Drinking Water Sample Results,
Level 4 Laboratory Report, Electronic Data
Deliverable, Data Validation Report, Sample Location Report, SDG 1900154
NAS
Chase Field TX
December 2020

January 28, 2019

Vista Work Order No. 1900154

Ms. Nia Nikmanesh
KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Nikmanesh,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on January 19, 2019 under your Project Name 'Chase Field NAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 1900154

Case Narrative

Sample Condition on Receipt:

Two drinking water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. Per the COC, sample "PW4-011719-FB" was extract and hold.

Analytical Notes:

EPA Method 537, Rev. 1.1

Sample "PW4-011719-DW" was extracted and analyzed for a selected list of 14 PFAS using EPA Method 537, Rev. 1.1.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and a Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above $1 / 2$ the LOQ. The LFB recoveries were within the method acceptance criteria.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results 5
Qualifiers 9
Certifications 10
Sample Receipt 13
Extraction Information 15
Sample Data - EPA Method 537. 20
IIS Areas and CCVs 36
ICAL with ICV 60

Sample Inventory Report

Vista	Client			
Sample ID	Sample ID	Sampled	Received	Components/Containers
1900154-01	PW4-011719-DW			
17-Jan-19 15:16	19-Jan-19 10:13	HDPE Bottle, 250 mL		
1900154-02	PW4-011719-FB			HDPE Bottle, 250 mL
		17-Jan-19 15:18	19-Jan-19 10:13	HDPE Bottle, 250 mL
			HDPE Bottle, 250 mL	

ANALYTICAL RESULTS

Analytical Laboratory

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	Ion ratio outside of 70-130\% of Standard Ratio.
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-009$
Pennsylvania Department of Environmental Protection	015
Texas Commission on Environmental Quality	T104704189-18-9
Virginia Department of General Services	9618
Washington Department of Ecology	C584-18
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & \text { 1613/1613B } \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

CHAIN OF CUSTODY

	YES	NO	NA
Adequate Sample Volume Received?	V		
Holding Time Acceptable?	\checkmark		
Shipping Containers) Intact?	\checkmark		
Shipping Custody Seals Intact?	\checkmark		
Shipping Documentation Present?	Trk\# 7 742 4933 2620	\checkmark	
Airbill	\checkmark		
Sample Container Intact?	\checkmark		
Sample Custody Seals Intact?			\checkmark
Chain of Custody / Sample Documentation Present?	\checkmark		
COC Anomaly/Sample Acceptance Form completed? *		\checkmark	\checkmark

Comments:

* coc ID

PW 4-O11719-FB
DOES NOT EFFECT SAMPLE INTEGRITY

Page: 1 of 1

EXTRACTION INFORMATION

Prep Expiration: 2019-Jan-31 Client: KMEA

Workorder Due:28-Jan-19 00:00
TAT: 9

Method: 537 PFAS DW DoD Unmodified Matrix: Aqueous

Prep Batch: \qquad B9AO154

Prep Data Entered: $01 / 23 / 19$ MAC Dateland Initials
sion: 14 Analyte DW (Full List)
DoD: DoD QSM 5.1

Pre-Prep Check Out: $7 R \quad 01 / 21 / 19$ Pre-Prep Check In: ER 01/21/19

Prep Check Out: MAC O1/22/10
Prep Check In: \qquad

Prep Reconciled Initals/Date: $7 R \quad 0 / 21 / / 9$ Spike Reconciled Initals/Date: MAC is /22/19
VialioxiD: Blastoise

PREPARATION BENCH SHEET

Matrix: Aqueous

- Method: 537 PFAS DW DoD Unmodified

Chemist: MHE
Prep Date: $\ldots 01 / 22 / 19$
Prep Time: 0855

Prepared using: LCMS - SPE Extraction-LCMS

			BalancelD: HRMS-9	Date/Initials: $01 / 21$				
Cen	VISTA Sample ID	When checked Trizma Added in Lab	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	SS/NS CHEM/WIT DATE	SPE	$\begin{gathered} \text { IS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$
\square	${ }^{\text {B9A0154-BLK1 }}$ (4)	区	NA	N/A	(0.250)	mace wy oroz/19	Wac al/22/13	as M 01/23/9
\square	B9A0154-BS1 \downarrow	区	\downarrow	\downarrow	(0.250)		T	
\square	B9A0154-MS1 1900153-06	\square	299.88	37.68	0.26220		-	
\square	B9A0154-MSD1 1900153-06	\square	296.05	37.29	0.25876			
\square	1900143-01 (B)	\square	272.94	26.62	0.24632			
\square	1900143-02	\square	289.73	26.68	0.26305			
\square	1900153-01(B)	\square	286.12	37.25	0.24887			
\square	1900153-02	\square	294.85	37.26	0.25759			
\square	${ }^{1900153-03}$ (B)	\square	297.58	37.33	0.26025			
\square	${ }^{1900153-04} \downarrow$	\square	298.93	37.32	0.26161			
\square	1900153-05	\square	297.34	37.24	0.26010			
\square	1900153-06	\square	299.11	37.67	0.26144			
\square	1900153-07	\square	299.72	37.24	0.26 .248			
\square	1900153-08(B)	\square	297.06	37.24	0.25982			
\square	1900153-09	\square	298.24	37.37	0.26087			
\square	1900154-01	- \square	283.81	2664	0.25717	\Downarrow	\downarrow	\downarrow

$\begin{array}{ll} \text { ss/IS: } & 18 L 1712,1046(\sqrt{2}) \\ \text { NS: } & 182623,20 \mu L\left(V_{2}\right) \\ \text { IS/RS: } & 1811713,10 \mu L(2) \end{array}$	SPE Chem: Strata X $33 \mathrm{um} 500 \mathrm{mg} / 6 \mathrm{~mL}$ Lot\#: Sik8-004379 Ele SOLV: MeOH Lot\#: JBOF2509 Final Volume(s) \qquad	Notes: (1) Trizma added $7801 / 21 / 19$ (B) sample was discolored at final valume $7801 / 23 / 19$
Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ Cen = Centrifuged	1 = Sample colored after centrifuge 2 = Cartridge sorbent discolored after SPE $3=$ Went dry during SPE Cartridge	\cdots

PREPARATION BENCH SHEET

Matrix: Aqueous

- Method: 537 PFAS DW DoD Unmodified

B9A0154
Chemist: \qquad MHC
Prep Date: $01 / 22119$
Prep Time: \qquad
Prepared using: LCMS - SPE Extraction-LCMS

Cen	VISTA Sample ID	When checked Trizma Added in Lab	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	SS/NS CHEM/WIT DATE	SPE	IS CHEM/WIT DATE
\square	1900154-02	\square	288.33	26.63	0.26170	$\text { y } 01 / 221$	$M A C \quad 0.122 / 19$	$\text { ar wo } 01 / 23 / 19$

\qquad NS: $1312623,201 / 6(12$ IS/RS: $18 L 1713,10 \mathrm{ML}$ (V2)	SPE Chem: Strata X 33 um $500 \mathrm{mg} / 6 \mathrm{~mL}$ Lott: $918-004379$ Ele SOLV: MeOH Lott: JBD 72589 Final Volumes (s) \qquad	Notes:

LabNumber	WetWeight (Initial)	\% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1900143-01	0.24632	$N A$	$N A$	1000	22-Jan-19 08:55	MAC			Aqueous	537 PFAS DW DoD Unmos
1900143-02	0.26305	T		1000	22-Jan-19 08:55	MAC			Aqueous	537 PFAS DW DoD Unmos
1900153-01	0.24887			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmod
1900153-02	0.25759			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmos
1900153-03	$0.26025 \checkmark$			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmor
1900153-04	$0.26161 \checkmark$			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmos
1900153-05	$0.2601 \sqrt{ }$			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmos
1900153-06	0.26144			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmor
1900153-07	0.26248			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmo
1900153-08	0.25982.			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmor
1900153-09	0.26087			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmos
1900154-01	0.25717			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmor
1900154-02	0.2617			1000	22-Jan-19 08:55	MAC			Drinking Water	537 PFAS DW DoD Unmos
B9A0154-BLK1	0.25			1000	22-Jan-19 08:55	MAC				QC
B9A0154-BS1	0.25			1000	22-Jan-19 08:55	MAC	18 L 2623	20		QC
B9A0154-MS1	0.2622			1000	22-Jan-19 08:55	MAC	18 L 2623	20		QC
B9A0154-MSD1	0.25876	\checkmark	V	1000	22-Jan-19 08:55	MAC	18 L 2623	$20 \sim$		QC

MAC $0 / 23 / 19$

SAMPLE DATA -EPA METHOD 537

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld
Last Altered:	Sunday, January 27, 2019 16:47:23 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$		6052.171	0.250		3.73				
2	2 PFHxA	$313.2>268.9$		12440.223	0.250		4.05				
3	3 PFHpA	$363>318.9$		12440.223	0.250		4.42				
4	4 PFHxS	398.9 > 79.6		6052.171	0.250		4.53				
5	5 PFOA	$413>368.7$		12440.223	0.250		4.77				
6	19 13C4-PFOS	$503.0>79.9$	6052.171	6052.171	0.250	1.000	5.10	5.10	28.7	115	100.0
7	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
8	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
9	19 13C4-PFOS	$503.0>79.9$	6052.171	6052.171	0.250	1.000	5.10	5.10	28.7	115	100.0
10	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
11	-1										
12	6 PFNA	$463>418.8$		12440.223	0.250		5.05				
13	7 PFOS	$499>79.9$	1.942	6052.171	0.250		5.10	5.12	0.00921	0.0348	
14	8 PFDA	$513>468.8$		12440.223	0.250		5.29				
15	$9 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419.0$	10.331	10105.665	0.250		5.39	5.38	0.0409	0.0855	
16	$10 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419.0$		10105.665	0.250		5.50				
17	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
18	19 13C4-PFOS	$503.0>79.9$	6052.171	6052.171	0.250	1.000	5.10	5.10	28.7	115	100.0
19	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
20	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	10105.665	10105.665	0.250	1.000	5.39	5.39	40.0	160	100.0
21	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	10105.665	10105.665	0.250	1.000	5.39	5.39	40.0	160	100.0
22	-1										
23	11 PFUnA	$563>518.9$		12440.223	0.250		5.50				
24	12 PFDoA	$612.9>318.8$		12440.223	0.250		5.68				
25	13 PFTrDA	$662.9>618.9$		12440.223	0.250		5.84				
26	14 PFTeDA	$712.9>668.8$		12440.223	0.250		5.98				
27	15 13C2-PFHxA	$315>269.8$	7553.965	12440.223	0.250	0.641	4.24	4.06	6.07	37.9	94.7
28	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
29	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
30	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
31	18 13C2-PFOA	$414.9>369.7$	12440.223	12440.223	0.250	1.000	4.77	4.77	10.0	40.0	100.0
32	16 13C2-PFDA	$515.1>469.9$	10939.060	12440.223	0.250	0.896	5.29	5.29	8.79	39.2	98.1
33	-1										
34	17 d5-N-EtFOSAA	589.3>419.0	14260.101.	10105.665	0.250	1.512	5.39	5.49	56.4	149	93.3

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld
Last Altered:	Sunday, January 27, 2019 16:47:23 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

13C4-PFOS

13C2-PFOA

13C2-PFOA

13C4-PFOS

PFOA

$$
\begin{array}{r}
\text { F6:MRM of } 2 \text { channels,ES- } \\
413>368.7
\end{array}
$$

$$
5.092 .589 \mathrm{e}+003
$$

13C2-PFOA
F7:MRM of 1 channel,ES 414.9 > 369.7 $3.384 \mathrm{e}+005$

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld
Last Altered:	Sunday, January 27, 2019 16:47:23 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

13C2-PFOA

13C2-PFOA
F7:MRM of 1 channel,ES414.9 > 369.7 $3.384 \mathrm{e}+005$

d3-N-MeFOSAA
F16:MRM of 1 channel,ES$573.3>419.0$ $2.392 \mathrm{e}+005$

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld
Last Altered:	Sunday, January 27, 2019 16:47:23 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:47:35 Pacific Standard Time

Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB

PFUnA

13C2-PFOA

PFTrDA

13C2-PFOA

PFTeDA

13C2-PFOA

13C2-PFHxA

F3:MRM of 1 channel,ES$315>269.8$ $2.176 \mathrm{e}+005$

13C2-PFDA

F13:MRM of 1 channel,ES

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-27.qld
Last Altered: \quad Sunday, January 27, 2019 16:47:23 Pacific Standard Time
Printed:
Sunday, January 27, 2019 16:47:35 Pacific Standard Time
Name: 190125M2_27, Date: 25-Jan-2019, Time: 22:29:29, ID: B9A0154-BLK1 LRB 0.25, Description: LRB
d5-N-EtFOSAA

F18:MRM of 1 channel,ES-

Dataset:	F:IProjects\|PFAS.PRO\Results\190125M2\190125M2-24.qld
Last Altered:	Sunday, January 27, 2019 16:39:33 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Name: 190125M2_24, Date: $\mathbf{2 5 - J a n - 2 0 1 9 , ~ T i m e : ~ 2 1 : 5 4 : 0 7 , ~ I D : ~ B 9 A 0 1 5 4 - B S 1 ~ L F B ~ 0 . 2 5 , ~ D e s c r i p t i o n : ~ L F B ~}$

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	3462.347	6507.852	0.250		3.73	3.73	15.3	65.8	92.9
2	2 PFHxA	$313.2>268.9$	19802.994	12810.407	0.250		4.05	4.06	15.5	74.1	92.6
3	3 PFHpA	$363>318.9$	17851.678	12810.407	0.250		4.42	4.43	13.9	77.4	96.8
4	4 PFHxS	$398.9>79.6$	2778.925	6507.852	0.250		4.53	4.53	12.3	67.7	93.0
5	5 PFOA	$413>368.7$	23489.256	12810.407	0.250		4.77	4.77	18.3	76.7	95.8
6	19 13C4-PFOS	$503.0>79.9$	6507.852	6507.852	0.250	1.000	5.10	5.10	28.7	115	100.0
7	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
8	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
9	19 13C4-PFOS	$503.0>79.9$	6507.852	6507.852	0.250	1.000	5.10	5.10	28.7	115	100.0
10	18 13C2-PFOA	414.9 > 369.7	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
11	-1										
12	6 PFNA	$463>418.8$	24445.664	12810.407	0.250		5.05	5.05	19.1	73.5	91.9
13	7 PFOS	$499>79.9$	4001.067	6507.852	0.250		5.10	5.10	17.6	66.6	90.0
14	8 PFDA	$513>468.8$	25067.080	12810.407	0.250		5.29	5.29	19.6	72.1	90.2
15	$9 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419.0$	9087.916	10207.644	0.250		5.39	5.39	35.6	74.2	92.7
16	10 N -EtFOSAA	$584.2>419.0$	6869.830	10207.644	0.250		5.50	5.49	26.9	70.6	88.2
17	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
18	19 13C4-PFOS	$503.0>79.9$	6507.852	6507.852	0.250	1.000	5.10	5.10	28.7	115	100.0
19	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
20	20 d3-N-MeFOSAA	$573.3>419.0$	10207.644	10207.644	0.250	1.000	5.39	5.39	40.0	160	100.0
21	20 d3-N-MeFOSAA	$573.3>419.0$	10207.644	10207.644	0.250	1.000	5.39	5.39	40.0	160	100.0
22	-1										
23	11 PFUnA	$563>518.9$	23481.762	12810.407	0.250		5.50	5.50	18.3	72.9	91.1
24	12 PFDoA	$612.9>318.8$	3190.188	12810.407	0.250		5.68	5.68	2.49	69.7	87.1
25	13 PFTrDA	$662.9>618.9$	27276.006	12810.407	0.250		5.84	5.84	21.3	60.6	75.8
26	14 PFTeDA	$712.9>668.8$	23517.473	12810.407	0.250		5.98	5.98	18.4	58.2	72.7
27	15 13C2-PFHxA	$315>269.8$	7694.769	12810.407	0.250	0.641	4.24	4.06	6.01	37.5	93.7
28	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
29	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
30	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
31	18 13C2-PFOA	$414.9>369.7$	12810.407	12810.407	0.250	1.000	4.77	4.77	10.0	40.0	100.0
32	16 13C2-PFDA	$515.1>469.9$	11471.349	12810.407	0.250	0.896	5.29	5.29	8.95	40.0	99.9
33	-1										
34	$17 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$. $589.3>419.0$	13953.099	10207.644	0.250 .	1.512.	5.39	5.49	54.7 .	145.	90.4

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld
Last Altered:	Sunday, January 27, 2019 16:39:33 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

13C4-PFOS

13C2-PFOA

PFHpA

13C2-PFOA

13C4-PFOS

PFOA

13C2-PFOA

F7:MRM of 1 channel,ES414.9 > 369.7 $3.484 \mathrm{e}+005$

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld
Last Altered:	Sunday, January 27, 2019 16:39:33 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

\section*{PFNA

13C2-PFOA

13C4-PFOS

PFDA

13C2-PFOA
F7:MRM of 1 channel,ES414.9 > 369.7 $3.484 \mathrm{e}+005$

d3-N-MeFOSAA
F16:MRM of 1 channel,ES-
$573.3>419.0$ $2.366 \mathrm{e}+005$

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-24.qld
Last Altered:	Sunday, January 27, 2019 16:39:33 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

PFUnA

13C2-PFOA

F7:MRM of 1 channel,ES$414.9>369.7$ $3.484 \mathrm{e}+005$

13C2-PFOA

PFTrDA

13C2-PFOA
F7:MRM of 1 channel,ES414.9 > 369.7 $3.484 \mathrm{e}+005$

PFTeDA

13C2-PFOA

13C2-PFHxA

F3:MRM of 1 channel,ES$315>269.8$ $2.217 \mathrm{e}+005$

13C2-PFDA

F13:MRM of 1 channel,ES-

Last Altered:	Sunday, January 27, 2019 16:39:33 Pacific Standard Time
Printed:	Sunday, January 27, 2019 16:40:24 Pacific Standard Time

