16:MRM of 1 channel,ES

F17:MRM of 2 channels,ES-
$398.9>99.0$

1802-PFHxS

F20:MRM of 2 channels,ES-

13C2-PFOA

PFHpS
F25:MRM of 2 channels,ES-
$449>80.0$
$3.272 \mathrm{e}+006$

F25:MRM of 2 channels, ESF25:MRM of 2 channels,ES
$449>98.7$

13C2-PFOA
F21:MRM of 1 channel,ES-

13C5-PFNA
F27:MRM of 1 channel, ES-
$468.2>422.9$ $3.472 \mathrm{e}+005$

```
Quantify Sample Report
Printed: \(\quad\) Friday, April 13, 2018 10:27:36 Pacific Daylight Time
```

Name: 180412M1_11, Date: 12-Apr-2018, Time: 19:47:30, ID: ST180412M1-10 PFC CS7 18D0211, Description: PFC CS7 18 D0211

Abstract

\section*{PFOSA}

F29:MRM of 4 channels, ES-
$498.1>478$ $9.622 e+004$

L-PFOS

$499>99$

PFDA

F36:MRM of 2 channels, ES-
$513>219$
$3.203 \mathrm{e}+006$

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M11180412M1-CRV.qld
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_11, Date: 12-Apr-2018, Time: 19:47:30, ID: ST180412M1-10 PFC CS7 18D0211, Description: PFC CS7 $18 D 0211$

PFDOA
F53:MRM of 4 channels,ES-
$612.9>569.0$
$1.854 \mathrm{e}+007$

F54:MRM of 2 channels,ES-
$615.0>569.7$
$3.491 \mathrm{e}+005$

13C2-PFUdA
F46:MRM of 1 channel,ES-
$565>5198$

d3-N-MeFOSA

PFTrDA
F59:MRM of 2 channels,ES- $\begin{array}{r}662.9>618.9 \\ 1.439 \mathrm{e}+007\end{array}$

13C2-PFDoA
F54:MRM of 2 channels, ES-
$615.0>569.7$ $3.491 \mathrm{e}+005$

Dataset:	F:IProjects\PFAS,PRO\Results\180412M1\180412M1-CRV. qid
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_11, Date: 12-Apr-2018, Time: 19:47:30, ID: ST180412M1-10 PFC CS7 18D0211, Description: PFC CS7 18 D0211

d5-N-ETFOSA

13C2-PFHxDA

d7-N-MeFOSE

d9-N-EtFOSE

F58:MRM of 1 channel,ES$639.2>58.8$ $6.647 e+005$

Dataset:	F:IProjectsIPFAS.PROIResults $180412 \mathrm{M} 11180412 \mathrm{M} 1-\mathrm{CRV}$.qId
Last Altered:	Friday, April 13, 2018 10:17:47 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:27:36 Pacific Daylight Time

Name: 180412M1_11, Date: 12-Apr-2018, Time: 19:47:30, ID: ST180412M1-10 PFC CS7 18D0211, Description: PFC CS7 18 D0211

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name; 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV 18D0201

Work Order 1800643
Page 200 of 463

| Quantify Sample Summary Report \quad MassLynx MassLynx V4.1 SCN945 SCN960 | |
| :--- | :--- | :--- |
| Vista Analytical Laboratory | |
| Dataset: | F:IProjectsIPFAS. PROIResults\180412M11180412M1-ICV.qld |
| Last Altered: | Friday, April 13, 2018 10:30:39 Pacific Daylight Time |
| Printed: | Friday, April 13, 2018 10:32:20 Pacific Daylight Time |

Friday, April 13, 2018 10:30:39 Pacific Daylight Time
Friday April 13, 2018 10:32:20 Pacific Daylight Time
Printed:
Friday, April 13, 2018 10:32:20 Pacific Daylight Time

Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV 18D0201

8	\# Name	Trace	Area	IS Area	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec	Recovery Out
32	35 13C3-PFPeA	266. >221.8	1.46 e 4	1.68 e4	0.859	2.54	2.37	10.9	12.7	101.2	NO
33	$3613 C 3-P F B S$	302. > 98.8	2.00 e 3	1.68 e 4	0.121	2.81	2.64	1.49	12.3	98.8	NO
34	37 13C2-PFHxA	$315>269.8$	5.18 e 3	1.68 e 4	0.733	3.30	3.14	3.87	5.28	105.5	NO
35	38 13C4-PFHpA	$367.2>321.8$	1.30 e 4	1.68 e 4	0.761	3.92	3.76	9.73	12.8	102.3	NO
36	39 1802-PFHxS	$403.0>102.6$	1.70 e 3	3.88 e3	0.431	4.06	3.90	5.49	12.7	101.9	NO
37	$4013 \mathrm{C} 2-6: 2 \mathrm{FTS}$	$429.1>408.9$	4.73 e 3	1.63 e 4	0.333	4.38	4.22	3.61	10.9	86.9	NO
38	41 13C2-PFOA	$414.9>369.7$	1.74 e 4	1.63 e 4	1.150	4.43	4.27	13.3	11.6	92.6	NO
39	42 13C5-PFNA	$468.2>422.9$	1.56 e 4	1.60 e 4	0.979	4.87	4.71	12.2	12.4	99.6	NO
40	43 13C8-PFOSA	$506.1>77.7$	3.97e3	1.68 e 4	0.218	4.93	4.78	2.95	13.5	107.9	NO
41	44 13C8-PFOS	$507.0>79.9$	3.58e3	3.78 e 3	1.047	4.95	4.79	11.8	11.3	90.3	NO
42	45 13C2-PFDA	$515.1>469.9$	1.36 e 4	1.40 e 4	0.958	5.24	5.08	12.1	12.7	101.3	NO
43	46 13C2-8:2 FTS	$529.1>508.7$	3.69 e 3	1.68 e 4	0.226	5.21	5.05	2.75	12.2	97.3	NO
44	47 d3-N-MeFOSAA	$573.3>419$	8.35 e 3	1.68 e 4	0.471	5.39	5.23	6.21	13.2	105.3	NO
45	48 d5-N-EtFOSAA	$589.3>419$	8.89 e 3	1.68 e 4	0.517	5.55	5.38	6.61	12.8	102.2	NO
46	49 13C2-PFUdA	$565>519.8$	1.68 e 4	1.68 e 4	0.960	5.56	5.40	12.5	13.0	104.3	NO
47	50 13C2-PFDoA	$615.0>569.7$	1.53 e 4	1.68 e 4	0.840	5.84	5.68	11.4	13.5	108.2	NO
48	51 d3-N-MeFOSA	$515.2>168.9$	1.98 e 4	1.68 e4	0.097	6.00	5.87	14.7	152	101.3	NO
49	52 13C2-PFTeDA	$714.8>669.6$	7.63 e 3	1.68 e 4	0.510	6.30	6.15	5.67	11.1	88.9	NO
50	53 d5-N-ETFOSA	$531.1>168.9$	2,82e4	1.68 e4	0.138	6.40	6.25	21.0	152	101.5	NO
51	54 13C2-PFHxDA	$815>769.7$	6.85e3	1.68 e 4	1.118	6.62	6.47	5.09	4.56	91.1	NO
52	$55 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}$	$623.1>58.9$	3.56 e 4	1.68 e 4	0.169	6.50	6.34	26.5	157	104.8	NO
53	56 d9-N-EtFOSE	$639.2>58.8$	3.40 e 4	1.68 e4	0.161	6,65	6.49	25.3	157	104.8	NO
54	57 13C4-PFBA	$217 .>171.8$	1.41 e 4	1.41e4	1.000	1.56	1.43	12.5	12.5	100.0	NO
55	58 13C5-PFHxA	$318>272.9$	1.68 e 4	1.68 e 4	1.000	3.30	3.14	12.5	12.5	100.0	NO
56	59 13C3-PFHxS	$401.9>79.9$	3.88 e 3	3.88 e 3	1.000	4.04	3.90	12.5	12.5	100.0	NO
57	$6013 \mathrm{C} 8-\mathrm{PFOA}$	$421.3>376$	1.63 e 4	1.63 e 4	1,000	4.43	4.27	12.5	12.5	100.0	NO
58	61 13C9-PFNA	$472.2>426.9$	1.60e4	1.60 e 4	1.000	4.87	4.71	12.5	12.5	100.0	NO
59	62 13C4-PFOS	$503>79.9$	3.78 e 3	3.78 e 3	1.000	4.95	4.79	12.5	12.5	100.0	NO
60	63 13C6-PFDA	$519.1>473.7$	1.40 e 4	1.40 e 4	1.000	5.24	5.08	12.5	12.5	100.0	NO
61	64 13C7-PFUdA	$570.1>524.8$	1.68 e 4	1.68 e 4	1.000	5.56	5.40	12.5	12.5	100.0	NO

Method: F:IProjectsIPFAS.PROIMethDBIPFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59

Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47
Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV $18 D 0201$

13C2-PFHxA

F14:MRM of 2 channels,ES.
$349.1>99$
$100-1 \begin{array}{cc}\text { PFPeS } 4.211 \mathrm{e}+004 \\ 3.34 \\ 1.40 \mathrm{e} 3 \\ 41820 \\ \mathrm{bb} \\ 1667.30\end{array}$
3.5004 .000

13C3-PFBS

Page 202 of 463

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M11180412M1-ICV.qid
Last Altered:	Friday, April 13, 2018 10:30:39 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:32:20 Pacific Daylight Time

Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV $18 D 0201$

F23:MRM of 2 channels, ES. $427.1>80$

1802-PFHxS
F19:MRM of 1 channel,ES-
$4030>1026$

$$
\begin{array}{rl}
403.0 & >102.6 \\
100 & 4.641 \mathrm{e}+004
\end{array}
$$

13C2-PFOA

F21:MRM of 1 channel,ES-
$414.9>369.7$

F25:MRM of 2 channels,ES-
$449>98.7$
$3.833 \mathrm{e}+004$

F21:MRM of 1 channel, ES-
$414.9>3697$

F27:MRM of 1 channel, ES-
$468.2>422.9$
13C5-PFNA
$\begin{array}{rr} & 468.2>422.9 \\ 100 & 3.989 e+005\end{array}$

F26:MRM of 2 channels,ES-
$463.0>219.0$

- $8.792 \mathrm{e}+004$
Printed: Friday, April 13, 2018 10:32:20 Pacific Daylight Time

Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV $18 D 0201$

Dataset:	F:IProjectsIPFAS.PRO\Results\180412M11180412M1-ICV.qld
Last Altered:	Friday, April 13, 2018 10:30:39 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:32:20 Pacific Daylight Time

Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV 18 D 0201

PFDOA
F53:MRM of 4 channels,ES-
$612.9>569.0$
$3.861 \mathrm{e}+005$

PFUdA
F45:MRM of 2 channels, ES.
$563.0>518.9$
$3.401 \mathrm{e}+005$

F35:MRM of 2 channels,ES-

13C2-PFDOA
F54:MRM of 2 channels, ES$615.0>569.7$

Dataset:	F.IProjectsIPFAS.PROIResultsI180412M1I180412M1-ICV.ald
Last Altered:	Friday, April 13, 2018 10:30:39 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:32:20 Pacific Daylight Time

Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV $18 D 0201$

13C2-PFHxDA

13C2-PFHxDA
F63:MRM of 1 channel, ES-

d7-N-MeFOSE
F56:MRM of 1 channel, ES-
$623.1>58.9$ F56:MRM of 1 channel, ES-
$623.1>58.9$
$7.945 \mathrm{e}+005$

d9-N-EtFOSE
F58:MRM of 1 channel, ES-
$639.2>58.8$
$7.768 \mathrm{e}+005$

-uarriny sample Report Vista Analytical Laboratory

F:IProjects\PFAS.PROIResults\180412M11180412M1-ICV.qid
Last Altered: Friday, April 13, 2018 10:30:39 Pacific Daylight Time Printed: \quad Friday, April 13, 2018 10:32:20 Pacific Daylight Time

Name: 180412M1_13, Date: 12-Apr-2018, Time: 20:10:30, ID: ICV180412M1-1 PFC ICV 18D0201, Description: PFC ICV $18 D 0201$

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_040318.mdb 07 Apr 2018 09:47:59

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_04-12-18-FULL.cdb 13 Apr 2018 10:17:47

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C4-PFHpA

L-PFHxS

F17:MRM of 2 channels,ES-
$398.9>79.6$
$1.761 \mathrm{e}+002$

1802-PFHxS

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C2-6:2 FTS

13C2-PFOA

13C2-PFOA

F26:MRM of 2 channels,ES-

13C5-PFNA

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

F41:MRM of 2 channels,ES-

13C2-8:2 FTS

F47:MRM of 2 channels,ES-

d3-N-MeFOSAA

F50:MRM of 2 channels,ES-

d5-N-EtFOSAA

F45:MRM of 2 channels,ES-

13C2-PFUdA

F52:MRM of 2 channels,ES$598.8>98.7$

13C2-PFUdA

Dataset:	Untitled
Last Altered:	Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed:	Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C2-PFDoA

F35:MRM of 2 channels,ES-

d3-N-MeFOSA

F59:MRM of 2 channels,ES-

13C2-PFDoA

13C2-PFTeDA

13C2-PFHxDA

Dataset: Untitled

Last Altered: Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

13C2-PFHxDA

d7-N-MeFOSE

13C8-PFOA

13C5-PFHxA

13C9-PFNA

13C3-PFHxS

13C4-PFOS

Dataset: Untitled

Last Altered: Friday, April 13, 2018 10:34:50 Pacific Daylight Time
Printed: Friday, April 13, 2018 10:35:10 Pacific Daylight Time

Name: 180412M1_12, Date: 12-Apr-2018, Time: 19:59:00, ID: IPA, Description: IPA

Analyte	CAS Number	Concentration	Units
13C3-PFBA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-6:2 FTS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA		0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA		0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-4:2 FTS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFUnA		1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFBS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFPeA		1.25	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory
18B2203

Description:	PFC - IS	Expires:	24-Feb-20	
Standard Type:	Reagent	Prepared:	24-Feb-18	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	30	Department:	LCMS	
Vials:	1	Last Edit:	24-Feb-18 09:23	GRB
Analyte		CAS Number	Concentration	Units
13C4-PFHpA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFNA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOS			1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOSA			1.25	$\mathrm{ug} / \mathrm{mL}$
18O2-PFHxS			1.25	$\mathrm{ug} / \mathrm{mL}$
d3-MeFOSAA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFTeDA			1.25	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ hexanoic acid

LOT NUMBER: MPFHxA1017

CAS \#: \quad Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{11} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mm/ddyyyy)	10/27/2017
EXPIRY DATE: (mm/dd/ysy)	10/27/2022
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 316.04
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n-hexanoic acid and $<0.3 \%$ of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

18 A2908

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFHxA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAC}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions over 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / h r$) $=100$
Desolvation Gas Flow (l/hr) $=750$

18 A2908

Figure 2: MPFHxA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:
 COMPOUND:

M2-4:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ hexane sulfonate

CAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/di/yyy)
EXPIRY DATE: (mm/ddysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-4:2FTS anion) $>98 \%$
09/01/2017
09/01/2022
Refrigerate ampoule

MOLECULAR WEIGHT: 352.12
SOLVENT(S): Methanol

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $4: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 4:2FTS and M2-4:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 309$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-4:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad (mm/dd/yyyy)

[^0]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary-human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{1=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis,

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M2-4:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min
Flow: $300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=25.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: M2-4:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M2-4:2FTS})$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:
$300 \mu 1 / m i n$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=25$

PRODUCT CODE:

COMPOUND:

M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ octane sulfonate

STRUCTURE:

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mindarym)
EXPIRY DATE: (mmddolyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-6:2FTS anion)
>98\%
02/17/2017
02/17/2022
Refrigerate ampoule

MOLECULAR WEIGHT:
SOLVENT(S):
452.13

Methanol

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $6: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2-6:2FTS; LC/MS Data (TIC and Mass Spectrum)

| 17feb2017_M262FTS_002 |
| :--- | :--- | :--- |
| M262FTS0217 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $50 \%(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source:Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=30.00$
Cone Gas Flow $(1 / h r)=50$
Desolvation Gas Flow (l/hr) $=750$

Flow: $\quad 300 \mu / / m i n$
$18 B 1503$

Figure 2: M2-6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2-6:2FTS)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

Revision\#:3, Revised 2015-03-24

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

M2-8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ decane sulfonate
CAS \#: \quad Not available

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mm/dd/ywy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-8:2FTS anion)
>98\%
01/24/2018
01/24/2023
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{a}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2-8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: $50 \%(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Source:Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage $(\mathrm{V})=30.00$ Cone Gas Flow ($/ \mathrm{hr}$) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / m i n$	

18 B 1504

Figure 2: M2-8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

M3PFBA
Perfluoro-n-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid

LOT NUMBER: M3PFBA0516

CAS \#: Not available

MOLECULAR WEIGHT: 217.02 SOLVENT(S): Methanol Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$ (2,3,4- ${ }^{13} \mathrm{C}_{3}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-[$\left.{ }^{13} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^1]
$18 B 1505$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBA; LC/MS Data (TIC and Mass Spectrum)

27may2016_M3PFBA_002
M3PFBA0516 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:		
MS:	Waters Acquity Ultra Performance LC Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow $(\mathrm{l} / \mathrm{hr})=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M3PFBA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:

COMPOUND:

MPFDA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ decanoic acid

STRUCTURE:

MOLECULAR FORMULA
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{19} \mathrm{O}_{2}$

LOT NUMBER: MPFDA0717

CAS \#: \quad Not available
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$

CHEMICAL PURITY:
LAST TESTED: (mmiddyyyy)
$>98 \%$
07/13/2017
EXPIRY DATE: (mm/ddymyy)
07/13/2022
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

CONCENTRATION:

MOLECULAR WEIGHT: 516.07
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of ${ }^{13} \mathrm{C}_{1}$-PFNA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations: Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{\epsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{1=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)
13july2017_MPFDA_001
MPFDA0717 25 ug/mi
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ Experiment: Full Scan (250-850 amu)
Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N$) / $45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu / / \mathrm{min}$

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

1831506

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

$8 B 1507$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

MPFUdA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]undecanoic acid

STRUCTURE:

LOT NUMBER: MPFUdA1116

CAS \#: Not available

MOLECULAR WEIGHT: $\quad 566.08$
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1-{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\sim 1 \%$; see Figure 2), $2-{ }^{13} \mathrm{C}_{1}-\mathrm{PFUdA}(\sim 1 \%)$, and PFUdA $(\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com
$18 B 1507$
Figure 1: MPFUdA; LC/MS Data (TIC and Mass Spectrum)

| 22nov2016_MPFUdA_002 |
| :--- | :--- | :--- |
| MPFUdA1116 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Fiqure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP 18 18	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=65$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ MPFUdA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

M2PFTeDA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]tetradecanoic acid

LOT NUMBER: M2PFTeDA1117

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/da/syy)
EXPIRY DATE: (mm/ddysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/30/2017
11/30/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:
716.10

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{\theta}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2} \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule, Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

```
Chromatographic Conditions
Column: Acquity UPLC BEH Shield \(\mathrm{RP}_{\text {is }}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
```

Mobile phase: Gradient
Start: 65\% (80:20 MeOH:ACN) / 35\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ \mathrm{hr}$) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu 1 / m i n$

$18 B 1508$

Fiqure 2: M2PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

MPFNA
Perfluoro-n-[1,2,3,4,5- $\left.{ }^{13} \mathrm{C}_{5}\right]$ nonanoic acid

LOT NUMBER: MPFNA1217

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/ddyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
12/14/2017
12/14/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,5- $\left.{ }^{13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA

 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional-regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{n!}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFNA; LC/MS Data (TIC and Mass Spectrum)
14dec2017_MPFNA_001
MPFNA1217 $25 \mathrm{ug} / \mathrm{ml}$
100

Figure 2: MPFNA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:

MPFDoA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]dodecanoic acid

LOT NUMBER: MPFDoA0517

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mindalyys) EXPIRY DATE: (mm(dol/yyy) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/23/2017
05/23/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 616.08
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
($1,2-{ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request,

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{i}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFDoA; LC/MS Data (TIC and Mass Spectrum)

| 23may2017_MPFDoA_002 |
| :--- | :--- | :--- |
| MPFDoA0517 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN)/40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ MPFDoA)	MS Parameters
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=13 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:

COMPOUND:

STRUCTURE:

M4PFHpA
Perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ heptanoic acid

LOT NUMBER: M4PFHpA0517

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddisyy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/03/2017
05/03/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 368.03
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{2}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M4PFHpA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / h r$) $=50$
Desolvation Gas Flow ($/ / \mathrm{hr}$) $=750$

Figure 2: M4PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
\(\left.$$
\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\
10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 4 \text { PFHpA) }\end{array}
$$

Mobile phase: \& \begin{array}{l}Isocratic 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}

(both with 10 \mathrm{mM} \mathrm{NH}\end{array} 4 \mathrm{OAc} buffer)\end{array}\right\}\)| | $300 \mu \mathrm{l} / \mathrm{min}$ |
| :--- | :--- |

MS Parameters

Collision Gas $(\mathrm{mbar})=3.46 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=9$

PRODUCT CODE:

COMPOUND:

STRUCTURE:

M2PFOA
Perfluoro-n-[1,2-13 C_{2}]octanoic acid

LOT NUMBER: M2PFOA1017

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrymy)
EXPIRY DATE: (mmidarmy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{HF}_{15} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/26/2017
10/26/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 416.05
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots, x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column:
Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ \mathrm{lhr}$) $=100$
Desolvation Gas Flow (l/hr) $=750$

Fiqure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M2PFOA $)$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=10$

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M3PFPeA
Perfluoro-n-[3,4,5- $\left.{ }^{13} \mathrm{C}_{3}\right]$ pentanoic acid

LOT NUMBER: M3PFPeA0417

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurys)
EXPIRY DATE: (mmdadysyy)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF} \mathrm{O}_{2}
$$

$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/20/2017
04/20/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 267.02 SOLVENT(S): Methanol

Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(3,4,5-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro- $n-\left[{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid and 0.05% of perfluoro- 1 -pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40\% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (l/hr) $=60$
	2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$

Fiqure 2: M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE: COMPOUND:

M2PFHxDA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$ hexadecanoic acid

LOT NUMBER: M2PFHxDA0717

CHS \#: \quad Not available
$\square \rightarrow$

MOLECULAR WEIGHT: $\quad 816.11$
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY:

07/13/2017
07/13/2022
Store ampoule in a cool, dark place
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{i}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystaline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

