Drinking Water Sample Results, Level 2 Laboratory Report, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, Sample Location Report, SDG 1804167
NAS
Chase Field TX
December 2020

January 02, 2019

Vista Work Order No. 1804167

Ms. Nia Nikmanesh
KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Nikmanesh,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on December 21, 2018 under your Project Name 'Chase Field NAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 1804167
 Case Narrative

Sample Condition on Receipt:

Two drinking water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 537, Rev. 1.1

The samples were extracted using EPA Method 537, Rev. 1.1. As requested, sample "PW2-122018-DW" was analyzed for a selected list of PFAS.

Holding Times

The samples were extracted within the method hold time. Sample "PW2-122018-DW" was analyzed within the method hold times. The extract of sample "PW2-122018-FB" was placed on hold.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

Two Laboratory Fortified Blanks (LFB/LFBD) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above $1 / 2$ the LOQ. The LFB/LFBD recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results 5
Qualifiers 9
Certifications 10
Sample Receipt 13

Sample Inventory Report

Vista	Client	Sampled	Received	Components/Containers
Sample ID	Sample ID			
1804167-01	PW2-122018-DW	20-Dec-18 09:38	21-Dec-18 13:24	HDPE Bottle, 250 mL
1804167-02	PW2-122018-FB			HDPE Bottle, 250 mL
		$20-$ Dec-18 09:40	21-Dec-18 13:24	HDPE Bottle, 250 mL
			HDPE Bottle, 250 mL	

ANALYTICAL RESULTS

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank
Conc. Concentration
D Dilution
DL Detection limit
E The associated compound concentration exceeded the calibration range of the instrument

H Recovery and/or RPD was outside laboratory acceptance limits
Chemical Interference
J The amount detected is below the Reporting Limit/LOQ
LOD Limits of Detection
LOQ Limits of Quantitation
M Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA Not applicable
ND Not Detected

Q Ion ratio outside of $\mathbf{7 0 - 1 3 0 \%}$ of Standard Ratio. (DOD PFAS projects only)
TEQ Toxic Equivalency
U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$18-008-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207718
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-009$
Pennsylvania Department of Environmental Protection	015
Texas Commission on Environmental Quality	T104704189-18-9
Virginia Department of General Services	9618
Washington Department of Ecology	C584-18
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & 1613 / 1613 B \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

38 Vista
Analytical Laboratory

CHAIN OF CUSTODY

Special Instructions/Comments:
\qquad
\qquad
\qquad
\qquad
\qquad
Container Types: $\mathrm{P}=$ HDPE, $\mathrm{PJ}=$ HDPE Jar $\mathrm{O}=\mathrm{O}$ ther:

Bottle Preservation Type: $T=$ Thiosulfate, $T Z=$ Trizma: \qquad

Matrix Types: $\mathrm{AQ}=$ Aqueous, $\mathrm{DW}=$ Drinking Water, $\mathrm{EF}=\mathrm{Effluent} \mathrm{PP}=$, Pulp/Paper, $\mathrm{SD}=$ Sediment,
$\mathrm{SL}=$ Sludge, $\mathrm{SO}=$ Soil, $\mathrm{WW}=$ Wastewater, $\mathrm{B}=\mathrm{Blood} /$ Serum, $\mathrm{O}=$ Other:

Sample Log-In Checklist

Vista Work Order \#: \qquad Page \qquad of \rfloor TAT \qquad 7

Comments:

January 02, 2019

Vista Work Order No. 1804167

Ms. Nia Nikmanesh
KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Nikmanesh,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on December 21, 2018 under your Project Name 'Chase Field NAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 1804167
 Case Narrative

Sample Condition on Receipt:

Two drinking water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 537, Rev. 1.1

The samples were extracted using EPA Method 537, Rev. 1.1. As requested, sample "PW2-122018-DW" was analyzed for a selected list of PFAS.

Holding Times

The samples were extracted within the method hold time. Sample "PW2-122018-DW" was analyzed within the method hold times. The extract of sample "PW2-122018-FB" was placed on hold.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

Two Laboratory Fortified Blanks (LFB/LFBD) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above $1 / 2$ the LOQ. The LFB/LFBD recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results 5
Qualifiers 9
Certifications 10
Sample Receipt 13
Extraction Information 15
Sample Data - EPA Method 537 20
IIS Areas and CCVs 41
ICAL with ICV 65

Sample Inventory Report

Vista	Client	Sampled	Received	Components/Containers
Sample ID	Sample ID			
1804167-01	PW2-122018-DW	20-Dec-18 09:38	21-Dec-18 13:24	HDPE Bottle, 250 mL
1804167-02	PW2-122018-FB			HDPE Bottle, 250 mL
		$20-$ Dec-18 09:40	21-Dec-18 13:24	HDPE Bottle, 250 mL
			HDPE Bottle, 250 mL	

ANALYTICAL RESULTS

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank
Conc. Concentration
D Dilution
DL Detection limit
E The associated compound concentration exceeded the calibration range of the instrument

H Recovery and/or RPD was outside laboratory acceptance limits
Chemical Interference
J The amount detected is below the Reporting Limit/LOQ
LOD Limits of Detection
LOQ Limits of Quantitation
M Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA Not applicable
ND Not Detected

Q Ion ratio outside of $\mathbf{7 0 - 1 3 0 \%}$ of Standard Ratio. (DOD PFAS projects only)
TEQ Toxic Equivalency
U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$18-008-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207718
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-009$
Pennsylvania Department of Environmental Protection	015
Texas Commission on Environmental Quality	T104704189-18-9
Virginia Department of General Services	9618
Washington Department of Ecology	C584-18
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & 1613 / 1613 B \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

38 Vista
Analytical Laboratory

CHAIN OF CUSTODY

Special Instructions/Comments:
\qquad
\qquad
\qquad
\qquad
\qquad
Container Types: $\mathrm{P}=$ HDPE, $\mathrm{PJ}=$ HDPE Jar $\mathrm{O}=\mathrm{O}$ ther:

Bottle Preservation Type: $T=$ Thiosulfate, $T Z=$ Trizma: \qquad

Matrix Types: $\mathrm{AQ}=$ Aqueous, $\mathrm{DW}=$ Drinking Water, $\mathrm{EF}=\mathrm{Effluent}, \mathrm{PP}=$ Pulp/Paper, $\mathrm{SD}=$ Sediment,
$\mathrm{SL}=$ Sludge, $\mathrm{SO}=$ Soil, $\mathrm{WW}=$ Wastewater, $\mathrm{B}=\mathrm{Blood} /$ Serum, $\mathrm{O}=$ Other:

Sample Log-In Checklist

Vista Work Order \#: \qquad Page \qquad of \rfloor TAT \qquad 7

Comments:

EXTRACTION INFORMATION

Prep Expiration: 2019-Jan-03
Client: KMEA
Workorder Due:02-Jan-19 00:00
TAT: 12
Prep Batch: B8LO193
Prep Data Entered: $12 / 28 / 18$ MAC
Date and Initials
Initial Sequence: \qquad
$\begin{array}{lllll}\text { LabSampID } & \text { ABB } & \begin{array}{c}\text { Prep } \\ \text { Rec }\end{array} & \text { Rec } \\ \text { Rec }\end{array}$ ClientSampleID

Location Container
WR-2 B-4 HDPE Bottle, 250 mL
WR-2 B-4 HDPE Bottle, 250 mL

* Extract and hold. (D) $12 / 21 / 18$

Pre-Prep Check Out: 7212127118
Pre-Prep Check In: \qquad \triangle NA

Prep Reconciled Initals/Date: $M A C \quad 12 / 27 / 1 \times$
Spike Reconciled ytitasidate: OE $12127 / 18$ VialBoxID: Rock

PREPARATION BENCH SHEET

Matrix: Aqueous
Method: 537 PFAS DW DoD Unmodified
Method: 537 PFAS DW Unmodified MI Sp Sig Digs

B8L0193

Prepared using: LCMS - SPE Extraction-LCMS

Chemist: \qquad MAC

Prep Date: $12 / 2718$
Prep Time: \qquad

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$
Cen $=$ Centrifuged

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537 PFAS DW DoD Unmodified
Method: 537 PFAS DW Unmodified MI So Sig Digs
B8L0193
Chemist: MAC
Prep Date: $12 / 27 / 18$
Prepared using: LCMS - SPE Extraction-LCMS

Balanceli: HRMS-9						$\begin{gathered} \text { SSNS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$				
Cen	$\begin{gathered} \text { VISTA } \\ \text { Sample ID } \end{gathered}$		Sample ar $121727 / 18$	$\begin{aligned} & \text { Botile } \\ & \text { Only } \end{aligned}$ (g)	$\begin{aligned} & \hline \text { Sample } \\ & \text { Amt. } \\ & \text { (L) } \end{aligned}$				SPE	$\underset{\substack{\text { CHEM/WIT } \\ \text { DATE }}}{\text { IS }}$
\square	1804140-04		268.47	26.58	0.24189		ly $12 / 2718$	μ	1272018	Mhe tin olesior
\square	1804165-01		$274.40^{364.33}$	27.50	0.23683				T	
\square	1804166-01	${ }^{12127}{ }^{\text {at }}$	$257.17^{258.36}$	27.05	0.23/3/					
\square	1804167-01		274.39	28.03	0.24636					
\square	1804167-02		257.17	26.65	0.23057		\downarrow		\checkmark	

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$
Cen = Centrifuged

Batch: B8L0193

MAC $12 / 28 / 18$

SAMPLE DATA -EPA METHOD 537

Dataset: D:IPFAS.PRO\RESULTSI181230P1\181230P1-17.qld
 Last Altered: Wednesday, January 02, 2019 11:24:09 Pacific Standard Time
 Printed:
 Wednesday, January 02, 2019 11:25:33 Pacific Standard Time

Name: 181230P1_17, Date: 30-Dec-2018, Time: 16:43:51, ID: B8L0193-BLK1 LRB 0.25, Description: LRB

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		3131.097	0.250		3.51				
2	2 PFHxA	313.1 > 269.1		6687.353	0.250		3.81				
3	3 PFHpA	$363>319$		6687.353	0.250		4.26				
4	4 PFHxS	$399>80.0$		3131.097	0.250		4.39				
5	5 PFOA	$413>369$		6687.353	0.250		4.65				
6	19 13C4-PFOS	$503.0>80$	3131.097	3131.097	0.250	1.000	5.02	5.01	28.7	115	100.0
7	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
8	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
9	19 13C4-PFOS	$503.0>80$	3131.097	3131.097	0.250	1.000	5.02	5.01	28.7	115	100.0
10	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
11	-1										
12	6 PFNA	$463>419$		6687.353	0.250		4.95				
13	7 PFOS	$499>80.0$	1.505	3131.097	0.250		5.01	5.02	0.0138	0.0665	
14	8 PFDA	$513>469$		6687.353	0.250		5.22				
15	9 N-MeFOSAA	$570>419.1$		11792.506	0.250		5.33				
16	$10 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$		11792.506	0.250		5.43				
17	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
18	19 13C4-PFOS	$503.0>80$	3131.097	3131.097	0.250	1.000	5.02	5.01	28.7	115	100.0
19	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
20	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	11792.506	11792.506	0.250	1.000	5.33	5.33	40.0	160	100.0
21	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	11792.506	11792.506	0.250	1.000	5.33	5.33	40.0	160	100.0
22	-1										
23	11 PFUnA	$563>519$		6687.353	0.250		5.43				
24	12 PFDoA	$613>569$		6687.353	0.250		5.63				
25	13 PFTrDA	$662.9>619$		6687.353	0.250		5.81				
26	14 PFTeDA	$712.9>669$		6687.353	0.250		5.95				
27	15 13C2-PFHxA	$315.1>270$	5358.038	6687.353	0.250	0.868	3.81	3.82	8.01	36.9	92.3
28	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
29	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
30	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
31	18 13C2-PFOA	$415>370$	6687.353	6687.353	0.250	1.000	4.66	4.65	10.0	40.0	100.0
32	16 13C2-PFDA	$515.0>470.0$	7784.740	6687.353	0.250	1.221	5.22	5.22	11.6	38.1	95.3
33	-1										
34	17 d5-N-EtFOSAA	$589.1>419.0$	11496.323	11792.506	0.250	1.132	5.43	5.43	39.0	138	86.1

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-17.qld
Last Altered: Wednesday, January 02, 2019 11:24:09 Pacific Standard Time Printed: Wednesday, January 02, 2019 11:25:33 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13

Calibration: D:\PFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Name: 181230P1_17, Date: 30-Dec-2018, Time: 16:43:51, ID: B8L0193-BLK1 LRB 0.25, Description: LRB

PFBS

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C2-PFOA

Dataset: D:\PFAS.PRO\RESULTS\181230P1\181230P1-17.qld
Last Altered: Wednesday, January 02, 2019 11:24:09 Pacific Standard Time
Printed:
Wednesday, January 02, 2019 11:25:33 Pacific Standard Time

Name: 181230P1_17, Date: 30-Dec-2018, Time: 16:43:51, ID: B8L0193-BLK1 LRB 0.25, Description: LRB

PFNA
 F12:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-
$415>370$

13C4-PFOS
F14:MRM of 1 channel,ES
F14:MRM of 1 channel,ES-
$503.0>80$

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-
$573.1>419.1$

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$ $1.371 \mathrm{e}+005$

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-17.qld
Last Altered: Wednesday, January 02, 2019 11:24:09 Pacific Standard Time Printed: Wednesday, January 02, 2019 11:25:33 Pacific Standard Time

Name: 181230P1_17, Date: 30-Dec-2018, Time: 16:43:51, ID: B8L0193-BLK1 LRB 0.25, Description: LRB

PFUnA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA
F23:MRM of 3 channels,ES-

PFTrDA
F25:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA

F4:MRM of 1 channel,ES$315.1>270$ $6.263 \mathrm{e}+004$

13C2-PFDA
F16:MRM of 1 channel,ES-

Quantify Sample Report

```
Dataset: D:\PFAS.PRO\RESULTS\181230P1\181230P1-17.qld
Last Altered: Wednesday, January 02, 2019 11:24:09 Pacific Standard Time
Printed: Wednesday, January 02, 2019 11:25:33 Pacific Standard Time
```

Name: 181230P1_17, Date: 30-Dec-2018, Time: 16:43:51, ID: B8L0193-BLK1 LRB 0.25, Description: LRB d5-N-EtFOSAA

Quantify Sample Report

Dataset:
 D:IPFAS.PROIRESULTS\181231P11181231P1-15.qld
 Last Altered: Wednesday, January 02, 2019 10:47:37 Pacific Standard Time
 Printed:
 Wednesday, January 02, 2019 11:01:11 Pacific Standard Time

Name: 181230P1_15, Date: 30-Dec-2018, Time: 16:21:29, ID: B8L0193-BS1 LFB 0.25, Description: LFB

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	755.675	3129.382	0.250		3.52	3.49	6.93	34.4	97.2
2	2 PFHxA	313.1 > 269.1	4256.118	6446.945	0.250		3.81	3.81	6.60	38.8	96.9
3	3 PFHpA	$363>319$	6381.961	6446.945	0.250		4.27	4.29	9.90	39.2	98.0
4	4 PFHxS	$399>80.0$	764.700	3129.382	0.250		4.40	4.41	7.01	33.5	91.8
5	5 PFOA	$413>369$	6923.221	6446.945	0.250		4.66	4.67	10.7	40.3	100.8
6	19 13C4-PFOS	$503.0>80$	3129.382	3129.382	0.250	1.000	5.02	5.02	28.7	115	100.0
7	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
8	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
9	19 13C4-PFOS	$503.0>80$	3129.382	3129.382	0.250	1.000	5.02	5.02	28.7	115	100.0
10	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
11	-1										
12	6 PFNA	$463>419$	6816.739	6446.945	0.250		4.96	4.96	10.6	40.1	100.2
13	7 PFOS	$499>80.0$	758.896	3129.382	0.250		5.02	5.03	6.96	33.5	90.7
14	8 PFDA	$513>469$	7021.589	6446.945	0.250		5.23	5.23	10.9	44.1	110.3
15	$9 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$	2582.394	11492.279	0.250		5.34	5.34	8.99	39.4	98.4
16	$10 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$	2252.995	11492.279	0.250		5.45	5.45	7.84	36.7	91.9
17	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
18	19 13C4-PFOS	$503.0>80$	3129.382	3129.382	0.250	1.000	5.02	5.02	28.7	115	100.0
19	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
20	20 d3-N-MeFOSAA	$573.1>419.1$	11492.279	11492.279	0.250	1.000	5.33	5.34	40.0	160	100.0
21	20 d3-N-MeFOSAA	$573.1>419.1$	11492.279	11492.279	0.250	1.000	5.33	5.34	40.0	160	100.0
22	-1										
23	11 PFUnA	$563>519$	7934.257	6446.945	0.250		5.44	5.45	12.3	40.5	101.2
24	12 PFDoA	$613>569$	9565.912	6446.945	0.250		5.64	5.65	14.8	38.6	96.5
25	13 PFTrDA	$662.9>619$	7899.318	6446.945	0.250		5.82	5.82	12.3	32.6	81.6
26	14 PFTeDA	$712.9>669$	6272.464	6446.945	0.250		5.96	5.97	9.73	28.9	72.4
27	15 13C2-PFHxA	$315.1>270$	5553.257	6446.945	0.250	0.868	3.82	3.82	8.61	39.7	99.3
28	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
29	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
30	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
31	18 13C2-PFOA	$415>370$	6446.945	6446.945	0.250	1.000	4.66	4.66	10.0	40.0	100.0
32	16 13C2-PFDA	$515.0>470.0$	7896.834	6446.945	0.250	1.221	5.23	5.23	12.2	40.1	100.3
33	-1										
34	17 d5-N-EtFOSAA	$589.1>419.0$	12422.298	11492.279	0.250	1.132	5.44	5.45	43.2	153	95.5

Dataset:	D:\PFAS.PRO\RESULTS\181231P1\181231P1-15.qld
Last Altered:	Wednesday, January 02, 2019 10:47:37 Pacific Standard Time
Printed:	Wednesday, January 02, 2019 11:01:11 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13

Calibration: D:\PFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Name: 181230P1_15, Date: 30-Dec-2018, Time: 16:21:29, ID: B8L0193-BS1 LFB 0.25, Description: LFB

PFBS

 \section*{13C2-PFOA}
 F11:MRM of 1 channel,ES

13C4-PFOS

F14:MRM of 1 channel,ES-

13C2-PFOA

13C4-PFOS

13C2-PFOA
F11:MRM of 1 channel,ES-

Dataset:
D:\PFAS.PRO\RESULTS\181231P1\181231P1-15.qld
Last Altered: Wednesday, January 02, 2019 10:47:37 Pacific Standard Time Printed: Wednesday, January 02, 2019 11:01:11 Pacific Standard Time

Name: 181230P1_15, Date: 30-Dec-2018, Time: 16:21:29, ID: B8L0193-BS1 LFB 0.25, Description: LFB

\section*{PFNA

13C2-PFOA
F11:MRM of 1 channel,ES-
$415>370$

13C4-PFOS
F14:MRM of 1 channel,ES
F14.MRM of channel, ES
$503.0>80$

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES
$573.1>419$

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$

Dataset:
D:\PFAS.PRO\RESULTS\181231P1\181231P1-15.qld
Last Altered: Wednesday, January 02, 2019 10:47:37 Pacific Standard Time Printed: Wednesday, January 02, 2019 11:01:11 Pacific Standard Time

Name: 181230P1_15, Date: 30-Dec-2018, Time: 16:21:29, ID: B8L0193-BS1 LFB 0.25, Description: LFB

PFUnA
F18:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA
F11:MRM of 1 channel,ES-
F11:MRM of 1 channel, ES
$415>370$

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES $315.1>270$ $6.057 \mathrm{e}+004$

13C2-PFDA
F16:MRM of 1 channel,ES-

Quantify Sample Report

```
Dataset: D:\PFAS.PRO\RESULTS\181231P1\181231P1-15.qld
Last Altered: Wednesday, January 02, 2019 10:47:37 Pacific Standard Time
Printed: Wednesday, January 02, 2019 11:01:11 Pacific Standard Time
```

