Drinking Water/Groundwater Sample Results, Level 2 Laboratory Report, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, Sample Location Report, SDG 1803982
NAS
Chase Field TX
December 2020

July 16, 2019

Vista Work Order No. 1803982

Ms. Nia Nikmanesh
KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Nikmanesh,
Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on December 08, 2018 under your Project Name 'Chase Field'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Work Order No. 1803982

Case Narrative

Sample Condition on Receipt:

Eight drinking water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. Samples "Big Field-FB-120618", "Behind the Base-FB-120618" and "Shooting Range1-FB-120618" were "extract and hold" per client request. As requested, this report was amended to include the results for sample "Behind the Base-FB-120618".

Analytical Notes:

EPA Method 537, Rev. 1.1

The samples were extracted and analyzed for a selected list of 14 PFAS using EPA Method 537, Rev. 1.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above $1 / 2$ of the LOQ. The LFB recoveries were within the method acceptance criteria.

As requested, an LFSM/LFSMD was performed on sample "Shooting Range1-DW-120618". The LFSM recovery of PFHpA, PFHxS, PFOA and PFNA were $>150 \%$. The LFSMD recovery of PFHxS, PFOA and PFOS were $>150 \%$. All other analyte recoveries for the LFSM/LFSMD were within the method acceptance criteria. The RPD was >30 for the following compounds: PFHpA, PFHxS, PFOA, PFNA and PFOS. All other RPDs were within the acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results 5
Qualifiers 17
Certifications 18
Sample Receipt 21

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1803982-01	Big Field-DW-120618	06-Dec-18 09:22	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-02	Big Field-FB-120618	06-Dec-18 09:22	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-03	Behind the Base-DW-120618	06-Dec-18 10:03	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-04	Behind the Base-FB-120618	06-Dec-18 10:03	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-05	Shooting Range1-DW-120618	MS/MSD06-Dec-18 17:04	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-06	Shooting Range1-FB-120618	06-Dec-18 17:04	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-07	Source Blank	06-Dec-18 18:15	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-08	DUP-1	06-Dec-18 00:00	08-Dec-18 10:32	HDPE Bottle, 250 mL

ANALYTICAL RESULTS

Sample ID: LRB		Matrix: Aqueous								EPA Meth	od 537
Client Data					Lab	tory Data mple:	B8L0076-		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFHxA	307-24-4	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFHpA	375-85-9	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFHxS	355-46-4	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFOA	335-67-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFNA	375-95-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFOS	1763-23-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFDA	335-76-2	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
MeFOSAA	2355-31-9	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
EtFOSAA	2991-50-6	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFUnA	2058-94-8	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFDoA	307-55-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFTrDA	72629-94-8	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFTeDA	376-06-7	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	97.4		70-130			B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
13C2-PFDA	SURR	94.6		70-130			B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
d5-EtFOSAA	SURR	102		70-130			B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Vista
Analytical Laboratory

Sample ID: Big Field-DW-120618										EPA Meth	od 537
Client Data Name: KMEA Project: Chase Field		Matrix: Date Collected:		Drinking Water 06-Dec-18 09:22	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-01 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFHxA	307-24-4	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFHpA	375-85-9	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFHxS	355-46-4	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFOA	335-67-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFNA	375-95-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFOS	1763-23-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFDA	335-76-2	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
MeFOSAA	2355-31-9	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
EtFOSAA	2991-50-6	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFUnA	2058-94-8	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFDoA	307-55-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFTrDA	72629-94-8	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFTeDA	376-06-7	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	101		70-130			B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
13C2-PFDA	SURR	96.3		70-130			B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
d5-EtFOSAA	SURR	104		70-130			B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
DL - Detection Limit	$\begin{aligned} & \text { LOD - Limit of Detection } \\ & \text { LOQ - Limit of quantitation } \end{aligned}$	Results reported to the DL.				When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.					

Sample ID: Big Field-FB-120618					EPA Method 537						
Client Data Name: KMEA Project: Chase Field		Matrix: Date Collected:		Drinking Water 06-Dec-18 09:22	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & 1803982-02 \\ & 08 \text {-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFHxA	307-24-4	16.9	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFHpA	375-85-9	7.47	3.18	5.23	10.4	J	B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFHxS	355-46-4	38.4	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFOA	335-67-1	42.3	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFNA	375-95-1	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFOS	1763-23-1	41.9	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFDA	335-76-2	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
MeFOSAA	2355-31-9	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
EtFOSAA	2991-50-6	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFUnA	2058-94-8	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFDoA	307-55-1	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFTrDA	72629-94-8	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFTeDA	376-06-7	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	104		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
13C2-PFDA	SURR	96.9		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
d5-EtFOSAA	SURR	97.2		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: Behind the Base-DW-120618										EPA Meth	od 537
Client Data Name: KMEA Project: Chase Field		Matrix: Date Collected:		Drinking Water 06-Dec-18 10:03	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-03 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFHxA	307-24-4	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFHpA	375-85-9	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFHxS	355-46-4	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFOA	335-67-1	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFNA	375-95-1	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFOS	1763-23-1	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFDA	335-76-2	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
MeFOSAA	2355-31-9	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
EtFOSAA	2991-50-6	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFUnA	2058-94-8	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFDoA	307-55-1	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFTrDA	72629-94-8	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
PFTeDA	376-06-7	ND	3.01	4.96	9.91		B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	104		70-130			B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
13C2-PFDA	SURR	103		70-130			B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
d5-EtFOSAA	SURR	91.3		70-130			B8L0076	12-Dec-18	0.252 L	15-Dec-18 02:28	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.				When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.					

Sample ID: Behind the Base-FB-120618					EPA Method 537						
Client Data		Matrix: Date Collected:		Drinking Water 06-Dec-18 10:03	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-04 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFHxA	307-24-4	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFHpA	375-85-9	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFHxS	355-46-4	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFOA	335-67-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFNA	375-95-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFOS	1763-23-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFDA	335-76-2	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
MeFOSAA	2355-31-9	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
EtFOSAA	2991-50-6	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFUnA	2058-94-8	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFDoA	307-55-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFTrDA	72629-94-8	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFTeDA	376-06-7	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	101		70-1			B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
13C2-PFDA	SURR	99.0		70-1			B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
d5-EtFOSAA	SURR	81.9		70-1			B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: Shooting Range1-DW-120618																EPA Method 537	
Name: Project: Matrix:	KMEA Chase Fi Aqueous					ab Sample: C Batch: mp Size:		$\begin{aligned} & 0076-\mathrm{MS} 1 / \mathrm{B} \\ & 0076 \\ & 1 / 0.248 \mathrm{~L} \end{aligned}$	$8 \mathrm{~L} 0076-\mathrm{M}$					Source Lab Samp Date Extracted: Column:		$\begin{aligned} & \text { 1803982-05 } \\ & \text { 12-Dec-18 } \\ & \text { BEH C18 } \end{aligned}$	
Analyte	CAS Number	$\begin{gathered} \text { Sample } \\ \text { (ng/L) } \end{gathered}$	$\begin{aligned} & \text { LFSM } \\ & \text { (ng/L) } \end{aligned}$	LFSM Spike Amt	$\begin{aligned} & \text { LFSM } \\ & \text { \% Rec } \end{aligned}$	LFSM Quals	$\begin{gathered} \text { LFSMD } \\ (\mathrm{ng} / \mathrm{L}) \\ \hline \end{gathered}$	LFSMD Spike Amt	$\begin{gathered} \text { LFSMD } \\ \text { \% Rec } \\ \hline \end{gathered}$	RPD	$\begin{gathered} \text { LFSMD } \\ \text { Ouals } \\ \hline \end{gathered}$	\%Rec Limits	$\begin{gathered} \hline \text { RPD } \\ \text { Limits } \end{gathered}$	LFSM Analyzed	$\begin{gathered} \text { LFSM } \\ \text { Dil } \\ \hline \end{gathered}$	LFSMD Analyzed	$\begin{aligned} & \hline \text { LFS } \\ & \text { MD } \\ & \hline \end{aligned}$
PFBS	375-73-5	34.2	53.2	17.6	108		55.3	17.9	118	8.85		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFHxA	307-24-4	213	242	20.0	145		235	20.2	110	27.5		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFHpA	375-85-9	87.2	135	20.0	240	H	116	20.2	143	50.7	H	50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFHxS	355-46-4	362	490	18.2	703	D, H	397	18.4	187	116	D, H	50-150	30	17-Dec-18 19:41	10	17-Dec-18 19:52	10
PFOA	335-67-1	246	515	20.0	1350	D, H	331	20.2	420	105	H	50-150	30	17-Dec-18 19:41	10	15-Dec-18 01:43	1
PFNA	375-95-1	21.7	59.6	20.0	190	H	48.6	20.2	133	35.3	H	50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFOS	1763-23-1	375	397	18.4	123	D	445	18.7	378	102	D, H	50-150	30	17-Dec-18 19:41	10	17-Dec-18 19:52	10
PFDA	335-76-2	ND	21.4	20.0	107		20.7	20.2	102	4.78		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
MeFOSAA	2355-31-9	ND	17.5	20.0	87.6		19.9	20.2	98.3	11.5		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
EtFOSAA	2991-50-6	ND	20.8	20.0	104		22.1	20.2	109	4.69		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFUnA	2058-94-8	ND	15.0	20.0	75.2		19.9	20.2	98.5	26.8		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFDoA	307-55-1	ND	19.3	20.0	96.7		21.6	20.2	107	10.1		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFTrDA	72629-94-8	ND	19.2	20.0	96.0		18.8	20.2	93.0	3.17		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
PFTeDA	376-06-7	ND	18.1	20.0	90.6		19.6	20.2	97.3	7.13		50-150	30	15-Dec-18 01:32	1	15-Dec-18 01:43	1
Labeled St	andards		Type		$\begin{aligned} & \text { LFSM } \\ & \text { \% Rec } \end{aligned}$	LFSM Quals			$\begin{gathered} \text { LFSMD } \\ \text { \% Rec } \\ \hline \end{gathered}$		LFSMD Ouals	Limits		$\begin{gathered} \text { LFSM } \\ \text { Analyzed } \end{gathered}$	$\begin{gathered} \text { LFSM } \\ \text { Dil } \end{gathered}$	$\begin{gathered} \hline \text { LFSMD } \\ \text { Analyzed } \end{gathered}$	$\begin{aligned} & \hline \text { LFS } \\ & \text { MD } \end{aligned}$
13C2-PFHx			SURR		104				105			70-130		15-Dec-18 01:32	1	15-Dec-18 01:43	1
13C2-PFDA			SURR		102				103			70-130		15-Dec-18 01:32	1	15-Dec-18 01:43	1
d5-EtFOSA			SURR		89.9				82.9			70-130		15-Dec-18 01:32	1	15-Dec-18 01:43	1

Sample ID: Shooting Range1-FB-120618					EPA Method 537						
Client Data		Matrix: Date Collected:		Drinking Water 06-Dec-18 17:04	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-06 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFHxA	307-24-4	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFHpA	375-85-9	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFHxS	355-46-4	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFOA	335-67-1	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFNA	375-95-1	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFOS	1763-23-1	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFDA	335-76-2	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
MeFOSAA	2355-31-9	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
EtFOSAA	2991-50-6	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFUnA	2058-94-8	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFDoA	307-55-1	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFTrDA	72629-94-8	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
PFTeDA	376-06-7	ND	3.07	5.04	10.1		B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	106		70-1			B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
13C2-PFDA	SURR	103		70-1			B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
d5-EtFOSAA	SURR	103		70-1			B8L0076	12-Dec-18	0.248 L	15-Dec-18 03:01	1
DL - Detection Limit	$\begin{aligned} & \text { LOD - Limit of Detection } \\ & \text { LOQ - Limit of quantitation } \end{aligned}$	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: Source Blank					EPA Method 537						
Client Data		Matrix: Date Collected:		Drinking Water 06-Dec-18 18:15	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-07 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFHxA	307-24-4	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFHpA	375-85-9	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFHxS	355-46-4	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFOA	335-67-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFNA	375-95-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFOS	1763-23-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFDA	335-76-2	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
MeFOSAA	2355-31-9	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
EtFOSAA	2991-50-6	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFUnA	2058-94-8	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFDoA	307-55-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFTrDA	72629-94-8	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFTeDA	376-06-7	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	103		70-1			B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
13C2-PFDA	SURR	100		70-1			B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
d5-EtFOSAA	SURR	92.5		70-1			B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: DUP-1					EPA Method 537						
Client Data		Matrix: Date Collected:	Drinking Water 06-Dec-18 00:00		Laboratory Data Lab Sample: 1803982-08 Date Received: $08-$ Dec-18 10:32				Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	32.0	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFHxA	307-24-4	194	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFHpA	375-85-9	76.0	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFHxS	355-46-4	299	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFOA	335-67-1	185	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFNA	375-95-1	15.7	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFOS	1763-23-1	268	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFDA	335-76-2	ND	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
MeFOSAA	2355-31-9	ND	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
EtFOSAA	2991-50-6	ND	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFUnA	2058-94-8	ND	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFDoA	307-55-1	ND	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFTrDA	72629-94-8	ND	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
PFTeDA	376-06-7	ND	3.23	5.32	10.6		B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	98.9		70-1			B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
13C2-PFDA	SURR	94.4		70-1			B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
d5-EtFOSAA	SURR	90.1		70-1			B8L0076	12-Dec-18	0.235 L	16-Dec-18 17:23	1
DL - Detection Limit	$\begin{aligned} & \hline \text { LOD - Limit of Detection } \\ & \text { LOQ - Limit of quantitation } \end{aligned}$	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-21
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	$207718-\mathrm{B}$
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-010$
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & 1613 / 1613 B \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

$18 \mathrm{Vista}_{\substack{\text { vistatabosacor }}}$
\int Vista $_{\text {Anobyical laboratory }}$
Project $10:$ Chase Field \qquad po\#: \qquad P0934

Sampler: \qquad Dan Hang $\frac{\text { Dan Calla }}{\text { (name) }}$
Sampler

CHAIN OF CUSTODY
\qquad , \qquad

Relinquished by (printed name and signature)

Special Instructions/Comments: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Container Types: $\mathrm{P}=$ HOPE, $\mathrm{PJ}=$ HDPE Jar $\mathrm{O}=\mathrm{Other}$:

Bottle Preservation Type: $T=$ Thiosulfate, TZ = Trizma: \qquad

SEND

Name:
Company: \qquad
Address:
City: \qquad State \qquad
\qquad
Phone: \qquad Fax: \qquad
Email: \qquad
Matrix Types: $\mathrm{AQ}=$ Aqueous, $\mathrm{DW}=$ Drinking Water, $\mathrm{EF}=\mathrm{Effluent} \mathrm{PP}=$, Pulp/Paper, $\mathrm{SD}=$ Sediment,
$\mathrm{SL}=$ Sludge, $\mathrm{SO}=$ Soil, $\mathrm{WW}=$ Wastewater, $\mathrm{B}=$ Blood/Serum, $\mathrm{O}=$ Other: \qquad

Sample Log-In Checklist

Page \#

\qquad of \qquad
Vista Work Order \#:

TAT \qquad

Comments:

July 16, 2019

Vista Work Order No. 1803982

Ms. Nia Nikmanesh
KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Nikmanesh,
Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on December 08, 2018 under your Project Name 'Chase Field'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Work Order No. 1803982

Case Narrative

Sample Condition on Receipt:

Eight drinking water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. Samples "Big Field-FB-120618", "Behind the Base-FB-120618" and "Shooting Range1-FB-120618" were "extract and hold" per client request. As requested, this report was amended to include the results for sample "Behind the Base-FB-120618".

Analytical Notes:

EPA Method 537, Rev. 1.1

The samples were extracted and analyzed for a selected list of 14 PFAS using EPA Method 537, Rev. 1.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above $1 / 2$ of the LOQ. The LFB recoveries were within the method acceptance criteria.

As requested, an LFSM/LFSMD was performed on sample "Shooting Range1-DW-120618". The LFSM recovery of PFHpA, PFHxS, PFOA and PFNA were $>150 \%$. The LFSMD recovery of PFHxS, PFOA and PFOS were $>150 \%$. All other analyte recoveries for the LFSM/LFSMD were within the method acceptance criteria. The RPD was >30 for the following compounds: PFHpA, PFHxS, PFOA, PFNA and PFOS. All other RPDs were within the acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results. 5
Qualifiers 17
Certifications 18
Sample Receipt 21
Extraction Information 23
Sample Data - EPA Method 537. 27
IIS Areas and CCVs 92
ICAL with ICV 168

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1803982-01	Big Field-DW-120618	06-Dec-18 09:22	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-02	Big Field-FB-120618	06-Dec-18 09:22	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-03	Behind the Base-DW-120618	06-Dec-18 10:03	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-04	Behind the Base-FB-120618	06-Dec-18 10:03	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-05	Shooting Range1-DW-120618	MS/MSD06-Dec-18 17:04	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-06	Shooting Range1-FB-120618	06-Dec-18 17:04	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-07	Source Blank	06-Dec-18 18:15	08-Dec-18 10:32	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803982-08	DUP-1	06-Dec-18 00:00	08-Dec-18 10:32	HDPE Bottle, 250 mL

ANALYTICAL RESULTS

Sample ID: LRB		Matrix: Aqueous								EPA Meth	od 537
Client Data					Lab	tory Data mple:	B8L0076-		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFHxA	307-24-4	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFHpA	375-85-9	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFHxS	355-46-4	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFOA	335-67-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFNA	375-95-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFOS	1763-23-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFDA	335-76-2	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
MeFOSAA	2355-31-9	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
EtFOSAA	2991-50-6	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFUnA	2058-94-8	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFDoA	307-55-1	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFTrDA	72629-94-8	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
PFTeDA	376-06-7	ND	3.04	5.00	10.0		B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	97.4		70-130			B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
13C2-PFDA	SURR	94.6		70-130			B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
d5-EtFOSAA	SURR	102		70-130			B8L0076	12-Dec-18	0.250 L	15-Dec-18 01:54	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Vista
Analytical Laboratory

Sample ID: Big Field-DW-120618										EPA Meth	od 537
Client Data Name: KMEA Project: Chase Field		Matrix: Date Collected:		Drinking Water 06-Dec-18 09:22	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-01 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFHxA	307-24-4	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFHpA	375-85-9	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFHxS	355-46-4	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFOA	335-67-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFNA	375-95-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFOS	1763-23-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFDA	335-76-2	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
MeFOSAA	2355-31-9	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
EtFOSAA	2991-50-6	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFUnA	2058-94-8	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFDoA	307-55-1	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFTrDA	72629-94-8	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
PFTeDA	376-06-7	ND	2.96	4.86	9.73		B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	101		70-130			B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
13C2-PFDA	SURR	96.3		70-130			B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
d5-EtFOSAA	SURR	104		70-130			B8L0076	12-Dec-18	0.257 L	15-Dec-18 02:06	1
DL - Detection Limit	$\begin{aligned} & \text { LOD - Limit of Detection } \\ & \text { LOQ - Limit of quantitation } \end{aligned}$	Results reported to the DL.				When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.					

Sample ID: Big Field-FB-120618					EPA Method 537						
Client Data Name: KMEA Project: Chase Field		Matrix: Date Collected:		Drinking Water 06-Dec-18 09:22	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & 1803982-02 \\ & 08 \text {-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFHxA	307-24-4	16.9	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFHpA	375-85-9	7.47	3.18	5.23	10.4	J	B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFHxS	355-46-4	38.4	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFOA	335-67-1	42.3	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFNA	375-95-1	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFOS	1763-23-1	41.9	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFDA	335-76-2	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
MeFOSAA	2355-31-9	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
EtFOSAA	2991-50-6	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFUnA	2058-94-8	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFDoA	307-55-1	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFTrDA	72629-94-8	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
PFTeDA	376-06-7	ND	3.18	5.23	10.4		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	104		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
13C2-PFDA	SURR	96.9		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
d5-EtFOSAA	SURR	97.2		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:17	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: Behind the Base-FB-120618					EPA Method 537						
Client Data		Matrix: Date Collected:		Drinking Water 06-Dec-18 10:03	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-04 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFHxA	307-24-4	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFHpA	375-85-9	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFHxS	355-46-4	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFOA	335-67-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFNA	375-95-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFOS	1763-23-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFDA	335-76-2	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
MeFOSAA	2355-31-9	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
EtFOSAA	2991-50-6	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFUnA	2058-94-8	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFDoA	307-55-1	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFTrDA	72629-94-8	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
PFTeDA	376-06-7	ND	3.01	4.94	9.89		B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	101		70-1			B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
13C2-PFDA	SURR	99.0		70-1			B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
d5-EtFOSAA	SURR	81.9		70-1			B8L0076	12-Dec-18	0.253 L	15-Dec-18 02:39	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: Shooting Range1-DW-120618					EPA Method 537						
Client Data		Matrix: Date Collected:		Drinking Water 06-Dec-18 17:04	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-05 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	34.2	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFHxA	307-24-4	213	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFHpA	375-85-9	87.2	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFHxS	355-46-4	362	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFOA	335-67-1	246	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFNA	375-95-1	21.7	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFOS	1763-23-1	375	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFDA	335-76-2	ND	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
MeFOSAA	2355-31-9	ND	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
EtFOSAA	2991-50-6	ND	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFUnA	2058-94-8	ND	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFDoA	307-55-1	ND	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFTrDA	72629-94-8	ND	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
PFTeDA	376-06-7	ND	3.18	5.23	10.5		B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	112		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
13C2-PFDA	SURR	106		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
d5-EtFOSAA	SURR	104		70-1			B8L0076	12-Dec-18	0.239 L	15-Dec-18 02:50	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: Source Blank					EPA Method 537						
Client Data		Matrix: Date Collected:		Drinking Water 06-Dec-18 18:15	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803982-07 } \\ & \text { 08-Dec-18 10:32 } \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFHxA	307-24-4	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFHpA	375-85-9	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFHxS	355-46-4	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFOA	335-67-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFNA	375-95-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFOS	1763-23-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFDA	335-76-2	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
MeFOSAA	2355-31-9	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
EtFOSAA	2991-50-6	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFUnA	2058-94-8	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFDoA	307-55-1	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFTrDA	72629-94-8	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
PFTeDA	376-06-7	ND	3.20	5.25	10.5		B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
Labeled Standards	Type	\% Recovery		Limit		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	SURR	103		70-1			B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
13C2-PFDA	SURR	100		70-1			B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
d5-EtFOSAA	SURR	92.5		70-1			B8L0076	12-Dec-18	0.238 L	15-Dec-18 03:13	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-21
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	$207718-\mathrm{B}$
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-010$
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & \text { 1613/1613B } \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

$3 \underbrace{V}$ Vista
\int Vista $_{\text {Analytical laboratory }}$
Project ID: Chase Field \qquad po\#: \qquad P0934

Sampler: \qquad Dan Hang $\frac{\text { Dan Calla }}{\text { (name) }}$
Sampler

CHAIN OF CUSTODY
\qquad , \qquad

Relinquished by (printed name and signature)

Special Instructions/Comments: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Container Types: $\mathrm{P}=$ HOPE, $\mathrm{PJ}=$ HDPE Jar $\mathrm{O}=\mathrm{Other}$:

Bottle Preservation Type: $T=$ Thiosulfate, TZ = Trizma: \qquad

SEND

Name:
Company: \qquad
Address:
City: \qquad State \qquad
Fax: \qquad
Phone: \qquad
Email: \qquad
Matrix Types: $\mathrm{AQ}=$ Aqueous, $\mathrm{DW}=$ Drinking Water, $\mathrm{EF}=\mathrm{Effluent} \mathrm{PP}=$, Pulp/Paper, $\mathrm{SD}=$ Sediment,
$\mathrm{SL}=$ Sludge, $\mathrm{SO}=$ Soil, $\mathrm{WW}=$ Wastewater, $\mathrm{B}=$ Blood/Serum, $\mathrm{O}=$ Other: \qquad

Sample Log-In Checklist

Page \# \qquad of \qquad
Vista Work Order \#:

тат 7

Comments:

EXTRACTION INFORMATION

Prep Expiration: 2018-Dec-20 Client: KMEA

Workorder Due:17-Dec-18 00:00
TAT: 9

Prep Batch: B8L0076

Initial Sequence \qquad
Location Container
WR-2 A-3 HDPE Bottle, 250 mL
WR-2 A-3 HDPE Bottle, 250 mL \neq Extract and hold.

Prerpep check out: $\mathrm{HB} 1211 / 1 / 18$ Prearep Check n: HB12/11118

Prep Check out MAC $12 / 12 / 18$
Prep Check n : \qquad
 Spike Reconcied nitass:Dale: μ AC $12 / 12 / 18$ Valiboxi: Bad Sant-

PREPARATION BENCH SHEET

Chemist: MAC Prep Date: $-12(12) 18$ Prep Time: 0815

		BalanceID: 4 RMS	2/11/18				
Cen	VISTA Sample ID	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	SS/NS CHEM/WIT DATE	SPE	IS CHEM/WIT DATE
\square	B8L0076-BLK1 (A)	$N A$	NA	(0.250)	MAC_H2 12/12118	MAC 121218	yr mae 12113
\square	B8L0076-BS1	1	\downarrow	(0.250)	T	T	T T
\square	$\begin{aligned} & \text { B8L0076-MS1 } \\ & 1803987-05 \end{aligned}$	277.21	26.69	0.25052	\checkmark		
\square	$\begin{aligned} & \text { B8L0076-MSD1 } \\ & 1803982.05 \end{aligned}$	274.81	27.26	0.24755 V			
\square	1803982-01	1784.39	27.35	$0.25704 \quad 2$			
\square	1803982-02	266.34	27.04	0.23930 V			
\square	1803982-03	179.54	27.37	0.25217 ,			
\square	1803982-04	280.02	27.18	0.25284 V			
\square	1803982-05	266.71	27.72	0.23894			
\square	1803982-06	274.39	26.59	0.24780			
\square	1803982-07	264.51	26.96	10.23755 A			
\square	1803982-08	261.61	26.66	$0.23445 \mathrm{~V}$	\checkmark		$\sqrt{ }$

SS/IS: $18 I 2508,1042$ \qquad NS: $18 \mathrm{H} 1312,20 \mathrm{uc}$ IS/RS: $f=1902,10 \mu \mathrm{~L}$ (iv)	SPE Chem: $\frac{\text { Strata } \times 33}{518-004} \frac{500 \mathrm{mg}}{6 \mathrm{mb}}$ Lolt: $518-00+378$ Ele SOLV: MeoH Lott: JBO72589 Final Volume(s) \qquad \qquad	Notes: AThisma added to Q(S. HB 12/11/18

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$
Cen = Centrifuged

Batch: B8L0076

Matrix: Aqueous

$$
12 / 13 / 18
$$

SAMPLE DATA -EPA METHOD 537

Dataset:	D:IPFAS.PROIRESULTSI181214P211801214P2-70.qld
Last Altered:	Monday, December 17, 2018 12:28:55 Paciific Standard Time
Printed:	Monday, December 17, 2018 12:29:19 Pacific Standard Time

Name: 181214P2_70, Date: 15-Dec-2018, Time: 01:54:52, ID: B8L0076-BLK1 LRB 0.25, Description: LRB

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		2344.427	0.250		3.36				
2	2 PFHxA	$313.1>269.1$		5470.450	0.250		3.68				
3	4 PFHpA	$363>319$		5470.450	0.250		4.15				
4	6 PFHxS	$399>80.0$		2344.427	0.250		4.26				
5	7 PFOA	$413>369$		5470.450	0.250		4.53				
6	24 13C4-PFOS	$503.0>80$	2344.427	2344.427	0.250	1.000	4.87	4.89	28.7	115	100.0
7	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
8	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
9	24 13C4-PFOS	$503.0>80$	2344.427	2344.427	0.250	1.000	4.87	4.89	28.7	115	100.0
10	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
11	-1										
12	8 PFNA	$463>419$		5470.450	0.250		4.85				
13	9 PFOS	$498.9>80.0$		2344.427	0.250		4.89				
14	11 PFDA	$513>469$		5470.450	0.250		5.11				
15	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$		9723.780	0.250		5.22				
16	13 N -EtFOSAA	$584.0>419.1$		9723.780	0.250		5.32				
17	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
18	24 13C4-PFOS	$503.0>80$	2344.427	2344.427	0.250	1.000	4.87	4.89	28.7	115	100.0
19	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
20	$25 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	9723.780	9723.780	0.250	1.000	5.20	5.22	40.0	160	100.0
21	$25 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	9723.780	9723.780	0.250	1.000	5.20	5.22	40.0	160	100.0
22	-1										
23	14 PFUnA	$563>519$		5470.450	0.250		5.35				
24	16 PFDoA	$613>569$		5470.450	0.250		5.55				
25	17 PFTrDA	$662.9>619$		5470.450	0.250		5.71				
26	18 PFTeDA	$712.9>669$		5470.450	0.250		5.87				
27	19 13C2-PFHxA	$315.1>270$	4042.822	5470.450	0.250	0.759	3.68	3.68	7.39	39.0	97.4
28	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
29	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
30	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
31	23 13C2-PFOA	$415>370$	5470.450	5470.450	0.250	1.000	4.51	4.53	10.0	40.0	100.0
32	21 13C2-PFDA	$515.0>470.0$	5439.833	5470.450	0.250	1.052	5.12	5.11	9.94	37.8	94.6
33	-1										
34	22 d5-N-EtFOSAA	$589.1>419.0$	8262.569	9723.780	0.250	0.831	5.33	5.32	34.0	164	102.3

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-70.qld
Last Altered:	Monday, December 17, 2018 12:28:55 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:29:19 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_70, Date: 15-Dec-2018, Time: 01:54:52, ID: B8L0076-BLK1 LRB 0.25, Description: LRB

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-70.qld

Last Altered: Monday, December 17, 2018 12:28:55 Pacific Standard Time Printed: \quad Monday, December 17, 2018 12:29:19 Pacific Standard Time

Name: 181214P2_70, Date: 15-Dec-2018, Time: 01:54:52, ID: B8L0076-BLK1 LRB 0.25, Description: LRB

PFNA

13C4-PFOS

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-70.qld

Last Altered: Monday, December 17, 2018 12:28:55 Pacific Standard Time Printed: \quad Monday, December 17, 2018 12:29:19 Pacific Standard Time

Name: 181214P2_70, Date: 15-Dec-2018, Time: 01:54:52, ID: B8L0076-BLK1 LRB 0.25, Description: LRB

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES-

13C2-PFDA
F16:MRM of 1 channel,ES-
$515.0>470.0$


```
Dataset: D:\PFAS.PRO\RESULTS\181214P2\1801214P2-70.qld
```

Last Altered: Monday, December 17, 2018 12:28:55 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:29:19 Pacific Standard Time

Name: 181214P2_70, Date: 15-Dec-2018, Time: 01:54:52, ID: B8L0076-BLK1 LRB 0.25, Description: LRB

d5-N-EtFOSAA

F22:MRM of 1 channel,ES589.1 > 419.0

Quantify Sample Report

Dataset:
 D:IPFAS.PRO\RESULTS\181214P2\1801214P2-67.qld
 Last Altered: Monday, December 17, 2018 12:11:19 Pacific Standard Time
 Printed: Monday, December 17, 2018 12:12:27 Pacific Standard Time

Name: 181214P2_67, Date: 15-Dec-2018, Time: 01:21:20, ID: B8L0076-BS1 LFB 0.25, Description: LFB

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	254.343	2131.334	0.250		3.36	3.38	3.42	17.9	101.0
2	2 PFHxA	$313.1>269.1$	1529.872	4935.999	0.250		3.68	3.68	3.10	21.5	107.7
3	4 PFHpA	$363>319$	2326.426	4935.999	0.250		4.15	4.16	4.71	20.4	102.2
4	6 PFHxS	$399>80.0$	288.147	2131.334	0.250		4.26	4.27	3.88	16.9	92.9
5	7 PFOA	$413>369$	2412.048	4935.999	0.250		4.53	4.53	4.89	21.2	106.2
6	24 13C4-PFOS	$503.0>80$	2131.334	2131.334	0.250	1.000	4.87	4.89	28.7	115	100.0
7	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
8	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
9	24 13C4-PFOS	$503.0>80$	2131.334	2131.334	0.250	1.000	4.87	4.89	28.7	115	100.0
10	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
11	-1										
12	8 PFNA	$463>419$	2093.200	4935.999	0.250		4.85	4.84	4.24	20.3	101.3
13	9 PFOS	$498.9>80.0$	360.106	2131.334	0.250		4.89	4.89	4.85	21.6	116.7
14	11 PFDA	$513>469$	2080.282	4935.999	0.250		5.11	5.11	4.21	20.2	101.2
15	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$	1034.789	9193.470	0.250		5.22	5.22	4.50	19.8	98.8
16	$13 \mathrm{~N}-E t F O S A A$	$584.0>419.1$	669.160	9193.470	0.250		5.32	5.33	2.91	21.2	106.0
17	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
18	24 13C4-PFOS	$503.0>80$	2131.334	2131.334	0.250	1.000	4.87	4.89	28.7	115	100.0
19	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	9193.470	9193.470	0.250	1.000	5.20	5.22	40.0	160	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	9193.470	9193.470	0.250	1.000	5.20	5.22	40.0	160	100.0
22	-1										
23	14 PFUnA	$563>519$	1923.741	4935.999	0.250		5.35	5.33	3.90	18.0	90.1
24	16 PFDoA	$613>569$	2965.154	4935.999	0.250		5.55	5.53	6.01	19.5	97.6
25	17 PFTrDA	$662.9>619$	3141.770	4935.999	0.250		5.71	5.70	6.37	19.2	95.9
26	18 PFTeDA	$712.9>669$	3124.512	4935.999	0.250		5.87	5.85	6.33	19.1	95.5
27	19 13C2-PFHxA	$315.1>270$	3760.807	4935.999	0.250	0.759	3.68	3.68	7.62	40.2	100.4
28	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
29	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
30	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
31	23 13C2-PFOA	$415>370$	4935.999	4935.999	0.250	1.000	4.51	4.53	10.0	40.0	100.0
32	21 13C2-PFDA	$515.0>470.0$	5206.301	4935.999	0.250	1.052	5.12	5.11	10.5	40.1	100.3
33	-1										
34	$22 \mathrm{~d} 5-\mathrm{N}-E t F O S A A$	$589.1>419.0$	5836.403	9193.470	0.250	0.831	5.33	5.32	25.4	122	76.4

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-67.qld
Last Altered:	Monday, December 17, 2018 12:11:19 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:12:27 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_67, Date: 15-Dec-2018, Time: $01: 21: 20$, ID: B8L0076-BS1 LFB 0.25, Description: LFB

13C4-PFOS

F14:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:
D:\PFAS.PRO\RESULTS\181214P2\1801214P2-67.qld
Last Altered: Monday, December 17, 2018 12:11:19 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:12:27 Pacific Standard Time

Name: 181214P2_67, Date: 15-Dec-2018, Time: 01:21:20, ID: B8L0076-BS1 LFB 0.25, Description: LFB

PFNA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

PFDA

13C2-PFOA
F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$

Dataset:	D:\PFAS.PRO\RESULTS\181214P2\1801214P2-67.qld
Last Altered:	Monday, December 17, 2018 12:11:19 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:12:27 Pacific Standard Time

Name: 181214P2_67, Date: 15-Dec-2018, Time: 01:21:20, ID: B8L0076-BS1 LFB 0.25, Description: LFB

\section*{PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA

F4:MRM of 1 channel,ES$315.1>270$

13C2-PFDA
F16:MRM of 1 channel,ES-


```
Dataset: D:\PFAS.PRO\RESULTS\181214P2\1801214P2-67.qld
```

Last Altered: Monday, December 17, 2018 12:11:19 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:12:27 Pacific Standard Time

Name: 181214P2_67, Date: 15-Dec-2018, Time: 01:21:20, ID: B8L0076-BS1 LFB 0.25, Description: LFB d5-N-EtFOSAA

F22:MRM of 1 channel,ES$589.1>419.0$

Dataset:	D:IPFAS.PROIRESULTSI181214P211801214P2-71.qld
Last Altered:	Monday, December 17, 2018 12:31:11 Paciific Standard Time
Printed:	Monday, December 17, 2018 12:31:53 Pacific Standard Time

Name: 181214P2_71, Date: 15-Dec-2018, Time: 02:06:03, ID: 1803982-01 Big Field-DW-120618 0.25704, Description: Big Field-DW-120618

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		2089.692	0.257		3.36				
2	2 PFHxA	$313.1>269.1$		4880.870	0.257		3.68				
3	4 PFHpA	$363>319$		4880.870	0.257		4.15				
4	6 PFHxS	$399>80.0$		2089.692	0.257		4.26				
5	7 PFOA	$413>369$		4880.870	0.257		4.53				
6	24 13C4-PFOS	$503.0>80$	2089.692	2089.692	0.257	1.000	4.87	4.89	28.7	112	100.0
7	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
8	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
9	24 13C4-PFOS	$503.0>80$	2089.692	2089.692	0.257	1.000	4.87	4.89	28.7	112	100.0
10	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
11	-1										
12	8 PFNA	$463>419$		4880.870	0.257		4.85				
13	9 PFOS	$498.9>80.0$		2089.692	0.257		4.89				
14	11 PFDA	$513>469$		4880.870	0.257		5.11				
15	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$		8802.440	0.257		5.22				
16	13 N -EtFOSAA	$584.0>419.1$		8802.440	0.257		5.33				
17	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
18	24 13C4-PFOS	$503.0>80$	2089.692	2089.692	0.257	1.000	4.87	4.89	28.7	112	100.0
19	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	8802.440	8802.440	0.257	1.000	5.20	5.22	40.0	156	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	8802.440	8802.440	0.257	1.000	5.20	5.22	40.0	156	100.0
22	-1										
23	14 PFUnA	$563>519$		4880.870	0.257		5.35				
24	16 PFDoA	$613>569$		4880.870	0.257		5.55				
25	17 PFTrDA	$662.9>619$		4880.870	0.257		5.71				
26	18 PFTeDA	$712.9>669$		4880.870	0.257		5.87				
27	19 13C2-PFHxA	$315.1>270$	3731.731	4880.870	0.257	0.759	3.68	3.68	7.65	39.2	100.8
28	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
29	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
30	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
31	23 13C2-PFOA	$415>370$	4880.870	4880.870	0.257	1.000	4.51	4.53	10.0	38.9	100.0
32	21 13C2-PFDA	$515.0>470.0$	4944.532	4880.870	0.257	1.052	5.12	5.11	10.1	37.5	96.3
33	-1										
34	$22 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.1>419.0$	7628.179	8802.440	0.257	0.831	5.33	5.33	34.7	162	104.3

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-71.qld
Last Altered:	Monday, December 17, 2018 12:31:11 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:31:53 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_71, Date: 15-Dec-2018, Time: 02:06:03, ID: 1803982-01 Big Field-DW-120618 0.25704, Description: Big Field-DW-120618

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-71.qld
Last Altered:	Monday, December 17, 2018 12:31:11 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:31:53 Pacific Standard Time

Name: 181214P2_71, Date: 15-Dec-2018, Time: 02:06:03, ID: 1803982-01 Big Field-DW-120618 0.25704, Description: Big Field-DW-120618

PFNA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

13C2-PFOA

d3-N-MeFOSAA

F20:MRM of 1 channel,ES

d3-N-MeFOSAA
F20:MRM of 1 channel,ES $573.1>419.1$

Dataset:
D:\PFAS.PRO\RESULTS\181214P2\1801214P2-71.qId
Last Altered: Monday, December 17, 2018 12:31:11 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:31:53 Pacific Standard Time

Name: 181214P2_71, Date: 15-Dec-2018, Time: 02:06:03, ID: 1803982-01 Big Field-DW-120618 0.25704, Description: Big Field-DW-120618

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA

PFTeDA

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$
100
$1.009 \mathrm{e}+005$
$13 \mathrm{C} 2-\mathrm{PFOA}$
4.53
4.88 e 3
100867
bb
100867.00

13C2-PFHxA

F4:MRM of 1 channel,ES-

13C2-PFDA
F16:MRM of 1 channel,ES-

Quantify Sample Report

```
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-71.qld
```

Last Altered: Monday, December 17, 2018 12:31:11 Pacific Standard Time
Printed: Monday, December 17, 2018 12:31:53 Pacific Standard Time
Name: 181214P2_71, Date: 15-Dec-2018, Time: 02:06:03, ID: 1803982-01 Big Field-DW-120618 0.25704, Description: Big Field-DW-120618
d5-N-EtFOSAA
F22:MRM of 1 channel,ES-
$589.1>419.0$
100

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-72.qld
Last Altered:	Monday, December 17, 2018 12:36:40 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:37:01 Pacific Standard Time

Name: 181214P2_72, Date: 15-Dec-2018, Time: 02:17:13, ID: 1803982-02 Big Field-FB-120618 0.2393, Description: Big Field-FB-120618

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	39.440	2185.805	0.239		3.36	3.38	0.518	2.82	
2	2 PFHxA	$313.1>269.1$	1169.733	5041.234	0.239		3.68	3.68	2.32	16.9	
3	4 PFHpA	$363>319$	831.093	5041.234	0.239		4.15	4.16	1.65	7.47	
4	6 PFHxS	$399>80.0$	639.996	2185.805	0.239		4.26	4.27	8.40	38.4	
5	7 PFOA	$413>369$	4696.400	5041.234	0.239		4.53	4.53	9.32	42.3	
6	24 13C4-PFOS	$503.0>80$	2185.805	2185.805	0.239	1.000	4.87	4.89	28.7	120	100.0
7	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
8	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
9	24 13C4-PFOS	$503.0>80$	2185.805	2185.805	0.239	1.000	4.87	4.89	28.7	120	100.0
10	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
11	-1										
12	8 PFNA	$463>419$	145.090	5041.234	0.239		4.85	4.84	0.288	1.44	
13	9 PFOS	$498.9>80.0$	686.587	2185.805	0.239		4.89	4.89	9.02	41.9	
14	11 PFDA	$513>469$		5041.234	0.239		5.11				
15	12 N-MeFOSAA	$570>419.1$		9362.021	0.239		5.22				
16	$13 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$	42.618	9362.021	0.239		5.32	5.33	0.182	1.41	
17	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
18	24 13C4-PFOS	$503.0>80$	2185.805	2185.805	0.239	1.000	4.87	4.89	28.7	120	100.0
19	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
20	$25 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	9362.021	9362.021	0.239	1.000	5.20	5.22	40.0	167	100.0
21	$25 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	9362.021	9362.021	0.239	1.000	5.20	5.22	40.0	167	100.0
22	-1										
23	14 PFUnA	$563>519$		5041.234	0.239		5.35				
24	16 PFDoA	$613>569$		5041.234	0.239		5.55				
25	17 PFTrDA	$662.9>619$		5041.234	0.239		5.71				
26	18 PFTeDA	$712.9>669$		5041.234	0.239		5.87				
27	19 13C2-PFHxA	$315.1>270$	3959.721	5041.234	0.239	0.759	3.68	3.68	7.85	43.3	103.5
28	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
29	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
30	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
31	23 13C2-PFOA	$415>370$	5041.234	5041.234	0.239	1.000	4.51	4.53	10.0	41.8	100.0
32	21 13C2-PFDA	$515.0>470.0$	5138.672	5041.234	0.239	1.052	5.12	5.11	10.2	40.5	96.9
33	-1										
34	$22 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.1>419.0$	7560.831	9362.021	0.239	0.831	5.33	5.32	32.3	162	97.2

Dataset:	D:\PFAS.PRO\RESULTS\181214P2\1801214P2-72.qld
Last Altered:	Monday, December 17, 2018 12:36:40 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:37:01 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_72, Date: 15-Dec-2018, Time: 02:17:13, ID: 1803982-02 Big Field-FB-120618 0.2393, Description: Big Field-FB-120618

13C4-PFOS

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:	D:\PFAS.PRO\RESULTS\181214P2\1801214P2-72.qld
Last Altered:	Monday, December 17, 2018 12:36:40 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:37:01 Pacific Standard Time

Name: 181214P2_72, Date: 15-Dec-2018, Time: 02:17:13, ID: 1803982-02 Big Field-FB-120618 0.2393, Description: Big Field-FB-120618

\section*{PFNA
 F12:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-
$573.1>419.1$

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-72.qld
Last Altered:	Monday, December 17, 2018 12:36:40 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:37:01 Pacific Standard Time

Name: 181214P2_72, Date: 15-Dec-2018, Time: 02:17:13, ID: 1803982-02 Big Field-FB-120618 0.2393, Description: Big Field-FB-120618

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

F25:MRM of 2 channels,ES-

13C2-PFOA

PFTeDA

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$
100
$1.038 \mathrm{e}+005$
$13 \mathrm{C} 2-\mathrm{PFOA}$
4.53
5.04 e 3
103768
bb
103768.00

13C2-PFHxA

F4:MRM of 1 channel,ES-

13C2-PFDA
F16:MRM of 1 channel,ES-


```
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-72.qld
```

Last Altered: Monday, December 17, 2018 12:36:40 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:37:01 Pacific Standard Time

Name: 181214P2_72, Date: 15-Dec-2018, Time: 02:17:13, ID: 1803982-02 Big Field-FB-120618 0.2393, Description: Big Field-FB-120618

d5-N-EtFOSAA

F22:MRM of 1 channel,ES-
$589.1>419.0$

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-73.qld
Last Altered:	Monday, December 17, 2018 12:38:08 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:38:32 Pacific Standard Time

Name: 181214P2_73, Date: 15-Dec-2018, Time: 02:28:24, ID: 1803982-03 Behind the Base-DW-120618 0.25217, Description: Behind the Base-DW-120618

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		1958.739	0.252		3.36				
2	2 PFHxA	$313.1>269.1$		4884.112	0.252		3.68				
3	4 PFHpA	$363>319$		4884.112	0.252		4.15				
4	6 PFHxS	$399>80.0$		1958.739	0.252		4.26				
5	7 PFOA	$413>369$		4884.112	0.252		4.53				
6	24 13C4-PFOS	$503.0>80$	1958.739	1958.739	0.252	1.000	4.87	4.89	28.7	114	100.0
7	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
8	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
9	24 13C4-PFOS	$503.0>80$	1958.739	1958.739	0.252	1.000	4.87	4.89	28.7	114	100.0
10	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
11	-1										
12	8 PFNA	$463>419$		4884.112	0.252		4.85				
13	9 PFOS	$498.9>80.0$		1958.739	0.252		4.89				
14	11 PFDA	$513>469$		4884.112	0.252		5.11				
15	12 N-MeFOSAA	$570>419.1$		8603.447	0.252		5.22				
16	$13 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$		8603.447	0.252		5.33				
17	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
18	24 13C4-PFOS	$503.0>80$	1958.739	1958.739	0.252	1.000	4.87	4.89	28.7	114	100.0
19	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	8603.447	8603.447	0.252	1.000	5.20	5.22	40.0	159	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	8603.447	8603.447	0.252	1.000	5.20	5.22	40.0	159	100.0
22	-1										
23	14 PFUnA	$563>519$		4884.112	0.252		5.35				
24	16 PFDoA	$613>569$		4884.112	0.252		5.55				
25	17 PFTrDA	$662.9>619$		4884.112	0.252		5.71				
26	18 PFTeDA	$712.9>669$		4884.112	0.252		5.87				
27	19 13C2-PFHxA	$315.1>270$	3848.696	4884.112	0.252	0.759	3.68	3.68	7.88	41.2	103.9
28	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
29	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
30	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
31	23 13C2-PFOA	$415>370$	4884.112	4884.112	0.252	1.000	4.51	4.53	10.0	39.7	100.0
32	21 13C2-PFDA	$515.0>470.0$	5312.087	4884.112	0.252	1.052	5.12	5.11	10.9	41.0	103.4
33	-1										
34	22 d5-N-EtFOSAA	$589.1>419.0$	6524.889	8603.447	0.252	0.831	5.33	5.33	30.3	145	91.3