$18 B 1514$

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1250 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=25.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu 1 / \mathrm{min}$	

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M2PFHxDA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.28 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=15 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:
d3-N-MeFOSAA
N -methyl-d3-perfluoro-1-octanesulfonamidoacetic acid
d3NMeFOSAA1117

Not available

MOLECULAR FORMULA:	$\mathrm{C}_{11} \mathrm{D}_{3} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$	MOLECULAR WEIGHT:	574.23
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 98 \%{ }^{2} \mathrm{H}_{3}$
LAST TESTED: (mmoddymy)	11/08/2017		
EXPIRY DATE: (mmddarsm)	11/08/2022		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots, x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

$18 B 1515$

Figure 1: $\quad \mathrm{d} 3-\mathrm{N}-\mathrm{MeFOSAA}$; LC/MS Data (TIC and Mass Spectrum)

\section*{Conditions for Figure 1:
 | LC: | Waters Acquity Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

Chromatographic Conditions		
Column:	Acquity UPLC BEH Shield RP 18	MS Parameters
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$		

Figure 2: \quad d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ d3-N-MeFOSAA) $)$
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

d5-N-EtFOSAA
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid

MOLECULAR FORMULA:	$\mathrm{C}_{12} \mathrm{D}_{5} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$	MOLECULAR WEIGHT:	590.26
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 98 \%{ }^{2} H_{5}$
LAST TESTED: (mmidotysy)	11/08/2017		
EXPIRY DATE: (mmuduryy)	11/08/2022		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{11}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad d5-N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{16}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu 1 / \mathrm{min}$	

Fiqure 2: \quad d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{d} 5-\mathrm{N}$-EtFOSAA)	
		Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

M3PFBS
Sodium perfluoro-1-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate
LOT NUMBER: M3PFBS0815

GAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddilyyy)
EXPIRY DATE: (mm/ddyyyy)

$$
{ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}
$$

$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFBS anion)
$>98 \%$
05/24/2017
05/24/2022

RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{0}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBS; LC/MS Data (TIC and Mass Spectrum)

Figure 2: M3PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M3PFBS $)$
Mobile phase:	socratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$	

MS Parameters
 Collision Gas (mbar) $=3.31 \mathrm{e}-3$
 Collision Energy (eV) $=25$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

MPFHxS
Sodium perfluoro-1-hexane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate

LOT NUMBER: MPFHxS0217

GAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mmidd/ymy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{ONa}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFHxS anion)
$>98 \%$
02/17/2017
02/17/2022

MOLECULAR WEIGHT: 426.10
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>94 \%\left({ }^{18} \mathrm{O}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The response factor for MPFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)$ has been observed to be up to 10% lower than for $\mathrm{PFHxS}\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)$ when both compounds are injected together. This difference may vary between instruments.
- Contains $\sim 1.0 \%$ of sodium perfluoro- 1 -octane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate (${ }^{18} \mathrm{O}_{2}$-PFOS).
- Due to the isotopic purity of the starting material ($\left.{ }^{18} \mathrm{O}_{2}>94 \%\right)$, MPFHxS contains $\sim 0.3 \%$ of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^2]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(v\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

[^3] please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MPFHxS; LC/MS Data (TIC and Mass Spectrum)
17feb2017_MPFHxS_001
MPFHxS0217 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP ${ }_{18}$	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: $50 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 50 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=50.00$
Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow $(1 / \mathrm{hr})=60$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFHxS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ MPFHxS $)$	MS Parameters
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$	Collision Gas (mbar) $=3.43 \mathrm{e}-3$ (both with 10 mM NH 4 OAc buffer)
Collision Energy $(\mathrm{eV})=30$		

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: M8PFOS1117
Sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{8}\right]$ octanesulfonate

CAS \#: Not available

MOLECULAR FORMULA:

CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mm/dd/ysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (M8PFOS anion)
$>98 \%$
11/08/2017
11/08/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 530.05
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.3 \%$ of sodium perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonate (${ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}$) and $\sim 0.8 \%$ of sodium perfluoro-1-[$\left.{ }^{3} \mathrm{C}_{4}\right]$ octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

[^4]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8PFOS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP ${ }_{18}$	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=60.00$
Ramp to 90% organic over 7 min and hold for 2 min	Cone Gas Flow (l/hr) = 50
before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: M8PFOS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M8PFOS)	MS Parameters
		Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=40$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

M8FOSA-I
Perfluoro-1-[${ }^{3} \mathrm{C}_{8}$]octanesulfonamide

LOT NUMBER: M8FOSA1017I

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mnodarym)
EXPIRY DATE: (mmoddyyy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 507.09
SOLVENT(S): ISOTOPIC PURITY:

Isopropanol $\geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.1 \%$ of perfluoro- $1-\left[{ }^{[3} \mathrm{C}_{4}\right.$ Joctanesulfonamide and $\sim 0.01 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule, Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

18 B1525

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 85% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage (V) $=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow $(\mathrm{l} / \mathrm{hr})=750$

Flow:
$300 \mu 1 / \mathrm{min}$

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M8FOSA-I) $)$
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAC buffer)	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=30$

Analytical Standard Record

Vista Analytical Laboratory
18 C 1302

Parent Standards used in this standard:					
Standard	Description	Prepared	Prepared By	Expires	(mls)
17L2024	PFDoA	20-Dec-17	** Vendor **	29-May-22	0.4
18B1539	PFBA	15-Feb-18	** Vendor **	14-Dec-22	0.4
18B1540	PFPeA	15-Feb-18	** Vendor **	14-Jun-19	0.4
18B1541	PFHxA	15-Feb-18	** Vendor **	27-Sep-22	0.4
18B1542	PFDA	15-Feb-18	** Vendor **	14-Dec-22	0.4
18B1543	PFUdA	15-Feb-18	** Vendor **	21-Sep-22	0.4
18B1544	PFTrDA	15-Feb-18	** Vendor **	02-May-22	0.4
18B1545	PFHpA	15-Feb-18	** Vendor **	27-Sep-22	0.4
18B1546	PFOA	15-Feb-18	** Vendor **	27-Sep-22	0.4
18B1547	PFNA	15-Feb-18	** Vendor **	20-Jul-22	0.4
18B1548	PFTeDA	15-Feb-18	** Vendor **	21-Sep-22	0.4
18B1549	PFHxDA	15-Feb-18	** Vendor **	13-Jul-22	0.4
18B1550	PFODA	15-Feb-18	** Vendor **	13-Jul-22	0.4
18B1551	L-PFBS	15-Feb-18	** Vendor **	21-Sep-22	0.454
18B1552	L-PFPeS	15-Feb-18	** Vendor **	11-Jan-19	0.428
18B1553	br-PFHxSK	15-Feb-18	** Vendor **	04-Jan-22	0.44
18B1554	L-PFHpS	15-Feb-18	** Vendor **	01-Sep-22	0.42
18B1555	br-PFOSK anion	15-Feb-18	** Vendor **	12-Jan-22	0.431
18B1556	L-PFNS	15-Feb-18	** Vendor **	27-Sep-22	0.418
18B1557	L-PFDS	15-Feb-18	** Vendor **	08-Nov-19	0.415
18B1558	4:2 FTS	15-Feb-18	** Vendor **	12-Dec-21	0.43
18B1559	6:2FTS	15-Feb-18	** Vendor **	20-Apr-22	0.422
18B1560	8:2FTS	15-Feb-18	** Vendor **	12-Dec-21	0.418
18B1561	FOSA-I	15-Feb-18	** Vendor **	01-Sep-22	0.4
18B1562	N-MeFOSAA	15-Feb-18	** Vendor **	11-Jan-22	0.4
18B1563	N-EtFOSAA	15-Feb-18	** Vendor **	11-Jan-22	0.4
18B1564	N-MeFOSA-M	15-Feb-18	** Vendor **	05-Jul-22	2
18B1565	N-EtFOSA-M	15-Feb-18	** Vendor **	05-Jul-22	2
18B1566	N-MeFOSE-M	15-Feb-18	** Vendor **	24-Apr-22	2
18B1567	N-EtFOSE-M	15-Feb-18	** Vendor **	24-Apr-22	2

Description:	PFC NS Stock	Expires:	13-Mar-20
Standard Type:	Analyte Spike	Prepared:	13-Mar-18
Solvent:	MeOH	Prepared By:	Giana R. Bilotta
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	13-Mar-18 11:49 by GRB

PFOS and PFHxS linear and branched components

Analyte	CAS Number	Concentration	Units
L-PFDS	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFUnA	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFTrDA	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFTeDA	1	$\mathrm{ug} / \mathrm{mL}$	

Analytical Standard Record

Vista Analytical Laboratory
18 C 1302

Description:	PFC NS Stock	Expires:	13-Mar-20	
Standard Type:	Analyte Spike	Prepared:	13-Mar-18	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	13-Mar-18 11:49	GRB
PFOS and PFHxS linear and branched components				
Analyte		CAS Number	Concentration	Units
L-PFPeA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFOSA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFOS			0.789	$\mathrm{ug} / \mathrm{mL}$
L-PFODA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFOA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFNA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxS			0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxA			1	$\mathrm{ug} / \mathrm{mL}$
4:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHpA			1	$\mathrm{ug} / \mathrm{mL}$
MeFOSE		24448-09-7	5	$\mathrm{ug} / \mathrm{mL}$
L-PFDoA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFBS			1	$\mathrm{ug} / \mathrm{mL}$
L-PFBA			1	$\mathrm{ug} / \mathrm{mL}$
L-8:2FTS			1	$\mathrm{ug} / \mathrm{mL}$
L-6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE		1691-99-2	5	$\mathrm{ug} / \mathrm{mL}$
EtFOSAA		2991-50-6	1	$\mathrm{ug} / \mathrm{mL}$
EtFOSA		4151-50-2	5	$\mathrm{ug} / \mathrm{mL}$
Br -PFHxS		3871-99-6	0.189	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS		39108-34-4	1	$\mathrm{ug} / \mathrm{mL}$
6:2 FTS		27619-97-2	1	$\mathrm{ug} / \mathrm{mL}$
L-PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
PFOA		335-67-1	1	$\mathrm{ug} / \mathrm{mL}$
Total PFOS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFOA			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHxS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS			1	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$
PFUnA		2058-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFTrDA		72629-94-8	1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory
18 C 1302

Description:	PFC NS Stock	Expires:	13-Mar-20	
Standard Type:	Analyte Spike	Prepared:	13-Mar-18	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	13-Mar-18 11:49	GRB
PFOS and PFHxS linear and branched components				
Analyte		CAS Number	Concentration	Units
PFTeDA		376-06-7	1	$\mathrm{ug} / \mathrm{mL}$
PFPeS		630402-22-1	1	$\mathrm{ug} / \mathrm{mL}$
PFPeA		2706-90-3	1	$\mathrm{ug} / \mathrm{mL}$
PFOSA		754-91-6	1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA		31506-32-8	5	$\mathrm{ug} / \mathrm{mL}$
PFODA		16517-11-6	1	$\mathrm{ug} / \mathrm{mL}$
MeFOSAA		2355-31-9	1	ug/mL
PFNS		98789-57-2	1	$\mathrm{ug} / \mathrm{mL}$
PFNA		375-95-1	1	$\mathrm{ug} / \mathrm{mL}$
PFHxS		355-46-4	1	$\mathrm{ug} / \mathrm{mL}$
PFHxDA		67905-19-5	1	$\mathrm{ug} / \mathrm{mL}$
PFHxA		307-24-4	1	$\mathrm{ug} / \mathrm{mL}$
PFHpS		375-92-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHpA		375-85-9	1	$\mathrm{ug} / \mathrm{mL}$
PFDS		335-77-3	1	$\mathrm{ug} / \mathrm{mL}$
PFDoA		307-55-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDA		335-76-2	1	$\mathrm{ug} / \mathrm{mL}$
PFBS		375-73-5	1	$\mathrm{ug} / \mathrm{mL}$
PFBA		375-22-4	1	$\mathrm{ug} / \mathrm{mL}$
Total PFUnA			1	$\mathrm{ug} / \mathrm{mL}$
PFOS		1763-23-1	1	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE:
COMPOUND:

PFDoA
Perfluoro-n-dodecanoic acid

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/ddisyy)
RECOMMENDED STORAGE:

$$
\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}
$$

$$
50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
$$

>98\%
05/29/2017
05/29/2022
Store ampoule in a cool, dark place

LOT NUMBER: PFDoA0517

GAS \#:
307-55-1

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

$$
17 L 2024
$$

Figure 1: PFDoA; LC/MS Data (TIC and Mass Spectrum)

29may2017_PFDoA_001	29-May-2017	16:58:17
PFDoA0517 $25 \mathrm{ug} / \mathrm{ml}$		
100		

$17 L 2024$

Figure 2:
PFDoA; LC/MS/MS Data (Selected MRM Transitions)
29may2017_PFDoA_002

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFDoA)

Mobile phase: Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=13$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
COMPOUND:

PFBA
Perfluoro-n-butanoic acid

LOT NUMBER: PFBA1217

CAS \#:
375-22-4

MOLECULAR FORMULA:

CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodaryy)
EXPIRY DATE: (mmodoryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/14/2017
12/14/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT(S): Methanol Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatograp	ohic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 30% ($80: 20 \mathrm{MeOH}: A C N) / 70 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage $(\mathrm{V})=10.00$ Cone Gas Flow $(1 / h r)=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu 1 /$ min	

$18 B 1539$
Figure 2: \quad PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{PFBA})$	
		Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) $/ 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=10$
Flow:	$300 \mu / / \mathrm{min}$	

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0617

GAS \#:
2706-90-3

MOLECULAR FORMULA:	$\mathrm{C}_{5} \mathrm{HF}_{9} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	264.05
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT (S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$		
LAST TESTED: $(m m / d d / y s y y)$	$06 / 14 / 2017$		
EXPIRY DATE: $(m m / d d / y y y)$	$06 / 14 / 2022$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydrido - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad $\frac{(\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy})}{}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UVIMS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{t}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

18B1540

Figure 1: \quad PFPeA; LC/MS Data (TIC and Mass Spectrum)

14june2017_PFPeA_003
PFPeA0617 25 ug/ml
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with 10 mM NH	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFPeA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.62 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=9 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

STRUCTURE:

PFHxA
Perfluoro-n-hexanoic acid

LOT NUMBER: PFHxA0917

GAS \#:
307-24-4

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY:
LAST TESTED: (mmodyyns)
EXPIRY DATE: (mnddasyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/27/2017
09/27/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 314.05
SOLVENT (S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 1.0 \%$ of branched isomers.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column:
Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad PFHXA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
 COMPOUND:
 FDA
 LOT NUMBER: PFDA1217
 STRUCTURE:
 Perfluoro-n-decanoic acid
 GAS \#:
 335-76-2

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

$$
>98 \%
$$

12/14/2017
12/14/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 514.08
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

$18 B 1542$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains,

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, éye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP_{18}	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: $55 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 45 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:
\(\left.$$
\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\
10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { PFDA) }\end{array}
$$

Mobile phase: \& \begin{array}{l}socratic 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}

(both with 10 \mathrm{mM} \mathrm{NH}\end{array} \mathrm{A} \mathrm{OAc} buffer)\end{array}\right\}\)| | $300 \mu \mathrm{l} / \mathrm{min}$ |
| :--- | :--- |

MS Parameters

Collision Gas $(\mathrm{mbar})=3.35 \mathrm{e}-3$
Collision Energy (eV) $=13$

CERTIFICATE OF ANALYSIS

MOLECULAR FORMULA:	$\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	564.09 Methanol
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$		
LAST TESTED: (mm/dd/syy)	$09 / 21 / 2017$	$09 / 21 / 2022$	
EXPIRY DATE: (mm/ddyyyy)	RECOMMENDED STORAGE:	Store ampoule in a cool, dark place	

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{16}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=65$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$18 B 1543$

Figure 2: PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFUdA)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $300 \mu 1 / m i n$

MS Parameters

Collision Gas $(\mathrm{mbar})=3.46 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$

PRODUCT CODE: COMPOUND:

PFTrDA
Perfluoro-n-tridecanoic acid

LOT NUMBER: PFTrDA0517

CAS \#:
72629-94-8

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY: LAST TESTED: (mmodaymex)
EXPIRY DATE: (mmideryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/02/2017
05/02/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 664.11
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq of NaOH to prevent conversion of the carboxylic acid to the methyl ester,
- Contains $\sim 0.1 \%$ of PFUdA $\left(\mathrm{C}_{n} \mathrm{HF}_{21} \mathrm{O}_{2}\right), \sim 0.4 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{05 / 04 / 2017}{(\text { mmididywn })}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=22,00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow ($/ / h r$) $=650$

Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFTrDA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.17 \mathrm{e}-3$
Collision Energy (eV) $=15$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

PFHpA Perfluoro-n-heptanoic acid

LOT NUMBER: PFHPA0917

CAS \#:
375-85-9

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmodurmy)
EXPIRY DATE: (mmudaymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/27/2017
09/27/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{\varepsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{1=1}^{n} u\left(y_{2} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHpA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{19}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $50 \%(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for
2 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (I/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu 1 / m i n$

Figure 2: \quad PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFHPA})$	Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile ph	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=11$
Flow:	$300 \mathrm{\mu l} / \mathrm{min}$	

Revision\#:4, Revised 2017-03-06

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFOA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0917

GAS \#:
335-67-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddryys)
EXPIRY DATE: (mm/dd/ysy)
RECOMMENDED STORAGE:

MOLECULAR WEIGHT: SOLVENT(S): Methanol

Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 09/28/2017 (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations; Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{d}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

$18 B 1546$

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: $50 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 50 \% \mathrm{H}_{2} \mathrm{O}$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
	Ramp to 90% organic over 7 min and hold for
	2 min before returning to initial conditions in 0.5 min.
	Time: 10 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow (l/hr) $=750$

Flow
$300 \mu 1 / \mathrm{min}$

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:

COMPOUND:

PENA
Perfluoro-n-nonanoic acid

LOT NUMBER: PFNA0717

CAS \#: 375-95-1

MOLECULAR WEIGHT: 464.08
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of perfluoro-n-octanoic acid (PFOA), < 0.1% of perfluoro-n-heptanoic acid (PFHpA), and $<0.1 \%$ of perfluoro-n-undecanoic acid (PFUdA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals, Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)

\section*{Conditions for Figure 1:
 | LC: | Waters Acquity Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

Chromatographic Conditions

Column:

Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Hold for 1 min . Ramp to 90% organic over 7 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow ($/ / h r$) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

PFTeDA
Perfluoro-n-tetradecanoic acid

LOT NUMBER: PFTeDA0917

STRUCTURE:
GAS \#:
376-06-7

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodayyy)
EXPIRY DATE: (mmidalyyy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

$$
>98 \%
$$

$$
09 / 21 / 2017
$$

$$
09 / 21 / 2022
$$

Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):
714.11

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$ and $\sim 0.2 \%$ of PFPeDA $\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 $\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=15,00$
Cone Gas Flow $(1 / h r)=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFTeDA)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=14$

PRODUCT CODE:	
COMPOUND:	PFHxDA
STRUCTURE:	
Perfluoro-n-hexadecanoic acid	LOT NUMBER: PFHxDA0717

MOLECULAR FORMULA:	$\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	814.13
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT (S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$		
LAST TESTED: (mmiddysyy)	$07 / 13 / 2017$		
EXPIRY DATE: (mm/ddyyyy)	$07 / 13 / 2022$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{6}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{k}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxDA; LC/MS Data (TIC and Mass Spectrum)

| 13july2017_PFHxDA_001 |
| :--- | :--- | :--- |
| PFHxDA0717 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:	
LC:	Waters Acquity UItra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column:
Acquity UPLC BEH Shield RP ${ }_{16}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N$) / $45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (250-1250 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=25.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2:
PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFHxDA)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.13 \mathrm{e}-3$
Collision Energy (eV) $=15$

PRODUCT CODE:

 COMPOUND:PFODA
Perfluoro-n-octadecanoic acid

LOT NUMBER: PFODA0717

CAS \#: 16517-11-6

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY:
LAST TESTED: (mmodulysy)
EXPIRY DATE: (mmadryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/13/2017
07/13/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{07 / 14 / 2017}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

1881550

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

L-PFBS
Potassium perfluoro-1-butanesulfonate

LOT NUMBER: LPFBS0917

CAS \#: 29420-49-3

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoddyyy)
EXPIRY DATE: (mmodaryyy)
$\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
09/21/2017
09/21/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 338.19 SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

1831551

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \text { Acquity UPLC BEH Shield RP } \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min
before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu 1 / m i n$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFBS})$	MS Parameters

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

L-PFPeS
Sodium perfluoro-1-pentanesulfonate

LOT NUMBER: LPFPeS0117

GAS \#:

630402-22-1

MOLECULAR FORMULA:
 CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmdedyyy)
EXPIRY DATE: (mindadmy)
RECOMMENDED STORAGE:
$\mathrm{C}_{5} \mathrm{~F}_{11} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.9 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFPeS anion)
>98\%
01/11/2017
01/11/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 372.09
SOLVENTS):
Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers, In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1^{1}}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{t}\left(y\left(x_{i}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFPeS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Capillary Voltage (kV) $=3.00$ Cone Voltage $(\mathrm{V})=50.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min	Cone Gas Flow (1/hr) $=60$
	before returning to initial conditions over 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: L-PFPeS; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
br-PFHxSK
 Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:
LOT NUMBER:
CONCENTRATION:

SOLVENT(S):
DATE PREPARED: (mmodurym)
LAST TESTED: (mnddaysy)
EXPIRY DATE: (mmlddyyyy)
RECOMMENDED STORAGE:
br-PFHxSK
brPFHxSK0117
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$45.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFHxS anion)
Methanol
01/03/2017
01/04/2017
01/04/2022
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{99} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ of perfluoro-1-pentanesulfonate and $\sim 0.2 \%$ of perfluoro-1-octanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the Identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

| Isomer | Name | Structure
 Percent
 Composition
 by |
| :---: | :--- | :--- | :--- |
| 1 | Potassium perfluoro-1-hexanesulfonate | |

** Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Certified By:

Date: 01/20/2017
(mm/dd/yyyy)

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 20\% (80:20 MeOH:ACN) / $80 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=50.00$
	Ramp to 50% organic over 14 min . Ramp to	Cone Gas Flow (l/hr) $=60$
	90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 20 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad br-PFHxSK; LC/MS Data (SIR)
04jan2017_brPFHxSK_002
brPFHxSK0117 $25 \mathrm{ug} / \mathrm{ml}$
100