Name: 181230P1_15, Date: 30-Dec-2018, Time: 16:21:29, ID: B8L0193-BS1 LFB 0.25, Description: LFB d5-N-EtFOSAA

F22:MRM of 1 channel,ES-

Dataset: D:IPFAS.PRO\RESULTSI181230P11181230P1-16.qld
 Last Altered: Wednesday, January 02, 2019 11:02:35 Pacific Standard Time
 Printed: Wednesday, January 02, 2019 11:04:07 Pacific Standard Time

Name: 181230P1_16, Date: 30-Dec-2018, Time: 16:32:41, ID: B8L0193-BSD1 LFBD 0.25, Description: LFBD

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$	779.859	2791.141	0.250		3.51	3.52	8.02	39.8	112.5
2	2 PFHxA	313.1 > 269.1	4305.174	6089.929	0.250		3.81	3.82	7.07	41.5	103.8
3	3 PFHpA	$363>319$	6469.498	6089.929	0.250		4.27	4.28	10.6	42.0	105.1
4	4 PFHxS	$399>80.0$	756.443	2791.141	0.250		4.39	4.40	7.78	37.2	101.9
5	5 PFOA	$413>369$	6682.251	6089.929	0.250		4.66	4.66	11.0	41.2	103.0
6	19 13C4-PFOS	$503.0>80$	2791.141	2791.141	0.250	1.000	5.02	5.01	28.7	115	100.0
7	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
8	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
9	19 13C4-PFOS	$503.0>80$	2791.141	2791.141	0.250	1.000	5.02	5.01	28.7	115	100.0
10	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
11	-1										
12	6 PFNA	$463>419$	6953.548	6089.929	0.250		4.96	4.95	11.4	43.3	108.2
13	7 PFOS	$499>80.0$	812.652	2791.141	0.250		5.01	5.01	8.36	40.3	108.9
14	8 PFDA	$513>469$	6840.057	6089.929	0.250		5.22	5.21	11.2	45.5	113.7
15	$9 \mathrm{~N}-\mathrm{MeFOSAA}$	$570>419.1$	2586.188	11199.874	0.250		5.33	5.33	9.24	40.4	101.1
16	$10 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$	2278.508	11199.874	0.250		5.43	5.45	8.14	38.1	95.3
17	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
18	19 13C4-PFOS	$503.0>80$	2791.141	2791.141	0.250	1.000	5.02	5.01	28.7	115	100.0
19	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
20	20 d3-N-MeFOSAA	$573.1>419.1$	11199.874	11199.874	0.250	1.000	5.33	5.33	40.0	160	100.0
21	20 d3-N-MeFOSAA	$573.1>419.1$	11199.874	11199.874	0.250	1.000	5.33	5.33	40.0	160	100.0
22	-1										
23	11 PFUnA	$563>519$	7459.105	6089.929	0.250		5.44	5.44	12.2	40.3	100.7
24	12 PFDoA	$613>569$	9093.516	6089.929	0.250		5.64	5.65	14.9	38.9	97.1
25	13 PFTrDA	$662.9>619$	7470.978	6089.929	0.250		5.82	5.81	12.3	32.7	81.7
26	14 PFTeDA	$712.9>669$	5865.774	6089.929	0.250		5.96	5.96	9.63	28.7	71.6
27	15 13C2-PFHxA	$315.1>270$	5537.590	6089.929	0.250	0.868	3.82	3.82	9.09	41.9	104.8
28	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
29	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
30	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
31	18 13C2-PFOA	$415>370$	6089.929	6089.929	0.250	1.000	4.66	4.66	10.0	40.0	100.0
32	16 13C2-PFDA	$515.0>470.0$	7698.794	6089.929	0.250	1.221	5.23	5.22	12.6	41.4	103.5
33	-1										
34	17 d5-N-EtFOSAA	$589.1>419.0$	11592.415	11199.874	0.250	1.132	5.43	5.43	41.4	146	91.4

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-16.qld
Last Altered: Wednesday, January 02, 2019 11:02:35 Pacific Standard Time Printed: Wednesday, January 02, 2019 11:04:07 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13

Calibration: D:\PFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Name: 181230P1_16, Date: 30-Dec-2018, Time: 16:32:41, ID: B8L0193-BSD1 LFBD 0.25, Description: LFBD

13C4-PFOS

13C2-PFOA

13C2-PFOA

F11:MRM of 1 channel,ES-

13C4-PFOS

13C2-PFOA
F11:MRM of 1 channel,ES-

Dataset:
D:IPFAS.PRO\RESULTS\181230P1\181230P1-16.qld
Last Altered: Wednesday, January 02, 2019 11:02:35 Pacific Standard Time
Printed:
Wednesday, January 02, 2019 11:04:07 Pacific Standard Time

Name: 181230P1_16, Date: 30-Dec-2018, Time: 16:32:41, ID: B8L0193-BSD1 LFBD 0.25, Description: LFBD

\section*{PFNA
 F12:MRM of 2 channels,ES-

13C2-PFOA
F11:MRM of 1 channel,ES-
F11 415 > 370

13C4-PFOS
F14:MRM of 1 channel,ES

PFDA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES
573.1 > 419.1

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-16.qld
Last Altered: Wednesday, January 02, 2019 11:02:35 Pacific Standard Time Printed: Wednesday, January 02, 2019 11:04:07 Pacific Standard Time

Name: 181230P1_16, Date: 30-Dec-2018, Time: 16:32:41, ID: B8L0193-BSD1 LFBD 0.25, Description: LFBD

\author{

PFUnA

 F18:MRM of 2 channels,ES-
 }

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES 315.1 > 270 $6.351 \mathrm{e}+004$

13C2-PFDA
F16:MRM of 1 channel,ES-

Quantify Sample Report

```
Dataset: D:\PFAS.PRO\RESULTS\181230P1\181230P1-16.qld
Last Altered: Wednesday, January 02, 2019 11:02:35 Pacific Standard Time
Printed: Wednesday, January 02, 2019 11:04:07 Pacific Standard Time
```

Name: 181230P1_16, Date: 30-Dec-2018, Time: 16:32:41, ID: B8L0193-BSD1 LFBD 0.25, Description: LFBD d5-N-EtFOSAA

F22:MRM of 1 channel,ES-

Dataset:
 D:IPFAS.PROIRESULTSI181230P11181230P1-36.qld
 Last Altered: Wednesday, January 02, 2019 12:46:56 Pacific Standard Time
 Printed:
 Wednesday, January 02, 2019 12:47:23 Pacific Standard Time

Name: 181230P1_36, Date: 30-Dec-2018, Time: 20:16:24, ID: 1804167-01 PW2-122018-DW 0.24636, Description: PW2-122018-DW

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>80.0$		2821.636	0.246		3.49				
2	2 PFHxA	$313.1>269.1$		5852.651	0.246		3.78				
3	3 PFHpA	$363>319$		5852.651	0.246		4.25				
4	4 PFHxS	$399>80.0$		2821.636	0.246		4.37				
5	5 PFOA	$413>369$		5852.651	0.246		4.64				
6	19 13C4-PFOS	$503.0>80$	2821.636	2821.636	0.246	1.000	5.02	4.99	28.7	116	100.0
7	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
8	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
9	19 13C4-PFOS	$503.0>80$	2821.636	2821.636	0.246	1.000	5.02	4.99	28.7	116	100.0
10	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
11	-1										
12	6 PFNA	$463>419$		5852.651	0.246		4.94				
13	7 PFOS	$499>80.0$	1.290	2821.636	0.246		4.99	4.83	0.0131	0.0641	
14	8 PFDA	$513>469$		5852.651	0.246		5.20				
15	9 N-MeFOSAA	$570>419.1$		11030.449	0.246		5.32				
16	$10 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.0>419.1$		11030.449	0.246		5.42				
17	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
18	19 13C4-PFOS	$503.0>80$	2821.636	2821.636	0.246	1.000	5.02	4.99	28.7	116	100.0
19	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
20	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	11030.449	11030.449	0.246	1.000	5.33	5.32	40.0	162	100.0
21	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.1>419.1$	11030.449	11030.449	0.246	1.000	5.33	5.32	40.0	162	100.0
22	-1										
23	11 PFUnA	$563>519$		5852.651	0.246		5.42				
24	12 PFDoA	$613>569$		5852.651	0.246		5.62				
25	13 PFTrDA	$662.9>619$		5852.651	0.246		5.80				
26	14 PFTeDA	$712.9>669$		5852.651	0.246		5.94				
27	15 13C2-PFHxA	$315.1>270$	5261.734	5852.651	0.246	0.868	3.80	3.79	8.99	42.1	103.6
28	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
29	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
30	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
31	18 13C2-PFOA	$415>370$	5852.651	5852.651	0.246	1.000	4.66	4.64	10.0	40.6	100.0
32	16 13C2-PFDA	$515.0>470.0$	7207.769	5852.651	0.246	1.221	5.21	5.20	12.3	40.9	100.9
33	-1										
34	17 d5-N-EtFOSAA	$589.1>419.0$	10946.202	11030.449	0.246	1.132	5.42	5.42	39.7	142	87.6

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-36.qld
Last Altered: Wednesday, January 02, 2019 12:46:56 Pacific Standard Time Printed: Wednesday, January 02, 2019 12:47:23 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13

Calibration: D:\PFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Name: 181230P1_36, Date: 30-Dec-2018, Time: 20:16:24, ID: 1804167-01 PW2-122018-DW 0.24636, Description: PW2-122018-DW

13C4-PFOS

F14:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

13C4-PFOS

13C2-PFOA
F11:MRM of 1 channel,ES-

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-36.qld
Last Altered: Wednesday, January 02, 2019 12:46:56 Pacific Standard Time Printed: Wednesday, January 02, 2019 12:47:23 Pacific Standard Time

Name: 181230P1_36, Date: 30-Dec-2018, Time: 20:16:24, ID: 1804167-01 PW2-122018-DW 0.24636, Description: PW2-122018-DW

PFNA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C4-PFOS

PFDA

13C2-PFOA
F11:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

Dataset: D:IPFAS.PRO\RESULTS\181230P1\181230P1-36.qld
Last Altered: Wednesday, January 02, 2019 12:46:56 Pacific Standard Time
Printed:
Wednesday, January 02, 2019 12:47:23 Pacific Standard Time

Name: 181230P1_36, Date: 30-Dec-2018, Time: 20:16:24, ID: 1804167-01 PW2-122018-DW 0.24636, Description: PW2-122018-DW

13C2-PFOA
F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTeDA

13C2-PFOA

13C2-PFHxA

13C2-PFDA
F16:MRM of 1 channel,ES
$515.0>470.0$

Quantify Sample Report

```
Dataset: D:\PFAS.PRO\RESULTS\181230P1\181230P1-36.qld
Last Altered: Wednesday, January 02, 2019 12:46:56 Pacific Standard Time
Printed: Wednesday, January 02, 2019 12:47:23 Pacific Standard Time
```

Name: 181230P1_36, Date: 30-Dec-2018, Time: 20:16:24, ID: 1804167-01 PW2-122018-DW 0.24636, Description: PW2-122018-DW d5-N-EtFOSAA

INJECTION INTERNAL STANDARD (IIS) AREAS,

AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

IIS Area

Ical

Compound 18: 13C2-PFOA

ID	Name Type	Std. Conc RT		Area	IS Area	Ical Area	Area \%
1 B8L0193-BS1 LFB 0.25	181230P1_Analyte	10	4.66	6446.945	6446.945	5922.806	108.85
2 B8L0193-BSD1 LFBD 0.25	181230P1_Analyte	10	4.66	6089.929	6089.929	5922.806	102.82
3 B8L0193-BLK1 LRB 0.25	181230P1_Analyte	10	4.65	6687.353	6687.353	5922.806	112.91
4 1803885-01RE1 GWNT1811300900GGA 0.24	81230P1_Analyte	10	4.64	5941.599	5941.599	5922.806	100.32
5 1803887-01RE1 GWNT1811301500GGA 0.22	81230P1_Analyte	10	4.65	5961.82	5961.82	5922.806	100.66
6 1804129-01 DAYTANK-PFOS 0.2395	181230P1_Analyte	10	4.65	5884.897	5884.897	5922.806	99.36
7 1804129-02 DAYTANK-Blank 0.24739	181230P1_Analyte	10	4.65	6477.418	6477.418	5922.806	109.36
8 1804129-03 JTC-PFOS 0.24108	181230P1_Analyte	10	4.64	6220.847	6220.847	5922.806	105.03
9 1804129-04 JTC-Blank 0.2403	181230P1_Analyte	10	4.64	6528.531	6528.531	5922.806	110.23
10 1804129-05 SWMV1-PFOS 0.232	181230P1_Analyte	10	4.64	6425.632	6425.632	5922.806	108.49
11 1804129-06 SWMV1-Blank 0.26409	181230P1_Analyte	10	4.64	6247.653	6247.653	5922.806	105.48
12 1804129-07 FITWING-PFOS 0.24265	181230P1_Analyte	10	4.64	5555.628	5555.628	5922.806	93.80
13 1804129-08 FITWING-Blank 0.24591	181230P1_Analyte	10	4.65	6018.908	6018.908	5922.806	101.62
14 1804140-01 WR1812141300JLB 0.22566	181230P1_Analyte	10	4.64	6028.499	6028.499	5922.806	101.78
15 1804140-02 WR1812141340JLB 0.23602	181230P1_Analyte	10	4.64	6116.434	6116.434	5922.806	103.27
16 1804140-03 WR1812141405JLB 0.24049	181230P1_Analyte	10	4.65	5690.047	5690.047	5922.806	96.07
17 1804140-04 WR1812141405JLB-FD 0.24189	181230P1_Analyte	10	4.64	5841.774	5841.774	5922.806	98.63
18 IPA	181230P1_Analyte	10				5922.806	0.00
19 ST181230P1-11 PFC CS1 537 18L2617	181230P1_Analyte	10	4.64	6350.39	6350.39	5922.806	107.22
20 1804165-01 GWEF1812190920LEM 0.23683	181230P1_Analyte	10	4.63	6631.153	6631.153	5922.806	111.96
21 1804166-01 GWNT1812200905LEM 0.23131	181230P1_Analyte	10	4.64	6389.975	6389.975	5922.806	107.89
22 1804167-01 PW2-122018-DW 0.24636	181230P1_Analyte	10	4.64	5852.651	5852.651	5922.806	98.82
23 1804167-02 PW2-122018-FB 0.23052	181230P1_Analyte	10	4.63	6261.448	6261.448	5922.806	105.72
24 B8L0199-BLK8 LRB 0.125	181230P1_Analyte	10	4.64	5238.532	5238.532	5922.806	88.45
25 B8L0199-BS7 LFB 0.125	181230P1_Analyte	10	4.63	5510.755	5510.755	5922.806	93.04
26 B8L0199-BS8 LFB 0.125	181230P1_Analyte	10	4.63	5480.786	5480.786	5922.806	92.54
27 1804087-01 GWNT1812070920KER 0.24854	181230P1_Analyte	10	4.62	6182.421	6182.421	5922.806	104.38

28	1804089-01 GWEF1812100915KER 0.24551	181230P1_Analyte
29	1804092-01 GWNT1812101050KER 0.24556	181230P1_Analyte
30 1804093-01 GWEF1812101140KER 0.24891	181230P1_Analyte	
31 IPA	181230P1_Analyte	
32 ST181230P1-12 PFC CS3 537 18L2619	181230P1_Analyte	
33 1804094-01 GWNT1812101245KER 0.24648	181230P1_Analyte	
34 1804104-01 GWEF1812111150KER 0.24882	181230P1_Analyte	
35 1804109-01 GWEF1812111500KER 0.24715	181230P1_Analyte	
36 1804122-04@10X WIN1812121115MK 0.25	181230P1_Analyte	
37 1804122-07@100X WIN1812131720MK 0.25	181230P1_Analyte	
38 1804122-10@5X WIN1812131845MK 0.25	181230P1_Analyte	
39 1804122-15@100X WIN1812140948MK 0.25	181230P1_Analyte	
40 IPA	181230P1_Analyte	
41 ST181230P1-13 PFC CS-1537 18L2615	181230P1_Analyte	

Compound 19: 13C4-PFOS

| Name | Type | Std. Conc | RT | Area | | | IS Area |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | Ical Area Area \%

88.93
92.22
94.48
0.00
105.14
96.81
106.14
92.01
16.80
4.75
24.59
2.96
0.00
100.99

ID
1 B8L0193-BS1 LFB 0.25
2 B8L0193-BSD1 LFBD 0.25
3 B8L0193-BLK1 LRB 0.25
4 1803885-01RE1 GWNT1811300900GGA 0.2
5 1803887-01RE1 GWNT1811301500GGA 0.2
6 1804129-01 DAYTANK-PFOS 0.2395
7 1804129-02 DAYTANK-Blank 0.24739
8 1804129-03 JTC-PFOS 0.24108
9 1804129-04 JTC-Blank 0.2403
10 1804129-05 SWMV1-PFOS 0.232
11 1804129-06 SWMV1-Blank 0.26409
12 1804129-07 FITWING-PFOS 0.24265
13 1804129-08 FITWING-Blank 0.24591
14 1804140-01 WR1812141300JLB 0.22566

181230P1_Analyte

4.63	5267.355	5267.355	5922.806	88.93
4.63	5462.015	5462.015	5922.806	92.22
4.63	5595.955	5595.955	5922.806	94.48
			5922.806	0.00
4.62	6227.253	6227.253	5922.806	105.14
4.63	5733.856	5733.856	5922.806	96.81
4.62	6286.409	6286.409	5922.806	106.14
4.63	5449.633	5449.633	5922.806	92.01
4.63	994.741	994.741	5922.806	16.80
4.62	281.557	281.557	5922.806	4.75
4.62	1456.323	1456.323	5922.806	24.59
4.61	175.592	175.592	5922.806	2.96
			5922.806	0.00
4.62	5981.179	5981.179	5922.806	100.99

181230P1_Analyte 28.7 181230P1 Analyte $\quad 28.7$ 181230P1_Analyte 181230P1_Analyte
28.7
28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7
28.7
28.7 28.7 28.7
28.7
28.7
28.7
28.7
28.7
28.7
28.7 28.7
28.7

4.99	2959.212	2959.212	2770.725	106.80
5	2838.893	2838.893	2770.725	102.46
4.99	2728.104	2728.104	2770.725	98.46
			2770.725	0.00
4.99	3073.515	3073.515	2770.725	110.93
4.99	3044.407	3044.407	2770.725	109.88
5	2957.452	2957.452	2770.725	106.74
4.99	2821.636	2821.636	2770.725	101.84
4.99	3156.963	3156.963	2770.725	113.94
5	2506.324	2506.324	2770.725	90.46
4.98	2583.816	2583.816	2770.725	93.25
4.99	2842.471	2842.471	2770.725	102.59
4.98	2898.497	2898.497	2770.725	104.61
4.98	2598.901	2598.901	2770.725	93.80
4.99	2358.994	2358.994	2770.725	85.14
4.99	2681.74	2681.74	2770.725	96.79
			2770.725	0.00
4.98	2942.671	2942.671	2770.725	106.21
4.99	2715.892	2715.892	2770.725	98.02
4.98	3032.107	3032.107	2770.725	109.43
4.98	2781.443	2781.443	2770.725	100.39
4.98	446.451	446.451	2770.725	16.11
4.98	146.941	146.941	2770.725	5.30
4.98	597.395	597.395	2770.725	21.56
4.97	99.196	99.196	2770.725	3.58
			2770.725	0.00
4.98	2940.205	2940.205	2770.725	106.12

Compound 20: d3-N-MeFOSAA

ID
1 B8L0193-BS1 LFB 0.25

Name Type Std. Conc RT Area IS Area Ical Area Area \% $\begin{array}{lllllllll}181230 P 1 _A n a l y t e & 40 & 5.34 & 11492.28 & 11492.28 & 10441.54 & 110.06\end{array}$