Dataset: D:\PFAS.PRO\RESULTS\181214P2\1801214P2-73.qld

Last Altered: Monday, December 17, 2018 12:38:08 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:38:32 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_73, Date: 15-Dec-2018, Time: 02:28:24, ID: 1803982-03 Behind the Base-DW-120618 0.25217, Description: Behind the Base-DW-120618

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-73.qld
Last Altered:	Monday, December 17, 2018 12:38:08 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:38:32 Pacific Standard Time

Name: 181214P2_73, Date: 15-Dec-2018, Time: 02:28:24, ID: 1803982-03 Behind the Base-DW-120618 0.25217, Description: Behind the Base-DW-120618

PFNA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-73.qld
Last Altered:	Monday, December 17, 2018 12:38:08 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:38:32 Pacific Standard Time

Name: 181214P2_73, Date: 15-Dec-2018, Time: 02:28:24, ID: 1803982-03 Behind the Base-DW-120618 0.25217, Description: Behind the Base-DW-120618

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES-

	F4:MRM of	channel,ES- $315.1>270$
100	$\begin{gathered} 13 \mathrm{C} 2-\mathrm{PFHxA} \\ 3.68 \\ 3.85 \mathrm{e} 3 \\ 91039 \\ \mathrm{bb} \\ 7197.32 \end{gathered}$	$9.109 \mathrm{e}+004$
\%-		
	1711	1.00
3.00	3.50	4.00

13C2-PFDA
F16:MRM of 1 channel,ES-


```
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-73.qld
```

Last Altered: Monday, December 17, 2018 12:38:08 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:38:32 Pacific Standard Time

Name: 181214P2_73, Date: 15-Dec-2018, Time: 02:28:24, ID: 1803982-03 Behind the Base-DW-120618 0.25217, Description: Behind the Base-DW-120618 d5-N-EtFOSAA

F22:MRM of 1 channel,ES$589.1>419.0$

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-74.qld
Last Altered:	Monday, December 17, 2018 12:43:23 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:43:58 Pacific Standard Time

Name: 181214P2_74, Date: 15-Dec-2018, Time: 02:39:35, ID: 1803982-04 Behind the Base-FB-120618 0.25284, Description: Behind the Base-FB-120618

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		2069.110	0.253		3.36				
2	2 PFHxA	$313.1>269.1$		5283.747	0.253		3.68				
3	4 PFHpA	$363>319$		5283.747	0.253		4.15				
4	6 PFHxS	$399>80.0$		2069.110	0.253		4.26				
5	7 PFOA	$413>369$		5283.747	0.253		4.53				
6	24 13C4-PFOS	$503.0>80$	2069.110	2069.110	0.253	1.000	4.87	4.89	28.7	114	100.0
7	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
8	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
9	24 13C4-PFOS	$503.0>80$	2069.110	2069.110	0.253	1.000	4.87	4.89	28.7	114	100.0
10	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
11	-1										
12	8 PFNA	$463>419$		5283.747	0.253		4.85				
13	9 PFOS	$498.9>80.0$		2069.110	0.253		4.89				
14	11 PFDA	$513>469$		5283.747	0.253		5.11				
15	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$		9847.007	0.253		5.22				
16	$13 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$		9847.007	0.253		5.33				
17	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
18	24 13C4-PFOS	$503.0>80$	2069.110	2069.110	0.253	1.000	4.87	4.89	28.7	114	100.0
19	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	9847.007	9847.007	0.253	1.000	5.20	5.22	40.0	158	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	9847.007	9847.007	0.253	1.000	5.20	5.22	40.0	158	100.0
22	-1										
23	14 PFUnA	$563>519$		5283.747	0.253		5.35				
24	16 PFDoA	$613>569$		5283.747	0.253		5.55				
25	17 PFTrDA	$662.9>619$		5283.747	0.253		5.71				
26	18 PFTeDA	$712.9>669$		5283.747	0.253		5.87				
27	19 13C2-PFHxA	$315.1>270$	4061.409	5283.747	0.253	0.759	3.68	3.68	7.69	40.1	101.3
28	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
29	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
30	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
31	23 13C2-PFOA	$415>370$	5283.747	5283.747	0.253	1.000	4.51	4.53	10.0	39.6	100.0
32	21 13C2-PFDA	$515.0>470.0$	5502.849	5283.747	0.253	1.052	5.12	5.11	10.4	39.2	99.0
33	-1										
34	$22 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.1>419.0$	6700.645	9847.007	0.253	0.831	5.33	5.33	27.2	130	81.9

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-74.qld

Last Altered: Monday, December 17, 2018 12:43:23 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:43:58 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_74, Date: 15-Dec-2018, Time: 02:39:35, ID: 1803982-04 Behind the Base-FB-120618 0.25284, Description: Behind the Base-FB-120618

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-74.qld

Last Altered: Monday, December 17, 2018 12:43:23 Pacific Standard Time
Printed: Monday, December 17, 2018 12:43:58 Pacific Standard Time

Name: 181214P2_74, Date: 15-Dec-2018, Time: 02:39:35, ID: 1803982-04 Behind the Base-FB-120618 0.25284, Description: Behind the Base-FB-120618

13C2-PFOA

13C4-PFOS

PFDA

13C2-PFOA
F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-74.qld

Last Altered: Monday, December 17, 2018 12:43:23 Pacific Standard Time Printed: \quad Monday, December 17, 2018 12:43:58 Pacific Standard Time

Name: 181214P2_74, Date: 15-Dec-2018, Time: 02:39:35, ID: 1803982-04 Behind the Base-FB-120618 0.25284, Description: Behind the Base-FB-120618

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-
$\left.\begin{array}{c}\text { F11:MRM of } 1 \text { channel,ES- } \\ 415>370 \\ 100 \\ 1.079 \mathrm{e}+005 \\ 13 \mathrm{C} 2-\mathrm{PFOA} \\ 4.53 \\ 5.28 \mathrm{e} 3 \\ 107823 \\ \mathrm{bb} \\ 107823.00\end{array}\right]$

PFDoA

13C2-PFOA

PFTrDA

F25:MRM of 2 channels,ES-

13C2-PFOA

PFTeDA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES-
3.003 .50

13C2-PFDA
F16:MRM of 1 channel,ES-
$515.0>470.0$


```
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-74.qld
```

Last Altered: Monday, December 17, 2018 12:43:23 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:43:58 Pacific Standard Time

Name: 181214P2_74, Date: 15-Dec-2018, Time: 02:39:35, ID: 1803982-04 Behind the Base-FB-120618 0.25284, Description: Behind the Base-FB-120618 d5-N-EtFOSAA

F22:MRM of 1 channel,ES589.1 > 419.0

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-75.qld
Last Altered:	Monday, December 17, 2018 12:45:31 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:45:51 Pacific Standard Time

Name: 181214P2_75, Date: 15-Dec-2018, Time: 02:50:46, ID: 1803982-05 Shooting Range1-DW-120618 0.23899, Description: Shooting Range1-DW-120618

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	493.269	2259.464	0.239		3.36	3.38	6.27	34.2	
2	2 PFHxA	$313.1>269.1$	14250.450	4862.087	0.239		3.68	3.68	29.3	213	
3	4 PFHpA	$363>319$	9344.400	4862.087	0.239		4.15	4.16	19.2	87.2	
4	6 PFHxS	$399>80.0$	5991.881	2259.464	0.239		4.26	4.27	76.1	362	
5	7 PFOA	$413>369$	26307.279	4862.087	0.239		4.53	4.53	54.1	246	
6	24 13C4-PFOS	$503.0>80$	2259.464	2259.464	0.239	1.000	4.87	4.89	28.7	120	100.0
7	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
8	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
9	24 13C4-PFOS	$503.0>80$	2259.464	2259.464	0.239	1.000	4.87	4.89	28.7	120	100.0
10	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
11	-1										
12	8 PFNA	$463>419$	2109.707	4862.087	0.239		4.85	4.84	4.34	21.7	
13	9 PFOS	$498.9>80.0$	6341.092	2259.464	0.239		4.89	4.89	80.5	375	
14	11 PFDA	$513>469$		4862.087	0.239		5.11				
15	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$		9216.666	0.239		5.22				
16	$13 \mathrm{~N}-E t F O S A A$	$584.0>419.1$		9216.666	0.239		5.32				
17	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
18	24 13C4-PFOS	$503.0>80$	2259.464	2259.464	0.239	1.000	4.87	4.89	28.7	120	100.0
19	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	9216.666	9216.666	0.239	1.000	5.20	5.22	40.0	167	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	9216.666	9216.666	0.239	1.000	5.20	5.22	40.0	167	100.0
22	-1										
23	14 PFUnA	$563>519$		4862.087	0.239		5.35				
24	16 PFDoA	$613>569$		4862.087	0.239		5.55				
25	17 PFTrDA	$662.9>619$		4862.087	0.239		5.71				
26	18 PFTeDA	$712.9>669$		4862.087	0.239		5.87				
27	19 13C2-PFHxA	$315.1>270$	4115.207	4862.087	0.239	0.759	3.68	3.68	8.46	46.7	111.6
28	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
29	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
30	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
31	23 13C2-PFOA	$415>370$	4862.087	4862.087	0.239	1.000	4.51	4.53	10.0	41.8	100.0
32	21 13C2-PFDA	$515.0>470.0$	5433.604	4862.087	0.239	1.052	5.12	5.11	11.2	44.5	106.3
33	-1										
34	$22 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.1>419.0$	7964.757	9216.666	0.239	0.831	5.33	5.32	34.6	174	104.0

Dataset:	D:\PFAS.PRO\RESULTS\181214P2\1801214P2-75.qld
Last Altered:	Monday, December 17, 2018 12:45:31 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:45:51 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_75, Date: 15-Dec-2018, Time: 02:50:46, ID: 1803982-05 Shooting Range1-DW-120618 0.23899, Description: Shooting Range1-DW-120618

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:	D:\PFAS.PRO\RESULTS\181214P2\1801214P2-75.qld
Last Altered:	Monday, December 17, 2018 12:45:31 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:45:51 Pacific Standard Time

Name: 181214P2_75, Date: 15-Dec-2018, Time: 02:50:46, ID: 1803982-05 Shooting Range1-DW-120618 0.23899, Description: Shooting Range1-DW-120618

PFNA

13C2-PFOA
F11:MRM of 1 channel,ES-
F11:MRM of 1 channel, ES-
$415>370$
100
$13 \mathrm{C} 2-\mathrm{PFOA}$
4.53
4.86 e 3
100187
bb
69377.48
0

13C4-PFOS

13C2-PFOA
F11:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-75.qld
Last Altered:	Monday, December 17, 2018 12:45:31 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:45:51 Pacific Standard Time

Name: 181214P2_75, Date: 15-Dec-2018, Time: 02:50:46, ID: 1803982-05 Shooting Range1-DW-120618 0.23899, Description: Shooting Range1-DW-120618

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-

100
$13 \mathrm{C} 2-\mathrm{PFOA}$
4.53
4.86 e 3
100187
bb
69377.48

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES-

13C2-PFDA
F16:MRM of 1 channel,ES-
$515.0>470.0$

Quantify Sample Report

```
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-75.qld
```

Last Altered: Monday, December 17, 2018 12:45:31 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:45:51 Pacific Standard Time

Name: 181214P2_75, Date: 15-Dec-2018, Time: 02:50:46, ID: 1803982-05 Shooting Range1-DW-120618 0.23899, Description: Shooting Range1-DW-120618 d5-N-EtFOSAA

F22:MRM of 1 channel,ES$589.1>419.0$

Quantify Sample Report

Dataset:
D:IPFAS.PRO\RESULTSI181214P2\1801214P2-68.qld
Last Altered: Monday, December 17, 2018 12:13:32 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:17:05 Pacific Standard Time

Name: 181214P2_68, Date: 15-Dec-2018, Time: 01:32:30, ID: B8L0076-MS1 LFSM 0.25052, Description: LFSM

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	747.151	2096.815	0.251		3.36	3.38	10.2	53.2	
2	2 PFHxA	$313.1>269.1$	17018.539	4877.145	0.251		3.68	3.68	34.9	242	
3	4 PFHpA	$363>319$	15229.467	4877.145	0.251		4.15	4.16	31.2	135	
4	6 PFHxS	$399>80.0$	9890.389	2096.815	0.251		4.26	4.27	135	639	
5	7 PFOA	$413>369$	46424.320	4877.145	0.251		4.53	4.53	95.2	413	
6	24 13C4-PFOS	$503.0>80$	2096.815	2096.815	0.251	1.000	4.87	4.89	28.7	115	100.0
7	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
8	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
9	24 13C4-PFOS	$503.0>80$	2096.815	2096.815	0.251	1.000	4.87	4.89	28.7	115	100.0
10	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
11	-1										
12	8 PFNA	$463>419$	6103.979	4877.145	0.251		4.85	4.84	12.5	59.6	
13	9 PFOS	$498.9>80.0$	11573.490	2096.815	0.251		4.89	4.89	158	703	
14	11 PFDA	$513>469$	2176.907	4877.145	0.251		5.11	5.11	4.46	21.4	
15	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$	949.844	9498.707	0.251		5.22	5.22	4.00	17.5	
16	$13 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$	678.443	9498.707	0.251		5.33	5.33	2.86	20.8	
17	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
18	24 13C4-PFOS	$503.0>80$	2096.815	2096.815	0.251	1.000	4.87	4.89	28.7	115	100.0
19	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	9498.707	9498.707	0.251	1.000	5.20	5.22	40.0	160	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	9498.707	9498.707	0.251	1.000	5.20	5.22	40.0	160	100.0
22	-1										
23	14 PFUnA	$563>519$	1589.960	4877.145	0.251		5.35	5.33	3.26	15.0	
24	16 PFDoA	$613>569$	2907.553	4877.145	0.251		5.55	5.53	5.96	19.3	
25	17 PFTrDA	$662.9>619$	3115.533	4877.145	0.251		5.71	5.70	6.39	19.2	
26	18 PFTeDA	$712.9>669$	2934.623	4877.145	0.251		5.87	5.85	6.02	18.1	
27	19 13C2-PFHxA	$315.1>270$	3835.876	4877.145	0.251	0.759	3.68	3.68	7.87	41.4	103.7
28	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
29	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
30	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
31	23 13C2-PFOA	$415>370$	4877.145	4877.145	0.251	1.000	4.51	4.53	10.0	39.9	100.0
32	21 13C2-PFDA	$515.0>470.0$	5229.193	4877.145	0.251	1.052	5.12	5.11	10.7	40.7	102.0
33	-1										
34	$22 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.1>419.0$	7095.419	9498.707	0.251	0.831	5.33	5.33	29.9	144	89.9

Dataset:	D:\PFAS.PRO\RESULTS\181214P2\1801214P2-68.qId
Last Altered:	Monday, December 17, 2018 12:13:32 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:17:05 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_68, Date: 15-Dec-2018, Time: 01:32:30, ID: B8L0076-MS1 LFSM 0.25052, Description: LFSM

PFBS

13C4-PFOS

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:
D:\PFAS.PRO\RESULTS\181214P2\1801214P2-68.qld
Last Altered: Monday, December 17, 2018 12:13:32 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:17:05 Pacific Standard Time

Name: 181214P2_68, Date: 15-Dec-2018, Time: 01:32:30, ID: B8L0076-MS1 LFSM 0.25052, Description: LFSM

PFNA

F12:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES

13C4-PFOS

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$

Dataset:
D:\PFAS.PRO\RESULTS\181214P2\1801214P2-68.qld
Last Altered: Monday, December 17, 2018 12:13:32 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:17:05 Pacific Standard Time

Name: 181214P2_68, Date: 15-Dec-2018, Time: 01:32:30, ID: B8L0076-MS1 LFSM 0.25052, Description: LFSM

\author{

PFUnA
 | PFUnAF18:MRM of 2 channels, ES- | | |
| :---: | :---: | :---: |
| | | |
| ${ }^{100}$ | | $563>519$ |
| | $\begin{gathered} \text { PFUnA } \\ 5.33 \\ 1.59 \mathrm{e} 3 \\ 27003 \\ \text { bb } \\ 2357.43 \end{gathered}$ | $2.709 \mathrm{e}+004$ |
| | | |
| | | |
| | | |
| | | |
| \%- | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | 5.00 | 5.50 |

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$
100
$9.985 \mathrm{e}+004$
$\begin{array}{c}13 \mathrm{C} 2-\mathrm{PFOA} \\ 4.53 \\ 4.88 \mathrm{e} 3 \\ 99792 \\ \text { bb } \\ 99792.00\end{array}$

13C2-PFHxA

F4:MRM of 1 channel,ES-

13C2-PFDA
F16:MRM of 1 channel,ES-
$515.0>470.0$


```
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-68.qld
```

Last Altered: Monday, December 17, 2018 12:13:32 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:17:05 Pacific Standard Time

Name: 181214P2_68, Date: 15-Dec-2018, Time: 01:32:30, ID: B8L0076-MS1 LFSM 0.25052, Description: LFSM d5-N-EtFOSAA

F22:MRM of 1 channel,ES$589.1>419.0$

Quantify Sample Summary Report

Dataset:	P:IPFAS.PRO\RESULTS\181217P1\181217P1-23.qld
Last Altered:	Tuesday, December 18, 2018 09:22:27 Pacific Standard Time
Printed:	Tuesday, December 18, 2018 09:38:31 Pacific Standard Time

Method: P:|PFAS.PRO\MethDB|PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

 Calibration: P:|PFAS.PRO\CurveDB\C18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29Name: 181217P1_23, Date: 17-Dec-2018, Time: 19:41:11, ID: B8L0076-MS1@10X LFSM 0.25052, Description: LFSM

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	6 PFHxS	$399>80.0$	6.39 e 1	1.73 e 1	0.2505		4.22	4.21	106	490	
2	7 PFOA	$413>369$	3.37 e 2	2.53 e 1	0.2505		4.48	4.48	133	515	
3	9 PFOS	$498.9>80.0$	5.36 e 1	1.73 e 1	0.2505		4.86	4.86	88.8	397	
4	19 13C2-PFHxA	$315.1>270$	2.19 e 1	2.53 e 1	0.2505	0.942	3.62	3.64	8.65	36.7	91.8
5	21 13C2-PFDA	$515.0>470.0$	3.23 e 1	2.53 e 1	0.2505	1.301	5.06	5.07	12.7	39.1	97.9
6	23 13C2-PFOA	$415>370$	2.53 e 1	2.53 e 1	0.2505	1.000	4.51	4.48	10.0	39.9	100.0
7	24 13C4-PFOS	$503.0>80$	1.73 e 1	1.73 e 1	0.2505	1.000	4.87	4.86	28.7	115	100.0

Quantify Sample Report
MassLynx MassLynx V4.1 SCN 945

Last Altered: Tuesday, December 18, 2018 09:22:27 Pacific Standard Time Printed: Tuesday, December 18, 2018 09:38:31 Pacific Standard Time

Method: P:|PFAS.PRO|MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: P:IPFAS.PRO\CurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181217P1_23, Date: 17-Dec-2018, Time: 19:41:11, ID: B8L0076-MS1@10X LFSM 0.25052, Description: LFSM

13C2-PFOA

181217P1_23

13C4-PFOS

181217P1_23 F14:MRM of 1 channel,ES$503.0>80$
$3.738 \mathrm{e}+002$

13C2-PFDA

Dataset:	D:IPFAS.PRO\RESULTSI181214P211801214P2-69.qld
Last Altered:	Monday, December 17, 2018 12:19:37 Paciific Standard Time
Printed:	Monday, December 17, 2018 12:20:31 Pacific Standard Time

Name: 181214P2_69, Date: 15-Dec-2018, Time: 01:43:41, ID: B8L0076-MSD1 LFSMD 0.24755, Description: LFSMD

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	721.617	1972.856	0.248		3.36	3.38	10.5	55.3	
2	2 PFHxA	$313.1>269.1$	15158.716	4520.338	0.248		3.68	3.68	33.5	235	
3	4 PFHpA	$363>319$	11975.060	4520.338	0.248		4.15	4.16	26.5	116	
4	6 PFHxS	$399>80.0$	6972.973	1972.856	0.248		4.26	4.27	101	474	
5	7 PFOA	$413>369$	34071.914	4520.338	0.248		4.53	4.53	75.4	331	
6	24 13C4-PFOS	$503.0>80$	1972.856	1972.856	0.248	1.000	4.87	4.89	28.7	116	100.0
7	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
8	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
9	24 13C4-PFOS	$503.0>80$	1972.856	1972.856	0.248	1.000	4.87	4.89	28.7	116	100.0
10	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
11	-1										
12	8 PFNA	$463>419$	4553.943	4520.338	0.248		4.85	4.84	10.1	48.6	
13	9 PFOS	$498.9>80.0$	7080.070	1972.856	0.248		4.89	4.89	103	462	
14	11 PFDA	$513>469$	1925.898	4520.338	0.248		5.11	5.11	4.26	20.7	
15	12 N-MeFOSAA	$570>419.1$	913.689	8158.899	0.248		5.22	5.22	4.48	19.9	
16	13 N -EtFOSAA	$584.0>419.1$	613.872	8158.899	0.248		5.33	5.33	3.01	22.1	
17	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
18	24 13C4-PFOS	$503.0>80$	1972.856	1972.856	0.248	1.000	4.87	4.89	28.7	116	100.0
19	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	8158.899	8158.899	0.248	1.000	5.20	5.22	40.0	162	100.0
21	$25 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	8158.899	8158.899	0.248	1.000	5.20	5.22	40.0	162	100.0
22	-1										
23	14 PFUnA	$563>519$	1925.367	4520.338	0.248		5.35	5.33	4.26	19.9	
24	16 PFDoA	$613>569$	2974.077	4520.338	0.248		5.55	5.53	6.58	21.6	
25	17 PFTrDA	$662.9>619$	2790.561	4520.338	0.248		5.71	5.70	6.17	18.8	
26	18 PFTeDA	$712.9>669$	2915.403	4520.338	0.248		5.87	5.85	6.45	19.6	
27	19 13C2-PFHxA	$315.1>270$	3605.917	4520.338	0.248	0.759	3.68	3.68	7.98	42.5	105.2
28	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
29	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
30	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
31	23 13C2-PFOA	$415>370$	4520.338	4520.338	0.248	1.000	4.51	4.53	10.0	40.4	100.0
32	21 13C2-PFDA	$515.0>470.0$	4872.196	4520.338	0.248	1.052	5.12	5.11	10.8	41.4	102.5
33	-1										
34	22 d5-N-EtFOSAA	$589.1>419.0$	5619.047	8158.899	0.248	0.831	5.33	5.33	27.5	134	82.9

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-69.qld
Last Altered:	Monday, December 17, 2018 12:19:37 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:20:31 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_69, Date: 15-Dec-2018, Time: 01:43:41, ID: B8L0076-MSD1 LFSMD 0.24755, Description: LFSMD

PFBS

13C4-PFOS

F14:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:
D:\PFAS.PRO\RESULTS\181214P2\1801214P2-69.qld
Last Altered: Monday, December 17, 2018 12:19:37 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:20:31 Pacific Standard Time

Name: 181214P2 69, Date: 15-Dec-2018, Time: 01:43:41, ID: B8L0076-MSD1 LFSMD 0.24755, Description: LFSMD

PFNA
 F12:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-
F11:MRM of 1 channel,ES-
$415>370$
$9.283 e+004$

13C4-PFOS

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$

Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-69.qld
Last Altered: Monday, December 17, 2018 12:19:37 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:20:31 Pacific Standard Time

Name: 181214P2_69, Date: 15-Dec-2018, Time: 01:43:41, ID: B8L0076-MSD1 LFSMD 0.24755, Description: LFSMD

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES$315.1>270$

13C2-PFDA
F16:MRM of 1 channel,ES-
$515.0>470.0$


```
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-69.qld
```

Last Altered: Monday, December 17, 2018 12:19:37 Pacific Standard Time
Printed: Monday, December 17, 2018 12:20:31 Pacific Standard Time

Name: 181214P2_69, Date: 15-Dec-2018, Time: 01:43:41, ID: B8L0076-MSD1 LFSMD 0.24755, Description: LFSMD

d5-N-EtFOSAA

F22:MRM of 1 channel,ES-
$589.1>419.0$

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	P:IPFAS.PROIRESULTS\181217P1\181217P1-24.qld
Last Altered:	Tuesday, December 18, 2018 09:46:53 Pacific Standard Time
Printed:	Tuesday, December 18, 2018 09:49:05 Pacific Standard Time

Method: P:|PFAS.PRO\MethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: P:|PFAS.PRO\CurveDB\C18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181217P1_24, Date: 17-Dec-2018, Time: 19:52:22, ID: B8L0076-MSD1@10 XLFSMD 0.24755, Description: LFSMD

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	6 PFHxS	$399>80.0$	9.83 e 2	3.33 e 2	0.2475		4.22	4.22	84.8	397	
2	9 PFOS	$498.9>80.0$	1.14 e 3	3.33 e 2	0.2475		4.86	4.86	98.4	445	
3	19 13C2-PFHxA	$315.1>270$	6.77 e 2	7.52 e 2	0.2475	0.942	3.63	3.63	9.00	38.6	95.6
4	21 13C2-PFDA	$515.0>470.0$	9.76 e 2	7.52 e 2	0.2475	1.301	5.07	5.07	13.0	40.3	99.7
5	24 13C4-PFOS	$503.0>80$	3.33 e 2	3.33 e 2	0.2475	1.000	4.87	4.86	28.7	116	100.0

Dataset: P:IPFAS.PRO\RESULTS\181217P1\181217P1-24.qld

Last Altered: Tuesday, December 18, 2018 09:46:53 Pacific Standard Time Printed: Tuesday, December 18, 2018 09:49:05 Pacific Standard Time

Method: P:|PFAS.PRO|MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: P:\PFAS.PRO\CurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181217P1_24, Date: 17-Dec-2018, Time: 19:52:22, ID: B8L0076-MSD1@10 XLFSMD 0.24755, Description: LFSMD

13C4-PFOS

181217P1_24

F14:MRM of 1 channel,ESLFSMD B8L0076-MSD1@10 XLFSMD $0.24755503 .0>80$

13C4-PFOS
181217P1 24
181217P1_24 F14:MRM of 1 channel,ESLFSMD B8L0076-MSD1@10 XLFSMD 0.24755 503.0 > 80

13C2-PFDA

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-76.qld
Last Altered:	Monday, December 17, 2018 12:51:42 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:52:48 Pacific Standard Time

Name: 181214P2_76, Date: 15-Dec-2018, Time: 03:01:57, ID: 1803982-06 Shooting Range1-FB-120618 0.2478, Description: Shooting Range1-FB-120618

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		1981.122	0.248		3.36				
2	2 PFHxA	$313.1>269.1$		4619.156	0.248		3.68				
3	4 PFHpA	$363>319$		4619.156	0.248		4.15				
4	6 PFHxS	$399>80.0$		1981.122	0.248		4.26				
5	7 PFOA	$413>369$		4619.156	0.248		4.53				
6	24 13C4-PFOS	$503.0>80$	1981.122	1981.122	0.248	1.000	4.87	4.89	28.7	116	100.0
7	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
8	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
9	24 13C4-PFOS	$503.0>80$	1981.122	1981.122	0.248	1.000	4.87	4.89	28.7	116	100.0
10	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
11	-1										
12	8 PFNA	$463>419$		4619.156	0.248		4.85				
13	9 PFOS	$498.9>80.0$		1981.122	0.248		4.89				
14	11 PFDA	$513>469$		4619.156	0.248		5.11				
15	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$		8885.119	0.248		5.22				
16	$13 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$		8885.119	0.248		5.33				
17	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
18	24 13C4-PFOS	$503.0>80$	1981.122	1981.122	0.248	1.000	4.87	4.89	28.7	116	100.0
19	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	8885.119	8885.119	0.248	1.000	5.20	5.22	40.0	161	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	8885.119	8885.119	0.248	1.000	5.20	5.22	40.0	161	100.0
22	-1										
23	14 PFUnA	$563>519$		4619.156	0.248		5.35				
24	16 PFDoA	$613>569$		4619.156	0.248		5.55				
25	17 PFTrDA	$662.9>619$		4619.156	0.248		5.71				
26	18 PFTeDA	$712.9>669$		4619.156	0.248		5.87				
27	19 13C2-PFHxA	$315.1>270$	3723.378	4619.156	0.248	0.759	3.68	3.68	8.06	42.9	106.3
28	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
29	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
30	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
31	23 13C2-PFOA	$415>370$	4619.156	4619.156	0.248	1.000	4.51	4.53	10.0	40.4	100.0
32	21 13C2-PFDA	$515.0>470.0$	4993.848	4619.156	0.248	1.052	5.12	5.11	10.8	41.5	102.8
33	-1										
34	22 d5-N-EtFOSAA	$589.1>419.0$	7569.880	8885.119	0.248	0.831	5.33	5.33	34.1	166	102.5

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-76.qld

Last Altered: Monday, December 17, 2018 12:51:42 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:52:48 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_76, Date: 15-Dec-2018, Time: 03:01:57, ID: 1803982-06 Shooting Range1-FB-120618 0.2478, Description: Shooting Range1-FB-120618

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-76.qld
Last Altered:	Monday, December 17, 2018 12:51:42 Pacific Standard Time
Printed:	Monday, December 17, 2018 12:52:48 Pacific Standard Time

Name: 181214P2_76, Date: 15-Dec-2018, Time: 03:01:57, ID: 1803982-06 Shooting Range1-FB-120618 0.2478, Description: Shooting Range1-FB-120618

PFNA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

PFDA

F15:MRM of 2 channels,ES-

13C2-PFOA

d3-N-MeFOSAA
F20:MRM of 1 channel,ES

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-76.qld

Last Altered: Monday, December 17, 2018 12:51:42 Pacific Standard Time
Printed:
Monday, December 17, 2018 12:52:48 Pacific Standard Time

Name: 181214P2_76, Date: 15-Dec-2018, Time: 03:01:57, ID: 1803982-06 Shooting Range1-FB-120618 0.2478, Description: Shooting Range1-FB-120618

PFUnA

13C2-PFOA
F11:MRM of 1 channel,Es-

PFDoA

13C2-PFOA

PFTrDA

F25:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFDA

Quantify Sample Report

```
Dataset: D:\PFAS.PRO\RESULTS\181214P2\1801214P2-76.qld
```

Last Altered: Monday, December 17, 2018 12:51:42 Pacific Standard Time
Printed: \quad Monday, December 17, 2018 12:52:48 Pacific Standard Time

Name: 181214P2_76, Date: 15-Dec-2018, Time: 03:01:57, ID: 1803982-06 Shooting Range1-FB-120618 0.2478, Description: Shooting Range1-FB-120618 d5-N-EtFOSAA

F22:MRM of 1 channel,ES589.1 > 419.0

Dataset: P:IPFAS.PRO\RESULTS\181214P2\1801214P2-77.qld

Last Altered: Tuesday, December 18, 2018 10:36:04 Pacific Standard Time
Printed: Tuesday, December 18, 2018 10:39:47 Pacific Standard Time

Name: 181214P2_77, Date: 15-Dec-2018, Time: 03:13:07, ID: 1803982-07 Source Blank 0.23755, Description: Source Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		2175.755	0.238		3.36				
2	2 PFHxA	313.1 > 269.1		4921.095	0.238		3.68				
3	4 PFHpA	$363>319$		4921.095	0.238		4.15				
4	6 PFHxS	$399>80.0$		2175.755	0.238		4.26				
5	7 PFOA	$413>369$		4921.095	0.238		4.53				
6	24 13C4-PFOS	$503.0>80$	2175.755	2175.755	0.238	1.000	4.87	4.89	28.7	121	100.0
7	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
8	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
9	24 13C4-PFOS	$503.0>80$	2175.755	2175.755	0.238	1.000	4.87	4.89	28.7	121	100.0
10	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
11	-1										
12	8 PFNA	$463>419$		4921.095	0.238		4.85				
13	9 PFOS	$498.9>80.0$		2175.755	0.238		4.89				
14	11 PFDA	$513>469$		4921.095	0.238		5.11				
15	12 N-MeFOSAA	$570>419.1$		8962.057	0.238		5.22				
16	13 N -EtFOSAA	$584.0>419.1$		8962.057	0.238		5.33				
17	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
18	24 13C4-PFOS	$503.0>80$	2175.755	2175.755	0.238	1.000	4.87	4.89	28.7	121	100.0
19	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	8962.057	8962.057	0.238	1.000	5.20	5.22	40.0	168	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	8962.057	8962.057	0.238	1.000	5.20	5.22	40.0	168	100.0
22	-1										
23	14 PFUnA	$563>519$		4921.095	0.238		5.35				
24	16 PFDoA	$613>569$		4921.095	0.238		5.55				
25	17 PFTrDA	$662.9>619$		4921.095	0.238		5.71				
26	18 PFTeDA	$712.9>669$		4921.095	0.238		5.87				
27	19 13C2-PFHxA	$315.1>270$	3855.200	4921.095	0.238	0.759	3.68	3.68	7.83	43.5	103.3
28	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
29	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
30	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
31	23 13C2-PFOA	$415>370$	4921.095	4921.095	0.238	1.000	4.51	4.53	10.0	42.1	100.0
32	21 13C2-PFDA	$515.0>470.0$	5182.419	4921.095	0.238	1.052	5.12	5.11	10.5	42.2	100.1
33	-1										
34	22 d5-N-EtFOSAA	$589.1>419.0$	6885.859	8962.057	0.238	0.831	5.33	5.33	30.7	156	92.5

Dataset: P:|PFAS.PRO\RESULTS\181214P2\1801214P2-77.qld

Last Altered: Tuesday, December 18, 2018 10:36:04 Pacific Standard Time
Printed: Tuesday, December 18, 2018 10:39:47 Pacific Standard Time

Method: P:|PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: P:|PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_77, Date: 15-Dec-2018, Time: 03:13:07, ID: 1803982-07 Source Blank 0.23755, Description: Source Blank

PFBS

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset: P:\PFAS.PRO\RESULTS\181214P2\1801214P2-77.qld

Last Altered: Tuesday, December 18, 2018 10:36:04 Pacific Standard Time Printed: Tuesday, December 18, 2018 10:39:47 Pacific Standard Time

Name: 181214P2_77, Date: 15-Dec-2018, Time: 03:13:07, ID: 1803982-07 Source Blank 0.23755, Description: Source Blank

PFNA

13C2-PFOA
F11:MRM of 1 channel,ES

PFDA

13C2-PFOA
F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$

Dataset: P:\PFAS.PRO\RESULTSI181214P2\1801214P2-77.qld
 Last Altered: Tuesday, December 18, 2018 10:36:04 Pacific Standard Time
 Printed: \quad Tuesday, December 18, 2018 10:39:47 Pacific Standard Time

Name: 181214P2_77, Date: 15-Dec-2018, Time: 03:13:07, ID: 1803982-07 Source Blank 0.23755, Description: Source Blank

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES

PFDoA

13C2-PFOA

PFTrDA
F25:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA
F11:MRM of 1 channel,ES

13C2-PFHxA
F4:MRM of 1 channel,ES $315.1>270$

13C2-PFDA
F16:MRM of 1 channel,ES


```
Dataset: P:\PFAS.PRO\RESULTS\181214P2\1801214P2-77.qld
```

Last Altered: Tuesday, December 18, 2018 10:36:04 Pacific Standard Time
Printed: Tuesday, December 18, 2018 10:39:47 Pacific Standard Time

Name: 181214P2_77, Date: 15-Dec-2018, Time: 03:13:07, ID: 1803982-07 Source Blank 0.23755, Description: Source Blank d5-N-EtFOSAA

F22:MRM of 1 channel,ES$589.1>419.0$

Dataset:	D:IPFAS.PROIRESULTSI181216p11181216P1-65.qld
Last Altered:	Monday, December 17, 2018 09:39:25 Paciific Standard Time
Printed:	Monday, December 17, 2018 09:40:59 Pacific Standard Time

Name: 181216P1_65, Date: 16-Dec-2018, Time: 17:23:27, ID: 1803982-08 DUP-1 0.23495, Description: DUP-1

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	620.834	2954.672	0.235		3.36	3.38	6.03	32.0	
2	2 PFHxA	$313.1>269.1$	19546.803	6369.063	0.235		3.68	3.68	30.7	194	
3	4 PFHpA	$363>319$	11294.667	6369.063	0.235		4.15	4.16	17.7	76.0	
4	6 PFHxS	$399>80.0$	6254.284	2954.672	0.235		4.26	4.27	60.8	299	
5	7 PFOA	$413>369$	28612.393	6369.063	0.235		4.53	4.53	44.9	185	
6	24 13C4-PFOS	$503.0>80$	2954.672	2954.672	0.235	1.000	4.87	4.89	28.7	122	100.0
7	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
8	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
9	24 13C4-PFOS	$503.0>80$	2954.672	2954.672	0.235	1.000	4.87	4.89	28.7	122	100.0
10	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
11	-1										
12	8 PFNA	$463>419$	2497.414	6369.063	0.235		4.85	4.84	3.92	15.7	
13	9 PFOS	$498.9>80.0$	5789.230	2954.672	0.235		4.89	4.89	56.2	268	
14	11 PFDA	$513>469$		6369.063	0.235		5.10				
15	12 N -MeFOSAA	$570>419.1$		13682.341	0.235		5.22				
16	$13 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$		13682.341	0.235		5.32				
17	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
18	24 13C4-PFOS	$503.0>80$	2954.672	2954.672	0.235	1.000	4.87	4.89	28.7	122	100.0
19	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	13682.341	13682.341	0.235	1.000	5.20	5.22	40.0	170	100.0
21	$25 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	13682.341	13682.341	0.235	1.000	5.20	5.22	40.0	170	100.0
22	-1										
23	14 PFUnA	$563>519$		6369.063	0.235		5.35				
24	16 PFDoA	$613>569$		6369.063	0.235		5.55				
25	17 PFTrDA	$662.9>619$		6369.063	0.235		5.71				
26	18 PFTeDA	$712.9>669$		6369.063	0.235		5.87				
27	19 13C2-PFHxA	$315.1>270$	5933.794	6369.063	0.235	0.942	3.68	3.68	9.32	42.1	98.9
28	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
29	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
30	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
31	23 13C2-PFOA	$415>370$	6369.063	6369.063	0.235	1.000	4.51	4.53	10.0	42.6	100.0
32	21 13C2-PFDA	$515.0>470.0$	7822.910	6369.063	0.235	1.301	5.12	5.10	12.3	40.2	94.4
33	-1										
34	$22 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.1>419.0$	13194.084	13682.341	0.235	1.070	5.33	5.32	38.6	153	90.1

Dataset:	D:\PFAS.PRO\RESULTS\181216p1\181216P1-65.qld
Last Altered:	Monday, December 17, 2018 09:39:25 Pacific Standard Time
Printed:	Monday, December 17, 2018 09:40:59 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:\PFAS.PRO\CurveDB\C18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181216P1_65, Date: 16-Dec-2018, Time: 17:23:27, ID: 1803982-08 DUP-1 0.23495, Description: DUP-1

13C4-PFOS

F14:MRM of 1 channel,ES-

| F14:MRM of 1 channel,ES- |
| :---: | :---: |
| $503.0>80$ |
| $13 C 4-P F O S$ |
| 4.89 |
| 2.95 e 3 |
| 61517 |
| bb |
| 34037.34 |

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset:	D:IPFAS.PRO\RESULTS\181216p1\181216P1-65.qld
Last Altered:	Monday, December 17, 2018 09:39:25 Pacific Standard Time
Printed:	Monday, December 17, 2018 09:40:59 Pacific Standard Time

Name: 181216P1_65, Date: 16-Dec-2018, Time: 17:23:27, ID: 1803982-08 DUP-1 0.23495, Description: DUP-1

PFNA
 F12:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

PFDA

13C2-PFOA

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

Dataset:	D:\PFAS.PRO\RESULTS\181216p1\181216P1-65.qld
Last Altered:	Monday, December 17, 2018 09:39:25 Pacific Standard Time
Printed:	Monday, December 17, 2018 09:40:59 Pacific Standard Time

Name: 181216P1_65, Date: 16-Dec-2018, Time: 17:23:27, ID: 1803982-08 DUP-1 0.23495, Description: DUP-1

PFUnA

F18:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

F23:MRM of 3 channels,ES

13C2-PFOA

PFTrDA
F25:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

F26:MRM of 2 channels,ES-

13C2-PFOA

F11:MRM of 1 channel,ES

13C2-PFHxA

F4:MRM of 1 channel,ES $315.1>270$
$1.408 \mathrm{e}+005$

13C2-PFDA

F16:MRM of 1 channel,ES


```
Dataset: D:IPFAS.PRO\RESULTS\181216p1\181216P1-65.qld
```

Last Altered: Monday, December 17, 2018 09:39:25 Pacific Standard Time
Printed: Monday, December 17, 2018 09:40:59 Pacific Standard Time

Name: 181216P1_65, Date: 16-Dec-2018, Time: 17:23:27, ID: 1803982-08 DUP-1 0.23495, Description: DUP-1

d5-N-EtFOSAA

F22:MRM of 1 channel,ES-
589.1 > 419.0

INJECTION INTERNAL STANDARD (IIS) AREAS,

AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

ICAL

Compound 23: 13C2-PFOA

ID	Name	Type
1 IPA	181214P2_1	Analyte
2 ST181214P2-1 PFC CS-4 53718 L 1003	181214P2_2	Analyte
3 ST181214P2-2 PFC CS-3 537 18L1004	181214P2_3	Analyte
4 ST181214P2-3 PFC CS-2 537 18L1005	181214P2_4	Analyte
5 ST181214P2-4 PFC CS-1 537 18L1006	181214P2_5	Analyte
6 ST181214P2-5 PFC CS0 537 18L1007	181214P2_6	Analyte
7 ST181214P2-6 PFC CS1 537 18L1008	181214P2_7	Analyte
8 ST181214P2-7 PFC CS2 537 18L1009	181214P2_8	Analyte
9 ST181214P2-8 PFC CS3 537 18L1010	181214P2_9	Analyte
10 ST181214P2-9 PFC CS4 53718 L 1011	181214P2_10	Analyte
11 ST181214P2-10 PFC CS5 53718 L 1012	181214P2_11	Analyte
12 IPA	181214P2_12	Analyte
13 ST181214P2-1 PFC ICV 537 18L1013	181214P2_13	Analyte
14 IPA	181214P2_14	Analyte
15 B8L0041-BS1 LFB 0.25	181214P2_15	Analyte
16 B8L0041-BSD1 LFBD 0.25	181214P2_16	Analyte
17 B8L0041-BLK1 LRB 0.25	181214P2_17	Analyte
18 1803878-01 WT1811300820MK 0.24527	181214P2_18	Analyte
19 1803878-02 WT1811300845MK 0.25171	181214P2_19	Analyte
20 1803878-03 WT1811300905MK 0.24661	181214P2_20	Analyte
21 1803878-04 WR1811300920MK 0.24349	181214P2_21	Analyte
22 1803878-05 WT1811300950MK 0.25023	181214P2_22	Analyte
23 1803878-06 WT1811301010MK 0.2468	181214P2_23	Analyte
24 1803878-07 WT1811301025MK 0.23971	181214P2_24	Analyte
25 1803878-08 WT1811301040MK 0.2446	181214P2_25	Analyte
26 1803878-09 FB1811301045MK 0.25516	181214P2_26	Analyte
27 1803878-10 WT1811301100MK 0.2446	181214P2_27	Analyte
28 1803878-11 WT1811301120MK 0.2477	181214P2_28	Analyte
29 IPA	181214P2_29	Analyte
30 ST181214P2-11 PFC CS1 537 18L1008	181214P2_30	Analyte

Std. Conc	RT	Area	ICAL Area	Area \%
10			5585.20	0.00
10	4.46	5911.95	5585.20	105.85
10	4.51	5684.62	5585.20	101.78
10	4.52	5210.43	5585.20	93.29
10	4.53	5665.12	5585.20	101.43
10	4.53	5615.40	5585.20	100.54
10	4.53	5543.85	5585.20	99.26
10	4.53	5688.92	5585.20	101.86
10	4.53	5370.97	5585.20	96.16
10	4.53	5522.65	5585.20	98.88
10	4.53	5638.05	5585.20	100.95
10			5585.20	0.00
10	4.53	5915.03	5585.20	105.91
10			5585.20	0.00
10	4.53	5226.29	5585.20	93.57
10	4.52	5617.64	5585.20	100.58
10	4.53	5874.54	5585.20	105.18
10	4.53	5537.68	5585.20	99.15
10	4.53	5009.21	5585.20	89.69
10	4.53	5287.26	5585.20	94.67
10	4.53	4811.91	5585.20	86.15
10	4.53	5890.15	5585.20	105.46
10	4.53	5709.70	5585.20	102.23
10	4.53	5049.10	5585.20	90.40
10	4.53	5658.44	5585.20	101.31
10	4.53	4822.19	5585.20	86.34
10	4.53	5068.40	5585.20	90.75
10	4.53	5403.72	5585.20	96.75
10			5585.20	0.00
10	4.53	5646.00	5585.20	101.09
10				

31 1803878-12 WT1811301140MK 0.24383 32 1803878-13 WT1811301150MK 0.24654 33 1803878-14 WT1811301315MK 0.25211 34 1803878-15 WT1811301330MK 0.24884 35 1803878-16 WR1811301345MK 0.25171 36 1803878-17 WT1811301400MK 0.24492 37 1803878-18 WT1811301415MK 0.24658 38 1803878-19 WSOFT1811301435MK 0.24926 39 1803878-20 WT1811301445MK 0.24626 40 B8L0013-BS1 LFB 0.25

41 B8L0013-BSD1 LFBD 0.25
42 B8L0013-BLK1 LRB 0.25
43 1803817-01 GWNT1811280950KME 0.24493 44 IPA
45 ST181214P2-12 PFC CS3 537 18KL1010 46 1803818-01 GWNT1811280800KME 0.24929 47 1803819-01 GWNT1811280820KME 0.24765 48 1803820-01 GWNT1811280915KME 0.25031 49 1803822-01 GWEF1811281305KME 0.24372 50 1803823-01 GWEF1811281335KME 0.2504 51 1803824-01 GWEF1811281400KME 0.24525 52 1803827-01 GWEF1811271130KER 0.2417 53 1803828-01 GWEF1811271310KER 0.25159 54 1803829-01 GWEF1811271350KER 0.24889 55 1803830-01 GWEF1811271420KER 0.24604 56 IPA

57 ST181214P2-13 PFC CS-1 537 18L1006 58 1803831-01 GWEF1811280900KER 0.24827 59 1803832-01 GWEF1811280940KER 0.24557 60 1803833-01 GWEF1811281020KER 0.24841 61 1803834-01 GWNT1811281050KER 0.24175 62 1803835-01 GWEF1811281140KER 0.25161 63 1803836-01 GWEF1811281220KER 0.24895 64 1803837-01 GWEF1811281400KER 0.24721