Name: 190125M2_24, Date: 25-Jan-2019, Time: 21:54:07, ID: B9A0154-BS1 LFB 0.25, Description: LFB

d5-N-EtFOSAA

F18:MRM of 1 channel,ES-
$589.3>419.0$

Dataset:	F:IProjects\PFAS.PRO\Results\190125M2\190125M2-41.qld
Last Altered:	Sunday, January 27, 2019 17:05:36 Pacific Standard Time
Printed:	Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$		7213.286	0.257		3.73				
2	2 PFHxA	$313.2>268.9$		14351.518	0.257		4.05				
3	3 PFHpA	$363>318.9$		14351.518	0.257		4.42				
4	4 PFHxS	$398.9>79.6$		7213.286	0.257		4.53				
5	5 PFOA	$413>368.7$		14351.518	0.257		4.77				
6	19 13C4-PFOS	$503.0>79.9$	7213.286	7213.286	0.257	1.000	5.10	5.10	28.7	112	100.0
7	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
8	18 13C2-PFOA	$414.9>369.7$	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
9	19 13C4-PFOS	$503.0>79.9$	7213.286	7213.286	0.257	1.000	5.10	5.10	28.7	112	100.0
10	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
11	-1										
12	6 PFNA	$463>418.8$		14351.518	0.257		5.05				
13	7 PFOS	$499>79.9$	1.017	7213.286	0.257		5.10	5.09	0.00405	0.0148	
14	8 PFDA	$513>468.8$		14351.518	0.257		5.29				
15	$9 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419.0$	0.634	12335.590	0.257		5.39	5.37	0.00206	0.00418	
16	$10 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419.0$		12335.590	0.257		5.50				
17	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
18	19 13C4-PFOS	$503.0>79.9$	7213.286	7213.286	0.257	1.000	5.10	5.10	28.7	112	100.0
19	18 13C2-PFOA	$414.9>369.7$	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
20	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	12335.590	12335.590	0.257	1.000	5.39	5.39	40.0	156	100.0
21	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	12335.590	12335.590	0.257	1.000	5.39	5.39	40.0	156	100.0
22	-1										
23	11 PFUnA	$563>518.9$		14351.518	0.257		5.50				
24	12 PFDoA	$612.9>318.8$		14351.518	0.257		5.68				
25	13 PFTrDA	$662.9>618.9$		14351.518	0.257		5.84				
26	14 PFTeDA	$712.9>668.8$		14351.518	0.257		5.98				
27	15 13C2-PFHxA	$315>269.8$	9139.260	14351.518	0.257	0.641	4.24	4.05	6.37	38.6	99.3
28	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
29	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
30	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
31	18 13C2-PFOA	414.9 > 369.7	14351.518	14351.518	0.257	1.000	4.77	4.77	10.0	38.9	100.0
32	16 13C2-PFDA	$515.1>469.9$	12216.670	14351.518	0.257	0.896	5.29	5.29	8.51	36.9	95.0
33	-1										
34	$17 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOS} A \mathrm{~A}$	589.3>419.0	16651.631.	12335.590.	0.257	1.512	5.39	5.49	54.0	139.	89.3

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld
Last Altered:	Sunday, January 27, 2019 17:05:36 Pacific Standard Time
Printed:	Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

13C2-PFOA

13C2-PFOA

13C4-PFOS

F11:MRM of 1 channel,ES$503.0>79.9$ $1.715 \mathrm{e}+005$

13C2-PFOA

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld
Last Altered:	Sunday, January 27, 2019 17:05:36 Pacific Standard Time
Printed:	Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

PFNA

13C2-PFOA

13C4-PFOS

F11:MRM of 1 channel,ES $503.0>79.9$ $1.715 \mathrm{e}+005$

13C2-PFOA
F7:MRM of 1 channel,ES$414.9>369.7$

d3-N-MeFOSAA
F16:MRM of 1 channel,ES$573.3>419.0$ $2.912 \mathrm{e}+005$

N-EtFOSAA

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-41.qld
Last Altered:	Sunday, January 27, 2019 17:05:36 Pacific Standard Time
Printed:	Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW

13C2-PFOA

PFTrDA

13C2-PFOA

13C2-PFOA

13C2-PFHxA
F3:MRM of 1 channel,ES$315>269.8$ $2.626 e+005$

13C2-PFDA

F13:MRM of 1 channel,ES$515.1>469.9$

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN945 SCN960

Last Altered:	Sunday, January 27, 2019 17:05:36 Pacific Standard Time
Printed:	Sunday, January 27, 2019 17:06:08 Pacific Standard Time

Name: 190125M2_41, Date: 26-Jan-2019, Time: 01:14:43, ID: 1900154-01 PW4-011719-DW 0.25717, Description: PW4-011719-DW d5-N-EtFOSAA

F18:MRM of 1 channel,ES-
$589.3>419.0$

INJECTION INTERNAL STANDARD (IIS) AREAS,

AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

ICAL

Compound 18: 13C2-PFOA

1 IPA	
	2 ST190125M2-1 537 CS-4 19A1701
	3 ST190125M2-2 537 CS-3 19A1702
	4 ST190125M2-3 537 CS-2 19A1703
	5 ST190125M2-4 537 CS-1 19A1704
	6 ST190125M2-5 537 CSO 19A1705
	7 ST190125M2-6 537 CS1 19A1706
	8 ST190125M2-7 537 CS2 19A1707
	9 ST190125M2-8 537 CS3 19A1708
	10 ST190125M2-9 537 CS4 19A1709
	11 ST190125M2-10 537 CS5 19A1710
	12 IPA
	13 ICV190125M2-1 537 ICV 19A1711
	14 IPA
	15 B9A0191-BS1 LFB 0.25
	16 B9A0191-BSD1 LFBD 0.25
	17 B9A0191-BLK1 LRB 0.25
	18 1900103-03RE1 WI-AF-1RW67-0119 0.2408
	19 1900103-05RE1 WI-AF-1RW68-0119 0.24813
	20 1900103-06RE1 WI-AF-1RW68P-0119 0.2517
	21 1900103-08RE1 WI-AF-1RW69-0119 0.24947
	22 1900103-12RE1 WI-AF-1RW71-0119 0.2497
	23 1900157-01 WR1901181300KER 0.25378
	24 B9A0154-BS1 LFB 0.25
	25 B9A0154-MS1 LFSM 0.2622
	26 B9A0154-MSD1 LFSMD 0.25876
	27 B9A0154-BLK1 LRB 0.25
	28 1900143-01 F8F9-PFOS 0.24632
	29 1900143-02 F8F9-Blank 0.26305

Name	
190125M2_1	
190125M2_2	Analyte
190125M2_3	Analyte
190125M2_4	Analyte
190125M2_5	Analyte
190125M2_6	Analyte
190125M2_7	Analyte
190125M2_8	Analyte
190125M2_9	Analyte
190125M2_10	Analyte
190125M2_11	A
190125M2_12	Analyte
190125M2_13	Aly
190125M2_14	Analy
190125M2_15	Analyte
190125M2_16	Analy
190125M2_17	alyt
190125M2_18	Analyt
190125M2_19	nalyt
190125M2_20	alyte
190125M2_21	alyte
190125M2_22	Analyte
190125M2_23	Analyte
190125M2_24	Analyte
190125M2_25	nalyte
190125M2_26	Analyte
190125M2_27	Analyte
190125M2_28	nalyte
190125M2_29	Analyte

Std. Conc	RT	Area	ICAL Area	Area $\%$
10			13400.96	0.00
10	4.77	13292.36	13400.96	99.19
10	4.76	13422.57	13400.96	100.16
10	4.76	13197.23	13400.96	98.48
10	4.76	13232.86	13400.96	98.75
10	4.77	14111.92	13400.96	105.31
10	4.77	14405.22	13400.96	107.49
10	4.77	13324.02	13400.96	99.43
10	4.76	13136.78	13400.96	98.03
10	4.76	13058.35	13400.96	97.44
10	4.76	12929.79	13400.96	96.48
10			13400.96	0.00
10	4.76	13791.20	13400.96	102.91
10			13400.96	0.00
10	4.76	12721.65	13400.96	94.93
10	4.77	12865.38	13400.96	96.00
10	4.76	12506.92	13400.96	93.33
10	4.76	12305.25	13400.96	91.82
10	4.76	13385.57	13400.96	99.89
10	4.76	13503.83	13400.96	100.77
10	4.77	12942.26	13400.96	96.58
10	4.76	13925.21	13400.96	103.91
10	4.76	12548.71	13400.96	93.64
10	4.77	12810.41	13400.96	95.59
10	4.76	13701.67	13400.96	102.24
10	4.77	12109.25	13400.96	90.36
10	4.77	12440.22	13400.96	92.83
10	4.77	13048.66	13400.96	97.37
10	4.77	13494.36	13400.96	100.70

30 1900153-01 WI-AF-1RW77-0119 0.24887
31 1900153-02 WI-AF-1FB77-0119 0.25759
32 IPA
33 ST190125M2-11 537 CS1 19A1706
34 1900153-03 WI-AF-1RW78-0119 0.26025
35 1900153-04 WI-AF-1RW78P-0119 0.26161
36 1900153-05 WI-AF-1FB78-0119 0.2601
37 1900153-06 WI-AF-1RW79-0119 0.26144
38 1900153-07 WI-AF-1FB79-0119 0.26248
39 1900153-08 WI-AF-1RW80-0119 0.25982
40 1900153-09 WI-AF-1FB80-0119 0.26087
41 1900154-01 PW4-011719-DW 0.25717
42 1900154-02 PW4-011719-FB 0.2617
43 IPA
44 ST190125M2-12 537 CS3 19A1708
45 B9A0141-BS1 LFB 0.25
46 B9A0141-BSD1 LFBD 0.25
47 B9A0141-BLK1 LRB 0.25
48 1900136-01 GWNT1901160950KME 0.24097 49 1900137-01 WR1901161110KER 0.24094 50 IPA

51 ST190125M2-13 537 CS-1 19A1704

190125M2_30 Analyte 190125M2_31 Analyte 190125M2_32 Analyte 190125M2_33 Analyte 190125M2_34 Analyte 190125M2_35 Analyte 190125M2_36 Analyte 190125M2_37 Analyte 190125M2_38 Analyte 190125M2_39 Analyte 190125M2_40 Analyte 190125M2_41 Analyte 190125M2_42 Analyte 190125M2_43 Analyte 190125M2_44 Analyte 190125M2_45 Analyte 190125M2_46 Analyte 190125M2_47 Analyte 190125M2_48 Analyte 190125M2_49 Analyte 190125M2_50 Analyte 190125M2_51 Analyte

4.77	11687.37	13400.96	87.21
4.77	13163.90	13400.96	98.23
		13400.96	0.00
4.77	13718.64	13400.96	102.37
4.76	13743.12	13400.96	102.55
4.76	13413.73	13400.96	100.10
4.76	14040.47	13400.96	104.77
4.77	14076.20	13400.96	105.04
4.76	12106.64	13400.96	90.34
4.77	14877.23	13400.96	111.02
4.77	13241.72	13400.96	98.81
4.77	14351.52	13400.96	107.09
4.77	14731.99	13400.96	109.93
		13400.96	0.00
4.77	13334.69	13400.96	99.51
4.77	13847.64	13400.96	103.33
4.77	13691.86	13400.96	102.17
4.76	11878.12	13400.96	88.64
4.77	12212.24	13400.96	91.13
4.77	14468.36	13400.96	107.97
		13400.96	0.00
4.76	14723.16	13400.96	109.87

Compound 19: 13C4-PFOS
1 IPA
2 ST190125M2-1 537 CS-4 19A1701
3 ST190125M2-2 537 CS-3 19A1702
4 ST190125M2-3 537 CS-2 19A1703
5 ST190125M2-4 537 CS-1 19A1704
6 ST190125M2-5 537 CS0 19A1705
7 ST190125M2-6 537 CS1 19A1706

Name	Type	Std. Conc	RT	Area	ICAL Area	Area \%
190125M2_1	Analyte	28.7			6522.30	0.00
190125M2_2	Analyte	28.7	5.10	6318.25	6522.30	96.87
190125M2_3	Analyte	28.7	5.10	6177.97	6522.30	94.72
190125M2_4	Analyte	28.7	5.10	6156.59	6522.30	94.39
190125M2_5	Analyte	28.7	5.10	6344.74	6522.30	97.28
190125M2_6	Analyte	28.7	5.10	6716.11	6522.30	102.97
190125M2_7	Analyte	28.7	5.10	7051.90	6522.30	108.12

8 ST190125M2-7 537 CS2 19A1707
9 ST190125M2-8 537 CS3 19A1708
10 ST190125M2-9 537 CS4 19A1709
11 ST190125M2-10 537 CS5 19A1710
12 IPA
13 ICV190125M2-1 537 ICV 19A1711
14 IPA
15 B9A0191-BS1 LFB 0.25
16 B9A0191-BSD1 LFBD 0.25
17 B9A0191-BLK1 LRB 0.25
18 1900103-03RE1 WI-AF-1RW67-0119 0.2408
19 1900103-05RE1 WI-AF-1RW68-0119 0.24813
20 1900103-06RE1 WI-AF-1RW68P-0119 0.2517
21 1900103-08RE1 WI-AF-1RW69-0119 0.24947
22 1900103-12RE1 WI-AF-1RW71-0119 0.2497
23 1900157-01 WR1901181300KER 0.25378
24 B9A0154-BS1 LFB 0.25
25 B9A0154-MS1 LFSM 0.2622
26 B9A0154-MSD1 LFSMD 0.25876
27 B9A0154-BLK1 LRB 0.25
28 1900143-01 F8F9-PFOS 0.24632
29 1900143-02 F8F9-Blank 0.26305
30 1900153-01 WI-AF-1RW77-0119 0.24887
31 1900153-02 WI-AF-1FB77-0119 0.25759
32 IPA
33 ST190125M2-11 537 CS1 19A1706
34 1900153-03 WI-AF-1RW78-0119 0.26025
35 1900153-04 WI-AF-1RW78P-0119 0.26161 36 1900153-05 WI-AF-1FB78-0119 0.2601
37 1900153-06 WI-AF-1RW79-0119 0.26144 38 1900153-07 WI-AF-1FB79-0119 0.26248
39 1900153-08 WI-AF-1RW80-0119 0.25982
40 1900153-09 WI-AF-1FB80-0119 0.26087
41 1900154-01 PW4-011719-DW 0.25717

190125M2 8 Analyte 190125M2_9 Analyte 190125M2_10 Analyte 190125M2_11 Analyte 190125M2_12 Analyte 190125M2_13 Analyte 190125M2_14 Analyte 190125M2_15 Analyte 190125M2_16 Analyte 190125M2_17 Analyte 190125M2_18 Analyte 190125M2_19 Analyte 190125M2_20 Analyte 190125M2_21 Analyte 190125M2_22 Analyte 190125M2_23 Analyte 190125M2_24 Analyte 190125M2_25 Analyte 190125M2_26 Analyte 190125M2_27 Analyte 190125M2_28 Analyte 190125M2 29 Analyte 190125M2_30 Analyte 190125M2_31 Analyte 190125M2_32 Analyte 190125M2_33 Analyte 190125M2_34 Analyte 190125M2_35 Analyte 190125M2_36 Analyte 190125M2_37 Analyte 190125M2_38 Analyte 190125M2_39 Analyte 190125M2_40 Analyte 190125M2_41 Analyte

28.7	5.10	6881.49	6522.30	105.51
28.7	5.10	6653.97	6522.30	102.02
28.7	5.10	6486.16	6522.30	99.45
28.7	5.10	6435.83	6522.30	98.67
28.7			6522.30	0.00
28.7	5.10	6857.27	6522.30	105.14
28.7			6522.30	0.00
28.7	5.10	6143.01	6522.30	94.18
28.7	5.10	6378.95	6522.30	97.80
28.7	5.10	6286.17	6522.30	96.38
28.7	5.10	6409.75	6522.30	98.27
28.7	5.10	6646.72	6522.30	101.91
28.7	5.10	6459.45	6522.30	99.04
28.7	5.10	6269.86	6522.30	96.13
28.7	5.10	7048.35	6522.30	108.07
28.7	5.10	6441.93	6522.30	98.77
28.7	5.10	6507.85	6522.30	99.78
28.7	5.10	6672.41	6522.30	102.30
28.7	5.10	5705.42	6522.30	87.48
28.7	5.10	6052.17	6522.30	92.79
28.7	5.10	6151.74	6522.30	94.32
28.7	5.10	6490.25	6522.30	99.51
28.7	5.10	5957.04	6522.30	91.33
28.7	5.10	6893.07	6522.30	105.68
28.7			6522.30	0.00
28.7	5.10	6638.92	6522.30	101.79
28.7	5.10	6557.18	6522.30	100.53
28.7	5.10	6952.72	6522.30	106.60
28.7	5.10	7039.28	6522.30	107.93
28.7	5.10	6868.30	6522.30	105.30
28.7	5.10	6190.28	6522.30	94.91
28.7	5.10	7286.29	6522.30	111.71
28.7	5.10	6621.71	6522.30	101.52
28.7	5.10	7213.29	6522.30	110.59

42 1900154-02 PW4-011719-FB 0.2617
43 IPA
44 ST190125M2-12 537 CS3 19A1708
45 B9A0141-BS1 LFB 0.25
46 B9A0141-BSD1 LFBD 0.25
47 B9A0141-BLK1 LRB 0.25
48 1900136-01 GWNT1901160950KME 0.24097
49 1900137-01 WR1901161110KER 0.24094
50 IPA
51 ST190125M2-13 537 CS-1 19A1704
$190125 \mathrm{M} 2 _42$ Analyte
$190125 \mathrm{M} 2 _43$ Analyte
$190125 \mathrm{M} 2 _44$ Analyte
$190125 \mathrm{M} 2 _45$ Analyte
$190125 \mathrm{M} 2 _46$ Analyte
$190125 \mathrm{M} 2 _47$ Analyte
$190125 \mathrm{M} 2 _48$ Analyte
$190125 \mathrm{M} 2 _49$ Analyte
$190125 \mathrm{M} 2 _50$ Analyte
$190125 \mathrm{M} 2 _51$ Analyte