L0193-BSD1 LFBD 0.25	te
3 B8LO193-BLK1 LRB 0.25	181230P1_Analyte
4 1803885-01RE1 GWNT1811300900GGA 0.	181230P1_Analyte
5 1803887-01RE1 GWNT1811301500GGA 0.	181230P1_Analyte
6 1804129-01 DAYTANK-PFOS 0.2395	181230P1_Analyte
7 1804129-02 DAYTANK-Blank 0.24739	181230P1_Analyte
8 1804129-03 JTC-PFOS 0.24108	181230P1_Analyte
9 1804129-04 JTC-Blank 0.2403	181230P1_Analyte
10 1804129-05 SWMV1-PFOS 0.23	181230P1_Analyte
11 1804129-06 SWMV1-Blank 0.26409	181230P1_Analyte
12 1804129-07 FITWING-PFOS 0.24265	181230P1_Analyte
13 1804129-08 FITWING-Blank 0.24591	181230P1_Analyte
14 1804140-01 WR1812141300JLB 0.22566	181230P1_Analyte
15 1804140-02 WR1812141340JLB 0.23602	181230P1_Analyte
16 1804140-03 WR1812141405JLB 0.24049	181230P1_Analyte
17 1804140-04 WR1812141405JLB-FD 0.24189	181230P1_Analyte
18 IPA	181230P1_Analyte
19 ST181230P1-11 PFC CS1 53718 L 2617	181230P1_Analyte
20 1804165-01 GWEF1812190920LEM 0.23683	181230P1_Analyte
21 1804166-01 GWNT1812200905LEM 0.23131	181230P1_Analyte
22 1804167-01 PW2-122018-DW 0.24636	181230P1_Analyte
23 1804167-02 PW2-122018-FB 0.23052	181230P1_Analyte
24 B8LO199-BLK8 LRB 0.125	181230P1_Analyte
25 B8L0199-BS7 LFB 0.125	181230P1_Analyte
26 B8L0199-BS8 LFB 0.125	181230P1_Analyte
27 1804087-01 GWNT1812070920KER 0.24854	181230P1_Analyte
28 1804089-01 GWEF1812100915KER 0.24551	181230P1_Analyte
29 1804092-01 GWNT1812101050KER 0.24556	181230P1_Analyte
30 1804093-01 GWEF1812101140KER 0.24891	181230P1_Analyte
31 IPA	181230P1_Analyte
32 ST181230P1-12 PFC CS3 53718 L2619	181230P1_Analyte
33 1804094-01 GWNT1812101245KER 0.24648	181230P1_Analyte
34 1804104-01 GWEF1812111150KER 0.24882	181230P1_Analyte
35 1804109-01 GWEF1812111500KER 0.24715	181230P1_Analyte

40	5.33	11199.87	11199.87	10441.54	107.26
40	5.33	11792.51	11792.51	10441.54	112.94
40	5.32	10271.09	10271.09	10441.54	98.37
40	5.33	10808.16	10808.16	10441.54	103.51
40	5.32	10527.41	10527.41	10441.54	100.82
40	5.33	11055.17	11055.17	10441.54	105.88
40	5.32	10431.12	10431.12	10441.54	99.90
40	5.32	11082.18	11082.18	10441.54	106.14
40	5.32	11127.18	11127.18	10441.54	106.57
40	5.32	11423.71	11423.71	10441.54	109.41
40	5.32	8576.749	8576.749	10441.54	82.14
40	5.32	11046.1	11046.1	10441.54	105.79
40	5.31	11743.04	11743.04	10441.54	112.46
40	5.32	10994.33	10994.33	10441.54	105.29
40	5.32	10438.34	10438.34	10441.54	99.97
40	5.31	10311.02	10311.02	10441.54	98.75
40				10441.54	0.00
40	5.32	11207.17	11207.17	10441.54	107.33
40	5.31	11822.73	11822.73	10441.54	113.23
40	5.32	11222.95	11222.95	10441.54	107.48
40	5.32	11030.45	11030.45	10441.54	105.64
40	5.31	11743.43	11743.43	10441.54	112.47
40	5.32	9435.262	9435.262	10441.54	90.36
40	5.31	9961.688	9961.688	10441.54	95.40
40	5.31	10678.63	10678.63	10441.54	102.27
40	5.31	11147.41	11147.41	10441.54	106.76
40	5.31	10047.99	10047.99	10441.54	96.23
40	5.31	9360.906	9360.906	10441.54	89.65
40	5.31	10230.55	10230.55	10441.54	97.98
40				10441.54	0.00
40	5.31	11020.4	11020.4	10441.54	105.54
40	5.31	10224.77	10224.77	10441.54	97.92
40	5.31	11545.42	11545.42	10441.54	110.57
40	5.31	10145.08	10145.08	10441.54	97.16

| 36 1804122-04@10X WIN1812121115MK 0.25 | 181230P1_Analyte | 40 | 5.3 | 1940.37 | 1940.37 | 10441.54 | 18.58 |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 37 1804122-07@100X WIN1812131720MK 0.25 | 181230P1_Analyte | 40 | 5.3 | 523.944 | 523.944 | 10441.54 | 5.02 |
| 38 1804122-10@5X WIN1812131845MK 0.25 | 181230P1_Analyte | 40 | 5.31 | 2683.458 | 2683.458 | 10441.54 | 25.70 |
| 39 1804122-15@100X WIN1812140948MK 0.25 | 181230P1_Analyte | 40 | 5.3 | 431.048 | 431.048 | 10441.54 | 4.13 |
| 40 IPA | 181230P1_Analyte | 40 | | | | 10441.54 | 0.00 |
| 41 ST181230P1-13 PFC CS-1 537 18L2615 | 181230P1_Analyte | 40 | 5.3 | 10987.21 | 10987.21 | 10441.54 | 105.23 |

Ccal

Compound 18: 13C2-PFOA
ID
19 ST181230P1-11 PFC CS1 537 18L2617
20 1804165-01 GWEF1812190920LEM 0.23683
21 1804166-01 GWNT1812200905LEM 0.23131
22 1804167-01 PW2-122018-DW 0.24636
23 1804167-02 PW2-122018-FB 0.23052
24 B8L0199-BLK8 LRB 0.125
25 B8L0199-BS7 LFB 0.125
26 B8L0199-BS8 LFB 0.125
27 1804087-01 GWNT1812070920KER 0.24854
28 1804089-01 GWEF1812100915KER 0.24551
29 1804092-01 GWNT1812101050KER 0.24556
30 1804093-01 GWEF1812101140KER 0.24891
31 IPA
32

ID	
32	ST181230P1-12 PFC CS3 537 18L2619
33	1804094-01 GWNT1812101245KER 0.24648
34	1804104-01 GWEF1812111150KER 0.24882
35	1804109-01 GWEF1812111500KER 0.24715

| Name | Type | Std. Conc RT | Area | | IS Area | Ccal Area | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: | Area \% $\quad 100.00$

| 36 1804122-04@10X WIN1812121115MK 0.25 | 181230P1_Analyte | 10 | 4.63 | 994.741 | 994.741 | 6227.253 | 15.97 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| 37 1804122-07@100X WIN1812131720MK 0.25 | 181230P1_Analyte | 10 | 4.62 | 281.557 | 281.557 | 6227.253 | 4.52 |
| 38 1804122-10@5X WIN1812131845MK 0.25 | 181230P1_Analyte | 10 | 4.62 | 1456.323 | 1456.323 | 6227.253 | 23.39 |
| 39 1804122-15@100X WIN1812140948MK 0.25 | 181230P1_Analyte | 10 | 4.61 | 175.592 | 175.592 | 6227.253 | 2.82 |
| 40 IPA | 181230P1_Analyte | 10 | | | | 6227.253 | 0.00 |
| 41 ST181230P1-13 PFC CS-1 537 18L2615 | 181230P1_Analyte | 10 | 4.62 | 5981.179 | 5981.179 | 6227.253 | 96.05 |

Compound 19: 13C4-PFOS

ID
19 ST181230P1-11 PFC CS1 537 18L2617
20 1804165-01 GWEF1812190920LEM 0.23683
21 1804166-01 GWNT1812200905LEM 0.23131
22 1804167-01 PW2-122018-DW 0.24636
23 1804167-02 PW2-122018-FB 0.23052
24 B8LO199-BLK8 LRB 0.125
25 B8LO199-BS7 LFB 0.125
26 B8LO199-BS8 LFB 0.125
27 1804087-01 GWNT1812070920KER 0.24854
28 1804089-01 GWEF1812100915KER 0.24551
29 1804092-01 GWNT1812101050KER 0.24556
30
31
31
32
ID
32 ST181230P1-12 PFC CS3 537 18L2619
33 1804094-01 GWNT1812101245KER 0.24648
34 1804104-01 GWEF1812111150KER 0.24882
35
1804109-01 GWEF1812111500KER 0.24715

| Name \quad Type | Std. Conc | RT | Area | | | IS Area | Ccal Area |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: | Area \%

36	1804122-04@10X WIN1812121115MK 0.25	181230P1_Analyte	28.7	4.98	446.451	446.451	2942.671	15.17
37 1804122-07@100X WIN1812131720MK 0.25	181230P1_Analyte	28.7	4.98	146.941	146.941	2942.671	4.99	
38 1804122-10@5X WIN1812131845MK 0.25	181230P1_Analyte	28.7	4.98	597.395	597.395	2942.671	20.30	
39 1804122-15@100X WIN1812140948MK 0.25	181230P1_Analyte	28.7	4.97	99.196	99.196	2942.671	3.37	
40 IPA	181230P1_Analyte	28.7				2942.671	0.00	
41 ST181230P1-13 PFC CS-1 537 18L2615	181230P1_Analyte	28.7	4.98	2940.205	2940.205	2942.671	99.92	

Compound 20: d3-N-MeFOSAA

ID
19 ST181230P1-11 PFC CS1 537 18L2617
20 1804165-01 GWEF1812190920LEM 0.23683
21 1804166-01 GWNT1812200905LEM 0.23131
22 1804167-01 PW2-122018-DW 0.24636
23 1804167-02 PW2-122018-FB 0.23052
24 B8LO199-BLK8 LRB 0.125
25 B8LO199-BS7 LFB 0.125
26 B8LO199-BS8 LFB 0.125
27 1804087-01 GWNT1812070920KER 0.24854
28 1804089-01 GWEF1812100915KER 0.24551
29 1804092-01 GWNT1812101050KER 0.24556
30
31
31
32
ID
32 ST181230P1-12 PFC CS3 537 18L2619
33 1804094-01 GWNT1812101245KER 0.24648
34 1804104-01 GWEF1812111150KER 0.24882
35
1804109-01 GWEF1812111500KER 0.24715

Name Type	Std. Conc RT
181230P1_Analyte	40

| 36 1804122-04@10X WIN1812121115MK 0.25 | 181230P1_Analyte | 40 | 5.3 | 1940.37 | 1940.37 | 11020.4 | 17.61 |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 37 1804122-07@100X WIN1812131720MK 0.25 | 181230P1_Analyte | 40 | 5.3 | 523.944 | 523.944 | 11020.4 | 4.75 |
| 38 1804122-10@5X WIN1812131845MK 0.25 | 181230P1_Analyte | 40 | 5.31 | 2683.458 | 2683.458 | 11020.4 | 24.35 |
| 39 1804122-15@100X WIN1812140948MK 0.25 | 181230P1_Analyte | 40 | 5.3 | 431.048 | 431.048 | 11020.4 | 3.91 |
| 40 IPA | 181230P1_Analyte | 40 | | | 11020.4 | 0.00 | |
| 41 ST181230P1-13 PFC CS-1 537 18L2615 | 181230P1_Analyte | 40 | 5.3 | 10987.21 | 10987.21 | 11020.4 | 99.70 |

LC Callbration Standards Review Checklist
Q_{5}
mana :

Run Los Present e \qquad

Rev. No.: 1.

Name: 181230P1_33, Date: 30-Dec-2018, Time: 19:42:52, ID: ST181230P1-11 PFC CS1 537 18L2617, Description: PFC CS1 $53718 L 2617$

Last Altered: \quad Monday, December 31, 2018 10:55:54 Pacific Standard Time
Printed: Monday, December 31, 2018 10:56:23 Pacific Standard Time

Method: D:IPFAS.PRO\MethDBIPFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13

Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Compound name: PFBS

Last Altered: Monday, December 31, 2018 10:55:54 Pacific Standard Time

Compound name: PFBS

+	\# Name	10	Acq Date	Acq. Time
32	32 181230P1_32	IPA	30-Dec-18	19:31:41
33	33 181230P1_33	ST181230P1-11 PFC CS1 537 18L2617	30-Dec-18	19:42:52
34	34 181230P1_34	1804165-01 GWEF1812190920LEM 0.23683	30-Dec-18	19:54:03
35	35181230 P 1 _ 35	1804166-01 GWNT1812200905LEM 0.23131	30-Dec-18	20:05:13
36	36181230 P 1 _ 36	1804167-01 PW2-122018-DW 0.24636	30-Dec-18	20:16:24
37.	37 181230P1_37	1804167-02 PW2-122018-FB 0.23052	30-Dec-18	20:27:35
38	38181230 P 1 _ 38	B8L0199-BLK8 LRB 0.125	30-Dec-18	20:38:45
39	39 181230P1_39	B8L0199-BS7 LFB 0.125	30-Dec-18	20:49:56
40	40 181230P1_40	B8L0199-BS8 LFB 0.125	30-Dec-18	21:01:07
41	41 181230P1_41	1804087-01 GWNT1812070920KER 0.24854	30-Dec-18	21:12:18
42	42 181230P1_42	1804089-01 GWEF1812100915KER 0.24551	30-Dec-18	21:23:29
43	43 181230P1_43	1804092-01 GWNT1812101050KER 0.24556	30-Dec-18	21:34:39
44	44 181230P1_44	1804093-01 GWEF1812101140KER 0.24891	30-Dec-18	21:45:50
45	45 181230P1_45	IPA	30-Dec-18	21:57.01
46	46 181230P1_46	ST181230P1-12 PFC CS3 537 18L2619	30-Dec-18	22:08:11
47	47 181230P1_47	1804094-01 GWNT1812101245KER 0.24648	30-Dec-18	22:19:22
48	48 181230P1_48	1804104-01 GWEF1812111150KER 0.24882	30-Dec-18	22:30:33
49	49 181230P1_49	1804109-01 GWEF 1812111500 KER 0.24715	30-Dec-18	22:41:43
50	50 181230P1_50	1804122-04@10X WIN1812121115MK 0.25	30-Dec-18	22:52:54
51	51 181230P1_51	1804122-07@100X WIN1812131720MK 0.25	30-Dec-18	23:04:05
52	52 181230P1_52	1804122-10@5X WIN1812131845MK 0.25	30-Dec-18	23:15:15
53	53 181230P1_53	1804122-15@100X WIN1812140948MK 0.25	30-Dec-18	23:26:27
54	54 181230P1_54	IPA	30-Dec-18	23:37:37
55	55 181230P1_55	ST181230P1-13 PFC CS-1 53718 L 2615	30-Dec-18	23:48:48

Last Altered:
Monday, December 31, 2018 10:46:16 Pacific Standard Time
Printed: Monday, December 31, 2018 10:46:46 Pacific Standard Time

Method: D:IPFAS.PROIMethDBIPFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13 Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Name: 181230P1_33, Date: 30-Dec-2018, Time: 19:42:52, ID: ST181230P1-11 PFC CS1 537 18L2617, Description: PFC CS1 $53718 L 2617$

Dataset:
D:IPFAS.PROIRESULTSI181230P11181230P1-33.qld
Last Altered: Monday, December 31, 2018 10:46:16 Pacific Standard Time
Printed: Monday, December 31, 2018 10:46:46 Pacific Standard Time

Name: 181230P1_33, Date: 30-Dec-2018, Time: 19:42:52, ID: ST181230P1-11 PFC CS1 537 18L2617, Description: PFC CS1 53718 L 2617

Last Altered:
Printed:

Monday, December 31, 2018 10:46:16 Pacific Standard Time
Monday, December 31, 2018 10:46:46 Pacific Standard Time

Name: 181230P1_33, Date: 30-Dec-2018, Time: 19:42:52, ID: ST181230P1-11 PFC CS1 537 18L2617, Description: PFC CS1 $53718 L 2617$

13C2-PFOA

PFDoA

13C2-PFOA

13C2-PFOA

PFTeDA

F26:MRM of 2 channels,ES-
$712.9>669$
PFTeDA
5.95
8.02 e 3
125958
bb
1087.13

13C2-PFOA

13C2-PFHxA

F4:MRM of 1 channel,ES-
$315.1>270$

13C2-PFDA
F16:MRM of 1 channel,ES-

Dataset:	D:IPFAS.PROIRESULTS\181230P1 1181230 P1-33. qid
Last Altered:	Monday, December 31, 2018 10:46:16 Pacific Standard Time
Printed:	Monday, December 31, 2018 10:46:46 Pacific Standard Time

Name: 181230P1_33, Date: 30-Dec-2018, Time: 19:42:52, ID: ST181230P1-11 PFC CS1 537 18L2617, Description: PFC CS1 53718 L 2617

Name: 181230P1_46, Date: 30-Dec-2018, Time: 22:08:11, ID: ST181230P1-12 PFC CS3 537 18L2619, Description: PFC CS3 $53718 L 2619$

Dataset:	Untitled
Last Altered:	Monday, December 31, 2018 10:55:54 Pacific Standard Time
Printed:	Monday, December 31, 2018 10:56:27 Pacific Standard Time

Method: D:IPFAS.PROMMethDBIPFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13
Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Compound name: PFBS

\%	\# Name	10	Acq Date	Acq. Time
1	1 181230P1_1	IPA	30-Dec-18	13:37:01
2	2 181230P1_2	ST181230P1-1 PFC CS-4 537 18L2612	30-Dec-18	13:48:14
3.4	3 181230P1_3	ST181230P1-2 PFC CS-3 537 18L2613	30-Dec-18	13:59:24
	4 181230P1_4	ST181230P1-3 PFC CS-2 537 18L2614	30-Dec-18	14:10:35
5	5 181230P1_5	ST181230P1-4 PFC CS-1 53718 L 2615	30-Dec-18	14:21:45
6 6. ${ }^{\text {a }}$	6 181230P1_6	ST181230P1-5 PFC CS0 53718 L 2616	30-Dec-18	14:32:56
7	7 181230P1_7	ST181230P1-6 PFC CS1 53718 L 2617	30-Dec-18	14:44:07
8	8 181230P1_8	ST181230P1-7 PFC CS2 53718 L 2618	30-Dec-18	14:55:18
9	9 181230P1_9	ST181230P1-8 PFC CS3 53718 L 2619	30-Dec-18	15:06:29
10	10 181230P1_10	ST181230P1-9 PFC CS4 53718 L 2620	30-Dec-18	15:17:39
11	11 181230P1_11	ST181230P1-10 PFC CS5 53718 L 2621	30-Dec-18	15:28:50
12	12 181230P1_12	IPA	30-Dec-18	15:40:00
13	13 181230P1_13	ST181230P1-1 PFC ICV 53718 L 2622	30-Dec-18	15:51:12
14	14 181230P1_14	IPA	30-Dec-18	16:02:22
15	15 181230P1_15	B8L0193-BS1 LFB 0.25	30-Dec-18	16:21:29
16	16 181230P1_16	B8L0193-BSD1 LFBD 0.25	30-Dec-18	16:32:41
17	17 181230P1_17	B8L0193-BLK1 LRB 0.25	30-Dec-18	16:43:51
18	18 181230P1_18	1803885-01RE1 GWNT1811300900GGA 0.24142	30-Dec-18	16:55:02
19	19 181230P1_19	1803887-01RE1 GWNT1811301500GGA 0.22513	30-Dec-18	17:06:13
20	20 181230P1_20	1804129-01 DAYTANK-PFOS 0.2395	30-Dec-18	17:17:23
21.3	21 181230P1_21	1804129-02 DAYTANK-Blank 0.24739	30-Dec-18	17:28:35
22	22 181230P1_22	1804129-03 JTC-PFOS 0.24108	30-Dec-18	17:39:45
23	23 181230P1_23	1804129-04 JTC-Blank 0.2403	30-Dec-18	17:50:55
24×7	24 181230P1_24	1804129-05 SWMV1-PFOS 0.232	30-Dec-18	18:02:07
25	25 181230P1_25	1804129-06 SWMV1-Blank 0.26409	30-Dec-18	18:13:17
26.3	26 181230P1_26	1804129-07 FITWING-PFOS 0.24265	30-Dec-18	18:24:36
27	27 181230P1_27	1804129-08 FITWING-Blank 0.24591	30-Dec-18	18:35:48
$28 \quad=$	28 181230P1_28	1804140-01 WR1812141300JLB 0.22566	30-Dec-18	18:46:58
29	29 181230P1_29	1804140-02 WR1812141340JLB 0.23602	30-Dec-18	18:58:09
30 -	30 181230P1_30	1804140-03 WR1812141405JLB 0.24049	30-Dec-18	19:09:20
31×3	31 181230P1_31	1804140-04 WR1812141405JLB-FD 0.24189	30-Dec-18	19:20:31