181214P2_31 Analyte	10	4.53	5336.76	5585.20	95.55
181214P2_32 Analyte	10	4.53	5291.46	5585.20	94.74
181214P2_33 Analyte	10	4.53	5303.75	5585.20	94.96
181214P2_34 Analyte	10	4.53	5467.86	5585.20	97.90
181214P2_35 Analyte	10	4.53	5273.13	5585.20	94.41
181214P2_36 Analyte	10	4.53	5732.49	5585.20	102.64
181214P2_37 Analyte	10	4.53	5260.92	5585.20	94.19
181214P2_38 Analyte	10	4.53	4847.68	5585.20	86.80
181214P2_39 Analyte	10	4.53	5531.02	5585.20	99.03
181214P2_40 Analyte	10	4.53	5225.98	5585.20	93.57
181214P2_41 Analyte	10	4.53	5092.27	5585.20	91.17
181214P2_42 Analyte	10	4.53	5385.12	5585.20	96.42
181214P2_43 Analyte	10	4.53	5004.40	5585.20	89.60
181214P2_44 Analyte	10			5585.20	0.00
181214P2_45 Analyte	10	4.53	5538.98	5585.20	99.17
181214P2_46 Analyte	10	4.53	5183.46	5585.20	92.81
181214P2_47 Analyte	10	4.53	5013.14	5585.20	89.76
181214P2_48 Analyte	10	4.53	5329.54	5585.20	95.42
181214P2_49 Analyte	10	4.53	5498.72	5585.20	98.45
181214P2_50 Analyte	10	4.53	4835.00	5585.20	86.57
181214P2_51 Analyte	10	4.53	4905.34	5585.20	87.83
181214P2_52 Analyte	10	4.53	4663.98	5585.20	83.51
181214P2_53 Analyte	10	4.53	4778.68	5585.20	85.56
181214P2_54 Analyte	10	4.53	5002.37	5585.20	89.56
181214P2_55 Analyte	10	4.53	4471.79	5585.20	80.06
181214P2_56 Analyte	10			5585.20	0.00
181214P2_57 Analyte	10	4.53	5819.82	5585.20	104.20
181214P2_58 Analyte	10	4.53	5023.35	5585.20	89.94
181214P2_59 Analyte	10	4.53	4827.91	5585.20	86.44
181214P2_60 Analyte	10	4.53	4651.43	5585.20	83.28
181214P2_61 Analyte	10	4.53	4864.03	5585.20	87.09
181214P2_62 Analyte	10	4.53	4996.22	5585.20	89.45
181214P2_63 Analyte	10	4.53	5099.75	5585.20	91.31
181214P2_64 Analyte	10	4.53	5417.83	5585.20	97.00

65 IPA
66 ST181214P2-14 PFC CS1 537 18L1008
67 B8L0076-BS1 LFB 0.25
68 B8L0076-MS1 LFSM 0.25052
69 B8L0076-MSD1 LFSMD 0.24755
70 B8L0076-BLK1 LRB 0.25
71 1803982-01 Big Field-DW-120618 0.25704
72 1803982-02 Big Field-FB-120618 0.2393
73 1803982-03 Behind the Base-DW-120618 0.25217
74 1803982-04 Behind the Base-FB-120618 0.25284
75 1803982-05 Shooting Range1-DW-120618 0.23899
76 1803982-06 Shooting Range1-FB-120618 0.2478
77 1803982-07 Source Blank 0.23755
78 1803982-08 DUP-1 0.23495
79 IPA
80 ST181214P2-15 PFC CS3 537 18KL1010

181214P2_65 Analyte 181214P2_66 Analyte 181214P2_67 Analyte 181214P2_68 Analyte 181214P2_69 Analyte 181214P2_70 Analyte 181214P2_71 Analyte 181214P2_72 Analyte 181214P2_73 Analyte 181214P2_74 Analyte 181214P2_75 Analyte 181214P2_76 Analyte 181214P2_77 Analyte 181214P2_78 Analyte 181214P2_79 Analyte 181214P2_80 Analyte

10			5585.20	0.00
10	4.53	5619.59	5585.20	100.62
10	4.53	4936.00	5585.20	88.38
10	4.53	4877.15	5585.20	87.32
10	4.53	4520.34	5585.20	80.93
10	4.53	5470.45	5585.20	97.95
10	4.53	4880.87	5585.20	87.39
10	4.53	5041.23	5585.20	90.26
10	4.53	4884.11	5585.20	87.45
10	4.53	5283.75	5585.20	94.60
10	4.53	4862.09	5585.20	87.05
10	4.53	4619.16	5585.20	82.70
10	4.53	4921.10	5585.20	88.11
10	4.53	5188.40	5585.20	92.90
10			5585.20	0.00
10	4.53	5145.24	5585.20	92.12

Compound 24: 13C4-PFOS
1 IPA
2 ST181214P2-1 PFC CS-4 537 18L1003
3 ST181214P2-2 PFC CS-3 537 18L1004
4 ST181214P2-3 PFC CS-2 537 18L1005
5 ST181214P2-4 PFC CS-1 537 18L1006
6 ST181214P2-5 PFC CS0 537 18L1007
7 ST181214P2-6 PFC CS1 537 18L1008
8 ST181214P2-7 PFC CS2 537 18L1009
9 ST181214P2-8 PFC CS3 537 18L1010
10 ST181214P2-9 PFC CS4 537 18L1011
11 ST181214P2-10 PFC CS5 537 18L1012
12 IPA
13 ST181214P2-1 PFC ICV 537 18L1013

Name	Type
181214P2_1	Analyte
181214P2_2	Analyte
181214P2_3	Analyte
181214P2_4	Analyte
181214P2_5	Analyte
181214P2_6	Analyte
181214P2_7	Analyte
181214P2_8	Analyte
181214P2_9	Analyte
181214P2_10	Analyte
181214P2_11	Analyte
181214P2_12	Analyte
181214P2_13	Analyte

Std. Conc	RT	Area	ICAL Area	Area \%
28.7			2427.97	0.00
28.7	4.83	2634.12	2427.97	108.49
28.7	4.88	2474.21	2427.97	101.90
28.7	4.89	2396.46	2427.97	98.70
28.7	4.89	2542.02	2427.97	104.70
28.7	4.89	2446.03	2427.97	100.74
28.7	4.89	2327.42	2427.97	95.86
28.7	4.89	2298.85	2427.97	94.68
28.7	4.89	2279.04	2427.97	93.87
28.7	4.89	2383.92	2427.97	98.19
28.7	4.89	2497.65	2427.97	102.87
28.7			2427.97	0.00
28.7	4.89	2399.27	2427.97	98.82

14 IPA
15 B8L0041-BS1 LFB 0.25
16 B8L0041-BSD1 LFBD 0.25
17 B8L0041-BLK1 LRB 0.25
18 1803878-01 WT1811300820МК 0.24527
19 1803878-02 WT1811300845MK 0.25171
20 1803878-03 WT1811300905MK 0.24661
21 1803878-04 WR1811300920MK 0.24349
22 1803878-05 WT1811300950МК 0.25023
23 1803878-06 WT1811301010МК 0.2468
24 1803878-07 WT1811301025MK 0.23971
25 1803878-08 WT1811301040МК 0.2446
26 1803878-09 FB1811301045МК 0.25516
27 1803878-10 WT1811301100МК 0.2446
28 1803878-11 WT1811301120МК 0.2477 29 IPA
30 ST181214P2-11 PFC CS1 537 18L1008
31 1803878-12 WT1811301140MK 0.24383
32 1803878-13 WT1811301150MK 0.24654
33 1803878-14 WT1811301315MK 0.25211
34 1803878-15 WT1811301330МK 0.24884
35 1803878-16 WR1811301345MK 0.25171
36 1803878-17 WT1811301400MK 0.24492
37 1803878-18 WT1811301415MK 0.24658
38 1803878-19 WSOFT1811301435MK 0.24926
39 1803878-20 WT1811301445МK 0.24626
40 B8L0013-BS1 LFB 0.25
41 B8L0013-BSD1 LFBD 0.25
42 B8L0013-BLK1 LRB 0.25
43 1803817-01 GWNT1811280950KME 0.24493 44 IPA
45 ST181214P2-12 PFC CS3 537 18KL1010 46 1803818-01 GWNT1811280800KME 0.24929
47 1803819-01 GWNT1811280820KME 0.24765

181214P2_14 Analyte	28.7			2427.97	0.00
181214P2_15 Analyte	28.7	4.89	2125.22	2427.97	87.53
181214P2_16 Analyte	28.7	4.89	2409.41	2427.97	99.24
181214P2_17 Analyte	28.7	4.89	2363.64	2427.97	97.35
181214P2_18 Analyte	28.7	4.89	2428.64	2427.97	100.03
181214P2_19 Analyte	28.7	4.89	2126.41	2427.97	87.58
181214P2_20 Analyte	28.7	4.89	2356.19	2427.97	97.04
181214P2_21 Analyte	28.7	4.89	2048.85	2427.97	84.39
181214P2_22 Analyte	28.7	4.89	2376.65	2427.97	97.89
181214P2_23 Analyte	28.7	4.89	2296.95	2427.97	94.60
181214P2_24 Analyte	28.7	4.89	2118.64	2427.97	87.26
181214P2_25 Analyte	28.7	4.89	2421.06	2427.97	99.72
181214P2_26 Analyte	28.7	4.89	2015.51	2427.97	83.01
181214P2_27 Analyte	28.7	4.89	2095.58	2427.97	86.31
181214P2_28 Analyte	28.7	4.89	2308.14	2427.97	95.06
181214P2_29 Analyte	28.7			2427.97	0.00
181214P2_30 Analyte	28.7	4.89	2442.44	2427.97	100.60
181214P2_31 Analyte	28.7	4.89	2233.16	2427.97	91.98
181214P2_32 Analyte	28.7	4.89	2045.90	2427.97	84.26
181214P2_33 Analyte	28.7	4.89	2239.89	2427.97	92.25
181214P2_34 Analyte	28.7	4.89	2315.54	2427.97	95.37
181214P2_35 Analyte	28.7	4.89	2305.55	2427.97	94.96
181214P2_36 Analyte	28.7	4.89	2301.16	2427.97	94.78
181214P2_37 Analyte	28.7	4.89	2099.52	2427.97	86.47
181214P2_38 Analyte	28.7	4.89	2095.55	2427.97	86.31
181214P2_39 Analyte	28.7	4.89	2371.07	2427.97	97.66
181214P2_40 Analyte	28.7	4.9	1995.27	2427.97	82.18
181214P2_41 Analyte	28.7	4.89	2424.71	2427.97	99.87
181214P2_42 Analyte	28.7	4.89	2234.81	2427.97	92.04
181214P2_43 Analyte	28.7	4.89	2205.92	2427.97	90.85
181214P2_44 Analyte	28.7			2427.97	0.00
181214P2_45 Analyte	28.7	4.89	2301.24	2427.97	94.78
181214P2_46 Analyte	28.7	4.89	2345.57	2427.97	96.61
181214P2_47 Analyte	28.7	4.89	2122.40	2427.97	87.41

48 1803820-01 GWNT1811280915KME 0.25031	181214P2_48	Analyte	28.7	4.89	2323.69	2427.97	95.70
49 1803822-01 GWEF1811281305KME 0.24372	181214P2_49	Analyte	28.7	4.89	2362.99	2427.97	97.32
50 1803823-01 GWEF1811281335KME 0.2504	181214P2_50	Analyte	28.7	4.89	2244.16	2427.97	92.43
51 1803824-01 GWEF1811281400KME 0.24525	181214P2_51	Analyte	28.7	4.89	2152.84	2427.97	88.67
52 1803827-01 GWEF1811271130KER 0.2417	181214P2_52	Analyte	28.7	4.9	1980.09	2427.97	81.55
53 1803828-01 GWEF1811271310KER 0.25159	181214P2_53	Analyte	28.7	4.89	2102.28	2427.97	86.59
54 1803829-01 GWEF1811271350KER 0.24889	181214P2_54	Analyte	28.7	4.89	2068.58	2427.97	85.20
55 1803830-01 GWEF1811271420KER 0.24604	181214P2_55	Analyte	28.7	4.89	1965.98	2427.97	80.97
56 IPA	181214P2_56	Analyte	28.7			2427.97	0.00
57 ST181214P2-13 PFC CS-1 $53718 L 1006$	181214P2_57	Analyte	28.7	4.89	2342.73	2427.97	96.49
58 1803831-01 GWEF1811280900KER 0.24827	181214P2_58	Analyte	28.7	4.89	2283.05	2427.97	94.03
59 1803832-01 GWEF1811280940KER 0.24557	181214P2_59	Analyte	28.7	4.89	2050.23	2427.97	84.44
60 1803833-01 GWEF1811281020KER 0.24841	181214P2_60	Analyte	28.7	4.89	1922.97	2427.97	79.20
61 1803834-01 GWNT1811281050KER 0.24175	181214P2_61	Analyte	28.7	4.89	1766.54	2427.97	72.76
62 1803835-01 GWEF1811281140KER 0.25161	181214P2_62	Analyte	28.7	4.89	2319.96	2427.97	95.55
63 1803836-01 GWEF1811281220KER 0.24895	181214P2_63	Analyte	28.7	4.89	2176.98	2427.97	89.66
64 1803837-01 GWEF1811281400KER 0.24721	181214P2_64	Analyte	28.7	4.89	2406.51	2427.97	99.12
65 IPA	181214P2_65	Analyte	28.7			2427.97	0.00
66 ST181214P2-14 PFC CS1 $53718 L 1008$	181214P2_66	Analyte	28.7	4.89	2502.48	2427.97	103.07
67 B8L0076-BS1 LFB 0.25	181214P2_67	Analyte	28.7	4.89	2131.33	2427.97	87.78
68 B8L0076-MS1 LFSM 0.25052	181214P2_68	Analyte	28.7	4.89	2096.82	2427.97	86.36
69 B8L0076-MSD1 LFSMD 0.24755	181214P2_69	Analyte	28.7	4.89	1972.86	2427.97	81.26
70 B8L0076-BLK1 LRB 0.25	181214P2_70	Analyte	28.7	4.89	2344.43	2427.97	96.56
71 1803982-01 Big Field-DW-120618 0.25704	181214P2_71	Analyte	28.7	4.89	2089.69	2427.97	86.07
72 1803982-02 Big Field-FB-120618 0.2393	181214P2_72	Analyte	28.7	4.89	2185.81	2427.97	90.03
73 1803982-03 Behind the Base-DW-120618 0.25217	181214P2_73	Analyte	28.7	4.89	1958.74	2427.97	80.67
74 1803982-04 Behind the Base-FB-1206180.25284	181214P2_74	Analyte	28.7	4.89	2069.11	2427.97	85.22
75 1803982-05 Shooting Range1-DW-1206180.23899	181214P2_75	Analyte	28.7	4.89	2259.46	2427.97	93.06
76 1803982-06 Shooting Range1-FB-120618 0.2478	181214P2_76	Analyte	28.7	4.89	1981.12	2427.97	81.60
77 1803982-07 Source Blank 0.23755	181214P2_77	Analyte	28.7	4.89	2175.76	2427.97	89.61
78 1803982-08 DUP-1 0.23495	181214P2_78	Analyte	28.7	4.89	1743.59	2427.97	71.81
79 IPA	181214P2_79	Analyte	28.7			2427.97	0.00
80 ST181214P2-15 PFC CS3 537 18KL1010	181214P2_80	Analyte	28.7	4.89	2270.15	2427.97	93.50

ID	Name	Type
1 IPA	181214P2_1	Analyte
2 ST181214P2-1 PFC CS-4 537 18L1003	181214P2_2	Analyte
3 ST181214P2-2 PFC CS-3 53718 L 1004	181214P2_3	Analyte
4 ST181214P2-3 PFC CS-2 53718 L 1005	181214P2_4	Analyte
5 ST181214P2-4 PFC CS-1 53718 L 1006	181214P2_5	Analyte
6 ST181214P2-5 PFC CSO 53718 L 1007	181214P2_6	Analyte
7 ST181214P2-6 PFC CS1 53718 L 1008	181214P2_7	Analyte
8 ST181214P2-7 PFC CS2 53718 L 1009	181214P2_8	Analyte
9 ST181214P2-8 PFC CS3 53718 L 1010	181214P2_9	Analyte
10 ST181214P2-9 PFC CS4 53718 L 1011	181214P2_10	Analyte
11 ST181214P2-10 PFC CS5 53718 L 1012	181214P2_11	Analyte
12 IPA	181214P2_12	Analyte
13 ST181214P2-1 PFC ICV 53718 L1013	181214P2_13	Analyte
14 IPA	181214P2_14	Analyte
15 B8L0041-BS1 LFB 0.25	181214P2_15	Analyte
16 B8L0041-BSD1 LFBD 0.25	181214P2_16	Analyte
17 B8L0041-BLK1 LRB 0.25	181214P2_17	Analyte
18 1803878-01 WT1811300820MK 0.24527	181214P2_18	Analyte
19 1803878-02 WT1811300845MK 0.25171	181214P2_19	Analyte
20 1803878-03 WT1811300905MK 0.24661	181214P2_20	Analyte
21 1803878-04 WR1811300920MK 0.24349	181214P2_21	Analyte
22 1803878-05 WT1811300950MK 0.25023	181214P2_22	Analyte
23 1803878-06 WT1811301010MK 0.2468	181214P2_23	Analyte
24 1803878-07 WT1811301025MK 0.23971	181214P2_24	Analyte
25 1803878-08 WT1811301040MK 0.2446	181214P2_25	Analyte
26 1803878-09 FB1811301045MK 0.25516	181214P2_26	Analyte
27 1803878-10 WT1811301100МK 0.2446	181214P2_27	Analyte
28 1803878-11 WT1811301120MK 0.2477	181214P2_28	Analyte
29 IPA	181214P2_29	Analyte
30 ST181214P2-11 PFC CS1 $53718 L 1008$	181214P2_30	Analyte

Std. Conc	RT	Area	ICAL Area	Area $\%$
40			10073.75	0.00
40	5.15	10104.30	10073.75	100.30
40	5.21	9958.87	10073.75	98.86
40	5.21	9410.29	10073.75	93.41
40	5.21	10550.82	10073.75	104.74
40	5.21	10229.69	10073.75	101.55
40	5.22	10503.69	10073.75	104.27
40	5.22	10232.06	10073.75	101.57
40	5.22	9633.88	10073.75	95.63
40	5.22	9886.29	10073.75	98.14
40	5.21	10227.56	10073.75	101.53
40			10073.75	0.00
40	5.22	10273.15	10073.75	101.98
40			10073.75	0.00
40	5.21	9115.06	10073.75	90.48
40	5.21	10610.99	10073.75	105.33
40	5.22	10288.84	10073.75	102.14
40	5.22	9636.86	10073.75	95.66
40	5.22	9361.29	10073.75	92.93
40	5.21	10260.58	10073.75	101.85
40	5.22	9284.97	10073.75	92.17
40	5.22	10163.57	10073.75	100.89
40	5.22	9099.76	10073.75	90.33
40	5.22	9455.81	10073.75	93.87
40	5.22	10034.42	10073.75	99.61
40	5.22	8637.17	10073.75	85.74
40	5.22	9137.50	10073.75	90.71
40	5.22	10062.50	10073.75	99.89
40			10073.75	0.00
40	5.22	10105.24	10073.75	100.31

31 1803878-12 WT1811301140MK 0.24383 32 1803878-13 WT1811301150MK 0.24654 33 1803878-14 WT1811301315MK 0.25211 34 1803878-15 WT1811301330MK 0.24884 35 1803878-16 WR1811301345MK 0.25171 36 1803878-17 WT1811301400MK 0.24492 37 1803878-18 WT1811301415MK 0.24658 38 1803878-19 WSOFT1811301435MK 0.24926 39 1803878-20 WT1811301445MK 0.24626 40 B8L0013-BS1 LFB 0.25
41 B8L0013-BSD1 LFBD 0.25
42 B8L0013-BLK1 LRB 0.25
43 1803817-01 GWNT1811280950KME 0.24493 44 IPA
45 ST181214P2-12 PFC CS3 537 18KL1010 46 1803818-01 GWNT1811280800KME 0.24929 47 1803819-01 GWNT1811280820KME 0.24765 48 1803820-01 GWNT1811280915KME 0.25031 49 1803822-01 GWEF1811281305KME 0.24372 50 1803823-01 GWEF1811281335KME 0.2504 51 1803824-01 GWEF1811281400KME 0.24525 52 1803827-01 GWEF1811271130KER 0.2417 53 1803828-01 GWEF1811271310KER 0.25159 54 1803829-01 GWEF1811271350KER 0.24889 55 1803830-01 GWEF1811271420KER 0.24604 56 IPA
57 ST181214P2-13 PFC CS-1 537 18L1006 58 1803831-01 GWEF1811280900KER 0.24827 59 1803832-01 GWEF1811280940KER 0.24557 60 1803833-01 GWEF1811281020KER 0.24841 61 1803834-01 GWNT1811281050KER 0.24175 62 1803835-01 GWEF1811281140KER 0.25161 63 1803836-01 GWEF1811281220KER 0.24895 64 1803837-01 GWEF1811281400KER 0.24721

181214P2_31 Analyte 181214P2_32 Analyte 181214P2_33 Analyte 181214P2_34 Analyte 181214P2_35 Analyte 181214P2_36 Analyte 181214P2_37 Analyte 181214P2_38 Analyte 181214P2_39 Analyte 181214P2_40 Analyte 181214P2_41 Analyte 181214P2_42 Analyte 181214P2_43 Analyte 181214P2_44 Analyte 181214P2_45 Analyte 181214P2_46 Analyte 181214P2_47 Analyte 181214P2_48 Analyte 181214P2_49 Analyte 181214P2_50 Analyte 181214P2_51 Analyte 181214P2_52 Analyte 181214P2_53 Analyte 181214P2_54 Analyte 181214P2_55 Analyte 181214P2_56 Analyte 181214P2_57 Analyte 181214P2_58 Analyte 181214P2_59 Analyte 181214P2_60 Analyte 181214P2_61 Analyte 181214P2_62 Analyte 181214P2_63 Analyte 181214P2_64 Analyte

40	5.22	9196.99	10073.75	91.30
40	5.22	8914.84	10073.75	88.50
40	5.22	10048.46	10073.75	99.75
40	5.22	10086.91	10073.75	100.13
40	5.22	9863.04	10073.75	97.91
40	5.22	9882.39	10073.75	98.10
40	5.22	8840.44	10073.75	87.76
40	5.22	7971.14	10073.75	79.13
40	5.22	9869.17	10073.75	97.97
40	5.22	9035.29	10073.75	89.69
40	5.22	9982.30	10073.75	99.09
40	5.22	10380.13	10073.75	103.04
40	5.22	9294.44	10073.75	92.26
40			10073.75	0.00
40	5.22	10381.91	10073.75	103.06
40	5.22	9738.68	10073.75	96.67
40	5.22	9209.04	10073.75	91.42
40	5.22	9492.97	10073.75	94.23
40	5.22	9703.97	10073.75	96.33
40	5.22	9528.81	10073.75	94.59
40	5.22	9912.99	10073.75	98.40
40	5.22	8355.82	10073.75	82.95
40	5.22	9159.32	10073.75	90.92
40	5.22	9376.98	10073.75	93.08
40	5.22	8137.15	10073.75	80.78
40			10073.75	0.00
40	5.22	11037.77	10073.75	109.57
40	5.22	9411.75	10073.75	93.43
40	5.22	9473.37	10073.75	94.04
40	5.22	8610.31	10073.75	85.47
40	5.22	8353.20	10073.75	82.92
40	5.22	9474.66	10073.75	94.05
40	5.22	9559.01	10073.75	94.89
40	5.22	9774.84	10073.75	97.03
40		90		

65 IPA
66 ST181214P2-14 PFC CS1 537 18L1008
67 B8L0076-BS1 LFB 0.25
68 B8L0076-MS1 LFSM 0.25052
69 B8L0076-MSD1 LFSMD 0.24755
70 B8L0076-BLK1 LRB 0.25
71 1803982-01 Big Field-DW-120618 0.25704
72 1803982-02 Big Field-FB-120618 0.2393
73 1803982-03 Behind the Base-DW-120618 0.25217
74 1803982-04 Behind the Base-FB-120618 0.25284
75 1803982-05 Shooting Range1-DW-120618 0.23899
76 1803982-06 Shooting Range1-FB-120618 0.2478
77 1803982-07 Source Blank 0.23755
78 1803982-08 DUP-1 0.23495
79 IPA
80 ST181214P2-15 PFC CS3 537 18KL1010

181214P2_65 Analyte 181214P2_66 Analyte 181214P2_67 Analyte 181214P2_68 Analyte 181214P2_69 Analyte 181214P2_70 Analyte 181214P2_71 Analyte 181214P2_72 Analyte 181214P2_73 Analyte 181214P2_74 Analyte 181214P2_75 Analyte 181214P2_76 Analyte 181214P2_77 Analyte 181214P2_78 Analyte 181214P2_79 Analyte 181214P2_80 Analyte

CCAL

Compound 23: 13C2-PFOA

Name	Type
181214P2_29	Analyte
181214P2_30	Analyte
181214P2_31	Analyte
181214P2_32	Analyte
181214P2_33 Analyte	
181214P2_34 Analyte	
181214P2_35 Analyte	
181214P2_36 Analyte	
181214P2_37 Analyte	
181214P2_38 Analyte	
181214P2_39 Analyte	
181214P2_40 Analyte	

Std. Conc	RT	Area	CCAL Area	Area \%
10			5646.00	0.00
$\mathbf{1 0}$	4.53	5646.00	5646.00	$\mathbf{1 0 0 . 0 0}$
10	4.53	5336.76	5646.00	94.52
10	4.53	5291.46	5646.00	93.72
10	4.53	5303.75	5646.00	93.94
10	4.53	5467.86	5646.00	96.84
10	4.53	5273.13	5646.00	93.40
10	4.53	5732.49	5646.00	101.53
10	4.53	5260.92	5646.00	93.18
10	4.53	4847.68	5646.00	85.86
10	4.53	5531.02	5646.00	97.96
10	4.53	5225.98	5646.00	92.56

41 B8L0013-BSD1 LFBD 0.25
42 B8L0013-BLK1 LRB 0.25
43 1803817-01 GWNT1811280950KME 0.24493 44 IPA
45 ST181214P2-12 PFC CS3 537 18KL1010

45 ST181214P2-12 PFC CS3 537 18KL1010
46 1803818-01 GWNT1811280800KME 0.24929 47 1803819-01 GWNT1811280820KME 0.24765 48 1803820-01 GWNT1811280915KME 0.25031 49 1803822-01 GWEF1811281305KME 0.24372 50 1803823-01 GWEF1811281335KME 0.2504 51 1803824-01 GWEF1811281400KME 0.24525 52 1803827-01 GWEF1811271130KER 0.2417 53 1803828-01 GWEF1811271310KER 0.25159 54 1803829-01 GWEF1811271350KER 0.24889 55 1803830-01 GWEF1811271420KER 0.24604 56 IPA
57 ST181214P2-13 PFC CS-1 537 18L1006

57 ST181214P2-13 PFC CS-1 537 18L1006
58 1803831-01 GWEF1811280900KER 0.24827 59 1803832-01 GWEF1811280940KER 0.24557 60 1803833-01 GWEF1811281020KER 0.24841 61 1803834-01 GWNT1811281050KER 0.24175 62 1803835-01 GWEF1811281140KER 0.25161 63 1803836-01 GWEF1811281220KER 0.24895 64 1803837-01 GWEF1811281400KER 0.24721 65 IPA
66 ST181214P2-14 PFC CS1 537 18L1008

66 ST181214P2-14 PFC CS1 537 18L1008
67 B8L0076-BS1 LFB 0.25
68 B8L0076-MS1 LFSM 0.25052

181214P2_41 Analyte	10	4.53	5092.27	5646.00	90.19
181214P2_42 Analyte	10	4.53	5385.12	5646.00	95.38
181214P2_43 Analyte	10	4.53	5004.40	5646.00	88.64
181214P2_44 Analyte	10			5646.00	0.00
181214P2_45 Analyte	10	4.53	5538.98	5646.00	98.10
181214P2_45 Analyte	10	4.53	5538.98	5538.98	100.00
181214P2_46 Analyte	10	4.53	5183.46	5538.98	93.58
181214P2_47 Analyte	10	4.53	5013.14	5538.98	90.51
181214P2_48 Analyte	10	4.53	5329.54	5538.98	96.22
181214P2_49 Analyte	10	4.53	5498.72	5538.98	99.27
181214P2_50 Analyte	10	4.53	4835.00	5538.98	87.29
181214P2_51 Analyte	10	4.53	4905.34	5538.98	88.56
181214P2_52 Analyte	10	4.53	4663.98	5538.98	84.20
181214P2_53 Analyte	10	4.53	4778.68	5538.98	86.27
181214P2_54 Analyte	10	4.53	5002.37	5538.98	90.31
181214P2_55 Analyte	10	4.53	4471.79	5538.98	80.73
181214P2_56 Analyte	10			5538.98	0.00
181214P2_57 Analyte	10	4.53	5819.82	5538.98	105.07
181214P2_57 Analyte	10	4.53	5819.82	5819.82	100.00
181214P2_58 Analyte	10	4.53	5023.35	5819.82	86.31
181214P2_59 Analyte	10	4.53	4827.91	5819.82	82.96
181214P2_60 Analyte	10	4.53	4651.43	5819.82	79.92
181214P2_61 Analyte	10	4.53	4864.03	5819.82	83.58
181214P2_62 Analyte	10	4.53	4996.22	5819.82	85.85
181214P2_63 Analyte	10	4.53	5099.75	5819.82	87.63
181214P2_64 Analyte	10	4.53	5417.83	5819.82	93.09
181214P2_65 Analyte	10			5819.82	0.00
181214P2_66 Analyte	10	4.53	5619.59	5819.82	96.56
181214P2_66 Analyte	10	4.53	5619.59	5619.59	100.00
181214P2_67 Analyte	10	4.53	4936.00	5619.59	87.84
181214P2_68 Analyte	10	4.53	4877.15	5619.59	86.79
10					

69 B8L0076-MSD1 LFSMD 0.24755
70 B8L0076-BLK1 LRB 0.25
71 1803982-01 Big Field-DW-120618 0.25704
72 1803982-02 Big Field-FB-120618 0.2393
73 1803982-03 Behind the Base-DW-120618 0.25217
74 1803982-04 Behind the Base-FB-120618 0.25284
75 1803982-05 Shooting Range1-DW-120618 0.23899
76 1803982-06 Shooting Range1-FB-120618 0.2478
77 1803982-07 Source Blank 0.23755
78 1803982-08 DUP-1 0.23495
79 IPA
80 ST181214P2-15 PFC CS3 537 18KL1010

181214P2_69 Analyte 181214P2_70 Analyte 181214P2_71 Analyte 181214P2_72 Analyte 181214P2_73 Analyte 181214P2_74 Analyte 181214P2_75 Analyte 181214P2_76 Analyte 181214P2_77 Analyte 181214P2_78 Analyte 181214P2_79 Analyte 181214P2_80 Analyte

4.53	4520.34	5619.59	80.44
4.53	5470.45	5619.59	97.35
4.53	4880.87	5619.59	86.85
4.53	5041.23	5619.59	89.71
4.53	4884.11	5619.59	86.91
4.53	5283.75	5619.59	94.02
4.53	4862.09	5619.59	86.52
4.53	4619.16	5619.59	82.20
4.53	4921.10	5619.59	87.57
4.53	5188.40	5619.59	92.33
		5619.59	0.00
4.53	5145.24	5619.59	91.56

Compound 24: 13C4-PFOS

ID	ID
29 IPA	
	30 ST181214P2-11 PFC CS1 537 18L1008
	31 1803878-12 WT1811301140MK 0.24383
	32 1803878-13 WT1811301150MK 0.24654
	33 1803878-14 WT1811301315MK 0.25211
	34 1803878-15 WT1811301330MK 0.24884
	35 1803878-16 WR1811301345MK 0.25171
	36 1803878-17 WT1811301400MK 0.24492
	37 1803878-18 WT1811301415MK 0.24658
	38 1803878-19 WSOFT1811301435MK 0.24926
	39 1803878-20 WT1811301445MK 0.24626
	40 B8L0013-BS1 LFB 0.25
	41 B8L0013-BSD1 LFBD 0.25
	42 B8L0013-BLK1 LRB 0.25
	43 1803817-01 GWNT1811280950KME 0.24493
	44 IPA
	45 ST181214P2-12 PFC CS3 537 18KL1010

Std. Conc	RT	Area	CCAL Area	Area \%
28.7			2442.44	0.00
$\mathbf{2 8 . 7}$	4.89	2442.44	$\mathbf{2 4 4 2 . 4 4}$	$\mathbf{1 0 0 . 0 0}$
28.7	4.89	2233.16	2442.44	91.43
28.7	4.89	2045.90	2442.44	83.76
28.7	4.89	2239.89	2442.44	91.71
28.7	4.89	2315.54	2442.44	94.80
28.7	4.89	2305.55	2442.44	94.40
28.7	4.89	2301.16	2442.44	94.22
28.7	4.89	2099.52	2442.44	85.96
28.7	4.89	2095.55	2442.44	85.80
28.7	4.89	2371.07	2442.44	97.08
28.7	4.9	1995.27	2442.44	81.69
28.7	4.89	2424.71	2442.44	99.27
28.7	4.89	2234.81	2442.44	91.50
28.7	4.89	2205.92	2442.44	90.32
28.7			2442.44	0.00
28.7	4.89	2301.24	2442.44	94.22

45 ST181214P2-12 PFC CS3 537 18KL1010
46 1803818-01 GWNT1811280800KME 0.24929 47 1803819-01 GWNT1811280820KME 0.24765 48 1803820-01 GWNT1811280915KME 0.25031 49 1803822-01 GWEF1811281305KME 0.24372 50 1803823-01 GWEF1811281335KME 0.2504 51 1803824-01 GWEF1811281400KME 0.24525 52 1803827-01 GWEF1811271130KER 0.2417 53 1803828-01 GWEF1811271310KER 0.25159 54 1803829-01 GWEF1811271350KER 0.24889 55 1803830-01 GWEF1811271420KER 0.24604 56 IPA
57 ST181214P2-13 PFC CS-1 537 18L1006

57 ST181214P2-13 PFC CS-1 537 18L1006
58 1803831-01 GWEF1811280900KER 0.24827 59 1803832-01 GWEF1811280940KER 0.24557 60 1803833-01 GWEF1811281020KER 0.24841 61 1803834-01 GWNT1811281050KER 0.24175 62 1803835-01 GWEF1811281140KER 0.25161 63 1803836-01 GWEF1811281220KER 0.24895 64 1803837-01 GWEF1811281400KER 0.24721 65 IPA
66 ST181214P2-14 PFC CS1 537 18L1008

66 ST181214P2-14 PFC CS1 537 18L1008
67 B8L0076-BS1 LFB 0.25
68 B8L0076-MS1 LFSM 0.25052
69 B8L0076-MSD1 LFSMD 0.24755
70 B8L0076-BLK1 LRB 0.25
71 1803982-01 Big Field-DW-120618 0.25704
72 1803982-02 Big Field-FB-120618 0.2393
73 1803982-03 Behind the Base-DW-120618 0.25217

181214P2_45	Analyte	28.7	4.89	2301.24	2301.24	100.00
181214P2_46	Analyte	28.7	4.89	2345.57	2301.24	101.93
181214P2_47	Analyte	28.7	4.89	2122.40	2301.24	92.23
181214P2_48	Analyte	28.7	4.89	2323.69	2301.24	100.98
181214P2_49	Analyte	28.7	4.89	2362.99	2301.24	102.68
181214P2_50	Analyte	28.7	4.89	2244.16	2301.24	97.52
181214P2_51	Analyte	28.7	4.89	2152.84	2301.24	93.55
181214P2_52	Analyte	28.7	4.9	1980.09	2301.24	86.04
181214P2_53	Analyte	28.7	4.89	2102.28	2301.24	91.35
181214P2_54	Analyte	28.7	4.89	2068.58	2301.24	89.89
181214P2_55	Analyte	28.7	4.89	1965.98	2301.24	85.43
181214P2_56	Analyte	28.7			2301.24	0.00
181214P2_57	Analyte	28.7	4.89	2342.73	2301.24	101.80
181214P2_57	Analyte	28.7	4.89	2342.73	2342.73	100.00
181214P2_58	Analyte	28.7	4.89	2283.05	2342.73	97.45
181214P2_59	Analyte	28.7	4.89	2050.23	2342.73	87.51
181214P2_60	Analyte	28.7	4.89	1922.97	2342.73	82.08
181214P2_61	Analyte	28.7	4.89	1766.54	2342.73	75.41
181214P2_62	Analyte	28.7	4.89	2319.96	2342.73	99.03
181214P2_63	Analyte	28.7	4.89	2176.98	2342.73	92.92
181214P2_64	Analyte	28.7	4.89	2406.51	2342.73	102.72
181214P2_65	Analyte	28.7			2342.73	0.00
181214P2_66	Analyte	28.7	4.89	2502.48	2342.73	106.82
181214P2_66	Analyte	28.7	4.89	2502.48	2502.48	100.00
181214P2_67	Analyte	28.7	4.89	2131.33	2502.48	85.17
181214P2_68	Analyte	28.7	4.89	2096.82	2502.48	83.79
181214P2_69	Analyte	28.7	4.89	1972.86	2502.48	78.84
181214P2_70	Analyte	28.7	4.89	2344.43	2502.48	93.68
181214P2_71	Analyte	28.7	4.89	2089.69	2502.48	83.50
181214P2_72	Analyte	28.7	4.89	2185.81	2502.48	87.35
181214P2_73	Analyte	28.7	4.89	1958.74	2502.48	78.27

74 1803982-04 Behind the Base-FB-120618 0.25284
75 1803982-05 Shooting Range1-DW-120618 0.23899
76 1803982-06 Shooting Range1-FB-120618 0.2478
77 1803982-07 Source Blank 0.23755
78 1803982-08 DUP-1 0.23495
79 IPA
80 ST181214P2-15 PFC CS3 537 18KL1010

181214P2_74 Analyte 181214P2_75 Analyte 181214P2_76 Analyte 181214P2_77 Analyte 181214P2_78 Analyte 181214P2_79 Analyte 181214P2_80 Analyte

28.7	4.89	2069.11	2502.48	82.68
28.7	4.89	2259.46	2502.48	90.29
28.7	4.89	1981.12	2502.48	79.17
28.7	4.89	2175.76	2502.48	86.94
28.7	4.89	1743.59	2502.48	69.67
28.7			2502.48	0.00
28.7	4.89	2270.15	2502.48	90.72

Compound 25: d3-N-MeFOSAA

ID	Name	Type
29 IPA	181214P2_29	Analyte
30 ST181214P2-11 PFC CS1 537 18L1008	181214P2_30	Analyte
31 1803878-12 WT1811301140MK 0.24383	181214P2_31	Analyte
32 1803878-13 WT1811301150MK 0.24654	181214P2_32	Analyte
33 1803878-14 WT1811301315MK 0.25211	181214P2_33	Analyte
34 1803878-15 WT1811301330MK 0.24884	181214P2_34	Analyte
35 1803878-16 WR1811301345MK 0.25171	181214P2_35	Analyte
36 1803878-17 WT1811301400MK 0.24492	181214P2_36	Analyte
37 1803878-18 WT1811301415MK 0.24658	181214P2_37	Analyte
38 1803878-19 WSOFT1811301435MK 0.24926	181214P2_38	Analyte
39 1803878-20 WT1811301445MK 0.24626	181214P2_39	Analyte
40 B8L0013-BS1 LFB 0.25	181214P2_40	Analyte
41 B8L0013-BSD1 LFBD 0.25	181214P2_41	Analyte
42 B8L0013-BLK1 LRB 0.25	181214P2_42	Analyte
43 1803817-01 GWNT1811280950KME 0.24493	181214P2_43	Analyte
44 IPA	181214P2_44	Analyte
45 ST181214P2-12 PFC CS3 537 18KL1010	181214P2_45	Analyte
45 ST181214P2-12 PFC CS3 537 18KL1010	181214P2_45	Analyte
46 1803818-01 GWNT1811280800KME 0.24929	181214P2_46	Analyte
47 1803819-01 GWNT1811280820KME 0.24765	181214P2_47	Analyte
48 1803820-01 GWNT1811280915KME 0.25031	181214P2_48	Analyte

Std. Conc	RT	Area	CCAL Area	Area \%
40			10105.24	0.00
40	5.22	10105.24	10105.24	$\mathbf{1 0 0 . 0 0}$
40	5.22	9196.99	10105.24	91.01
40	5.22	8914.84	10105.24	88.22
40	5.22	10048.46	10105.24	99.44
40	5.22	10086.91	10105.24	99.82
40	5.22	9863.04	10105.24	97.60
40	5.22	9882.39	10105.24	97.79
40	5.22	8840.44	10105.24	87.48
40	5.22	7971.14	10105.24	78.88
40	5.22	9869.17	10105.24	97.66
40	5.22	9035.29	10105.24	89.41
40	5.22	9982.30	10105.24	98.78
40	5.22	10380.13	10105.24	102.72
40	5.22	9294.44	10105.24	91.98
40			10105.24	0.00
40	5.22	10381.91	10105.24	102.74
40	5.22	10381.91	10381.91	100.00
40	5.22	9738.68	10381.91	93.80
40	5.22	9209.04	10381.91	88.70
40	5.22	9492.97	10381.91	91.44

49 1803822-01 GWEF1811281305KME 0.24372 50 1803823-01 GWEF1811281335KME 0.2504 51 1803824-01 GWEF1811281400KME 0.24525 52 1803827-01 GWEF1811271130KER 0.2417 53 1803828-01 GWEF1811271310KER 0.25159 54 1803829-01 GWEF1811271350KER 0.24889 55 1803830-01 GWEF1811271420KER 0.24604 56 IPA
57 ST181214P2-13 PFC CS-1 537 18L1006

57 ST181214P2-13 PFC CS-1 53718 L1006
58 1803831-01 GWEF1811280900KER 0.24827 59 1803832-01 GWEF1811280940KER 0.24557 60 1803833-01 GWEF1811281020KER 0.24841 61 1803834-01 GWNT1811281050KER 0.24175 62 1803835-01 GWEF1811281140KER 0.25161 63 1803836-01 GWEF1811281220KER 0.24895 64 1803837-01 GWEF1811281400KER 0.24721 65 IPA
66 ST181214P2-14 PFC CS1 537 18L1008

66 ST181214P2-14 PFC CS1 537 18L1008
67 B8L0076-BS1 LFB 0.25
68 B8L0076-MS1 LFSM 0.25052
69 B8L0076-MSD1 LFSMD 0.24755
70 B8L0076-BLK1 LRB 0.25
71 1803982-01 Big Field-DW-120618 0.25704
72 1803982-02 Big Field-FB-120618 0.2393
73 1803982-03 Behind the Base-DW-120618 0.25217 74 1803982-04 Behind the Base-FB-120618 0.25284 75 1803982-05 Shooting Range1-DW-120618 0.23899 76 1803982-06 Shooting Range1-FB-120618 0.2478 77 1803982-07 Source Blank 0.23755 78 1803982-08 DUP-1 0.23495

181214P2_49 Analyte 181214P2_50 Analyte 181214P2_51 Analyte 181214P2_52 Analyte 181214P2_53 Analyte 181214P2_54 Analyte 181214P2_55 Analyte 181214P2_56 Analyte 181214P2_57 Analyte

181214P2_57 Analyte 181214P2_58 Analyte 181214P2_59 Analyte 181214P2_60 Analyte 181214P2_61 Analyte 181214P2_62 Analyte 181214P2_63 Analyte 181214P2_64 Analyte 181214P2_65 Analyte 181214P2_66 Analyte

181214P2_66 Analyte 181214P2_67 Analyte 181214P2_68 Analyte 181214P2_69 Analyte 181214P2_70 Analyte 181214P2_71 Analyte 181214P2_72 Analyte 181214P2_73 Analyte 181214P2_74 Analyte 181214P2_75 Analyte 181214P2_76 Analyte 181214P2_77 Analyte 181214P2_78 Analyte

40	5.22	9703.97	10381.91	93.47
40	5.22	9528.81	10381.91	91.78
40	5.22	9912.99	10381.91	95.48
40	5.22	8355.82	10381.91	80.48
40	5.22	9159.32	10381.91	88.22
40	5.22	9376.98	10381.91	90.32
40	5.22	8137.15	10381.91	78.38
40			10381.91	0.00
40	5.22	11037.77	10381.91	106.32
40	5.22	11037.77	11037.77	100.00
40	5.22	9411.75	11037.77	85.27
40	5.22	9473.37	11037.77	85.83
40	5.22	8610.31	11037.77	78.01
40	5.22	8353.20	11037.77	75.68
40	5.22	9474.66	11037.77	85.84
40	5.22	9559.01	11037.77	86.60
40	5.22	9774.84	11037.77	88.56
40			11037.77	0.00
40	5.22	10007.45	11037.77	90.67
40	5.22	10007.45	10007.45	100.00
40	5.22	9193.47	10007.45	91.87
40	5.22	9498.71	10007.45	94.92
40	5.22	8158.90	10007.45	81.53
40	5.22	9723.78	10007.45	97.17
40	5.22	8802.44	10007.45	87.96
40	5.22	9362.02	10007.45	93.55
40	5.22	8603.45	10007.45	85.97
40	5.22	9847.01	10007.45	98.40
40	5.22	9216.67	10007.45	92.10
40	5.22	8885.12	10007.45	88.79
40	5.22	8962.06	10007.45	89.55
40	5.22	9635.11	10007.45	96.28

79 IPA
80 ST181214P2-15 PFC CS3 537 18KL1010

181214P2_79 Analyte
181214P2_80 Analyte

40
40
10007.45
0.00
$\begin{array}{llll}5.22 & 10239.01 & 10007.45 & 102.31\end{array}$

Dataset:	D:IPFAS.PRO\RESULTS 1181214P2\1801214P2-66.qld
Last Altered:	Saturday, December 15, 2018 11:58:58 Pacific Standard Time
Printed:	Saturday, December 15, 2018 11:59:30 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:|PFAS.PRO\CurveDB\537 Q5 12-14-18 L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_66, Date: 15-Dec-2018, Time: 01:10:09, ID: ST181214P2-14 PFC CS1 537 18L1008, Description: PFC CS1 537 18L1008

Dataset:
D:IPFAS.PROIRESULTSI181214P2\1801214P2-IIS AREAS.qld
Last Altered:
Saturday, December 15, 2018 12:08:21 Pacific Standard Time
Printed:
Saturday, December 15, 2018 12:08:57 Pacific Standard Time

Method: D:IPFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PRO\CurveDB1537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Compound name: PFBS