28.7	5.10	7444.60	6522.30	114.14
28.7			6522.30	0.00
28.7	5.10	6635.06	6522.30	101.73
28.7	5.10	6535.11	6522.30	100.20
28.7	5.10	7059.48	6522.30	108.24
28.7	5.10	5718.07	6522.30	87.67
28.7	5.10	6240.24	6522.30	95.68
28.7	5.10	7087.78	6522.30	108.67
28.7			6522.30	0.00
28.7	5.10	7300.99	6522.30	111.94

Compound 20: d3-N-MeFOSAA
1 IPA
2 ST190125M2-1 537 CS-4 19A1701
3 ST190125M2-2 537 CS-3 19A1702
4 ST190125M2-3 537 CS-2 19A1703
5 ST190125M2-4 537 CS-1 19A1704
6 ST190125M2-5 537 CS0 19A1705
7 ST190125M2-6 537 CS1 19A1706
8 ST190125M2-7 537 CS2 19A1707
9 ST190125M2-8 537 CS3 19A1708
10 ST190125M2-9 537 CS4 19A1709
11 ST190125M2-10 537 CS5 19A1710
12 IPA
13 ICV190125M2-1 537 ICV 19A1711
14 IPA
15 B9A0191-BS1 LFB 0.25
16 B9A0191-BSD1 LFBD 0.25
17 B9A0191-BLK1 LRB 0.25
18 1900103-03RE1 WI-AF-1RW67-0119 0.2408
19 1900103-05RE1 WI-AF-1RW68-0119 0.24813

Name	Type
$190125 \mathrm{M} 2 _1$	Analyte
$190125 \mathrm{M} 2 _2$	Analyte
$190125 \mathrm{M} 2 _3$	Analyte
$190125 \mathrm{M} 2 _4$	Analyte
$190125 \mathrm{M} 2 _5$	Analyte
$190125 \mathrm{M} 2 _6$	Analyte
$190125 \mathrm{M} 2 _7$	Analyte
$190125 \mathrm{M} 2 _8$	Analyte
$190125 \mathrm{M} 2 _9$	Analyte
$190125 \mathrm{M} 2 _10$	Analyte
$190125 \mathrm{M} 2 _11$	Analyte
$190125 \mathrm{M} 2 _12$	Analyte
$190125 \mathrm{M} 2 _13$	Analyte
$190125 \mathrm{M} 2 _14$	Analyte
$190125 \mathrm{M} 2 _15$	Analyte
$190125 \mathrm{M} 2 _16$	Analyte
$190125 \mathrm{M} 2 _17$	Analyte
$190125 \mathrm{M} 2 _18$	Analyte
$190125 \mathrm{M} 2 _19$	Analyte

Std. Conc
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

RT	Area	ICAL Area	
		Area \%	
10753.65	0.00		
5.39	10088.12	10753.65	93.81
5.39	10084.90	10753.65	93.78
5.39	10739.07	10753.65	99.86
5.39	10593.76	10753.65	98.51
5.39	10954.44	10753.65	101.87
5.39	11478.53	10753.65	106.74
5.39	11323.08	10753.65	105.30
5.39	10746.07	10753.65	99.93
5.39	10429.39	10753.65	96.98
5.39	11099.10	10753.65	103.21
		10753.65	0.00
5.39	11937.70	10753.65	111.01
		10753.65	0.00
5.39	10486.17	10753.65	97.51
5.40	10122.23	10753.65	94.13
5.39	10414.11	10753.65	96.84
5.39	10652.49	10753.65	99.06
5.39	10929.26	10753.65	101.63

20 1900103-06RE1 WI-AF-1RW68P-0119 0.2517
21 1900103-08RE1 WI-AF-1RW69-0119 0.24947
22 1900103-12RE1 WI-AF-1RW71-0119 0.2497
23 1900157-01 WR1901181300KER 0.25378
24 B9A0154-BS1 LFB 0.25
25 B9A0154-MS1 LFSM 0.2622
26 B9A0154-MSD1 LFSMD 0.25876
27 B9A0154-BLK1 LRB 0.25
28 1900143-01 F8F9-PFOS 0.24632
29 1900143-02 F8F9-Blank 0.26305
30 1900153-01 WI-AF-1RW77-0119 0.24887
31 1900153-02 WI-AF-1FB77-0119 0.25759
32 IPA
33 ST190125M2-11 537 CS1 19A1706
34 1900153-03 WI-AF-1RW78-0119 0.26025
35 1900153-04 WI-AF-1RW78P-0119 0.26161
36 1900153-05 WI-AF-1FB78-0119 0.2601
37 1900153-06 WI-AF-1RW79-0119 0.26144
38 1900153-07 WI-AF-1FB79-0119 0.26248
39 1900153-08 WI-AF-1RW80-0119 0.25982
40 1900153-09 WI-AF-1FB80-0119 0.26087
41 1900154-01 PW4-011719-DW 0.25717
42 1900154-02 PW4-011719-FB 0.2617
43 IPA
44 ST190125M2-12 537 CS3 19A1708
45 B9A0141-BS1 LFB 0.25
46 B9A0141-BSD1 LFBD 0.25
47 B9A0141-BLK1 LRB 0.25
48 1900136-01 GWNT1901160950KME 0.24097
49 1900137-01 WR1901161110KER 0.24094
50 IPA
51 ST190125M2-13 537 CS-1 19A1704

190125M2_20 Analyte	40	5.39	11258.46	10753.65	104.69
190125M2_21 Analyte	40	5.39	10456.21	10753.65	97.23
190125M2_22 Analyte	40	5.39	11119.07	10753.65	103.40
190125M2_23 Analyte	40	5.39	10932.40	10753.65	101.66
190125M2_24 Analyte	40	5.39	10207.64	10753.65	94.92
190125M2_25 Analyte	40	5.39	11506.62	10753.65	107.00
190125M2_26 Analyte	40	5.39	9952.61	10753.65	92.55
190125M2_27 Analyte	40	5.39	10105.67	10753.65	93.97
190125M2_28 Analyte	40	5.39	10685.91	10753.65	99.37
190125M2_29 Analyte	40	5.39	11327.13	10753.65	105.33
190125M2_30 Analyte	40	5.39	10248.05	10753.65	95.30
190125M2_31 Analyte	40	5.40	11496.63	10753.65	106.91
190125M2_32 Analyte	40			10753.65	0.00
190125M2_33 Analyte	40	5.39	11589.88	10753.65	107.78
190125M2_34 Analyte	40	5.39	11602.90	10753.65	107.90
190125M2_35 Analyte	40	5.39	11647.97	10753.65	108.32
190125M2_36 Analyte	40	5.39	12301.80	10753.65	114.40
190125M2_37 Analyte	40	5.39	11544.30	10753.65	107.35
190125M2_38 Analyte	40	5.39	10446.77	10753.65	97.15
190125M2_39 Analyte	40	5.39	12744.75	10753.65	118.52
190125M2_40 Analyte	40	5.39	11154.42	10753.65	103.73
190125M2_41 Analyte	40	5.39	12335.59	10753.65	114.71
190125M2_42 Analyte	40	5.39	12760.36	10753.65	118.66
190125M2_43 Analyte	40			10753.65	0.00
190125M2_44 Analyte	40	5.39	11109.69	10753.65	103.31
190125M2_45 Analyte	40	5.39	11631.68	10753.65	108.16
190125M2_46 Analyte	40	5.39	11811.07	10753.65	109.83
190125M2_47 Analyte	40	5.39	10646.56	10753.65	99.00
190125M2_48 Analyte	40	5.39	10639.09	10753.65	98.93
190125M2_49 Analyte	40	5.39	11806.01	10753.65	109.79
190125M2_50 Analyte	40			10753.65	0.00
190125M2_51 Analyte	40	5.39	12934.24	10753.65	120.28

CCAL

ID
32 IPA
33 ST190125M2-11 537 CS1 19A1706
34 1900153-03 WI-AF-1RW78-0119 0.26025
35 1900153-04 WI-AF-1RW78P-0119 0.26161
36 1900153-05 WI-AF-1FB78-0119 0.2601
37 1900153-06 WI-AF-1RW79-0119 0.26144
38 1900153-07 WI-AF-1FB79-0119 0.26248
39 1900153-08 WI-AF-1RW80-0119 0.25982
40 1900153-09 WI-AF-1FB80-0119 0.26087
41 1900154-01 PW4-011719-DW 0.25717
42 1900154-02 PW4-011719-FB 0.2617
43 IPA
44 ST190125M2-12 537 CS3 19A1708
44 ST190125M2-12 537 CS3 19A1708
45 B9A0141-BS1 LFB 0.25
46 B9A0141-BSD1 LFBD 0.25
47 B9A0141-BLK1 LRB 0.25
48 1900136-01 GWNT1901160950KME 0.24097
49 1900137-01 WR1901161110KER 0.24094
50 IPA
51 ST190125M2-13 537 CS-1 19A1704

Name	Type	Std. Conc	RT	Area	CCAL Area	Area $\%$
190125M2_32	Analyte	10			13718.64	0.00
190125M2_33 Analyte	10	4.77	13718.64	$\mathbf{1 3 7 1 8 . 6 4}$	$\mathbf{1 0 0 . 0 0}$	
190125M2_34 Analyte	10	4.76	13743.12	13718.64	100.18	
190125M2_35 Analyte	10	4.76	13413.73	13718.64	97.78	
190125M2_36 Analyte	10	4.76	14040.47	13718.64	102.35	
190125M2_37 Analyte	10	4.77	14076.20	13718.64	102.61	
190125M2_38 Analyte	10	4.76	12106.64	13718.64	88.25	
190125M2_39 Analyte	10	4.77	14877.23	13718.64	108.45	
190125M2_40 Analyte	10	4.77	13241.72	13718.64	96.52	
190125M2_41 Analyte	10	4.77	14351.52	13718.64	104.61	
190125M2_42 Analyte	10	4.77	14731.99	13718.64	107.39	
190125M2_43 Analyte	10			13718.64	0.00	
190125M2_44 Analyte	10	4.77	13334.69	13718.64	97.20	
190125M2_44 Analyte	10	4.77	13334.69	13334.69	100.00	
190125M2_45 Analyte	10	4.77	13847.64	13334.69	103.85	
190125M2_46 Analyte	10	4.77	13691.86	13334.69	102.68	
190125M2_47 Analyte	10	4.76	11878.12	13334.69	89.08	
190125M2_48 Analyte	10	4.77	12212.24	13334.69	91.58	
190125M2_49 Analyte	10	4.77	14468.36	13334.69	108.50	
190125M2_50 Analyte	10			13334.69	0.00	
190125M2_51 Analyte	10	4.76	14723.16	13334.69	110.41	

Compound 19: 13C4-PFOS

	ID
32 IPA	
33	ST190125M2-11 537 CS1 19A1706
34	1900153-03 WI-AF-1RW78-0119 0.26025
35	1900153-04 WI-AF-1RW78P-0119 0.26161

Name	Type
190125M2_32	Analyte
190125M2_33	Analyte
190125M2_34	Analyte
190125M2_35	Analyte

Std. Conc	RT	Area	CCAL Area	Area \%
28.7			6638.92	0.00
28.7	5.10	6638.92	6638.92	100.00
28.7	5.10	6557.18	6638.92	98.77
28.7	5.10	6952.72	6638.92	104.73

36 1900153-05 WI-AF-1FB78-0119 0.2601	190125M2_36	Analyte	28.7	5.10	7039.28	6638.92	106.03
37 1900153-06 WI-AF-1RW79-0119 0.26144	190125M2_37	Analyte	28.7	5.10	6868.30	6638.92	103.45
38 1900153-07 WI-AF-1FB79-0119 0.26248	190125M2_38	Analyte	28.7	5.10	6190.28	6638.92	93.24
39 1900153-08 WI-AF-1RW80-0119 0.25982	190125M2_39	Analyte	28.7	5.10	7286.29	6638.92	109.75
40 1900153-09 WI-AF-1FB80-0119 0.26087	190125M2_40	Analyte	28.7	5.10	6621.71	6638.92	99.74
41 1900154-01 PW4-011719-DW 0.25717	190125M2_41	Analyte	28.7	5.10	7213.29	6638.92	108.65
42 1900154-02 PW4-011719-FB 0.2617	190125M2_42	Analyte	28.7	5.10	7444.60	6638.92	112.14
43 IPA	190125M2_43	Analyte	28.7			6638.92	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44	Analyte	28.7	5.10	6635.06	6638.92	99.94
44 ST190125M2-12 537 CS3 19A1708	190125M2_44	Analyte	28.7	5.10	6635.06	6635.06	100.00
45 B9A0141-BS1 LFB 0.25	190125M2_45	Analyte	28.7	5.10	6535.11	6635.06	98.49
46 B9A0141-BSD1 LFBD 0.25	190125M2_46	Analyte	28.7	5.10	7059.48	6635.06	106.40
47 B9A0141-BLK1 LRB 0.25	190125M2_47	Analyte	28.7	5.10	5718.07	6635.06	86.18
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48	Analyte	28.7	5.10	6240.24	6635.06	94.05
49 1900137-01 WR1901161110KER 0.24094	190125M2_49	Analyte	28.7	5.10	7087.78	6635.06	106.82
50 IPA	190125M2_50	Analyte	28.7			6635.06	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2_51	Analyte	28.7	5.10	7300.99	6635.06	110.04

Compound 20: d3-N-MeFOSAA

32 IPA	
33	ST190125M2-11 537 CS1 19A1706
34	1900153-03 WI-AF-1RW78-0119 0.26025
35	$1900153-04$ WI-AF-1RW78P-0119 0.26161
36	$1900153-05$ WI-AF-1FB78-0119 0.2601
37	$1900153-06$ WI-AF-1RW79-0119 0.26144
38	$1900153-07$ WI-AF-1FB79-0119 0.26248
39	1900153-08 WI-AF-1RW80-0119 0.25982
40	1900153-09 WI-AF-1FB80-0119 0.26087
41	$1900154-01$
42	1900154-02 PW4-011719-DW 0.25717

Name	Type	Std. Conc	RT	Area	CCAL Area	Area \%
190125M2_32	Analyte	40			11589.88	0.00
190125M2_33	Analyte	40	5.39	$\mathbf{1 1 5 8 9 . 8 8}$	$\mathbf{1 1 5 8 9 . 8 8}$	$\mathbf{1 0 0 . 0 0}$
190125M2_34 Analyte	40	5.39	11602.90	11589.88	100.11	
190125M2_35 Analyte	40	5.39	11647.97	11589.88	100.50	
190125M2_36 Analyte	40	5.39	12301.80	11589.88	106.14	
190125M2_37 Analyte	40	5.39	11544.30	11589.88	99.61	
190125M2_38 Analyte	40	5.39	10446.77	11589.88	90.14	
190125M2_39 Analyte	40	5.39	12744.75	11589.88	109.96	
190125M2_40 Analyte	40	5.39	11154.42	11589.88	96.24	
190125M2_41 Analyte	40	5.39	12335.59	11589.88	106.43	
190125M2_42 Analyte	40	5.39	12760.36	11589.88	110.10	

43 IPA	190125M2_43 Analyte	40			11589.88	0.00
44 ST190125M2-12 537 CS3 19A1708	190125M2_44 Analyte	40	5.39	11109.69	11589.88	95.86
44 ST190125M2-12 537 CS3 19A1708	190125M2_44 Analyte	40	5.39	11109.69	11109.69	100.00
45 B9A0141-BS1 LFB 0.25	190125M2_45 Analyte	40	5.39	11631.68	11109.69	104.70
46 B9A0141-BSD1 LFBD 0.25	190125M2_46 Analyte	40	5.39	11811.07	11109.69	106.31
47 B9A0141-BLK1 LRB 0.25	190125M2_47 Analyte	40	5.39	10646.56	11109.69	95.83
48 1900136-01 GWNT1901160950KME 0.24097	190125M2_48 Analyte	40	5.39	10639.09	11109.69	95.76
49 1900137-01 WR1901161110KER 0.24094	190125M2_49 Analyte	40	5.39	11806.01	11109.69	106.27
50 IPA	190125M2_50 Analyte	40			11109.69	0.00
51 ST190125M2-13 537 CS-1 19A1704	190125M2_51 Analyte	40	5.39	12934.24	11109.69	116.42