Work Order 1804167

Dataset:	Untitled
Last Altered:	Monday, December 31, 2018 10:55:54 Pacific Standard Time
Printed:	Monday

Compound name: PFBS

Last Altered:	Monday, December 31, 2018 10:47:32 Pacific Standard Time
Printed:	Monday, December 31, 2018 10:49:24 Pacific Standard Time

Method: D:IPFAS.PROIMethDBIPFAS_DW_L14_123018.mdb 31 Dec 2018 09:01:13
Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24
Name: 181230P1_46, Date: 30-Dec-2018, Time: 22:08:11, ID: ST181230P1-12 PFC CS3 537 18L2619, Description: PFC CS3 537 18L2619

13C4-PFOS

13C2-PFOA

PFHpA

13C2-PFOA

PFHxS

13C4-PFOS
F14:MRM of 1 channel,ES-
$503.0>80$

PFOA

13C2-PFOA

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-46.qld
Last Altered:
Monday, December 31, 2018 10:47:32 Pacific Standard Time
Printed: Monday, December 31, 2018 10:49:24 Pacific Standard Time

Name: 181230P1_46, Date: 30-Dec-2018, Time: 22:08:11, ID: ST181230P1-12 PFC CS3 537 18L2619, Description: PFC CS3 $53718 L 2619$

Dataset:
D:IPFAS.PROIRESULTS $1181230 \mathrm{P} 1 \backslash 181230 \mathrm{P} 1-46$. qld
Last Altered
Monday, December 31, 2018 10:47:32 Pacific Standard Time
Printed: Monday, December 31, 2018 10:49:24 Pacific Standard Time

Name: 181230P1_46, Date: 30-Dec-2018, Time: 22:08:11, ID: ST181230P1-12 PFC CS3 537 18L2619, Description: PFC CS3 $53718 L 2619$

PFUnA

13C2-PFOA

13C2-PFOA

F11:MRM of 1 channel,ES

13C2-PFOA

F11:MRM of 1 channel, ES-

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFHxA
F4:MRM of 1 channel,ES
$315.1>270$

13C2-PFDA
F16:MRM of 1 channel,ES-

Dataset: D:IPFAS.PRO\RESULTSI181230P1\181230P1-46.qld

Last Altered:	Monday, December 31, 2018 10:47:32 Pacific Standard Time
Printed:	Monday, December 31, 2018 10:49:24 Pacific Standard Time

Name: 181230P1_46, Date: 30-Dec-2018, Time: 22:08:11, ID: ST181230P1-12 PFC CS3 537 18L2619, Description: PFC CS3 537 18L2619 d5-N-EtFOSAA

F22:MRM of 1 channel, ES-

INITIAL CALIBRATION (ICAL)

INCLUDING ASSOCIATED
INITIAL CALIBRATION VERIFICATION (ICV)

Quantify Compound Summary Report MassLynx V4.2 SCN977
Vista Analytical Laboratory
Dataset:
D:IPFAS.PRO\RESULTSI181230P1\181230P1-CRV.qid
Last Altered:
Sunday, December 30, 2018 16:18:17 Pacific Standard Time Monday, December 31, 2018 07:33:18 Pacific Standard Time
Printed:

Method: D:IPFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 30 Dec 2018 14:58:59 Calibration: D:IPFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 30 Dec 2018 16:18:17

Compound name: PFBS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998689$
Calibration curve: 0.806436 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Compound name: PFHxA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997429$
Calibration curve: $0.681317^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:
D:\PFAS.PRO\RESULTS\181230P1\181230P1-CRV.qld
Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed:
Monday, December 31, 2018 07:33:18 Pacific Standard Tïme

Compound name: PFHpA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997736$
Calibration curve: 1.01057 *x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	Cod Flag	x-excluded
1.	1 181230P1_2	Standard	0.250	4.27	143.744	5573.088	0.258	0.3	2.1	NO	0.998	NO	MM
2	2181230 P 1 _3	Standard	0.500	4.29	253.735	5638.912	0.450	0.4	-10.9	NO	0.998	NO	bb
3	3181230 P 1 _4	Standard	1.000	4.29	520.049	5899.166	0.882	0.9	-12.8	NO	0.998	NO	bb
4	4 181230P1_5	Standard	2.000	4.28	1080.107	5967.691	1.810	1.8	-10.4	NO	0.998	NO	bb
5	5 181230P1_6	Standard	5.000	4.27	2754.115	5779.052	4.766	4.7	-5.7	NO	0.998	NO	bb
6	6181230 P 1 _7	Standard	10.000	4.28	5466.148	6308.302	8.665	8.6	-14.3	NO	0.998	NO	db
7	7 181230P1_8	Standard	25.000	4.28	13523.449	5895.777	22.938	22.7	-9.2	NO	0.998	NO	bb
8	8181230 P 1 _ 9	Standard	50.000	4.28	30307.438	5938.605	51.035	50.5	1.0	NO	0.998	NO	bb
9.	9 181230P1_10	Standard	75.000	4.28	46919.457	5989.329	78.338	77.5	3.4	NO	0.998	NO	bb
10.	10 181230P1_11	Standard	100.000	4.27	63909.059	6238.142	102.449	101.4	1.4	NO	0.998	NO	bb

Compound name: PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.995224$
Calibration curve: $0.83734^{*} x$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

4	\# Name	Type	Conc	RT	Area	S Area	sponse	Conc	$\%$ Dev	nc.	CoD	CoD Flag	x-excluded
1.4	1 181230P1_2	Standard	0.228	4.34	14.343	2632.376	0.156	0.2	-18.1	NO	0.995	NO	MMX
2., ${ }^{4}$	2 181230P1_3	Standard	0.456	4.41	21.065	2623.565	0.230	0.3	-39.6	NO	0.995	NO	MM
3	$3181230 \mathrm{P} 1 _4$	Standard	0.912	4.39	72.775	2639.479	0.791	0.9	3.6	NO	0.995	NO	MM
4	4181230 P 1 _ 5	Standard	1.820	4.38	116.191	2819.248	1.183	1.4	-22.4	NO	0.995	NO	MM
5	5 181230P1_6	Standard	4.560	4.40	349.074	2804.555	3.572	4.3	-6.4	NO	0.995	NO	MM
6	6181230 P 1 _7	Standard	9.120	4.40	589.022	2919.058	5.791	6.9	-24.2	NO	0.995	NO	MM
7	$7181230 \mathrm{P} 1 _8$	Standard	22.800	4.39	1697.021	2596.775	18.756	22.4	-1.8	NO	0.995	NO	MM
8	8 181230P1_9	Standard	45.500	4.39	3820.370	2695.050	40.684	48.6	6.8	NO	0.995	NO	MM
9	9 181230P1_10	Standard	68.200	4.39	5789.517	3014.795	55.115	65.8	-3.5	NO	0.995	NO	MM
10.	10 181230P1_11	Standard	91.000	4.39	8102.279	2962.348	78.497	93.7	3.0	NO	0.995	NO	MM

Compound name: PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997882$
Calibration curve: $1.06493^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. F	COD	CoD	excluded
1 , 4!	1 181230P1_2	Standard	0.250	4.63	129.576	5573.088	0.233	0.2	-12.7	NO	0.998	NO	MM
2.	2 181230P1_3	Standard	0.500	4.66	270.576	5638.912	0.480	0.5	-9.9	NO	0.998	NO	bb
	3 181230P1_4	Standard	1.000	4.67	574.224	5899.166	0.973	0.9	-8.6	NO	0.998	NO	MM
4	4 181230P1_5	Standard	2.000	4.66	1148.635	5967.691	1.925	1.8	-9.6	NO	0.998	NO	bb
5	5 181230P1_6	Standard	5.000	4.66	3005.353	5779.052	5.200	4.9	-2.3	NO	0.998	NO	bb
6 , \%	6181230 P 1 _7	Standard	10.000	4.66	5773.218	6308.302	9.152	8.6	-14.1	NO	0.998	NO	bb
	7 181230P1_8	Standard	25.000	4.66	14219.778	5895.777	24.119	22.6	-9.4	NO	0.998	NO	bd
8	8 181230P1_9	Standard	50.000	4.66	31825.170	5938.605	53.590	50.3	0.6	NO	0.998	NO	bb
9 9,	9 181230P1_10	Standard	75.000	4.66	48798.469	5989.329	81.476	76.5	2.0	NO	0.998	NO	bb
10 .	10 181230P1_11	Standard	100.000	4.66	68028.906	6238.142	109.053	102.4	2.4	NO	0.998	NO	bb

Compound name: PFNA

Coefficient of Determination: $R^{\wedge} 2=0.997911$
Calibration curve: 1.05568 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name			RT	Area IS Area Response			Conc. \%Dev Conc. Flag CoD , CoD Flag x-excluded					
1	1 181230P1_2	Standard	0.250	4.95	142.627	5573.088	0.256	0.2	-3.0	NO	0.998	NO	bd
2	2 181230P1_3	Standard	0.500	4.95	271.570	5638.912	0.482	0.5	-8.8	NO	0.998	NO	db
3	3 181230P1_4	Standard	1.000	4.95	587.612	5899.166	0.996	0.9	-5.6	NO	0.998	NO	MM
4	4181230 P 1 _ 5	Standard	2.000	4.95	1231.754	5967.691	2.064	2.0	-2.2	NO	0.998	NO	bb
5	5 181230P1_6	Standard	5.000	4.96	2723.071	5779.052	4.712	4.5	-10.7	NO	0.998	NO	bb
6	$6181230 \mathrm{P} 1 _7$	Standard	10.000	4.95	5976.188	6308.302	9.474	9.0	-10.3	NO	0.998	NO	bb
7	7 181230P1_8	Standard	25.000	4.96	13939.851	5895.777	23.644	22.4	-10.4	NO	0.998	NO	bb
8	8 181230P1_9	Standard	50.000	4.96	32001.943	5938.605	53.888	51.0	2.1	NO	0.998	NO	bb
9	9 181230P1_10	Standard	75.000	4.95	48779.320	5989.329	81.444	77.1	2.9	NO	0.998	NO	bb
10	10 181230P1_11	Standard	100.000	4.95	66595.844	6238.142	106.756	101.1	1.1	NO	0.998	NO	bb

Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed:
Monday, December 31, 2018 07:33:18 Pacific Standard Time

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997459$
Calibration curve: $0.83026^{*} \mathrm{x}$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	sponse	Conc.	\%Dev	c.	CoD	CoD Flag	excluded
1,	1 181230P1_2	Standard	0.232	4.98	7.192	2632.376	0.078	0.1	-59.3	NO	0.997	NO	MMX
$2 \geq$	2 181230P1_3	Standard	0.464	5.03	25.562	2623.565	0.280	0.3	-27.4	NO	0.997	NO	bb
3	3181230 P 1 _ 4	Standard	0.928	5.02	82.790	2639.479	0.900	1.1	16.8	NO	0.997	NO	MM
4 ,	4 181230P1_5	Standard	1.860	5.01	132.513	2819.248	1.349	1.6	-12.6	NO	0.997	NO	MM
$5,{ }^{2}$	5 181230P1_6	Standard	4.640	5.02	325.976	2804.555	3.336	4.0	-13.4	NO	0.997	NO	MM
6	6 181230P1_7	Standard	9.240	5.02	692.764	2919.058	6.811	8.2	-11.2	NO	0.997	NO	MM
7 F	7 181230P1_8	Standard	23.100	5.02	1647.591	2596.775	18.209	21.9	-5.1	NO	0.997	NO	MM
8	8 181230P1_9	Standard	46.200	5.01	3784.652	2695.050	40.303	48.5	5.1	NO	0.997	NO	MM
9	9 181230P1_10	Standard	69.400	5.01	5890.691	3014.795	56.078	67.5	-2.7	NO	0.997	NO	bb
10	10 181230P1_11	Standard	92.500	5.01	8145.300	2962.348	78.914	95.0	2.8	NO	0.997	NO	MM

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999214$
Calibration curve: 0.00124422 * $x^{\wedge} 2+0.973674^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT:	Area	IS Area	Response	Conc.	\%Dev	Conc. Fi	CoD	CoD Fl	xcluded
1.4	1 181230P1_2	Standard	0.250	5.20	188.859	5573.088	0.339	0.3	39.2	NO	0.999	NO	bb
2.	2 181230P1_3	Standard	0.500	5.23	248.436	5638.912	0.441	0.5	-9.6	NO	0.999	NO	MM
3 E	3181230 P 1 _4	Standard	1.000	5.23	491.951	5899.166	0.834	0.9	-14.4	NO	0.999	NO	MM
4	4 181230P1_5	Standard	2.000	5.23	1121.153	5967.691	1.879	1.9	-3.8	NO	0.999	NO	bb
5	5 181230P1_6	Standard	5.000	5.23	2798.996	5779.052	4.843	4.9	-1.1	NO	0.999	NO	MM
6	6 181230P1_7	Standard	10.000	5.23	5932.626	6308.302	9.404	9.5	-4.6	NO	0.999	NO	bd
7	$7181230 \mathrm{P} 1 _8$	Standard	25.000	5.23	14352.256	5895.777	24.343	24.3	-3.0	NO	0.999	NO	bb
8	8 181230P1_9	Standard	50.000	5.23	31703.445	5938.605	53.385	51.4	2.9	NO	0.999	NO	bb
9 9.	$9181230 \mathrm{P} 1 _10$	Standard	75.000	5.21	48920.598	5989.329	81.680	76.4	1.9	NO	0.999	NO	bb
10, \%	10 181230P1_11	Standard	100.000	5.21	67383.070	6238.142	108.018	98.5	-1.5	NO	0.999	NO	bb

Last Altered:
Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:33:18 Pacific Standard Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999429$
Calibration curve: $0.000722284^{\star} x^{\wedge} 2+0.906439^{*} x$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: N-EIFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998606$
Calibration curve: $0.85367^{*} x$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:\PFAS.PRO\RESULTS\181230P1\181230P1-CRV.qld
Last Altered: \quad Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:33:18 Pacific Standard Time

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997034$
Calibration curve: 1.21658 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFDoA

Coefficient of Determination: $R^{\wedge} 2=0.998164$
Calibration curve: $1.53708^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sid Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cob Flag	$\mathrm{x}=$ excluded
1	1 181230P1_2	Standard	0.250	5.63	204.682	5573.088	0.367	0.2	-4.4	NO	0.998	NO	bb
2.	2 181230P1_3	Standard	0.500	5.66	445.604	5638.912	0.790	0.5	2.8	NO	0.998	NO	MM
3,4	3 181230P1_4	Standard	1.000	5.66	824.822	5899.166	1.398	0.9	-9.0	NO	0.998	NO	bb
4	4 181230P1_5	Standard	2.000	5.65	1723.800	5967.691	2.889	1.9	-6.0	NO	0.998	NO	MM
5	5 181230P1_6	Standard	5.000	5.64	4204.056	5779.052	7.275	4.7	-5.3	NO	0.998	NO	bb
6 Creme	6181230 P 1 _7	Standard	10.000	5.65	8651.673	6308.302	13.715	8.9	-10.8	NO	0.998	NO	bb
7	7 181230P1_8	Standard	25.000	5.65	20582.332	5895.777	34.910	22.7	-9.2	NO	0.998	NO	bb
8	8 181230P1_9	Standard	50.000	5.65	46251.703	5938.605	77.883	50.7	1.3	NO	0.998	NO	bb
9 9, ${ }^{\text {a }}$	9 181230P1_10	Standard	75.000	5.63	71647.938	5989.329	119.626	77.8	3.8	NO	0.998	NO	bb
10 .	$10181230 \mathrm{P} 1 \ldots 11$	Standard	100.000	5.64	96214.969	6238.142	154.237	100.3	0.3	NO	0.998	NO	bb

Last Altered:	Monday, December 31, 2018 08:50:24 Pacific Standard Time
Printed:	Monday, December 31, 2018 08:51:31 Pacific Standard Time

Method: D:|PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 30 Dec 2018 14:58:59

 Calibration: D:IPFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24
Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997542$
Calibration curve: $1.50164^{*} \mathrm{X}$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998236$
Calibration curve: $0.00170648^{*} x^{\wedge} 2+1.33217^{*} \times$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name ${ }^{\text {a }}$, Type		Sta. Cone	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag . CoD CoD Flag			$x=$ excluded
1	$1181230 P 1^{\text {¢ }}$-2	Standard	0.250	5.95	193.263	5573.088	0.347	0.3	4.1	NO	0.998	NO	MM
2.4	2 181230P1_3	Standard	0.500	5.97	319.980	5638.912	0.567	0.4	-14.9	NO	0.998	NO	MM
3	3181230 P1_4	Standard	1.000	5.97	729.093	5899.166	1.236	0.9	-7.3	NO	0.998	NO	MM
4	4 181230P1_5	Standard	2.000	5.98	1498.453	5967.691	2.511	1.9	-6.0	NO	0.998	NO	bb
5	5 181230P1_6	Standard	5.000	5.96	3990.876	5779.052	6.906	5.1	3.0	NO	0.998	NO	bb
6	$6181230 \mathrm{P} 1_{1} 7$	Standard	10.000	5.96	7731.739	6308.302	12.256	9.1	-9.1	NO	0.998	NO	bb
7	7 181230P1_8	Standard	25.000	5.97	19090.654	5895.777	32.380	23.6	-5.6	NO	0.998	NO	bb
8	8 181230P1_9	Standard	50.000	5.96	44299.563	5938.605	74.596	52.5	4.9	NO	0.998	NO	bb
	9 181230P1_10	Standard	75.000	5.96	67725.750	5989.329	113.077	77.2	3.0	NO	0.998	NO	bb
10 \%	10 181230P1_11	Standard	100.000	5.96	91303.086	6238.142	146.363	97.7	-2.3	NO	0.998	NO	bb

Dataset:	D:IPFAS.PRO\RESULTS\181230P1\181230P1-CRV.qld
Last Altered:	Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed:	Monday, December 31, 2018 07:33:18 Pacific Standard Time