5	\# Name	ID	Acq. Date	Acg. Tlme
1.4	1 181214P2_1	IPA	14-Dec-18	12:15:34
2.5	2 181214P2_2	ST181214P2-1 PFC CS-4 53718 L 1003	14-Dec-18	12:26:47
3	$3181214 \mathrm{P} 2 \ldots 3$	ST181214P2-2 PFC CS-3 53718 L 1004	14-Dec-18	12:37:57
4	4 181214P2_4	ST181214P2-3 PFC CS-2 537 18L1005	14-Dec-18	12:49:08
5	5181214 P 2 _5	ST181214P2-4 PFC CS-1 53718 L 1006	14-Dec-18	13:00:27
6.	6181214 P 2 _6	ST181214P2-5 PFC CS0 53718 L 1007	14-Dec-18	13:11:39
7	7 181214P2_7	ST181214P2-6 PFC CS1 537 18L1008	14-Dec-18	13:22:50
8.	8 181214P2_8	ST181214P2-7 PFC CS2 53718 L 1009	14-Dec-18	13:34:01
9	9 181214P2_9	ST181214P2-8 PFC CS3 53718 L 1010	14-Dec-18	13:45:12
10.	$10181214 \mathrm{P} 2 \ldots 10$	ST181214P2-9 PFC CS4 53718 L 1011	14-Dec-18	13:56:22
11	11 181214P2_11	ST181214P2-10 PFC CS5 53718 L 1012	14-Dec-18	14:07:33
12	12 181214P2_12	IPA	14-Dec-18	14:18:43
13	13 181214P2_13	ST181214P2-1 PFC ICV 53718 L 1013	14-Dec-18	14:29:54
14	14 181214P2_14	IPA	14-Dec-18	15:18:41
15. \square^{4}	15 181214P2_15	B8L0041-BS1 LFB 0.25	14-Dec-18	15:30:07
16	16 181214P2_16	B8L0041-BSD1 LFBD 0.25	14-Dec-18	15:45:30
17	17 181214P2_17	B8L0041-BLK1 LRB 0.25	14-Dec-18	15:56:47
18.	$18181214 \mathrm{P} 2 _18$	1803878-01 WT1811300820MK 0.24527	14-Dec-18	16:07:57
19.4	19 181214P2_19	1803878-02 WT1811300845MK 0.25171	14-Dec-18	16:19:16
20.4	20 181214P2_20	1803878-03 WT 1811300905MK 0.24661	14-Dec-18	16:30:27
21,	21 181214P2_21	1803878-04 WR1811300920MK 0.24349	14-Dec-18	16:41:47
22	22 181214P2_22	1803878-05 WT1811300950MK 0.25023	14-Dec-18	16:52:59
23.	23 181214P2_23	1803878-06 WT 1811301010MK 0.2468	14-Dec-18	17:04:10
24.	24 181214P2_24	1803878-07 WT1811301025MK 0.23971	14-Dec-18	17:15:20
25.	25 181214P2_25	1803878-08 WT1811301040MK 0.2446	14-Dec-18	17:26:31
26	26 181214P2_26	1803878-09 FB1811301045MK 0.25516	14-Dec-18	17:37:49
27	27 181214P2_27	1803878-10 WT1811301100MK 0.2446	14-Dec-18	17:49:01
28	28 181214P2_28	1803878-11 WT1811301120MK 0.2477	14-Dec-18	18:00:12
29.4	29 181214P2_29	IPA	14-Dec-18	18:11:22
30	30181214 P 2 _30	ST181214P2-11 PFC CS1 $53718 L 1008$	14-Dec-18	18:23:06
31.	31 181214P2_31	1803878-12 WT1811301140MK 0.24383	14-Dec-18	18:34:17
32.4	32 181214P2_32	1803878-13 WT1811301150MK 0.24654	14-Dec-18	18:45:35

Compound name: PFBS

-	\# Name	10	Acq. Date	Acq. Time
33	33181214 P _ 33	1803878-14 WT 1811301315MK 0.25211	14-Dec-18	18:56:47
34 -	34 181214P2_34	1803878-15 WT1811301330MK 0.24884	14-Dec-18	19:08:05
35 - ${ }^{3}$	35181214 P 2 _35	1803878-16 WR1811301345MK 0.25171	14-Dec-18	19:21:16
36	36181214 P 2 _36	1803878-17 WT1811301400MK 0.24492	14-Dec-18	19:32:29
37	37 181214P2_-37	1803878-18 WT1811301415MK 0.24658	14-Dec-18	19:43:39
38	38181214 P 2 _38	1803878-19 WSOFT1811301435MK 0.24926	14-Dec-18	19:54:50
39	$39181214 \mathrm{P} 2 \ldots 39$	1803878-20 WT1811301445MK 0.24626	14-Dec-18	20:06:01
40	40 181214P2_40	B8L0013-BS1 LFB 0.25	14-Dec-18	20:17:20
41	41 181214P2_41	B8L0013-BSD1 LFBD 0.25	14-Dec-18	20:28:31
42	42 181214P2_42	B8L0013-BLK1 LRB 0.25	14-Dec-18	20:39:50
43	43 181214P2_43	1803817-01 GWNT1811280950KME 0.24493	14-Dec-18	20:51:02
44	44 181214P2_44	IPA	14-Dec-18	21:02:20
45	45 181214P2_45	ST181214P2-12 PFC CS3 53718 KL 1010	14-Dec-18	21:13:49
46	46181214 P 2 _46	1803818-01 GWNT1811280800KME 0.24929	14-Dec-18	21:25:00
47	47 181214P2_47	1803819-01 GWNT1811280820KME 0.24765	14-Dec-18	21:36:10
48	48 181214P2_48	1803820-01 GWNT1811280915KME 0.25031	14-Dec-18	21:47:29
49	49 181214P2_49	1803822-01 GWEF1811281305KME 0.24372	14-Dec-18	21:58:41
50	50 181214P2_50	1803823-01 GWEF1811281335KME 0.2504	14-Dec-18	22:09:52
51	51 181214P2_51	1803824-01 GWEF1811281400KME 0.24525	14-Dec-18	22:21:03
52	52 181214P2_52	1803827-01 GWEF1811271130KER 0.2417	14-Dec-18	22:32:22
53	53181214 P 2 _53	1803828-01 GWEF1811271310KER 0.25159	14-Dec-18	22:43:33
54	54 181214P2_54	1803829-01 GWEF 1811271350 KER 0.24889	14-Dec-18	22:54:52
55.	55 181214P2_55	1803830-01 GWEF 1811271420 KER 0.24604	14-Dec-18	23:06:04
56	56181214 P 2 _56	IPA	14-Dec-18	23:17:15
57.	57 181214P2_57	ST181214P2-13 PFC CS-1537 18L1006	14-Dec-18	23:28:41
58	58181214 P 2 _58	1803831-01 GWEF1811280900KER 0.24827	14-Dec-18	23:39:52
59	59 181214P2_59	1803832-01 GWEF1811280940KER 0.24557	14-Dec-18	23:51:11
60	60181214 P 2 _60	1803833-01 GWEF1811281020KER 0.24841	15-Dec-18	00:02:30
61	61 181214P2_61	1803834-01 GWNT1811281050KER 0.24175	15-Dec-18	00:13:42
62	62 181214P2_62	1803835-01 GWEF1811281140KER 0.25161	15-Dec-18	00:25:00
63	63 181214P2_63	1803836-01 GWEF 1811281220 KER 0.24895	15-Dec-18	00:36:12
64	64 181214P2_64	1803837-01 GWEF1811281400KER 0.24721	15-Dec-18	00:47:31
65	65 181214P2_65	IPA	$15-\mathrm{Dec}-18$	00:58:42
66	66181214 P 2 _66	ST181214P2-14 PFC CS1 53718 L 1008	15-Dec-18	01:10:09
67	67 181214P2_67	B8L0076-BS1 LFB 0.25	15-Dec-18	01:21:20
68 ,	$68181214 \mathrm{P2}$ _68	B8L0076-MS1 LFSM 0.25052	15-Dec-18	01:32:30

Work Order 1803982 Revision 2

Dataset: D:IPFAS.PROTRESULTS\181214P2\1801214P2-IIS AREAS.gld
Last Altered: Saturday, December 15, 2018 12:08:21 Pacific Standard Time
Printed:
Saturday, December 15, 2018 12:08:57 Pacific Standard Time

Compound name: PFBS

	\# Name	10	Aca. Date	Acq. lime
69	69 181214P2_69	B8L0076-MSD1 LFSMD 0.24755	15-Dec-18	01:43:41
70.15	70 181214P2_70	B8L0076-BLK1 LRB 0.25	15-Dec-18	01:54:52
71.	71 181214P2_71	1803982-01 Big Field-DW-1206180.25704	15-Dec-18	02:06:03
72.	72 181214P2_72	1803982-02 Big Field-FB-120618 0.2393	15-Dec-18	02:17:13
73	73 181214P2_73	1803982-03 Behind the Base-DW-1206180.25217	15-Dec-18	02:28:24
74	74 181214P2_74	1803982-04 Behind the Base-FB-1206180.25284	15-Dec-18	02:39:35
75	75 181214P2_75	1803982-05 Shooting Range1-DW-1206180.23899	15-Dec-18	02:50:46
76	76 181214P2_76	1803982-06 Shooting Range1-FB-1206180.2478	15-Dec-18	03:01:57
77	77 181214P2_77	1803982-07 Source Blank 0.23755	15-Dec-18	03:13:07
78	78 181214P2_78	1803982-08 DUP-1 0.23495	15-Dec-18	03:24:18
79	79 181214P2_79	IPA	15-Dec-18	03:35:28
80 ,	80181214 P 2 _80	ST181214P2-15 PFC CS3 53718 KL 1010	15-Dec-18	03:46:39

Dataset:

Last Altered: Saturday, December 15, 2018 11:58:58 Pacific Standard Time
Printed: Saturday, December 15, 2018 11:59:30 Pacific Standard Time

Method: D:PPFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06
Calibration: D:IPFAS.PROICurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51
Name: 181214P2_66, Date: 15-Dec-2018, Time: 01:10:09, ID: ST181214P2-14 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

ADONA

13C2-PFOA

Dataset:

Last Altered: Saturday, December 15, 2018 11:58:58 Pacific Standard Time
Printed:
Saturday, December 15, 2018 11:59:30 Pacific Standard Time

Name: 181214P2_66, Date: 15-Dec-2018, Time: 01:10:09, ID: ST181214P2-14 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C4-PFOS

Last Altered: \quad Saturday, December 15, 2018 11:58:58 Pacific Standard Time
Printed:
Saturday, December 15, 2018 11:59:30 Pacific Standard Time

Name: 181214P2_66, Date: 15-Dec-2018, Time: 01:10:09, ID: ST181214P2-14 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

d3-N-MeFOSAA

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

F14:MRM of 1 channel,ES

Dataset:	D:IPFAS.PRO\RESULTS 181214 P2\1801214P2-66.qld
Last Altered:	Saturday, December 15, 2018 11:58:58 Pacific Standard Time
Printed:	Saturday, December 15, 2018 11:59:30 Pacific Standard Time

Name: 181214P2_66, Date: 15-Dec-2018, Time: 01:10:09, ID: ST181214P2-14 PFC CS1 537 18L1008, Description: PFC CS1 537 18L1008

13C2-PFOA

13C2-PFOA
F11:MRM of 1 channel,ES-
$415>370$

PFTeDA

13C2-PFOA

13C2-PFDA

13C3-HFPO-DA
F6:MRM of 1 channel,ES
$332>287$
$9.470 \mathrm{e}+003$

d5-N-EtFOSAA

Dataset:	D:IPFAS.PROIRESULTS 1181214P2\1801214P2-80.qId
Last Altered:	Saturday, December 15, 2018 12:00:42 Pacific Standard Time
Printed:	Saturday, December 15, 2018 12:01:03 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06
Name: 181214P2_80, Date: 15-Dec-2018, Time: 03:46:39, ID: ST181214P2-15 PFC CS3 537 18KL1010, Description: PFC CS3 $53718 \mathrm{KL1010} \quad 70-130 \%$

\qquad

Dataset:	D:IPFAS.PROIRESULTS1181214P211801214P2-IIS AREAS.qld
Last Altered:	Saturday, December 15, 2018 12:08:21 Paciific Standard Time
Printed:	Saturday, December 15, 2018 12:08:57 Pacific Standard Time

Method: D:IPFAS.PRO\MethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PRO\CurveDBI537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Compound name: PFBS

	\# Name		Acq. Date	Acq.Time
1	1 181214P2_1	IPA	14-Dec-18	12:15:34
	2 181214P2_2	ST181214P2-1 PFC CS-4 53718 L 1003	14-Dec-18	12:26:47
3	3 181214P2_3	ST181214P2-2 PFC CS-3 53718 L 1004	14-Dec-18	12:37:57
4	4 181214P2_4	ST181214P2-3 PFC CS-2 53718 L 1005	14-Dec-18	12:49:08
5	5 181214P2_5	ST181214P2-4 PFC CS-1 53718 L 1006	14-Dec-18	13:00:27
6	$6181214 \mathrm{P} 2 _6$	ST181214P2-5 PFC CS0 53718 L 1007	14-Dec-18	13:11:39
	7181214 P 2 _7	ST181214P2-6 PFC CS1 537 18L1008	14-Dec-18	13:22:50
8	8181214 P 2 _ 8	ST181214P2-7 PFC CS2 53718 L 1009	14-Dec-18	13:34:01
9	9 181214P2_9	ST181214P2-8 PFC CS3 53718 L 1010	14-Dec-18	13:45:12
10	10181214 P 2 _10	ST181214P2-9 PFC CS4 53718 L 1011	14-Dec-18	13:56:22
	11 181214P2_11	ST181214P2-10 PFC CS5 53718 L 1012	14-Dec-18	14:07:33
12	12 181214P2_12	IPA	14-Dec-18	14:18:43
13	13 181214P2_13	ST181214P2-1 PFC ICV 53718 L 1013	14-Dec-18	14:29:54
14	14 181214P2_14	IPA	14-Dec-18	15:18:41
15	15 181214P2_15	B8L0041-BS1 LFB 0.25	14-Dec-18	15:30:07
16	16 181214P2_16	B8L0041-BSD1 LFBD 0.25	14-Dec-18	15:45:30
17	17 181214P2_17	B8L0041-BLK1 LRB 0.25	14-Dec-18	15:56:47
18	18 181214P2_18	1803878-01 WT1811300820MK 0.24527	14-Dec-18	16:07:57
19	19 181214P2_19	1803878-02 WT1811300845MK 0.25171	14-Dec-18	16:19:16
20	20 181214P2_20	1803878-03 WT1811300905MK 0.24661	14-Dec-18	16:30:27
21.	21 181214P2_21	1803878-04 WR1811300920MK 0.24349	14-Dec-18	16:41:47
22	22 181214P2_22	1803878-05 WT1811300950MK 0.25023	14-Dec-18	16:52:59
23	23 181214P2_23	1803878-06 WT 1811301010MK 0.2468	14-Dec-18	17:04:10
24	24 181214P2_24	1803878-07 WT1811301025MK 0.23971	14-Dec-18	17:15:20
25	25 181214P2_25	1803878-08 WT1811301040MK 0.2446	14-Dec-18	17:26:31
26	26 181214P2_26	1803878-09 FB1811301045MK 0.25516	14-Dec-18	17:37:49
27	27 181214P2_27	1803878-10 WT1811301100MK 0.2446	14-Dec-18	17:49:01
28	28181214 P 2 _28	1803878-11 WT1811301120MK 0.2477	14-Dec-18	18:00:12
29	29 181214P2_29	IPA	14-Dec-18	18:11:22
	30181214 P 2 _30	ST181214P2-11 PFC CS1 53718 L 1008	14-Dec-18	18:23:06
31.	31 181214P2_31	1803878-12 WT1811301140MK 0.24383	14-Dec-18	18:34:17
32	32 181214P2_32	1803878-13 WT1811301150MK 0.24654	14-Dec-18	18:45:35

Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-IIS AREAS.qId
Last Altered: Saturday, December 15, 2018 12:08:21 Pacific Standard Time
Printed: Saturday, December 15, 2018 12:08:57 Pacific Standard Time

Compound name: PFBS

-	\# Name	10	Acq. Date	Acat Time
33	33181214 P 2 _33	1803878-14 WT1811301315MK 0.25211	14-Dec-18	18:56:47
$34 \quad 4$.	34181214 P 2 _34	1803878-15 WT 1811301330MK 0.24884	14-Dec-18	19:08:05
35	35181214 P 2 _35	1803878-16 WR1811301345MK 0.25171	14-Dec-18	19:21:16
36	$36181214 \mathrm{P} 2^{2} 36$	1803878-17 WT1811301400MK 0.24492	14-Dec-18	19:32:29
37	37 181214P2_37	1803878-18 WT 1811301415MK 0.24658	14-Dec-18	19:43:39
38	38181214 P 2	1803878-19 WSOFT1811301435MK 0.24926	14-Dec-18	19:54:50
39	39181214 P 2 _39	1803878-20 WT1811301445MK 0.24626	14-Dec-18	20:06:01
40	40 181214P2_40	B8L0013-BS1 LFB 0.25	14-Dec-18	20:17:20
41	41 181214P2_41	B8L0013-BSD1 LFBD 0.25	14-Dec-18	20:28:31
42	42 181214P2_42	B8L0013-BLK1 LRB 0.25	14-Dec-18	20:39:50
43	43 181214P2_43	1803817-01 GWNT1811280950KME 0.24493	14-Dec-18	20:51:02
44	44 181214P2_44	IPA	14-Dec-18	21:02:20
45	45 181214P2_45	ST181214P2-12 PFC CS3 $53718 \mathrm{KL1010}$	14-Dec-18	21:13:49
46	46181214 P 2 _46	1803818-01 GWNT1811280800KME 0.24929	14-Dec-18	21:25:00
47	47 181214P2_47	1803819-01 GWNT 1811280820 KME 0.24765	14-Dec-18	21:36:10
48	48181214 P 2 _48	1803820-01 GWNT1811280915KME 0.25031	14-Dec-18	21:47:29
49	49 181214P2_49	1803822-01 GWEF 1811281305 KME 0.24372	14-Dec-18	21:58:41
50	50181214 P 2 _50	1803823-01 GWEF1811281335KME 0.2504	14-Dec-18	22:09:52
51	51 181214P2_51	1803824-01 GWEF1811281400KME 0.24525	14-Dec-18	22:21:03
52.	52 181214P2_52	1803827-01 GWEF1811271130KER 0.2417	14-Dec-18	22:32:22
53	$53181214 \mathrm{P} 2 \ldots 53$	1803828-01 GWEF 1811271310 KER 0.25159	14-Dec-18	22:43:33
54	54181214 P 2 _54	1803829-01 GWEF 1811271350 EER 0.24889	14-Dec-18	22:54:52
55	55 181214P2_55	1803830-01 GWEF 1811271420 KER 0.24604	14-Dec-18	23:06:04
56	56181214 P 2 _56	IPA	14-Dec-18	23:17:15
57	57 181214P2_57	ST181214P2-13 PFC CS-1 537 18L1006	14-Dec-18	23:28:41
58	58181214 P 2 _58	1803831-01 GWEF 1811280900 KER 0.24827	14-Dec-18	23:39:52
59	59 181214P2_59	1803832-01 GWEF1811280940KER 0.24557	14-Dec-18	23:51:11
60	60181214 P 2 _60	1803833-01 GWEF1811281020KER 0.24841	15-Dec-18	00:02:30
61.	61 181214P2_61	1803834-01 GWNT 1811281050 KER 0.24175	15-Dec-18	00:13:42
62	62 181214P2_62	1803835-01 GWEF 1811281140 KER 0.25161	15-Dec-18	00:25:00
63	63 181214P2_63	1803836-01 GWEF 1811281220 KER 0.24895	15-Dec-18	00:36:12
64	64 181214P2_64	1803837-01 GWEF1811281400KER 0.24721	15-Dec-18	00:47:31
65	65 181214P2_65	IPA	15-Dec-18	00:58:42
66	66181214 P 2 _66	ST181214P2-14 PFC CS1 53718 L 1008	15-Dec-18	01:10:09
67	67 181214P2_67	B8L0076-BS1 LFB 0.25	15-Dec-18	01:21:20
68	68.181214 P 2 _68	B8L0076-MS1 LFSM 0.25052	15-Dec-18	01:32:30

Work Order 1803982 Revision 2

Last Altered: Saturday, December 15, 2018 12:08:21 Pacific Standard Time
Printed: Saturday, December 15, 2018 12:08:57 Pacific Standard Time

Compound name: PFBS

	\# Name	ID	Acg.Dale	Acq.Time
69	69181214 P 2 _69	B8L0076-MSD1 LFSMD 0.24755	15-Dec-18	01:43:41
70	70181214 P 2 _70	B8L0076-BLK1 LRB 0.25	15-Dec-18	01:54:52
71	71 181214P2_71	1803982-01 Big Field-DW-1206180.25704	15-Dec-18	02:06:03
72	72 181214P2_72	1803982-02 Big Field-FB-1206180.2393	15-Dec-18	02:17:13
73	73 181214P2_73	1803982-03 Behind the Base-DW-1206180.25217	15-Dec-18	02:28:24
74	74 181214P2_74	1803982-04 Behind the Base-FB-1206180.25284	15-Dec-18	02:39:35
75	75 181214P2_75	1803982-05 Shooting Range1-DW-1206180.23899	15-Dec-18	02:50:46
76 -	76181214 P 2 _76	1803982-06 Shooting Range1-FB-1206180.2478	15-Dec-18	03:01:57
77	77 181214P2_77	1803982-07 Source Blank 0.23755	15-Dec-18	03:13:07
78	78181214 P 2 _78	1803982-08 DUP-10.23495	15-Dec-18	03:24:18
79	79 181214P2_79	IPA	15-Dec-18	03:35:28
80	80181214 P 2 _ 80	ST181214P2-15 PFC CS3 53718 KL 1010	15-Dec-18	03:46:39

Dataset:	D:IPFAS.PROIRESULTS 1181214P211801214P2-80.qld
Last Altered:	Saturday, December 15, 2018 12:00:42 Pacific Standard Time
Printed:	Saturday, December 15, 2018 12:01:03 Pacific Standard Time

Method: D:IPFAS.PRO\MethDB\PFAS DW L14 121418.mdb 14 Dec 2018 11:08:06
Calibration: D:IPFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51
Name: 181214P2_80, Date: 15-Dec-2018, Time: 03:46:39, ID: ST181214P2-15 PFC CS3 537 18KL1010, Description: PFC CS3 53718 KL 1010

Dataset:	D:IPFAS.PRO\RESULTS $1181214 \mathrm{P} 2 \backslash 1801214 \mathrm{P} 2-80 . q$ ld
Last Altered:	Saturday, December 15, 2018 12:00:42 Pacific Standard Time
Printed:	Saturday, December 15, 2018 12:01:03 Pacific Standard Time

Name: 181214P2_80, Date: 15-Dec-2018, Time: 03:46:39, ID: ST181214P2-15 PFC CS3 537 18KL1010, Description: PFC CS3 53718 KL 1010

13C4-PFOS

13C2-PFOA

13C2-PFOA

13C4-PFOS

Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-80.qld
Last Altered: \quad Saturday, December 15, 2018 12:00:42 Pacific Standard Time
Printed: Saturday, December 15, 2018 12:01:03 Pacific Standard Time

Name: 181214P2_80, Date: 15-Dec-2018, Time: 03:46:39, ID: ST181214P2-15 PFC CS3 537 18KL1010, Description: PFC CS3 53718 KL1010

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-80.qld
Last Altered: Saturday, December 15, 2018 12:00:42 Pacific Standard Time
Printed: Saturday, December 15, 2018 12:01:03 Pacific Standard Time

Name: 181214P2_80, Date: 15-Dec-2018, Time: 03:46:39, ID: ST181214P2-15 PFC CS3 537 18KL1010, Description: PFC CS3 $53718 \mathrm{KL1010}$

ICAL

Compound 23: 13C2-PFOA

| ID | | Name | Type | Std. Conc | RT | Area | ICAL Area |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Area \%

32 ST181216P1-12 PFC CS3 537 18KL1010	6	Analyte
33 1803910-03 WT1811301600MK 0.25043	181216P1_44	Aly
34 1803910-04 WT1811301605MK 0.25048	181216P1_47	yt
35 1803910-05 WT1811301635MK 0.24785	181216P1_48	nalyt
36 1803910-06 WR1811301700MK 0.25783	181216P1_49	naly
37 1803910-07 WR1811301715MK 0.25038	181216P1_50	naly
38 1803911-01 GWEF1811300945KER 0.2548	181216P1	Analyte
39 1803912-01 GWEF1811301110KER 0.25299	181216P1_5	Analyte
40 1803913-01 GWEF1812030930KER 0.25245	181216P1_53	naly
41 1803914-01 GWEF1812031030KER 0.2546	181216P1_54	alyte
42 1803915-01 GWEF1812031100KER 0.25251	181216P1_	Analyte
43	181216P1_57	Analyte
44 ST1812	181216P1_58	naly
45 1803916-01 GWNT1812031130KER 0.24821	16P1_56	alyt
46 1803917-01 GWNT1812031200KER 0.24347	181216P1_59	nal
47 1803918-01 GWEF1812031300KER 0.2478	181216P1_60	Anay
48 1803920-01 GWEF1811301010KER 0.24563	181216P1_61	nalyt
49 1803920-02 GWEF1811301020KER 0.24888	181216P1_62	naly
50 1803920-03 GWEF1811301040KER-FD 0.2	181216P1_63	naly
51 1803920-04 FB1811301050KER 0.24822	181216P1_64	naly
52 IPA	181216P1_66	
53 ST181216P1-14 PFC CS1 $53718 L 1008$	181216P1_67	

Compound 24: 13C4-PFOS
ID
1 1803982-08 DUP-1 0.23495
2 B8L0040-BS1 LFB 0.25
3 B8L0040-MS1 LFSM 0.24632
4 B8L0040-MSD1 LFSMD 0.24541
5 B8L0040-BLK1 LRB 0.25
6 1803880-01 WT1812031015RL 0.25121
7 1803880-02 WT1812031045RL 0.24764

Name	Type
181216P1_65	Analyte
181216P1_15	Analyte
181216P1_16	Analyte
181216P1_17	Analyte
181216P1_18	Analyte
181216P1_19	Analyte
181216P1_20	Analyte

Std. Conc RT	Area	ICAL Area	Area \%
28.74 .89	2954.67	3306.04	89.37
28.74 .89	2822.50	3306.04	85.37
28.74 .89	2913.19	3306.04	88.12
28.74 .89	2670.14	3306.04	80.77
28.74 .89	3111.26	3306.04	94.11
28.74 .89	3417.29	3306.04	103.37
28.74 .89	3262.97	3306.04	98.70

8 1803880-03 WT1812031105RL 0.24809	181216P1_21 Analyte
9 1803880-04 WT1812031135RL 0.24029	181216P1_22 Analyte
10 1803880-05 WT1812031150RL 0.23672	181216P1_23 Analyte
11 1803880-06 WT1812031155RL-FD 0.2419	181216P1_24 Analyte
12	181216P1_25
13 1803880-08 WT1812031220RL 0.25142	181216P1_26 Analyte
14 1803880-09 WT1812031350RL 0.24833	181216P1_27 Analyte
15	181216P1_29 Ana
16 ST181216P1-11 PFC CS1 $53718 L 1008$	181216P1_30 Analyte
17 1803880-10 WT1812031410RL 0.24629	181216P1_28 Analyte
18 1803880-11 WT1812031425RL 0.24475	181216P1_31 Analyte
19 1803880-12 WT1812031455RL 0.2461	181216P1_32 Analyte
20 1803885-01 GWNT1811300900GGA 0.2494	181216P1_33 Analyte
21 1803886-01 GWNT1811301100GGA 0.24619	181216P1_34 Analyte
22 1803887-01 GWNT1811301500GGA 0.25105	181216P1_35 Analyte
23 1803888-01 GWNT1811301600GGA 0.2509	181216P1_36 Anal
24 B8L0055-BS1 LFB 0.25	181216P1_37
25 B8L0055-MS1 LFSM 0.25	181216P1_38
26 B8L0055-MSD1 LFSMD 0.2	181216P1_39 Anal
27 B8L0055-BLK1 LRB 0.25	181216P1_40 Analyte
28 1803908-01 GWEF1811300920KER 0.24	181216P1_41 Analyte
29 1803910-01 WT1811301505MK 0.249	181216P1_42 Analyte
30 1803910-02 WT1811301525MK 0.25273	181216P1_43 Analyte
31 IPA	181216P1_45 Analyte
32 ST181216P1-12 PFC CS3 $53718 \mathrm{KL1010}$	181216P1_46 Analyte
33 1803910-03 WT1811301600MK 0.25043	181216P1_44 Analyte
34 1803910-04 WT1811301605MK 0.25048	181216P1_47 Analy
35 1803910-05 WT1811301635MK 0.24785	181216P1_48 Analyte
36 1803910-06 WR1811301700MK 0.25783	181216P1_49 Analy
37 1803910-07 WR1811301715MK 0.25038	181216P1_50 Analyte
38 1803911-01 GWEF1811300945KER 0.25486	181216P1_51 Analyte
39 1803912-01 GWEF1811301110KER 0.25299	181216P1_52 Analyte
40 1803913-01 GWEF1812030930KER 0.25245	181216P1_53
41 1803914-01 GWEF1812031030KER 0.2546	181216P1_54

9 $1803880-04$ WT1812031135RL 0.24029
11 1803880-06 WT1812031155RL-FD 0.24196
12 1803880-07 WT1812031210RL 0.24346
13 1803880-08 WT1812031220RL 0.25142
1803880-09 WT1812031350RL 0.24833

16 ST181216P1-11 PFC CS1 537 18L1008 17 1803880-10 WT1812031410RL 0.24629 18 1803880-11 WT1812031425RL 0.24475 1803880-12 WT1812031455RL0.2461 1803885-01 GWNT1811300900GGA 0.24942 21 1803886-01 GWNT1811301100GGA 0.24619 22 1803887-01 GWNT1811301500GGA 0.25105 24 B8L0055-BS1 LFB 0.25 25 B8L0055-MS1 LFSM 0.25176 26 B8L0055-MSD1 LFSMD 0.24514
27 B8L0055-BLK1 LRB 0.25
28 1803908-01 GWEF1811300920KER 0.24876
1803910-01 WT1811301505MK 0.249 31 IPA
32 ST181216P1-12 PFC CS3 537 18KL1010 33 1803910-03 WT1811301600MK 0.25043 34 1803910-04 WT1811301605MK 0.25048 03910-05 WT1811301635MK 0.2478 37 1803910-07 WR1811301715MK0.25038 38 1803911-01 GWEF1811300945KER 0.25486 39 1803912-01 GWEF1811301110KER 0.25299 41 1803914-01 GWEF1812031030KER 0.2546

28.74 .89	2885.22	3306.04	87.27
28.74 .89	3094.13	3306.04	93.59
28.74 .89	3201.82	3306.04	96.85
28.74 .89	2386.50	3306.04	72.19
28.74 .89	2708.20	3306.04	81.92
28.74 .89	2938.04	3306.04	88.87
28.74 .90	3214.84	3306.04	97.24
28.7			
28.74 .89	3402.61	3306.04	102.92
28.74 .89	3358.39	3306.04	101.58
28.74 .89	3334.50	3306.04	100.86
28.74 .89	3049.89	3306.04	92.25
28.74 .89	2780.82	3306.04	84.11
28.74 .89	2908.48	3306.04	87.97
28.74 .89	2919.35	3306.04	88.30
28.74 .89	3110.44	3306.04	94.08
28.74 .89	2939.30	3306.04	88.91
28.74 .89	2894.70	3306.04	87.56
28.74 .89	3255.83	3306.04	98.48
28.74 .89	3224.24	3306.04	97.53
28.74 .89	2856.95	3306.04	86.42
28.74 .89	3088.73	3306.04	93.43
28.74 .89	3168.07	3306.04	95.83
28.7			
28.74 .89	3196.43	3306.04	96.68
28.74 .89	3379.28	3306.04	102.22
28.74 .89	3366.03	3306.04	101.81
28.74 .89	2766.99	3306.04	83.70
28.74 .89	2992.93	3306.04	90.53
28.74 .89	3286.18	3306.04	99.40
28.74 .89	2922.13	3306.04	88.39
28.74 .89	2876.08	3306.04	86.99
28.74 .89	3077.16	3306.04	93.08
28.74 .89	2876.86	3306.04	87.02

42 1803915-01 GWEF1812031100KER 0.25251	5	te
43 IPA	181216P1_57	Analyte
44 ST181215P2-13 PFC CS-1 53718 L 1006	181216P1_58	Analyte
45 1803916-01 GWNT1812031130KER 0.24821	181216P1_56	Analyte
46 1803917-01 GWNT1812031200KER 0.24347	181216P1_59	Analyte
47 1803918-01 GWEF1812031300KER 0.24784	181216P1_60	Analyte
48 1803920-01 GWEF1811301010KER 0.24563	181216P1_61	Analyte
49 1803920-02 GWEF1811301020KER 0.24888	181216P1_62	nalyte
50 1803920-03 GWEF1811301040KER-FD 0.2	181216P1_63	Analyte
51 1803920-04 FB1811301050KER 0.24822	181216P1_64	Analyte
52 IPA	181216P1_66	Analyte
53 ST181216P1-14 PFC CS1 $53718 L 1008$	181216P1_67	na

28.74 .89	3007.67	3306.04	90.98
28.7			
28.74 .89	3380.41	3306.04	102.25
28.74 .89	2741.81	3306.04	82.93
28.74 .89	3149.72	3306.04	95.27
28.74 .89	3114.82	3306.04	94.22
28.74 .89	3043.51	3306.04	92.06
28.74 .89	2880.69	3306.04	87.13
28.74 .89	2963.13	3306.04	89.63
28.74 .89	2958.92	3306.04	89.50
28.7			
28.74 .89	3179.79	3306.04	96.18

Compound 25: d3-N-MeFOSAA

ID	Name	Type
1 1803982-08 DUP-1 0.23495	181216P1_65	Analyte
2 B8L0040-BS1 LFB 0.25	181216P1_15	Analyte
3 B8L0040-MS1 LFSM 0.24632	181216P1_16	Analyte
4 B8L0040-MSD1 LFSMD 0.24541	181216P1_17	Analyte
5 B8L0040-BLK1 LRB 0.25	181216P1_18	Analyte
6 1803880-01 WT1812031015RL 0.25121	181216P1_19	Analyte
7 1803880-02 WT1812031045RL 0.24764	181216P1_20	Analyte
8 1803880-03 WT1812031105RL 0.24809	181216P1_21	Analyte
9 1803880-04 WT1812031135RL 0.24029	181216P1_22	Analyte
10 1803880-05 WT1812031150RL 0.23672	181216P1_23	Analyte
11 1803880-06 WT1812031155RL-FD 0.24196	181216P1_24	Analyte
12 1803880-07 WT1812031210RL 0.24346	181216P1_25	Analyte
13 1803880-08 WT1812031220RL 0.25142	181216P1_26	Analyte
14 1803880-09 WT1812031350RL 0.24833	181216P1_27	Analyte
15 IPA	181216P1_29	Analyte
16 ST181216P1-11 PFC CS1 53718 L 1008	181216P1_30	Analyte
17 1803880-10 WT1812031410RL 0.24629	181216P1_28	Analy

Std. Conc RT	Area	ICAL Area	Area \%
405.22	13682.34	15074.67	90.76
405.21	12914.75	15074.67	85.67
405.21	14028.22	15074.67	93.06
405.22	12253.90	15074.67	81.29
405.21	14187.09	15074.67	94.11
405.22	14536.18	15074.67	96.43
405.21	14925.84	15074.67	99.01
405.22	12561.38	15074.67	83.33
405.22	14792.81	15074.67	98.13
405.22	15095.69	15074.67	100.14
405.22	11848.52	15074.67	78.60
405.22	12970.89	15074.67	86.04
405.22	14076.73	15074.67	93.38
405.22	14350.82	15074.67	95.20
40			
405.22	15287.08	15074.67	101.41
405.22	15388.76	15074.67	102.08

18 1803880-11 WT1812031425RL 0.24475
19 1803880-12 WT1812031455RL 0.2461
20 1803885-01 GWNT1811300900GGA 0.24942 21 1803886-01 GWNT1811301100GGA 0.24619 22 1803887-01 GWNT1811301500GGA 0.25105 23 1803888-01 GWNT1811301600GGA 0.2509
24 B8L0055-BS1 LFB 0.25
25 B8L0055-MS1 LFSM 0.25176
26 B8L0055-MSD1 LFSMD 0.24514
27 B8L0055-BLK1 LRB 0.25
28 1803908-01 GWEF1811300920KER 0.24876
29 1803910-01 WT1811301505MK 0.249
30 1803910-02 WT1811301525MK 0.25273 31 IPA
32 ST181216P1-12 PFC CS3 537 18KL1010
33 1803910-03 WT1811301600MK 0.25043
34 1803910-04 WT1811301605MK 0.25048
35 1803910-05 WT1811301635MK 0.24785
36 1803910-06 WR1811301700MK 0.25783
37 1803910-07 WR1811301715MK 0.25038
38 1803911-01 GWEF1811300945KER 0.25486
39 1803912-01 GWEF1811301110KER 0.25299
40 1803913-01 GWEF1812030930KER 0.25245 41 1803914-01 GWEF1812031030KER 0.2546
42 1803915-01 GWEF1812031100KER 0.25251 43 IPA
44 ST181215P2-13 PFC CS-1 537 18L1006
45 1803916-01 GWNT1812031130KER 0.24821 46 1803917-01 GWNT1812031200KER 0.24347 47 1803918-01 GWEF1812031300KER 0.24784 48 1803920-01 GWEF1811301010KER 0.24563 49 1803920-02 GWEF1811301020KER 0.24888 1803920-03 GWEF1811301040KER-FD 0.23237 181216P1_63 Analyte 51 1803920-04 FB1811301050KER 0.24822 181216P1_64 Analyte

181216P1_31 Analyte 181216P1_32 Analyte 181216P1_33 Analyte 181216P1_34 Analyte 181216P1_35 Analyte 181216P1_36 Analyte 181216P1_37 Analyte 181216P1_38 Analyte 181216P1_39 Analyte 181216P1_40 Analyte 181216P1_41 Analyte 181216P1_42 Analyte 181216P1_43 Analyte 181216P1_45 Analyte 181216P1_46 Analyte 181216P1_44 Analyte 181216P1_47 Analyte 181216P1_48 Analyte 181216P1_49 Analyte 181216P1_50 Analyte 181216P1_51 Analyte 181216P1_52 Analyte 181216P1_53 Analyte 181216P1_54 Analyte 181216P1_55 Analyte 181216P1_57 Analyte 181216P1_58 Analyte 181216P1_56 Analyte 181216P1_59 Analyte 181216P1_60 Analyte 181216P1_61 Analyte 181216P1_62 Analyte

405.22	14767.83	15074.67	97.96
405.22	13052.25	15074.67	86.58
405.22	13167.43	15074.67	87.35
405.22	14060.50	15074.67	93.27
405.22	12409.76	15074.67	82.32
405.22	12788.97	15074.67	84.84
405.22	13769.03	15074.67	91.34
405.22	13781.86	15074.67	91.42
405.22	14714.50	15074.67	97.61
405.21	14179.21	15074.67	94.06
405.22	12605.98	15074.67	83.62
405.22	14744.17	15074.67	97.81
405.22	14841.76	15074.67	98.45
40			
405.22	14456.60	15074.67	95.90
405.22	14823.44	15074.67	98.33
405.22	14906.44	15074.67	98.88
405.22	12949.55	15074.67	85.90
405.22	13440.90	15074.67	89.16
405.22	14747.31	15074.67	97.83
405.22	13268.44	15074.67	88.02
405.22	12912.54	15074.67	85.66
405.22	14332.89	15074.67	95.08
405.22	13814.63	15074.67	91.64
405.22	15157.96	15074.67	100.55
40			
405.22	15009.51	15074.67	99.57
405.22	13205.39	15074.67	87.60
405.22	14799.91	15074.67	98.18
405.22	14344.06	15074.67	95.15
405.22	13370.34	15074.67	88.69
405.22	12668.87	15074.67	84.04
405.22	13751.66	15074.67	91.22
405.22	13805.90	15074.67	91.58

181216P1_66 Analyte 181216P1_67 Analyte
$\frac{\text { CCAL }}{\text { Compound 23: 13C2-PFOA }}$

16 ST181216P1-11 PFC CS1 537 18L1008

17 1803880-10 WT1812031410RL 0.24629
18 1803880-11 WT1812031425RL 0.24475
19 1803880-12 WT1812031455RL 0.2461
20 1803885-01 GWNT1811300900GGA 0.24942
21 1803886-01 GWNT1811301100GGA 0.24619
22 1803887-01 GWNT1811301500GGA 0.25105
23 1803888-01 GWNT1811301600GGA 0.2509
24 B8L0055-BS1 LFB 0.25
25 B8L0055-MS1 LFSM 0.25176
26 B8L0055-MSD1 LFSMD 0.24514
27 B8L0055-BLK1 LRB 0.25
28 1803908-01 GWEF1811300920KER 0.24876
29 1803910-01 WT1811301505MK 0.249
30 1803910-02 WT1811301525MK 0.25273 31 IPA
32 ST181216P1-12 PFC CS3 537 18KL1010

32 ST181216P1-12 PFC CS3 537 18KL1010

33 1803910-03 WT1811301600MK 0.25043
34 1803910-04 WT1811301605MK 0.25048
35 1803910-05 WT1811301635MK 0.24785
36 1803910-06 WR1811301700MK 0.25783
37 1803910-07 WR1811301715MK 0.25038
38 1803911-01 GWEF1811300945KER 0.25486
39 1803912-01 GWEF1811301110KER 0.25299
40 1803913-01 GWEF1812030930KER 0.25245

Name Type Std. Conc RT

181216P1_30	Analyte	104.53	6657.87	6657.87	100.00
181216P1_28	Analyte	104.53	6824.30	6657.87	102.50
181216P1_31	Analyte	104.53	7157.75	6657.87	107.51
181216P1_32	Analyte	104.53	6363.31	6657.87	95.58
181216P1_33	Analyte	104.53	6437.33	6657.87	96.69
181216P1_34	Analyte	104.53	6619.70	6657.87	99.43
181216P1_35	Analyte	104.53	6199.88	6657.87	93.12
181216P1_36	Analyte	104.53	6172.73	6657.87	92.71
181216P1_37	Analyte	104.53	6883.42	6657.87	103.39
181216P1_38	Analyte	104.53	6139.92	6657.87	92.22
181216P1_39	Analyte	104.53	6809.96	6657.87	102.28
181216P1_40	Analyte	104.53	6685.01	6657.87	100.41
181216P1_41	Analyte	104.53	6253.67	6657.87	93.93
181216P1_42	Analyte	104.53	6864.09	6657.87	103.10
181216P1_43	Analyte	104.53	6698.17	6657.87	100.61
181216P1_45	Analyte	10			
181216P1_46	Analyte	104.53	6966.53	6657.87	104.64
181216P1_46	Analyte	104.53	6966.53	6966.53	100.00
181216P1_44	Analyte	104.53	7173.92	6966.53	102.98
181216P1_47	Analyte	104.53	7113.63	6966.53	102.11
181216P1_48	Analyte	104.53	5711.91	6966.53	81.99
181216P1_49	Analyte	104.53	6904.54	6966.53	99.11
181216P1_50	Analyte	104.53	6715.07	6966.53	96.39
181216P1_51	Analyte	104.53	6333.84	6966.53	90.92
181216P1_52	Analyte	104.53	5976.70	6966.53	85.79
181216P1_53	Analyte	104.53	6859.56	6966.53	98.46

| 41 | $1803914-01$ | GWEF1812031030KER 0.2546 | 181216P1_54 |
| :--- | :--- | :--- | :--- | Analyte

104.53	6356.81	6966.53	91.25
104.53	6774.76	6966.53	97.25
10			
104.53	7345.84	6966.53	105.44
$\mathbf{1 0 4 . 5 3}$	$\mathbf{7 3 4 5 . 8 4}$	$\mathbf{7 3 4 5 . 8 4}$	$\mathbf{1 0 0 . 0 0}$
104.53	5950.17	7345.84	81.00
104.53	6834.14	7345.84	93.03
104.53	6644.32	7345.84	90.45
104.53	6649.34	7345.84	90.52
104.53	6486.74	7345.84	88.30
104.53	6123.95	7345.84	83.37
104.53	6555.71	7345.84	89.24
10			
104.53	6706.82	7345.84	91.30

Compound 24: 13C4-PFOS

ID	
16	ST181216P1-11 PFC CS1 537 18L1008
17	1803880-10 WT1812031410RL 0.24629
18	1803880-11 WT1812031425RL 0.24475
19	1803880-12 WT1812031455RL 0.2461
20	1803885-01 GWNT1811300900GGA 0.24942
21	1803886-01 GWNT1811301100GGA 0.24619
22	1803887-01 GWNT1811301500GGA 0.25105
23	1803888-01 GWNT1811301600GGA 0.2509
24	B8L0055-BS1 LFB 0.25
25	B8L0055-MS1 LFSM 0.25176
26	B8L0055-MSD1 LFSMD 0.24514
27	B8L0055-BLK1 LRB 0.25
28	1803908-01 GWEF1811300920KER 0.24876
29	1803910-01 WT1811301505MK 0.249

Name	Type
181216P1_30	Analyte

Std. Conc RT	Area	CCAL Area	Area \%
28.7 4.89	$\mathbf{3 4 0 2 . 6 1}$	$\mathbf{3 4 0 2 . 6 1}$	$\mathbf{1 0 0 . 0 0}$
28.74 .89	3358.39	3402.61	98.70
28.74 .89	3334.50	3402.61	98.00
28.74 .89	3049.89	3402.61	89.63
28.74 .89	2780.82	3402.61	81.73
28.74 .89	2908.48	3402.61	85.48
28.74 .89	2919.35	3402.61	85.80
28.74 .89	3110.44	3402.61	91.41
28.74 .89	2939.30	3402.61	86.38
28.74 .89	2894.70	3402.61	85.07
28.74 .89	3255.83	3402.61	95.69
28.74 .89	3224.24	3402.61	94.76
28.74 .89	2856.95	3402.61	83.96
28.74 .89	3088.73	3402.61	90.78

30 1803910-02 WT1811301525MK 0.25273	181216P1_43	Analyte	28.74 .89	3168.07	3402.61	93.11
31 IPA	181216P1_45	Analyte	28.7			
32 ST181216P1-12 PFC CS3 537 18KL1010	181216P1_46	Analyte	28.74 .89	3196.43	3402.61	93.94
32 ST181216P1-12 PFC CS3 $53718 \mathrm{KL1010}$	181216P1_46	Analyte	28.74 .89	3196.43	3196.43	100.00
33 1803910-03 WT1811301600MK 0.25043	181216P1_44	Analyte	28.74 .89	3379.28	3196.43	105.72
34 1803910-04 WT1811301605MK 0.25048	181216P1_47	Analyte	28.74 .89	3366.03	3196.43	105.31
35 1803910-05 WT1811301635MK 0.24785	181216P1_48	Analyte	28.74 .89	2766.99	3196.43	86.57
36 1803910-06 WR1811301700MK 0.25783	181216P1_49	Analyte	28.74 .89	2992.93	3196.43	93.63
37 1803910-07 WR1811301715MK 0.25038	181216P1_50	Analyte	28.74 .89	3286.18	3196.43	102.81
38 1803911-01 GWEF1811300945KER 0.25486	181216P1_51	Analyte	28.74 .89	2922.13	3196.43	91.42
39 1803912-01 GWEF1811301110KER 0.25299	181216P1_52	Analyte	28.74 .89	2876.08	3196.43	89.98
40 1803913-01 GWEF1812030930KER 0.25245	181216P1_53	Analyte	28.74 .89	3077.16	3196.43	96.27
41 1803914-01 GWEF1812031030KER 0.2546	181216P1_54	Analyte	28.74 .89	2876.86	3196.43	90.00
42 1803915-01 GWEF1812031100KER 0.25251	181216P1_55	Analyte	28.74 .89	3007.67	3196.43	94.09
43 IPA	181216P1_57	Analyte	28.7			
44 ST181215P2-13 PFC CS-1 537 18L1006	181216P1_58	Analyte	28.74 .89	3380.41	3196.43	105.76
44 ST181215P2-13 PFC CS-1 537 18L1006	181216P1_58	Analyte	28.74 .89	3380.41	3380.41	100.00
45 1803916-01 GWNT1812031130KER 0.24821	181216P1_56	Analyte	28.74 .89	2741.81	3380.41	81.11
46 1803917-01 GWNT1812031200KER 0.24347	181216P1_59	Analyte	28.74 .89	3149.72	3380.41	93.18
47 1803918-01 GWEF1812031300KER 0.24784	181216P1_60	Analyte	28.74 .89	3114.82	3380.41	92.14
48 1803920-01 GWEF1811301010KER 0.24563	181216P1_61	Analyte	28.74 .89	3043.51	3380.41	90.03
49 1803920-02 GWEF1811301020KER 0.24888	181216P1_62	Analyte	28.74 .89	2880.69	3380.41	85.22
50 1803920-03 GWEF1811301040KER-FD 0.23237	181216P1_63	Analyte	28.74 .89	2963.13	3380.41	87.66
51 1803920-04 FB1811301050KER 0.24822	181216P1_64	Analyte	28.74 .89	2958.92	3380.41	87.53
52 IPA	181216P1_66	Analyte	28.7			
53 ST181216P1-14 PFC CS1 537 18L1008	181216P1_67	Analyte	28.74 .89	3179.79	3380.41	94.07