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

	\# Name	Trace	- Area	15 Area	WiNol:	RRF Mean	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
15	1 PFBS	$299>79.7$	1965.663	6638.924	1.00		3.73	3.73	8.50	9.16	103.6
2	2 PFHxA	$313.2>268.9$	11300.706	13718.638	1.00		4.05	4.06	8.24	9.87	98.7
3	3 PFHpA	$363>318.9$	9838.320	13718.638	1.00		4.42	4.43	7.17	9.96	99.6
4	4 PFHxS	$398.9>79.6$	1566.168	6638.924	1.00		4.53	4.53	6.77	9.35	102.5
5	5 PFOA	$413>368.7$	13357.084	13718.638	1.00		4.77	4.77	9.74	10.2	101.8
$6{ }^{4} \pm$	19 13C4-PFOS	$503.0>79.9$	6638.924	6638.924	1.00	1.000	5.10	5.10	28.7	28.7	100.0
\pm	18 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
8	18 13C2-PFOA	$414.9>369.7$	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
9	19 13C4-PFOS	$503.0>79.9$	6638.924	6638.924	1.00	1.000	5.10	5.10	28.7	28.7	100.0
10	18 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
11	-1										
12	6 PFNA	$463>418.8$	14337.630	13718.638	1.00		5.05	5.05	10.5	10.1	100.6
13	7 PFOS	$499>79.9$	2240.805	6638.924	1.00		5.10	5.10	9.69	9.14	98.9
14	8 PFDA	$513>468.8$	13721.275	13718.638	1.00		5.29	5.29	10.0	9.17	91.7
15	9 N -MeFOSAA	$570.1>419.0$	5112.962	11589.878	1.00		5.39	5.39	17.6	9.20	92.0
16	10 N -EtFOSAA	$584.2>419.0$	4295.566	11589.878	1.00		5.50	5.49	14.8	9.72	97.2
17	18 13C2-PFOA	$414.9>369.7$	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
18	19 13C4-PFOS	$503.0>79.9$	6638.924	6638.924	1.00	1.000	5.10	5.10	28.7	28.7	100.0
19	18 13C2-PFOA	$414.9>369.7$	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
20	20 d3-N-MeFOSAA	$573.3>419.0$	11589.878	11589.878	1.00	1.000	5.39	5.39	40.0	40.0	100.0
21	20 d3-N-MeFOSAA	$573.3>419.0$	11589.878	11589.878	1.00	1.000	5.39	5.39	40.0	40.0	100.0
22	-1										
23	11 PFUnA	$563>518.9$	13510.265	13718.638	1.00		5.50	5.50	9.85	9.79	97.9
24	12 PFDoA	612.9 > 318.8	1950.431	13718.638	1.00		5.68	5.68	1.42	9.95	99.5
25	13 PFTrDA	$662.9>618.9$	18160.631	13718.638	1.00		5.84	5.84	13.2	9.42	94.2
26	14 PFTeDA	712.9 > 668.8	16477.041	13718.638	1.00		5.98	5.98	12.0	9.51	95.1
27.8	15 13C2-PFHxA	$315>269.8$	9043.211	13718.638	1.00	0.641	4.24	4.05	6.59	10.3	102.8
28	18 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
29	18 13C2-PFOA	$414.9>369.7$	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
30	18 13C2-PFOA	$414.9>369.7$	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
31	18 13C2-PFOA	414.9 > 369.7	13718.638	13718.638	1.00	1.000	4.77	4.77	10.0	10.0	100.0
32.	16 13C2-PFDA	$515.1>469.9$	12331.659	13718.638	1.00	0.896	5.29	5.29	8.99	10.0	100.3
33	-1										
$34 \times$	17 d5-N-EtFOSAA	$589.3>419.0$	18001.186	11589.878	1.00	1.512	5.39	5.49	62.1	41.1	102.7

Quantify Compound Summary Report	MassLynx MassLynx V4.1 SCN945 SCN960	Page 1 of 2
Vista Analytical Laboratory		
Dataset:	F:IProjectsIPFAS.PROTResults1190125M21190125M2-IIS AREAS.qId	
Last Altered:	Saturday, January 26, 2019 15:47:03 Pacific Standard Time	
Printed:	Saturday, January 26, 2019 18:30:44 Pacific Standard Time	

Method: F:IProjects|PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01
Calibration: F:|Projects\PFAS.PROICurveDBIC18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

	\# Name	ID	Acq.Date	Acq.Time
1	1 190125M2_1	IPA	25-Jan-19	17:22:45
2	2 190125M2_2	ST 190125M2-1 537 CS-4 19A1701	25-Jan-19	17:34:29
3	3 19012.5M2_3	ST190125M2-2 537 CS-3 19A1702	25-Jan-19	17:46:20
4	4 190125M2_4	ST190125M2-3 537 CS-2 19A1703	25-Jan-19	17:58:06
5	5 190125M2_5	ST 190125M2-4 537 CS-1 19A1704	25-Jan-19	18:09:57
6	6 190125M2_6	ST190125M2-5 537CSO 19A1705	25-Jan-19	18:21:43
7	7 190125M2_7	ST190125M2-6537 CS1 19A1706	25-Jan-19	18:33:26
8	8 190125M2_8	ST190125M2-7 537 CS2 19A1707	25-dan-19	18:45:17
9	9 190125M2_9	ST190125M2-8537 CS3 19A1708	25-Jan-19	18:57:03
10	10 190125M2_10	ST190125A2-9 537 CS4 19A1709	25-Jan-19	19:08:54
11	11 190125M2_11	ST190125M2-10537 CS5 19A1710	25-Jan-19	19:20:39
12	12 190125M2_12	IPA	25-Jan-19	19:32:30
13	13 190125M2_13	KCV190125M2-1537 ICV 19A1711	25-Jan-19	19:44:16
14	14 190125M2_14	IPA	25-Jan-19	19:56:07
15	15 190125M2_15	B9A0191-BS1 LFB 0.25	25-Jan-19	20:07.52
16	16 190125M2_76	B9A0191-BSD1 LFBD 0.25	25-Jan-19	20:19:43
17	17 190125M2_17	B9A0191-BLK1 LRB 0.25	25-Jan-19	20:31:29
18	18 190125M2_18	1900103-03RE1 WI-AF-1RW67-0119 0.2408	25-Jan-19	20:43:20
19	19 190125M2_19	1900103-05RE1 WI-AF-1RW68-0119 0.24813	25-Jan-19	20:55:03
20	20 190125M2_20	1900103-06RE1 WI-AF-1RW68P-0119 0.2517	25-Jan-19	21:06:54
21	21 190125M2_21	1900103-08RE1 WI-AF-1RW69-0119 0.24947	25-Jan-19	21:18:40
22	22 190125M2_22	1900103-12RE1 WI-AF-1RW71-0119 0.2497	25-Jan-19	21:30:31
23	23 190125M2_23	1900157-01 WR1901 181300KER 0.25378	25-Jan-19	21:42:15
24	24 190125M2_24	B9A0154-BS1 LFB 0.25	25-Jan-19	21:54:07
25	25 190125M2_25	B9A0154-MS1 LFSM 0.2622	25-Jan-19	22:05:52
26	26 190125M2_26	B9A0154-MSD1 LFSMD 0.25876	25-Jan-19	22:17:44
27	27 190125M2_27	B9A0154-BLK1 LRB 0.25	25-Jan-19	22:29:29
28	28 190125M2_28	1900143-01 F8F9-PFOS 0.24632	25-Jan-19	22:41:12
29	29 190125M2_29	1900143-02 F8F9-Blank 0.26305	25-Jan-19	22:53:03
30	30190125 M 2 _30	1900153-01 WI-AF-1RW77-0119 0.24887	25-Jan-19	23:04:49
31	31 190125M2_31	1900153-02 WI-AF-4 FB77-0119 0.25759	25-Jan-19	23:16:40
$32=$	32 190125M2_32	IPA	25-Jan-19	23:28:25

Dataset:	F:IProjects\PFAS.PRO\Results\190125M2\190125M2-IIS AREAS.qld
Last Altered:	Saturday, January 26, 2019 15:47:03 Pacific Standard Time
Printed:	Saturday, January 26, 2019 18:30:44 Pacific Standard Time

Compound name: PFBS

33		\# Name	ID	Acq.Date	Acg Tine
		33 190125M2_33	ST190125M2-11537 CS1 19A1706	25-Jan-19	23:40:16
34		34 190125M2_34	1900153-03 WI-AF-1RW78-0119 0.26025	25-Jan-19	23:52:01
35		35 190125M2_35	1900153-04 WH-AF-1RW78P-0119 0.26161	26-Jan-19	00:03:52
36		36 190125M2_36	1900153-05 WI-AF-1FB78-01190.2601	26-Jan-19	00:15:37
37		37 190125M2_37	1900153-06 WI-AF-1RW79-01190.26144	26-Jan-19	00:27:29
38		38 190125M2_38	1900153-07 WI-AF-1FB79-01190.26248	26-Jan-19	00:39:14
39		39 190125M2_39	1900153-08 WI-AF-1RW80-0119 0.25982	26-Jan-19	00:51:05
40		40 190125M2_40	1900153-09 WI-AF-1FB80-0119 0.26087	26-Jan-19	01:02:52
41		41 190125M2_41	1900154-01 PW4-011719-DW 0.25717	26-Jan-19	01:14:43
42		42 190125M2_42	1900154-02 PW4-011719-FB 0.2617	26-Jan-19	01:26:27
43		43 190125M2_43	IPA	26-Jan-19	01:38:19
4		44 190125M2_44	ST190125M2-12537 CS3 19A1708	26-Jan-19	01:50:04
5		45 190125M2_45	B9A0141-BS1 LFB 0.25	26-Jan-19	02:01:56
46		46 190125M2_46	B9A0141-BSD1 LFBD 0.25	26-Jan-19	02:13:41
47		47 190125M2_47	B9A0141-BLK1 LRB 0.25	26-Jan-19	02:25:24
48		48 190:25M2_48	1900136-01 GWNT1901160950KME 0.24097	26-Jan-19	02:37:15
9		49 190125M2_49	1900137-01 WR1901161110KER 0.24094	26-Jan-19	02:49:00
50		50 190125M2_50	IPA	26-Jan-19	03:00:52
51		51 190125M2_51	ST190125M2-13 537 CS-1 19A1704	26-Jan-19	03:12:37

Dataset:	F:IProjects\PFAS.PRO\Results\190125M2\190125M2-33.qld
Last Altered:	Saturday, January 26, 2019 18:32:42 Pacific Standard Time
Printed:	Saturday, January 26, 2019 18:32:59 Pacific Standard Time

Method: F:(Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2 33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

PFHxA

13C2-PFOA

PFHpA

13C2-PFOA
F7:MRM of 1 channel,ES-

PFHxS

13C4-PFOS

PFOA

13C2-PFOA
F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.645 \mathrm{e}+005$

Dataset:	F:IProjects\PFAS.PRO\Resultsi190125M2\190125M2-33.qld
Last Altered:	Saturday, January 26, 2019 18:32:42 Pacific Standard Time
Printed:	Saturday, January 26, 2019 18:32:59 Pacific Standard Time

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.645 \mathrm{e}+005$

13C4-PFOS
F11:MRM of 1 channel, ES-
$503.0>79.9$ $1.565 e+005$

13C2-PFOA
F7:MRM of 1 channel,ES$414.9>369.7$ $3.645 \mathrm{e}+005$

d3-N-MeFOSAA
F16:MRM of 1 channel,ES-
$573.3>419.0$ $2.677 \mathrm{e}+005$

N-EtFOSAA
F17:MRM of 2 channets,ES$584.2>419.0$ $8.401 e+004$

d3-N-MeFOSAA
F16:MRM of 1 channel,ES-
$573.3>419.0$ $2.677 \mathrm{e}+0.05$

Dataset:	F:\Projects\PFAS.PRO\Results\190125M2\190125M2-33.qId
Last Altered:	Saturday, January 26, 2019 18:32:42 Pacific Standard Time
Printed:	Saturday, January 26, 2019 18:32:59 Pacific Standard Time

Name: 190125M2_33, Date: 25-Jan-2019, Time: 23:40:16, ID: ST190125M2-11 537 CS1 19A1706, Description: 537 CS1 19A1706

13C2-PFOA
F7:MRM of 1 channel,ES$414.9>369.7$ $3.645 e+005$

13C2-PFOA
F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.645 \mathrm{e}+005$

13C2-PFOA
F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.645 \mathrm{e}+005$

PFTeDA

13C2-PFOA
F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.645 \mathrm{e}+005$

13C2-PFDA
F13:MRM of 1 channel,ES-
$515.1>469.9$ $2.930 \mathrm{e}+0.5$

Dataset: FilProjectsIPFAS.PROIResults1190125M21190125M2-44.qld
Last Altered: Saturday, January 26, 2019 18:35:09 Pacific Standard Time Printed: Saturday, January 26, 2019 18:35:41 Pacific Standard Time

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 $19 A 1708$

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN
Vista Analytical Laboratory
Dataset: \quad F:IProjects\PFAS.PRO\Results\190125M2\190125M2-IIS AREAS.qId
Last Altered:

Saturday, January 26, 2019	15:47:03 Pacific Standard Time
Printed:	Saturday, January 26, 2019

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

		\# Name	1 I	Acq. ${ }^{\text {date }}$	Acq. Time
1	,	1 190125M2_1	IPA	25-Jan-19	17:22:45
2		2 190125M2_2	ST 190125M2-1537 CS-4 19A1701	25-Jan-19	17:34:29
3		3 190125M2_3	ST190125M2-2 537 CS-3 19A1702	25-Jan-19	17:46:20
4		4 190125M2_4	ST190125M2-3 537 CS-2 19A1703	25-Jan-19	17:58:06
5		5 190125M2_5	ST190125M2-4 537 CS-1 19A1704	25-Jan-19	18:09:57
6		6 190125M2_6	ST190125M2-5 537 CS0 19A1705	25-Jan-19	1821:43
7		7 190125M2_7	ST190125M2-6 537 CS1 19A1706	25-Jan-19	18:33:26
8	\% ${ }^{\text {a }}$	8 190125M2_8	ST190125M2-7 537 CS2 19A1707	25-Jan-19	18:45:17
9		$9190125 \mathrm{M2}$ _9	ST190125M2-8 537 CS3 19A1708	25-Jan-19	18:57:03
10		10 190125M2_10	ST190125M2-9 537 CS4 19A1709	25-Jan-19	19:08:54
11		11 190125M2_11	ST190125M2-10 537 CS5 19A1710	25-Jan-19	19:20:39
12	Wit\%	12 190125M2_12	IPA	25-Jan-19	19:32:30
13.		13 190125M2_13	ICV190125M2-1 537 ICV 19 Al 171	25-Jan-19	19:44:16
14		14 190125M2_14	IPA	25-Jan-19	19:56:07
15		15 190125M2_15	B9A0191-BS1 LFB 0.25	25-Jan-19	20:07:52
16.	\%	$16190125 \mathrm{M} 2 _16$	B9A0191-BSD1 LFBD 0.25	25-Jan-19	20:19:43
17.		17 190125M2_17	B9A0191-BLK1 LRB 0.25	25-Jan-19	20:31:29
18	,	18 190125M2_18	1900103-03RE1 WI-AF-1RW67-0119 0.2408	25-Jan-19	20:43:20
19	\%	19 190125M2_19	1900103-05RE1 WI-AF-1RW68-0119 0.24813	25-Jan-19	20:55:03
20		20 190125M2_20	1900103-06RE1 WI-AF-1RW68P-0119 0.2517	25-Jan-19	21:06:54
21	4,	21 190125M2_21	1900103-08RE1 WI-AF-1RW69-0119 0.24947	25-Jan-19	21:18:40
22:	- ${ }^{\text {+ }}$	22 190125M2_22	1900103-12RE1 WI-AF-1RW71-0119 0.2497	25-Jan-19	21:30:31
23	N	23 190125M2_23	1900157-01 WR1901181300KER 0.25378	25-Jan-19	21:42:15
24		24 190125M2_24	B9A0154-BS1 LFB 0.25	25-Jan-19	21:54:07
25	H	25 190125M2_25	B9A0154-MS1 LFSM 0.2622	25-Jan-19	22:05:52
26.		26 190125M2_26	B9A0154-MSD1 LFSMD 0.25876	25-Jan-19	22:17:44
27		27 190125M2_27	B9A0154-BLK1 LRB 0.25	25-Jan-19	22:29:29
28		28 190125M2_28	1900143-01 F8F9-PFOS 0.24632	25-Jan-19	22:41:12
29		29 190125M2_29	1900143-02 F8F9-Blank 0.26305	25-Jan-19	22:53:03
30.	\%	30 190125M2_30	1900153-01 WI-AF-1RW77-0119 0.24887	25-Jan-19	23:04:49
31.		31 190125M2_31	1900153-02 WI-AF-1FB77-0119 0.25759	25-Jan-19	23:16:40
32.	W1:	32 190125M2_32	IPA	25-Jan-19	23:28:25

Quantify Compound Summary Report \quad MassLynx MassLynx V4.1 SCN945 SCN	
Vista Analytical Laboratory	
Dataset:	F:IProjectsIPFAS.PROTResults1190125M21190125M2-IIS AREAS.qId
Last Altered:	Saturday, January 26, 2019 15:47:03 Pacific Standard Time
Printed:	Saturday, January 26, 2019 18:30:44 Pacific Standard Time

Compound name: PFBS

Method: F:IProjectsIPFAS.PROWethDBIPFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:IProjects\PFAS.PROICurveDBIC18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 $19 A 1708$

13C4-PFOS

13C2-PFOA
F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.577 \mathrm{e}+005$

13C2-PFOA
F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.577 \mathrm{e}+005$

PFHxS

13C4-PFOS

13C2-PFOA
F7:MRM of 1 channel,ES-
$414.9>369.7$ $3.577 \mathrm{e}+005$
Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-44.ald

Last Altered: \quad Saturday, January 26, 2019 18:35:09 Pacific Standard Time
Printed:

$$
\text { Saturday, January 26, } 2019 \text { 18:35:41 Pacific Standard Time }
$$

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 $19 A 1708$

Name: 190125M2_44, Date: 26-Jan-2019, Time: 01:50:04, ID: ST190125M2-12 537 CS3 19A1708, Description: 537 CS3 $19 A 1708$

Dataset:	F:IProjects\PFAS.PRO\Results\190125M2\190125M2-44.qId
Last Altered:	Saturday, January 26, 2019 18:35:09 Pacific Standard Time
Printed:	Saturday, January 26, 2019 18:35:41 Pacific Standard Time

INITIAL CALIBRATION (ICAL)

INCLUDING ASSOCIATED
INITIAL CALIBRATION VERIFICATION (ICV)