$18 B 1553$
Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:		
Injection:	Direct loop injection	MS Parameters
	$10 \mathrm{\mu l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{br-PFHxSK}$)	Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=30$
Flow:	$300 \mu 1 / \mathrm{min}$	

PRODUCT CODE:
COMPOUND:

STRUCTURE:
L-PFHpS
Sodium perfluoro-1-heptanesulfonate

LOT NUMBER: LPFHpS0817

CAS \#: Not available

MOLECULAR WEIGHT: $\quad 472.10$
SOLVENT(S): Methanol
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.6 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFHpS anion)
$>98 \%$
09/01/2017
EXPIRY DATE: (mm/dd/ysy) 09/01/2022
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of L-PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)$ and $\sim 0.1 \%$ of L-PFOS $\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
09/07/2017
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i-1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com
$\therefore 18 B 1554$
Figure 1: L-PFHpS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
		Cone Voltage (V) $=60.00$ Cone Gas Flow ($/ \mathrm{hr}$) $=60$
	for 1 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

1881554

Figure 2: L-PFHpS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{I}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFHpS})$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=35$

CERTIFICATE OF ANALYSIS DOCUMENTATION

br-PFOSK

Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:
 LOT NUMBER:
 CONCENTRATION:

SOLVENTS):
DATE PREPARED: (mm/ddisysy)
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mmiddiysy)
RECOMMENDED STORAGE:
br-PFOSK
brPFOSK0117
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
Methanol
01/09/2017
01/12/2017
01/12/2022
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers.
The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^5]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(v\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{w} u\left(y, v_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
1	Potassium perfluoro-1-octanesulfonate	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \cdot \mathrm{~K}^{+}$	78.8
2	Potassium 1-trifluoromethylperfluoroheptanesulfonate**		1.2
3	Potassium 2-trifluoromethylperfluoroheptanesulfonate		0.6
4	Potassium 3-trifluoromethylperfluoroheptanesulfonate		1.9
5	Potassium 4-trifluoromethylperfluoroheptanesulfonate		2.2
6	Potassium 5-trifluoromethylperfluoroheptanesulfonate		4.5
7	Potassium 6-trifluoromethylperfluoroheptanesulfonate		10.0
8	Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate		0.2
9	Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate		0.03
10	Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate		0.4
11	Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate		0.07

$\begin{array}{ll}\text { ** } & \text { Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure } 2 .\end{array}$ ** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:

Date: $\frac{01 / 20 / 2017}{(m \text { moddrymy })}$

18B1555
Figure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 45% (80:20 MeOH:ACN) / $55 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=60.00$
	Ramp to 90% organic over 12 min and hold for 2 min .	Cone Gas Flow (I/hr) $=50$
	Return to initial conditions over 0.5 min .	Desolvation Gas Flow (1/hr) = 750
	Time: 16 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad br-PFOSK; LC/MS Data (SIR)

Conditions for Figure 2:
LC: Waters Acquity Ultra Performance LC
MS: Micromass Quattro micro API MS
Chromatographic Conditions:

Column:	Acquity UPLC BEH Shield $\mathrm{RP}_{18}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})$
Injection:	$1.0 \mu \mathrm{~g} / \mathrm{ml}$ of br-PFOSK
Mobile Phase:	Gradient 45% (80:20 MeOH:ACN) / $55 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 15 min and hold for 3 min . Return to initial conditions over 1 min . Time: 20 min
Flow:	$300 \mu / / m i n$
MS Conditions:	
```SIR (ES) Source = 110 % C Desolvation = 325 僉 Cone Voltage =60V```	

## 18 B 155

Figure 3:
br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 3:	MS Parameters
Injection: On-column	Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Same as Figure 2
Flow: $\quad 300 \mu / / \mathrm{min}$	Collision Energy $(\mathrm{eV})=11-50$ (variable)

PRODUCT CODE:
COMPOUND:

STRUCTURE:

L-PFNS
Sodium perfluoro-1-nonanesulfonate

LOT NUMBER: LPFNS0917

CAS \#: 98789-57-2


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/didym)
EXPIRY DATE: (mmodisysy)
RECOMMENDED STORAGE:
$\mathrm{C}_{8} \mathrm{~F}_{19} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{gg} / \mathrm{ml}$ (Na salt)
$48.0 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFNS anion)
>98\%
09/27/2017
09/27/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 572.12
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GCIMS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: L-PFNS; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$   $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: $50 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (kV) $=2.00$   Cone Voltage $(\mathrm{V})=65.00$
	Ramp to 90\% organic over 7 min and hold for 2 min	Cone Gas Flow (1/hr) $=50$
	before returning to initial conditions in 0.5 min .   Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: L-PFNS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFNS)}$	
		Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy ( eV ) $=45$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

WELLINGTON
LA B OR A TORIES

## CERTIFICATE OF ANALYSIS

 DOCUMENTATIONPRODUCT CODE:
COMPOUND:

L-PFDS
Sodium perfluoro-1-decanesulfonate

## STRUCTURE:

LOT NUMBER: LPFDS1117

GAS \#:
2806-15-7

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodaymy)
EXPIRY DATE: (mmdddryyy)
RECOMMENDED STORAGE:

$$
\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}
$$

$$
50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad \text { (Na salt) }
$$

$$
48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \text { (PFDS anion) }
$$

$$
>98 \%
$$

11/08/2017
11/08/2022

Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 622.13
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro-1-dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{11}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications,

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: L-PFDS; LC/MS Data (TIC and Mass Spectrum)



## Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

## Chromatographic Conditions

Column:	Acquity UPLC BEH Shield RP
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: $50 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to $90 \%$ organic over 7 min and hold for
2 min before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu 1 / \mathrm{min}$

## MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=70.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

1831557

Figure 2: L-PFDS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:

Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ (500 ng/ml L-PFDS)	
		Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=50$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

## CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:

STRUCTURE:
4:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorohexane sulfonate


MOLECULAR FORMULA:	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	350.13
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT(S):	Methanol
	$46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$	(4:2FTS anion)		
CHEMICAL PURITY:	>98\%			
LAST TESTED: (nmodidym)	12/12/2016			
EXPIRY DATE: (mmudisyy)	12/12/2021			
RECOMMENDED STORAGE:	Refrigerate ampo			

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$ $\frac{12 / 21 / 2016}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{i}\left(y\left(x_{i}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{i} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:
This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad$ 4:2FTS; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

## MS: $\quad$ Micromass Quattro micro API MS

## Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: $50 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to $90 \%$ organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

## MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=25.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow ( $/ / h r$ ) $=750$

Flow: $\quad 300 \mu / / \mathrm{min}$

Figure 2: $\quad$ 4:2FTS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml} \mathrm{4:2FTS)}$	
		Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Collision Energy (eV) $=25$
Flow:	$300 \mu 1 / \mathrm{min}$	

PRODUCT CODE:
COMPOUND:

6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorooctane sulfonate



## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point, Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{d}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad$ 6:2FTS; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield $\mathrm{RP}_{13}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ( $150-850 \mathrm{amu}$ )
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: $50 \%$ ( 80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=30.00$
	Ramp to $85 \%$ organic over 7.5 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min .   Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2:


Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml}$ 6:2FTS )	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.35 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=25 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:
COMPOUND:

8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate

Not available


MOLECULAR FORMULA:

## CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (nmodurysy)
EXPIRY DATE: (mmbdaryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (8:2FTS anion)
>98\%
12/12/2016
12/12/2021
Refrigerate ampoule

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$ (mm/dd/yyyy)

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

## Figure 1: $\quad$ 8:2FTS; LC/MS Data (TIC and Mass Spectrum)




Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$   $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: $50 \%$ (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=30.00$
	Ramp to $85 \%$ organic over 7.5 min and hold for 1.5 min	Cone Gas Flow ( $/ 7 / \mathrm{rr}$ ) $=100$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu / / m i n$	

Figure 2: $\quad$ 8:2FTS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml}$ 8:2FTS)	
		Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N$ ) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy ( eV ) $=30$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

## CERTIFICATE OF ANALYSIS <br> DOCUMENTATION

PRODUCT CODE:
COMPOUND:

STRUCTURE:

FOSA-I
Perfluoro-1-octanesulfonamide

LOT NUMBER: FOSA0817I

CAS \#: 754-91-6



MOLECULAR WEIGHT: 499.14
SOLVENTS):

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where $x$ is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: FOSA-I; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column: A	Acquity UPLC BEH Shield RP $_{18}$   $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: $50 \%$ (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.50$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=40.00$
	Ramp to $90 \%$ organic over 8 min and hold for 1 min	Cone Gas Flow ( $/ 7 \mathrm{hr}$ ) $=50$
	before returning to initial conditions in 0.5 min .   Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu 1 / m i n$	

Figure 2: FOSA-I; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:

Injection:	Direct loop injection   $10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml}$ FOSA-I)
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N$ ) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow	300

## MS Parameters

Collision Gas (mbar) $=3,20 \mathrm{e}-3$
Collision Energy ( eV ) $=30$

## CERTIFICATE OF ANALYSIS DOCUMENTATION

## PRODUCT CODE: COMPOUND:

N-MeFOSAA
N -methylperfluoro-1-octanesulfonamidoacetic acid

## STRUCTURE:

## GAS \#:




## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$ $\frac{01 / 12 / 2017}{\text { (mmidalyyy) }}$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters $x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where $x$ is expressed as a relative standard uncertainty of the individual parameter,
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)



## Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

## Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: $65 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 35 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to $90 \%$ organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

## MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=35.00$
Cone Gas Flow ( $(1 / \mathrm{hr})=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: $\quad$-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

Conditions for Figure 2:		
Injection: Direct loop injection   $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N-MeFOSAA)}$   Mobile phase:     Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$   (both with 10 mM NH    4  MS Parameters buffer)	Collision Gas (mbar) $=3.43 \mathrm{e}-3$   Collision Energy $(\mathrm{eV})=20$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

## CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

N-EtFOSAA
N -ethylperfluoro-1-octanesulfonamidoacetic acid
CAS \#: 2991-50-6


## MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmidaysy)
EXPIRY DATE: (mnldduyyy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 585.23
SOLVENT(S): Methanol
Water ( $<1 \%$ )

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(v\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**
$18 B 1563$

Figure 1: N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: <br> | LC: | Waters Acquity Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

## Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (225-850 amu)

Mobile phase: Gradient Start: 65\% (80:20 MeOH:ACN) / 35\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)
Ramp to $90 \%$ organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

## MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=35.00$
Cone Gas Flow $(1 / h r)=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)


Note: N-EtFOSA is formed by fragmentation of N-EtFOSAA,

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mathrm{\mu l}$ ( $500 \mathrm{ng} / \mathrm{ml} \mathrm{N}$-EtFOSAA)	
		Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

## CERTIFICATE OF ANALYSIS <br> DOCUMENTATION

PRODUCT CODE:
COMPOUND:

STRUCTURE:



N-methylperfluoro-1-octanesulfonamide

LOT NUMBER: NMeFOSA0717M

GAS \#:
31506-32-8


MOLECULAR WEIGHT: 513.17
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where $x$ is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**


Figure 1: N-MeFOSA-M; LC/MS Data (TIC and Mass Spectrum)



## Conditions for Figure 1: <br> LC: $\quad$ Waters Acquity Ulitra Performance LC <br> MS: $\quad$ Micromass Quattro micro API MS

Chromatograp	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient   Start: $45 \% \mathrm{H}_{2} \mathrm{O} / 55 \%$ ( $\left.80: 20 \mathrm{MeOH}: A C N\right)$   (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)   Ramp to $90 \%$ organic over 7.5 min and hold for   1.5 min before returning to initial conditions in 0.5 min .   Time: 10 min	Source: Electrospray (negative)   Capillary Voltage (kV) $=2.50$   Cone Voltage ( V ) $=40.00$   Cone Gas Flow (l/hr) $=50$   Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / m i n$	

Figure 2: $\quad$ N-MeFOSA-M; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection   $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ N-MeFOSA-M)	MS Parameters
		Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy ( eV ) $=30$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

# CERTIFICATE OF ANALYSIS 

PRODUCT CODE:
COMPOUND:

STRUCTURE:


N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmudryyy)
EXPIRY DATE: (middaryy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

LOT NUMBER: NEtFOSA0717M

CAS \#: 4151-50-2

MOLECULAR WEIGHT: 527.20
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE：

The products prepared by Wellington Laboratories Inc．are for laboratory use only．This certified reference material（CRM）was designed to be used as a standard for the identification and／or quantification of the specific chemical compound it contains．

## HAZARDS：

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals．Due care should be exercised to prevent unnecessary human contact or ingestion．All procedures should be carried out in a well－functioning fume hood and suitable gloves，eye protection，and clothing should be worn at all times．Waste should be disposed of according to national and regional regulations．Safety Data Sheets（SDSs）are available upon request．

## SYNTHESIS／CHARACTERIZATION：

Where possible，all of our products are synthesized using single－product unambiguous routes．They are then characterized，and their structures and purities confirmed，using a combination of the most relevant techniques，such as NMR，GC／MS，LC／MS／MS， SFC／UV／MS／MS，x－ray crystallography，and melting point．Isotopic purities of mass－labelled compounds are also confirmed using HRGC／HRMS and／or LC／MS／MS．

## HOMOGENEITY：

Prior to solution preparation，crystalline material is tested for homogeneity using a variety of techniques（as stated above）and its solubility in a given diluent is taken into consideration．Duplicate solutions of a new product are prepared from the same crystalline lot and，after the addition of an appropriate internal standard，they are compared by GC／MS，LC／MS／MS and／or SFC／UV／MS／MS． The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD．New solution lots of existing products are compared to older lots in the same manner，which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers．In order to maintain the integrity of the assigned value（s），and associated uncertainty，the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment．

## UNCERTAINTY：

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation：

The combined relative standard uncertainty，$u_{c}(y)$ ，of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{e}\left(y\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter．
The individual uncertainties taken into account include those associated with weights（calibration of the balance）and volumes （calibration of the volumetric glassware）．An expanded maximum combined percent relative uncertainty of $\pm 5 \%$（calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ）is stated on the Certificate of Analysis for all of our products．

## TRACEABILITY：

All reference standard solutions are traceable to specific crystalline lots．The microbalances used for solution preparation are regularly tested by an external ISO／IEC 17025 accredited calibration company．In addition，their calibration is verified prior to each weighing using calibrated NIST and／or NRC traceable external weights．All volumetric glassware used is calibrated，of Class A tolerance，and has been tested according to the appropriate ASTM procedures，which are ultimately traceable to NIST．For certain products，traceability to international interlaboratory studies has also been established．

## EXPIRY DATE／PERIOD OF VALIDITY：

Ongoing stability studies of this product have demonstrated stability in its composition and concentration，until the specified expiry date，in the unopened ampoule．Monitoring for any degradation or change in concentration of the listed analyte（s）is performed on a routine basis．

## LIMITED WARRANTY：

At the time of shipment，all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications．

## QUALITY MANAGEMENT：

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global， ISO／IEC 17025 by the Canadian Association for Laboratory Accreditation Inc．（CALA；A 1226），and ISO GUIDE 34 by ANSI－ASQ National Accreditation Board（ANAB；AR－1523）．

＊＊For additional information or assistance concerning this or any other products from Wellington Laboratories Inc．， please visit our website at www．well－labs．com or contact us directly at info＠well－labs．com＊＊

Figure 1: $\quad$ N-EtFOSA-M; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:
LC:
WS:

## Chromatographic Conditions

Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: $45 \% \mathrm{H}_{2} \mathrm{O} / 55 \%$ ( $\left.80: 20 \mathrm{MeOH}: A C N\right)$ (both with 10 mM NH
	Ramp to $90 \%$ organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
	Time: 10 min
Flow:	$300 \mu / / \mathrm{min}$

## MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage $(\mathrm{V})=40.00$
Cone Gas Flow ( $/ / \mathrm{hr}$ ) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: N-EtFOSA-M; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{m} / \mathrm{N}-$ EtFOSA-M)	Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N$ ) $/ 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Collision Energy ( eV ) $=30$
Flow:	$300 \mu / \mathrm{min}$	

## PRODUCT CODE:

COMPOUND:

STRUCTURE:

N-MeFOSE-M
2-(N-methylperfluoro-1-octanesulfonamido)-ethanol

GAS \#:
24448-09-7


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmidadyis)

EXPIRY DATE: (middarsyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
04/24/2017 (HRGC/LRMS)
04/21/2017 (LC/MS)
04/24/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 557.22
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA <br> 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{=}\left(v\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

## Figure 1: $\quad \mathrm{N}-\mathrm{MeFOSE}-\mathrm{M} ;$ HRGC/LRMS Data (TIC and Mass Spectrum)



## HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)
Chromatographic Conditions:

Column:	$30 \mathrm{~m} \mathrm{DB}-5(0.25 \mathrm{~mm}$ id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector:	$250^{\circ} \mathrm{C}($ Splitless Injection $)$
Oven:	$100^{\circ} \mathrm{C}(5 \mathrm{~min})$
	$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
	$325^{\circ} \mathrm{C}(20 \mathrm{~min})$
lonization:	$\mathrm{El}+$
Detector:	$250^{\circ} \mathrm{C}$
	Full Scan $(50-1000 \mathrm{amu})$

Figure 2: N-MeFOSE-M; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 2:	
LC: Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield $\mathrm{RP}_{18}$    $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient   Start: $60 \% \mathrm{MeOH} / 40 \% \mathrm{H}_{2} \mathrm{O}$   Ramp to $90 \%$ organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .   Time: 10 min	Source: Electrospray (negative)   Capillary Voltage (kV) $=3.50$   Cone Voltage (V) $=40.00$   Cone Gas Flow ( $1 / \mathrm{hr}$ ) $=60$   Desolvation Gas Flow ( $1 / \mathrm{hr}$ ) $=750$
Flow: $\quad 300 \mu \mathrm{~L} / \mathrm{min}$	

Figure 3: $\quad$ N-MeFOSE-M; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 3:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N}$-MeFOSE-M)

Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$
Flow: $\quad 300 \mu / / m i n$

## MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy ( eV ) $=35$

## PRODUCT CODE:

 COMPOUND:
## STRUCTURE:

N-EtFOSE-M
2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol

CAS \#: 1691-99-2

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmmddymy)

EXPIRY DATE: (mmddymy )

MOLECULAR WEIGHT: $\quad 571.25$
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{2} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc.i please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

## Figure 1: $\quad$ N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)



## HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

## Chromatographic Conditions:

Column:	$30 \mathrm{~m} \mathrm{DB}-5(0.25 \mathrm{~mm}$ id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector:	$250^{\circ} \mathrm{C}$ (Splitless Injection)
Oven:	$100^{\circ} \mathrm{C}(5 \mathrm{~min})$
	$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
	$325^{\circ} \mathrm{C}(20 \mathrm{~min})$
Ionization:	$\mathrm{El}+$
Detector:	$250^{\circ} \mathrm{C}$
	Full Scan $(50-1000 \mathrm{amu})$

Figure 2: N-EtFOSE-M; LC/MS Data (TIC and Mass Spectrum)

21apr2017_NEtFOSEM_004	21-Apr-2017	$15: 12: 23$
NEtFOSE0417M $25 \mathrm{ug} / \mathrm{ml}$		
100		




## $18 B 1567$

Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 3:		
Injection:	Direct loop injection   $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N-EtFOSE-M})$	MS Parameters
Mobile phase:Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$	Collision Gas (mbar) $=3.28 \mathrm{e}-3$   Collision Energy $(\mathrm{eV})=33$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

## Analytical Standard Record

Vista Analytical Laboratory
18B2206

Parent Standards used in this standard:					
Standard Desc		Prepared	Prepared By	Expires	(mls)
18B1530 13C2		15-Feb-18	** Vendor **	14-Nov-19	0.75
18B1531 13C		15-Feb-18	** Vendor **	05-Jul-22	0.795
18B1532 13C		15-Feb-18	** Vendor **	17-Oct-22	0.787
18B1533 13C		15-Feb-18	** Vendor **	13-Jul-22	0.75
18B1534 13C		15-Feb-18	** Vendor **	17-Oct-22	0.75
18B1535 13C		15-Feb-18	** Vendor **	17-Oct-22	0.75
18B1536 13C		15-Feb-18	** Vendor **	05-Jul-22	0.765
18B1537 13C		15-Feb-18	** Vendor **	12-Apr-22	0.75
18B1538 13C		15-Feb-18	** Vendor **	23-May-22	0.75
Description:	PFC-RS	Expires:	24-Feb-20		
Standard Type:	Reagent	Prepared:	24-Feb-18		
Solvent:	MeOH	Prepared By:	Giana R. Bilotta		
Final Volume (mls):	30	Department:	LCMS		
Vials:	1	Last Edit:	24-Feb-18 09:18	GRB	
Analyte		CAS Number	Concentration	Units	
13C9-PFNA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C8-PFOA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C7-PFUnA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C6-PFDA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C5-PFHxA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C4-PFOS			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C4-PFBA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C3-PFHxS			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-FOUEA			1.25	$\mathrm{ug} / \mathrm{mL}$	

## PRODUCT CODE:

COMPOUND:

## STRUCTURE:

MFOUEA
2H-Perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid

LOT NUMBER: MFOUEA1117

CAS \#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (min/di/yyy)
EXPIRY DATE: (mmidd/ywy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{16} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/14/2017
11/14/2019
Refrigerate ampoule

MOLECULAR WEIGHT: 460.08
SOLVENT(S):

ISOTOPIC PURITY:

Anhydrous Isopropanol $\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MFOUEA; LC/MS Data (TIC and Mass Spectrum)
14nov2017_MFOUEA_002
MFOUEA1117 25 ug/ml
100


Conditions for Figure 1:		
LC:	Waters Acquits Ultra Performance LC	
MS:	Micromass Quattro micro API MS	



Figure 2: MFOUEA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:	
Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ (500 ng/ml MFOUEA)
Mobile ph	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

## MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy ( eV ) $=21$

PRODUCT CODE:
COMPOUND:

M3PFHxS
Sodium perfluoro-1-[1,2,3- ${ }^{13} \mathrm{C}_{3}$ hexanesulfonate


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (nmodadysy)
EXPIRY DATE: (mmldaryyy)
RECOMMENDED STORAGE:

```
\mp@subsup{}{}{13}\mp@subsup{\textrm{C}}{3}{12}\mp@subsup{\textrm{C}}{3}{}\mp@subsup{\textrm{F}}{13}{}\mp@subsup{\textrm{SO}}{3}{}\textrm{Na}
50.0\pm2.5 \mu\textrm{g}/\textrm{ml}}\mathrm{ (Na salt)
 47.3\pm2.4 \mug/ml (M3PFHxS anion)
 >98%
 07/05/2017
 07/05/2022
```

Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 425.07
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3-{ }^{13} \mathrm{C}_{3}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty; $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{v}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M3PFHxS; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
$\begin{array}{ll}\text { Column: } \quad & \text { Acquity UPLC BEH Shield RP } \\ 18 \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$	Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=50.00$
Ramp to $90 \%$ organic over 7.5 min and hold for	Cone Gas Flow (l/hr) = 60
1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

18B1531
Figure 2: M3PFHxS; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

\(\left.$$
\begin{array}{ll}\text { Injection: } & \left.\begin{array}{l}\text { Direct loop injection } \\
10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 3 P F H x S\end{array}
$$\right) <br>
Mobile phase: \& \begin{array}{l}Isocratic 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} <br>
(both with 10 \mathrm{mM} \mathrm{NH} <br>

4\end{array} \mathrm{OAc} buffer)\end{array}\right\}\)|  | $300 \mu \mathrm{l} / \mathrm{min}$ |
| :--- | :--- |

# CERTIFICATE OF ANALYSIS DOCUMENTATION 

## PRODUCT CODE: COMPOUND:

## MPFOS

LOT NUMBER: MPFOS1017
Sodium perfluoro-1-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ ]octanesulfonate
STRUCTURE:
CAS \#:
Not available


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmidaymy)
EXPIRY DATE: (mmdddsym)
RECOMMENDED STORAGE:

${ }^{13} \mathrm{C}_{4}^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	526.08
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol
$47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFOS anion)		
$>98 \%$	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
$10 / 17 / 2017$		$\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$
$10 / 17 / 2022$		
Store ampoule in a cool, dark place		

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.4 \%$ Sodium perfluoro-1-[1,2,3- $-^{13} \mathrm{C}_{3}$ heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken inta consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{1} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
4unget= tous

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MPFOS; LC/MS Data (TIC and Mass Spectrum)
17oct2017_MPFOS_001
MPFOS1017 $10 \mathrm{ug} / \mathrm{ml}$
100



18B1532
Figure 2: MPFOS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection   $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFOS})$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$   (both with 10 mM NH   4   OAc buffer)	Collision Gas (mbar) $)=3.31 \mathrm{e}-3$   Collision Energy $(\mathrm{eV})=40$	
Flow:	$300 \mu / \mathrm{min}$	

## CERTIFICATE OF ANALYSIS DOCUMENTATION

## PRODUCT CODE: COMPOUND: <br> STRUCTURE:

M7PFUdA
Perfluoro-n- $\left[1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right]$ undecanoic acid
CAS \#: Not available


MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{7}^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	571.04
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ( $<1 \%$ )
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mm/dolyyy)	07/13/2017		$\left(1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right)$
EXPIRY DATE: (mmidd/ysys)	07/13/2022		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$
$\frac{07 / 14 / 2017}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:
LC: Waters Acquits Ultra Performance LC
MS: $\quad$ Micromass Quattro micro API MS


## MS Parameters

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=65$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection   $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M7PFUdA)}$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$   (both with 10 mM NH   4 OAc buffer)	Collision Gas (mbar) $=3.28 \mathrm{e}-3$   Collision Energy $(\mathrm{eV})=11$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

## CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:

M5PFHxA
Perfluoro-n-[1,2,3,4,6- ${ }^{13} \mathrm{C}_{5}$ hexanoic acid

LOT NUMBER: M5PFHxA1017

CAS \#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmddadyy) EXPIRY DATE: (mmidaryyy) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/17/2017
10/17/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,6-{ }^{13} \mathrm{C}_{5}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc, are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2} \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M5PFHxA; LC/MS Data (TIC and Mass Spectrum)

| 170ct2017_M5PFHxA_001 |
| :--- | :--- | :--- | :--- |
| M5PFHxA1017 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |



Conditions for Figure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: $\quad$ Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP ${ }_{10}$	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: $40 \%$ (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
(both with 10 mM NH + OAc buffer)	Cone Voltage (V) $=15.00$
Ramp to $90 \%$ organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .   Time: 10 min	Cone Gas Flow (l/hr) $=100$   Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Fiqure 2: $\quad$ M5PFHxA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection   $10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml}$ M5PFHxA)	MS Parameters
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N$ ) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.31 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=9 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

# CERTIFICATE OF ANALYSIS DOCUMENTATION 

## PRODUCT CODE:

 COMPOUND:M6PFDA
Perfluoro-n-[1,2,3,4,5,6- ${ }^{13} \mathrm{C}_{6}$ ]decanoic acid

LOT NUMBER: M6PFDA1017

CAS \#: Not available

STRUCTURE:


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidadyyy)
EXPIRY DATE: (mindarmys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{6}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/17/2017
10/17/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 520.04
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,5,6-{ }_{-13} \mathrm{C}_{6}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc, are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{t}\left(y\left(x_{1}, x_{2}, \ldots . x_{n}\right)\right)=\sqrt{\sum_{1=1}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)



## Conditions for Figure 1:

## LC: $\quad$ Waters Acquity Ultra Performance LC <br> MS: Micromass Quattro micro API MS

## Chromatographic Conditions

Column: Acquity UPLC BEH Shield $\mathrm{RP}_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient Start: $50 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)
Ramp to $90 \%$ organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

## MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(V)=15.00$
Cone Gas Flow ( $1 / \mathrm{hr}$ ) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Fiqure 2:		
Injection:	Direct loop injection	MS Parameters
	10 ll (500 ng/mi M6PFD	Collision Gas (mbar) $=3.24 \mathrm{e}-3$
Mobile pha	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N$ ) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy ( eV ) $=13$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

LA B ORATORIES

## CERTIFICATE OF ANALYSIS

 DOCUMENTATION
## PRODUCT CODE:

COMPOUND:

M8PFOA
Perfluoro-n-[ ${ }^{13} \mathrm{C}_{8}$ ]octanoic acid

LOT NUMBER: M8PFOA0717

STRUCTURE:


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoduryy)
EXPIRY DATE: (mmbdalyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$
$49 \pm 2.45 \mu \mathrm{~g} / \mathrm{ml}$
97.9\% (M8PFOA)
2.1\% (MPFOA [M+4])

07/05/2017
07/05/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

, See page 2 for further details.

- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of native perfluoro-n-octanoic acid (PFOA) and $\sim 2.1 \%$ of $[M+4]$ perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-Iabs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{i}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M8PFOA; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient Start: $55 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to $90 \%$ organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow $300 \mu 1 / \mathrm{min}$

## MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage ( V ) $=15.00$
Cone Gas Flow ( $/ \mathrm{hr}$ ) $=100$
Desolvation Gas Flow ( $/ \mathrm{hr}$ ) $=750$

## $18 B 1536$

Figure 2: M8PFOA; LC/MS/MS Data (Selected MRM Transitions)



PRODUCT CODE:
COMPOUND:

MPFBA
Perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid

STRUCTURE:


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddysyy)
EXPIRY DATE: (mmidd/ysy)
${ }^{13} \mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
04/12/2017
04/12/2022

RECOMMENDED STORAGE: Store ampoule in a cool, dark place

LOT NUMBER: MPFBA0417

CAS \#: Not available

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
218.01

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ )

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

## $18 B 1537$

Figure 1: $\quad$ MPFBA; LC/MS Data (TIC and Mass Spectrum)
12apr2017_MPFBA_001
MPFBA0417 $25 \mathrm{ug} / \mathrm{ml}$
100

12apr2017_MPFBA_001 119 (2.001) MPFBA0417 25 ug/ml					12-Apr-2017		13:40:48					

## Conditions for Figure 1:

LC: $\quad$ Waters Acquity Ultra Performance LC
MS: $\quad$ Micromass Quattro micro API MS

Chromatogra	Conditions
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$   $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient   Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$   (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)   Ramp to $90 \%$ organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .   Time: 10 min
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

## MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=10.00$
Cone Gas Flow ( $/ / h r$ ) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml}$ MPFBA)
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N$ ) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

## MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy ( eV ) $=10$

# CERTIFICATE OF ANALYSIS DOCUMENTATION 

## PRODUCT CODE:

COMPOUND:

M9PFNA
Perfluoro-n- $\left[{ }^{13} \mathrm{C}_{8}\right]$ nonanoic acid

LOT NUMBER: M9PFNA0517

CAS \#: $\quad$ Not available


## MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduryw)
EXPIRY DATE: (mmuddryyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/23/2017

MOLECULAR WEIGHT: 473.01
SOLVENT(S): Methanol Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{9}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.9 \%$ of ${ }^{13} \mathrm{C}_{5}^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary humán contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{p}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter,
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to $90 \%$ organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min ,	Desolvation Gas Flow (1/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ( $500 \mathrm{ng} / \mathrm{ml}$ M9PFNA)	MS Parameters
		Collision Gas (mbar) $=3.20 \mathrm{e}-3$
Mobile phase:	Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy ( eV ) $=11$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","375-73-
5","PFBS","2.50","ng/L","U","0.894","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","307-24-4","PFHxA","2.50","ng/L","U","1.09","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","375-85-9","PFHpA","2.50","ng/L","U","0.295","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","355-46-4","PFHxS","2.50","ng/L","U","0.473","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","335-67-1","PFOA","2.50","ng/L","U","0.325","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","1763-23-
1","PFOS","2.50","ng/L","U","0.403","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","375-95-1","PFNA","0.768","ng/L","J","0.404","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","335-76-2","PFDA","2.50","ng/L","U","0.744","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","2355-31-9","MeFOSAA","2.50","ng/L","U","0.824","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50 " ""
"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","2058-94-8","PFUnA","0.540","ng/L","J","0.524","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","
"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","2991-50-
6","EtFOSAA","2.50","ng/L","U","0.684","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50" ""
"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","307-55-
1","PFDoA","2.50","ng/L","U","0.395","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","72629-94-8","PFTrDA","2.50","ng/L","U","0.247","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50","
"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","376-06-7","PFTeDA","2.50","ng/L","U","0.377","LOD","","TRG","","","3.99","LOQ","YES","-99","","0.250","0.001","2.50", ""