Compound 25: d3-N-MeFOSAA

ID	Name	Type	Std. Conc RT	Area	CCAL Area	Area \%	
16 ST181216P1-11 PFC CS1 537 18L1008	181216P1_30	Analyte	40	5.22	15287.08	15287.08	100.00

17 1803880-10 WT1812031410RL 0.24629	181216P1_28	Analyte	405.22	15388.76	15287.08	100.67
18 1803880-11 WT1812031425RL 0.24475	181216P1_31	Analyte	405.22	14767.83	15287.08	96.60
19 1803880-12 WT1812031455RL 0.2461	181216P1_32	Analyte	405.22	13052.25	15287.08	85.38
20 1803885-01 GWNT1811300900GGA 0.24942	181216P1_33	Analyte	405.22	13167.43	15287.08	86.13
21 1803886-01 GWNT1811301100GGA 0.24619	181216P1_34	Analyte	405.22	14060.50	15287.08	91.98
22 1803887-01 GWNT1811301500GGA 0.25105	181216P1_35	Analyte	405.22	12409.76	15287.08	81.18
23 1803888-01 GWNT1811301600GGA 0.2509	181216P1_36	Analyte	405.22	12788.97	15287.08	83.66
24 B8L0055-BS1 LFB 0.25	181216P1_37	Analyte	405.22	13769.03	15287.08	90.07
25 B8L0055-MS1 LFSM 0.25176	181216P1_38	Analyte	405.22	13781.86	15287.08	90.15
26 B8L0055-MSD1 LFSMD 0.24514	181216P1_39	Analyte	405.22	14714.50	15287.08	96.25
27 B8L0055-BLK1 LRB 0.25	181216P1_40	Analyte	405.21	14179.21	15287.08	92.75
28 1803908-01 GWEF1811300920KER 0.24876	181216P1_41	Analyte	405.22	12605.98	15287.08	82.46
29 1803910-01 WT1811301505MK 0.249	181216P1_42	Analyte	405.22	14744.17	15287.08	96.45
30 1803910-02 WT1811301525MK 0.25273	181216P1_43	Analyte	405.22	14841.76	15287.08	97.09
31 IPA	181216P1_45	Analyte	40			
32 ST181216P1-12 PFC CS3 $53718 \mathrm{KL1010}$	181216P1_46	Analyte	405.22	14456.60	15287.08	94.57
32 ST181216P1-12 PFC CS3 $53718 \mathrm{KL1010}$	181216P1_46	Analyte	405.22	14456.60	14456.60	100.00
33 1803910-03 WT1811301600Мк 0.25043	181216P1_44	Analyte	405.22	14823.44	14456.60	102.54
34 1803910-04 WT1811301605MK 0.25048	181216P1_47	Analyte	405.22	14906.44	14456.60	103.11
35 1803910-05 WT1811301635MK 0.24785	181216P1_48	Analyte	405.22	12949.55	14456.60	89.58
36 1803910-06 WR1811301700MK 0.25783	181216P1_49	Analyte	405.22	13440.90	14456.60	92.97
37 1803910-07 WR1811301715MK 0.25038	181216P1_50	Analyte	405.22	14747.31	14456.60	102.01
38 1803911-01 GWEF1811300945KER 0.25486	181216P1_51	Analyte	405.22	13268.44	14456.60	91.78
39 1803912-01 GWEF1811301110KER 0.25299	181216P1_52	Analyte	405.22	12912.54	14456.60	89.32
40 1803913-01 GWEF1812030930KER 0.25245	181216P1_53	Analyte	405.22	14332.89	14456.60	99.14
41 1803914-01 GWEF1812031030KER 0.2546	181216P1_54	Analyte	405.22	13814.63	14456.60	95.56
42 1803915-01 GWEF1812031100KER 0.25251	181216P1_55	Analyte	405.22	15157.96	14456.60	104.85
43 IPA	181216P1_57	Analyte	405.21	5.27		
44 ST181215P2-13 PFC CS-1 53718 L1006	181216P1_58	Analyte	405.22	15009.51	14456.60	103.82
44 ST181215P2-13 PFC CS-1 537 18L1006	181216P1_58	Analyte	405.22	15009.51	15009.51	100.00
45 1803916-01 GWNT1812031130KER 0.24821	181216P1_56	Analyte	405.22	13205.39	15009.51	87.98
46 1803917-01 GWNT1812031200KER 0.24347	181216P1_59	Analyte	405.22	14799.91	15009.51	98.60

47 1803918-01 GWEF1812031300KER 0.24784	181216P1_60	Analyte	405.22	14344.06	15009.51	95.57
48 1803920-01 GWEF1811301010KER 0.24563	181216P1_61	Analyte	405.22	13370.34	15009.51	89.08
49 1803920-02 GWEF1811301020KER 0.24888	181216P1_62	Analyte	405.22	12668.87	15009.51	84.41
50 1803920-03 GWEF1811301040KER-FD 0.23237	181216P1_63	Analyte	405.22	13751.66	15009.51	91.62
51 1803920-04 FB1811301050KER 0.24822	181216P1_64	Analyte	405.22	13805.90	15009.51	91.98
52 IPA	181216P1_66	Analyte	40			
53 ST181216P1-14 PFC CS1 537 18L1008	181216P1_67	Analyte	405.22	14391.33	15009.51	95.88

LC Calibration Standards Review Checklist \qquad

Full Mass Cal. Date: $12 / 1 / 18 / 18$

Roviowed By: $\frac{\operatorname{dn} 1.2 / \mathrm{f} / \mathrm{lu}}{\text { Inittals/Date }}$

Vista Analytical Laboratory

Dataset:
D:IPFAS.PRO\RESULTS\181216p11181216P1-11.qld
Last Altered:
Monday, December 17, 2018 09:15:36 Pacific Standard Time
Printed: Monday, December 17, 2018 09:16:04 Pacific Standard Time

Name: 181216P1_30, Date: 16-Dec-2018, Time: 20:11:33, ID: ST181216P1-11 PFC CS1 537 18L1008, Description: PFC CS1 53718 L1008

Quantify §ompound Summary Report

Vista Analytical Laboratory

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

 Calibration: D:IPFAS.PRO\CurveDB\C18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29
Compound name: PFBS

Vista Analytical Laboratory
Dataset:
Untitled
Last Altered: Monday, December 17, 2018 09:18:16 Pacific Standard Time
Printed: Monday, December 17, 2018 09:18:42 Pacific Standard Time

Compound name: PFBS

	\# Name	1 D	Acq. Date	Acq. Time
33	33181216 P 1 _ 32	1803880-12 WT 1812031455RL 0.2461	16-Dec-18	20:45:22
34	34 181216P1_33	1803885-01 GWNT1811300900GGA 0.24942	16-Dec-18	20:56:32
35	35 181216P1_34	1803886-01 GWNT1811301100GGA 0.24619	16-Dec-18	21:07:43
36	36 181216P1_35	1803887-01 GWNT1811301500GGA 0.25105	16-Dec-18	21:18:53
37	37 181216P1_36	1803888-01 GWNT1811301600GGA 0.2509	16-Dec-18	21:30:04
38	$38181216 \mathrm{P} 1 \ldots 37$	B8L0055-BS1 LFB 0.25	16-Dec-18	21:41:15
39	39 181216P1_38	B8L0055-MS1 LFSM 0.25176	16-Dec-18	21:52:25
40	40 181216P1_39	B8L0055-MSD1 LFSMD 0.24514	16-Dec-18	22:03:36
41	41 181216P1_40	B8L0055-BLK1 LRB 0.25	16-Dec-18	22:14:47
42	42 181216P1_41	1803908-01 GWEF 1811300920 KER 0.24876	16-Dec-18	22:25:58
43	43 181216P1_42	1803910-01 WT1811301505MK 0.249	16-Dec-18	22:37:09
44	44 181216P1_43	1803910-02 WT1811301525MK 0.25273	16-Dec-18	22:48:19
45	45 181216P1_45	IPA	16-Dec-18	22:59:30
46	46 181216P1_46	ST181216P1-12 PFC CS3 53718 KL 1010	16-Dec-18	23:10:40
47	47 181216P1_44	1803910-03 WT 1811301600MK 0.25043	16-Dec-18	23:21:52
48	48 181216P1_47	1803910-04 WT 1811301605MK 0.25048	16-Dec-18	23:33:18
49	49 181216P1_48	1803910-05 WT1811301635MK 0.24785	16-Dec-18	23:44:29
50	50 181216P1_49	1803910-06 WR1811301700MK 0.25783	16-Dec-18	23:55:48
51	51 181216P1_50	1803910-07 WR1811301715MK 0.25038	17-Dec-18	00:07:00
52	52 181216P1_51	1803911-01 GWEF1811300945KER 0.25486	17-Dec-18	00:18:10
53	53 181216P1_52	1803912-01 GWEF 1811301110 KER 0.25299	17-Dec-18	00:29:20
54	54 181216P1_53	1803913-01 GWEF 1812030930KER 0.25245	17-Dec-18	00:40:32
55	55 181216P1_54	1803914-01 GWEF 1812031030 KER 0.2546	17-Dec-18	00:51:42
56	56 181216P1_55	1803915-01 GWEF 1812031100 KER 0.25251	17-Dec-18	01:02:53
57	57 181216P1_57	IPA 6.p) $\mu_{\text {JT, } 217 / 18}$	17-Dec-18	01:14:04
58	58 181216P1_58	ST18121蚛2-13 PFC CS-1537 18L1006	17-Dec-18	01:25:14
59	59 181216P1_56	1803916-01 GWNT1812031130KER 0.24821	17-Dec-18	01:36:25
60	60 181216P1_59	1803917-01 GWNT1812031200KER 0.24347	17-Dec-18	01:47:52
51	61 181216P1_60	1803918-01 GWEF 1812031300 KER 0.24784	17-Dec-18	01:59:02
62	62 181216P1_61	1803920-01 GWEF 1811301010 KER 0.24563	17-Dec-18	02:10:13
63	63 181216P1_62	1803920-02 GWEF 1811301020 KER 0.24888	17-Dec-18	02:21:24
64	64 181216P1_63	1803920-03 GWEF1811301040KER-FD 0.23237	17-Dec-18	02:32:35
65	65 181216P1_64	1803920-04 FB1811301050KER 0.24822	17-Dec-18	02:43:45
66	66 181216P1_66	IPA	17-Dec-18	02:54:56
67	67 181216P1_67	ST181216P1-14 PFC CS1 53718 L 1008	17-Dec-18	03:06:07

Dataset:

D:IPFAS.PROIRESULTS\181216p1\181216P1-11.qld
Last Altered: Monday, December 17, 2018 09:15:36 Pacific Standard Time
Printed:
Monday, December 17, 2018 09:16:04 Pacific Standard Time

Method: D:\PFAS.pro\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:IPFAS.PRO\CurveDB\C18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181216P1_30, Date: 16-Dec-2018, Time: 20:11:33, ID: ST181216P1-11 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

Dataset: D:IPFAS.PROIRESULTS\181216p1\181216P1-11.qld

Last Altered: Monday, December 17, 2018 09:15:36 Pacific Standard Time
Printed:
Monday, December 17, 2018 09:16:04 Pacific Standard Time

Name: 181216P1_30, Date: 16-Dec-2018, Time: 20:11:33, ID: ST181216P1-11 PFC CS1 537 18L1008, Description: PFC CS1 537 18L1008

Dataset:	D:IPFAS.PROIRESULTS\181216p1\181216P1-11.qld
Last Altered:	Monday, December 17, 2018 09:15:36 Pacific Standard Time
Printed:	Monday, December 17, 2018 09:16:04 Pacific Standard Time

Name: 181216P1_30, Date: 16-Dec-2018, Time: 20:11:33, ID: ST181216P1-11 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

13C2-PFOA

13C2-PFOA

PFTrDA

13C2-PFOA

13C2-PFOA

13C2-PFHxA

13C2-PFDA

Dataset: D:IPFAS.PRO\RESULTS\181216p1\181216P1-11.qld

Last Altered:	Monday, December 17, 2018 09:15:36 Pacific Standard Time
Printed:	Monday, December 17, 2018 09:16:04 Pacific Standard Time

Name: 181216P1_30, Date: 16-Dec-2018, Time: 20:11:33, ID: ST181216P1-11 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

d5-N-EtFOSAA

F22:MRM of 1 channel,ES-

ICAL

50\%-150\%

Compound 23: 13C2-PFOA

ID	Name	Type	Std. Ci RT	Area	ICAL Area	Area \%
1 IPA	181217P1_1	Analyte	10			
2 ST181217P1-1 PFC CS-1 $53718 L 1006$	181217P1_2	Analyte	104.40	7727.13	7179.65	107.63
3 IPA	181217P1_3	Analyte	10		7179.65	
4 B8L0106-BS1 LFB 0.25	181217P1_4	Analyte	104.48	8158.68	7179.65	113.64
5 B8L0106-BSD1 LFBD 0.25	181217P1_5	Analyte	104.48	7472.71	7179.65	104.08
6 B8L0106-BLK1 LRB 0.25	181217P1_6	Analyte	104.48	7523.75	7179.65	104.79
7 1804036-01 WI-CV-1RW90-EFF201-121118 0.24997	181217P1_7	Analyte	104.48	8238.25	7179.65	114.74
8 1804036-02 WI-CV-1RW90-MID202-1211180.24972	181217P1_8	Analyte	104.48	7967.87	7179.65	110.98
9 1804036-03 WI-CV-1RW90-MID201-1211180.25155	181217P1_9	Analyte	104.48	6434.18	7179.65	89.62
10 1804036-04 WI-CV-1RW90-INF201-1211180.24833	181217P1_10	Analyte	104.48	7455.09	7179.65	103.84
11 1804036-05 WI-CV-1RW90P-MID202-121118 0.2512	181217P1_11	Analyte	104.48	7400.35	7179.65	103.07
12 1804036-06 WI-CV-1FB90-121118 0.25038	181217P1_12	Analyte	104.48	8530.60	7179.65	118.82
13 B8L0115-BS1 LFB 0.25	181217P1_13	Analyte	104.48	6951.73	7179.65	96.83
14 B8L0115-MS1 LFSM 0.24075	181217P1_14	Analyte	104.48	7536.93	7179.65	104.98
15 B8L0115-MSD1 LFSMD 0.23834	181217P1_15	Analyte	104.48	8053.38	7179.65	112.17
16 B8L0115-BLK1 LRB 0.25	181217P1_16	Analyte	104.48	8671.77	7179.65	120.78
17 1804038-01 WF-RW10-12180.24003	181217P1_17	Analyte	104.48	7157.30	7179.65	99.69
18 1804038-02 WF-FB10-1218 0.23544	181217P1_18	Analyte	104.48	7623.54	7179.65	106.18
19 1804038-03 WF-RW10PP-1218 0.20175	181217P1_19	Analyte	104.48	8048.59	7179.65	112.10
20 1804038-04 WF-RW06-12180.23625	181217P1_20	Analyte	104.48	8095.06	7179.65	112.75
21 1804038-05 WF-FB06-1218 0.23467	181217P1_21	Analyte	104.48	9704.37	7179.65	135.16
22 IPA	181217P1_22	Analyte	10		7179.65	
23 B8L0076-MS1@10X LFSM 0.25052	181217P1_23	Analyte	104.48	25.33	7179.65	0.35 DILUTION
24 B8L0076-MSD1@10 XLFSMD 0.24755	181217P1_24	Analyte	104.48	752.36	7179.65	10.48 DILUTION
25 IPA	181217P1_25	Analyte	10		7179.65	
26 B8L0076-MS1 LFSM 0.25052	181217P1_26	Analyte	104.48	7166.54	7179.65	99.82
27 B8L0076-MSD1 LFSMD 0.24755	181217P1_27	Analyte	104.48	7051.19	7179.65	98.21
28 IPA	181217P1_28	Analyte	10		7179.65	
29 ST181217P1-2 PFC CS1 $53718 L 1008$	181217P1_29	Analyte	104.48	7874.09	7179.65	109.67
30 IPA	181217P1_30	Analyte	10		7179.65	
31 B8L0085-MS1 LFSM 0.24534	181217P1_31	Analyte	104.48	7381.70	7179.65	102.81

32 B8L0085-MSD1 LFSMD 0.25203	181217P1_32	Analyte	10	4.48	7324.79	7179.65	102.02
33 B8L0085-BS1 LFB 0.25	181217P1_33	Analyte	10	4.48	7184.75	7179.65	100.07
34 B8L0085-BLK1 LRB 0.25	181217P1_34	Analyte	10	4.48	7300.49	7179.65	101.68
35 1803919-01 GWIN181203144OKER 0.23972	181217P1_35	Analyte	10	4.48	7495.93	7179.65	104.41
36 1803954-01 GWNT1812040840KME 0.23957	181217P1_36	Analyte	10	4.48	7310.78	7179.65	101.83
37 1803956-01 GWNT1812041030KME 0.25974	181217P1_37	Analyte	10	4.48	7580.09	7179.65	105.58
38 1803957-01 GWNT1812041400KME 0.2509	181217P1_38	Analyte	10	4.48	7504.24	7179.65	104.52
39 1803957-02 GWNT1812041410KME-FD 0.25054	181217P1_39	Analyte	10	4.48	7614.33	7179.65	106.05
40 1803957-03 FB1812041415KME 0.25712	181217P1_40	Analyte	10	4.48	7196.62	7179.65	100.24
41 1803958-01 GWNT1812041440KME 0.25827	181217P1_41	Analyte	10	4.48	7553.79	7179.65	105.21
42 1803959-01 GWNT1812051015KME 0.25294	181217P1_42	Analyte	10	4.48	6842.36	7179.65	95.30
43 1803960-01 GWNT1812051120KME 0.26071	181217P1_43	Analyte	10	4.48	7508.91	7179.65	104.59
44 1803961-01 GWNT1812051305KME 0.25334	181217P1_44	Analyte	10	4.48	7388.72	7179.65	102.91
45 IPA	181217P1_45	Analyte	10			7179.65	
46 ST181217P1-3 PFC CS3 53718 L1010	181217P1_46	Analyte	10	4.48	7604.05	7179.65	105.91
47 IPA	181217P1_47	Analyte	10			7179.65	
48 1803962-01 GWEF1812051355KME 0.26061	181217P1_48	Analyte	10	4.48	7496.61	7179.65	104.41
49 1803963-01 GWNT1812051530KME 0.25721	181217P1_49	Analyte	10	4.48	7305.28	7179.65	101.75
50 1803994-01 GWEF1812040910KER 0.23798	181217P1_50	Analyte	10	4.48	7597.90	7179.65	105.83
51 1803995-01 GWIN1812040940KER 0.23659	181217P1_51	Analyte	10	4.48	7345.22	7179.65	102.31
52 1803996-01 GWEF1812041050KER 0.24126	181217P1_52	Analyte	10	4.48	7383.88	7179.65	102.84
53 1803997-01 GWEF1812041120KER 0.25766	181217P1_53	Analyte	10	4.48	7263.46	7179.65	101.17
54 IPA	181217P1_54	Analyte	10			7179.65	
55 ST181217P1-4 PFC CS-1 $53718 L 1006$	181217P1_55	Analyte	10	4.48	7800.55	7179.65	108.65
56 IPA	181217P1_56	Analyte	10				

Compound 24: 13C4-PFOS

ID	Name	Type	td. Cor RT	Area	ICAL Area	Area \%
1 IPA	181217P1_1	Analyte	28.7			
2 ST181217P1-1 PFC CS-1 53718 L 1006	181217P1_2	Analyte	28.74 .78	3722.08	3306.04	112.58
3 IPA	181217P1_3	Analyte	28.7		3306.04	
4 B8L0106-BS1 LFB 0.25	181217P1_4	Analyte	28.74 .85	3750.88	3306.04	113.46
5 B8L0106-BSD1 LFBD 0.25	181217P1_5	Analyte	28.74 .85	3480.75	3306.04	105.28

6 B8LO106-BLK1 LRB 0.25	181217P1_6	Analyte	28.7	4.85	3357.51	3306.04	101.56
7 1804036-01 WI-CV-1RW90-EFF201-1211180.24997	181217P1_7	Analyte	28.7	4.85	3900.16	3306.04	117.97
8 1804036-02 WI-CV-1RW90-MID202-121118 0.24972	181217P1_8	Analyte	28.7	4.85	3824.78	3306.04	115.69
9 1804036-03 WI-CV-1RW90-MID201-1211180.25155	181217P1_9	Analyte	28.7	4.85	2893.77	3306.04	87.53
10 1804036-04 WI-CV-1RW90-INF201-121118 0.24833	181217P1_10	Analyte	28.7	4.86	3567.93	3306.04	107.92
11 1804036-05 WI-CV-1RW90P-MID202-121118 0.2512	181217P1_11	Analyte	28.7	4.86	3457.95	3306.04	104.59
12 1804036-06 WI-CV-1FB90-121118 0.25038	181217P1_12	Analyte	28.7	4.86	4209.13	3306.04	127.32
13 B8L0115-BS1 LFB 0.25	181217P1_13	Analyte	28.7	4.86	3448.91	3306.04	104.32
14 B8L0115-MS1 LFSM 0.24075	181217P1_14	Analyte	28.7	4.86	3391.27	3306.04	102.58
15 B8L0115-MSD1 LFSMD 0.23834	181217P1_15	Analyte	28.7	4.86	3761.06	3306.04	113.76
16 B8L0115-BLK1 LRB 0.25	181217P1_16	Analyte	28.7	4.86	4146.78	3306.04	125.43
17 1804038-01 WF-RW10-12180.24003	181217P1_17	Analyte	28.7	4.86	3389.43	3306.04	102.52
18 1804038-02 WF-FB10-1218 0.23544	181217P1_18	Analyte	28.7	4.86	3587.16	3306.04	108.50
19 1804038-03 WF-RW1OPP-12180.20175	181217P1_19	Analyte	28.7	4.86	3760.10	3306.04	113.73
20 1804038-04 WF-RW06-12180.23625	181217P1_20	Analyte	28.7	4.86	3675.60	3306.04	111.18
21 1804038-05 WF-FB06-1218 0.23467	181217P1_21	Analyte	28.7	4.86	4598.77	3306.04	139.10
22 IPA	181217P1_22	Analyte	28.7			3306.04	
23 B8L0076-MS1@10X LFSM 0.25052	181217P1_23	Analyte	28.7	4.86	17.31	3306.04	0.52 DILUTION
24 B8L0076-MSD1@10 XLFSMD 0.24755	181217P1_24	Analyte	28.7	4.86	332.55	3306.04	10.06 DILUTION
25 IPA	181217P1_25	Analyte	28.7			3306.04	
26 B8L0076-MS1 LFSM 0.25052	181217P1_26	Analyte	28.7	4.86	3388.70	3306.04	102.50
27 B8L0076-MSD1 LFSMD 0.24755	181217P1_27	Analyte	28.7	4.86	3202.88	3306.04	96.88
28 IPA	181217P1_28	Analyte	28.7			3306.04	
29 ST181217P1-2 PFC CS1 53718 L1008	181217P1_29	Analyte	28.7	4.86	3710.81	3306.04	112.24
30 IPA	181217P1_30	Analyte	28.7			3306.04	0.00
31 B8L0085-MS1 LFSM 0.24534	181217P1_31	Analyte	28.7	4.86	3688.18	3306.04	111.56
32 B8L0085-MSD1 LFSMD 0.25203	181217P1_32	Analyte	28.7	4.86	3499.27	3306.04	105.84
33 B8L0085-BS1 LFB 0.25	181217P1_33	Analyte	28.7	4.86	3504.23	3306.04	105.99
34 B8L0085-BLK1 LRB 0.25	181217P1_34	Analyte	28.7	4.86	3456.05	3306.04	104.54
35 1803919-01 GWIN1812031440KER 0.23972	181217P1_35	Analyte	28.7	4.86	3848.59	3306.04	116.41
36 1803954-01 GWNT1812040840KME 0.23957	181217P1_36	Analyte	28.7	4.86	3406.83	3306.04	103.05
37 1803956-01 GWNT1812041030KME 0.25974	181217P1_37	Analyte	28.7	4.86	3555.33	3306.04	107.54
38 1803957-01 GWNT1812041400KME 0.2509	181217P1_38	Analyte	28.7	4.86	3669.75	3306.04	111.00
39 1803957-02 GWNT1812041410KME-FD 0.25054	181217P1_39	Analyte	28.7	4.86	3532.69	3306.04	106.86

40 1803957-03 FB1812041415KME 0.25712
41 1803958-01 GWNT1812041440KME 0.25827
42 1803959-01 GWNT1812051015KME 0.25294
43 1803960-01 GWNT1812051120KME 0.26071
44 1803961-01 GWNT1812051305KME 0.25334
45 IPA
46 ST181217P1-3 PFC CS3 537 18L1010
47 IPA
48 1803962-01 GWEF1812051355KME 0.26061
49 1803963-01 GWNT1812051530KME 0.25721
50 1803994-01 GWEF1812040910KER 0.23798
51 1803995-01 GWIN1812040940KER 0.23659
52 1803996-01 GWEF1812041050KER 0.24126
53 1803997-01 GWEF1812041120KER 0.25766
54 IPA
55 ST181217P1-4 PFC CS-1 537 18L1006
56 IPA

181217P1_40	Analyte	28.7	4.86	3326.64	3306.04	100.62
181217P1_41	Analyte	28.7	4.86	3595.67	3306.04	108.76
181217P1_42	Analyte	28.7	4.86	3361.23	3306.04	101.67
181217P1_43	Analyte	28.7	4.86	3748.36	3306.04	113.38
181217P1_44	Analyte	28.7	4.86	3611.63	3306.04	109.24
181217P1_45	Analyte	28.7			3306.04	
181217P1_46	Analyte	28.7	4.86	3542.97	3306.04	107.17
181217P1_47	Analyte	28.7			3306.04	
181217P1_48	Analyte	28.7	4.86	3701.06	3306.04	111.95
181217P1_49	Analyte	28.7	4.86	3821.85	3306.04	115.60
181217P1_50	Analyte	28.7	4.86	3649.55	3306.04	110.39
181217P1_51	Analyte	28.7	4.86	3530.55	3306.04	106.79
181217P1_52	Analyte	28.7	4.86	3387.71	3306.04	102.47
181217P1_53	Analyte	28.7	4.86	3383.43	3306.04	102.34
181217P1_54	Analyte	28.7			3306.04	
181217P1_55	Analyte	28.7	4.86	3551.51	3306.04	107.43
181217P1_56	Analyte	28.7				

Compound 25: d3-N-MeFOSAA

| 13 | B8LO115-BS1 LFB 0.25 | 181217P1_13 | Analyte | 40 | 5.18 | 14052.57 | 15074.67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | 93.22

47 IPA	181217P1_47	Analyte	40			15074.67	
48 1803962-01 GWEF1812051355KME 0.26061	181217P1_48	Analyte	40	5.18	14678.20	15074.67	97.37
49 1803963-01 GWNT1812051530KME 0.25721	181217P1_49	Analyte	40	5.18	14503.47	15074.67	96.21
50 1803994-01 GWEF1812040910KER 0.23798	181217P1_50	Analyte	40	5.18	15122.91	15074.67	100.32
51 1803995-01 GWIN1812040940KER 0.23659	181217P1_51	Analyte	40	5.18	14398.02	15074.67	95.51
52 1803996-01 GWEF1812041050KER 0.24126	181217P1_52	Analyte	40	5.18	14293.41	15074.67	94.82
53 1803997-01 GWEF1812041120KER 0.25766	181217P1_53	Analyte	40	5.18	13666.63	15074.67	90.66
54 IPA	181217P1_54	Analyte	40			15074.67	
55 ST181217P1-4 PFC CS-1 53718 L 1006	181217P1_55	Analyte	40	5.18	15252.49	15074.67	101.18
56 IPA	181217P1_56	Analyte	40				

21 1804038-05 WF-FB06-1218 0.23467	181217P1_21	Analyte	10	4.48	9704.37	7727.13	125.59
22 IPA	181217P1_22	Analyte	10				
23 B8L0076-MS1@10X LFSM 0.25052	181217P1_23	Analyte	10	4.48	25.33	7727.13	0.33
24 B8L0076-MSD1@10 XLFSMD 0.24755	181217P1_24	Analyte	10	4.48	752.36	7727.13	9.74 DILUTION
25 IPA	181217P1_25	Analyte	10				DILUTION
26 B8L0076-MS1 LFSM 0.25052	181217P1_26	Analyte	10	4.48	7166.54	7727.13	92.75
27 B8L0076-MSD1 LFSMD 0.24755	181217P1_27	Analyte	10	4.48	7051.19	7727.13	91.25
28 IPA	181217P1_28	Analyte	10				
29 ST181217P1-2 PFC CS1 53718 L1008	181217P1_29	Analyte	10	4.48	7874.09	7727.13	101.90
29 ST181217P1-2 PFC CS1 537 18L1008	181217P1_29	Analyte	10	4.48	7874.09	7874.09	100.00
30 IPA	181217P1_30	Analyte	10				
31 B8L0085-MS1 LFSM 0.24534	181217P1_31	Analyte	10	4.48	7381.70	7874.09	93.75
32 B8L0085-MSD1 LFSMD 0.25203	181217P1_32	Analyte	10	4.48	7324.79	7874.09	93.02
33 B8L0085-BS1 LFB 0.25	181217P1_33	Analyte	10	4.48	7184.75	7874.09	91.25
34 B8L0085-BLK1 LRB 0.25	181217P1_34	Analyte	10	4.48	7300.49	7874.09	92.72
35 1803919-01 GWIN1812031440KER 0.23972	181217P1_35	Analyte	10	4.48	7495.93	7874.09	95.20
36 1803954-01 GWNT1812040840KME 0.23957	181217P1_36	Analyte	10	4.48	7310.78	7874.09	92.85
37 1803956-01 GWNT1812041030KME 0.25974	181217P1_37	Analyte	10	4.48	7580.09	7874.09	96.27
38 1803957-01 GWNT1812041400KME 0.2509	181217P1_38	Analyte	10	4.48	7504.24	7874.09	95.30
39 1803957-02 GWNT1812041410KME-FD 0.25054	181217P1_39	Analyte	10	4.48	7614.33	7874.09	96.70
40 1803957-03 FB1812041415KME 0.25712	181217P1_40	Analyte	10	4.48	7196.62	7874.09	91.40
41 1803958-01 GWNT1812041440KME 0.25827	181217P1_41	Analyte	10	4.48	7553.79	7874.09	95.93
42 1803959-01 GWNT1812051015KME 0.25294	181217P1_42	Analyte	10	4.48	6842.36	7874.09	86.90
43 1803960-01 GWNT1812051120KME 0.26071	181217P1_43	Analyte	10	4.48	7508.91	7874.09	95.36
44 1803961-01 GWNT1812051305KME 0.25334	181217P1_44	Analyte	10	4.48	7388.72	7874.09	93.84
45 IPA	181217P1_45	Analyte	10			7874.09	
46 ST181217P1-3 PFC CS3 53718 L 1010	181217P1_46	Analyte	10	4.48	7604.05	7874.09	96.57
46 ST181217P1-3 PFC CS3 53718 L 1010	181217P1_46	Analyte	10	4.48	7604.05	7604.05	100.00
47 IPA	181217P1_47	Analyte	10			7604.05	0.00
48 1803962-01 GWEF1812051355KME 0.26061	181217P1_48	Analyte	10	4.48	7496.61	7604.05	98.59
49 1803963-01 GWNT1812051530KME 0.25721	181217P1_49	Analyte	10	4.48	7305.28	7604.05	96.07
50 1803994-01 GWEF1812040910KER 0.23798	181217P1_50	Analyte	10	4.48	7597.90	7604.05	99.92

51 1803995-01 GWIN1812040940KER 0.23659	181217P1_51	Analyte	10	4.48	7345.22	7604.05	96.60
52 1803996-01 GWEF1812041050KER 0.24126	181217P1_52	Analyte	10	4.48	7383.88	7604.05	97.10
53 1803997-01 GWEF1812041120KER 0.25766	181217P1_53	Analyte	10	4.48	7263.46	7604.05	95.52
54 IPA	181217P1_54	Analyte	10				
55 ST181217P1-4 PFC CS-1 537 18L1006	181217P1_55	Analyte	10	4.48	7800.55	7604.05	102.58
56 IPA	$181217 P 1 _56$	Analyte	10				

Compound 24: 13C4-PFOS

	ID
1 IPA	
2 ST181217P1-1 PFC CS-1 53718 L 1006	
3 IPA	
4 B8L0106-BS1 LFB 0.25	
5 B8L0106-BSD1 LFBD 0.25	
6 B8L0106-BLK1 LRB 0.25	
7 1804036-01 WI-CV-1RW90-EFF201-1211180.24997	
8 1804036-02 WI-CV-1RW90-MID202-121118 0.24972	
	9 1804036-03 WI-CV-1RW90-MID201-1211180.25155
10 1804036-04 WI-CV-1RW90-INF201-1211180.24833	
11 1804036-05 WI-CV-1RW90P-MID202-121118 0.2512	
12 1804036-06 WI-CV-1FB90-121118 0.25038	
13 B8L0115-BS1 LFB 0.25	
14 B8L0115-MS1 LFSM 0.24075	
15 B8L0115-MSD1 LFSMD 0.23834	
16 B8L0115-BLK1 LRB 0.25	
17 1804038-01 WF-RW10-12180.24003	
18 1804038-02 WF-FB10-1218 0.23544	
19 1804038-03 WF-RW1OPP-12180.20175	
20 1804038-04 WF-RW06-12180.23625	
21 1804038-05 WF-FB06-12180.23467	
22 IPA	
23 B8L0076-MS1@10X LFSM 0.25052	
	24 B8L0076-MSD1@10 XLFSMD 0.24755

Name	Type		td. Cor RT	Area	CCAL Area	Area \%
181217P1_1	Analyte	28.7				
181217P1_2	Analyte	$\mathbf{2 8 . 7}$	4.78	3722.08	3722.08	$\mathbf{1 0 0 . 0 0}$
181217P1_3	Analyte	28.7				
181217P1_4	Analyte	28.7	4.85	3750.88	3722.08	100.77
181217P1_5	Analyte	28.7	4.85	3480.75	3722.08	93.52
181217P1_6	Analyte	28.7	4.85	3357.51	3722.08	90.21
181217P1_7	Analyte	28.7	4.85	3900.16	3722.08	104.78
181217P1_8	Analyte	28.7	4.85	3824.78	3722.08	102.76
181217P1_9	Analyte	28.7	4.85	2893.77	3722.08	77.75
181217P1_10	Analyte	28.7	4.86	3567.93	3722.08	95.86
181217P1_11	Analyte	28.7	4.86	3457.95	3722.08	92.90
181217P1_12	Analyte	28.7	4.86	4209.13	3722.08	113.09
181217P1_13	Analyte	28.7	4.86	3448.91	3722.08	92.66
181217P1_14	Analyte	28.7	4.86	3391.27	3722.08	91.11
181217P1_15	Analyte	28.7	4.86	3761.06	3722.08	101.05
181217P1_16	Analyte	28.7	4.86	4146.78	3722.08	111.41
181217P1_17	Analyte	28.7	4.86	3389.43	3722.08	91.06
181217P1_18	Analyte	28.7	4.86	3587.16	3722.08	96.38
181217P1_19	Analyte	28.7	4.86	3760.10	3722.08	101.02
181217P1_20	Analyte	28.7	4.86	3675.60	3722.08	98.75
181217P1_21	Analyte	28.7	4.86	4598.77	3722.08	123.55
181217P1_22	Analyte	28.7				
181217P1_23	Analyte	28.7	4.86	17.31	3722.08	0.46 DILUTION
181217P1_24	Analyte	28.7	4.86	332.55	3722.08	8.93
DILUTION						

25 IPA	181217P1_25	Analyte	28.7				
26 B8L0076-MS1 LFSM 0.25052	181217P1_26	Analyte	28.7	4.86	3388.70	3722.08	91.04
27 B8L0076-MSD1 LFSMD 0.24755	181217P1_27	Analyte	28.7	4.86	3202.88	3722.08	86.05
28 IPA	181217P1_28	Analyte	28.7				
29 ST181217P1-2 PFC CS1 537 18L1008	181217P1_29	Analyte	28.7	4.86	3710.81	3722.08	99.70
29 ST181217P1-2 PFC CS1 537 18L1008	181217P1_29	Analyte	28.7	4.86	3710.81	3710.81	100.00
30 IPA	181217P1_30	Analyte	28.7				
31 B8L0085-MS1 LFSM 0.24534	181217P1_31	Analyte	28.7	4.86	3688.18	3710.81	99.39
32 B8L0085-MSD1 LFSMD 0.25203	181217P1_32	Analyte	28.7	4.86	3499.27	3710.81	94.30
33 B8L0085-BS1 LFB 0.25	181217P1_33	Analyte	28.7	4.86	3504.23	3710.81	94.43
34 B8L0085-BLK1 LRB 0.25	181217P1_34	Analyte	28.7	4.86	3456.05	3710.81	93.13
35 1803919-01 GWIN1812031440KER 0.23972	181217P1_35	Analyte	28.7	4.86	3848.59	3710.81	103.71
36 1803954-01 GWNT1812040840KME 0.23957	181217P1_36	Analyte	28.7	4.86	3406.83	3710.81	91.81
37 1803956-01 GWNT1812041030KME 0.25974	181217P1_37	Analyte	28.7	4.86	3555.33	3710.81	95.81
38 1803957-01 GWNT1812041400KME 0.2509	181217P1_38	Analyte	28.7	4.86	3669.75	3710.81	98.89
39 1803957-02 GWNT1812041410KME-FD 0.25054	181217P1_39	Analyte	28.7	4.86	3532.69	3710.81	95.20
40 1803957-03 FB1812041415KME 0.25712	181217P1_40	Analyte	28.7	4.86	3326.64	3710.81	89.65
41 1803958-01 GWNT1812041440KME 0.25827	181217P1_41	Analyte	28.7	4.86	3595.67	3710.81	96.90
42 1803959-01 GWNT1812051015KME 0.25294	181217P1_42	Analyte	28.7	4.86	3361.23	3710.81	90.58
43 1803960-01 GWNT1812051120KME 0.26071	181217P1_43	Analyte	28.7	4.86	3748.36	3710.81	101.01
44 1803961-01 GWNT1812051305KME 0.25334	181217P1_44	Analyte	28.7	4.86	3611.63	3710.81	97.33
45 IPA	181217P1_45	Analyte	28.7				
46 ST181217P1-3 PFC CS3 537 18L1010	181217P1_46	Analyte	28.7	4.86	3542.97	3710.81	95.48
46 ST181217P1-3 PFC CS3 53718 L 1010	181217P1_46	Analyte	28.7	4.86	3542.97	3542.97	100.00
47 IPA	181217P1_47	Analyte	28.7				
48 1803962-01 GWEF1812051355KME 0.26061	181217P1_48	Analyte	28.7	4.86	3701.06	3542.97	104.46
49 1803963-01 GWNT1812051530KME 0.25721	181217P1_49	Analyte	28.7	4.86	3821.85	3542.97	107.87
50 1803994-01 GWEF1812040910KER 0.23798	181217P1_50	Analyte	28.7	4.86	3649.55	3542.97	103.01
51 1803995-01 GWIN1812040940KER 0.23659	181217P1_51	Analyte	28.7	4.86	3530.55	3542.97	99.65
52 1803996-01 GWEF1812041050KER 0.24126	181217P1_52	Analyte	28.7	4.86	3387.71	3542.97	95.62
53 1803997-01 GWEF1812041120KER 0.25766	181217P1_53	Analyte	28.7	4.86	3383.43	3542.97	95.50
54 IPA	181217P1_54	Analyte	28.7				

55 ST181217P1-4 PFC CS-1 537 18L1006 56 IPA

181217P1_55 Analyte 28.7 4.86 $3551.51 \quad 3542.97 \quad 100.24$
181217P1_56 Analyte 28.7

Compound 25: d3-N-MeFOSAA

ID	Name	Type	td. Cor		Area	CCAL Area	Area \%
1 IPA	181217P1_1	Analyte	40				
2 ST181217P1-1 PFC CS-1 53718 L 1006	181217P1_2	Analyte	40	5.10	14446.15	14446.15	100.00
3 IPA	181217P1_3	Analyte	40				
4 B8L0106-BS1 LFB 0.25	181217P1_4	Analyte	40	5.17	13584.02	14446.15	94.03
5 B8L0106-BSD1 LFBD 0.25	181217P1_5	Analyte	40	5.18	13651.65	14446.15	94.50
6 B8L0106-BLK1 LRB 0.25	181217P1_6	Analyte	40	5.18	13566.17	14446.15	93.91
7 1804036-01 WI-CV-1RW90-EFF201-121118 0.24997	181217P1_7	Analyte	40	5.18	15411.38	14446.15	106.68
8 1804036-02 WI-CV-1RW90-MID202-1211180.24972	181217P1_8	Analyte	40	5.18	15078.18	14446.15	104.38
9 1804036-03 WI-CV-1RW90-MID201-1211180.25155	181217P1_9	Analyte	40	5.18	11896.77	14446.15	82.35
10 1804036-04 WI-CV-1RW90-INF201-1211180.24833	181217P1_10	Analyte	40	5.18	13530.92	14446.15	93.66
11 1804036-05 WI-CV-1RW90P-MID202-121118 0.2512	181217P1_11	Analyte	40	5.18	14064.65	14446.15	97.36
12 1804036-06 WI-CV-1FB90-121118 0.25038	181217P1_12	Analyte	40	5.18	16467.85	14446.15	113.99
13 B8L0115-BS1 LFB 0.25	181217P1_13	Analyte	40	5.18	14052.57	14446.15	97.28
14 B8L0115-MS1 LFSM 0.24075	181217P1_14	Analyte	40	5.18	14013.09	14446.15	97.00
15 B8L0115-MSD1 LFSMD 0.23834	181217P1_15	Analyte	40	5.18	15711.58	14446.15	108.76
16 B8L0115-BLK1 LRB 0.25	181217P1_16	Analyte	40	5.18	16136.65	14446.15	111.70
17 1804038-01 WF-RW10-12180.24003	181217P1_17	Analyte	40	5.18	13088.61	14446.15	90.60
18 1804038-02 WF-FB10-1218 0.23544	181217P1_18	Analyte	40	5.18	14950.60	14446.15	103.49
19 1804038-03 WF-RW1OPP-12180.20175	181217P1_19	Analyte	40	5.18	14806.72	14446.15	102.50
20 1804038-04 WF-RW06-1218 0.23625	181217P1_20	Analyte	40	5.18	15019.71	14446.15	103.97
21 1804038-05 WF-FB06-1218 0.23467	181217P1_21	Analyte	40	5.18	18304.53	14446.15	126.71
22 IPA	181217P1_22	Analyte	40				
23 B8L0076-MS1@10X LFSM 0.25052	181217P1_23	Analyte	40	5.18	74.58	14446.15	0.52 DILUTION
24 B8L0076-MSD1@10 XLFSMD 0.24755	181217P1_24	Analyte	40	5.18	1333.83	14446.15	9.23 DILUTION
25 IPA	181217P1_25	Analyte	40				
26 B8L0076-MS1 LFSM 0.25052	181217P1_26	Analyte	40	5.18	13801.78	14446.15	95.54
27 B8L0076-MSD1 LFSMD 0.24755	181217P1_27	Analyte	40	5.18	13397.13	14446.15	92.74

$\left.\begin{array}{llllllll} & \text { 181217P1_28 } & \text { Analyte } & 40 & & & \\ \text { 28 IPA } & \text { ST181217P1-2 PFC CS1 537 18L1008 } & \text { 181217P1_29 } & \text { Analyte } & 40 & 5.18 & 15013.43 & 14446.15\end{array}\right) 103.93$

LC Calibration Standards Review Checkiist
 \qquad

Full Mass Cal. Date: $12-11-18$

Run Log Present:

Initials/Date

Name: 181217P1_2, Date: 17-Dec-2018, Time: 15:28:13, ID: ST181217P1-1 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

3-3	\# Name	Trace	Area	IS Area	WL.Vol	RRF Mean	PredRT	RT	y Axis Resp.	Conc.	\% Rec
1	1 PFBS	$299>80.0$	170.371	3722.078	1.00		3.25	3.21	1.31	1.64	92.1
2	2 PFHXA	313.1 > 269.1	1085.795	7727.130	1.00		3.55	3.56	1.41	2.09	104.6
3 3	4 PFHpA	$363>319$	1470.550	7727.130	1.00		4.02	4.01	1.90	1.92	95.8
4.	6 PFHxS	$399>80.0$	173.324	3722.078	1.00		4.15	4.13	1.34	1.55	85.0
5	7 PFOA	$413>369$	1740.430	7727.130	1.00		4.40	4.40	2.25	2.18	109.1
6.45	24 13C4-PFOS	$503.0>80$	3722.078	3722.078	1.00	1.000	4.87	4.78	28.7	28.7	100.0
7	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
T $\quad 3$	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
9 9 ${ }^{4}$	24 13C4-PFOS	$503.0>80$	3722.078	3722.078	1.00	1.000	4.87	4.78	28.7	28.7	100.0
10	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
11	-1										
12	8 PFNA	$463>419$	1846.755	7727.130	1.00		4.71	4.71	2.39	2.25	112.3
13	9 PFOS	$498.9>80.0$	208.997	3722.078	1.00		4.78	4.78	1.61	1.80	97.0
14	11 PFDA	$513>469$	1766.731	7727.130	1.00		5.00	4.99	2.29	2.26	112.9
15.	12 N-MeFOSAA	$570>419.1$	470.528	14446.146	1.00		5.10	5.11	1.30	1.61	80.3
16	$13 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$	487.919	14446.146	1.00		5.22	5.22	1.35	1.83	91.5
17	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
18	24 13C4-PFOS	$503.0>80$	3722.078	3722.078	1.00	1.000	4.87	4.78	28.7	28.7	100.0
19	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
20	25 d3-N-MeFOSAA	$573.1>419.1$	14446.146	14446.146	1.00	1.000	5.20	5.10	40.0	40.0	100.0
21	25 d3-N-MeFOSAA	$573.1>419.1$	14446.146	14446.146	1.00	1.000	5.20	5.10	40.0	40.0	100.0
$22 \quad 1$	-1										
23.	14 PFUnA	$563>519$	1867.532	7727.130	1.00		5.21	5.23	2.42	2.23	111.5
24	16 PFDoA	$613>569$	2181.316	7727.130	1.00		5.42	5.42	2.82	1.93	96.7
25.	17 PFTrDA	$662.9>619$	2631.277	7727.130	1.00		5.58	5.61	3.41	2.58	129.0
26	18 PFTeDA	$712.9>669$	2725.089	7727.130	1.00		5.74	5.76	3.53	2.54	126.9
27.9	19 13C2-PFHxA	$315.1>270$	7670.217	7727.130	1.00	0.942	3.55	3.55	9.93	10.5	105.4
28	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
29.	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
30 -	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
31 -	23 13C2-PFOA	$415>370$	7727.130	7727.130	1.00	1.000	4.51	4.40	10.0	10.0	100.0
32.	21 13C2-PFDA	$515.0>470.0$	11791.331	7727.130	1.00	1.301	4.98	5.00	15.3	11.7	117.3
$33 \times$	-1										
34,	22 d5-N-EtFOSAA	$589.1>419.0$	16406.939	14446.146	1.00	1.070	5.21	5.22	45.4	42.4	106.1

Method: D:|PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Compound name: PFBS