LCMS ICAL Checklist

Correct run log
537_Q4_01-25-19_L14
Name with the date it was run

CoD Summary - Natives re $\mathbf{0 . 9 9}$ - IS Relative $S D<20$ - RS BSD $=0$

Chromatograms - check integration - PFHxS and PFOS - linear and branched

Verify Standard IDs

Natives St. Concentration checked against Element or current Spike Sheet

IS St. Concentration checked against Element or current Spike Sheet
9
RS Concentration correct
Natives r $^{2} \geq 0.99$
4 Natives $\pm 30 \%$, lowest point $\pm 50 \%$.
Graphs $-\mathrm{r}^{2} \geq 0.99$
$\square 6$ points for quadratic/5 points for linear/correct curve fitting
\square IS Relative $S D<20$

IS $\pm 50 \%$

RS Relative $S D=0$

ICV Ital correct

ICV name correct
ICV attached to ICAL
\rightarrow ICV 70-130\%
Checkmark, date, sign

Instrument blank saved

Initial/Date:

Dataset: F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qld
no high pts chapped
Last Altered: \quad Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999485$
Calibration curve: $0.928174^{*} \mathrm{x}$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)

Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFHxA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999436$
Calibration curve: $0.834519{ }^{\text {* }} \mathrm{x}$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Printed: \quad Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFHpA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999680$
Calibration curve: $0.720119^{*} \times$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998938$
Calibration curve: $0.724235{ }^{\text {* } x}$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%DEV	Conc. Flag	Cob	CoD Flag	$x=$ excluded
15-3	1 190125M2_2	Standard	0.228	4.53	28.842	6318.250	0.131	0.2	-20.7	NO	0.999	NO	MM
2	2 190125M2_3	Standard	0.456	4.53	60.555	6177.965	0.281	0.4	-14.8	NO	0.999	NO	MM
$3{ }^{3}$	3 190125M2_4	Standard	0.912	4.53	120.716	6156.587	0.563	0.8	-14.8	NO	0.999	NO	MM
4.	4 190125M2_5	Standard	1.820	4.53	280.718	6344.740	1.270	1.8	-3.7	NO	0.999	NO	MM
5	5 190125M2_6	Standard	4.560	4.53	683.872	6716.111	2.922	4.0	-11.5	NO	0.999	NO	MM
$6{ }^{6}$	6190125 M 2 _7	Standard	9.120	4.53	1535.540	7051.897	6.249	8.6	-5.4	NO	0.999	NO	MM
7 7) \%	7 190125M2_8	Standard	22.800	4.53	3795.457	6881.489	15.829	21.9	-4.1	NO	0.999	NO	MM
8.	8 190125M2_9	Standard	45.500	4.53	7523.678	6653.967	32.451	44.8	-1.5	NO	0.999	NO	MM
9 ${ }^{\text {a }}$ (tht	9 190125M2_10	Standard	68.200	4.53	11243.596	6486.159	49.751	68.7	0.7	NO	0.999	NO	MM
	10 190125M2_11	Standard	91.000	4.53	15180.713	6435.829	67.697	93.5	2.7	NO	0.999	NO	MM

Dataset:
F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: \quad Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999691$
Calibration curve: 0.956545 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999510$
Calibration curve: $1.03879{ }^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999087$
Calibration curve: $1.05987^{*} \mathrm{X}$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999110$
Calibration curve: $-0.000668869^{*} x^{\wedge} 2+1.09721^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	IS Area	Fiesponse	Conc	\% Dev	Conc. Flag	Cob	CoD Fray	$x=$ excluded
1 \% ${ }^{\text {k }}$	1 190125M2_2	Standard	0.250	5.29	363.418	13238.635	0.275	0.3	0.1	NO	0.999	NO	bb
2	2 190125M2_3	Standard	0.500	5.29	722.222	13422.568	0.538	0.5	-1.9	NO	0.999	NO	bb
3	3 190125M2_4	Standard	1.000	5.28	1396.377	13197.230	1.058	1.0	-3.5	NO	0.999	NO	bb
4	4 190125M2_5	Standard	2.000	5.29	2729.562	13232.861	2.063	1.9	-5.9	NO	0.999	NO	bb
5	5 190125M2_6	Standard	5.000	5.29	6726.882	14111.915	4.767	4.4	-12.9	NO	0.999	NO	bb
6	6 190125M2_7	Standard	10.000	5.29	14669.250	14405.215	10.183	9.3	-6.7	NO	0.999	NO	bb
7.	7 190125M2_8	Standard	25.000	5.29	37072.961	13324.019	27.824	25.8	3.1	NO	0.999	NO	bb
8	8 190125M2_9	Standard	50.000	5.29	71425.406	13089.006	54.569	51.3	2.7	NO	0.999	NO	bb
9 Mitut	9 190125M2_10	Standard	75.000	5.29	103551.703	13058.350	79.299	75.8	1.0	NO	0.999	NO	bb
$10.2{ }^{2}$	10 190125M2_11	Standard	100.000	5.28	131459.625	12929.790	101.672	98.6	-1.4	NO	0.999	NO	bb

Dataset:
F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: \mathbb{N}-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998535$
Calibration curve: 0.000374442 * $x^{\wedge} 2+1.91365$ * x
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name ${ }^{\text {a }}$	Type	Sta Conc	RT	Area	IS Area	Response	Conce,	\%Dev	Conc. Flag	Cob	Cob Flag	x-excluded
1.	1 190125M2_2	Standard	0.250	5.39	82.741	10088.120	0.328	0.2	-31.4	NO	0.999	NO	MM
2	2 190125M2_3	Standard	0.500	5.39	199.056	10084.904	0.790	0.4	-17.5	NO	0.999	NO	MM
3	3 190125M2_4	Standard	1.000	5.39	488.625	10739.072	1.820	1.0	-4.9	NO	0.999	NO	MM
4	4 190125M2_5	Standard	2.000	5.39	902.930	10593.758	3.409	1.8	-11.0	NO	0.999	NO	MM
5	5 190125M2_6	Standard	5.000	5.39	2609.205	10954.437	9.527	5.0	-0.5	NO	0.999	NO	MM
6	$6190125 \mathrm{M} 2 _7$	Standard	10.000	5.39	5074.707	11478.527	17.684	9.2	-7.8	NO	0.999	NO	MM
7	7 190125M2_8	Standard	25.000	5.39	13389.051	11323.078	47.298	24.6	-1.6	NO	0.999	NO	MM
8.	$8190125 \mathrm{M} 2 _9$	Standard	50.000	5.39	26630.715	10746.071	99.127	51.3	2.6	NO	0.999	NO	MM
9	9 190125M2_10	Standard	75.000	5.39	39574.680	10429.392	151.781	78.1	4.2	NO	0.999	NO	MM
10	10 190125M2_11	Standard	100.000	5.39	52609.309	11099.103	189.598	97.2	-2.8	NO	0.999	NO	MM

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998372$
Calibration curve: 1.52534 * X
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	\# Name	Type	11.	RT	Area	IS Area	Response	Conce	\%Dev	Conc. Flag	CoD	CodFlag	x-excluded
1	1 190125M2_2	Standard	0.250	5.50	45.770	10088.120	0.181	0.1	-52.4	NO	0.998	NO	MMX
2	2 190125M2_3	Standard	0.500	5.49	194.907	10084.904	0.773	0.5	1.4	NO	0.998	NO	MM
3	3 190125M2_4	Standard	1.000	5.49	405.399	10739.072	1.510	1.0	-1.0	NO	0.998	NO	MM
4	4 190125M2_5	Standard	2.000	5.49	748.909	10593.758	2.828	1.9	-7.3	NO	0.998	NO	MM
5	5 190125M2_6	Standard	5.000	5.49	1974.844	10954.437	7.211	4.7	-5.4	NO	0.998	NO	MM
6	6190125 M 2 _7	Standard	10.000	5.49	4324.360	11478.527	15.069	9.9	-1.2	NO	0.998	NO	MM
17	$7190125 \mathrm{M} 2 _8$	Standard	25.000	5.50	10045.784	11323.078	35.488	23.3	-6.9	NO	0.998	NO	MM
8	8 190125M2_9	Standard	50.000	5.49	21213.309	10746.071	78.962	51.8	3.5	NO	0.998	NO	MM
9	9 190125M2_10	Standard	75.000	5.49	31060.146	10429.392	119.125	78.1	4.1	NO	0.998	NO	MM
10	$10190125 \mathrm{M} 2 _11$	Standard	100.000	5.49	41229.375	11099.103	148.586	97.4	-2.6	NO	0.998	NO	MM

Dataset: \quad F:IProjects\PFAS.PROXResults 1 190125M2 190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999265$
Calibration curve: $1.00604^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999125$
Calibration curve: $0.142897{ }^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: F.JProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: PFTrDA

Coefficient of Determination: R^2 $=0.999385$
Calibration curve: 1.40511^{*} x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

		\# Name	Type	Sta. Conic	RT.	Area	IS Area	Response	Conc.	\%Dev	Conc Flas	CoD	CoDflag	$\mathrm{x}=$ excluded
		1 190125M2_2	Standard	0.250	5.84	517.185	13238.635	0.391	0.3	11.2	NO	0.999	NO	bb
2		2 190125M2_3	Standard	0.500	5.84	960.131	13422.568	0.715	0.5	1.8	NO	0.999	NO	bb
3		3 190125M2_4	Standard	1.000	5.84	1803.740	13197.230	1.367	1.0	-2.7	NO	0.999	NO	bb
4		4 190125M2_5	Standard	2.000	5.84	3697.014	13232.861	2.794	2.0	-0.6	NO	0.999	NO	bb
5		5 190125M2_6	Standard	5.000	5.84	9384.550	14111.915	6.650	4.7	-5.3	NO	0.999	NO	bb
6.		6 190125M2_7	Standard	10.000	5.84	20118.523	14405.215	13.966	9.9	-0.6	NO	0.999	NO	bb
7		7 190125M2_8	Standard	25.000	5.84	49768.676	13324.019	37.353	26.6	6.3	NO	0.999	NO	bb
8		8 190125M2_9	Standard	50.000	5.84	93476.539	13089.006	71.416	50.8	1.7	NO	0.999	NO	bb
9	Pry	9 190125M2_10	Standard	75.000	5.84	135829.625	13058.350	104.017	74.0	-1.3	NO	0.999	NO	bb
10	U4	10 190125M2_11	Standard	100.000	5.84	179666.344	12929.790	138.955	98.9	-1.1	NO	0.999	NO	bb

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999344$
Calibration curve: 1.2626 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

| Quantify Compound Summary Report
 Vista Analytical Laboratory |
| :--- | :--- |
| MassLynx MassLynx V4.1 SCN94 |
| Last Altered: F:IProjects\PFAS.PROTResults\190125M2\190125M2-CRV.qid
 Printed: Saturday, January 26, 2019
 15:19:04 Pacific Standard Time |

Compound name: 13C2-PFHXA

Response Factor: 0.641184
RRF SD: 0.0202142 , Relative SD: 3.15263
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDA

Response Factor: 0.896264
RRF SD: 0.0463036 , Relative SD: 5.16629
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN94
Vista Analytical Laboratory

Dataset:	F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered:	Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:	Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: d5-N-EtFOSAA

Response Factor: 1.51187
RRF SD: 0.0499222 , Relative SD: 3.30201
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFOA

Response Factor: 1

RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sld. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cob	CoD Flag	x-excluded
1	1 190125M2_2	Standard	10.000	4.77	13238.635	13238.635	10.000	10.0	0.0	NO		NO	MM
2 \%	2 190125M2_3	Standard	10.000	4.76	13422.568	13422.568	10.000	10.0	0.0	NO		NO	bb
3	$3190125 \mathrm{M} 2 _4$	Standard	10.000	4.76	13197.230	13197.230	10.000	10.0	0.0	NO		NO	bb
4	4 190125M2_5	Standard	10.000	4.76	13232.861	13232.861	10.000	10.0	0.0	NO		NO	bb
5	5 190125M2_6	Standard	10.000	4.77	14111.915	14111.915	10.000	10.0	0.0	NO		NO	bb
6	6190125 M 2 _7	Standard	10.000	4.77	14405.215	14405.215	10.000	10.0	0.0	NO		NO	bb
7.	7 190125M2_8	Standard	10.000	4.77	13324.019	13324.019	10.000	10.0	0.0	NO		NO	bb
8 84.	8 190125M2_9	Standard	10.000	4.76	13089.006	13089.006	10.000	10.0	0.0	NO		NO	MM
9	9 190125M2_10	Standard	10.000	4.76	13058.350	13058.350	10.000	10.0	0.0	NO		NO	bb
10.3	10 190125M2_11	Standard	10.000	4.76	12929.790	12929.790	10.000	10.0	0.0	NO		NO	bb

Dataset:	F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered:	Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:	Saturday, January 26, 2019 15:22:19 Pacific Standard Time

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: RF

		\# Name	Type	Sta. Conc	RT:	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$:
1		1 190125M2_2	Standard	28.700	5.10	6318.250	6318.250	28.700	28.7	0.0	NO		NO	bb
2		2 190125M2_3	Standard	28.700	5.10	6177.965	6177.965	28.700	28.7	0.0	NO		NO	bb
3.		3190125 M 2 _4	Standard	28.700	5.10	6156.587	6156.587	28.700	28.7	0.0	NO		NO	bb
4	\%	4 190125M2_5	Standard	28.700	5.10	6344.740	6344.740	28.700	28.7	0.0	NO		NO	bb
5		5 190125M2_6	Standard	28.700	5.10	6716.111	6716.111	28.700	28.7	0.0	NO		NO	bb
6		$6190125 \mathrm{M} 2 \ldots 7$	Standard	28.700	5.10	7051.897	7051.897	28.700	28.7	0.0	NO		NO	bb
7		7 190125M2_8	Standard	28.700	5.10	6881.489	6881.489	28.700	28.7	0.0	NO		NO	bb
8	\#	8 190125M2_9	Standard	28.700	5.10	6653.967	6653.967	28.700	28.7	0.0	NO		NO	bb
	U\%	9 190125M2_10	Standard	28.700	5.10	6486.159	6486.159	28.700	28.7	0.0	NO		NO	bb
10	+	10 190125M2_11	Standard	28.700	5.10	6435.829	6435.829	28.700	28.7	0.0	NO		NO	bb

Compound name: d3-N-MeFOSAA

Response Factor: 1

RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:	F:IProjectsIPFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered:	Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:	Saturday, January 26, 2019 15:22:34 Pacific Standard Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

1		\# Name	IS\#	CoD	CoD Flag	RRSD
		1 PFBS	19	0.9995	NO	
2		2 PFHxA	18	0.9994	NO	
3	5ut\%	3 PFHpA	18	0.9997	NO	
4		4 PFHxS	19	0.9989	NO	
5		5 PFOA	18	0.9997	NO	
6		6 PFNA	18	0.9995	NO	
		7 PFOS	19	0.9991	NO	
8		8 PFDA	18	0.9991	NO	
9	W ${ }^{\text {cte }}$	9 N-MeFOSAA	20	0.9985	NO	
10		10 N-EtFOSAA	20	0.9984	NO	
11	+1\%	11 PFUnA	18	0.9993	NO	
12	\%	12 PFDoA	18	0.9991	NO	
13	+2.	13 PFTrDA	18	0.9994	NO	
14		14 PFTeDA	18	0.9993	NO	
15		15 13C2-PFHxA	18		NO	3.153
16		16 13C2-PFDA	18		NO	5.166
17	114TH䜌	17 d5-N-EtFOSAA	20		NO	3.302
18	\#	18 13C2-PFOA	18		NO	0.000
19	T	19 13C4-PFOS	19		NO	0.000
20	-	$20 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	20		NO	0.000

Dataset:	Untitled
Last Altered:	Saturday, January 26, 2019 15:29:42 Pacific Standard Time
Printed:	Saturday, January 26, 2019 15:29:51 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_011919.mdb 19 Jan 2019 16:03:11
Calibration: F:IProjects|PFAS.PRO\CurveDBIC18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS

ICAL

Compound 18: 13C2-PFOA

| ID | Name | Type |
| :---: | :--- | :--- | :--- |
| 1 ST190125M2-1 537 CS-4 19A1701 | $190125 M 2 _2$ | Standard |
| 2 ST190125M2-2 537 CS-3 19A1702 | $190125 \mathrm{M} 2 _3$ | Standard |
| 3 ST190125M2-3 537 CS-2 19A1703 | $190125 \mathrm{M} 2 _4$ | Standard |
| 4 ST190125M2-4 537 CS-1 19A1704 | $190125 \mathrm{M} 2 _5$ | Standard |
| 5 ST190125M2-5 537 CS0 19A1705 | $190125 \mathrm{M} 2 _6$ | Standard |
| 6 ST190125M2-6 537 CS1 19A1706 | $190125 \mathrm{M} 2 _7$ | Standard |
| 7 ST190125M2-7 537 CS2 19A1707 | $190125 \mathrm{M} 2 _8$ | Standard |
| 8 ST190125M2-8537 CS3 19A1708 | $190125 \mathrm{M} 2 _9$ | Standard |
| 9 ST190125M2-9 537 CS4 19A1709 | $190125 \mathrm{M} 2 _10$ | Standard |
| 10 ST190125M2-10 537 CS5 19A1710 | $190125 \mathrm{M} 2 _11$ | Standard |

High	14405.22	RPD
Low	12929.79	10.80

Compound 19: 13C4-PFOS

ID	Name	Type	Std. Conc RT	Area		IS Area	Response Primary Flags
1 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Standard	28.7	5.10	6318.25	6318.25	28.7 bb
2 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Standard	28.7	5.10	6177.97	6177.97	28.7 bb
3 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Standard	28.7	5.10	6156.59	6156.59	28.7 bb
4 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Standard	28.7	5.10	6344.74	6344.74	28.7 bb
5 ST190125M2-5 537 CS0 19A1705	190125M2_6	Standard	28.7	5.10	6716.11	6716.11	28.7 bb
6 ST190125M2-6 537 CS1 19A1706	190125M2_7	Standard	28.7	5.10	7051.90	7051.90	28.7 bb
7 ST190125M2-7 537 CS2 19A1707	190125M2_8	Standard	28.7	5.10	6881.49	6881.49	28.7 bb
8 ST190125M2-8 537 CS3 19A1708	190125M2_9	Standard	28.7	5.10	6653.97	6653.97	28.7 bb
9 ST190125M2-9 537 CS4 19A1709	190125M2_10	Standard	28.7	5.10	6486.16	6486.16	28.7 bb
10 ST190125M2-10 537 CS5 19A1710	190125M2_11	Standard	28.7	5.10	6435.83	6435.83	28.7 bb
					Average:	6522.30	