Compound name: 13C2-PFHxA

Response Factor: 0.867743
RRF SD: 0.0244362, Relative SD: 2.81606
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name ${ }^{\text {a }}$	Type	Std. Conc	RT.	Area	C IS Area	Response	Conc.	\%Dev	Conc Flag CoD	CoD Flag	$x=$ excluded
1, met	1 181230P1_2	Standard	10.000	3.79	5036.359	5573.088	9.037	10.4	4.1	NO	NO	bb
2 2rater	2181230 P 1 _3	Standard	10.000	3.82	5061.975	5638.912	8.977	10.3	3.5	NO	NO	bb
3 L	3 181230P1_4	Standard	10.000	3.82	5029.178	5899.166	8.525	9.8	-1.8	NO	NO	bb
4.	4 181230P1_5	Standard	10.000	3.82	5101.264	5967.691	8.548	9.9	-1.5	NO	NO	bb
5	5 181230P1_6	Standard	10.000	3.82	5128.709	5779.052	8.875	10.2	2.3	NO	NO	bb
6	$6181230 \mathrm{P} 1 _7$	Standard	10.000	3.82	5187.664	6308.302	8.224	9.5	-5.2	NO	NO	bb
$7 . \sqrt{4}$	7 181230P1_8	Standard	10.000	3.82	5112.104	5895.777	8.671	10.0	-0.1	NO	NO	bb
8	8181230 P 1 _9	Standard	10.000	3.82	5085.239	5938.605	8.563	9.9	-1.3	NO	NO	bb
9	9 181230P1_10	Standard	10.000	3.82	5258.057	5989.329	8.779	10.1	1.2	NO	NO	bb
10.	10 181230P1_11	Standard	10.000	3.82	5349.882	6238.142	8.576	9.9	-1.2	NO	NO	bb

Compound name: 13C2-PFDA

Response Factor: 1.22114
RRF SD: 0.0175497, Relative SD: 1.43715
Response type: Internal Std (Ref 18), Area * (IS Conc./ IS Area)
Curve type: RF

	\# Name	Type	d. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag ${ }^{\text {a }}$	CoD \quad CoD Flag	$x=e x c l u d e d$
1.	1 181230P1_2	Standard	10.000	5.20	6875.375	5573.088	12.337	10.1	1.0	NO	NO	bb
2 2,	2 181230P1_3	Standard	10.000	5.23	6986.515	5638.912	12.390	10.1	1.5	NO	NO	bb
$34+5$	3 181230P1_4	Standard	10.000	5.23	7046.281	5899.166	11.945	9.8	-2.2	NO	NO	bb
4	4181230 P 1 _ 5	Standard	10.000	5.22	7241.191	5967.691	12.134	9.9	-0.6	NO	NO	bb
$54,4{ }^{\text {5 }}$	5 181230P1_6	Standard	10.000	5.22	7094.073	5779.052	12.275	10.1	0.5	NO	NO	bb
6	6 181230P1_7	Standard	10.000	5.23	7589.887	6308.302	12.032	9.9	-1.5	NO	NO	bb
7	7 181230P1_8	Standard	10.000	5.22	7168.175	5895.777	12.158	10.0	-0.4	NO	NO	bb
8.	8 181230P1_9	Standard	10.000	5.23	7151.031	5938.605	12.042	9.9	-1.4	NO	NO	bb
9	9 181230P1_10	Standard	10.000	5.22	7474.413	5989.329	12.480	10.2	2.2	NO	NO	bb
10.5	10 181230P1_11	Standard	10.000	5.22	7687.180	6238.142	12.323	10.1	0.9	NO	NO	bb

Compound name: d5-N-EtFOSAA

Response Factor: 1.13233
RRF SD: 0.0384501, Relative SD: 3.39565
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFOA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: RF

Printed: Monday, December 31, 2018 07:33:18 Pacific Standard Time

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	ld. Conc	RT	Area	IS Área	Response	Conc.	\%Dev	nc. Flag	CoD. CoDFlag	$x=$ excluded
1	1 181230P1_2	Standard	28.700	4.99	2632.376	2632.376	28.700	28.7	0.0	NO	NO	bb
2	2 181230P1_3	Standard	28.700	5.02	2623.565	2623.565	28.700	28.7	0.0	NO	NO	bb
3.	3 181230P1_4	Standard	28.700	5.02	2639.479	2639.479	28.700	28.7	0.0	NO	NO	bb
4 4, ${ }^{\text {a }}$	4 181230P1_5	Standard	28.700	5.01	2819.248	2819.248	28.700	28.7	0.0	NO	NO	bb
5	5 181230P1_6	Standard	28.700	5.01	2804.555	2804.555	28.700	28.7	0.0	NO	NO	bb
6 , ${ }^{\text {ces }}$	$6181230 \mathrm{P} 1 \ldots 7$	Standard	28.700	5.01	2919.058	2919.058	28.700	28.7	0.0	NO	NO	bb
7	7 181230P1_8	Standard	28.700	5.01	2596.775	2596.775	28.700	28.7	0.0	NO	NO	bb
8.	8 181230P1_9	Standard	28.700	5.01	2695.050	2695.050	28.700	28.7	0.0	NO	NO	bb
9	9 181230P1_10	Standard	28.700	5.01	3014.795	3014.795	28.700	28.7	0.0	NO	NO	bb
10.	10 181230P1_11	Standard	28.700	5.01	2962.348	2962.348	28.700	28.7	0.0	NO	NO	bb

Compound name: d3-N-MeFOSAA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	d. Conc	RT	Area	IS Area	Response	Conc:	9 ODev	Conc. Flag	COD	CoD Fla	$x=$ excluded
C+ ${ }^{\text {a }}$	1 181230P1_2	Standard	40.000	5.31	9950.888	9950.888	40.000	40.0	0.0	NO		NO	bb
2	2 181230P1_3	Standard	40.000	5.33	9708.704	9708.704	40.000	40.0	0.0	NO		NO	bb
	3 181230P1_4	Standard	40.000	5.33	9924.369	9924.369	40.000	40.0	0.0	NO		NO	bb
4	4 181230P1_5	Standard	40.000	5.33	10705.199	10705.199	40.000	40.0	0.0	NO		NO	bb
5	5 181230P1_6	Standard	40.000	5.33	10569.619	10569.619	40.000	40.0	0.0	NO		NO	bb
6	6181230 P 1 _7	Standard	40.000	5.33	10949.670	10949.670	40.000	40.0	0.0	NO		NO	bb
7	7 181230P1_8	Standard	40.000	5.33	10208.498	10208.498	40.000	40.0	0.0	NO		NO	bb
8	8 181230P1_9	Standard	40.000	5.33	10512.338	10512.338	40.000	40.0	0.0	NO		NO	bb
9	9 181230P1_10	Standard	40.000	5.33	10809.808	10809.808	40.000	40.0	0.0	NO		NO	bb
10 ,	10 181230P1_11	Standard	40.000	5.33	11076.275	11076.275	40.000	40.0	0.0	NO		NO	bb

Dataset:
D:IPFAS.PRO\RESULTS\181230P1\181230P1-CRV.qld
Last Altered: Monday, December 31, 2018 08:50:24 Pacific Standard Time
Printed:
Monday, December 31, 2018 08:51:58 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 30 Dec 2018 14:58:59 Calibration: D:IPFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Name: 181230P1_2, Date: 30-Dec-2018, Time: 13:48:14, ID: ST181230P1-1 PFC CS-4 537 18L2612, Description: PFC CS-4 53718 L 2612

	\# Name	1S\#	CoD	ag	\%RSD
1.4, ${ }^{\text {a }}$	1 PFBS	19	0.9987	NO	
2 2.	2 PFHxA	18	0.9974	NO	
3	3 PFHpA	18	0.9977	NO	
4.4	4 PFHxS	19	0.9952	NO	
5 , ${ }^{\text {a }}$,	5 PFOA	18	0.9979	NO	
6	6 PFNA	18	0.9979	NO	
7 7. ${ }^{\text {Prs }}$	7 PFOS	19	0.9975	NO	
8	8 PFDA	18	0.9992	NO	
9.	$9 \mathrm{~N}-\mathrm{MeFOSAA}$	20	0.9994	NO	
10	10 N-EtFOSAA	20	0.9986	NO	
11	11 PFUnA	18	0.9970	NO	
12	12 PFDoA	18	0.9982	NO	
13 ?	13 PFTrDA	18	0.9975	NO	
14.	14 PFTeDA	18	0.9982	NO	
15.	15 13C2-PFHxA	18		NO	2.816
16 \% ${ }^{3}$	16 13C2-PFDA	18		NO	1.437
17.4	17 d5-N-EtFOSAA	20		NO	3.396
18.	18 13C2-PFOA	18		NO	0.000
19 - ${ }^{\text {a }}$	19 13C4-PFOS	19		NO	0.000
20 ,	20 d3-N-MeFOSAA	20		NO	0.000

Last Altered: Monday, December 31, 2018 08:09:56 Pacific Standard Time
Printed:
Monday, December 31, 2018 08:10:26 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 30 Dec 2018 14:58:59 Calibration: D:IPFAS.PRO\CurveDB\C18_537_Q5_12-30-18_L14.cdb 30 Dec 2018 16:18:17

Compound name: PFBS

	\# Name	P	Acq.Date	Acq, lime
1.	1 181230P1_1	IPA	30-Dec-18	13:37:01
2 ,	2 181230P1_2	ST181230P1-1 PFC CS-4 53718 L 2612	30-Dec-18	13:48:14
3.	3 181230P1_3	ST181230P1-2 PFC CS-3 53718 L 2613	30-Dec-18	13:59:24
4	4 181230P1_4	ST181230P1-3 PFC CS-2 53718 L 2614	30-Dec-18	14:10:35
	5181230 P 1.5	ST181230P1-4 PFC CS-1 53718 L 2615	30-Dec-18	14:21:45
6.	$6181230 \mathrm{P} 1 _6$	ST181230P1-5 PFC CS0 53718 L 2616	30-Dec-18	14:32:56
7.4.3	7 181230P1_7	ST181230P1-6 PFC CS1 53718 L 2617	30-Dec-18	14:44:07
8.	8 181230P1_8	ST181230P1-7 PFC CS2 53718 L 2618	30-Dec-18	14:55:18
9	9 181230P1_9	ST181230P1-8 PFC CS3 53718 L 2619	30-Dec-18	15:06:29
10	10 181230P1_10	ST181230P1-9 PFC CS4 53718 L 2620	30-Dec-18	15:17:39
11	11 181230P1_11	ST181230P1-10 PFC CS5 53718 L 2621	30-Dec-18	15:28:50
12	12 181230P1_12	IPA	30-Dec-18	15:40:00
13	13 181230P1_13	ST181230P1-1 PFC ICV 53718 L 2622	30-Dec-18	15:51:12
14.	14 181230P1_14	IPA	30-Dec-18	16:02:22

Ical RPD

Compound 18: 13C2-PFOA
 ID
 1 ST181230P1-1 PFC CS-4 537 18L2612
 2 ST181230P1-2 PFC CS-3 537 18L2613
 3 ST181230P1-3 PFC CS-2 537 18L2614
 4 ST181230P1-4 PFC CS-1 537 18L2615 5 ST181230P1-5 PFC CSO 537 18L2616 6 ST181230P1-6 PFC CS1 537 18L2617 7 ST181230P1-7 PFC CS2 537 18L2618 8 ST181230P1-8 PFC CS3 537 18L2619 9 ST181230P1-9 PFC CS4 537 18L2620 10 ST181230P1-10 PFC CS5 537 18L2621

Compound 19: 13C4-PFOS

$$
\begin{aligned}
& \text { ID } \\
& 1 \text { ST181230P1-1 PFC CS-4 } 537 \text { 18L2612 } \\
& 2 \text { ST181230P1-2 PFC CS-3 } 537 \text { 18L2613 } \\
& 3 \text { ST181230P1-3 PFC CS-2 } 537 \text { 18L2614 } \\
& 4 \text { ST181230P1-4 PFC CS-1 } 537 \text { 18L2615 } \\
& 5 \text { ST181230P1-5 PFC CS0 } 537 \text { 18L2616 } \\
& 6 \text { ST181230P1-6 PFC CS1 } 537 \text { 18L2617 } \\
& 7 \text { ST181230P1-7 PFC CS2 } 537 \text { 18L2618 } \\
& 8 \text { ST181230P1-8 PFC CS3 } 537 \text { 18L2619 } \\
& 9 \text { ST181230P1-9 PFC CS4 } 537 \text { 18L2620 } \\
& 10 \text { ST181230P1-10 PFC CS5 } 537 \text { 18L2621 }
\end{aligned}
$$

high	6308.302 rpd	
low	5573.088	12.37589

| Name | Type | Std. Conc RT | Area | | |
| :--- | :---: | :---: | :---: | :---: | :---: | IS Area \quad Primary Flags

high	3014.795 rpd	
low	2596.775	14.8985

| Name | Type | Std. Conc | RT | Area | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | IS Area Primary Flags

Compound 20: d3-N-MeFOSAA

ID
1 ST181230P1-1 PFC CS-4 53718 L2612
2 ST181230P1-2 PFC CS-3 53718 L 2613
3 ST181230P1-3 PFC CS-2 53718 L 2614
4 ST181230P1-4 PFC CS-1 53718 L 2615
5 ST181230P1-5 PFC CS0 537 18L2616
6 ST181230P1-6 PFC CS1 537 18L2617
7 ST181230P1-7 PFC CS2 537 18L2618
8 ST181230P1-8 PFC CS3 537 18L2619
9 ST181230P1-9 PFC CS4 $53718 L 2620$
10 ST181230P1-10 PFC CS5 537 18L2621
average $\quad 2770.725$

high	11076.28	rpd
low	9708.704	13.15922

Name Type	Std. Conc RT	Area			IS Area Primary Flags
181230P1_Standard	40	5.31	9950.888	9950.888 bb	
181230P1_Standard	40	5.33	9708.704	9708.704 bb	
181230P1_Standard	40	5.33	9924.369	9924.369 bb	
181230P1_Standard	40	5.33	10705.20	10705.20 bb	
181230P1_Standard	40	5.33	10569.62	10569.62 bb	
181230P1_Standard	40	5.33	10949.67	10949.67 bb	
181230P1_Standard	40	5.33	10208.50	10208.50 bb	
181230P1_Standard	40	5.33	10512.34	10512.34 bb	
181230P1_Standard	40	5.33	10809.81	10809.81 bb	
181230P1_Standard	40	5.33	11076.28	11076.28 bb	
			average	10441.54	

181230P1_Standard $\quad 40 \quad 5.31 \quad 9950.888 \quad 9950.888$ bb
181230P1 Standard 181230P1_ Standard 181230P1_ Standard 181230P1_ Standard
181230P1_ Standard 181230P1_ Standard 181230P1_ Standard 181230P1_ Standard 181230P1_ Standard

Vista Analytical Laboratory Q1
Dataset:
Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 30 Dec 2018 14:58:59
Calibration: D:IPFAS.PRO\CurveDBIC18_537_Q5_12-30-18_L14.cdb 30 Dec 2018 16:18:17
Compound name: PFBS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998689$
Calibration curve: 0.806436 * x
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

[^0]Vista Analytical Laboratory Q1
Dataset:
D:IPFAS.PROIRESULTSI181230P1\181230P1-CRV.qld
Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFHxA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997429$
Calibration curve: $0.681317^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181230P11181230P1-CRV.qld
Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFHpA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997736$
Calibration curve: 1.01057^{*} x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:	D:IPFAS.PRO\RESULTS\181230P11181230P1-CRV.qld
Last Altered:	Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed:	Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFHxS
Coefficient of Determination: $R^{\wedge} 2=0.995224$
Calibration curve: 0.83734 * \times
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: D:IPFAS.PRO\RESULTS\181230P11181230P1-CRV.qld

Last Altered: \quad Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFOA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997882$
Calibration curve: $1.06493^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: D:IPFAS.PRO\RESULTSI181230P1\181230P1-CRV.qid

Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFNA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997911$
Calibration curve: $1.05568^{*} \mathrm{x}$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFOS
Coefficient of Determination: $R^{\wedge} 2=0.997459$
Calibration curve: $0.83026^{*} \mathrm{x}$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181230P1\181230P1-CRV.qld
Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed:
Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999214$
Calibration curve: $0.00124422{ }^{*} x^{\wedge} 2+0.973674^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Dataset: D:IPFAS.PRO\RESULTSI181230P1\181230P1-CRV.qld

Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time

Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: $\mathrm{N}-\mathrm{MeFOSAA}$
Coefficient of Determination: $R^{\wedge} 2=0.999429$
Calibration curve: $0.000722284^{*} x^{\wedge} 2+0.906439{ }^{*} \times$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:	D:IPFAS.PRO\RESULTSI181230P1\181230P1-CRV.qld
Last Altered:	Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed:	Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: N-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998606$
Calibration curve: 0.85367 * x
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTSI181230P11181230P1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Sunday, December 30, } 2018 \text { 16:18:17 Pacific Standard Time } \\ \text { Printed: } & \text { Monday, December 31, } 2018 \text { 07:32:40 Pacific Standard Time }\end{array}$
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFUnA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997034$
Calibration curve: $1.21658^{*} X$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTS\181230P1\181230P1-CRV.qld

Last Altered: Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed: Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998164$
Calibration curve: $1.53708^{*} X$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:	D:IPFAS.PRO\RESULTS 181230 P1 $\backslash 181230$ P1-CRV.qld
Last Altered:	Sunday, December 30, 2018 16:18:17 Pacific Standard Time
Printed:	Monday, December 31, 2018 07:32:40 Pacific Standard Time

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997542$
Calibration curve: 1.50164 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS.PRO\RESULTSI181230P1\181230P1-CRV.qld
Last Altered:
Monday, December 31, 2018 08:50:24 Pacific Standard Time
Printed: Monday, December 31, 2018 08:50:55 Pacific Standard Time

Method: D:\PFAS.PRO\MethDB\PFAS_DW_L14_123018.mdb 30 Dec 2018 14:58:59

Calibration: D:\PFAS.PRO\CurveDBIC18_537_-̄5_12-30-18_L14.cdb 31 Dec 2018 08:50:24

Compound name: PFTeDA
Coefficient of Determination: $R^{\wedge} 2=0.998236$
Calibration curve: $0.00170648{ }^{*} x^{\wedge} 2+1.33217^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: $1 / x$, Axis trans: None

Method: D:IPFAS.PROIMethDBIPFAS_DW_L14_123018.mdb 30 Dec 2018 14:58:59

Calibration: 30 Dec 2018 16:08:41

Name: 181230P1_2, Date: 30-Dec-2018, Time: 13:48:14, ID: ST181230P1-1 PFC CS-4 537 18L2612, Description: PFC CS-4 537 18L2612

13C4-PFOS

[^1]PFHxA PFHpA

13C2-PFOA

13C2-PFOA

PFHxS

13C4-PFOS

PFOA

F11:MRM of 1 channel,ES$415>370$

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_2, Date: 30-Dec-2018, Time: 13:48:14, ID: ST181230P1-1 PFC CS-4 537 18L2612, Description: PFC CS-4 $53718 L 2612$

13C2-PFOA

13C4-PFOS

13C2-PFOA

Last Altered: \quad Sunday, December 30, 2018 16:08:41 Pacific Standard Time
 Printed:
 Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_2, Date: 30-Dec-2018, Time: 13:48:14, ID: ST181230P1-1 PFC CS-4 537 18L2612, Description: PFC CS-4 $53718 L 2612$

13C2-PFOA

F11:MRM of 1 channel,ES-

PFDoA

13C2-PFOA
F11:MRM of 1 channel,ES-

PFTrDA

13C2-PFOA

PFTeDA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFHxA
F4:MRM of 1 channel,ES$315.1>270$

13C2-PFDA
F16:MRM of 1 channel,ES.
$515.0>470.0$

Quantify Sample Report Vista Analytical Laboratory	
Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:4 SCN977 40
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time Stard Time

Name: 181230P1_2, Date: 30-Dec-2018, Time: 13:48:14, ID: ST181230P1-1 PFC CS-4 537 18L2612, Description: PFC CS-4 537 18 L2612

Name: 181230P1_3, Date: 30-Dec-2018, Time: 13:59:24, ID: ST181230P1-2 PFC CS-3 537 18L2613, Description: PFC CS-3 537 18L2613

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel, ES-

PFHpA

13C2-PFOA

13C4-PFOS

PFOA
F10:MRM of 2 channels,ES-
$413>369$

13C2-PFOA

Name: 181230P1_3, Date: 30-Dec-2018, Time: 13:59:24, ID: ST181230P1-2 PFC CS-3 537 18L2613, Description: PFC CS-3 537 18L2613

Last Altered: Printed:

Sunday, December 30, 2018 16:08:41 Pacific Standard Time Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_3, Date: 30-Dec-2018, Time: 13:59:24, ID: ST181230P1-2 PFC CS-3 537 18L2613, Description: PFC CS-3 537 18L2613