Quantify Compound Summary Report MassLynx V4.2 SCN977
Vista Analytical Laboratory

Dataset:	Untitled
Last Altered:	Tuesday, December 18, 2018 07:16:02 Pacific Standard Time
Printed:	Tuesday, December 18, 2018 07:16:25 Pacific Standard Time

Compound name: PFBS

	\# Name	10	Acq. Date	Acq. Time
33	33 181217P1_33	B8L0085-BS1 LFB 0.25	17-Dec-18	21:32:58
34	34 181217P1_34	B8L0085-BLK1 LRB 0.25	17-Dec-18	21:44:16
35	35 181217P1_35	1803919-01 GWIN1812031440KER 0.23972	17-Dec-18	21:55:28
36	36 181217P1_36	1803954-01 GWNT1812040840KME 0.23957	17-Dec-18	22:06:38
37	37 181217P1_37	1803956-01 GWNT1812041030KME 0.25974	17-Dec-18	22:17:49
38	38 181217P1_38	1803957-01 GWNT1812041400KME 0.2509	17-Dec-18	22:29:00
39	39 181217P1_._39	1803957-02 GWNT 1812041410KME-FD 0.25054	17-Dec-18	22:40:11
40	40 181217P1_40	1803957-03 FB1812041415KME 0.25712	17-Dec-18	22:51:21
41	41 181217P1_41	1803958-01 GWNT 1812041440KME 0.25827	17-Dec-18	23:02:40
42	42 181217P1_42	1803959-01 GWNT 1812051015 KME 0.25294	17-Dec-18	23:13:52
43	43 181217P1_43	1803960-01 GWNT1812051120KME 0.26071	17-Dec-18	23:25:03
44	44 181217P1_44	1803961-01 GWNT1812051305KME 0.25334	17-Dec-18	23:36:14
45	45 181217P1_45	IPA	17-Dec-18	23:47:25
46	46 181217P1_46	ST181217P1-3 PFC CS3 53718 L 1010	17-Dec-18	23:58:35
47	47 181217P1_47	IPA	18-Dec-18	00:09:46
48	48 181217P1_48	1803962-01 GWEF 1812051355 KME 0.26061	18-Dec-18	00:20:57
49	49 181217P1_49	1803963-01 GWNT1812051530KME 0.25721	18-Dec-18	00:32:07
50	50 181217P1_50	1803994-01 GWEF 1812040910KER 0.23798	18-Dec-18	00:43:18
51	51 181217P1_51	1803995-01 GWIN181204094OKER 0.23659	18-Dec-18	00:54:29
52	52 181217P1_52	1803996-01 GWEF 1812041050 KER 0.24126	18-Dec-18	01:05:40
53	53 181217P1_53	1803997-01 GWEF1812041120KER 0.25766	18-Dec-18	01:16:50
54	54 181217P1_54	IPA	18-Dec-18	01:28:01
55	55 181217P1_55	ST181217P1-4 PFC CS-1 53718 L 1006	18-Dec-18	01:39:12
56	56 181217P1_56	IPA	18-Dec-18	01:50:22

Dataset:

D:IPFAS.PROIRESULTSI181217P1\181217P1-2.qld
Last Altered:
Monday, December 17, 2018 15:42:16 Pacific Standard Time
Printed: Tuesday, December 18, 2018 07:23:04 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:IPFAS.PRO\CurveDB\C18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181217P1_2, Date: 17-Dec-2018, Time: 15:28:13, ID: ST181217P1-1 PFC CS-1 537 18L1006, Description: PFC CS-1 $53718 L 1006$

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel, ES-

PFHpA

13C2-PFOA

13C4-PFOS

PFOA

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$

Dataset:	D:IPFAS.PROTRESULTS\181217P1\181217P1-2.qld
Last Altered:	Monday, December 17, 2018 15:42:16 Pacific Standard Time
Printed:	Tuesday, December 18, 2018 07:23:04 Pacific Standard Time

Name: 181217P1_2, Date: 17-Dec-2018, Time: 15:28:13, ID: ST181217P1-1 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Last Altered: Monday, December 17, 2018 15:42:16 Pacific Standard Time
Printed: Tuesday, December 18, 2018 07:23:04 Pacific Standard Time

Name: 181217P1_2, Date: 17-Dec-2018, Time: 15:28:13, ID: ST181217P1-1 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Name: 181217P1_2, Date: 17-Dec-2018, Time: 15:28:13, ID: ST181217P1-1 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset:
D:IPFAS.PRO\RESULTSI181217P1\181217P1-29.qld
Last Altered: Tuesday, December 18, 2018 07:09:29 Pacific Standard Time
Printed:
Tuesday, December 18, 2018 07:23:59 Pacific Standard Time

Name: 181217P1_29, Date: 17-Dec-2018, Time: 20:48:15, ID: ST181217P1-2 PFC CS1 537 18L1008, Description: PFC CS1 537 18L1008

MJT 12/18/2018

Last Altered: Tuesday, December 18, 2018 07:09:29 Pacific Standard Time
Printed:
Tuesday, December 18, 2018 07:23:59 Pacific Standard Time

Name: 181217P1_29, Date: 17-Dec-2018, Time: 20:48:15, ID: ST181217P1-2 PFC CS1 537 18L1008, Description: PFC CS1 537 18L1008

Untitled

Last Altered:
Tuesday, December 18, 2018 07:16:02 Pacific Standard Time
Printed:
Tuesday, December 18, 2018 07:16:25 Pacific Standard Time

Method: D:IPFAS.PRO\MethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Compound name: PFBS

	\# Name		Acq. Date	Acq Time
1.4	1 181217P1_1	IPA	17-Dec-18	15:16:52
2.4	2 181217P1_2	ST181217P1-1 PFC CS-1 53718 L 1006	17-Dec-18	15:28:13
3.	3 181217P1_3	IPA	17-Dec-18	15:57:35
4.3	4 181217P1_4	B8L0106-BS1 LFB 0.25	17-Dec-18	16:08:47
5.3	5 181217P1_5	B8L0106-BSD1 LFBD 0.25	17-Dec-18	16:19:57
6	6 181217P1_6	B8L0106-BLK1 LRB 0.25	17-Dec-18	16:31:08
	7 181217P1_7	1804036-01 WI-CV-1RW90-EFF201-1211180.24997	17-Dec-18	16:42:19
8.	8 181217P1_8	1804036-02 WI-CV-1RW90-MID202-1211180.24972	17-Dec-18	16:53:30
9 WHET?	9 181217P1_9	1804036-03 WI-CV-1 RW90-MID201-1211180.25155	17-Dec-18	17:04:41
10	10 181217P1_10	1804036-04 WI-CV-1 RW90-INF201-1211180.24833	17-Dec-18	17:15:51
11	11 181217P1_11	1804036-05 WI-CV-1RW90P-MID202-1211180.2512	17-Dec-18	17:27:02
12	12 181217P1_12	1804036-06 WI-CV-1 FB90-121118 0.25038	17-Dec-18	17:38:13
13 , ${ }^{\text {a }}$	13 181217P1_13	B8L0115-BS1 LFB 0.25	17-Dec-18	17:49:23
14	14 181217P1_14	B8L0115-MS1 LFSM 0.24075	17-Dec-18	18:00:34
15	15 181217P1_15	B8L0115-MSD1 LFSMD 0.23834	17-Dec-18	18:11:45
16	16 181217P1_16	B8L0115-BLK1 LRB 0.25	17-Dec-18	18:22:56
17.	17 181217P1_17	1804038-01 WF-RW 10-12180.24003	17-Dec-18	18:34:07
18.	18 181217P1_18	1804038-02 WF-FB10-1218 0.23544	17-Dec-18	18:45:17
19.	19 181217P1_19	1804038-03 WF-RW 10PP-12180.20175	17-Dec-18	18:56:28
20	20 181217P1_20	1804038-04 WF-RW06-12180.23625	17-Dec-18	19:07:38
21.4	21 181217P1_21	1804038-05 WF-FB06-12180.23467	17-Dec-18	19:18:49
22	22 181217P1_22	IPA	17-Dec-18	19:30:00
23	23 181217P1_23	B8L0076-MS1@10X LFSM 0.25052	17-Dec-18	19:41:11
24	24 181217P1_24	B8L0076-MSD1@10 XLFSMD 0.24755	17-Dec-18	19:52:22
25	25 181217P1_25	IPA	17-Dec-18	20:03:32
26.	26 181217P1_26	B8L0076-MS1 LFSM 0.25052	17-Dec-18	20:14:43
27. T -	27 181217P1_27	B8L-0076-MSD1 LFSMD 0.24755	17-Dec-18	20:25:53
28.	28 181217P1_28	IPA	17-Dec-18	20:37:04
29	29 181217P1_29	ST181217P1-2 PFC CS1 53718 L 1008	17-Dec-18	20:48:15
30	30 181217P1_30	IPA	17-Dec-18	20:59:25
31.	31 181217P1_31	B8L0085-MS1 LFSM 0.24534	17-Dec-18	21:10:36
32.4	32 181217P1_32	B8L0085-MSD1 LFSMD 0.25203	17-Dec-18	21:21:47

Last Altered: Tuesday, December 18, 2018 07:16:02 Pacific Standard Time
Printed: Tuesday, December 18, 2018 07:16:25 Pacific Standard Time

Compound name: PFBS

Dataset: D:IPFAS.PROIRESULTSI181217P1\181217P1-29.qld
Last Altered: Tuesday, December 18, 2018 07:09:29 Pacific Standard Time
Printed: Tuesday, December 18, 2018 07:23:59 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06
Calibration: D:\PFAS.PRO\CurveDB\C18_537_(̄5_12-16-18_L14.cdb 16 Dec 2018 17:39:29
Name: 181217P1_29, Date: 17-Dec-2018, Time: 20:48:15, ID: ST181217P1-2 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

Dataset:	D:\PFAS.PROURESULTS 181217P1\181217P1-29.qld
Last Altered:	Tuesday, December 18, 2018 07:09:29 Pacific Standard Time
Printed:	Tuesday, December 18, 2018 07:23:59 Pacific Standard Time

Name: 181217P1_29, Date: 17-Dec-2018, Time: 20:48:15, ID: ST181217P1-2 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

Dataset:
D:IPFAS.PRO\RESULTS\181217P1\181217P1-29.qld
Last Altered: Tuesday, December 18, 2018 07:09:29 Pacific Standard Time
Printed: Tuesday, December 18, 2018 07:23:59 Pacific Standard Time

Name: 181217P1_29, Date: 17-Dec-2018, Time: 20:48:15, ID: ST181217P1-2 PFC CS1 537 18L1008, Description: PFC CS1 537 18L1008

Dataset: D:IPFAS.PRO\RESULTS\181217P1\181217P1-29.qld

Last Altered: Tuesday, December 18, 2018 07:09:29 Pacific Standard Time
Printed Tuesday, December 18, 2018 07:23:59 Pacific Standard Time

Name: 181217P1_29, Date: 17-Dec-2018, Time: 20:48:15, ID: ST181217P1-2 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$ d5-N-EtFOSAA

F22:MRM of 1 channel,ES-
$589.1>419.0$

INITIAL CALIBRATION (ICAL)

INCLUDING ASSOCIATED
INITIAL CALIBRATION VERIFICATION (ICV)

Dataset:
Last Altered:
Printed:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Saturday, December 15, 2018 10:08:51 Pacific Standard Time Saturday, December 15, 2018 10:09:37 Pacific Standard Time

PFBS $=0.444$ PFH $\mathrm{P}_{\mathrm{s}}=0.456$ $H F P O-P A=0.5$ llC1-PESOOUS EtFOSAA

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 15 Dec 2018 10:04:32 Calibration: D:IPFAS.PRO\CurveDB\537__Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Compound name: PFBS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998244$
Calibration curve: 0.767139 * x
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFHxA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998719$
Calibration curve: 0.575411 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	PT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x-excluded
1 L	1 181214P2_2	Standard	0.250	3.60	90.776	5911.953	0.154	0.3	6.7	NO	0.999	NO	bb
2.45	2181214 P 2 _3	Standard	0.500	3.66	160.247	5684.619	0.282	0.5	-2.0	NO	0.999	NO	bb
3	3181214 P 2 _4	Standard	1.000	3.67	318.927	5210.434	0.612	1.1	6.4	NO	0.999	NO	MM
4	4 181214P2_5	Standard	2.000	3.67	624.993	5665.122	1.103	1.9	-4.1	NO	0.999	NO	MM
5	5 181214P2_6	Standard	5.000	3.68	1577.167	5615.395	2.809	4.9	-2.4	NO	0.999	NO	bb
6	$6181214 \mathrm{P} 2 _7$	Standard	10.000	3.68	3223.547	5543.850	5.815	10.1	1.1	NO	0.999	NO	MM
7	7 181214P2_8	Standard	25.000	3.68	7651.477	5688.920	13.450	23.4	-6.5	NO	0.999	NO	db
8	8181214 P 2 _9	Standard	50.000	3.68	16404.814	5370.965	30.544	53.1	6.2	NO	0.999	NO	db
9	9 181214P2_10	Standard	75.000	3.68	23827.469	5522.653	43.145	75.0	-0.0	NO	0.999	NO	db
10.	10181214 P 2 _ 11	Standard	100.000	3.68	31984.234	5638.047	56.729	98.6	-1.4	NO	0.999	NO	db

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: HFPO-DA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997247$
Calibration curve: $0.000119042{ }^{*} x^{\wedge} 2+0.0699276{ }^{*} x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

5	\# Name	Type	13) Std Conc	RT	Waty Area	T 3 IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	C.Cob Flag	$x=e x c l u d e d$,
1	1181214 P 2 _ 2	Standard	0.250	3.75	11.636	5911.953	0.020	0.3	12.5	NO	0.997	NO	bbX
2	2181214 P 2 _3	Standard	0.500	3.82	10.201	5684.619	0.018	0.3	-48.7	NO	0.997	NO	MM
3	$3181214 \mathrm{P} 2 _4$	Standard	1.000	3.82	43.826	5210.434	0.084	1.2	20.0	NO	0.997	NO	MM
4 4	4 181214P2_5	Standard	2.000	3.83	74.579	5665.122	0.132	1.9	-6.2	NO	0.997	NO	MM
5	5 181214P2_6	Standard	5.000	3.84	193.973	5615.395	0.345	4.9	-2.0	NO	0.997	NO	db
6.13	$6181214 \mathrm{P} 2 _7$	Standard	10.000	3.83	355.012	5543.850	0.640	9.0	-9.8	NO	0.997	NO	bb
7	7 181214P2_8	Standard	25.000	3.83	1044.201	5688.920	1.835	25.2	0.7	NO	0.997	NO	bb
8	8 181214P2_9	Standard	50.000	3.84	2152.100	5370.965	4.007	52.6	5.2	NO	0.997	NO	bb
9.15	9 181214P2_10	Standard	75.000	3.84	3190.989	5522.653	5.778	73.4	-2.1	NO	0.997	NO	bb
10	10181214 P 2 _11	Standard	100.000	3.84	4369.620	5638.047	7.750	95.4	-4.6	NO	0.997	NO	bbX

Compound name: PFHpA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999597$
Calibration curve: $0.922271^{*} \mathrm{X}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: ADONA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998350$
Calibration curve: 1.22899 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name.	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\% Dev	Conc. Flag	Cob	CoD Flag	$\mathrm{x}=$ excluded
1	1 181214P2_2	Standard	0.250	4.14	157.370	5911.953	0.266	0.2	-13.4	NO	0.998	NO	bb
2	$2181214 \mathrm{P} 2 _3$	Standard	0.500	4.21	299.667	5684.619	0.527	0.4	-14.2	NO	0.998	NO	bb
3.	3181214 P 2 _4	Standard	1.000	4.22	594.901	5210.434	1.142	0.9	-7.1	NO	0.998	NO	bb
4	4181214 P 2 _5	Standard	2.000	4.22	1285.666	5665.122	2.269	1.8	-7.7	NO	0.998	NO	bb
5 5.3.	5 181214P2_6	Standard	5.000	4.22	3199.815	5615.395	5.698	4.6	-7.3	NO	0.998	NO	bb
6	$6181214 \mathrm{P} 2 _7$	Standard	10.000	4.22	6069.438	5543.850	10.948	8.9	-10.9	NO	0.998	NO	bb
7 W	7 181214P2_8	Standard	25.000	4.22	16174.046	5688.920	28.431	23.1	-7.5	NO	0.998	NO	bb
8	8 181214P2_9	Standard	50.000	4.22	34455.465	5370.965	64.151	52.2	4.4	NO	0.998	NO	bb
9 9 \%	9181214 P 2 _10	Standard	75.000	4.22	51207.465	5522.653	92.723	75.4	0.6	NO	0.998	NO	bb
10.5	10181214 P 2 _11	Standard	100.000	4.22	69988.617	5638.047	124.136	101.0	1.0	NO	0.998	NO	bb

Compound name: PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997577$
Calibration curve: $-0.00045622^{*} x^{\wedge} 2+0.918218^{*} x$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

		\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%.Dev	Conc. Flag	Cob	CodFlag	$x=$ excluded
1	4	1 181214P2_2	Standard	0.228	4.18	9.538	2634.121	0.104	0.1	-50.4	NO	0.998	NO	MMX
2	\%	2 181214P2_3	Standard	0.456	4.25	23.536	2474.213	0.273	0.3	-34.8	NO	0.998	NO	MM
3	\%	3181214 P 24	Standard	0.912	4.26	57.522	2396.456	0.689	0.8	-17.7	NO	0.998	NO	MM
4	$\%$	4 181214P2_5	Standard	1.820	4.26	148.070	2542.021	1.672	1.8	0.1	NO	0.998	NO	MM
5	4	5 181214P2_6	Standard	4.560	4.26	356.543	2446.030	4.183	4.6	0.1	NO	0.998	NO	MM
6	4	$6181214 \mathrm{P} 2 _7$	Standard	9.120	4.26	632.412	2327.423	7.798	8.5	-6.5	NO	0.998	NO	MM
7		7 181214P2_8	Standard	22.800	4.26	1563.028	2298.853	19.514	21.5	-5.8	NO	0.998	NO	MM
8		8181214 P 2 _9	Standard	45.500	4.26	3513.474	2279.042	44.245	49.4	8.6	NO	0.998	NO	MM
9		9 181214P2_10	Standard	68.200	4.26	5008.888	2383.921	60.302	68.0	-0.3	NO	0.998	NO	MM
10	4	10181214 P 2 _ 11	Standard	91.000	4.26	6838.147	2497.646	78.576	89.6	-1.6	NO	0.998	NO	MM

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: \quad Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998672$
Calibration curve: 0.920346 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / \mathrm{x}$, Axis trans: None

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998301$
Calibration curve: 0.837534 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997446$
Calibration curve: 0.899774 * x
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: 9CI-PF3ONS

Coefficient of Determination: $R^{\wedge} 2=0.994100$
Calibration curve: $3.18847^{*} \times$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / \mathrm{x}$, Axis trans: None

4	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	$\%$ Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1.	1 181214P2_2	Standard	0.250	4.99	52.232	2634.121	0.569	0.2	-28.6	NO	0.994	NO	MM
2 L	2181214 P 2 _3	Standard	0.500	5.04	164.403	2474.213	1.907	0.6	19.6	NO	0.994	NO	MM
3	3181214 P 2 _4	Standard	1.000	5.04	189.020	2396.456	2.264	0.7	-29.0	NO	0.994	NO	bb
4	4 181214P2_5	Standard	2.000	5.05	507.367	2542.021	5.728	1.8	-10.2	NO	0.994	NO	bb
5	5 181214P2_6	Standard	5.000	5.04	1214.050	2446.030	14.245	4.5	-10.6	NO	0.994	NO	bb
	$6181214 \mathrm{P} 2 _7$	Standard	10.000	5.05	2531.741	2327.423	31.219	9.8	-2.1	NO	0.994	NO	bb
7	$7181214 \mathrm{P} 2 _8$	Standard	25.000	5.05	6184.165	2298.853	77.206	24.2	-3.1	NO	0.994	NO	bb
8	8 181214P2_9	Standard	50.000	5.05	14346.701	2279.042	180.668	56.7	13.3	NO	0.994	NO	bb
9	9 181214P2_10	Standard	75.000	5.05	20258.875	2383.921	243.896	76.5	2.0	NO	0.994	NO	bb
10.	10 181214P2_11	Standard	100.000	5.05	26037.963	2497.646	299.198	93.8	-6.2	NO	0.994	NO	bb

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999015$
Calibration curve: $-0.000221295^{*} x^{\wedge} 2+0.834247{ }^{*} x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

	\# Name.	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	Cob Flag	$x=$ excluded
1.1\%	1 181214P2_2	Standard	0.250	5.03	133.461	5911.953	0.226	0.3	8.2	NO	0.999	NO	bb
2 2.	2181214 P 2 _3	Standard	0.500	5.09	202.627	5684.619	0.356	0.4	-14.5	NO	0.999	NO	MM
3	$3181214 \mathrm{P} 2_{4} 4$	Standard	1.000	5.10	413.064	5210.434	0.793	1.0	-4.9	NO	0.999	NO	MM
4	4 181214P2_5	Standard	2.000	5.10	945.822	5665.122	1.670	2.0	0.1	NO	0.999	NO	MM
5	5 181214P2_6	Standard	5.000	5.10	2257.921	5615.395	4.021	4.8	-3.5	NO	0.999	NO	bb
6	6181214 P 2 _7	Standard	10.000	5.10	4595.763	5543.850	8.290	10.0	-0.4	NO	0.999	NO	bb
7	7181214 P 2 _ 8	Standard	25.000	5.10	11219.362	5688.920	19.721	23.8	-4.8	NO	0.999	NO	bb
8	8 181214P2_9	Standard	50.000	5.10	23351.916	5370.965	43.478	52.9	5.7	NO	0.999	NO	bb
9	9181214 P 2 _10	Standard	75.000	5.10	33502.344	5522.653	60.663	74.2	-1.1	NO	0.999	NO	bb
10	10181214P2_11	Standard	100.000	5.10	45559.660	5638.047	80.808	99.5	-0.5	NO	0.999	NO	bb

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997830$
Calibration curve: $-0.00072913^{*} x^{\wedge} 2+0.914639$ * x
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name.		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	D Flag	$x=$ excluded
1	1181214 P 2 _2	Standard	0.250	5.15	51.683	10104.299	0.205	0.2	-10.5	NO	0.998	NO	MM
2.	$2181214 \mathrm{P} 2^{3} 3$	Standard	0.500	5.21	119.036	9958.873	0.478	0.5	4.6	NO	0.998	NO	MM
3	$3181214 \mathrm{P} 2_{-} 4$	Standard	1.000	5.22	276.359	9410.290	1.175	1.3	28.6	NO	0.998	NO	bb
4	4 181214P2_5	Standard	2.000	5.22	465.441	10550.824	1.765	1.9	-3.4	NO	0.998	NO	bb
5	5 181214P2_6	Standard	5.000	5.22	1022.705	10229.688	3.999	4.4	-12.2	NO	0.998	NO	bb
6	6181214 P 2 _7	Standard	10.000	5.22	2521.621	10503.686	9.603	10.6	5.9	NO	0.998	NO	bb
7	7 181214P2_8	Standard	25.000	5.22	5475.294	10232.063	21.404	23.9	-4.6	NO	0.998	NO	MM
8	8 181214P2_9	Standard	50.000	5.22	10963.122	9633.877	45.519	51.9	3.8	NO	0.998	NO	bb
9 .	9 181214P2_10	Standard	75.000	5.22	15749.637	9886.291	63.723	74.0	-1.3	NO	0.998	NO	bb
10 \%	10 181214P2_11	Standard	100.000	5.22	22217.422	10227.562	86.892	103.5	3.5	NO	0.998	NO	MMX

Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998450$
Calibration curve: 0.00236696 * $x^{\wedge} 2+0.536971^{*} \times$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	COD	CoD Flag	$x=-$ xcluded
1	1 181214P2_2	Standard	0.250	5.27	31.485	10104.299	0.125	0.2	-7.2	NO	0.998	NO	MMX
2.4	2181214 P 2 _3	Standard	0.500	5.32	46.911	9958.873	0.188	0.4	-29.9	NO	0.998	NO	bb
3	$3181214 \mathrm{P} 2 _4$	Standard	1.000	5.33	95.547	9410.290	0.406	0.8	-24.6	NO	0.998	NO	MM
4.	4 181214P2_5	Standard	2.000	5.33	330.637	10550.824	1.254	2.3	15.5	NO	0.998	NO	MM
5. ${ }^{\text {atem }}$	5 181214P2_6	Standard	5.000	5.33	721.496	10229.688	2.821	5.1	2.8	NO	0.998	NO	bb
6	6181214 P 2 _7	Standard	10.000	5.33	1503.421	10503.686	5.725	10.2	2.0	NO	0.998	NO	MM
7	7 181214P2_8	Standard	25.000	5.33	3752.278	10232.063	14.669	24.6	-1.4	NO	0.998	NO	MM
8.	8 181214P2_9	Standard	50.000	5.33	7911.481	9633.877	32.849	50.1	0.2	NO	0.998	NO	bb
9	9 181214P2_10	Standard	75.000	5.33	11600.585	9886.291	46.936	67.4	-10.1	NO	0.998	NO	MMX
10	10 181214P2_11	Standard	100.000	5.33	15229.918	10227.562	59.564	81.6	-18.4	NO	0.998	NO	bbX

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998136$
Calibration curve: $0.864966^{*} \times$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

			Name	Type		Std. Conc	RT	Area	W. IS Area	Response	Conc.	\%Dev	Conc. Flag	\% CoD	CoD Flag	x-excluded
1	\%	1	181214P2_2	Standard		0.250	5.27	101.152	5911.953	0.171	0.2	-20.9	NO	0.998	NO	MM
2	2		181214P2_3	Standard		0.500	5.32	187.575	5684.619	0.330	0.4	-23.7	NO	0.998	NO	MM
3	\cdots		181214P2_4	Standard		1.000	5.33	503.071	5210.434	0.966	1.1	11.6	NO	0.998	NO	bb
4	TMe		181214P2_5	Standard		2.000	5.33	887.824	5665.122	1.567	1.8	-9.4	NO	0.998	NO	bb
5			181214P2_6	Standard		5.000	5.33	1848.491	5615.395	3.292	3.8	-23.9	NO	0.998	NO	bb
6			181214P2_7	Standard		10.000	5.33	5013.787	5543.850	9.044	10.5	4.6	NO	0.998	NO	bb
7			181214P2_8	Standard		25.000	5.33	12150.262	5688.920	21.358	24.7	-1.2	NO	0.998	NO	bb
8.			181214P2_9	Standard		50.000	5.33	24215.092	5370.965	45.085	52.1	4.2	NO	0.998	NO	bb
9	4		181214P2_10	Standard		75.000	5.33	35398.992	5522.653	64.098	74.1	-1.2	NO	0.998	NO	bb
10	\pm	10	181214P2_11	Standard		100.000	5.33	48797.020	5638.047	86.550	100.1	0.1	NO	0.998	NO	bb

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: 11CI-PF3OUdS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997306$
Calibration curve: $2.63344^{*} \mathrm{x}$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998508$
Calibration curve: $1.2306^{*} \mathrm{x}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999286$
Calibration curve: $1.32773^{*} \mathrm{x}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999100$
Calibration curve: $1.32618{ }^{*} \mathrm{X}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: 13C2-PFHxA

Response Factor: 0.758593
RRF SD: 0.0249004, Relative SD: 3.28244
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD Conflag	$x=e x c l u d e d$.
1	1 181214P2_2	Standard	10.000	3.60	4292.634	5911.953	7.261	9.6	-4.3	NO	NO	bb
2	2181214 P 2 _3	Standard	10.000	3.67	4330.092	5684.619	7.617	10.0	0.4	NO	NO	bb
3	3181214 P 2 _4	Standard	10.000	3.67	4079.294	5210.434	7.829	10.3	3.2	NO	NO	bb
	4181214 P 2 _5	Standard	10.000	3.67	4315.544	5665.122	7.618	10.0	0.4	NO	NO	bb
5. ${ }^{\text {5 }}$	5181214 P 2 _6	Standard	10.000	3.67	4217.649	5615.395	7.511	9.9	-1.0	NO	NO	bb
6	6181214 P 2 _7	Standard	10.000	3.68	4298.911	5543.850	7.754	10.2	2.2	NO	NO	bb
7	7 181214P2_8	Standard	10.000	3.68	4025.341	5688.920	7.076	9.3	-6.7	NO	NO	bb
8	8 181214P2_9	Standard	10.000	3.68	4216.067	5370.965	7.850	10.3	3.5	NO	NO	bb
9	9 181214P2_10	Standard	10.000	3.68	4192.938	5522.653	7.592	10.0	0.1	NO	NO	bb
10.	10 181214P2_11	Standard	10.000	3.68	4370.258	5638.047	7.751	10.2	2.2	NO	NO	bb

Compound name: 13C3-HFPO-DA

Response Factor: 0.0702697
RRF SD: 0.00366149 , Relative SD: 5.21063
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Cone	RT	Area	IS Area	Response	Conct \% Dev		Conc. Flag	CoD	CoD Flag x-excluded	
14, ${ }^{\text {a }}$	1 181214P2_2	Standard	10.000	3.74	400.534	5911.953	0.677	9.6	-3.6	NO		NO	bb
2	2181214 P 2 _3	Standard	10.000	3.82	397.367	5684.619	0.699	9.9	-0.5	NO		NO	bb
3	3 181214P2_4	Standard	10.000	3.83	362.333	5210.434	0.695	9.9	-1.0	NO		NO	bb
4	4 181214P2_5	Standard	10.000	3.83	397.190	5665.122	0.701	10.0	-0.2	NO		NO	bb
5	5 181214P2_6	Standard	10.000	3.84	391.777	5615.395	0.698	9.9	-0.7	NO		NO	bb
6	6181214 P 2 _7	Standard	10.000	3.83	375.052	5543.850	0.677	9.6	-3.7	NO		NO	$b b$
7	$7181214 \mathrm{P} 2 _8$	Standard	10.000	3.83	375.220	5688.920	0.660	9.4	-6.1	NO		NO	bb
8	8 181214P2_9	Standard	10.000	3.83	404.162	5370.965	0.752	10.7	7.1	NO		NO	bb
9	9 181214P2_10	Standard	10.000	3.83	431.092	5522.653	0.781	11.1	11.1	NO		NO	bb
10	10 181214P2_11	Standard	10.000	3.84	387.381	5638.047	0.687	9.8	-2.2	NO		NO	bb

Dataset:	D:\PFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: 13C2-PFDA

Response Factor: 1.05163
RRF SD: 0.0358783, Relative SD: 3.4117
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: d5-N-EtFOSAA

Response Factor: 0.830956
RRF SD: 0.0615189, Relative SD: 7.40339
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: 13C2-PFOA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sti. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag CoD	CoDFlag	x-excluded
1.4.5	1 181214P2_2	Standard	10.000	4.46	5911.953	5911.953	10.000	10.0	0.0	NO	NO	bb
2.	$2181214 \mathrm{P} 2 _3$	Standard	10.000	4.51	5684.619	5684.619	10.000	10.0	0.0	NO	NO	bb
	3 181214P2_4	Standard	10.000	4.52	5210.434	5210.434	10.000	10.0	0.0	NO	NO	bb
4.3	4 181214P2_5	Standard	10.000	4.53	5665.122	5665.122	10.000	10.0	0.0	NO	NO	bb
5	5 181214P2_6	Standard	10.000	4.53	5615.395	5615.395	10.000	10.0	0.0	NO	NO	bb
6	6181214 P 2 _7	Standard	10.000	4.53	5543.850	5543.850	10.000	10.0	0.0	NO	NO	bb
7	7 181214P2_8	Standard	10.000	4.53	5688.920	5688.920	10.000	10.0	0.0	NO	NO	bb
8	8 181214P2_9	Standard	10.000	4.53	5370.965	5370.965	10.000	10.0	0.0	NO	NO	bb
9.4.	9 181214P2_10	Standard	10.000	4.53	5522.653	5522.653	10.000	10.0	0.0	NO	NO	bb
10.	$10181214 \mathrm{P} 2 _11$	Standard	10.000	4.53	5638.047	5638.047	10.000	10.0	0.0	NO	NO	bb

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 1.04673e-016, Relative SD: $1.04673 \mathrm{e}-014$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:	D:IPFAS.PRO\RESULTS 1181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:09:37 Pacific Standard Time

Compound name: d3-N-MeFOSAA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:	D:IPFAS.PROIRESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:12:06 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 15 Dec 2018 10:04:32

Calibration: D:|PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_2, Date: 14-Dec-2018, Time: 12:26:47, ID: ST181214P2-1 PFC CS-4 537 18L1003, Description: PFC CS-4 $53718 L 1003$

Untitled
Last Altered: Saturday, December 15, 2018 10:42:45 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:42:57 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Compound name: PFBS

	\# Name	ID	Acq, Date	Acq. Time
1. ${ }^{\text {W. }}$	1 181214P2_1	IPA	14-Dec-18	12:15:34
2.11 \%	2 181214P2_2	ST181214P2-1 PFC CS-4 537 18L1003	14-Dec-18	12:26:47
3.1 W,	3181214 P 2 _3	ST181214P2-2 PFC CS-3 53718 L 1004	14-Dec-18	12:37:57
4 4.	4 181214P2_4	ST181214P2-3 PFC CS-2 537 18L1005	14-Dec-18	12:49:08
5	5 181214P2_5	ST181214P2-4 PFC CS-1 537 18L1006	14-Dec-18	13:00:27
6	6181214 P 2 _6	ST181214P2-5 PFC CS0 53718 L 1007	14-Dec-18	13:11:39
7	7 181214P2_7	ST181214P2-6 PFC CS1 53718 L 1008	14-Dec-18	13:22:50
8	8181214 P 28	ST181214P2-7 PFC CS2 53718 L 1009	14-Dec-18	13:34:01
9	9 181214P2_9	ST181214P2-8 PFC CS3 53718 L 1010	14-Dec-18	13:45:12
10	10 181214P2_10	ST181214P2-9 PFC CS4 53718 L 1011	14-Dec-18	13:56:22
11.	11 181214P2_11	ST181214P2-10 PFC CS5 53718 L 1012	14-Dec-18	14:07:33
12	12 181214P2_12	IPA	14-Dec-18	14:18:43
13.15	13 181214P2_13	ST181214P2-1 PFC ICV 53718 L 1013	14-Dec-18	14:29:54
14	14 181214P2_14	IPA	14-Dec-18	15:18:41

ICAL

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS DW L14 121418.mdb 15 Dec 2018 10:04:32

Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51

Compound name: PFBS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998244$
Calibration curve: 0.767139 * x
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803982 Revision 2

Dataset:	D:IPFAS.PRO\RESULTS 1181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFHxA
Coefficient of Determination: $R^{\wedge} 2=0.998719$
Calibration curve: $0.575411^{*} x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: HFPO-DA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997247$
Calibration curve: 0.000119042 * $x^{\wedge} 2+0.0699276$ * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:

D:\PFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:
Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFHpA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999597$
Calibration curve: $0.922271^{*} \times$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: ADONA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998350$
Calibration curve: $1.22899{ }^{*} \times$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFHxS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997577$
Calibration curve: $-0.000456222^{*} x^{\wedge} 2+0.918218{ }^{*} x$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset:	D:IPFAS.PRO\RESULTS 1181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFOA
Coefficient of Determination: $R^{\wedge} 2=0.998672$
Calibration curve: 0.920346 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
D:\PFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
 Printed: Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFNA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998301$
Calibration curve: $0.837534^{*} x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Saturday, December 15, } 2018 \text { 10:08:51 Pacific Standard Time } \\ \text { Printed: } & \text { Saturday, December 15, } 2018 \text { 10:41:43 Pacific Standard Time }\end{array}$

Compound name: PFOS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997446$
Calibration curve: 0.899774 * \times
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:
Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: 9Cl-PF3ONS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.994100$
Calibration curve: $3.18847^{*} \mathrm{x}$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTSI181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999015$
Calibration curve: $-0.000221295{ }^{*} x^{\wedge} 2+0.834247{ }^{*} x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Saturday, December 15, } 2018 \text { 10:08:51 Pacific Standard Time } \\ \text { Printed: } & \text { Saturday, December 15, } 2018 \text { 10:41:43 Pacific Standard Time }\end{array}$ Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: $\operatorname{N}-\mathrm{MeFOSAA}$
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997830$
Calibration curve: -0.00072913 * $x^{\wedge} 2+0.914639$ * x
Response type: Internal Std (Ref 25), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered: \quad Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: N-EtFOSAA
Coefficient of Determination: $R^{\wedge} 2=0.998450$
Calibration curve: $0.00236696^{*} x^{\wedge} 2+0.536971^{*} x$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFUnA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998136$
Calibration curve: 0.864966 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: 11CI-PF3OUdS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997306$
Calibration curve: $2.63344^{*} \mathrm{X}$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Saturday, December 15, } 2018 \text { 10:08:51 Pacific Standard Time } \\ \text { Printed: } & \text { Saturday, December 15, } 2018 \text { 10:41:43 Pacific Standard Time }\end{array}$
Printed:

Compound name: PFDoA

Coefficient of Determination: $R^{\wedge} 2=0.998508$
Calibration curve: 1.2306 * x
Response type: Internal Std (Ret 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q

Dataset: D:IPFAS.PROXRESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:41:43 Pacific Standard Time

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999286$
Calibration curve: $1.32773^{*} \mathrm{x}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Saturday, December 15, } 2018 \text { 10:08:51 Pacific Standard Time } \\ \text { Printed: } & \text { Saturday, December 15, 2018 10:41:43 Pacific Standard Time }\end{array}$

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999100$
Calibration curve: $1.32618{ }^{*} \mathrm{x}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered:	Saturday, December 15, 2018 10:08:51 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:11:10 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 15 Dec 2018 10:04:32
Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51
Name: 181214P2_2, Date: 14-Dec-2018, Time: 12:26:47, ID: ST181214P2-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

Dataset:

D:IPFAS.PRO\RESULTS $1181214 \mathrm{P} 2 \backslash 1801214 \mathrm{P} 2-\mathrm{CRV}$.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_2, Date: 14-Dec-2018, Time: 12:26:47, ID: ST181214P2-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

\section*{PFHxS
 | 100 | F9:MRM of 2 channels,ES$399>80.0$ | |
| :---: | :---: | :---: |
| | PFHxS | $1.877 \mathrm{e}+002$ |
| | 4.18 | |
| | 9.54 e 0 | |
| | 188 | |
| | MMX | |
| | 188.00 | |
| | | |
| | $\begin{gathered} \text { PFHxS } \\ 418 \end{gathered}$ | |
| - | 9.54 e 0 | |
| | 188 | |
| | MMX | |
| | 188.00 | |
| | T.1. | 2min |
| 3.50 | 4.00 | 4.50 |

13C4-PFOS

PFOA

13C2-PFOA

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$
$1.500 \mathrm{e}+005$

13C4-PFOS

9Cl-PF3ONS

13C4-PFOS

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_2, Date: 14-Dec-2018, Time: 12:26:47, ID: ST181214P2-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

Dataset:
 D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered
Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_2, Date: 14-Dec-2018, Time: 12:26:47, ID: ST181214P2-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

\section*{PFDoA

13C2-PFOA
F11:MRM of 1 channel,ES-
$415>370$
$1.500 \mathrm{e}+005$

13C2-PFOA
F11:MRM of 1 channel,ES
415 > 370
$1.500 \mathrm{e}+005$

PFTeDA

13C2-PFOA
F11:MRM of 1 channel,ES-
415 > 370 $1.500 \mathrm{e}+005$

13C2-PFHxA

13C2-PFDA
F16:MRM of 1 channel,ES

d5-N-EtFOSAA
F22:MRM of 1 channel, ES-
$589.1>419.0$
$1.463 e+005$

Vista Analytical Laboratory
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered:
Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_3, Date: 14-Dec-2018, Time: 12:37:57, ID: ST181214P2-2 PFC CS-3 537 18L1004, Description: PFC CS-3 $53718 L 1004$

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_3, Date: 14-Dec-2018, Time: 12:37:57, ID: ST181214P2-2 PFC CS-3 537 18L1004, Description: PFC CS-3 $53718 L 1004$

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES-

13C4-PFOS

9Cl-PF3ONS

F17:MRM of 2 channels,ES
$531.1>351.1$
$3.160 \mathrm{e}+003$

13C4-PFOS

Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_3, Date: 14-Dec-2018, Time: 12:37:57, ID: ST181214P2-2 PFC CS-3 537 18L1004, Description: PFC CS-3 537 18L1004

Dataset: D:IPFAS.PROXRESULTS\181214P211801214P2-CRV.qld

Last Altered:
Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_3, Date: 14-Dec-2018, Time: 12:37:57, ID: ST181214P2-2 PFC CS-3 537 18L1004, Description: PFC CS-3 $53718 L 1004$

13C2-PFOA

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$
$1.215 e+005$

PFTeDA

13C2-PFOA

13C2-PFHxA

13C2-PFDA

13C3-HFPO-DA
F6:MRM of 1 channel,ES-
$332>287$
$8.775 \mathrm{e}+003$

d5-N-EtFOSAA
F22:MRM of 1 channel,ES$589.1>419.0$
$1.474 \mathrm{e}+005$

Vista Analytical Laboratory
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_4, Date: 14-Dec-2018, Time: 12:49:08, ID: ST181214P2-3 PFC CS-2 537 18L1005, Description: PFC CS-2 $53718 L 1005$

Vista Analytical Laboratory

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_4, Date: 14-Dec-2018, Time: 12:49:08, ID: ST181214P2-3 PFC CS-2 537 18L1005, Description: PFC CS-2 537 18L1005

Vista Analytical Laboratory

Dataset:	D:IPFAS.PRO\RESULTS 1181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_4, Date: 14-Dec-2018, Time: 12:49:08, ID: ST181214P2-3 PFC CS-2 537 18L1005, Description: PFC CS-2 537 18L1005

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES-
hannel,ES-
$415>370$
$1.067 \mathrm{e}+005$

11Cl-PF3OUdS

13C4-PFOS

F14:MRM of 1 channel,ES

Vista Analytical Laboratory
Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_4, Date: 14-Dec-2018, Time: 12:49:08, ID: ST181214P2-3 PFC CS-2 537 18L1005, Description: PFC CS-2 537 18L1005

Dataset:	D:IPFAS.PRO\RESULTS 1 181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_5, Date: 14-Dec-2018, Time: 13:00:27, ID: ST181214P2-4 PFC CS-1 537 18L1006, Description: PFC CS-1 $53718 L 1006$

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_5, Date: 14-Dec-2018, Time: 13:00:27, ID: ST181214P2-4 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_5, Date: 14-Dec-2018, Time: 13:00:27, ID: ST181214P2-4 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset:	D:IPFAS.PROIRESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_5, Date: 14-Dec-2018, Time: 13:00:27, ID: ST181214P2-4 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset:

D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_6, Date: 14-Dec-2018, Time: 13:11:39, ID: ST181214P2-5 PFC CS0 537 18L1007, Description: PFC CS0 537 18L1007

Name: 181214P2_6, Date: 14-Dec-2018, Time: 13:11:39, ID: ST181214P2-5 PFC CS0 537 18L1007, Description: PFC CS0 $53718 L 1007$

13C4-PFOS

13C2-PFOA

13C2-PFOA

9CI-PF3ONS

13C4-PFOS

Dataset:
D:IPFAS.PRO\RESULTS\181214P211801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_6, Date: 14-Dec-2018, Time: 13:11:39, ID: ST181214P2-5 PFC CS0 537 18L1007, Description: PFC CS0 $53718 L 1007$

13C2-PFOA

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM \mathbf{N}-M 1 channel,ES-

PFUnA

13C2-PFOA

11Cl-PF3OUdS
F24:MRM of 2 channels,ES-
$631.1>451.1$
$1.946 \mathrm{e}+004$

13C4-PFOS

Dataset: D:IPFAS.PROIRESULTS\181214P2\1801214P2-CRV.qld
Last Altered: \quad Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_6, Date: 14-Dec-2018, Time: 13:11:39, ID: ST181214P2-5 PFC CS0 537 18L1007, Description: PFC CS0 $53718 L 1007$

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_7, Date: 14-Dec-2018, Time: 13:22:50, ID: ST181214P2-6 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

F14:MRM of 1 channel,ES-

PFHxA

F3:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFOA
F11:MRM of 1 channel,ES

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$

ADONA

13C2-PFOA
F11:MRM of 1 channel,ES-

Dataset:	D:IPFAS.PRO\RESULTS\181214P211801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_7, Date: 14-Dec-2018, Time: 13:22:50, ID: ST181214P2-6 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C4-PFOS

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld

Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_7, Date: 14-Dec-2018, Time: 13:22:50, ID: ST181214P2-6 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

PFUnA

Dataset:	D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:	Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2 7, Date: 14-Dec-2018, Time: 13:22:50, ID: ST181214P2-6 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

13C2-PFOA
F11:MRM of 1 channel,ES

13C2-PFOA
F11:MRM of 1 channel, ES-

13C2-PFOA
F11:MRM of 1 channel, ES

13C2-PFDA

13C3-HFPO-DA
F6:MRM of 1 channel,ES-
$332>287$
$8.541 \mathrm{e}+003$

d5-N-EtFOSAA
F22:MRM of 1 channel,ES $589.1>419.0$

Dataset:
D:IPFAS.PRO\RESULTS\181214P211801214P2-CRV.qld
Last Altered:
Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_8, Date: 14-Dec-2018, Time: 13:34:01, ID: ST181214P2-7 PFC CS2 537 18L1009, Description: PFC CS2 $53718 L 1009$

Last Altered: \quad Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_8, Date: 14-Dec-2018, Time: 13:34:01, ID: ST181214P2-7 PFC CS2 537 18L1009, Description: PFC CS2 $53718 L 1009$

13C4-PFOS

13C2-PFOA

13C2-PFOA

13C4-PFOS

9CI-PF3ONS

13C4-PFOS

Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_8, Date: 14-Dec-2018, Time: 13:34:01, ID: ST181214P2-7 PFC CS2 537 18L1009, Description: PFC CS2 $53718 L 1009$

13C2-PFOA

d3-N-MeFOSAA

13C2-PFOA
13C2-PFOA

13C4-PFOS

Dataset: D:IPFAS.PRO\RESULTS 1 181214P211801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_8, Date: 14-Dec-2018, Time: 13:34:01, ID: ST181214P2-7 PFC CS2 537 18L1009, Description: PFC CS2 537 18L1009

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFDA
F16:MRM of 1 channel, ES-

13C3-HFPO-DA
F6:MRM of 1 channel,ES$332>287$ $8.622 e+003$

d5-N-EtFOSAA
F22:MRM of 1 channel,ES$589.1>419.0$

Dataset: D:IPFAS.PROIRESULTS\181214P2\1801214P2-CRV.qld

Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_9, Date: 14-Dec-2018, Time: 13:45:12, ID: ST181214P2-8 PFC CS3 537 18L1010, Description: PFC CS3 $53718 L 1010$

Vista Analytical Laboratory
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered:
Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_9, Date: 14-Dec-2018, Time: 13:45:12, ID: ST181214P2-8 PFC CS3 537 18L1010, Description: PFC CS3 $53718 L 1010$

Dataset:

Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_9, Date: 14-Dec-2018, Time: 13:45:12, ID: ST181214P2-8 PFC CS3 537 18L1010, Description: PFC CS3 $53718 L 1010$

Last Altered: \quad Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_9, Date: 14-Dec-2018, Time: 13:45:12, ID: ST181214P2-8 PFC CS3 537 18L1010, Description: PFC CS3 $53718 L 1010$