ID	Name	Type
1 ST190125M2-1 537 CS-4 19A1701	190125M2_2	Standard
2 ST190125M2-2 537 CS-3 19A1702	190125M2_3	Standard
3 ST190125M2-3 537 CS-2 19A1703	190125M2_4	Standard
4 ST190125M2-4 537 CS-1 19A1704	190125M2_5	Standard
5 ST190125M2-5 537 CSO 19A1705	190125M2_6	Standard
6 ST190125M2-6 537 CS1 19A1706	190125M2_7	Standard
7 ST190125M2-7 537 CS2 19A1707	190125M2_8	Standard
8 ST190125M2-8 537 CS3 19A1708	190125M2_9	Standard
9 ST190125M2-9 537 CS4 19A1709	190125M2_10	Standard
10 ST190125M2-10 537 CS5 19A1710	190125M2_11	Standard

11478.53	RPD			
10084.90	12.93			
Std. Conc RT		Area	IS Area	Response Primary Flags
40	5.39	10088.12	10088.12	40 bb
40	5.39	10084.90	10084.90	40 bb
40	5.39	10739.07	10739.07	40 bb
40	5.39	10593.76	10593.76	40 bb
40	5.39	10954.44	10954.44	40 bb
40	5.39	11478.53	11478.53	40 bb
40	5.39	11323.08	11323.08	40 bb
40	5.39	10746.07	10746.07	40 bb
40	5.39	10429.39	10429.39	40 bb
40	5.39	11099.10	11099.10	40 bb
		Average:	10753.65	

Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Aliered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01

Calibration: F:\Projects\PFAS.PRO\CurveDBIC18 537 Q4 01-25-19 L14.cdb 26 Jan 2019 15:05:56

Compound name: PFBS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999485$
Calibration curve: 0.928174 * x
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFHXA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999436$
Calibration curve: $0.834519^{*} \mathrm{X}$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.ald
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFHpA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999680$
Calibration curve: 0.720119 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998938$
Calibration curve: $0.724235^{*} \times$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:	F:IProjects\PFAS.PRO\Results 1 190125M2\190125M2-CRV.qld
Last Altered:	Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:	Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFOA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999691$
Calibration curve: $0.956545{ }^{*}$ x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: \quad F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFNA
Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999510$
Calibration curve: 1.03879 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:
 F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFOS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999087$
Calibration curve: 1.05987^{*} x
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFDA
Coefficient of Determination: R^2 $=0.999110$
Calibration curve: -0.000668869 * ${ }^{\wedge} 2+1.09721^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:

F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qld
Last Altered: \quad Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: N-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998535$
Calibration curve: $0.000374442{ }^{*} x^{\wedge} 2+1.91365{ }^{*} x$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset: F:IProjectsIPFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: N-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998372$
Calibration curve: 1.52534 * x
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Dataset:	F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered:	Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:	Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFUnA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999265$
Calibration curve: $1.00604^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Laboratory Q1
 Dataset:
 F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
 Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
 Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFDoA

Coefficient of Determination: R^2 $=0.999125$
Calibration curve: 0.142897 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset:
F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qid
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999385$
Calibration curve: $1.40511^{*} x$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:25:21 Pacific Standard Time

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999344$
Calibration curve: 1.2626 * x
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Method: F:IProjects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:IProjects\PFAS.PRO\CurveDB\C18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qid
Last Altered: \quad Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

```

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld

Last Altered: \(\quad\) Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701


Dataset: F:IProjectsIPFAS.PRO\Results1 190125M21190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_2, Date: 25-Jan-2019, Time: 17:34:29, ID: ST190125M2-1 537 CS-4 19A1701, Description: 537 CS-4 19A1701

\section*{d5-N-EtFOSAA}

F18:MRM of 1 channei,ES-
\(589.3>419.0\)

\begin{tabular}{ll} 
Dataset: & F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld \\
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:19:43 Pacific Standard Time
\end{tabular}

Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 \(19 A 1702\)

\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qId \\
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:19:43 Pacific Standard Time \\
\hline
\end{tabular}

Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 19A1702

\section*{PFNA \\ }

13C2-PFOA



13C4-PFOS



13C2-PFOA

d3-N-MeFOSAA


N-EtFOSAA
F17:MRM of 2 channels,ES \(584.2>419.0\) \(4.226 e+003\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES\(573.3>419.0\) \(2.358 \mathrm{e}+005\)


Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 \(19 A 1702\)

\section*{PFUnA}


13C2-PFOA
F7:MRM of 1 channel,ES-
\(414.9>369.7\)


PFDoA


\section*{13C2-PFOA}

F7:MRM of 1 channel,ES\(414.9>369.7\) \(3.624 \mathrm{e}+005\)


PFTrDA


F7:MRM of 1 channel,ES
F7:MRM of 1 channel,ES-
\(414.9>369.7\) \(414.9>369.7\)
\(3.624 \mathrm{e}+005\)


PFTeDA


13C2-PFOA
F7:MRM of 1 channel,ES


13C2-PFHxA
F3:MRM of 1 channel,ES \(315>269.8\) \(2.348 \mathrm{e}+0.05\)


13C2-PFDA


Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

\section*{Name: 190125M2_3, Date: 25-Jan-2019, Time: 17:46:20, ID: ST190125M2-2 537 CS-3 19A1702, Description: 537 CS-3 19A1702} d5-N-EtFOSAA

F18:MRM of 1 channel,ES-
\(589.3>419.0\)

\begin{tabular}{ll} 
Dataset: & F:IProjectsIPFAS.PRO\ResultsI190125M21190125M2-CRV.qld \\
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time
\end{tabular}
Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 19 A1703