Dataset: Untitled

Last Altered: Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed: Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_3, Date: 30-Dec-2018, Time: 13:59:24, ID: ST181230P1-2 PFC CS-3 537 18L2613, Description: PFC CS-3 $53718 L 2613$

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_4, Date: 30-Dec-2018, Time: 14:10:35, ID: ST181230P1-3 PFC CS-2 537 18L2614, Description: PFC CS-2 $53718 L 2614$

13C4-PFOS

4.7505 .0005 .250

13C2-PFOA
F11:MRM of 1 channel,ES$415>370$

$4.2504 .500 \quad 4.750$

PFHpA

13C2-PFOA

PFHxS

13C4-PFOS

PFOA

13C2-PFOA

Printed: \quad Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_4, Date: 30-Dec-2018, Time: 14:10:35, ID: ST181230P1-3 PFC CS-2 537 18L2614, Description: PFC CS-2 537 18L2614

13C2-PFOA

13C4-PFOS

PFDA

13C2-PFOA

d3-N-MeFOSAA
F20:MRM of 1 channel,ES573.1 > 419.1 $1.102 \mathrm{e}+005$

d3-N-MeFOSAA
F20:MRM of 1 channel,ES$573.1>419.1$ $1.102 \mathrm{e}+005$

Name: 181230P1_4, Date: 30-Dec-2018, Time: 14:10:35, ID: ST181230P1-3 PFC CS-2 537 18L2614, Description: PFC CS-2 537 18L2614

13C2-PFOA

PFDoA

13C2-PFOA

13C2-PFOA

PFTeDA

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFHxA
F4:MRM of 1 channel,ES-

13C2-PFDA
F16:MRM of 1 channel,ES-
channel,ES-
$515.0>470.0$

Name: 181230P1_5, Date: 30-Dec-2018, Time: 14:21:45, ID: ST181230P1-4 PFC CS-1 537 18L2615, Description: PFC CS-1 537 18L2615

Name: 181230P1_5, Date: 30-Dec-2018, Time: 14:21:45, ID: ST181230P1-4 PFC CS-1 537 18L2615, Description: PFC CS-1 537 18L2615

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_5, Date: 30-Dec-2018, Time: 14:21:45, ID: ST181230P1-4 PFC CS-1 537 18L2615, Description: PFC CS-1 537 18L2615

13C2-PFOA

13C2-PFOA

F11:MRM of 1 channel,ES-

PFTrDA

13C2-PFOA

F11:MRM of 1 channel ES

PFTeDA

F26:MRM of 2 channels,ES-
$712.9>669$

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES$315.1>270$

13C2-PFDA

F16:MRM of 1 channel,ES-

Dataset:
Untitled
Last Altered: Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed: Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_5, Date: 30-Dec-2018, Time: 14:21:45, ID: ST181230P1-4 PFC CS-1 537 18L2615, Description: PFC CS-1 537 18L2615

```
d5-N-EtFOSAA
    F22:MRM of 1 channel,ES-
```


Name: 181230P1_6, Date: 30-Dec-2018, Time: 14:32:56, ID: ST181230P1-5 PFC CS0 537 18L2616, Description: PFC CS0 53718 L 2616

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_6, Date: 30-Dec-2018, Time: 14:32:56, ID: ST181230P1-5 PFC CS0 537 18L2616, Description: PFC CS0 537 18L2616

13C2-PFOA

4.7505 .0005 .250

13C4-PFOS

d3-N-MeFOSAA

F20:MRM of 1 channel,ES $573.1>419.1$ $1.231 \mathrm{e}+005$

N-EtFOSAA

d3-N-MeFOSAA

F20:MRM of 1 channel,ES-
$573.1>419.1$

Vista Analytical Laboratory

Dataset: Untitled

Last Altered:
Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed: Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_6, Date: 30-Dec-2018, Time: 14:32:56, ID: ST181230P1-5 PFC CS0 537 18L2616, Description: PFC CS0 $53718 L 2616$

PFUnA

13C2-PFOA

F11:MRM of 1 channel,ES

PFDoA
F23:MRM of 3 channels,ES

13C2-PFOA

F11:MRM of 1 channet,ES

PFTrDA

13C2-PFOA
F11:MRM of 1 channel,ES-

13C2-PFOA

F11:MRM of 1 channel,ES

3C2-PFDA

F16:MRM of 1 channel,ES$515.0>470.0$

Name: 181230P1_6, Date: 30-Dec-2018, Time: 14:32:56, ID: ST181230P1-5 PFC CS0 537 18L2616, Description: PFC CS0 $53718 L 2616$ d5-N-EtFOSAA

F22:MRM of 1 channel,ES-

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_7, Date: 30-Dec-2018, Time: 14:44:07, ID: ST181230P1-6 PFC CS1 537 18L2617, Description: PFC CS1 $53718 L 2617$

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel,ES-

13C2-PFOA

13C2-PFOA

Last Altered: Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed: Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_7, Date: 30-Dec-2018, Time: 14:44:07, ID: ST181230P1-6 PFC CS1 537 18L2617, Description: PFC CS1 53718 L 2617

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_7, Date: 30-Dec-2018, Time: 14:44:07, ID: ST181230P1-6 PFC CS1 537 18L2617, Description: PFC CS1 $53718 L 2617$

13C2-PFOA

13C2-PFOA

PFTrDA

13C2-PFOA

PFTeDA

13C2-PFOA

F11:MRM of 1 channel, ES-
13C2-PFOA $\quad \begin{aligned} 415>370\end{aligned}$
$13 \mathrm{C} 2-\mathrm{PFOA} \quad 7.435 \mathrm{e}+004$

$$
\begin{gathered}
4.66 \\
6.31 \mathrm{e} 3 \\
74299
\end{gathered}
$$

$$
\begin{gathered}
74299 \\
b b \\
71000
\end{gathered}
$$

$$
\begin{gathered}
\text { bb } \\
74299.00
\end{gathered}
$$

13C2-PFHxA
F4:MRM of 1 channel,ES-

13C2-PFDA

F16:MRM of 1 channel,ES-

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_8, Date: 30-Dec-2018, Time: 14:55:18, ID: ST181230P1-7 PFC CS2 537 18L2618, Description: PFC CS2 $53718 L 2618$

Last Altered: Sunday, December 30, 2018 16:08:41 Pacific Standard Time
 Printed:

Name: 181230P1_8, Date: 30-Dec-2018, Time: 14:55:18, ID: ST181230P1-7 PFC CS2 537 18L2618, Description: PFC CS2 $53718 L 2618$

13C2-PFOA

13C4-PFOS

F14:MRM of 1 channel,ES$503.0>80$ $3.051 \mathrm{e}+004$

13C2-PFOA

F11:MRM of 1 channel ES

d3-N-MeFOSAA

F20:MRM of 1 channel,ES $573.1>419.1$ $1.157 \mathrm{e}+005$

N-EtFOSAA

F21:MRM of 2 channels.ES-

d3-N-MeFOSAA

Name: 181230P1_8, Date: 30-Dec-2018, Time: 14:55:18, ID: ST181230P1-7 PFC CS2 537 18L2618, Description: PFC CS2 537 18L2618

PFUnA

13C2-PFOA

F11:MRM of 1 channel,ES

13C2-PFOA

PFTrDA

13C2-PFOA

13C2-PFHxA

F4:MRM of 1 channel,ES-

13C2-PFDA

F16:MRM of 1 channel,ES-
 Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_8, Date: 30-Dec-2018, Time: 14:55:18, ID: ST181230P1-7 PFC CS2 537 18L2618, Description: PFC CS2 537 18L2618

Name: 181230P1_9, Date: 30-Dec-2018, Time: 15:06:29, ID: ST181230P1-8 PFC CS3 537 18L2619, Description: PFC CS3 537 18L2619

Printed: \quad Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_9, Date: 30-Dec-2018, Time: 15:06:29, ID: ST181230P1-8 PFC CS3 537 18L2619, Description: PFC CS3 53718 L 2619

13C2-PFOA

13C4-PFOS

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES
$573.1>419.1$
$1.214 \mathrm{e}+005$

N-EtFOSAA
F21:MRM of 2 channels,ES$584.0>419.1$

d3-N-MeFOSAA

F20:MRM of 1 channel,ES$573.1>419.1$

Vista Analytical Laboratory

Dataset:
Untitled
Last Altered:
Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed: Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_9, Date: 30-Dec-2018, Time: 15:06:29, ID: ST181230P1-8 PFC CS3 537 18L2619, Description: PFC CS3 $53718 L 2619$

Quantify Sample Report \quad MassLynx V4.2 SCN977	Page 32 of 40	
Vista Analytical Laboratory		
Dataset:	Untitled	
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time	
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time	

Name: 181230P1_9, Date: 30-Dec-2018, Time: 15:06:29, ID: ST181230P1-8 PFC CS3 537 18L2619, Description: PFC CS3 53718 L2619 d5-N-EtFOSAA

F22:MRM of 1 channel,ES

Name: 181230P1_10, Date: 30-Dec-2018, Time: 15:17:39, ID: ST181230P1-9 PFC CS4 537 18L2620, Description: PFC CS4 537 18L2620

Name: 181230P1_10, Date: 30-Dec-2018, Time: 15:17:39, ID: ST181230P1-9 PFC CS4 537 18L2620, Description: PFC CS4 $53718 L 2620$

13C2-PFOA

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel,ES573.1 > 419.1
$1.271 \mathrm{e}+005$

N-EtFOSAA

F21:MRM of 2 channels,ES$584.0>419.1$

d3-N-MeFOSAA
F20:MRM of 1 channel,ES$573.1>419.1$

Name: 181230P1_10, Date: 30-Dec-2018, Time: 15:17:39, ID: ST181230P1-9 PFC CS4 537 18L2620, Description: PFC CS4 $53718 L 2620$

13C2-PFOA

13C2-PFOA

PFTrDA

13C2-PFOA

PFTeDA

F26:MRM of 2 channels,ES$712.9>669$

13C2-PFOA

13C2-PFHxA
F4:MRM of 1 channel,ES-

13C2-PFDA
F16:MRM of 1 channel,ES-
$515.0>470.0$

Vista Analytical Laboratory

Dataset: Untitled

Last Altered: \quad Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed: Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_11, Date: 30-Dec-2018, Time: 15:28:50, ID: ST181230P1-10 PFC CS5 537 18L2621, Description: PFC CS5 537 18L2621

Name: 181230P1_11, Date: 30-Dec-2018, Time: 15:28:50, ID: ST181230P1-10 PFC CS5 537 18L2621, Description: PFC CS5 $53718 L 2621$

13C2-PFOA

F11:MRM of 1 channel,ES-

13C4-PFOS
F14:MRM of 1 channel,ES$503.0>80$
$3.707 \mathrm{e}+004$

13C2-PFOA

F11:MRM of 1 channel,ES-

d3-N-MeFOSAA

F20:MRM of 1 channel, ES $573.1>419.1$ $1.309 \mathrm{e}+005$

N-EtFOSAA

F21:MRM of 2 channels,ES-

d3-N-MeFOSAA
F20:MRM of 1 channel,ES-

Dataset:	Untitled
Last Altered:	Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed:	Sunday, December 30, 2018 16:17:29 Pacific Standard Time

Name: 181230P1_11, Date: 30-Dec-2018, Time: 15:28:50, ID: ST181230P1-10 PFC CS5 537 18L2621, Description: PFC CS5 537 18L2621