13C2-PFOA

PFTrDA

13C2-PFOA

PFTeDA

13C2-PFOA

13C2-PFDA

13C3-HFPO-DA

F6:MRM of 1 channel,ES$332>287$ $9.274 e+003$

d5-N-EtFOSAA
F22:MRM of 1 channel,ES-
$589.1>419.0$
$1.245 \mathrm{e}+005$

Vista Analytical Laboratory
Dataset: D:IPFAS.PROXRESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_10, Date: 14-Dec-2018, Time: 13:56:22, ID: ST181214P2-9 PFC CS4 537 18L1011, Description: PFC CS4 $53718 L 1011$

Vista Analytical Laboratory
Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_10, Date: 14-Dec-2018, Time: 13:56:22, ID: ST181214P2-9 PFC CS4 537 18L1011, Description: PFC CS4 53718 L1011

13C4-PFOS

13C2-PFOA

13C2-PFOA

Vista Analytical Laboratory
Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2 10, Date: 14-Dec-2018, Time: 13:56:22, ID: ST181214P2-9 PFC CS4 537 18L1011, Description: PFC CS4 $53718 L 1011$

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

13C4-PFOS

Dataset:

D:IPFAS.PROIRESULTS\181214P2\1801214P2-CRV.qld
Last Altered:
Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_10, Date: 14-Dec-2018, Time: 13:56:22, ID: ST181214P2-9 PFC CS4 537 18L1011, Description: PFC CS4 $53718 L 1011$

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

13C2-PFDA
F16:MRM of 1 channel,ES-

13C3-HFPO-DA

F6:MRM of 1 channel,ES$332>287$ $9.869 e+003$

d5-N-EtFOSAA
F22:MRM of 1 channel,ES$589.1>419.0$

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: \quad Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_11, Date: 14-Dec-2018, Time: 14:07:33, ID: ST181214P2-10 PFC CS5 537 18L1012, Description: PFC CS5 $53718 L 1012$

Vista Analytical Laboratory
Dataset:
D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_11, Date: 14-Dec-2018, Time: 14:07:33, ID: ST181214P2-10 PFC CS5 537 18L1012, Description: PFC CS5 $53718 L 1012$

13C2-PFOA

PFNA

13C2-PFOA

13C4-PFOS

9Cl-PF3ONS
F17:MRM of 2 channels,ES$531.1>351.1$

13C4-PFOS

Dataset: D:IPFAS.PRO\RESULTS\181214P2\1801214P2-CRV.qld
Last Altered: \quad Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed:
Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_11, Date: 14-Dec-2018, Time: 14:07:33, ID: ST181214P2-10 PFC CS5 537 18L1012, Description: PFC CS5 $53718 L 1012$

Vista Analytical Laboratory
Dataset: D:IPFAS.PRO\RESULTS 1181214P2\1801214P2-CRV.qld
Last Altered: Saturday, December 15, 2018 10:04:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:05:41 Pacific Standard Time

Name: 181214P2_11, Date: 14-Dec-2018, Time: 14:07:33, ID: ST181214P2-10 PFC CS5 537 18L1012, Description: PFC CS5 $53718 L 1012$

Vista Analytical Laboratory
Dataset:
D:IPFAS.PROIRESULTS\181214P2\1801214P2-ICV.qld
Last Altered:
Saturday, December 15, 2018 10:23:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:24:05 Pacific Standard Time
(4) Compands not PRASENT in ICV

Method: D:IPFAS.PRO\MethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06

Calibration: D:IPFAS.PRO\CurveDB\537 Q5 12-14-18 L18.cdb 15 Dec 2018 10:08:51

Name: 181214P2_13, Date: 14-Dec-2018, Time: 14:29:54, ID: ST181214P2-1 PFC ICV 537 18L1013, Description: PFC ICV $53718 K 2812$

Vista Analytical Laboratory

Dataset:	D:IPFAS.PROTRESULTS 1 181214P2\1801214P2-ICV.qld
Last Altered:	Saturday, December 15, 2018 10:23:34 Pacific Standard Time
Printed:	Saturday, December 15, 2018 10:24:05 Pacific Standard Time

Method: D:IPFAS.PRO\MethDB\PFAS DW L14 121418.mdb 14 Dec 2018 11:08:06
Calibration: D:\PFAS.PRO\CurveDB\537_Q5_12-14-18_L18.cdb 15 Dec 2018 10:08:51
Name: 181214P2_13, Date: 14-Dec-2018, Time: 14:29:54, ID: ST181214P2-1 PFC ICV 537 18L1013, Description: PFC ICV $53718 K 2812$

ADONA

13C2-PFOA

Name: 181214P2_13, Date: 14-Dec-2018, Time: 14:29:54, ID: ST181214P2-1 PFC ICV 537 18L1013, Description: PFC ICV 53718 K 2812

PFHxS	
	F9:MRM of 2 channels,ES- $399>80.0$
100	PFHxS 1.399e +004
	4.26 7.31 e 2
	13991
	MM
	13991.00
\%-	PFHxS 4.26
	7.31 e 2
	13991
	MM
	13991.00
3.50	4.0040

13C2-PFOA

13C2-PFOA

13C4-PFOS

9CI-PF3ONS

F17:MRM of 2 channels,ES-

13C4-PFOS

Dataset:

 D:IPFAS.PRO\RESULTS\181214P211801214P2-ICV.qldLast Altered: Saturday, December 15, 2018 10:23:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:24:05 Pacific Standard Time

Name: 181214P2_13, Date: 14-Dec-2018, Time: 14:29:54, ID: ST181214P2-1 PFC ICV 537 18L1013, Description: PFC ICV 53718 K 2812

Dataset: D:IPFAS.PROTRESULTSI181214P2\1801214P2-ICV.qld

Last Altered:
Saturday, December 15, 2018 10:23:34 Pacific Standard Time
Printed: Saturday, December 15, 2018 10:24:05 Pacific Standard Time

Name: 181214P2_13, Date: 14-Dec-2018, Time: 14:29:54, ID: ST181214P2-1 PFC ICV 537 18L1013, Description: PFC ICV $53718 K 2812$

13C2-PFOA

13C2-PFOA

PFTeDA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFDA

13C3-HFPO-DA
F6:MRM of 1 channel,ES-
332 > 287
$8.191 \mathrm{e}+003$

d5-N-EIFOSAA
F22:MRM of 1 channel,ES-
$589.1>419.0$

Method: D:IPFAS.prolMethDB\PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06
Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Compound name: PFBS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998798$
Calibration curve: $0.801174^{*} \mathrm{X}$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFHxA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999547$
Calibration curve: 0.671619 * X
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:

D:IPFAS.PROIRESULTSI181216p1\181216P1-CRV.qld

Last Altered:
Printed:
Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Sunday, December 16, 2018 17:45:16 Pacific Standard Time

Compound name: PFHxA

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
10	10 181216P1_11	Standard	100.000	3.68	46836.113	6874.921	68.126	101.4	1.4	NO	1.000	NO	db

Compound name: PFHpA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999466$
Calibration curve: $0.993763^{*} \mathrm{x}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	WISArea	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 181216P1_2	Standard	0.250	4.16	149.187	7279.772	0.205	0.2	-17.5	NO	0.999	NO	bb
2	2 181216P1_3	Standard	0.500	4.16	350.301	7427.756	0.472	0.5	-5.1	NO	0.999	NO	bb
3	3 181216P1_4	Standard	1.000	4.16	740.453	7242.920	1.022	1.0	2.9	NO	0.999	NO	bb
4	4 181216P1_5	Standard	2.000	4.16	1294.022	7565.223	1.710	1.7	-13.9	NO	0.999	NO	dd
5.4	5 181216P1_6	Standard	5.000	4.16	3382.526	7345.396	4.605	4.6	-7.3	NO	0.999	NO	bb
6	6 181216P1_7	Standard	10.000	4.15	6892.133	7148.786	9.641	9.7	-3.0	NO	0.999	NO	bb
7	7 181216P1_8	Standard	25.000	4.16	17042.746	7105.170	23.986	24.1	-3.5	NO	0.999	NO	bb
8	8 181216P1_9	Standard	50.000	4.16	34893.840	6980.003	49.991	50.3	0.6	NO	0.999	NO	bb
9	9 181216P1_10	Standard	75.000	4.16	51719.480	6826.589	75.762	76.2	1.6	NO	0.999	NO	bb
10	10 181216P1_11	Standard	100.000	4.16	68528.609	6874.921	99.679	100.3 /	0.3	NO	0.999	NO	bb

Compound name: PFHxS

Coefficient of Determination: $R^{\wedge} 2=0.998258$
Calibration curve: $0.86342^{*} x$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
12.4	1 181216P1_2	Standard	0.228	4.26	13.581	3493.818	0.112	0.1	-43.3	NO	0.998	NO	MMX
2 W.	2 181216P1_3	Standard	0.456	4.27	30.819	3342.851	0.265	0.3	-32.8	NO	0.998	NO	MM
3	3 181216P1_4	Standard	0.912	4.27	85.728	3284.573	0.749	0.9	-4.9	NO	0.998	NO	MM
4	4 181216P1_5	Standard	1.820	4.26	196.459	3409.345	1.654	1.9	5.2	NO	0.998	NO	MM
5.	5 181216P1_6	Standard	4.560	4.26	438.746	3486.550	3.612	4.2	-8.3	NO	0.998	NO	MM
6 6.	6 181216P1_7	Standard	9.120	4.26	846.963	3215.264	7.560	8.8	-4.0	NO	0.998	NO	MM
7 7.13	7 181216P1_8	Standard	22.800	4.27	2244.169	3352.274	19.213	22.3	-2.4	NO	0.998	NO	MM

Dataset:	D:IPFAS.PROIRESULTSU181216p1\181216P1-CRV.qld
Last Altered:	Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:	Sunday, December 16, 2018 17:45:16 Pacific Standard Time

Compound name: PFHxS

Compound name: PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999111$
Calibration curve: $1.03191^{*} \mathrm{x}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Y Std Conc	RT	Area.	\% IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoDFlag	$x=$ excluded
1.	1 181216P1_2	Standard	0.250	4.52	164.217	7279.772	0.226	0.2	-12.6	NO	0.999	NO	bb
2	2 181216P1_3	Standard	0.500	4.53	397.868	7427.756	0.536	0.5	3.8	NO	0.999	NO	MM
3	3 181216P1_4	Standard	1.000	4.53	785.396	7242.920	1.084	1.1	5.1	NO	0.999	NO	bb
4	4 181216P1_5	Standard	2.000	4.53	1469.264	7565.223	1.942	1.9	-5.9	NO	0.999	NO	bb
5.4	5 181216P1_6	Standard	5.000	4.53	3856.407	7345.396	5.250	5.1	1.8	NO	0.999	NO	bb
5	6181216 P 1 _7	Standard	10.000	4.53	7282.432	7148.786	10.187	9.9	-1.3	NO	0.999	NO	bb
7	7 181216P1_8	Standard	25.000	4.53	18747.688	7105.170	26.386	25.6	2.3	NO	0.999	NO	bb
8	8 181216P1_9	Standard	50.000	4.53	37620.668	6980.003	53.898	52.2	4.5	NO	0.999	NO	bb
9	9 181216P1_10	Standard	75.000	4.53	50922.457	6826.589	74.594	72.3	-3.6	NO	0.999	NO	bb
10 \%	10 181216P1_11	Standard	100.000	4.53	70965.297	6874.921	103.223	100.0	0.0	NO	0.999	NO	bb

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999549$
Calibration curve: 1.06385 * \times
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:
D:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld

Last Altered:

Printed:

Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Sunday, December 16, 2018 17:45:16 Pacific Standard Time

Compound name: PFNA

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998240$
Calibration curve: 0.892898 * x
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Quantify Compound Summary Report

Vista Analytical Laboratory

Dataset: P:IPFAS.PRO\RESULTS\181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Friday, December 21, 2018 12:37:24 Pacific Standard Time

> *This page was inserted after original print out was scanned.
> No changes were made to PFUnA. GM $12 / 21 / 18$

Method: D:|PFAS.pro\MethDB|PFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:|PFAS.PRO\CurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999242$
Calibration curve: 1.08381^{*} x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 181216P1_2	Standard	0.250	5.33	190.689	7279.772	0.262	0.2	-3.3	NO	0.999	NO	MM
2	2 181216P1_3	Standard	0.500	5.33	385.443	7427.756	0.519	0.5	-4.2	NO	0.999	NO	MM
3	3 181216P1_4	Standard	1.000	5.33	803.866	7242.920	1.110	1.0	2.4	NO	0.999	NO	bb
4	4 181216P1_5	Standard	2.000	5.33	1662.834	7565.223	2.198	2.0	1.4	NO	0.999	NO	bb
5	5 181216P1_6	Standard	5.000	5.33	3826.386	7345.396	5.209	4.8	-3.9	NO	0.999	NO	bb
6	6 181216P1_7	Standard	10.000	5.33	7367.830	7148.786	10.306	9.5	-4.9	NO	0.999	NO	bb
7	7 181216P1_8	Standard	25.000	5.33	17944.623	7105.170	25.256	23.3	-6.8	NO	0.999	NO	bb
8	8 181216P1_9	Standard	50.000	5.33	38728.938	6980.003	55.486	51.2	2.4	NO	0.999	NO	bb
9	9 181216P1_10	Standard	75.000	5.33	55392.527	6826.589	81.142	74.9	-0.2	NO	0.999	NO	bb
10	10 181216P1_11	Standard	100.000	5.33	75476.578	6874.921	109.785	101.3	1.3	NO	0.999	NO	bb

Dataset:
D:IPFAS.PROIRESULTSI181216p1\181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:45:16 Pacific Standard Time

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999592$
Calibration curve: 0.000604356 * $x^{\wedge} 2+1.011$ * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

			Name	Type	Std. Conc	RT.	Area	2t. IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1			181216P1_2	Standard	0.250	5.11	187.498	7279.772	0.258	0.3	1.9	NO	1.000	NO	MM
2			181216P1_3	Standard	0.500	5.10	356.850	7427.756	0.480	0.5	-5.0	NO	1.000	NO	MM
3			181216P1_4	Standard	1.000	5.10	717.633	7242.920	0.991	1.0	-2.1	NO	1.000	NO	bb
4	[4		181216P1_5	Standard	2.000	5.10	1435.611	7565.223	1.898	1.9	-6.3	NO	1.000	NO	bb
5	4.		181216P1_6	Standard	5.000	5.10	3815.442	7345.396	5.194	5.1	2.4	NO	1.000	NO	db
6	4.tll		181216P1_7	Standard	10.000	5.10	7397.259	7148.786	10.348	10.2	1.7	NO	1.000	NO	$b b$
7	4		181216P1_8	Standard	25.000	5.10	18119.055	7105.170	25.501	24.9	-0.6	NO	1.000	NO	bb
8	4		181216P1_9	Standard	50.000	5.10	35575.844	6980.003	50.968	49.0	-2.0	NO	1.000	NO	bb
9	4		181216P1_10	Standard	75.000	5.10	55578.395	6826.589	81.415	77.0	2.6	NO	1.000	NO	bb
10	$\stackrel{+}{4}$		181216P1_11	Standard	100.000	5.10	72918.000	6874.921	106.064	99.0	-1.0	NO	1.000	NO	bb

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999177$
Calibration curve: 0.000436133 * $x^{\wedge} 2+0.811009$ * x
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:
D:IPFAS.PROIRESULTSI181216p1\181216P1-CRV.qld
Last Altered:
Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:45:16 Pacific Standard Time

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998288$
Calibration curve: 0.738007^{*} X
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

		\# Name	Type	발	Std. Conc	RT	Area	IS Area	Response	Cone	\%Dev	Cone Flag	Cob	CoD Flag	$x=$ excluded
1		1 181216P1_2	Standard		0.250	5.33	73.682	14678.781	0.201	0.3	8.8	NO	0.998	NO	MM
2		2 181216P1_3	Standard		0.500	5.33	135.251	15774.216	0.343	0.5	-7.1	NO	0.998	NO	bb
3		3 181216P1_4	Standard		1.000	5.33	231.530	15029.428	0.616	0.8	-16.5	NO	0.998	No	MM
4		4 181216P1_5	Standard		2.000	5.33	495.414	16005.771	1.238	1.7	-16.1	NO	0.998	NO	MM
5		5 181216P1_6	Standard		5.000	5.33	1453.554	14685.746	3.959	5.4	7.3	NO	0.998	NO	bb
6		6 181216P1_7	Standard		10.000	5.33	3147.262	14987.412	8.400	11.4	13.8	NO	0.998	NO	bb
7	.	7 181216P1_8	Standard		25.000	5.33	7231.548	14845.179	19.485	26.4	5.6	NO	0.998	NO	bb
8		8 181216P1_9	Standard		50.000	5.33	13749.876	14980.904	36.713	49.7	-0.5	NO	0.998	NO	MM
9		9 181216P1_10	Standard		75.000	5.33	20892.588	15094.049	55.366	75.0	0.0	NO	0.998	NO	MM
10		10 181216P1_11	Standard		100.000	5.33	26403.914	14665.199	72.018	97.6	-2.4	NO	0.998	NO	MM

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999601$

Calibration curve: 1.45897 * X
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PROIRESULTSI181216p1\181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:
Sunday, December 16, 2018 17:45:16 Pacific Standard Time

Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999746$
Calibration curve: 1.32037 * X
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999780$
Calibration curve: $1.389355^{*} \mathrm{X}$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PROIRESULTS\181216p1\181216P1-CRV.qld

Last Altered:	Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:	Sunday, December 16, 2018 17:45:16 Pacific Standard Time

Compound name: 13C2-PFHxA

Response Factor: 0.941897

RRF SD: 0.0178674, Relative SD: 1.89696
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:
D:IPFAS.PRO\RESULTSI181216p11181216P1-CRV.qld

Last Altered:
Printed:

Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Sunday, December 16, 2018 17:45:23 Pacific Standard Time

Method: D:IPFAS.prolMethDBIPFAS DW L14 121418.mdb 14 Dec 2018 11:08:06

Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29
Compound name: 13C2-PFDA
Response Factor: 1.30113
RRF SD: 0.0472003, Relative SD: 3.62764
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

		S		Name	\%	Type	**	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1				181216P1_2		Standard		10.000	5.10	9462.889	7279.772	12.999	10.0	-0.1	NO		NO	bb
2				181216P1_3		Standard		10.000	5.10	8973.134	7427.756	12.081	9.3	-7.2	NO		NO	bb
3				181216P1_4		Standard		10.000	5.10	9115.787	7242.920	12.586	9.7	-3.3	NO		NO	bb
4				181216P1_5		Standard		10.000	5.10	9590.019	7565.223	12.676	9.7	-2.6	NO		NO	bb
5		\#		181216P1_6		Standard		10.000	5.10	9788.979	7345.396	13.327	10.2	2.4	NO		NO	bb
6		+		181216P1_7		Standard		10.000	5.10	9118.710	7148.786	12.756	9.8	-2.0	NO		NO	bb
7	崖	5		181216P1_8		Standard		10.000	5.10	9574.761	7105.170	13.476	10.4	3.6	NO		NO	bb
8		*		181216P1_9		Standard		10.000	5.10	9343.141	6980.003	13.386	10.3	2.9	NO		NO	bb
9	,	2		181216P1_10		Standard		10.000	5.10	9169.674	6826.589	13.432	10.3	3.2	NO		NO	bb
10	4	3		181216P1_11		Standard		10.000	5.10	9209.241	6874.921	13.395	10.3	3.0	NO		NO	bb

Compound name: d5-N-EtFOSAA

Response Factor: 1.07043
RRF SD: 0.0813957, Relative SD: 7.60405
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	CoD	CoDFlag	$x=$ excluded
1	1 181216P1_2	Standard	40.000	5.32	16976.545	14678.781	46.261	43.2	8.0	NO		NO	bb
\%	2 181216P1_3	Standard	40.000	5.32	16409.121	15774.216	41.610	38.9	-2.8	NO		NO	bb
3	3 181216P1_4	Standard	40.000	5.32	16910.600	15029.428	45.007	42.0	5.1	NO		NO	bb
14	4 181216P1_5	Standard	40.000	5.32	14229.097	16005.771	35.560	33.2	-16.9	NO		NO	bb
mivivivin	5 181216P1_6	Standard	40.000	5.32	17024.764	14685.746	46.371	43.3	8.3	NO		NO	bb
6	$6181216 P 1$ _7	Standard	40.000	5.32	15653.707	14987.412	41.778	39.0	-2.4	NO		NO	bb
7 H	7 181216P1_8	Standard	40.000	5.32	16854.422	14845.179	45.414	42.4	6.1	NO		NO	bb
\%	8 181216P1_9	Standard	40.000	5.32	16050.691	14980.904	42.856	40.0	0.1	NO		NO	bb
9 9\%	9 181216P1_10	Standard	40.000	5.32	15395.029	15094.049	40.798	38.1	-4.7	NO		NO	bb

Dataset:	D:IPFAS.PROIRESULTSI181216p1\181216P1-CRV.qld
Last Altered:	Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:	Sunday, December 16, 2018 17:45:23 Pacific Standard Time

Compound name: d5-N-EtFOSAA

Compound name: 13C2-PFOA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:	D:IPFAS.PRO\RESULTSI181216p1\181216P1-CRV.qld
Last Altered:	Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:	Sunday, December 16, 2018 17:45:23 Pacific Standard Time

Compound name: 13C4-PFOS

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
8	8 181216P1_9	Standard	28.700	4.89	3073.305	3073.305	28.700	28.7	0.0	NO		NO	bb
9	9 181216P1_10	Standard	28.700	4.89	3146.568	3146.568	28.700	28.7	0.0	NO		NO	bb
10	10 181216P1_11	Standard	28.700	4.89	3255.842	3255.842	28.700	28.7	0.0	NO		NO	bb

Compound name: d3-N-MeFOSAA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Lurym Std. Conc	RT	Area	IS Area	Response	Conc.	$\%$ Dev	Conc. Flag	Cod	CoD Flag	$x=e x c l u d e d$
1.	1 181216P1_2	Standard	40.000	5.21	14678.781	14678.781	40.000	40.0	0.0	NO		NO	bb
2	2 181216P1_3	Standard	40.000	5.21	15774.216	15774.216	40.000	40.0	0.0	NO		NO	bb
3.7	3 181216P1_4	Standard	40.000	5.21	15029.428	15029.428	40.000	40.0	0.0	NO		NO	bb
4 H	4 181216P1_5	Standard	40.000	5.21	16005.771	16005.771	40.000	40.0	0.0	NO		NO	bb
5	5 181216P1_6	Standard	40.000	5.21	14685.746	14685.746	40.000	40.0	0.0	NO		NO	bd
6	6 181216P1_7	Standard	40.000	5.21	14987.412	14987.412	40.000	40.0	0.0	NO		NO	bb
7	7 181216P1_8	Standard	40.000	5.22	14845.179	14845.179	40.000	40.0	0.0	NO		NO	bb
8	8 181216P1_9	Standard	40.000	5.22	14980.904	14980.904	40.000	40.0	0.0	NO		NO	bb
9	9 181216P1_10	Standard	40.000	5.21	15094.049	15094.049	40.000	40.0	0.0	NO		NO	bb
10.	10 181216P1_11	Standard	40.000	5.21	14665.199	14665.199	40.000	40.0	0.0	NO		NO	bb

Dataset:	D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered:	Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:	Sunday, December 16, 2018 17:44:05 Pacific Standard Time

Method: D:IPFAS.prolMethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181216P1_2, Date: 16-Dec-2018, Time: 14:57:09, ID: ST181216P1-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

\%		\# Name	IS\#	COD	Cod Flag	\%RSD
1		1 PFBS	24	0.9988	NO	
2	+	2 PFHXA	23	0.9995	NO	
3		4 PFHpA	23	0.9995	NO	
4		6 PFHxS	24	0.9983	NO	
5		7 PFOA	23	0.9991	NO	
6		8 PFNA	23	0.9995	NO	
7	4	9 PFOS	24	0.9982	NO	
8	4.4	11 PFDA	23	0.9996	NO	
9	4	$12 \mathrm{~N}-\mathrm{MeFOSAA}$	25	0.9992	NO	
10	\%	13 N-EtFOSAA	25	0.9983	NO	
11	\%	16 PFDoA	23	0.9996	NO	
12		17 PFTrDA	23	0.9997	NO	
13		18 PFTeDA	23	0.9998	NO	
14	+1ty	19 13C2-PFHxA	23		NO	1.897

Dataset: D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qid

Last Altered: \quad Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:

$$
\text { Sunday, December 16, } 2018 \text { 17:44:12 Pacific Standard Time }
$$

Method: D:IPFAS.prolMethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181216P1_2, Date: 16-Dec-2018, Time: 14:57:09, ID: ST181216P1-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

	\# Name	IS\#	COD	CoD Flag	\%RSD
1	21 13C2-PFDA	23		NO	3.628
2	22 d5-N-EIFOSAA	25		NO	7.604
3	23 13C2-PFOA	23		NO	0.000
4	24 13C4-PFOS	24		NO	0.000
5	25 d3-N-MeFOSAA	25		NO	0.000

Dataset:	Untitled
Last Altered:	Sunday, December 16, 2018 17:57:48 Pacific Standard Time
Printed:	Sunday, December 16, 2018 17:57:58 Pacific Standard Time

Method: D:IPFAS.prolMethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Compound name: PFBS

Compound 23: 13C2-PFOA
ID
1 ST181216P1-1 PFC CS-4 537 18L1003
2 ST181216P1-2 PFC CS-3 537 18L1004
3 ST181216P1-3 PFC CS-2 537 18L1005
4 ST181216P1-4 PFC CS-1 537 18L1006
5 ST181216P1-5 PFC CS0 537 18L1007
6 ST181216P1-6 PFC CS1 537 18L1008
7 ST181216P1-7 PFC CS2 537 18L1009
8 ST181216P1-8 PFC CS3 537 18L1010
9 ST181216P1-9 PFC CS4 537 18L1011
10 ST181216P1-10 PFC CS5 537 18L1012
ID
1 ST181216P1-1 PFC CS-4 537 18L1003
2 ST181216P1-2 PFC CS-3 537 18L1004
3 ST181216P1-3 PFC CS-2 537 18L1005
4 ST181216P1-4 PFC CS-1 53718 L1006
5 ST181216P1-5 PFC CSO 537 18L1007
6 ST181216P1-6 PFC CS1 537 18L1008
7 ST181216P1-7 PFC CS2 537 18L1009
8 ST181216P1-8 PFC CS3 537 18L1010
9 ST181216P1-9 PFC CS4 537 18L1011
10 ST181216P1-10 PFC CS5 537 18L1012

high	7565.223 rpd	
low	6826.589	10.26464

Name	Type	Std. Conc	RT	Area			IS Area	Primary Flags
181216P1_Standard	10	4.52	7279.772	7279.772 bb				
181216P1_Standard	10	4.53	7427.756	7427.756 bb				
181216P1_Standard	10	4.53	7242.920	7242.92 bb				
181216P1_Standard	10	4.53	7565.223	7565.223 bb				
181216P1_Standard	10	4.53	7345.396	7345.396 bb				
181216P1_Standard	10	4.53	7148.786	7148.786 bb				
181216P1_Standard	10	4.53	7105.170	7105.17 bb				
181216P1_Standard	10	4.53	6980.003	6980.003 bb				
181216P1_Standard	10	4.53	6826.589	6826.589 bb				
181216P1_Standard	10	4.53	6874.921	6874.921 bb				
	AVG							
		7179.654						

high	3493.818 rpd	
low	3073.305	12.80661

| Name | Type | Std. Conc RT | Area | | |
| :--- | :---: | :---: | :---: | :---: | :---: | IS Area Primary Flags

Compound 25: d3-N-MeFOSAA

ID
1 ST181216P1-1 PFC CS-4 537 18L1003
2 ST181216P1-2 PFC CS-3 $53718 L 1004$
3 ST181216P1-3 PFC CS-2 53718 L1005
4 ST181216P1-4 PFC CS-1 53718 L 1006
5 ST181216P1-5 PFC CS0 537 18L1007
6 ST181216P1-6 PFC CS1 537 18L1008
7 ST181216P1-7 PFC CS2 $53718 L 1009$
8 ST181216P1-8 PFC CS3 537 18L1010
9 ST181216P1-9 PFC CS4 537 18L1011
10 ST181216P1-10 PFC CS5 537 18L1012

high	16005.77 rpd	
low	14665.2	8.741634

Name Type Std. Conc RT Area IS Area Primary Flags

181216P1 Standard 181216P1_Standard 181216P1_Standard 181216P1_ Standard 181216P1_ Standard 181216P1_Standard 181216P1_ Standard 181216P1_Standard 181216P1_ Standard
$\begin{array}{llll}40 & 5.21 & 14678.78 & 14678.78 \mathrm{bb}\end{array}$
$40 \quad 5.21 \quad 15774.22 \quad 15774.22 \mathrm{bb}$
$\begin{array}{llll}40 & 5.21 & 15029.43 & 15029.43 \mathrm{bb}\end{array}$
$\begin{array}{llll}40 & 5.21 & 16005.77 & 16005.77 \mathrm{bb}\end{array}$
$40 \quad 5.21 \quad 14685.75 \quad 14685.75$ bd
$40 \quad 5.21 \quad 14987.41 \quad 14987.41$ bb
$40 \quad 5.22 \quad 14845.18 \quad 14845.18$ bb
$40 \quad 5.22 \quad 14980.90 \quad 14980.9 \mathrm{bb}$
$\begin{array}{llll}40 & 5.21 & 15094.05 & 15094.05 \mathrm{bb}\end{array}$
$40 \quad 5.21 \quad 14665.20 \quad 14665.2$ bb

Dataset:	P:\PFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld
Last Altered:	Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:	Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Method: D:|PFAS.pro\MethDB\PFAS DW L14 121418.mdb 14 Dec 2018 11:08:06 Calibration: D:\PFAS.PRO\CurveDB\C18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Compound name: PFBS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998798$
Calibration curve: 0.801174 * x
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

 Vista Analytical Laboratory Q1

 Vista Analytical Laboratory Q1}
Dataset: P:IPFAS.PRO\RESULTS\181216p11181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFHxA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999547$
Calibration curve: $0.671619{ }^{*} x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report
 Vista Analytical Laboratory Q1

Dataset: P:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:
Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFHpA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999466$
Calibration curve: $0.993763 * x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

 Vista Analytical Laboratory Q1

 Vista Analytical Laboratory Q1}
Dataset: P:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:
Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFHxS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998258$
Calibration curve: 0.86342 * x
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report
 \section*{Vista Analytical Laboratory Q1}

Dataset: P:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:
Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFOA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999111$
Calibration curve: 1.03191 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report
 \section*{Vista Analytical Laboratory Q1}

Dataset: P:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFNA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999549$
Calibration curve: 1.06385 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: P:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:
Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998240$
Calibration curve: $0.892898{ }^{*}$ x
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: P:IPFAS.PROIRESULTS\181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999592$
Calibration curve: $0.000604356^{*} x^{\wedge} 2+1.011^{*} x$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset:	P:IPFAS.PROIRESULTS1181216p1\181216P1-CRV.qld
Last Altered:	Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:	Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: N-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999177$
Calibration curve: $0.000436133{ }^{*} x^{\wedge} 2+0.811009 * x$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: P:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: N-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998288$
Calibration curve: $0.738007^{*} \times$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: P:IPFAS.PROIRESULTS\181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFUnA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999242$
Calibration curve: 1.08381 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999601$
Calibration curve: $1.45897{ }^{*}$ x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: P:IPFAS.PRO\RESULTS\181216p11181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:
Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999746$
Calibration curve: 1.32037 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: P:IPFAS.PRO\RESULTS\181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed:
Sunday, December 23, 2018 12:03:01 Pacific Standard Time

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999780$
Calibration curve: 1.38935 * x
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset:
D:IPFAS.PROIRESULTSI181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:37:49 Pacific Standard Time
Printed:
Sunday, December 16, 2018 17:37:54 Pacific Standard Time

Method: D:IPFAS.prolMethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06
Calibration: 16 Dec 2018 17:37:49
Name: 181216P1_2, Date: 16-Dec-2018, Time: 14:57:09, ID: ST181216P1-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

Dataset:
D:IPFAS.PROIRESULTSU181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:37:49 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:37:54 Pacific Standard Time

Name: 181216P1_2, Date: 16-Dec-2018, Time: 14:57:09, ID: ST181216P1-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

Dataset:

D:IPFAS.PROIRESULTSI181216p1\181216P1-CRV.qld
Last Altered:
Sunday, December 16, 2018 17:37:49 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:37:54 Pacific Standard Time

Name: 181216P1_2, Date: 16-Dec-2018, Time: 14:57:09, ID: ST181216P1-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003

Dataset: D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:37:49 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:37:54 Pacific Standard Time

Name: 181216P1_2, Date: 16-Dec-2018, Time: 14:57:09, ID: ST181216P1-1 PFC CS-4 537 18L1003, Description: PFC CS-4 537 18L1003 d5-N-EtFOSAA

F22:MRM of 1 channel,ES-
$589.1>419.0$

Method: D:IPFAS.prolMethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181216P1_3, Date: 16-Dec-2018, Time: 15:08:28, ID: ST181216P1-2 PFC CS-3 537 18L1004, Description: PFC CS-3 $53718 L 1004$

13C4-PFOS
F14:MRM of 1 channel,ES

13C2-PFOA
F11:MRM of 1 channel,ES

PFHpA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

PFOA

13C2-PFOA

F11:MRM of 1 channel,ES. $415>370$

Dataset:
D:IPFAS.PRO\RESULTSI181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:39:49 Pacific Standard Time

Name: 181216P1_3, Date: 16-Dec-2018, Time: 15:08:28, ID: ST181216P1-2 PFC CS-3 537 18L1004, Description: PFC CS-3 537 18L1004

PFNA
F12:MRM of 2 channels,ES-
$463>419$
$6.274 \mathrm{e}+003$

13C2-PFOA

F11:MRM of 1 channel,ES-

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES$415>370$ $1.543 \mathrm{e}+005$

4.2504 .5004 .750

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-
$573.1>419.1$
$2.892 \mathrm{e}+005$

Name: 181216P1_3, Date: 16-Dec-2018, Time: 15:08:28, ID: ST181216P1-2 PFC CS-3 537 18L1004, Description: PFC CS-3 537 18L1004
 13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFHxA
F4:MRM of 1 channel,ES-
$315.1>270$
$1.594 \mathrm{e}+005$

13C2-PFDA
F16:MRM of 1 channel,ES-

Dataset: D:IPFAS.PROIRESULTSU181216p11181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:39:29 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:39:49 Pacific Standard Time

Name: 181216P1_3, Date: 16-Dec-2018, Time: 15:08:28, ID: ST181216P1-2 PFC CS-3 537 18L1004, Description: PFC CS-3 537 18L1004 d5-N-EtFOSAA

F22:MRM of 1 channel,ES-
$589.1>419.0$
$2.831 \mathrm{e}+005$

Dataset: D:IPFAS.PROIRESULTS\181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: \quad Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_4, Date: 16-Dec-2018, Time: 15:19:39, ID: ST181216P1-3 PFC CS-2 537 18L1005, Description: PFC CS-2 537 18L1005

Dataset:
D:IPFAS.PROIRESULTSU181216p1\181216P1-CRV.qId
Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_4, Date: 16-Dec-2018, Time: 15:19:39, ID: ST181216P1-3 PFC CS-2 537 18L1005, Description: PFC CS-2 537 18L1005

13C2-PFOA

F11:MRM of 1 channel,ES-

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-
$573.1>419.1$

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-
$573.1>419.1$

Dataset:
D:IPFAS.PROIRESULTS\181216p1\181216P1-CRV.qid
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_4, Date: 16-Dec-2018, Time: 15:19:39, ID: ST181216P1-3 PFC CS-2 537 18L1005, Description: PFC CS-2 537 18L1005

PFUnA

13C2-PFOA

13C2-PFOA

PFTrDA

13C2-PFOA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES$315.1>270$
$1.595 e+005$

13C2-PFDA

F16:MRM of 1 channel,ES $515.0>470.0$

Dataset: D:IPFAS.PRO\RESULTSU181216p11181216P1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } \quad \text { Sunday, December 16, } 2018 \text { 17:34:53 Pacific Standard Time } \\ \text { Printed: } & \text { Sunday }\end{array}$

Printed:

 Sunday, December 16, 2018 17:36:13 Pacific Standard Time
Name: 181216P1_4, Date: 16-Dec-2018, Time: 15:19:39, ID: ST181216P1-3 PFC CS-2 537 18L1005, Description: PFC CS-2 537 18L1005

 d5-N-EtFOSAAF22:MRM of 1 channel,ES-
$589.1>419.0$

Dataset: D:IPFAS.PROXRESULTS\181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: \quad Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_5, Date: 16-Dec-2018, Time: 15:30:50, ID: ST181216P1-4 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset:
D:IPFAS.PROTRESULTS\181216p11181216P1-CRV.qid
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_5, Date: 16-Dec-2018, Time: 15:30:50, ID: ST181216P1-4 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset: D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_5, Date: 16-Dec-2018, Time: 15:30:50, ID: ST181216P1-4 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset: D:IPFAS.PRO\RESULTSI181216p1\181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_5, Date: 16-Dec-2018, Time: 15:30:50, ID: ST181216P1-4 PFC CS-1 537 18L1006, Description: PFC CS-1 537 18L1006

Dataset: D:IPFAS.PROIRESULTS\181216p1\181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_6, Date: 16-Dec-2018, Time: 15:42:09, ID: ST181216P1-5 PFC CSO 537 18L1007, Description: PFC CS0 $53718 L 1007$

PFBS

F2:MRM of 2 channels,ES-
$299>80.0$
PFBS
3.38
4.09 e 2
9531
bb
6048.55

13C4-PFOS

PFHxA

13C2-PFOA

PFHpA

13C2-PFOA

PFHxS

13C4-PFOS

PFOA

13C2-PFOA

Dataset:
D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered:
Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed:
Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_6, Date: 16-Dec-2018, Time: 15:42:09, ID: ST181216P1-5 PFC CS0 537 18L1007, Description: PFC CS0 537 18L1007

13C2-PFOA

13C4-PFOS

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

N-MeFOSAA

F19:MRM of 2 channels,ES-
$570>419.1$

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-
$573.1>419.1$ $2.665 \mathrm{e}+005$

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-
$573.1>419.1$ $2.665 \mathrm{e}+005$

Dataset:
D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_6, Date: 16-Dec-2018, Time: 15:42:09, ID: ST181216P1-5 PFC CS0 537 18L1007, Description: PFC CS0 $53718 L 1007$

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA

PFTeDA

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFHxA
F4:MRM of 1 channel,ES$315.1>270$

13C2-PFDA

Dataset: D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_6, Date: 16-Dec-2018, Time: 15:42:09, ID: ST181216P1-5 PFC CS0 537 18L1007, Description: PFC CS0 $53718 L 1007$

Dataset: D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.gld
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_7, Date: 16-Dec-2018, Time: 15:53:20, ID: ST181216P1-6 PFC CS1 537 18L1008, Description: PFC CS1 537 18L1008

Dataset:	D:IPFAS.PROTRESULTS\181216p11181216P1-CRV.qld
Last Altered:	Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed:	Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_7, Date: 16-Dec-2018, Time: 15:53:20, ID: ST181216P1-6 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

Dataset:

D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_7, Date: 16-Dec-2018, Time: 15:53:20, ID: ST181216P1-6 PFC CS1 537 18L1008, Description: PFC CS1 $53718 L 1008$

Dataset:
D:IPFAS.PRO\RESULTSI181216p11181216P1-CRV.qld
Last Altered:
Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_8, Date: 16-Dec-2018, Time: 16:04:31, ID: ST181216P1-7 PFC CS2 537 18L1009, Description: PFC CS2 $53718 L 1009$

Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_8, Date: 16-Dec-2018, Time: 16:04:31, ID: ST181216P1-7 PFC CS2 537 18L1009, Description: PFC CS2 537 18L1009

Dataset:
D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered:
Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed:

Name: 181216P1_8, Date: 16-Dec-2018, Time: 16:04:31, ID: ST181216P1-7 PFC CS2 537 18L1009, Description: PFC CS2 537 18L1009

Dataset: D:IPFAS.PROTRESULTSI181216p11181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_8, Date: 16-Dec-2018, Time: 16:04:31, ID: ST181216P1-7 PFC CS2 537 18L1009, Description: PFC CS2 537 18L1009 d5-N-EtFOSAA

F22:MRM of 1 channel,ES
589.1 > 419.0

Dataset:
D:IPFAS.PRO\RESULTSU181216p1\181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: \quad Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_9, Date: 16-Dec-2018, Time: 16:15:41, ID: ST181216P1-8 PFC CS3 537 18L1010, Description: PFC CS3 537 18L1010

Dataset:

D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld

Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_9, Date: 16-Dec-2018, Time: 16:15:41, ID: ST181216P1-8 PFC CS3 537 18L1010, Description: PFC CS3 537 18L1010

Dataset:
D:IPFAS.PROVRESULTSI181216p1\181216P1-CRV.qid
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_9, Date: 16-Dec-2018, Time: 16:15:41, ID: ST181216P1-8 PFC CS3 537 18L1010, Description: PFC CS3 $53718 L 1010$

PFUnA

13C2-PFOA

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA

PFTeDA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES $315.1>270$ $1.540 \mathrm{e}+005$

13C2-PFDA
F16:MRM of 1 channel,ES-
$515.0>470.0$

Dataset: D:IPFAS.PROIRESULTS\181216p11181216P1-CRV.qld

Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_9, Date: 16-Dec-2018, Time: 16:15:41, ID: ST181216P1-8 PFC CS3 537 18L1010, Description: PFC CS3 537 18L1010

 d5-N-EtFOSAAF22:MRM of 1 channel,ES-
$589.1>419.0$

Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_10, Date: 16-Dec-2018, Time: 16:26:52, ID: ST181216P1-9 PFC CS4 537 18L1011, Description: PFC CS4 $53718 L 1011$

Dataset:
D:IPFAS.PROIRESULTSI181216p11181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed:

$$
\text { Sunday, December 16, } 2018 \text { 17:36:13 Pacific Standard Time }
$$

Name: 181216P1_10, Date: 16-Dec-2018, Time: 16:26:52, ID: ST181216P1-9 PFC CS4 537 18L1011, Description: PFC CS4 $53718 L 1011$

13C2-PFOA

F11:MRM of 1 channel,ES$100 \underbrace{13 \mathrm{C} 2-\mathrm{PFOA}}_{-} \begin{gathered}4.53 \\ 6.83 \mathrm{e} 3 \\ 139100 \\ \mathrm{bb} \\ 139100.00\end{gathered} \quad \begin{array}{r}415>370 \\ 1.392 \mathrm{e}+005\end{array}$

13C4-PFOS
F14:MRM of 1 channel,ES-

13C2-PFOA

d3-N-MeFOSAA

N-EtFOSAA
F21:MRM of 2 channels,ES $584.0>419.1$
$\left.100 \rightarrow \begin{array}{c}\text { N-EtFOSAA } \\ 5.33 \\ 2.09 \mathrm{e} 4\end{array}\right] \quad 3.147 \mathrm{e}+005$

d3-N-MeFOSAA
F20:MRM of 1 channel,ES$573.1>419.1$ $2.753 \mathrm{e}+005$

Dataset:
D:IPFAS.PROTRESULTS\181216p11181216P1-CRV.qId
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_10, Date: 16-Dec-2018, Time: 16:26:52, ID: ST181216P1-9 PFC CS4 537 18L1011, Description: PFC CS4 $53718 L 1011$

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFHxA

F4:MRM of 1 channel,ES$315.1>270$
$1.505 e+005$

13C2-PFDA
F16:MRM of 1 channel, ES-
$515.0>470.0$

Dataset: D:IPFAS.PROIRESULTS\181216p11181216P1-CRV.qld

Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time

Printed:

 Sunday, December 16, 2018 17:36:13 Pacific Standard TimeName: 181216P1_10, Date: 16-Dec-2018, Time: 16:26:52, ID: ST181216P1-9 PFC CS4 537 18L1011, Description: PFC CS4 $53718 L 1011$

Dataset:
D:IPFAS.PROIRESULTS\181216p1\181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_11, Date: 16-Dec-2018, Time: 16:38:11, ID: ST181216P1-10 PFC CS5 537 18L1012, Description: PFC CS5 $53718 L 1012$

Dataset:
Last Altered:
Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed:
Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_11, Date: 16-Dec-2018, Time: 16:38:11, ID: ST181216P1-10 PFC CS5 537 18L1012, Description: PFC CS5 $53718 L 1012$

Dataset:
D:IPFAS.PROIRESULTSU181216p11181216P1-CRV.qld
Last Altered: Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_11, Date: 16-Dec-2018, Time: 16:38:11, ID: ST181216P1-10 PFC CS5 537 18L1012, Description: PFC CS5 $53718 L 1012$

Dataset: D:IPFAS.PRO\RESULTSI181216p1\181216P1-CRV.qld
Last Altered: \quad Sunday, December 16, 2018 17:34:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:36:13 Pacific Standard Time

Name: 181216P1_11, Date: 16-Dec-2018, Time: 16:38:11, ID: ST181216P1-10 PFC CS5 537 18L1012, Description: PFC CS5 537 18L1012 d5-N-EtFOSAA

F22:MRM of 1 channel,ES-
$589.1>419.0$

Name: 181216P1_13, Date: 16-Dec-2018, Time: 17:00:49, ID: ST181216P1-1 PFC ICV 537 18L1013, Description: PFC ICV 53718 L1013

Vista Analytical Laboratory

Dataset: Untitled

Last Altered: Sunday, December 16, 2018 17:58:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:59:45 Pacific Standard Time

Method: D:IPFAS.prolMethDBIPFAS_DW_L14_121418.mdb 14 Dec 2018 11:08:06 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-16-18_L14.cdb 16 Dec 2018 17:39:29

Name: 181216P1_13, Date: 16-Dec-2018, Time: 17:00:49, ID: ST181216P1-1 PFC ICV 537 18L1013, Description: PFC ICV 537 18L1013

Work Order 1803982 Revision 2

Name: 181216P1_13, Date: 16-Dec-2018, Time: 17:00:49, ID: ST181216P1-1 PFC ICV 537 18L1013, Description: PFC ICV 537 18L1013

13C2-PFOA

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel,ES-
$415>370$ $1.531 e+005$

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-

N-EtFOSAA
F21:MRM of 2 channels,ES $584.0>419.1$

d3-N-MeFOSAA
F20:MRM of 1 channel, ES-

Name: 181216P1_13, Date: 16-Dec-2018, Time: 17:00:49, ID: ST181216P1-1 PFC ICV 537 18L1013, Description: PFC ICV 537 18L1013

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES

13C2-PFOA
F11:MRM of 1 channel,ES$415>370$

13C2-PFOA
F11:MRM of 1 channel ES

13C2-PFHxA
F4:MRM of 1 channel,ES315.1 > 270
$\left.100-\begin{array}{c}13 \mathrm{C} 2-\mathrm{PFHxA} \\ 3.68 \\ 6.92 \mathrm{e} 3 \\ 158738\end{array}\right] \quad 1.588 \mathrm{e}+005$
bb
22274.34

Dataset: Untitled
Last Altered: Sunday, December 16, 2018 17:58:53 Pacific Standard Time
Printed: Sunday, December 16, 2018 17:59:45 Pacific Standard Time

Name: 181216P1_13, Date: 16-Dec-2018, Time: 17:00:49, ID: ST181216P1-1 PFC ICV 537 18L1013, Description: PFC ICV 537 18L1013 d5-N-EtFOSAA

F22:MRM of 1 channel,ES$589.1>419.0$

"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name",","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag","lab_qualifiers","organic_yn","method_detection_limit","reporting_detection_limit","quantatation_limit","result_u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus"
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG L","UG L","","","","","","","","","","","","",""," " "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","", "" "" "" "" "" " " " "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","","",""," "," " "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","",""," ","" "" "" "" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00973","UG_L","UG_L","","","","","","","",""," ","","","","" "" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","13C2-PFHxA","13C2-