```

Quantify Sample Report
Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

```

Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 \(19 A 1703\)

PFNA




\section*{13C4-PFOS}

F11:MRM of 1 channel,ES\(503.0>79.9\) \(1.496 e+005\)



13C2-PFOA
F7:MRM of 1 channel,ES\(414.9>369.7\) \(14.9>369.7\)
\(3.520 e+005\)


\section*{N-MeFOSAA}

F15:MRM of 2 channels, ES-
\(570.1>419.0\) \(1.036 e+004\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES\(573.3>419.0\) \(2.552 \mathrm{e}+005\)


\section*{N-EtFOSAA}

F17:MRM of 2 channels, ES-
\(584.2>419.0\) \(8.816 \mathrm{e}+003\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES-
\(573.3>419.0\)


\section*{Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 \(19 A 1703\)}
 Saturday, January 26, 2019 15:19:43 Pacific Standard Time

\section*{Name: 190125M2_4, Date: 25-Jan-2019, Time: 17:58:06, ID: ST190125M2-3 537 CS-2 19A1703, Description: 537 CS-2 \(19 A 1703\)}

\section*{d5-N-EtFOSAA}

F18:MRM of 1 channel,ES-
\(589.3>419.0\)

\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld \\
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:19:43 Pacific Standard Time \\
\hline
\end{tabular}

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 19 A1704


Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 \(19 A 1704\)

PFNA


13C2-PFOA
F7:MRM of 1 channel,ES414.9 > 369.7
\(3.497 e+005\)


PFOS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline & \multicolumn{2}{|l|}{F10:MRM of 2 channels, ES-} \\
\hline \multirow{6}{*}{100} & PFOS & \(6.880 \mathrm{e}+003\) \\
\hline & 5.10 & \\
\hline & 3.65 e 2 & \\
\hline & 6880 & \\
\hline & MM & \\
\hline & 6880.00 & \\
\hline \multirow[t]{5}{*}{\%-} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PFOS
5.10}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{3.65 e 2} \\
\hline & \multicolumn{2}{|l|}{6880} \\
\hline & MM
6880.00 & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline  & & \\
\hline & 5.00 & 5.50 \\
\hline
\end{tabular}

\section*{13C4-PFOS}

F11:MRM of 1 channel,ES\(503.0>79.9\) \(1.500 \mathrm{e}+005\)


PFDA


13C2-PFOA
F7:MRM of 1 chànnel,ES\(414.9>369.7\) \(3.497 e+005\)


\section*{N-MeFOSAA}

F15:MRM of 2 channels,ES.
\(570.1>419.0\)
\(1.856 \mathrm{e}+004\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES\(573.3>419.0\) \(2.501 \mathrm{e}+005\)


\section*{N-EtFOSAA}

F17:MRM of 2 channels,ES-
584.2 > 419.0 \(1.581 e+004\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES\(573.3>419.0\)

\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld \\
& \\
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:19:43 Pacific Standard Time \\
\hline
\end{tabular}

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 19A1704

PFUnA




13C2-PFOA



13C2-PFOA
F7:MRM of 1 channel, ES-
\(414.9>369.7\)



13C2-PFOA
F7:MRM of 1 channel,ES-


Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 \(19 A 1704\)

\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld \\
& \\
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:19:43 Pacific Standard Time
\end{tabular}

Name: 190125M2_5, Date: 25-Jan-2019, Time: 18:09:57, ID: ST190125M2-4 537 CS-1 19A1704, Description: 537 CS-1 \(19 A 1704\) d5-N-EtFOSAA

F18:MRM of 1 channel,ES
\(589.3>419.0\)


Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qId
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 19A1705


\section*{13C4-PFOS}


PFHxA


13C2-PFOA



13C2-PFOA



13C4-PFOS


PFOA


13C2-PFOA
F7:MRM of 1 channel,ES
\(414.9>369.7\)
\(3.792 \mathrm{e}+005\)
\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qId \\
& \\
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:19:43 Pacific Standard Time
\end{tabular}

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 \(19 A 1705\)


Last Altered: \(\quad\) Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 19A1705

\section*{}



13C2-PFOA


\section*{PFTrDA}


\section*{13C2-PFOA}

\section*{PFTEDA}


13C2-PFOA
F7:MRM of 1 channel,ES-



13C2-PFHxA
F3:MRM of 1 channel,ES-


13C2-PFDA
F13:MRM of 1 channel,ES-


Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_6, Date: 25-Jan-2019, Time: 18:21:43, ID: ST190125M2-5 537 CS0 19A1705, Description: 537 CS0 19A1705

Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: \(\quad\) Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706


\section*{Dataset:}

F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706





13C4-PFOS



13C2-PFOA
F7:MRM of 1 channel,ES
414.9 > 369.7 \(3.830 \mathrm{e}+005\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES-
\(573.3>419.0\) \(2.702 \mathrm{e}+0.05\)


d3-N-MeFOSAA
F16:MRM of 1 channel; ES \(573.3>419.0\) \(2.702 e+005\)
Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
\begin{tabular}{ll} 
Last Altered: & Saturday, January 26, 2019 15:19:04 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:19:43 Pacific Standard Time
\end{tabular}

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706


\section*{13C2-PFOA}


\section*{PFDoA}


13C2-PFOA
F7:MRM of 1 channel,ES-


\section*{PFTrDA}


13C2-PFOA


PFTeDA


13C2-PFOA
F7:MRM of 1 channel,ES-


13C2-PFHxA
F3:MRM of 1 channel,ES\(315>269.8\)


13C2-PFDA


Dataset: F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_7, Date: 25-Jan-2019, Time: 18:33:26, ID: ST190125M2-6 537 CS1 19A1706, Description: 537 CS1 19A1706
d5-N-EtFOSAA

\section*{Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.ald}

Last Altered: \(\quad\) Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707


\section*{13C4-PFOS}

F11:MRM of 1 channel,ES-
\(503.0>79.9\) \(1.622 \mathrm{e}+005\)



\section*{13C2-PFOA}


PFHpA


13C2-PFOA



\section*{13C4-PFOS}


PFOA


13C2-PFOA
F7:MRM of 1 channel, ES \(414.9>369.7\)


\section*{Dataset: F:IProjects\PFAS.PRO\Results\190125M2190125M2-CRV.qld}

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:19:43 Pacific Standard Time

\section*{Name: 190125M2 8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707}


\section*{Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld}

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707

\section*{PFUnA \\ }

\section*{13C2-PFOA}



13C2-PFOA


PFTrDA


\section*{13C2-PFOA}



13C2-PFOA
7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.588 \mathrm{e}+005\)


13C2-PFHxA
F3:MRM of 1 channel,ES \(315>269.8\)


13C2-PFDA
F13:MRM of 1 channel,ES
\(515.1>469.9\)


Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_8, Date: 25-Jan-2019, Time: 18:45:17, ID: ST190125M2-7 537 CS2 19A1707, Description: 537 CS2 19A1707

\section*{d5-N-EtFOSAA \\ F18:MRM of 1 channel,ES- \\ \(589.3>419.0\) \\ }

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708


\section*{13C4-PFOS}






13C2-PFOA
F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.469 \mathrm{e}+005\)


13C4-PFOS
F11:MRM of 1 channel,ES
\(503.0>79.9\) \(1.575 \mathrm{e}+005\)



13C2-PFOA
F7:MRM of 1 channel,ES
414.9 > 369.7 \(3.469 \mathrm{e}+005\)

Dataset:
F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qId
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708


\section*{13C2-PFOA}


\section*{PFOS}


13C4-PFOS


PFDA


13C2-PFOA
F7:MRM of 1 channel,ES \(414.9>369.7\) \(3.469 \mathrm{e}+005\)


\section*{d3-N-MeFOSAA}

F16:MRM of 1 channel,ES
\(573.3>419.0\) \(2.503 \mathrm{e}+005\)


\section*{N-EtFOSAA}

F17:MRM of 2 channels,ES \(584.2>419.0\) \(4.159 \mathrm{e}+005\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES \(573.3>419.0\) \(2.503 \mathrm{e}+005\)

Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: \(\quad\) Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708

\section*{PFUnA \\ }

\section*{13C2-PFOA}

F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.469 \mathrm{e}+005\)


\section*{PFDoA}


13C2-PFOA
F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.469 \mathrm{e}+005\)


PFTrDA


13C2-PFOA



13C2-PFOA
F7:MRM of 1 channel,ES
414.9 > 369.7 \(3.469 \mathrm{e}+005\)

13C2-PFHxA
F3:MRM of 1 channel,ES \(315>269.8\) \(2.272 \mathrm{e}+005\)


13C2-PFDA
F13:MRM of 1 channe,ES
\(515.1>469.9\)


Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: \(\quad\) Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_9, Date: 25-Jan-2019, Time: 18:57:03, ID: ST190125M2-8 537 CS3 19A1708, Description: 537 CS3 19A1708
d5-N-EtFOSAA
F18:MRM of 1 channel,ES
\(589.3>419.0\)


\section*{Dataset:}

F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qId
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 \(19 A 1709\)


\section*{13C4-PFOS}


13C2-PFOA
F7:MRM of 1 channel,ES-



13C2-PFOA



13C4-PFOS


PFOA


13C2-PFOA
F7:MRM of 1 channel;ES
\(414.9>369.7\) \(3.475 e+005\)

\section*{Dataset:}

F:IProjects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 19A1709


\section*{Dataset:}

F:IProjects\PFAS.PRO\Results\190125M21190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 19A1709


\section*{13C2-PFOA}

F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.475 \mathrm{e}+005\)



13C2-PFOA
F7:MRM of 1 channel,ES


PFTrDA


13C2-PFOA
F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.475 e+005\)



13C2-PFOA
F7:MRM of 1 channel,ES-
\(414.9>369.7\) \(3.475 \mathrm{e}+005\)

13C2-PFHxA
F3:MRM of 1 channel,ES\(315>269.8\) \(315>269.8\)
\(2.402 e+005\)


13C2-PFDA
F13:MRM of 1 channel,ES \(515.1>469.9\)


Name: 190125M2_10, Date: 25-Jan-2019, Time: 19:08:54, ID: ST190125M2-9 537 CS4 19A1709, Description: 537 CS4 19A1709


Dataset: F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld
Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed: \(\quad\) Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 19A1710

\section*{PFBS \\ }



\section*{}



13C2-PFOA


\section*{PFHxS}


13C4-PFOS



13C2-PFOA
F7:MRM of 1 channel,ES 414.9 > 369.7 \(3.427 e+005\)


\section*{Dataset: \\ F:\Projects\PFAS.PRO\Results\190125M2\190125M2-CRV.qld}

Last Altered: Saturday, January 26, 2019 15:19:04 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:19:43 Pacific Standard Time

Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 \(19 A 1710\)


13C2-PFOA



13C4-PFOS
13C4-PFOS


\section*{PFDA}


13C2-PFOA



\section*{d3-N-MeFOSAA}


d3-N-MeFOSAA
F16:MRM of 1 channel,ES\(573.3>419.0\)
\(2.570 \mathrm{e}+005\)


Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 19A1710

\section*{PFUnA \\ }

\section*{13C2-PFOA}


\section*{}

13C2-PFOA


13C2-PFOA


\section*{PFTeDA}


13C2-PFOA


13C2-PFHxA
F3:MRM of 1 channel,ES \(315>269.8\)


13C2-PFDA
F13:MRM of 1 channel,ES \(515.1>469.9\)


Name: 190125M2_11, Date: 25-Jan-2019, Time: 19:20:39, ID: ST190125M2-10 537 CS5 19A1710, Description: 537 CS5 \(19 A 1710\) d5-N-EtFOSAA

F18:MRM of 1 channel,ES. \(589.3>419.0\)

\begin{tabular}{ll} 
Dataset: & F:IProjects|PFAS.PRO\Results\190125M2\190125M2-ICV.qId \\
Last Altered: & Saturday, January 26, 2019 15:43:17 Pacitic Standard Time \\
Printed: & Saturday, January 26, 2019 15:43:34 Pacific Standard Time
\end{tabular}

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV 19A1711


\section*{Dataset: F:IProjects\PFAS.PRO\Results1190125M21190125M2-ICV.qld}

Last Altered: Saturday, January 26, 2019 15:43:17 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_DW_L14_012519.mdb 26 Jan 2019 15:19:01 Calibration: F:IProjects\PFAS.PRO\CurveDBIC18_537_Q4_01-25-19_L14.cdb 26 Jan 2019 15:05:56

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV \(19 A 1711\)

\begin{tabular}{ll} 
Dataset: & F:IProjects\PFAS.PRO\Results1190125M2\190125M2-ICV.qld \\
& \\
Last Altered: & Saturday, January 26, 2019 15:43:17 Pacific Standard Time \\
Printed: & Saturday, January 26, 2019 15:43:34 Pacific Standard Time
\end{tabular}

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV \(19 A 1711\)



F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3: 639 e+005\)



13C4-PFOS


PFDA


13C2-PFOA
F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.639 e+005\)

d3-N-MeFOSAA
F16:MRM of 1 channel,ES
\(573.3>419.0\) \(2.812 \mathrm{e}+005\)


d3-N-MeFOSAA
F16:MRM of 1 channel,ES
\(573.3>419.0\) \(2.812 \mathrm{e}+005\)

\section*{Dataset:}

F:IProjects\PFAS.PRO\Results\190125M2\190125M2-ICV.qld
Last Altered: Saturday, January 26, 2019 15:43:17 Pacific Standard Time
Printed:
Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV \(19 A 1711\)

\section*{PFUnA}




PFDoA


13C2-PFOA


PFTrDA


13C2-PFOA


PFTeDA


13C2-PFOA
F7:MRM of 1 channel,ES
\(414.9>369.7\) \(3.639 \mathrm{e}+005\)


13C2-PFHxA
F3:MRM of 1 channel,ES channet,ES
\(315>269.8\)


13C2-PFDA
F13:MRM of 1 channel,ES \(515.1>469.9\)


\section*{Dataset: F:IProjects\PFAS.PRO\Results\190125M2\190125M2-ICV.qld}

Last Altered: Saturday, January 26, 2019 15:43:17 Pacific Standard Time
Printed: Saturday, January 26, 2019 15:43:34 Pacific Standard Time

Name: 190125M2_13, Date: 25-Jan-2019, Time: 19:44:16, ID: ICV190125M2-1 537 ICV 19A1711, Description: 537 ICV \(19 A 1711\)

\section*{d5-N-EtFOSAA}

F18:MRM of 1 channel,ES-
\(589.3>419.0\)

"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name",","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag","lab_qualifiers","organic_yn","method_detection_limit","reporting_detection_limit","quantatation_limit","result_u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus"
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" " " " " ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC
ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","","","" "" "" "" " " " "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","","","", "" "" "" "" " " " " " ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","","","","","",""," " "" "" " "
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","", "","" "" "" "" "" " "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","",","",""," " "" "" "" "" "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","","",""," ","","",","","","","
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00296","0.00486","0.00972","UG_L","UG_L","","","","","","","",""," ","","","","","","","","
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","13C2-PFHxA","13C2-
PFHxA","99.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","99.3","99.3","","","","","","70","130","
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","13C2-PFDA","13C2-
PFDA","95.0","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","95.0","95.0","","","","","","70","130","" "'" "t" "'"
"PW4-011719-DW","537","01/26/19","01:14","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","89.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.3","89.3","","","","","","70","130

"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","","",""

"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","","","", " " " " " " " " " " " " ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","","","",

"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","","","","","",""," " "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","","","", "" "" "" "" " "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","", "" "" "" "" "" " " " "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","",""," " "" "" " "" "" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00290","0.00477","0.00955","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" " " "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","13C2-PFHxA","13C2-
PFHxA","99.5","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","99.5","99.5","","","","","","70","130"," "," " "" ""
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","13C2-PFDA","13C2-

PFDA","97.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","97.0","97.0","","","","","","70","130","" "l" \(1+1\) "
"PW4-011719-FB","537","01/26/19","01:26","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","95.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","95.2","95.2","","","","","","70","130 ","",""," ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","", "" "'" ""' "'" "" "" ""'
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","",

"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","",

"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","","" "" "" "" "" " "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","","" "" "" "" "" "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","","","","","" "" "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","","" "" "" "" "" "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","",""," " "'" "'" "" " "' "'" "'" "" "'"
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","","",

"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","",

"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","","","","","","",

"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","13C2-PFHxA","13C2-
PFHxA","94.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","94.7","94.7","","","","","","70","130"," " "" "" ""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","13C2-PFDA","13C2-
PFDA","98.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","98.1","98.1","","","","","","70","130","" "", "",""
"B9A0154-BLK1","537","01/25/19","22:29","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","93.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","93.3","93.3","","","","","","70","130 ","" "" "" ""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","375-73-
5","PFBS","0.0658","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0708","0.0 658","92.9","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.0741","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","0.0800","0.0 741","92.6","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.0774","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.0 774","96.8","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID (PFHXS)","0.0677","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0728","0.0 677","93.0","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.0767","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.07 67","95.8","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0735","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.07 35","91.9","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0666","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0740","0.0666","90. 0","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","0.0721","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.07
21","90.2","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","2355-31-
9","MeFOSAA","0.0742","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800 ","0.0742","92.7","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","2991-50-
6","EtFOSAA","0.0706","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800" ,"0.0706","88.2","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","0.0729","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.0 729","91.1","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","0.0697","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800","0.0 697","87.1","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","72629-94-
8","PFTrDA","0.0606","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","","","0.0800"," 0.0606","75.8","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","376-06-
7","PFTeDA","0.0582","","TRG","Yes","Y","","Y","0.00304","0.00500","0.0100","UG_L","UG_L","","",","0.0800"," 0.0582","72.7","","","","","","70","130","","","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","13C2-PFHxA","13C2-
PFHxA","93.7","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","93.7","93.7","","","","","","70","130"," " "" "" ""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","13C2-PFDA","13C2-
PFDA","99.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","99.9","99.9","","","","","","70","130","" ,"","",""
"B9A0154-BS1","537","01/25/19","21:54","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","90.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","90.4","90.4","","","","","","70","130
, , , ,

AMEC Foster Wheeler, Inc.
May 23, 2019
7376 SW Durham Road
Portland, OR 97224
Attn: Ms. Kimberly Shiroodi
Kimberly.Shiroodi@woodplc.com
SUBJECT: Former Chase Field, Data Validation
Dear Ms. Shiroodi,
Enclosed are the final validation reports for the fraction listed below. These SDGs were received on May 23, 2019. Attachment 1 is a summary of the samples that were reviewed for analysis.

\section*{LDC Project \#45129:}

\section*{SD \# \\ Fraction}

1803982, 1804167
1900154, 1900478

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:
- Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds or Per- and Polyfluoroalkyl Substances, Sites at Various Base Realignment and Closure Installations; June 2017
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1, 2017
- USEPA, National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.
Sincerely,


Pei Gent
Pgeng@lab-data.com.
Project Manager/Senior Chemist


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}

\section*{Project/Site Name:}

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

Former Chase Field
May 23, 2019
Perfluorinated Alkyl Acids
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1803982
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & \multicolumn{1}{|c|}{ Matrix } & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline Big Field-DW-120618 & \(1803982-01\) & Water & \(12 / 06 / 18\) \\
\hline Behind the Base-DW-120618 & \(1803982-03\) & Water & \(12 / 06 / 18\) \\
\hline Shooting Range 1-DW-120618 & \(1803982-05\) & Water & \(12 / 06 / 18\) \\
\hline Shooting Range 1-DW-120618MS & \(1803982-05 \mathrm{MS}\) & Water & \(12 / 06 / 18\) \\
\hline Shooting Range 1-DW-120618MSD & \(1803982-05 M S D\) & Water & \(12 / 06 / 18\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\).

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(\mathrm{r}^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within 70\(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample Source Blank was identified as a source blank. No contaminants were found.
Sample Shooting Range 1-FB-120618 was identified as a field blank. No contaminants were found.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were not within the QC limits for Shooting Range 1-DW-120618MS/MSD. No data were qualified since the parent sample results were greater than the spiked concentration

Relative percent differences (RPD) were within QC limits with the following exceptions:
\begin{tabular}{||c|c|c|c|c||}
\hline \begin{tabular}{c} 
Spike ID \\
(Associated Samples)
\end{tabular} & Compound & \begin{tabular}{c} 
RPD \\
(Limits)
\end{tabular} & Flag & A orP \\
\hline \begin{tabular}{l} 
Shooting Range 1-DW-120618MS/MSD \\
(Shooting Range 1-DW-120618)
\end{tabular} & PFOA & \(43(\leq 30)\) & J (all detects) & A \\
\hline
\end{tabular}

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

\section*{X. Field Duplicates}

Samples Shooting Range 1-DW-120618 and DUP-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ng/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & Shooting Range 1-DW-120618 & DUP-1 & & & & \\
\hline PFBS & 34.2 & 32.0 & - & 2.2 ( \(\leq 10.6\) ) & - & - \\
\hline PFHxA & 213 & 194 & \(9(\leq 30)\) & - & - & - \\
\hline PHHpA & 87.2 & 76.0 & \(14(\leq 30)\) & - & - & - \\
\hline PFHxS & 362 & 299 & \(19(\leq 30)\) & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ng/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & Shooting Range 1-DW-120618 & DUP-1 & & & & \\
\hline PFOA & 246 & 185 & 28 ( 530 ) & - & - & - \\
\hline PFNA & 21.7 & 15.7 & - & \(6(\leq 10.6)\) & - & - \\
\hline PFOS & 375 & 268 & 33 ( 530 ) & - & \(J\) (all detects) & A \\
\hline
\end{tabular}

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD RPD and field duplicate RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1803982
\begin{tabular}{|l|l|c|c|l||}
\hline \multicolumn{1}{|c|}{ Sample } & Compound & \multicolumn{1}{c|}{ Flag } & A or P & \multicolumn{1}{c|}{ Reason } \\
\hline Shooting Range 1-DW-120618 & PFOA & \(J\) (all detects) & A & \begin{tabular}{l} 
Matrix spike/Matrix spike \\
duplicate (RPD)
\end{tabular} \\
\hline \begin{tabular}{l} 
Shooting Range 1-DW-120618 \\
DUP-1