13C2-PFOA

13C2-PFOA

PFTrDA
F25:MRM of 2 channels,ES-

13C2-PFOA

PFTeDA
F26:MRM of 2 channels,ES-

13C2-PFHxA
F4:MRM of 1 channel,ES-

13C2-PFDA

F16:MRM of 1 channel,ES-
$515.0>470.0$

Dataset: Untitled
Last Altered: \quad Sunday, December 30, 2018 16:08:41 Pacific Standard Time
Printed Sunday, December 30, 2018 16:17:29 Pacific Standard Time

```



Name: 181230P1_13, Date: 30-Dec-2018, Time: 15:51:12, ID: ST181230P1-1 PFC ICV 537 18L2622, Description: PFC ICV 537 18L2622

\begin{tabular}{ll} 
Dataset: & D:\PFAS.PROIRESULTS\181230P1\181230P1-13.qld \\
Last Altered: & Monday, December 31, 2018 09:02:35 Pacific Standard Time \\
Printed: & Monday, December 31, 2018 09:02:52 Pacific Standard Time
\end{tabular}

\section*{Method: D:IPFAS.PRO\MethDBIPFAS DW L14 123018.mdb 31 Dec 2018 09:01:13}

\section*{Calibration: D:IPFAS.PROICurveDBIC18_537_Q5_12-30-18_L14.cdb 31 Dec 2018 08:50:24}

Name: 181230P1_13, Date: 30-Dec-2018, Time: 15:51:12, ID: ST181230P1-1 PFC ICV 537 18L2622, Description: PFC ICV 537 18L2622



Work Order 1804167

\section*{PFHxA}


PFHpA


13C2-PFOA


13C2-PFOA



13C4-PFOS


PFOA


13C2-PFOA
F11:MRM of 1 channel,ES-


\section*{Name: 181230P1_13, Date: 30-Dec-2018, Time: 15:51:12, ID: ST181230P1-1 PFC ICV 537 18L2622, Description: PFC ICV 537 18L2622}

Last Altered: Monday, December 31, 2018 09:02:35 Pacific Standard Time
Printed: Monday, December 31, 2018 09:02:52 Pacific Standard Time

Name: 181230P1_13, Date: 30-Dec-2018, Time: 15:51:12, ID: ST181230P1-1 PFC ICV 537 18L2622, Description: PFC ICV 537 18L2622


\section*{13C2-PFOA}


PFDoA
F23:MRM of 3 channels, ES-


\section*{13C2-PFOA}

F11:MRM of 1 channel,ES-


PFTrDA


13C2-PFOA


\section*{PFTeDA}


\section*{13C2-PFOA}


\section*{13C2-PFHxA}

F4:MRM of 1 channel,ES\(315.1>270\)


\section*{13C2-PFDA}


\section*{Dataset: D:IPFAS.PROTRESULTSU181230P11181230P1-13.qld}

Last Altered: Monday, December 31, 2018 09:02:35 Pacific Standard Time
Printed: Monday, December 31, 2018 09:02:52 Pacific Standard Time

Name: 181230P1_13, Date: 30-Dec-2018, Time: 15:51:12, ID: ST181230P1-1 PFC ICV 537 18L2622, Description: PFC ICV \(53718 L 2622\)

"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name",","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag","lab_qualifiers","organic_yn","method_detection_limit","reporting_detection_limit","quantatation_limit","result_u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus"
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","",","","", "" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","","","" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","","","" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG L","UG L","","","","","","","","","","","","","","" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","","","" "" "" "" " " " " " " "
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","",","","","","","", "" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00308","0.00508","0.0101","UG_L","UG_L","","","","","","","","","", "","","","","","","","
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","13C2-PFHxA","13C2-
PFHxA","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","104","104","","","","","","70","130","",
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","13C2-PFDA","13C2-
PFDA","101","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","101","101","","","","","","70","130",""," " "" ""
"PW2-122018-DW","537","12/30/18","20:16","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","87.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","87.6","87.6","","","","","","70","130 " "" "" "" ""
"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","',"","',"","","","","","", "" "" "" "" "" "" ""
"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","",",","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","",","","","",","","","","",

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","","","",","","","",

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","",","","",

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)",","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","","",","","","","","" "" "" "" "" "" ""
"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","","",","","","","",""

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","",","","","","","","" ""' "1" " 11
"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","","",","","""

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","2355-31-
9","MeFOSAA","",",","RG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","","",

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","2991-50-
6","EtFOSAA","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","","","

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","",",","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","",","","","",","","",","",

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","",","","","",","","","","", "" "" "" "" "" "" ""
"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","72629-94-
8","PFTrDA","",",",TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","",","",

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","376-06-
7","PFTeDA",","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","",","","","",","",

"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","13C2-PFHxA","13C2-
PFHxA","92.3","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","92.3","92.3","","",","","","70","130"," "."" "" ""
"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","13C2-PFDA","13C2-

PFDA","95.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","95.3","95.3","","","","","","70","130","" "" "" ""
"B8L0193-BLK1","537","12/30/18","16:43","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","86.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","86.1","86.1","","","","","","70","130 ","","","","
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","375-73-
5","PFBS","0.0344","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0354","0.0 344","97.1","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.0388","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 388","96.9","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0392","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 392","98.0","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","0.0335","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0364","0.0 335","92.0","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.0403","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.04 03","101","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0401","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.04 01","100","","","","",","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0335","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0370","0.0335","90. 6","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","0.0441","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.04 41","110","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","2355-31-
9","MeFOSAA","0.0394","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400 ","0.0394","98.4","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","2991-50-
6","EtFOSAA","0.0367","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400" ,"0.0367","91.9","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","0.0405","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 405","101","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","0.0386","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 386","96.5","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","72629-94-
8","PFTrDA","0.0326","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400"," 0.0326","81.6","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","376-06-
7","PFTeDA","0.0289","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400"," 0.0289","72.4","","","","","","70","130","","","",""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","13C2-PFHxA","13C2-
PFHxA","99.3","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","99.3","99.3","","","","","","70","130","
" "" "" ""
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","13C2-PFDA","13C2-
PFDA","100","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","100","100","","","","","","70","130",""," " "" " "
"B8L0193-BS1","537","12/30/18","16:21","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","95.5","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","95.5","95.5","","","","","","70","130 " "" "" "" ""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","375-73-
5","PFBS","0.0398","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0354","0.0 398","112","","","","","14.6","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.0415","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 415","104","","","","","6.84","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0420","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 420","105","","","","","7.06","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","0.0372","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0364","0.0 372","102","","","","","10.3","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.0412","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.04
12","103","","","","","2.15","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0433","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.04
33","108","","","","","7.68","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0403","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0370","0.0403","109 ","","","","","18.2","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","0.0455","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.04 55","114","","","","","3.03","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","2355-31-
9","MeFOSAA","0.0404","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400 ","0.0404","101","","","","","2.70","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","2991-50-
6","EtFOSAA","0.0381","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400" ,"0.0381","95.3","","","","","3.70","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","0.0403","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 403","101","","","","","0.479","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","0.0389","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400","0.0 389","97.1","","","","","0.633","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","72629-94-
8","PFTrDA","0.0327","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0400"," 0.0327","81.7","","","","","0.122","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","376-06-
7","PFTeDA","0.0287","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","0.0400"," 0.0287","71.6","","","","","0.997","70","130","","","",""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","13C2-PFHxA","13C2-
PFHxA","105","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","105","105","","","","","","70","130","", "" "" ""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","13C2-PFDA","13C2-
PFDA","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","104","104","","","","","","70","130",""," ","" ""
"B8L0193-BSD1","537","12/30/18","16:32","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","91.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","91.4","91.4","","","","","","70","130
, , , ,

AMEC Foster Wheeler, Inc.
May 23, 2019
7376 SW Durham Road
Portland, OR 97224
Attn: Ms. Kimberly Shiroodi
Kimberly.Shiroodi@woodplc.com
SUBJECT: Former Chase Field, Data Validation
Dear Ms. Shiroodi,
Enclosed are the final validation reports for the fraction listed below. These SDGs were received on May 23, 2019. Attachment 1 is a summary of the samples that were reviewed for analysis.

\section*{LDC Project \#45129:}

\section*{SD \# \\ Fraction}

1803982, 1804167
1900154, 1900478

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:
- Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds or Per- and Polyfluoroalkyl Substances, Sites at Various Base Realignment and Closure Installations; June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA, National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.
Sincerely,


Pei Gent
Pgeng@lab-data.com.
Project Manager/Senior Chemist


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}

\section*{Project/Site Name:}

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

Former Chase Field
May 23, 2019
Perfluorinated Alkyl Acids
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1803982
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & \multicolumn{1}{|c|}{ Matrix } & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline Big Field-DW-120618 & \(1803982-01\) & Water & \(12 / 06 / 18\) \\
\hline Behind the Base-DW-120618 & \(1803982-03\) & Water & \(12 / 06 / 18\) \\
\hline Shooting Range 1-DW-120618 & \(1803982-05\) & Water & \(12 / 06 / 18\) \\
\hline Shooting Range 1-DW-120618MS & \(1803982-05 \mathrm{MS}\) & Water & \(12 / 06 / 18\) \\
\hline Shooting Range 1-DW-120618MSD & \(1803982-05 M S D\) & Water & \(12 / 06 / 18\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\).

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(\mathrm{r}^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within 70\(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample Source Blank was identified as a source blank. No contaminants were found.
Sample Shooting Range 1-FB-120618 was identified as a field blank. No contaminants were found.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were not within the QC limits for Shooting Range 1-DW-120618MS/MSD. No data were qualified since the parent sample results were greater than the spiked concentration

Relative percent differences (RPD) were within QC limits with the following exceptions:
\begin{tabular}{||c|c|c|c|c||}
\hline \begin{tabular}{c} 
Spike ID \\
(Associated Samples)
\end{tabular} & Compound & \begin{tabular}{c} 
RPD \\
(Limits)
\end{tabular} & Flag & A orP \\
\hline \begin{tabular}{l} 
Shooting Range 1-DW-120618MS/MSD \\
(Shooting Range 1-DW-120618)
\end{tabular} & PFOA & \(43(\leq 30)\) & J (all detects) & A \\
\hline
\end{tabular}

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

\section*{X. Field Duplicates}

Samples Shooting Range 1-DW-120618 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ng/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & Shooting Range 1-DW-120618 & DUP-1 & & & & \\
\hline PFBS & 34.2 & 32.0 & - & 2.2 ( \(\leq 10.6\) ) & - & - \\
\hline PFHxA & 213 & 194 & \(9(\leq 30)\) & - & - & - \\
\hline PHHpA & 87.2 & 76.0 & \(14(\leq 30)\) & - & - & - \\
\hline PFHxS & 362 & 299 & \(19(\leq 30)\) & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ng/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & Shooting Range 1-DW-120618 & DUP-1 & & & & \\
\hline PFOA & 246 & 185 & 28 ( 530 ) & - & - & - \\
\hline PFNA & 21.7 & 15.7 & - & \(6(\leq 10.6)\) & - & - \\
\hline PFOS & 375 & 268 & 33 ( 530 ) & - & \(J\) (all detects) & A \\
\hline
\end{tabular}

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD RPD and field duplicate RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1803982
\begin{tabular}{|l|l|c|c|l||}
\hline \multicolumn{1}{|c|}{ Sample } & Compound & \multicolumn{1}{c|}{ Flag } & A or P & \multicolumn{1}{c|}{ Reason } \\
\hline Shooting Range 1-DW-120618 & PFOA & \(J\) (all detects) & A & \begin{tabular}{l} 
Matrix spike/Matrix spike \\
duplicate (RPD)
\end{tabular} \\
\hline \begin{tabular}{l} 
Shooting Range 1-DW-120618 \\
DUP-1
\end{tabular} & PFOS & \(J\) (all detects) & A & Field duplicates (RPD) \\
\hline
\end{tabular}

\section*{Former Chase Field \\ Perfluorinated Alky! Acids - Laboratory Blank Data Qualification Summary - SDG 1803982}

No Sample Data Qualified in this SDG

\section*{Former Chase Field}

Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

LDC \#: 45129A96
SDG \#: 1803982 VALIDATION COMPLETENESS WORKSHEET

Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537AK), ReV .III)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

\(\begin{array}{ll}\text { Note: } & A=\text { Acceptable } \\ & N=\text { Not provided/applicable } \\ & S W=\text { See worksheet }\end{array}\)

ND = No compounds detected
R = Rinsate
FB = Field blank
\(\mathrm{D}=\) Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:


Method: LCMS (EPA Method 537 Modified)


\section*{VALIDATION FINDINGS CHECKLIST}

Page
Reviewer
2nd Reviewer:

\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?} \\
\hline \multicolumn{5}{|l|}{X. Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & C & & & \\
\hline Were target compounds detected in the field duplicates? & 7 & & & \\
\hline \multicolumn{5}{|l|}{XI Labeled compounds} \\
\hline Were labeled compound percent recoveries (\%R) within the QC limits? & \(\square\) & & & \\
\hline \multicolumn{5}{|l|}{XII Compound quantitation} \\
\hline Did the iaboratory reporting limits (RL) meet the QAPP RLs? & \(r\) & & & \\
\hline Did reported results include both branched and linear isomers? & C & & & \\
\hline Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? & \[
17
\] & & & \\
\hline Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? & \[
1
\] & & & \\
\hline \multicolumn{5}{|l|}{XIII, Target compound identification} \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \[
7
\] & & & \\
\hline \multicolumn{5}{|l|}{XIV. System performance} \\
\hline System performance was found to be acceptable. & 7 & & & \\
\hline \multicolumn{5}{|l|}{XIII. Overall assessment of data} \\
\hline Overall assessment of data was found to be acceptable. & \[
7
\] & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET


Page:_(of / _ Reviewer: 2nd Reviewer: 16

METHOD: LC/MS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
( 10 N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?
WN N/A Was a MS/MSD analyzed every 20 samples of each matrix?
NN N/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? \(Y N(N / A)\) Were all duplicate sample relative percent differences (RPD) or differences within QC limits?


VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: PFCs (EPA Method 537, Rev.1.1))



Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & (X)
Area \\
\hline \multirow[t]{10}{*}{12/14/2018} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.1988737 \\
\hline & & 2 & 0.464 & 0.3287097 \\
\hline & & 3 & 0.928 & 0.7292670 \\
\hline & & 4 & 1.860 & 1.2784472 \\
\hline & & 5 & 4.640 & 3.7459125 \\
\hline & & 6 & 9.240 & 7.2972533 \\
\hline & & 7 & 23.100 & 21.6975380 \\
\hline & & 8 & 46.200 & 43.6619180 \\
\hline & & 9 & 69.400 & 63.9538080 \\
\hline & & 10 & 92.500 & 80.7597070 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c||c|}
\hline \hline & calculated & Reported \\
\hline Constant & 0.000000 & 0.0000 \\
\hline Coefficient(s) & 0.89864913 & 0.899774 \\
\hline Correlation Coefficient & 0.999427 & 0.99745 \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.998854 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & Analyte & Standard & (Y) Concentration & \begin{tabular}{l}
\[
(X)
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{12/14/2018} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2171360 \\
\hline & & 2 & 0.500 & 0.0506222 \\
\hline & & 3 & 1.000 & 0.9565940 \\
\hline & & 4 & 2.000 & 1.7298860 \\
\hline & & 5 & 5.000 & 4.5899330 \\
\hline & & 6 & 10.000 & 9.5954070 \\
\hline & & 7 & 25.000 & 21.7876640 \\
\hline & & 8 & 50.000 & 48.7801400 \\
\hline & & 9 & 75.000 & 69.3161600 \\
\hline & & 10 & 100.000 & 89.8638830 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{||l||c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.91588519 & 0.920346 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999562 & 0.99867 \\
\hline \hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & \begin{tabular}{l}
\[
\overline{(Y)}
\] \\
Concentration
\end{tabular} & \begin{tabular}{l}
\[
\overline{(X)}
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{12/16/2018} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2255790 \\
\hline & & 2 & 0.500 & 0.5356500 \\
\hline & & 3 & 1.000 & 1.0843630 \\
\hline & & 4 & 2.000 & 1.9421290 \\
\hline & & 5 & 5.000 & 5.2501000 \\
\hline & & 6 & 10.000 & 10.1869490 \\
\hline & & 7 & 25.000 & 26.3859800 \\
\hline & & 8 & 50.000 & 53.8977810 \\
\hline & & 9 & 75.000 & 74.5942910 \\
\hline & & 10 & 100.000 & 103.2234300 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c|c||}
\hline \hline & calculated & Reported \\
\hline Constant & 0.000000 & 0.0000 \\
\hline Coefficient(s) & 1.02778311 & 1.031910 \\
\hline Correlation Coefficient & 0.999669 & 0.99911 \\
\hline \hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1 of 1 Reviewer: 9 2nd Reviewer:_M6
\(\qquad\)

METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{ll} 
\% Difference \(=100^{*}(\) ave. RRF - RRF \() /\) ave. RRF & Where: \\
\(R R F=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\) & \(R R F=\) ave. RRF = initial calibration average RRF \\
& \\
& \(A_{x}=\) Area of compound, \\
& \(C_{x}=\) Concentration of compound,
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recalculated & Renated & Reralculated \\
\hline \# & Standard ID & Calibration
Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & \(1812192-66\) & 121518 & PFOA ( \({ }^{3} \mathrm{C}_{2}\)-PFOA) & 10.0 & 9.63 & 9.63 & 3.7 & 37 \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{6}\)-PFOS) & 9.24 & T.75 & 7. 75 & 16.1 & 16.1 \\
\hline 2 & Hel| & \(12 / 17 / 18\) & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & 200 & 2.18 & 2.18 & 9.1 & 9.1 \\
\hline & & & PFOS ( \({ }^{3} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{3} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{3} \mathrm{C}_{0}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{1 \mathrm{C}_{2}-\mathrm{PFOA} \text { ) }}\) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{3}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
\(\%\) Recovery \(=100^{*}(\) SSC - SC \() / S A\)

SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

SC = Sample concentation

MSDC \(=\) Matrix spike duplicate concentration

RPD = I MSC - MSC I * \(2 /(\) MSC + MSDC \()\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Spike } \\
\text { Addeg } \\
(\mathrm{KS} /\llcorner )
\end{gathered}
\]} &  & \multicolumn{2}{|l|}{Spiked Sample Concentration (15 <} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Matrix Spike \\
Percent Recovery
\end{tabular}} & \multicolumn{2}{|l|}{Matrix.Spike Duplicate Percent Recovery} & \multicolumn{2}{|r|}{MsIMSn} \\
\hline  & Ms & Mso & & Ms & Ms\% & Renoted & Recalc & & Reata & Renoted & Recalculuted \\
\hline PFOA & 20. & \(20^{2}\) & 246 & 515 & 331 & 1350 & 1332 & 扬5 & 421 & 105 & 106 \\
\hline PFOS & 18.4 & 18.7 & 315 & 397 & 445 & 123 & 120 & 378 & 314 & 102 & 103 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ lof 1
Reviewer: \(\frac{1}{2}\) 2nd Reviewer: 16

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|}
\hline \% Recovery \(=100\) * (SC/SA Where: & \begin{tabular}{l}
SSC = Spike concentration \\
SA = Spike added
\end{tabular} \\
\hline RPD \(=1\) LCSC \(-\operatorname{LCSDC~} 1^{*} 2 /(\) LCSC + LCSDC) & LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration \\
\hline LCS/LCSD samples: \(B>\angle O T C E S\)
\(\qquad\) & \\
\hline
\end{tabular}


Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

\section*{VALIDATION FINDINGS WORKSHEET Sample Calculation Verification}

\section*{METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)}

\section*{\(Y N N / A\)
\(Y / N N / A\)}

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?
\(\left.\begin{array}{rl}\text { Concentration }=\left(A_{2}\right)\left(I_{s}\right)(V)(D F)(2.0) \\ \left(A_{i s}\right)(R R F)\left(V_{0}\right)\left(V_{i}\right)(\% S)\end{array}\right)\)

Example:
Sample I.D \(\qquad\) FA \(\begin{aligned} \text { Conc. } & =\frac{2630(379)(0)(1)(0.239)}{4862)(087)(092346)} \\ & =246.045 / 4\end{aligned}\)


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}
\begin{tabular}{ll} 
Project/Site Name: & Former Chase Field \\
LDC Report Date: & May 23, 2019 \\
Parameters: & Perfluorinated Alkyl Acids \\
Validation Level: & Stage 4 \\
Laboratory: & Vista Analytical Laboratory
\end{tabular}

Sample Delivery Group (SDG): 1804167
\begin{tabular}{|l|l|l|c|}
\hline Sample Identification & \begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline PW2-122018-DW & \(1804167-01\) & Water & \(12 / 20 / 18\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to 20.0\%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(r^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within \(70-\) \(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

No field blanks were identified in this SDG.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

\section*{X. Field Duplicates}

No field duplicates were identified in this SDG.

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1804167