PFHxA","101","","IS","Yes","Y","","Y","","",","PCT_REC","",","","","100","101","101","","",","","","70","130","", "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","13C2-PFDA","13C2-
PFDA","96.3","","IS","Yes","Y","","Y","","",","PCT_REC","",","","","100","96.3","96.3","",","","",","70","130","" "" "" ""
"Big Field-DW-120618","537","12/15/18","02:06","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","104","","IS","Yes","Y","","Y","","",",",PCT REC","","",","","100","104","104","",","","","","70","130", "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","375-73-
5","PFBS","",",","TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" """
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.0169","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","","","","","", "" "" "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.00747","","TRG","Yes","Y","J","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","",","",""," " "" "" "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.0384",",",TRG","Yes","Y","","Y","0.00318","0.00523","0.0104","UG_L","UG_L","","","","",","","",""," " "" "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.0423","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0104","UG L","UG L","","","",","","","","","" "" "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","",",",TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","",","","",","","","" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0419","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","","","",","","","","","" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","",",",TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","","","",","","","",","","","" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","2355-31-
9","MeFOSAA","",",","TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","","","","","", "" "" "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","2991-50-
6","EtFOSAA","",","TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","","",","",""," ","","","","","","",",""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","",",","TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","",",","TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","",","","",","","","","", "" "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","376-06-
7","PFTeDA",","","TRG","Yes","N","U","Y","0.00318","0.00523","0.0104","UG_L","UG_L","","","",","","","",","", "" "" "" "" "" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","13C2-PFHxA","13C2-
PFHxA","104","","IS","Yes","Y","","Y",","","","PCT_REC","",","","","100","104","104","","",","",","70","130","",
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","13C2-PFDA","13C2-
PFDA","96.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.9","96.9","","","","","","70","130","" "" "" ""
"Big Field-FB-120618","537","12/15/18","02:17","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","97.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","97.2","97.2","","","","","","70","130 " "" "" "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","",""," " "" "" " " " "" "" "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","",","",""," " "" "" "" "" "" "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" " "
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","","","" "", "" "" "" "" "" ,"
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","","","","","",""," ","","",""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","", "" "" "" "" " "" "" "" "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","",""," " "" "" " " " " " "" "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","","",""," ","","","","","","","
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","72629-94-
8","PFTrDA","",",",TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","",","","","",","","","
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00301","0.00496","0.00991","UG_L","UG_L","","","","","","","",""," " "" "" "" " "" "" "" "" ""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","13C2-PFHxA","13C2-
PFHxA","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","104","104","","","","","","70","130","", "t" " 17 "
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","13C2-PFDA","13C2-
PFDA","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","103","103","","","","","","70","130",""," ","",""
"Behind the Base-DW-120618","537","12/15/18","02:28","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","91.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","91.3","91.3","","","","","","70","130 " "" "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","",""," " "" "" " " " "" "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","","" "" "" "" "", "" "", ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","335-67-1","PERFLUOROOCTANOIC
ACID
(PFOA)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","","","","",""," " "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","","", "" "" "" "" " " " " " "
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","",""," " "" "" " " " "" "" "" "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","", "" "" "" "" "" " " " "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","","

"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","",""," " "" "" "" " " " " " "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","","","

"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00301","0.00494","0.00989","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","13C2-PFHxA","13C2-
PFHxA","101","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","101","101","","","","","","70","130","", "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","13C2-PFDA","13C2-
PFDA","99.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","99.0","99.0","","","","","","70","130","" "" "" ""
"Behind the Base-FB-120618","537","12/15/18","02:39","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","81.9","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","81.9","81.9","","","","","","70","130 " "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","375-73-
5","PFBS","0.0342","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","","", "" "" "" "" " "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.213","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0872","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.362","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.246","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0217","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.375","","TRG","Yes","Y","","Y","0.00318","0.00523","0.0105","UG L","UG L","","","","","","","","","","","","","
","",","",""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","","","","","" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","","","","","", "" "" "" "" " " " "" "" "" ""
"Shooting Rangel-DW-120618","537","12/15/18","02:50","N","NA","000","2991-50-

6","EtFOSAA","",","TRG","Yes","N","U","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","","",","","","","

"Shooting Rangel-DW-120618","537","12/15/18","02:50","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00318","0.00523","0.0105","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","",",""TRG","Yes","N","U","Y","0.00318","0.00523","0.0105","UG_L","UG_L","",","",","","",","","","", "" "" "" "" "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","72629-94-
8","PFTrDA","",",",TRG","Yes","N","U","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","",","","","","","",

"Shooting Rangel-DW-120618","537","12/15/18","02:50","N","NA","000","376-06-
7","PFTeDA",","","TRG","Yes","N","U","Y","0.00318","0.00523","0.0105","UG_L","UG_L","","","",","","","",","", "" "" "" "" "" " "" "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","13C2-PFHxA","13C2-
PFHxA","112","","IS","Yes","Y","","Y",","","","PCT_REC","",","","","100","112","112","","",","","","70","130","",

"Shooting Rangel-DW-120618","537","12/15/18","02:50","N","NA","000","13C2-PFDA","13C2-
PFDA","106","","IS","Yes","Y","","Y","",","","PCT_REC",","","","","100","106","106","",","","",","70","130",""," " "" ""
"Shooting Range1-DW-120618","537","12/15/18","02:50","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","104","","IS","Yes","Y","","Y","",","","PCT_REC","","","",","100","104","104","",","","",","70","130", "t" " "t " " " 11
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","375-73-
5","PFBS","",",","TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","",",",TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","",","","","","",","","", "" "" "" "" "" "" """
"Shooting Rangel-FB-120618","537","12/15/18","03:01","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)",","","TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","",","","","",","","", "" "" "" "" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","",",",TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","",","","","",","","","" "" "" "" "" "" ""
"Shooting Rangel-FB-120618","537","12/15/18","03:01","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","",",",TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","",","","","","","",","","" "" "" "" "" "" ""
"Shooting Rangel-FB-120618","537","12/15/18","03:01","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","",","","","",","","","",","","" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","",",",TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG L","UG L","","","","",","","","","","","" "" "" "" "" "" ""
"Shooting Range $1-\mathrm{FB}-120618$ "," 537 7 ","12/15/18","03:01","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","",","","","","",

"Shooting Range 1-FB-120618","537","12/15/18","03:01","N","NA","000","2991-50-
6","EtFOSAA","",",",TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","","",","","",""," " "" "" "" "" "" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L",","","",","","","",","","", "" "" "" "" "" "" """
"Shooting Rangel-FB-120618","537","12/15/18","03:01","N","NA","000","72629-94-
8","PFTrDA","",",",TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","",","","","","","", "" "" "" "" "" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","376-06-
7","PFTeDA","",",",TRG","Yes","N","U","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","",","","","","","", "" "" "" "" "" "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","13C2-PFHxA","13C2-
PFHxA","106","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","106","106","","",","","","70","130","", "" "" ""
"Shooting Range1-FB-120618","537","12/15/18","03:01","N","NA","000","13C2-PFDA","13C2-
PFDA","103","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","103","103","","",","","","70","130",""," ","",""
"Shooting Rangel-FB-120618","537","12/15/18","03:01","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","103","","IS","Yes","Y","","Y","",","","PCT_REC","","","",","100","103","103","",","","","","70","130", "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","",","","","","","","","", "" "" "" "" """ "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","",","","","","","","", "" "" "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","",",",TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","",","","","",","","","", "" "" "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","",",",TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG L","UG L","","","",","","","","",","","" "" "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","",",",TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","",","","","","",","","" "", "" "", "","" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","",","","","",","","","","","","","" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","","","","","","","","","" " "" " "" "" "" " ""
"Source Blank","537","12/15/18","03:13","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","","","","","","", "" "" "" "" " "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","","","","","","","","", "" "" "" "" " "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG L","UG L","","","","","","","","","","", "" "", "","","" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","","","","","","","", "" "" "" " "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00320","0.00525","0.0105","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","13C2-PFHxA","13C2-
PFHxA","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","103","103","","","","","","70","130","", "" "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","13C2-PFDA","13C2-
PFDA","100","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","100","100","","","","","","70","130",""," " "" ""
"Source Blank","537","12/15/18","03:13","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","92.5","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","92.5","92.5","","","","","","70","130 " "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","375-73-
5","PFBS","0.0320","","TRG","Yes","Y","","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.194","","TRG","Yes","Y","","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0760","","TRG","Yes","Y","","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.299","","TRG","Yes","Y","","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","",""

"DUP-1","537","12/16/18","17:23","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.185","","TRG","Yes","Y","","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0157","","TRG","Yes","Y","","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","1763-23-1","HEPTADECAFLUOROACTANESULFONIC
ACID SOLUTION
","0.268","","TRG","Yes","Y","","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","","","","",""," "," " " " "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","","","","" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","',"","","","","", "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","',"","","","","","",

"DUP-1","537","12/16/18","17:23","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00323","0.00532","0.0106","UG_L","UG_L","","","","","","","","","",

"DUP-1","537","12/16/18","17:23","N","NA","000","13C2-PFHxA","13C2-
PFHxA","98.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","98.9","98.9","","","","","","70","130"," " "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","13C2-PFDA","13C2-
PFDA","94.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","94.4","94.4","","","","","","70","130","" "" "" ""
"DUP-1","537","12/16/18","17:23","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","90.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.1","90.1","","","","","","70","130 " "" "" "" " ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","',"","',"","","","","","", "" "" "" "" "" "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG L","UG L","","","","","","","","","","", "" "" "" "" " " "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","",

"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG L","","","",","","","","","","", "" "" "" "" "" "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","",","","","","",""

"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG L","UG L","","","","","",","","","","","" "" "t" "t" "t" "" " "
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","",","","","",","","" " 17 " 17 " $1 "$
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","",","","","","","",""

"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","2355-31-
9","MeFOSAA","",",""TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","","",
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","",

"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","",

"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","13C2-PFHxA","13C2-
PFHxA","97.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","97.4","97.4","","","","","","70","130"," " "" "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","13C2-PFDA","13C2-
PFDA","94.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","94.6","94.6","","","","","","70","130","" "" "" ""
"B8L0076-BLK1","537","12/15/18","01:54","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","102","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","102","102","","","","","","70","130", "l" " $\|\|=\|\|$
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","375-73-
5","PFBS","0.0179","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0177","0.0 179","101","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.0215","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0200","0.0 215","108","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0204","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0200","0.0 204","102","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","0.0169","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0182","0.0 169","92.9","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.0212","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0200","0.02 12","106","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0203","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0200","0.02 03","101","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0216","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0185","0.0216","117 ","","","",","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","0.0202","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0200","0.02 02","101","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","2355-31-
9","MeFOSAA","0.0198","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0200 ","0.0198","98.8","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","2991-50-

6","EtFOSAA","0.0212","","TRG","Yes","Y",",","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","0.0200" ,"0.0212","106","","",","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","0.0180","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","",","","0.0200","0.0 180","90.1","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","0.0195","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","0.0200","0.0 195","97.6","","","","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","72629-94-
8","PFTrDA","0.0192","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","0.0200"," 0.0192","95.9","","",","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","376-06-
7","PFTeDA","0.0191","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","",","","0.0200"," 0.0191","95.5","","",","","","50","150","","","",""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","13C2-PFHxA","13C2-
PFHxA","100","","IS","Yes","Y","","Y","","","","PCT_REC","",","","","100","100","100","","",","","","70","130","", " 11 " " " 1
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","13C2-PFDA","13C2-
PFDA","100","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","100","100","",","","",","70","130",""," " "" ""
"B8L0076-BS1","537","12/15/18","01:21","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","76.4","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","76.4","76.4","",","","",","70","130 " "" "" "" ""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","375-73-
5","PFBS","0.0532","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","","0.0342","0.01 76","0.0532","108","","","",","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.242","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","",","0.213","0.0200 ","0.242","145","","","","","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.135","","TRG","Yes","Y","H","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","","0.0872","0.02 00","0.135","240","",","","","","50","150","","+","",""
"B8L0076-MS1","537","12/17/18","19:41","N","NA","DL1","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","0.490","","TRG","Yes","Y","D,
H","Y","0.0303","0.0498","0.0998","UG_L","UG_L","",","0.362","0.0182","0.490","703","",","","",","50","150","", "+" "" ""
"B8L0076-MS1","537","12/17/18","19:41","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.515","","TRG","Yes","Y","D,
H","Y","0.0303","0.0498","0.0998","UG_L","UG_L","","","0.246","0.0200","0.515","1350","","",","","","50","150","" "+" "",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.0596","","TRG","Yes","Y","H","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","","0.0217","0.02 00","0.0596","190","","","","","","50","150","","+","",""
"B8L0076-MS1","537","12/17/18","19:41","N","NA","DL1","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.397","","TRG","Yes","Y","D","Y","0.0303","0.0498","0.0998","UG_L","UG_L","","","0.375","0.0184","0.397","1 23","","","","","","50","150","",","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","0.0214","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","",","0.0200","0.0 214","107","",","","","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","2355-31-
9","MeFOSAA","0.0175","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","","","0.020 0","0.0175","87.6","","","",","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","2991-50-

6","EtFOSAA","0.0208","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","",","0.0200 ","0.0208","104","","","","","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","0.0150","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","","","0.0200","0. 0150","75.2","","","","","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","0.0193","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","","","","0.0200","0. 0193","96.7","","","","","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","72629-94-
8","PFTrDA","0.0192","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","",","","0.0200", "0.0192","96.0","","","","","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","376-06-
7","PFTeDA","0.0181","","TRG","Yes","Y","","Y","0.00303","0.00498","0.00998","UG_L","UG_L","",","","0.0200", "0.0181","90.6","","","","","","50","150","","","",""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","13C2-PFHxA","13C2-
PFHxA","104","","IS","Yes","Y","","Y",","","","PCT_REC","",","",","100","104","104","","",","",","70","130","", "" "" ""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","13C2-PFDA","13C2-
PFDA","102","","IS","Yes","Y","","Y","","",",","PCT_REC","",","","","100","102","102","","",","","","70","130",""," " "" ""
"B8L0076-MS1","537","12/15/18","01:32","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","89.9","","IS","Yes","Y","","Y","","",","PCT_REC",","","",","100","89.9","89.9","",","","","","70","130 " "" "" "" ""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","375-73-
5","PFBS","0.0553","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","0.0342","0.017 9","0.0553","118","0.0532","0.0179","0.0553","118","8.85","50","150","30","",",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.235","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","0.213","0.0202", "0.235","110","0.242","0.0202","0.235","110","27.5","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.116","","TRG","Yes","Y","H","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","0.0872","0.020 2","0.116","143","0.135","0.0202","0.116","143","50.7","50","150","30","","","*"
"B8L0076-MSD1","537","12/17/18","19:52","N","NA","DL1","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","0.397","","TRG","Yes","Y","D,
H","Y","0.0307","0.0504","0.101","UG_L","UG_L","",","0.362","0.0184","0.397","187","0.490","0.0184","0.397","1 87","116","50","150","30","","*","*"
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.331","","TRG","Yes","Y","H","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","0.246","0.0202", "0.331","420","0.515","0.0202","0.331","420","105","50","150","30","","*","*"
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0486","","TRG","Yes","Y","H","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","0.0217","0.020 2","0.0486","133","0.0596","0.0202","0.0486","133","35.3","50","150","30","","","*"
"B8L0076-MSD1","537","12/17/18","19:52","N","NA","DL1","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION ","0.445","","TRG","Yes","Y","D,
H","Y","0.0307","0.0504","0.101","UG_L","UG_L",","","0.375","0.0187","0.445","378","0.397","0.0187","0.445","3 78","102","50","150","30","","*","*"
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","0.0207","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","",","","0.0202","0.02 07","102","0.0214","0.0202","0.0207","102","4.78","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","2355-31-
9","MeFOSAA","0.0199","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","",","0.0202 ","0.0199","98.3","0.0175","0.0202","0.0199","98.3","11.5","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","2991-50-
6","EtFOSAA","0.0221","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","",","0.0202"
,"0.0221","109","0.0208","0.0202","0.0221","109","4.69","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","0.0199","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","","0.0202","0.0 199","98.5","0.0150","0.0202","0.0199","98.5","26.8","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","0.0216","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","","0.0202","0.0 216","107","0.0193","0.0202","0.0216","107","10.1","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","72629-94-
8","PFTrDA","0.0188","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","","0.0202"," 0.0188","93.0","0.0192","0.0202","0.0188","93.0","3.17","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","376-06-
7","PFTeDA","0.0196","","TRG","Yes","Y","","Y","0.00307","0.00504","0.0101","UG_L","UG_L","","","","0.0202"," 0.0196","97.3","0.0181","0.0202","0.0196","97.3","7.13","50","150","30","","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","13C2-PFHxA","13C2-
PFHxA","105","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","105","105","","","","","","70","130","", "" "" ""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","13C2-PFDA","13C2-
PFDA","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","103","103","","","","","","70","130",""," ","",""
"B8L0076-MSD1","537","12/15/18","01:43","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","82.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","82.9","82.9","","","","","","70","130 ","","","",""

AMEC Foster Wheeler, Inc.
May 23, 2019
7376 SW Durham Road
Portland, OR 97224
Attn: Ms. Kimberly Shiroodi
Kimberly.Shiroodi@woodplc.com
SUBJECT: Former Chase Field, Data Validation
Dear Ms. Shiroodi,
Enclosed are the final validation reports for the fraction listed below. These SDGs were received on May 23, 2019. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project \#45129:

SD \#
 Fraction

1803982, 1804167
1900154, 1900478

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds or Per- and Polyfluoroalkyl Substances, Sites at Various Base Realignment and Closure Installations; June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA, National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.
Sincerely,

Pei Gent
Pgeng@lab-data.com.
Project Manager/Senior Chemist

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

Former Chase Field
May 23, 2019
Perfluorinated Alkyl Acids
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1803982

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
Big Field-DW-120618	$1803982-01$	Water	$12 / 06 / 18$
Behind the Base-DW-120618	$1803982-03$	Water	$12 / 06 / 18$
Shooting Range 1-DW-120618	$1803982-05$	Water	$12 / 06 / 18$
Shooting Range 1-DW-120618MS	$1803982-05 \mathrm{MS}$	Water	$12 / 06 / 18$
Shooting Range 1-DW-120618MSD	$1803982-05 M S D$	Water	$12 / 06 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination $\left(\mathrm{r}^{2}\right)$ were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within 70$130 \%$ of their true value. For the lowest calibration point, all compounds were within 50$150 \%$ of their true value.

The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Source Blank was identified as a source blank. No contaminants were found.
Sample Shooting Range 1-FB-120618 was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were not within the QC limits for Shooting Range 1-DW-120618MS/MSD. No data were qualified since the parent sample results were greater than the spiked concentration

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A orP
Shooting Range 1-DW-120618MS/MSD (Shooting Range 1-DW-120618)	PFOA	$43(\leq 30)$	J (all detects)	A

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

X. Field Duplicates

Samples Shooting Range 1-DW-120618 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ng/L)		$\begin{gathered} \text { RPD } \\ \text { (Limits) } \end{gathered}$	Difference (Limits)	Flag	A or P
	Shooting Range 1-DW-120618	DUP-1				
PFBS	34.2	32.0	-	2.2 (≤ 10.6)	-	-
PFHxA	213	194	$9(\leq 30)$	-	-	-
PHHpA	87.2	76.0	$14(\leq 30)$	-	-	-
PFHxS	362	299	$19(\leq 30)$	-	-	-

Compound	Concentration (ng/L)		$\begin{gathered} \text { RPD } \\ \text { (Limits) } \end{gathered}$	Difference (Limits)	Flag	A or P
	Shooting Range 1-DW-120618	DUP-1				
PFOA	246	185	28 (530)	-	-	-
PFNA	21.7	15.7	-	$6(\leq 10.6)$	-	-
PFOS	375	268	33 (530)	-	J (all detects)	A

XI. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD RPD and field duplicate RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1803982

Sample	Compound	Flag	A or P	Reason
Shooting Range 1-DW-120618	PFOA	J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)
Shooting Range 1-DW-120618 DUP-1	PFOS	J (all detects)	A	Field duplicates (RPD)

Former Chase Field
 Perfluorinated Alky! Acids - Laboratory Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

Former Chase Field

Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

LDC \#: 45129A96
SDG \#: 1803982 VALIDATION COMPLETENESS WORKSHEET

Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537AK), ReV .III)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

$\begin{array}{ll}\text { Note: } & A=\text { Acceptable } \\ & N=\text { Not provided/applicable } \\ & S W=\text { See worksheet }\end{array}$

ND = No compounds detected
R = Rinsate
FB = Field blank
$\mathrm{D}=$ Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

Method: LCMS (EPA Method 537 Modified)

VALIDATION FINDINGS CHECKLIST

Page
Reviewer
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	C			
Were target compounds detected in the field duplicates?	7			
XI Labeled compounds				
Were labeled compound percent recoveries (\%R) within the QC limits?	\square			
XII Compound quantitation				
Did the iaboratory reporting limits (RL) meet the QAPP RLs?	r			
Did reported results include both branched and linear isomers?	C			
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?	17			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1			
XIII, Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?	7			
XIV. System performance				
System performance was found to be acceptable.	7			
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	7			

TARGET COMPOUND WORKSHEET

Page:_(of / _ Reviewer: 2nd Reviewer: 16

METHOD: LC/MS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " N / A ".
(10 N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?
WN N/A Was a MS/MSD analyzed every 20 samples of each matrix?
NN N/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? $Y N(N / A)$ Were all duplicate sample relative percent differences (RPD) or differences within QC limits?

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: PFCs (EPA Method 537, Rev.1.1))

Method: PFACs (EPA Method 537)

Calibration Date	Analyte	Standard	(Y) Concentration	(X) Area
12/14/2018	PFOS	1	0.232	0.1988737
		2	0.464	0.3287097
		3	0.928	0.7292670
		4	1.860	1.2784472
		5	4.640	3.7459125
		6	9.240	7.2972533
		7	23.100	21.6975380
		8	46.200	43.6619180
		9	69.400	63.9538080
		10	92.500	80.7597070

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
Coefficient(s)	0.89864913	0.899774
Correlation Coefficient	0.999427	0.99745
Coefficient of Determination $\left(r^{\wedge} 2\right)$	0.998854	

$\begin{gathered} \hline \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$	Analyte	Standard	(Y) Concentration	(X) Area
12/14/2018	PFOA	1	0.250	0.2171360
		2	0.500	0.0506222
		3	1.000	0.9565940
		4	2.000	1.7298860
		5	5.000	4.5899330
		6	10.000	9.5954070
		7	25.000	21.7876640
		8	50.000	48.7801400
		9	75.000	69.3161600
		10	100.000	89.8638830

Linear through the origin

Constant	calculated	Reported
X Coefficient(s)	0.000000	0.0000
Correlation Coefficient	0.91588519	0.920346
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.999562	0.99867

Method: PFACs (EPA Method 537)

Calibration Date	Analyte	Standard	$\overline{(Y)}$ Concentration	$\overline{(X)}$ Area
12/16/2018	PFOA	1	0.250	0.2255790
		2	0.500	0.5356500
		3	1.000	1.0843630
		4	2.000	1.9421290
		5	5.000	5.2501000
		6	10.000	10.1869490
		7	25.000	26.3859800
		8	50.000	53.8977810
		9	75.000	74.5942910
		10	100.000	103.2234300

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
Coefficient(s)	1.02778311	1.031910
Correlation Coefficient	0.999669	0.99911

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1 of 1 Reviewer: 9 2nd Reviewer:_M6
\qquad

METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

\% Difference $=100^{*}($ ave. RRF - RRF $) /$ ave. RRF	Where:
$R R F=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$	$R R F=$ ave. RRF = initial calibration average RRF
	$A_{x}=$ Area of compound,
	$C_{x}=$ Concentration of compound,

					Reported	Recalculated	Renated	Reralculated
\#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	\%D	\%D
1	$1812192-66$	121518	PFOA (${ }^{3} \mathrm{C}_{2}$-PFOA)	10.0	9.63	9.63	3.7	37
			PFOS (${ }^{13} \mathrm{C}_{6}$-PFOS)	9.24	T.75	7. 75	16.1	16.1
2	Hel\|	$12 / 17 / 18$	PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)	200	2.18	2.18	9.1	9.1
			PFOS (${ }^{3} \mathrm{C}_{8}$-PFOS)					
3			PFOA (${ }^{3} \mathrm{C}_{2}$-PFOA)					
			PFOS (${ }^{3} \mathrm{C}_{0}$-PFOS)					
4			PFOA (${ }^{1 \mathrm{C}_{2}-\mathrm{PFOA} \text {) }}$					
			PFOS (${ }^{13} \mathrm{C}_{3}$-PFOS)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
$\%$ Recovery $=100^{*}($ SSC - SC $) / S A$

SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

SC = Sample concentation

MSDC $=$ Matrix spike duplicate concentration

RPD = I MSC - MSC I * $2 /($ MSC + MSDC $)$

Compound	$\begin{gathered} \text { Spike } \\ \text { Addeg } \\ (\mathrm{KS} /\llcorner) \end{gathered}$			Spiked Sample Concentration (15 <		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MSIMSD	
	Ms	Mso		Ms	MsD	Renoted	Recalc		Reata	Renoted	Recalculuted
PFOA	20.	20^{2}	246	515	331	1350	1332	扬5	421	105	106
PFOS	18.4	18.7	315	397	445	123	120	378	314	102	103

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ lof 1
Reviewer: $\frac{1}{2}$ 2nd Reviewer: 16

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SC/SA Where:	SSC = Spike concentration SA = Spike added
RPD $=1$ LCSC $-\operatorname{LCSDC~} 1^{*} 2 /($ LCSC + LCSDC)	LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration
LCS/LCSD samples: $B>\angle O T C E S$ \qquad	

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

$Y N N / A$ $Y / N N / A$

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?
$\left.\begin{array}{rl}\text { Concentration }=\left(A_{2}\right)\left(I_{s}\right)(V)(D F)(2.0) \\ \left(A_{i s}\right)(R R F)\left(V_{0}\right)\left(V_{i}\right)(\% S)\end{array}\right)$

Example:
Sample I.D \qquad FA $\begin{aligned} \text { Conc. } & =\frac{2630(379)(0)(1)(0.239)}{4862)(087)(092346)} \\ & =246.045 / 4\end{aligned}$

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Former Chase Field
LDC Report Date:	May 23, 2019
Parameters:	Perfluorinated Alkyl Acids
Validation Level:	Stage 4
Laboratory:	Vista Analytical Laboratory

Sample Delivery Group (SDG): 1804167

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
PW2-122018-DW	$1804167-01$	Water	$12 / 20 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to 20.0\%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination $\left(r^{2}\right)$ were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within $70-$ 130% of their true value. For the lowest calibration point, all compounds were within 50$150 \%$ of their true value.

The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1804167
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
1.	Sample receiptTechnical holding times	A		
11.	GC/MS Instrument performance check	A		
III.	Initial calibration/ICV	A, A		(low). 10
IV.	Continuing calibration //SC	A	acV $530 / 3670$,
V.	Laboratory Blanks	¢	7	
VI.	Field blanks	N		
VII.	Surrogate spikes	A		
VIII.	Matrix spike/Matrix spike duplicates	N	CS	
IX.	Laboratory control samples	A	$\cos /(7)$	
x .	Field duplicates	N		
XI.	Labeled Compounds	A		
XII.	Compound quantitation RLLOQ/LODs	A		
XIII.	Target compound identification	A		
xIV.	System performance	A		
xV.	Overall assessment of data	A		
Note:	A = Acceptable $N=$ Not provided/applicable SW = See worksheet	co ate ld blank	detected $\mathrm{D}=$ Duplicate $\mathrm{TB}=$ Trip blank $\mathrm{EB}=$ Equipment blank	SB=Source blank OTHER:

\qquad 2nd Reviewer: \qquad
Method: LCMS (EPA Method 537 Modified)

VALIDATION FINDINGS CHECKLIST

Page
Reviewer:
2nd Reviewer: \qquad

TARGET COMPOUND WORKSHEET

A. Perfluorohexanoic acid (PFHXA)			
B. Perfluoroheptanoic acid (PFHpA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N. Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Suffonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)			
R. $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorooctane sulfonate (6:2FTS)			
S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 2 FTS)			
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)			
V. 1H, $1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-Perfluorohexanesulfonic Acid (4:2FTS)			

Method: PFACs (EPA Method 537)

Calibration Date	Analyte	Standard	(Y) Concentration	(X) Area
12/30/2018	PFOA	1	0.250	0.2325030
		2	0.500	0.4798370
		3	1.000	0.9733980
		4	2.000	1.9247560
		5	5.000	5.2004250
		6	10.000	9.1517780
		7	25.000	24.118581
		8	50.000	53.590312
		9	75.000	81.475686
		10	100.000	109.05315

Linear through the origin

Constant	calculated	Reported
X Coefficient(s)	0.000000	0.0000
Correlation Coefficient	1.08160882	1.064930
Coefficient of Determination $\left(r^{\wedge} 2\right)$	0.999715	0.99788

Method: PFACs (EPA Method 537)

$\begin{gathered} \hline \hline \text { Calibration } \\ \text { Date } \end{gathered}$	Analyte	Standard	(Y) Concentration	$\begin{gathered} \hline \hline(\mathrm{X}) \\ \text { Area } \end{gathered}$
12/30/2018	PFOS	1	0.232	0.0784112
		2	0.464	0.2796298
		3	0.928	0.9002042
		4	1.860	1.3489832
		5	4.640	3.3358268
		6	9.240	6.8112131
		7	23.10	18.209455
		8	46.20	40.303338
		9	69.40	56.077719
		10	92.50	78.913789

Linear through the origin

Constant	calculated	Reported
X Coefficient(s)	0.000000	0.0000
Correlation Coefficient	0.83926116	0.830260
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.999501	0.99746

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF RRF $=\left(A_{x}\right)\left(C_{i k}\right) /\left(A_{i s}\right)\left(C_{x}\right)$

Where: ave $\operatorname{RRF}=$ initial calibration average $R R F$
RRF = continuing calibration RRF
$\mathrm{A}_{x}=$ Area of compound,
$\mathrm{A}_{\mathrm{is}}=$ Area of associated internal standard
$\mathrm{C}_{\mathrm{x}}=$ Concentration of compound,$\quad \mathrm{C}_{\text {is }}=$ Concentration of internal standard

					Reported	Recalculated	Reportad	Recalculated
\#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	\%D	\%D
1	$18123091-33$	$1930 / 10$	PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)	10.0	$86 k$	8.64	$3<9$	136
		7	PFOS (${ }^{13} \mathrm{C}_{8}$-PFOS)	$9 \rightarrow 4$	7.88	7.88	+1.7	17
								7
2			PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)					
			PFOS (${ }^{13} \mathrm{C}_{8}$-PFOS)					
3			PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)					
			PFOS (${ }^{13} \mathrm{C}_{8}$-PFOS)					
4			PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)					
			PFOS (${ }^{13} \mathrm{C}_{8}$-PFOS)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ of /
Reviewer: Q 2nd Reviewer: 6

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SC/SA Where:	SSC = Spike concentration SA = Spike added
RPD $=1$ LCSS - LCSDC $1 * 2 /($ LCSC + LCSDC $)$	LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration
LCS/LCSD samples: \qquad B8 $10193-B 5$	$\angle B S \neq 1$

Compound			$\begin{gathered} \text { Spike } \\ \text { congentation } \\ \sim \end{gathered}$		$\xrightarrow[\text { Percent Recovery }]{\text { Les }}$		$\xrightarrow[\text { Percent Recovery }]{\text { Lesn }}$		$1 \cos 4 \cos 0$ RPD	
-	Lcs	LCSD	Lcs	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
pfoa	0.0400	0.0400	0.0403	0.0412	101	101	103	103	215	232
pfos	0.0370	0.0350	0.0335	0.0403	90.6	90.5	109	109	18.2	18.4

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
Y Y N N/A \quad Were all reported results recalculated and verified for all level IV samples?

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Former Chase Field
LDC Report Date:	May 23, 2019
Parameters:	Perfluorinated Alkyl Acids
Validation Level:	Stage 4
Laboratory:	Vista Analytical Laboratory

Sample Delivery Group (SDG): 1900154

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
PW4-011719-DW	$1900154-01$	Water	$01 / 17 / 19$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^{2}) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within 70 130% of their true value. For the lowest calibration point, all compounds were within 50$150 \%$ of their true value.

The signal to noise (S / N) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise (S / N) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900154
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537 RF, ReV. I.I.)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation_Area		comments	
1.	Sample receipt/Technical holding times	A		
11.	GC/MS Instrument performance check	A		
IIII.	Initial calibration/ICV	A, A	$R \Delta 0 \leq 2010 . r^{2} \text { The } \leqslant 30 / 50 / 0.1 e V \leqslant 38$	
IV.	Continuing calibration $15 c$	A	$\operatorname{Lv} / \\| s e \leq 3070^{\prime}$	
V.	Laboratory Blanks	A		
VI.	Field blanks	N		
VII.	Surrogate spikes	A		
VIII.	Matrix spike/Matrix spike duplicates	N	0 C	
IX.	Laboratory control samples	A	$\angle E S$	
X.	Field duplicates	N		
XI.	Labeled Compounds	A		
XII.	Compound quantitation RLLOQ/LODs	x		
XIII.	Target compound identification	$\not \subset$		
XIV.	System performance	A		
XV.	Overall assessment of data	A		

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected
R = Rinsate
$\mathrm{FB}=$ Field blank
$\mathrm{D}=$ Duplicate TB = Trip blank

SB=Source blank OTHER:

Page:
1 of 2
Reviewer: 2nd Reviewer: \qquad

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
	within the QC limits?			
x Field duplicates				
Were field duplicate pairs identified in this SDG?		7		
Were target compounds detected in the field duplicates?			7	
X1. Labeled compounds				
Were labeled compound percent recoveries (\%R) within the QC limits?	?			
XII. Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?	7			
Did reported results include both branched and linear isomers?	\bigcirc			
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?	γ			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	17			
Xill. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?	\bigcirc			
XIV. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

A. Perfluorohexaniciacid (PFHHA)			
B. Perflurohepplanoic acid (PFHPA)			
C. Perflurooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perflurordecanoic aciid (PFDA)			
F. Perfuroundecanoic acid (PFUnA)			
G. Perflurododecanoic acid (PFDOA)			
H. Perflurortidecanoic acid (PFFTiDA)			
1. Perfluorietradecanoic acid (PFTTeDA)			
J. Pefluorobutanesulfonic acid (PFES)			
K. Perfluronexanesulfonic acid (PFHKS)			
L. Perfluorohepanesultronic acid (PFHPS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N.Perfluorodecanesulfonic acid (PFDS)			
o. Perfluoroctane Suffonatide (FOSA)			
P. Pefflurobulanic acid (PFBA)			
Q. Perfluoropentanoic cais (PFPeA)			
R. $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{LH}, 2 \mathrm{HH}$-erflucrococtane sulfonate (6:2FTS)			
S. $1 \mathrm{H}, 1 \mathrm{TH}, 2 \mathrm{LH}, 2 \mathrm{H}$-perflurordecane sulfonate (8:2 FTS)			
T. N-methyl perflurooctanesulfonamidoaceicic acid (NMeFOSAA)			
U. .-Etry Peefluoroctanesulfonamidoaceicic acid (NEEFOSAA)			
v. 1H,1H,2H.2H-Perfuluorhexanesulforic Acid (4.2.FTS)			

Method: PFACs (EPA Method 537)

Calibration Date	Analyte	Standard	(Y) Concentration	(X) Area
1/25/2019	PFOA	1	0.250	0.2101130
		2	0.500	0.4714000
		3	1.000	0.8984130
		4	2.000	1.8618960
		5	5.000	4.4924390
		6	10.000	9.3954590
		7	25.000	24.368296
		8	50.000	47.758120
		9	75.000	73.077953
		10	100.000	94.537468

Linear through the origin

Constant	calculated	Reported
X Coefficient(s)	0.000000	0.0000
Correlation Coefficient	0.95618300	0.956545
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.999903	0.99969

Method: PFACs (EPA Method 537)

$\begin{gathered} \hline \hline \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$	Analyte	Standard	(Y) Concentration	(X) Area
1/25/2019	PFOS	1	0.232	0.1832208
		2	0.464	0.4657522
		3	0.928	0.8556761
		4	1.860	1.6506001
		5	4.640	4.6646023
		6	9.240	9.4894971
		7	23.10	23.772614
		8	46.20	48.721777
		9	69.40	72.647365
		10	92.50	100.994340

Linear through the origin

	calculated	Reported
Constant	0.000000	0.0000
X Coefficient(s)	1.07089390	1.059870
Correlation Coefficient	0.999772	0.99909
Coefficient of Determination ($r^{\wedge} 2$)	0.999544	

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF $=\left(A_{x}\right)\left(C_{i k}\right) /\left(A_{i s}\right)\left(C_{x}\right)$

Where: ave. RRF = initial calibration average RRF
RRF = continuing calibration RRF
$\mathrm{A}_{\mathrm{x}}=$ Area of compound,
$\mathrm{C}_{\mathrm{x}}=$ Concentration of compound,

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ of L
Reviewer: 9 2nd Reviewer: M 6

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\% Recovery $=100$ * (SC/SA
Where: SSC = Spike concentration
SA = Spike added
$R P D=1 \operatorname{LCSC}-\operatorname{LCSDC} \mid * 2 /(\operatorname{LCSC}+\operatorname{LCSDC})$
LCSC $=$ Laboratory control sample concentration LCSDC $=$ Laboratory control sample duplicate concentration
LCS/LCSD samples: $39 A 015+1-1$

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:
Sample I.D. $N \mathbb{4 N O}$
B9A0154-BS1

$=0.0666 \mu \mathrm{~m} / \mathrm{L}$

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Former Chase Field
LDC Report Date:	May 23,2019
Parameters:	Perfluorinated Alkyl Acids
Validation Level:	Stage 4
Laboratory:	Vista Analytical Laboratory

Sample Delivery Group (SDG): 1900478

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
Charlie's Pasture-EW 031319	$1900478-01$	Water	$03 / 13 / 19$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination $\left(r^{2}\right)$ were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within $70-$ 130% of their true value. For the lowest calibration point, all compounds were within 50$150 \%$ of their true value.

The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise (S / N) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Field Blank was identified as a field blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples Charlie's Pasture-EW 031319 and Dup-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ng/L)		RPD (Limits)	Difference (Limits)	Flag	A or P
	Charlie's Pasture-EW 031319	Dup-1				
PFBS	0.0424	0.0444	-	$0.002(\leq 0.0101)$	-	-
PFHxA	0.368	0.401	$9(\leq 30)$	-	-	-
PHHpA	0.183	0.192	$5(\leq 30)$	-	-	-
PFHxS	1.04	0.886	$16(\leq 30)$	-	-	-
PFOA	0.807	0.827	$2(\leq 30)$	-	-	-
PFNA	0.0280	0.0316	-	$0.0036(\leq 0.0101)$	-	-
PFOS	1.52	1.38	$10(\leq 30)$	-	-	-

XI. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900478
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537M)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected
R = Rinsate
$\mathrm{FB}=$ Field blank
$\mathrm{D}=$ Duplicate
TB = Trip blank
ER $=$ Equipment blank
SB=Source blank OTHER:

VALIDATION FINDINGS CHECKLIST
Page: \qquad
2nd Reviewer:
Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. LC/MS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
Ilia. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) $\leq 20 \%$?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of >0.990 ?				
Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard?	7			Lor lowest 5
Was the signal to noise (S / N) ratio for all compounds within the validation criteria?	$/$			drinturg
Illb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (\%D) $\leq 30 \%$?				
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (\%D) of the continuing calibration $\leq 30 \%$?				
Was the signal to noise (S / N) ratio for all compounds within the validation criteria?	\bigcirc			
Were all percent differences (\%D) of the instrument Sensitivity Check $\leq 30 \%$?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?			7	
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch for this SDG?				

\qquad
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?	,			
\times Field duplicates				
Were field duplicate pairs identified in this SDG?	T			
Were target compounds detected in the field duplicates?				
XI. Labeled compounds				
Were labeled compound percent recoveries (\%R) within the QC limits?				
XII, Compound quantitation				
Did the laboratory reporting limits (RL) meet the QAPP RLs?				
Did reported results include both branched and linear isomers?				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	r			
XIII. Target compound identification				
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?	1			
XIV. System performance				
System performance was found to be acceptable.	/			
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	1			

TARGET COMPOUND WORKSHEET

A. Pefluoronexanoic acic (PFHXA)			
B. Perfluoroheptanoic acid (PFHPA)			
c. Perfuorococanoic acid (PFOA)			
D. Perflurorononanic acid (PFNA)			
E. Perflurodecanoic acid (PFDA)			
F. Perfluroundeanoic acid (PFUnA)			
G. Perflurorocodecanoic acid (PFDOA)			
H. Perfucorotidecanoic acid (PFTTiDA)			
1. Pefluworetradeanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfiurorexeanesulfonic acid (PFH \times S)			
L. Pefluoroneplanesulifonic acid (PFHHS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N. Perfluordecanesulforic acid (PFDS)			
O. Perflurooctane Sulionamide (FOSA)			
P. Perfluorobutanoic acid (PFEA)			
Q. Perfluoropentanoic acis (PFPPA)			
R. 1 TH, 1 H, 2 2H, 2H-perfluoroctane sulfonale (6.2FTS)			
S. $1 \mathrm{H}, 1 \mathrm{l}, 2 \mathrm{H}, 2 \mathrm{HH}$-perfluorodecane sulfonate (8.2 FTS)			
T. N-M.methy perflurooctanesulforamidoacetic acid (NMeFOSAA)			
U. N-ELYy Perflurooctanesulfonamido aceicic acid (NEIFOSAA)			

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: PFCs (EPA Method 537, Rev.1.1))

Compound	Concentration (ng/L)		$\begin{aligned} & (\leq 30) \\ & \text { RPD } \end{aligned}$	Difference	Limits	Qual
	1	2				
PFBS	0.0424	0.0444		0.002	≤ 0.0101	
PFHxA	0.368	0.401	9			
PHHpA	0.183	0.192	5			
PFHxS	1.04	0.886	16			
PFOA	0.807	0.827	2			
PFNA	0.0280	0.0316		0.0036	≤ 0.0101	
PFOS	1.52	1.38	10			

Method: PFACs (EPA Method 537)

$\begin{gathered} \hline \hline \text { Calibration } \\ \text { Date } \end{gathered}$	Analyte	Standard	(Y) Concentration	$\overline{(X)}$ Area
3/28/2019	PFOA	1	0.250	0.3114790
		2	0.500	0.4559950
		3	1.000	0.9430580
		4	2.000	1.8980310
		5	5.000	4.8326870
		6	10.000	9.8324550
		7	25.000	23.5652720
		8	50.000	48.8485250
		9	75.000	72.3284030
		10	100.000	97.7633500

Linear through the origin

Constant	calculated	Reported
X Coefficient (s)	0.000000	0.0000
Correlation Coefficient	0.97244451	0.970341
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.999965	0.99978

Method: PFACs (EPA Method 537)

Calibration Date	Analyte	Standard	(Y) Concentration	$\overline{(X)}$ Area
3/28/2019	PFOS	1	0.232	0.2365741
		2	0.464	0.3770290
		3	0.928	0.6450009
		4	1.860	1.3866577
		5	4.640	3.7668348
		6	9.240	7.9072546
		7	23.10	18.761660
		8	46.20	40.878403
		9	69.40	62.960426
		10	92.50	80.724788

Linear through the origin

Constant	calculated	Reported
X Coefficient(s)	0.000000	0.0000
Correlation Coefficient	0.88238504	0.875608
Coefficient of Determination $\left(r^{\wedge} 2\right)$	0.999735	0.99859

METHOD: LC/MS PFAS (EPA Method 537M)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

\% Difference $=100^{*}$ (ave. RRF - RRF)/ave. RRF	Where:		
RRF $=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$	$R R F=$ continuing calibration RRF		
	$A_{x}=$ Area of compound,	\quad	Aritial calibration average RRF
:---			

					Reported	Recialculated	Reported	Recalculated
\#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF	RRF	\%D	\%D
1	1903287.38	$3 / 319$	PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA $)$	10.0	10.1	(0).1	0.6	0.8
		7	PFOS (${ }^{13} \mathrm{C}_{8}$-PFOS)	924	87	869	5.8	5.3
								1
2	$190300 \mathrm{H}_{2} 2$	$3 / 30 / 19$	PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)	0.00	2.15	2.15	80	7.8
		7	PFOS (${ }^{13} \mathrm{C}_{8}-$ PFOS $)$	1.36	1.40	1.40	24.5	24.5
3			PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)					
			PFOS (${ }^{13} \mathrm{C}_{8}$-PFOS)					
4			PFOA (${ }^{13} \mathrm{C}_{2}$-PFOA)					
			PFOS (${ }^{33} \mathrm{C}_{8}$-PFOS)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of / Reviewer: 2nd Reviewer: $\sqrt{6}$

METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SC/SA	Where:	$\text { SSC }=\text { Spike concentration }$ $\text { SA }=\text { Spike added }$	
$R P D=1 \operatorname{LCSC}-\operatorname{LCSDC} \mathrm{I}^{*} 2 /(\operatorname{CSC}+\operatorname{LCSDC})$		LCSC $=$ Laboratory control sample concentration	LCSDC $=$ Laboratory control sample duplicate concentration
LCS/LCSD samples: \qquad $\exists 9<0124$	βS	$B \leq \infty 1$	

Compound	$\begin{gathered} \text { Spike } \\ \left(\text { Added }_{5}^{5} / 4\right) \end{gathered}$		$\begin{gathered} \text { Spike } \\ \text { Concentration } \\ 1 \end{gathered}$		C.CS		$\frac{\text { LCsD }}{\text { Percent Recovery }}$		ICSI CSn RPD	
	Lcs 1	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PFOA	00800	0.0800	0.0832	0.0766	104	104	95.8	95.8	818	$8 \rightarrow 6$
PFOS	0.0740	0.0740	0.0701	0.075	$9+8$	Q4.7	96.6	$96 \cdot 6$	1.89	1.98

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Example:
Sample I.D. \qquad uFOS
conc. $=\left(\right.$ s. $_{\text {P }}^{e} 3 x+8$. $^{T} x$ 4.9(e2)(0.875608)

$$
=1.52 \mu_{\varepsilon} / \angle
$$

INSTALLATION_ID	SITE_NAME	LOCATION_NAME	LOCATION_TYPE	LOCATION_TYPE_DESC	COORD_X*	COORD_Y*	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIX_DESC	COLLECT_DATE	ANALYTICAL_METHOD_GRP_DESC	SDG
CHASE_FIELD_NAS	TBC	BEHIND_THE_BASE	DW	Domestic Well	-97.642501	28.342413	BEHIND THE BASE-DW-120618	WP	Drinking Water	6-Dec-18	Perfluoroalkyl Compounds	1803982
CHASE_FIELD_NAS	TBC	BIG_FIELD	DW	Domestic Well	-97.661031	28.344334	BIG FIELD-DW-120618	WP	Drinking Water	6-Dec-18	Perfluoroalkyl Compounds	1803982
CHASE_FIELD_NAS	TBC	SHOOTING_RANGE_1	DW	Domestic Well	-97.666696	28.357790	DUP-1	WG	Ground water	6-Dec-18	Perfluoroalkyl Compounds	1803982
CHASE_FIELD_NAS	TBC	SHOOTING_RANGE_1	DW	Domestic Well	-97.666696	28.357790	SHOOTING RANGE1-DW-120618	WP	Drinking Water	6-Dec-18	Perfluoroalkyl Compounds	1803982