"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C3-PFBS","13C3-PFBS","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C2-PFHxA","13C2-PFHxA","89.1","\%R","","-99","NA","","IS","89.1","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C4-PFHpA","13C4-PFHpA","91.5","\%R","","-99","NA","","IS","91.5","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","18O2-PFHxS","18O2-PFHxS","98.3","\%R","","-99","NA","","IS","98.3","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C2-PFOA","13C2-PFOA","81.8","\%R","","-99","NA","","IS","81.8","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C8-PFOS","13C8-PFOS","90.3","\%R","","-99","NA","","IS","90.3","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C5-PFNA","13C5-PFNA","88.2","\%R","","-99","NA","","IS","88.2","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C2-PFDA","13C2-PFDA","75.6","\%R","","-99","NA","","IS","75.6","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","d3-MeFOSAA","d3-MeFOSAA","83.3","\%R","","-99","NA","","IS","83.3","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C2-PFUnA","13C2-PFUnA","73.3","\%R","","-99","NA","","IS","73.3","","-99","NA","YES","100","","0.250","0.001","-99",""
"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","d5-EtFOSAA","d5-
EtFOSAA","85.5","\%R","","-99","NA","","IS","85.5","","-99","NA","YES","100","","0.250","0.001","-99",""
"CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C2-PFDoA","13C2-PFDoA","79.6","\%R","","-99","NA","","IS","79.6","","-99","NA","YES","100","","0.250","0.001","-99","" "CA-AQIDW01-20180409","Modified EPA 537","Initial","1800643-01","Vista","13C2-PFTeDA","13C2-PFTeDA","66.2","\%R","","-99","NA","","IS","66.2","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","375-73-5","PFBS","2.50","ng/L","U","0.895","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","307-24-4","PFHxA","2.50","ng/L","U","1.09","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","375-85-9","PFHpA","2.50","ng/L","U","0.296","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","355-46-4","PFHxS","0.483","ng/L","J","0.474","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","335-67-1","PFOA","2.50","ng/L","U","0.326","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","1763-23-1","PFOS","2.50","ng/L","U","0.404","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","375-95-1","PFNA","2.50","ng/L","U","0.405","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","335-76-2","PFDA","2.50","ng/L","U","0.745","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","2355-31-9","MeFOSAA","2.50","ng/L","U","0.825","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50 ",""
"B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","2058-94-
8","PFUnA","2.50","ng/L","U","0.525","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","2991-50-
6","EtFOSAA","2.50","ng/L","U","0.685","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50" ""
"B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","307-55-
1","PFDoA","2.50","ng/L","U","0.396","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","72629-94-8","PFTrDA","2.50","ng/L","U","0.247","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50"," "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","376-06-7","PFTeDA","2.50","ng/L","U","0.378","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50", ""
"B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C3-PFBS","13C3-PFBS","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C2-PFHxA","13C2-PFHxA","88.6","\%R","","-99","NA","","IS","88.6","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C4-PFHpA","13C4-PFHpA","96.5","\%R","","-99","NA","","IS","96.5","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","18O2-PFHxS","18O2-PFHxS","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C2-PFOA","13C2-PFOA","77.5","\%R","","-99","NA","","IS","77.5","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C8-PFOS","13C8-PFOS","93.8","\%R","","-99","NA","","IS","93.8","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C5-PFNA","13C5-PFNA","79.3","\%R","","-99","NA","","IS","79.3","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C2-PFDA","13C2-PFDA","68.2","\%R","","-99","NA","","IS","68.2","","-99","NA","YES","100","","0.250","0.001","-99",""

[^6]"B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C2-PFHxA","13C2-
PFHxA","89.0","\%R","","-99","NA","","IS","89.0","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C4-PFHpA","13C4-PFHpA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","18O2-PFHxS","18O2-PFHxS","95.4","\%R","","-99","NA","","IS","95.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C2-PFOA","13C2-PFOA","84.4","\%R","","-99","NA","","IS","84.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C8-PFOS","13C8-PFOS","87.0","\%R","","-99","NA","","IS","87.0","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C5-PFNA","13C5-PFNA","89.7","\%R","","-99","NA","","IS","89.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C2-PFDA","13C2-PFDA","72.0","\%R","","-99","NA","","IS","72.0","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","d3-MeFOSAA","d3-MeFOSAA","81.3","\%R","","-99","NA","","IS","81.3","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C2-PFUnA","13C2-PFUnA","80.6","\%R","","-99","NA","","IS","80.6","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","d5-EtFOSAA","d5-EtFOSAA","86.5","\%R","","-99","NA","","IS","86.5","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C2-PFDoA","13C2-
PFDoA","88.4","\%R","","-99","NA","","IS","88.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C2-PFTeDA","13C2-
PFTeDA","83.8","\%R","","-99","NA","","IS","83.8","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","375-73-
5","PFBS","40.5","ng/L","","0.895","LOD","","TRG","101","1.85","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","307-24-
4","PFHxA","42.5","ng/L","","1.09","LOD","","TRG","106","3.64","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","375-85-
9","PFHpA","40.6","ng/L","","0.296","LOD","","TRG","101","2.88","4.00","LOQ","YES","40.0","","0.250","0.001"," 2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","355-46-
4","PFHxS","43.3","ng/L","B","0.474","LOD","","TRG","108","3.29","4.00","LOQ","YES","40.0","","0.250","0.001", "2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","335-67-
1","PFOA","46.3","ng/L","","0.326","LOD","","TRG","116","5.43","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","1763-23-
1","PFOS","39.9","ng/L","","0.404","LOD","","TRG","99.7","10.6","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","375-95-
1","PFNA","40.6","ng/L","","0.405","LOD","","TRG","101","4.44","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","335-76-
2","PFDA","45.7","ng/L","","0.745","LOD","","TRG","114","3.20","4.00","LOQ","YES","40.0","","0.250","0.001","2.
50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","2355-31-
9","MeFOSAA","44.9","ng/L","","0.825","LOD","","TRG","112","11.5","4.00","LOQ","YES","40.0","","0.250","0.00 1","2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","2058-94-
8","PFUnA","42.7","ng/L","","0.525","LOD","","TRG","107","19.9","4.00","LOQ","YES","40.0","","0.250","0.001"," 2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","2991-50-
6","EtFOSAA","38.8","ng/L","","0.685","LOD","","TRG","97.1","11.2","4.00","LOQ","YES","40.0","","0.250","0.001 ","2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","307-55-
1","PFDoA","43.2","ng/L","","0.396","LOD","","TRG","108","9.74","4.00","LOQ","YES","40.0","","0.250","0.001","
2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","72629-94-
8","PFTrDA","37.7","ng/L","","0.247","LOD","","TRG","94.2","12.5","4.00","LOQ","YES","40.0","","0.250","0.001",
"2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","376-06-
7","PFTeDA","51.7","ng/L","","0.378","LOD","","TRG","129","18.1","4.00","LOQ","YES","40.0","","0.250","0.001", "2.50",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C3-PFBS","13C3-
PFBS","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C2-PFHxA","13C2-
PFHxA","90.0","\%R","","-99","NA","","IS","90.0","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C4-PFHpA","13C4-PFHpA","99.2","\%R","","-99","NA","","IS","99.2","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","18O2-PFHxS","18O2-
PFHxS","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C2-PFOA","13C2-
PFOA","83.1","\%R","","-99","NA","","IS","83.1","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C8-PFOS","13C8-PFOS","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C5-PFNA","13C5-PFNA","80.4","\%R","","-99","NA","","IS","80.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C2-PFDA","13C2-PFDA","72.6","\%R","","-99","NA","","IS","72.6","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","d3-MeFOSAA","d3-MeFOSAA","76.9","\%R","","-99","NA","","IS","76.9","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C2-PFUnA","13C2-PFUnA","73.9","\%R","","-99","NA","","IS","73.9","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","d5-EtFOSAA","d5-EtFOSAA","81.7","\%R","","-99","NA","","IS","81.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C2-PFDoA","13C2-PFDoA","73.2","\%R","","-99","NA","","IS","73.2","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BSD1","Modified EPA 537","Initial","B8D0070-BSD1","Vista","13C2-PFTeDA","13C2-PFTeDA","66.7","\%R","","-99","NA","","IS","66.7","","-99","NA","YES","100","","0.250","0.001","-99","" "112G08005-WE05","112G08005-WE05","CA-AQIDW01-20180409","04/09/2018 16:15","AQ","180064301","NM","","0.20","Modified EPA 537","METHOD","Initial","04/11/2018 09:50","04/12/2018 22:05","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B8D0070","B8D0070","NA","S8D0028","1800643","04/10/2018 09:32","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B8D0070-BLK1","01/01/1900 00:00","AQ","B8D0070-BLK1","MB","","-99","Modified EPA 537","METHOD","Initial","04/11/2018 09:50","04/12/2018 21:53","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B8D0070","B8D0070","NA","S8D0028","1800643","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B8D0070-BS1","01/01/1900 00:00","AQ","B8D0070-BS1","LCS","","-99","Modified EPA 537","METHOD","Initial","04/11/2018 09:50","04/12/2018 21:30","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B8D0070","B8D0070","NA","S8D0028","1800643","01/01/1900 00:00","01/01/1900 00:00","" "112G08005-WE05","112G08005-WE05","B8D0070-BSD1","01/01/1900 00:00","AQ","B8D0070-
BSD1","LCSD","","-99","Modified EPA 537","METHOD","Initial","04/11/2018 09:50","04/12/2018
21:42","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B8D0070","B8D0070","NA","S8D0028","1800643","01/01/1900 00:00","01/01/1900 00:00",""



[^0]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^1]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com

[^2]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^3]:    **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc..

[^4]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^5]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^6]:    "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","d3-MeFOSAA","d3-MeFOSAA","72.6","\%R","","-99","NA","","IS","72.6","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C2-PFUnA","13C2-PFUnA","80.9","\%R","","-99","NA",","IS","80.9","","-99","NA","YES","100",","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","d5-EtFOSAA","d5-EtFOSAA","80.8","\%R","","-99","NA","","IS","80.8","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C2-PFDoA","13C2-PFDoA","77.8","\%R","",--99","NA",",","IS","77.8","","-99","NA","YES","100",","0.250","0.001","-99","" "B8D0070-BLK1","Modified EPA 537","Initial","B8D0070-BLK1","Vista","13C2-PFTeDA","13C2-PFTeDA","71.8","\%R","","-99","NA","","IS","71.8","","-99","NA","YES","100","","0.250","0.001","-99","" "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","375-735","PFBS","41.2","ng/L","","0.895","LOD","","TRG","103","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50"," "
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","307-24-
    4","PFHxA","41.0","ng/L","","1.09","LOD","","TRG","103","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","375-85-
    9","PFHpA","39.4","ng/L","","0.296","LOD","","TRG","98.5","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50 " ""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","355-46-
    4","PFHxS","41.8","ng/L","B","0.474","LOD","","TRG","105","","4.00","LOQ","YES","40.0","","0.250","0.001","2.5 0",""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","335-671","PFOA","43.9","ng/L","","0.326","LOD","","TRG","110","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","1763-23-
    1","PFOS","44.4","ng/L","","0.404","LOD","","TRG","111","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50"," "
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","375-95-
    1","PFNA","38.8","ng/L","","0.405","LOD","","TRG","97.1","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","335-76-
    2","PFDA","44.3","ng/L","","0.745","LOD","","TRG","111","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","2355-31-
    9","MeFOSAA","40.0","ng/L","","0.825","LOD","","TRG","100","","4.00","LOQ","YES","40.0","","0.250","0.001","2 .50",""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","2058-94-
    8","PFUnA","35.0","ng/L","","0.525","LOD","","TRG","87.5","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50 " ""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","2991-50-
    6","EtFOSAA","43.4","ng/L","","0.685","LOD","","TRG","109","","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","307-55-
    1","PFDoA","39.2","ng/L","","0.396","LOD","","TRG","97.9","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50 """
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","72629-94-
    8","PFTrDA","33.3","ng/L","","0.247","LOD","","TRG","83.1","","4.00","LOQ","YES","40.0",","0.250","0.001","2.5 0",""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","376-06-
    7","PFTeDA","43.1","ng/L","","0.378","LOD","","TRG","108","","4.00","LOQ","YES","40.0","","0.250","0.001","2.5 0",""
    "B8D0070-BS1","Modified EPA 537","Initial","B8D0070-BS1","Vista","13C3-PFBS","13C3-
    PFBS","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.250","0.001","-99",""