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.
\begin{tabular}{|c|c|c|c|c|}
\hline & Validation Area & & \multicolumn{2}{|l|}{Comments} \\
\hline 1. & Sample receiptTechnical holding times & \(A\) & & \\
\hline 11. & GC/MS Instrument performance check & A & & \\
\hline III. & Initial calibration/ICV & A, A &  & (low). 10 \\
\hline IV. & Continuing calibration //SC & \(A\) & acV \(530 / 3670\) & , \\
\hline V. & Laboratory Blanks & ¢ & 7 & \\
\hline VI. & Field blanks & \(N\) & & \\
\hline VII. & Surrogate spikes & A & & \\
\hline VIII. & Matrix spike/Matrix spike duplicates & N & CS & \\
\hline IX. & Laboratory control samples & A & \(\cos /(7)\) & \\
\hline x . & Field duplicates & \(N\) & & \\
\hline XI. & Labeled Compounds & \(A\) & & \\
\hline XII. & Compound quantitation RLLOQ/LODs & \(A\) & & \\
\hline XIII. & Target compound identification & A & & \\
\hline xIV. & System performance & A & & \\
\hline xV. & Overall assessment of data & \(A\) & & \\
\hline Note: & \begin{tabular}{l}
A = Acceptable \\
\(N=\) Not provided/applicable \\
SW = See worksheet
\end{tabular} & co ate ld blank & \begin{tabular}{ll} 
detected & \(\mathrm{D}=\) Duplicate \\
& \(\mathrm{TB}=\) Trip blank \\
& \(\mathrm{EB}=\) Equipment blank
\end{tabular} & SB=Source blank OTHER: \\
\hline
\end{tabular}

\(\qquad\) 2nd Reviewer: \(\qquad\)
Method: LCMS (EPA Method 537 Modified)


\section*{VALIDATION FINDINGS CHECKLIST}

Page
Reviewer:
2nd Reviewer: \(\qquad\)


TARGET COMPOUND WORKSHEET
\begin{tabular}{|c|c|c|c|}
\hline A. Perfluorohexanoic acid (PFHXA) & & & \\
\hline B. Perfluoroheptanoic acid (PFHpA) & & & \\
\hline C. Perfluorooctanoic acid (PFOA) & & & \\
\hline D. Perfluorononanoic acid (PFNA) & & & \\
\hline E. Perfluorodecanoic acid (PFDA) & & & \\
\hline F. Perfluoroundecanoic acid (PFUnA) & & & \\
\hline G. Perfluorododecanoic acid (PFDoA) & & & \\
\hline H. Perfluorotridecanoic acid (PFTriDA) & & & \\
\hline I. Perfluorotetradecanoic acid (PFTeDA) & & & \\
\hline J. Perfluorobutanesulfonic acid (PFBS) & & & \\
\hline K. Perfluorohexanesulfonic acid (PFHxS) & & & \\
\hline L. Perfluoroheptanesulfonic acid (PFHpS) & & & \\
\hline M. Perfluorooctanesulfonic acid (PFOS) & & & \\
\hline N. Perfluorodecanesulfonic acid (PFDS) & & & \\
\hline O. Perfluorooctane Suffonamide (FOSA) & & & \\
\hline P. Perfluorobutanoic acid (PFBA) & & & \\
\hline Q. Perfluoropentanoic acis (PFPeA) & & & \\
\hline R. \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluorooctane sulfonate (6:2FTS) & & & \\
\hline S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 2 FTS ) & & & \\
\hline T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) & & & \\
\hline U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA) & & & \\
\hline V. 1H, \(1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-Perfluorohexanesulfonic Acid (4:2FTS) & & & \\
\hline & & & \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & (X)
Area \\
\hline \multirow[t]{10}{*}{12/30/2018} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2325030 \\
\hline & & 2 & 0.500 & 0.4798370 \\
\hline & & 3 & 1.000 & 0.9733980 \\
\hline & & 4 & 2.000 & 1.9247560 \\
\hline & & 5 & 5.000 & 5.2004250 \\
\hline & & 6 & 10.000 & 9.1517780 \\
\hline & & 7 & 25.000 & 24.118581 \\
\hline & & 8 & 50.000 & 53.590312 \\
\hline & & 9 & 75.000 & 81.475686 \\
\hline & & 10 & 100.000 & 109.05315 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c||c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 1.08160882 & 1.064930 \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.999715 & 0.99788 \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date }
\end{gathered}
\] & Analyte & Standard & (Y) Concentration & \[
\begin{gathered}
\hline \hline(\mathrm{X}) \\
\text { Area }
\end{gathered}
\] \\
\hline \multirow[t]{10}{*}{12/30/2018} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.0784112 \\
\hline & & 2 & 0.464 & 0.2796298 \\
\hline & & 3 & 0.928 & 0.9002042 \\
\hline & & 4 & 1.860 & 1.3489832 \\
\hline & & 5 & 4.640 & 3.3358268 \\
\hline & & 6 & 9.240 & 6.8112131 \\
\hline & & 7 & 23.10 & 18.209455 \\
\hline & & 8 & 46.20 & 40.303338 \\
\hline & & 9 & 69.40 & 56.077719 \\
\hline & & 10 & 92.50 & 78.913789 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.83926116 & 0.830260 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999501 & 0.99746 \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference \(=100\) * (ave. RRF - RRF)/ave. RRF RRF \(=\left(A_{x}\right)\left(C_{i k}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave \(\operatorname{RRF}=\) initial calibration average \(R R F\)
RRF = continuing calibration RRF
\(\mathrm{A}_{x}=\) Area of compound,
\(\mathrm{A}_{\mathrm{is}}=\) Area of associated internal standard
\(\mathrm{C}_{\mathrm{x}}=\) Concentration of compound,\(\quad \mathrm{C}_{\text {is }}=\) Concentration of internal standard
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recalculated & Reportad & Recalculated \\
\hline \# & Standard ID & Calibration
Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & \(18123091-33\) & \(1930 / 10\) & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & 10.0 & \[
86 k
\] & 8.64 & \[
3<9
\] & \[
136
\] \\
\hline & & 7 & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & \(9 \rightarrow 4\) & 7.88 & 7.88 & +1.7 & 17 \\
\hline & & & & & & & & 7 \\
\hline 2 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ of /
Reviewer: \(Q\) 2nd Reviewer: 6

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|}
\hline \% Recovery \(=100\) * (SC/SA Where: & \begin{tabular}{l}
SSC = Spike concentration \\
SA = Spike added
\end{tabular} \\
\hline RPD \(=1\) LCSS - LCSDC \(1 * 2 /(\) LCSC + LCSDC \()\) & LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration \\
\hline LCS/LCSD samples: \(\qquad\) B8 \(10193-B 5\) & \[
\angle B S \neq 1
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Spike } \\
\text { congentation } \\
\sim
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\xrightarrow[\text { Percent Recovery }]{\text { Les }}\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\xrightarrow[\text { Percent Recovery }]{\text { Lesn }}\)}} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
1 \cos 4 \cos 0
\] \\
RPD
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline - & Lcs & LCSD & Lcs & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline pfoa & 0.0400 & 0.0400 & 0.0403 & 0.0412 & 101 & 101 & 103 & 103 & 215 & 232 \\
\hline pfos & 0.0370 & 0.0350 & 0.0335 & 0.0403 & 90.6 & 90.5 & 109 & 109 & 18.2 & 18.4 \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
Y Y N N/A \(\quad\) Were all reported results recalculated and verified for all level IV samples?


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}
\begin{tabular}{ll} 
Project/Site Name: & Former Chase Field \\
LDC Report Date: & May 23, 2019 \\
Parameters: & Perfluorinated Alkyl Acids \\
Validation Level: & Stage 4 \\
Laboratory: & Vista Analytical Laboratory
\end{tabular}

Sample Delivery Group (SDG): 1900154
\begin{tabular}{|c|l|l|c|}
\hline Sample Identification & \begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline PW4-011719-DW & \(1900154-01\) & Water & \(01 / 17 / 19\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\).

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination ( \(r^{2}\) ) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within 70 \(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((S / N)\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

No field blanks were identified in this SDG.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

\section*{X. Field Duplicates}

No field duplicates were identified in this SDG.

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900154
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537 Rel. Rel.I.)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.
\begin{tabular}{|c|c|c|c|}
\hline & Validation_Area & & comments \\
\hline 1. & Sample receipt/Technical holding times & \(A\) & \\
\hline 11. & GC/MS Instrument performance check & \[
A
\] & \\
\hline IIII. & Initial calibration/ICV & \[
A, A
\] & \[
R \Delta 0 \leq 2010 . r^{2} \text { The } \leqslant 30 / 50 / 0.1 e V \leqslant 38
\] \\
\hline IV. & Continuing calibration \(15 c\) & \[
A
\] & \[
\operatorname{Lv} / \| s e \leq 3070^{\prime}
\] \\
\hline V. & Laboratory Blanks & A &  \\
\hline VI. & Field blanks & \(N\) & \\
\hline VII. & Surrogate spikes & \(A\) & \\
\hline VIII. & Matrix spike/Matrix spike duplicates & \(N\) & 0 C \\
\hline IX. & Laboratory control samples & \(A\) & \(\angle E S\) \\
\hline X. & Field duplicates & \(N\) & \\
\hline XI. & Labeled Compounds & \[
A
\] & \\
\hline XII. & Compound quantitation RLLOQ/LODs & \[
x
\] & \\
\hline XIII. & Target compound identification & \[
\not \subset
\] & \\
\hline XIV. & System performance & \(A\) & \\
\hline XV. & Overall assessment of data & \(A\) & \\
\hline
\end{tabular}
Note: \(\quad \mathrm{A}=\) Acceptable
\(\mathbf{N}=\) Not provided/applicable SW = See worksheet
ND = No compounds detected
\(\mathrm{R}=\) Rinsate
\(\mathrm{FB}=\) Field blank
\(\mathrm{D}=\) Duplicate TB = Trip blank

SB=Source blank OTHER:
\begin{tabular}{|l|l|l|l|l||}
\hline & Client ID & Lab ID & Matrix & Date \\
\hline 1 & PW4-011719-DW & \(1900154-01\) & Water & \\
\hline 2 & & & & \\
\hline 3 & & & & \\
\hline 4 & & & & \\
\hline 5 & & & & \\
\hline 6 & & & & \\
\hline 7 & & & & \\
\hline 8 & & & & \\
\hline 6 & & & & \\
\hline
\end{tabular}

Notes:
\begin{tabular}{||l|l|l|l|l|l|l|l||}
\hline & \(3 Q A O L 5+-B 4\) & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Page:
1 of 2
Reviewer: 2nd Reviewer: \(\qquad\)

Method: LCMS (EPA Method 537 Modified)


\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline & \multicolumn{4}{|l|}{within the QC limits?} \\
\hline \multicolumn{5}{|l|}{x Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & & 7 & & \\
\hline Were target compounds detected in the field duplicates? & & & 7 & \\
\hline \multicolumn{5}{|l|}{X1. Labeled compounds} \\
\hline Were labeled compound percent recoveries (\%R) within the QC limits? & ? & & & \\
\hline \multicolumn{5}{|l|}{XII. Compound quantitation} \\
\hline Did the laboratory reporting limits (RL) meet the QAPP RLs? & 7 & & & \\
\hline Did reported results include both branched and linear isomers? & \(\bigcirc\) & & & \\
\hline Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? & \(\gamma\) & & & \\
\hline Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? & \[
17
\] & & & \\
\hline \multicolumn{5}{|l|}{Xill. Target compound identification} \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \(\bigcirc\) & & & \\
\hline \multicolumn{5}{|l|}{XIV. System performance} \\
\hline System performance was found to be acceptable. & & & & \\
\hline \multicolumn{5}{|l|}{XIII. Overall assessment of data} \\
\hline Overall assessment of data was found to be acceptable. & & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET
\begin{tabular}{|c|c|c|c|}
\hline A. Perfluorohexaniciacid (PFHHA) & & & \\
\hline B. Perflurohepplanoic acid (PFHPA) & & & \\
\hline C. Perflurooctanoic acid (PFOA) & & & \\
\hline D. Perfluorononanoic acid (PFNA) & & & \\
\hline E. Perflurordecanoic aciid (PFDA) & & & \\
\hline F. Perfuroundecanoic acid (PFUnA) & & & \\
\hline G. Perflurododecanoic acid (PFDOA) & & & \\
\hline H. Perflurortidecanoic acid (PFFTiDA) & & & \\
\hline 1. Perfluorietradecanoic acid (PFTTeDA) & & & \\
\hline J. Pefluorobutanesulfonic acid (PFES) & & & \\
\hline K. Perfluronexanesulfonic acid (PFHKS) & & & \\
\hline L. Perfluorohepanesultronic acid (PFHPS) & & & \\
\hline M. Perfluorooctanesulfonic acid (PFOS) & & & \\
\hline N.Perflurodecanestufonic acid (PFDS) & & & \\
\hline O. Perflurooctane Sulfonamide (FOSA) & & & \\
\hline P. Pefflurobutanoic acid (PFBA) & & & \\
\hline Q. Perfluoronentanoic acis (PFPeA) & & & \\
\hline  & & & \\
\hline S. \(1 \mathrm{H}, \mathrm{TH}, 2 \mathrm{LH}, 2 \mathrm{HH}\)-erfluorodeane sultonate ( \(8: 2 \mathrm{~F}\) FTS) & & & \\
\hline T. N-methy perfluorooctanesulfonamidoaceicic acid (NMMFOSAA) & & & \\
\hline U. N-EtIVY Peffluoroctianesulfonamidoacetic acid (NEIFOSAA) & & & \\
\hline  & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & (X)
Area \\
\hline \multirow[t]{10}{*}{1/25/2019} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2101130 \\
\hline & & 2 & 0.500 & 0.4714000 \\
\hline & & 3 & 1.000 & 0.8984130 \\
\hline & & 4 & 2.000 & 1.8618960 \\
\hline & & 5 & 5.000 & 4.4924390 \\
\hline & & 6 & 10.000 & 9.3954590 \\
\hline & & 7 & 25.000 & 24.368296 \\
\hline & & 8 & 50.000 & 47.758120 \\
\hline & & 9 & 75.000 & 73.077953 \\
\hline & & 10 & 100.000 & 94.537468 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l|c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.95618300 & 0.956545 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999903 & 0.99969 \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & Analyte & Standard & \((\mathrm{Y})\)
Concentration & (X) Area \\
\hline \multirow[t]{10}{*}{1/25/2019} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.1832208 \\
\hline & & 2 & 0.464 & 0.4657522 \\
\hline & & 3 & 0.928 & 0.8556761 \\
\hline & & 4 & 1.860 & 1.6506001 \\
\hline & & 5 & 4.640 & 4.6646023 \\
\hline & & 6 & 9.240 & 9.4894971 \\
\hline & & 7 & 23.10 & 23.772614 \\
\hline & & 8 & 46.20 & 48.721777 \\
\hline & & 9 & 69.40 & 72.647365 \\
\hline & & 10 & 92.50 & 100.994340 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c||c||}
\hline \hline & calculated & Reported \\
\hline Constant & 0.000000 & 0.0000 \\
\hline\(X\) Coefficient(s) & 1.07089390 & 1.059870 \\
\hline Correlation Coefficient & 0.999772 & 0.99909 \\
\hline Coefficient of Determination ( \(r^{\wedge} 2\) ) & 0.999544 & \\
\hline \hline
\end{tabular}

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF \(=\left(A_{x}\right)\left(C_{i k}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. RRF = initial calibration average RRF
RRF = continuing calibration RRF
\(\mathrm{A}_{\mathrm{x}}=\) Area of compound,
\(\mathrm{C}_{\mathrm{x}}=\) Concentration of compound,


Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ of L
Reviewer: 9 2nd Reviewer: M 6

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\% Recovery \(=100\) * (SC/SA
Where: SSC = Spike concentration
SA = Spike added
\(R P D=1 \operatorname{LCSC}-\operatorname{LCSDC} \mid * 2 /(\operatorname{LCSC}+\operatorname{LCSDC})\)
LCSC \(=\) Laboratory control sample concentration LCSDC \(=\) Laboratory control sample duplicate concentration
LCS/LCSD samples: \(39 A 015+1-1\)


Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

\section*{METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)}

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?


Example:
Sample I.D. \(N \mathbb{4 N O}\)
B9A0154-BS1

\(=0.0666 \mu \mathrm{~m} / \mathrm{L}\)


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}
\begin{tabular}{ll} 
Project/Site Name: & Former Chase Field \\
LDC Report Date: & May 23,2019 \\
Parameters: & Perfluorinated Alkyl Acids \\
Validation Level: & Stage 4 \\
Laboratory: & Vista Analytical Laboratory
\end{tabular}

Sample Delivery Group (SDG): 1900478
\begin{tabular}{|c|l|l|c|}
\hline Sample Identification & \begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline Charlie's Pasture-EW 031319 & \(1900478-01\) & Water & \(03 / 13 / 19\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\).

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(r^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within \(70-\) \(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((S / N)\) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample Field Blank was identified as a field blank. No contaminants were found.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

\section*{X. Field Duplicates}

Samples Charlie's Pasture-EW 031319 and Dup-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ng/L)} & \multirow[b]{2}{*}{RPD (Limits)} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & Charlie's Pasture-EW 031319 & Dup-1 & & & & \\
\hline PFBS & 0.0424 & 0.0444 & - & \(0.002(\leq 0.0101)\) & - & - \\
\hline PFHxA & 0.368 & 0.401 & \(9(\leq 30)\) & - & - & - \\
\hline PHHpA & 0.183 & 0.192 & \(5(\leq 30)\) & - & - & - \\
\hline PFHxS & 1.04 & 0.886 & \(16(\leq 30)\) & - & - & - \\
\hline PFOA & 0.807 & 0.827 & \(2(\leq 30)\) & - & - & - \\
\hline PFNA & 0.0280 & 0.0316 & - & \(0.0036(\leq 0.0101)\) & - & - \\
\hline PFOS & 1.52 & 1.38 & \(10(\leq 30)\) & - & - & - \\
\hline
\end{tabular}

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900478
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

\author{
Laboratory: Vista Analytical Laboratory \\ METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537M)
}

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: \(\quad \mathrm{A}=\) Acceptable
\(\mathrm{N}=\) Not provided/applicable SW = See worksheet
ND = No compounds detected
R = Rinsate
\(\mathrm{FB}=\) Field blank
\(\mathrm{D}=\) Duplicate
TB = Trip blank
ER \(=\) Equipment blank
SB=Source blank OTHER:


VALIDATION FINDINGS CHECKLIST
Page:
Reviewer:
2nd Reviewer: \(\qquad\)

Method: LCMS (EPA Method 537 Modified)

\(\qquad\)
2nd Reviewer:
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? & , & & & \\
\hline \multicolumn{5}{|l|}{\(\times\) Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & \(T\) & & & \\
\hline Were target compounds detected in the field duplicates? & & & & \\
\hline \multicolumn{5}{|l|}{XI. Labeled compounds} \\
\hline \multicolumn{5}{|l|}{Were labeled compound percent recoveries (\%R) within the QC limits?} \\
\hline \multicolumn{5}{|l|}{XII, Compound quantitation} \\
\hline \multicolumn{5}{|l|}{Did the laboratory reporting limits (RL) meet the QAPP RLs?} \\
\hline \multicolumn{5}{|l|}{Did reported results include both branched and linear isomers?} \\
\hline \multicolumn{5}{|l|}{Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?} \\
\hline Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? & \[
r
\] & & & \\
\hline \multicolumn{5}{|l|}{XIII. Target compound identification} \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \[
1
\] & & & \\
\hline \multicolumn{5}{|l|}{XIV. System performance} \\
\hline System performance was found to be acceptable. & / & & & \\
\hline \multicolumn{5}{|l|}{XIII. Overall assessment of data} \\
\hline Overall assessment of data was found to be acceptable. & \[
1
\] & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET
\begin{tabular}{|c|c|c|c|}
\hline A. Pefluoronexanoic acic (PFHXA) & & & \\
\hline B. Perfluoroheptanoic acid (PFHPA) & & & \\
\hline c. Perfuorococanoic acid (PFOA) & & & \\
\hline D. Perflurorononanic acid (PFNA) & & & \\
\hline E. Perflurodecanoic acid (PFDA) & & & \\
\hline F. Perfluroundeanoic acid (PFUnA) & & & \\
\hline G. Perflurorocodecanoic acid (PFDOA) & & & \\
\hline H. Perfucorotidecanoic acid (PFTTiDA) & & & \\
\hline 1. Pefluworetradeanoic acid (PFTeDA) & & & \\
\hline J. Perfluorobutanesulfonic acid (PFBS) & & & \\
\hline K. Perfiurorexeanesulfonic acid (PFH \(\times\) S) & & & \\
\hline L. Pefluoroneplanesulifonic acid (PFHHS) & & & \\
\hline M. Perfluorooctanesulfonic acid (PFOS) & & & \\
\hline N. Perfluordecanesulforic acid (PFDS) & & & \\
\hline O. Perflurooctane Sulionamide (FOSA) & & & \\
\hline P. Perfluorobutanoic acid (PFEA) & & & \\
\hline Q. Perfluoropentanoic acis (PFPPA) & & & \\
\hline R. 1 TH, 1 H, 2 2H, 2H-perfluoroctane sulfonale (6.2FTS) & & & \\
\hline S. \(1 \mathrm{H}, 1 \mathrm{l}, 2 \mathrm{H}, 2 \mathrm{HH}\)-perfluorodecane sulfonate ( 8.2 FTS ) & & & \\
\hline T. N-M.methy perflurooctanesulforamidoacetic acid (NMeFOSAA) & & & \\
\hline U. N-ELYy Perflurooctanesulfonamido aceicic acid (NEIFOSAA) & & & \\
\hline  & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: PFCs (EPA Method 537, Rev.1.1))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|c|}{Concentration (ng/L)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& (\leq 30) \\
& \text { RPD }
\end{aligned}
\]} & \multirow{2}{*}{Difference} & \multirow{2}{*}{Limits} & \multirow{2}{*}{Qual} \\
\hline & 1 & 2 & & & & \\
\hline PFBS & 0.0424 & 0.0444 & & 0.002 & \(\leq 0.0101\) & \\
\hline PFHxA & 0.368 & 0.401 & 9 & & & \\
\hline PHHpA & 0.183 & 0.192 & 5 & & & \\
\hline PFHxS & 1.04 & 0.886 & 16 & & & \\
\hline PFOA & 0.807 & 0.827 & 2 & & & \\
\hline PFNA & 0.0280 & 0.0316 & & 0.0036 & \(\leq 0.0101\) & \\
\hline PFOS & 1.52 & 1.38 & 10 & & & \\
\hline
\end{tabular}

\section*{Method: PFACs (EPA Method 537)}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date }
\end{gathered}
\] & Analyte & Standard & (Y) Concentration & \begin{tabular}{l}
\[
\overline{(X)}
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{3/28/2019} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.3114790 \\
\hline & & 2 & 0.500 & 0.4559950 \\
\hline & & 3 & 1.000 & 0.9430580 \\
\hline & & 4 & 2.000 & 1.8980310 \\
\hline & & 5 & 5.000 & 4.8326870 \\
\hline & & 6 & 10.000 & 9.8324550 \\
\hline & & 7 & 25.000 & 23.5652720 \\
\hline & & 8 & 50.000 & 48.8485250 \\
\hline & & 9 & 75.000 & 72.3284030 \\
\hline & & 10 & 100.000 & 97.7633500 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{||l||c||c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient \((\mathrm{s})\) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.97244451 & 0.970341 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999965 & 0.99978 \\
\hline \hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & \begin{tabular}{l}
\[
\overline{(X)}
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{3/28/2019} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.2365741 \\
\hline & & 2 & 0.464 & 0.3770290 \\
\hline & & 3 & 0.928 & 0.6450009 \\
\hline & & 4 & 1.860 & 1.3866577 \\
\hline & & 5 & 4.640 & 3.7668348 \\
\hline & & 6 & 9.240 & 7.9072546 \\
\hline & & 7 & 23.10 & 18.761660 \\
\hline & & 8 & 46.20 & 40.878403 \\
\hline & & 9 & 69.40 & 62.960426 \\
\hline & & 10 & 92.50 & 80.724788 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{||l||c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.88238504 & 0.875608 \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.999735 & 0.99859 \\
\hline
\end{tabular}

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{ll} 
\% Difference \(=100^{*}\) (ave. RRF - RRF)/ave. RRF & Where: \\
RRF \(=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\) & \(R R F=\) continuing calibration RRF \\
& \\
& \(A_{x}=\) Area of compound,
\end{tabular}\(\quad\)\begin{tabular}{l} 
Aritial calibration average RRF \\
\\
\\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recialculated & Reported & Recalculated \\
\hline \# & Standard ID & Calibration Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & 1903287.38 & \[
3 / 319
\] & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA \()\) & 10.0 & \[
10.1
\] & (0).1 & \[
0.6
\] & \[
0.8
\] \\
\hline & & 7 & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & \[
924
\] & \[
87
\] & \[
869
\] & 5.8 & \[
5.3
\] \\
\hline & & & & & & & & 1 \\
\hline 2 & \(190300 \mathrm{H}_{2} 2\) & \[
3 / 30 / 19
\] & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & 0.00 & 2.15 & \[
2.15
\] & \[
80
\] & 7.8 \\
\hline & & 7 & PFOS ( \({ }^{13} \mathrm{C}_{8}-\) PFOS \()\) & \[
1,36
\] & \[
1.40
\] & \[
1.40
\] & \[
24.5
\] & \[
24.5
\] \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{33} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of / Reviewer: 2nd Reviewer: \(\sqrt{6}\)

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|c|c|}
\hline \% Recovery \(=100\) * (SC/SA & Where: & \[
\text { SSC }=\text { Spike concentration }
\]
\[
\text { SA }=\text { Spike added }
\] & \\
\hline \(R P D=1 \operatorname{LCSC}-\operatorname{LCSDC} \mathrm{I}^{*} 2 /(\operatorname{CSC}+\operatorname{LCSDC})\) & & LCSC \(=\) Laboratory control sample concentration & LCSDC \(=\) Laboratory control sample duplicate concentration \\
\hline LCS/LCSD samples: \(\qquad\) \(\exists 9<0124\) & \[
\beta S
\] & \[
B \leq \infty 1
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Spike } \\
\left(\text { Added }_{5}^{5} / 4\right)
\end{gathered}
\]} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Spike } \\
\text { Concentration } \\
1
\end{gathered}
\]} & \multicolumn{2}{|l|}{C.CS} & \multicolumn{2}{|l|}{\(\frac{\text { LCsD }}{\text { Percent Recovery }}\)} & \multicolumn{2}{|c|}{\begin{tabular}{l}
ICSI CSn \\
RPD
\end{tabular}} \\
\hline Wax mettix & Lcs 1 & LCSD & LCS & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline PFOA & 00800 & 0.0800 & 0.0832 & 0.0766 & 104 & 104 & 95.8 & 95.8 & 818 & \(8 \rightarrow 6\) \\
\hline PFOS & 0.0740 & 0.0740 & 0.0701 & 0.075 & \(9+8\) & Q4.7 & 96.6 & \(96 \cdot 6\) & 1.89 & 1.98 \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)


Example:
Sample I.D. \(\qquad\) uFOS
conc. \(=\left(\right.\) s. \(_{\text {P }}^{e} 3 x+8\). \(^{T} x\) 4.9(e2)(0.875608)

\[
=1.52 \mu_{\varepsilon} / \angle
\]
```


[^0]: Work Order 1804167

[^1]: Work Order 1804167