\end{tabular} & PFOS & \(J\) (all detects) & A & Field duplicates (RPD) \\
\hline
\end{tabular}

\section*{Former Chase Field \\ Perfluorinated Alky! Acids - Laboratory Blank Data Qualification Summary - SDG 1803982}

No Sample Data Qualified in this SDG

\section*{Former Chase Field}

Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1803982

No Sample Data Qualified in this SDG

LDC \#: 45129A96
SDG \#: 1803982 VALIDATION COMPLETENESS WORKSHEET

Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537AK), ReV .III)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

\(\begin{array}{ll}\text { Note: } & A=\text { Acceptable } \\ & N=\text { Not provided/applicable } \\ & S W=\text { See worksheet }\end{array}\)

ND = No compounds detected
R = Rinsate
FB = Field blank
\(\mathrm{D}=\) Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:


Method: LCMS (EPA Method 537 Modified)


\section*{VALIDATION FINDINGS CHECKLIST}

Page
Reviewer
2nd Reviewer:

\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?} \\
\hline \multicolumn{5}{|l|}{X. Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & C & & & \\
\hline Were target compounds detected in the field duplicates? & 7 & & & \\
\hline \multicolumn{5}{|l|}{XI Labeled compounds} \\
\hline Were labeled compound percent recoveries (\%R) within the QC limits? & \(\square\) & & & \\
\hline \multicolumn{5}{|l|}{XII Compound quantitation} \\
\hline Did the iaboratory reporting limits (RL) meet the QAPP RLs? & \(r\) & & & \\
\hline Did reported results include both branched and linear isomers? & C & & & \\
\hline Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? & \[
17
\] & & & \\
\hline Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? & \[
1
\] & & & \\
\hline \multicolumn{5}{|l|}{XIII, Target compound identification} \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \[
7
\] & & & \\
\hline \multicolumn{5}{|l|}{XIV. System performance} \\
\hline System performance was found to be acceptable. & 7 & & & \\
\hline \multicolumn{5}{|l|}{XIII. Overall assessment of data} \\
\hline Overall assessment of data was found to be acceptable. & \[
7
\] & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET


Page:_(of / _ Reviewer: 2nd Reviewer: 16

METHOD: LC/MS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
( 10 N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?
WN N/A Was a MS/MSD analyzed every 20 samples of each matrix?
NN N/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? \(Y N(N / A)\) Were all duplicate sample relative percent differences (RPD) or differences within QC limits?


VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: PFCs (EPA Method 537, Rev.1.1))



Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & (X)
Area \\
\hline \multirow[t]{10}{*}{12/14/2018} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.1988737 \\
\hline & & 2 & 0.464 & 0.3287097 \\
\hline & & 3 & 0.928 & 0.7292670 \\
\hline & & 4 & 1.860 & 1.2784472 \\
\hline & & 5 & 4.640 & 3.7459125 \\
\hline & & 6 & 9.240 & 7.2972533 \\
\hline & & 7 & 23.100 & 21.6975380 \\
\hline & & 8 & 46.200 & 43.6619180 \\
\hline & & 9 & 69.400 & 63.9538080 \\
\hline & & 10 & 92.500 & 80.7597070 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c||c|}
\hline \hline & calculated & Reported \\
\hline Constant & 0.000000 & 0.0000 \\
\hline Coefficient(s) & 0.89864913 & 0.899774 \\
\hline Correlation Coefficient & 0.999427 & 0.99745 \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.998854 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & Analyte & Standard & (Y) Concentration & \begin{tabular}{l}
\[
(X)
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{12/14/2018} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2171360 \\
\hline & & 2 & 0.500 & 0.0506222 \\
\hline & & 3 & 1.000 & 0.9565940 \\
\hline & & 4 & 2.000 & 1.7298860 \\
\hline & & 5 & 5.000 & 4.5899330 \\
\hline & & 6 & 10.000 & 9.5954070 \\
\hline & & 7 & 25.000 & 21.7876640 \\
\hline & & 8 & 50.000 & 48.7801400 \\
\hline & & 9 & 75.000 & 69.3161600 \\
\hline & & 10 & 100.000 & 89.8638830 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{||l||c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.91588519 & 0.920346 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999562 & 0.99867 \\
\hline \hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & \begin{tabular}{l}
\[
\overline{(Y)}
\] \\
Concentration
\end{tabular} & \begin{tabular}{l}
\[
\overline{(X)}
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{12/16/2018} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2255790 \\
\hline & & 2 & 0.500 & 0.5356500 \\
\hline & & 3 & 1.000 & 1.0843630 \\
\hline & & 4 & 2.000 & 1.9421290 \\
\hline & & 5 & 5.000 & 5.2501000 \\
\hline & & 6 & 10.000 & 10.1869490 \\
\hline & & 7 & 25.000 & 26.3859800 \\
\hline & & 8 & 50.000 & 53.8977810 \\
\hline & & 9 & 75.000 & 74.5942910 \\
\hline & & 10 & 100.000 & 103.2234300 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c|c||}
\hline \hline & calculated & Reported \\
\hline Constant & 0.000000 & 0.0000 \\
\hline Coefficient(s) & 1.02778311 & 1.031910 \\
\hline Correlation Coefficient & 0.999669 & 0.99911 \\
\hline \hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1 of 1 Reviewer: 9 2nd Reviewer:_M6
\(\qquad\)

METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{ll} 
\% Difference \(=100^{*}(\) ave. RRF - RRF \() /\) ave. RRF & Where: \\
\(R R F=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\) & \(R R F=\) ave. RRF = initial calibration average RRF \\
& \\
& \(A_{x}=\) Area of compound, \\
& \(C_{x}=\) Concentration of compound,
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recalculated & Renated & Reralculated \\
\hline \# & Standard ID & Calibration
Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & \(1812192-66\) & 121518 & PFOA ( \({ }^{3} \mathrm{C}_{2}\)-PFOA) & 10.0 & 9.63 & 9.63 & 3.7 & 37 \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{6}\)-PFOS) & 9.24 & T.75 & 7. 75 & 16.1 & 16.1 \\
\hline 2 & Hel| & \(12 / 17 / 18\) & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & 200 & 2.18 & 2.18 & 9.1 & 9.1 \\
\hline & & & PFOS ( \({ }^{3} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{3} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{3} \mathrm{C}_{0}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{1 \mathrm{C}_{2}-\mathrm{PFOA} \text { ) }}\) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{3}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
\(\%\) Recovery \(=100^{*}(\) SSC - SC \() / S A\)

SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

SC = Sample concentation

MSDC \(=\) Matrix spike duplicate concentration

RPD = I MSC - MSC I * \(2 /(\) MSC + MSDC \()\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Spike } \\
\text { Addeg } \\
(\mathrm{KS} /\llcorner )
\end{gathered}
\]} &  & \multicolumn{2}{|l|}{Spiked Sample Concentration (15 <} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Matrix Spike \\
Percent Recovery
\end{tabular}} & \multicolumn{2}{|l|}{Matrix.Spike Duplicate Percent Recovery} & \multicolumn{2}{|r|}{MsIMSn} \\
\hline  & Ms & Mso & & Ms & Ms\% & Renoted & Recalc & & Reata & Renoted & Recalculuted \\
\hline PFOA & 20. & \(20^{2}\) & 246 & 515 & 331 & 1350 & 1332 & 扬5 & 421 & 105 & 106 \\
\hline PFOS & 18.4 & 18.7 & 315 & 397 & 445 & 123 & 120 & 378 & 314 & 102 & 103 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ lof 1
Reviewer: \(\frac{1}{2}\) 2nd Reviewer: 16

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|}
\hline \% Recovery \(=100\) * (SC/SA Where: & \begin{tabular}{l}
SSC = Spike concentration \\
SA = Spike added
\end{tabular} \\
\hline RPD \(=1\) LCSC \(-\operatorname{LCSDC~} 1^{*} 2 /(\) LCSC + LCSDC) & LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration \\
\hline LCS/LCSD samples: \(B>\angle O T C E S\)
\(\qquad\) & \\
\hline
\end{tabular}


Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

\section*{VALIDATION FINDINGS WORKSHEET Sample Calculation Verification}

\section*{METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)}

\section*{\(Y N N / A\)
\(Y / N N / A\)}

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?
\(\left.\begin{array}{rl}\text { Concentration }=\left(A_{2}\right)\left(I_{s}\right)(V)(D F)(2.0) \\ \left(A_{i s}\right)(R R F)\left(V_{0}\right)\left(V_{i}\right)(\% S)\end{array}\right)\)

Example:
Sample I.D \(\qquad\) FA \(\begin{aligned} \text { Conc. } & =\frac{2630(379)(0)(1)(0.239)}{4862)(087)(092346)} \\ & =246.045 / 4\end{aligned}\)


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}
\begin{tabular}{ll} 
Project/Site Name: & Former Chase Field \\
LDC Report Date: & May 23, 2019 \\
Parameters: & Perfluorinated Alkyl Acids \\
Validation Level: & Stage 4 \\
Laboratory: & Vista Analytical Laboratory
\end{tabular}

Sample Delivery Group (SDG): 1804167
\begin{tabular}{|l|l|l|c|}
\hline Sample Identification & \begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline PW2-122018-DW & \(1804167-01\) & Water & \(12 / 20 / 18\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to 20.0\%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(r^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within \(70-\) \(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

No field blanks were identified in this SDG.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

\section*{X. Field Duplicates}

No field duplicates were identified in this SDG.

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1804167
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1804167

No Sample Data Qualified in this SDG

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.
\begin{tabular}{|c|c|c|c|c|}
\hline & Validation Area & & \multicolumn{2}{|l|}{Comments} \\
\hline 1. & Sample receiptTechnical holding times & \(A\) & & \\
\hline 11. & GC/MS Instrument performance check & A & & \\
\hline III. & Initial calibration/ICV & A, A &  & (low). 10 \\
\hline IV. & Continuing calibration //SC & \(A\) & acV \(530 / 3670\) & , \\
\hline V. & Laboratory Blanks & ¢ & 7 & \\
\hline VI. & Field blanks & \(N\) & & \\
\hline VII. & Surrogate spikes & A & & \\
\hline VIII. & Matrix spike/Matrix spike duplicates & N & CS & \\
\hline IX. & Laboratory control samples & A & \(\cos /(7)\) & \\
\hline x . & Field duplicates & \(N\) & & \\
\hline XI. & Labeled Compounds & \(A\) & & \\
\hline XII. & Compound quantitation RLLOQ/LODs & \(A\) & & \\
\hline XIII. & Target compound identification & A & & \\
\hline xIV. & System performance & A & & \\
\hline xV. & Overall assessment of data & \(A\) & & \\
\hline Note: & \begin{tabular}{l}
A = Acceptable \\
\(N=\) Not provided/applicable \\
SW = See worksheet
\end{tabular} & co ate ld blank & \begin{tabular}{ll} 
detected & \(\mathrm{D}=\) Duplicate \\
& \(\mathrm{TB}=\) Trip blank \\
& \(\mathrm{EB}=\) Equipment blank
\end{tabular} & SB=Source blank OTHER: \\
\hline
\end{tabular}

\(\qquad\) 2nd Reviewer: \(\qquad\)
Method: LCMS (EPA Method 537 Modified)


\section*{VALIDATION FINDINGS CHECKLIST}

Page
Reviewer:
2nd Reviewer: \(\qquad\)


TARGET COMPOUND WORKSHEET
\begin{tabular}{|c|c|c|c|}
\hline A. Perfluorohexanoic acid (PFHXA) & & & \\
\hline B. Perfluoroheptanoic acid (PFHpA) & & & \\
\hline C. Perfluorooctanoic acid (PFOA) & & & \\
\hline D. Perfluorononanoic acid (PFNA) & & & \\
\hline E. Perfluorodecanoic acid (PFDA) & & & \\
\hline F. Perfluoroundecanoic acid (PFUnA) & & & \\
\hline G. Perfluorododecanoic acid (PFDoA) & & & \\
\hline H. Perfluorotridecanoic acid (PFTriDA) & & & \\
\hline I. Perfluorotetradecanoic acid (PFTeDA) & & & \\
\hline J. Perfluorobutanesulfonic acid (PFBS) & & & \\
\hline K. Perfluorohexanesulfonic acid (PFHxS) & & & \\
\hline L. Perfluoroheptanesulfonic acid (PFHpS) & & & \\
\hline M. Perfluorooctanesulfonic acid (PFOS) & & & \\
\hline N. Perfluorodecanesulfonic acid (PFDS) & & & \\
\hline O. Perfluorooctane Suffonamide (FOSA) & & & \\
\hline P. Perfluorobutanoic acid (PFBA) & & & \\
\hline Q. Perfluoropentanoic acis (PFPeA) & & & \\
\hline R. \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluorooctane sulfonate (6:2FTS) & & & \\
\hline S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 2 FTS ) & & & \\
\hline T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) & & & \\
\hline U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA) & & & \\
\hline V. 1H, \(1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-Perfluorohexanesulfonic Acid (4:2FTS) & & & \\
\hline & & & \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & (X)
Area \\
\hline \multirow[t]{10}{*}{12/30/2018} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2325030 \\
\hline & & 2 & 0.500 & 0.4798370 \\
\hline & & 3 & 1.000 & 0.9733980 \\
\hline & & 4 & 2.000 & 1.9247560 \\
\hline & & 5 & 5.000 & 5.2004250 \\
\hline & & 6 & 10.000 & 9.1517780 \\
\hline & & 7 & 25.000 & 24.118581 \\
\hline & & 8 & 50.000 & 53.590312 \\
\hline & & 9 & 75.000 & 81.475686 \\
\hline & & 10 & 100.000 & 109.05315 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c||c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 1.08160882 & 1.064930 \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.999715 & 0.99788 \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date }
\end{gathered}
\] & Analyte & Standard & (Y) Concentration & \[
\begin{gathered}
\hline \hline(\mathrm{X}) \\
\text { Area }
\end{gathered}
\] \\
\hline \multirow[t]{10}{*}{12/30/2018} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.0784112 \\
\hline & & 2 & 0.464 & 0.2796298 \\
\hline & & 3 & 0.928 & 0.9002042 \\
\hline & & 4 & 1.860 & 1.3489832 \\
\hline & & 5 & 4.640 & 3.3358268 \\
\hline & & 6 & 9.240 & 6.8112131 \\
\hline & & 7 & 23.10 & 18.209455 \\
\hline & & 8 & 46.20 & 40.303338 \\
\hline & & 9 & 69.40 & 56.077719 \\
\hline & & 10 & 92.50 & 78.913789 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.83926116 & 0.830260 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999501 & 0.99746 \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference \(=100\) * (ave. RRF - RRF)/ave. RRF RRF \(=\left(A_{x}\right)\left(C_{i k}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave \(\operatorname{RRF}=\) initial calibration average \(R R F\)
RRF = continuing calibration RRF
\(\mathrm{A}_{x}=\) Area of compound,
\(\mathrm{A}_{\mathrm{is}}=\) Area of associated internal standard
\(\mathrm{C}_{\mathrm{x}}=\) Concentration of compound,\(\quad \mathrm{C}_{\text {is }}=\) Concentration of internal standard
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recalculated & Reportad & Recalculated \\
\hline \# & Standard ID & Calibration
Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & \(18123091-33\) & \(1930 / 10\) & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & 10.0 & \[
86 k
\] & 8.64 & \[
3<9
\] & \[
136
\] \\
\hline & & 7 & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & \(9 \rightarrow 4\) & 7.88 & 7.88 & +1.7 & 17 \\
\hline & & & & & & & & 7 \\
\hline 2 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ of /
Reviewer: \(Q\) 2nd Reviewer: 6

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|}
\hline \% Recovery \(=100\) * (SC/SA Where: & \begin{tabular}{l}
SSC = Spike concentration \\
SA = Spike added
\end{tabular} \\
\hline RPD \(=1\) LCSS - LCSDC \(1 * 2 /(\) LCSC + LCSDC \()\) & LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration \\
\hline LCS/LCSD samples: \(\qquad\) B8 \(10193-B 5\) & \[
\angle B S \neq 1
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Spike } \\
\text { congentation } \\
\sim
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\xrightarrow[\text { Percent Recovery }]{\text { Les }}\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\xrightarrow[\text { Percent Recovery }]{\text { Lesn }}\)}} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
1 \cos 4 \cos 0
\] \\
RPD
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline - & Lcs & LCSD & Lcs & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline pfoa & 0.0400 & 0.0400 & 0.0403 & 0.0412 & 101 & 101 & 103 & 103 & 215 & 232 \\
\hline pfos & 0.0370 & 0.0350 & 0.0335 & 0.0403 & 90.6 & 90.5 & 109 & 109 & 18.2 & 18.4 \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
Y Y N N/A \(\quad\) Were all reported results recalculated and verified for all level IV samples?


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}
\begin{tabular}{ll} 
Project/Site Name: & Former Chase Field \\
LDC Report Date: & May 23, 2019 \\
Parameters: & Perfluorinated Alkyl Acids \\
Validation Level: & Stage 4 \\
Laboratory: & Vista Analytical Laboratory
\end{tabular}

Sample Delivery Group (SDG): 1900154
\begin{tabular}{|c|l|l|c|}
\hline Sample Identification & \begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline PW4-011719-DW & \(1900154-01\) & Water & \(01 / 17 / 19\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\).

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination ( \(r^{2}\) ) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within 70 \(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((S / N)\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

No field blanks were identified in this SDG.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

\section*{X. Field Duplicates}

No field duplicates were identified in this SDG.

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900154
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900154

No Sample Data Qualified in this SDG

METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537 Rel. Rel.I.)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.
\begin{tabular}{|c|c|c|c|}
\hline & Validation_Area & & comments \\
\hline 1. & Sample receipt/Technical holding times & \(A\) & \\
\hline 11. & GC/MS Instrument performance check & \[
A
\] & \\
\hline IIII. & Initial calibration/ICV & \[
A, A
\] & \[
R \Delta 0 \leq 2010 . r^{2} \text { The } \leqslant 30 / 50 / 0.1 e V \leqslant 38
\] \\
\hline IV. & Continuing calibration \(15 c\) & \[
A
\] & \[
\operatorname{Lv} / \| s e \leq 3070^{\prime}
\] \\
\hline V. & Laboratory Blanks & A &  \\
\hline VI. & Field blanks & \(N\) & \\
\hline VII. & Surrogate spikes & \(A\) & \\
\hline VIII. & Matrix spike/Matrix spike duplicates & \(N\) & 0 C \\
\hline IX. & Laboratory control samples & \(A\) & \(\angle E S\) \\
\hline X. & Field duplicates & \(N\) & \\
\hline XI. & Labeled Compounds & \[
A
\] & \\
\hline XII. & Compound quantitation RLLOQ/LODs & \[
x
\] & \\
\hline XIII. & Target compound identification & \[
\not \subset
\] & \\
\hline XIV. & System performance & \(A\) & \\
\hline XV. & Overall assessment of data & \(A\) & \\
\hline
\end{tabular}
Note: \(\quad \mathrm{A}=\) Acceptable
\(\mathbf{N}=\) Not provided/applicable SW = See worksheet
ND = No compounds detected
\(\mathrm{R}=\) Rinsate
\(\mathrm{FB}=\) Field blank
\(\mathrm{D}=\) Duplicate TB = Trip blank

SB=Source blank OTHER:
\begin{tabular}{|l|l|l|l|l||}
\hline & Client ID & Lab ID & Matrix & Date \\
\hline 1 & PW4-011719-DW & \(1900154-01\) & Water & \\
\hline 2 & & & & \\
\hline 3 & & & & \\
\hline 4 & & & & \\
\hline 5 & & & & \\
\hline 6 & & & & \\
\hline 7 & & & & \\
\hline 8 & & & & \\
\hline 6 & & & & \\
\hline
\end{tabular}

Notes:
\begin{tabular}{||l|l|l|l|l|l|l|l||}
\hline & \(3 Q A O L 5+-B 4\) & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Page:
1 of 2
Reviewer: 2nd Reviewer: \(\qquad\)

Method: LCMS (EPA Method 537 Modified)


\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline & \multicolumn{4}{|l|}{within the QC limits?} \\
\hline \multicolumn{5}{|l|}{x Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & & 7 & & \\
\hline Were target compounds detected in the field duplicates? & & & 7 & \\
\hline \multicolumn{5}{|l|}{X1. Labeled compounds} \\
\hline Were labeled compound percent recoveries (\%R) within the QC limits? & ? & & & \\
\hline \multicolumn{5}{|l|}{XII. Compound quantitation} \\
\hline Did the laboratory reporting limits (RL) meet the QAPP RLs? & 7 & & & \\
\hline Did reported results include both branched and linear isomers? & \(\bigcirc\) & & & \\
\hline Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? & \(\gamma\) & & & \\
\hline Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? & \[
17
\] & & & \\
\hline \multicolumn{5}{|l|}{Xill. Target compound identification} \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \(\bigcirc\) & & & \\
\hline \multicolumn{5}{|l|}{XIV. System performance} \\
\hline System performance was found to be acceptable. & & & & \\
\hline \multicolumn{5}{|l|}{XIII. Overall assessment of data} \\
\hline Overall assessment of data was found to be acceptable. & & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET
\begin{tabular}{|c|c|c|c|}
\hline A. Perfluorohexaniciacid (PFHHA) & & & \\
\hline B. Perflurohepplanoic acid (PFHPA) & & & \\
\hline C. Perflurooctanoic acid (PFOA) & & & \\
\hline D. Perfluorononanoic acid (PFNA) & & & \\
\hline E. Perflurordecanoic aciid (PFDA) & & & \\
\hline F. Perfuroundecanoic acid (PFUnA) & & & \\
\hline G. Perflurododecanoic acid (PFDOA) & & & \\
\hline H. Perflurortidecanoic acid (PFFTiDA) & & & \\
\hline 1. Perfluorietradecanoic acid (PFTTeDA) & & & \\
\hline J. Pefluorobutanesulfonic acid (PFES) & & & \\
\hline K. Perfluronexanesulfonic acid (PFHKS) & & & \\
\hline L. Perfluorohepanesultronic acid (PFHPS) & & & \\
\hline M. Perfluorooctanesulfonic acid (PFOS) & & & \\
\hline N.Perflurodecanestufonic acid (PFDS) & & & \\
\hline O. Perflurooctane Sulfonamide (FOSA) & & & \\
\hline P. Pefflurobutanoic acid (PFBA) & & & \\
\hline Q. Perfluoronentanoic acis (PFPeA) & & & \\
\hline  & & & \\
\hline S. \(1 \mathrm{H}, \mathrm{TH}, 2 \mathrm{LH}, 2 \mathrm{HH}\)-erfluorodeane sultonate ( \(8: 2 \mathrm{~F}\) FTS) & & & \\
\hline T. N-methy perfluorooctanesulfonamidoaceicic acid (NMMFOSAA) & & & \\
\hline U. N-EtIVY Peffluoroctianesulfonamidoacetic acid (NEIFOSAA) & & & \\
\hline  & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & (X)
Area \\
\hline \multirow[t]{10}{*}{1/25/2019} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.2101130 \\
\hline & & 2 & 0.500 & 0.4714000 \\
\hline & & 3 & 1.000 & 0.8984130 \\
\hline & & 4 & 2.000 & 1.8618960 \\
\hline & & 5 & 5.000 & 4.4924390 \\
\hline & & 6 & 10.000 & 9.3954590 \\
\hline & & 7 & 25.000 & 24.368296 \\
\hline & & 8 & 50.000 & 47.758120 \\
\hline & & 9 & 75.000 & 73.077953 \\
\hline & & 10 & 100.000 & 94.537468 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l|c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.95618300 & 0.956545 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999903 & 0.99969 \\
\hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & Analyte & Standard & \((\mathrm{Y})\)
Concentration & (X) Area \\
\hline \multirow[t]{10}{*}{1/25/2019} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.1832208 \\
\hline & & 2 & 0.464 & 0.4657522 \\
\hline & & 3 & 0.928 & 0.8556761 \\
\hline & & 4 & 1.860 & 1.6506001 \\
\hline & & 5 & 4.640 & 4.6646023 \\
\hline & & 6 & 9.240 & 9.4894971 \\
\hline & & 7 & 23.10 & 23.772614 \\
\hline & & 8 & 46.20 & 48.721777 \\
\hline & & 9 & 69.40 & 72.647365 \\
\hline & & 10 & 92.50 & 100.994340 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{|l||c||c||}
\hline \hline & calculated & Reported \\
\hline Constant & 0.000000 & 0.0000 \\
\hline\(X\) Coefficient(s) & 1.07089390 & 1.059870 \\
\hline Correlation Coefficient & 0.999772 & 0.99909 \\
\hline Coefficient of Determination ( \(r^{\wedge} 2\) ) & 0.999544 & \\
\hline \hline
\end{tabular}

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF \(=\left(A_{x}\right)\left(C_{i k}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. RRF = initial calibration average RRF
RRF = continuing calibration RRF
\(\mathrm{A}_{\mathrm{x}}=\) Area of compound,
\(\mathrm{C}_{\mathrm{x}}=\) Concentration of compound,


Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _ of L
Reviewer: 9 2nd Reviewer: M 6

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\% Recovery \(=100\) * (SC/SA
Where: SSC = Spike concentration
SA = Spike added
\(R P D=1 \operatorname{LCSC}-\operatorname{LCSDC} \mid * 2 /(\operatorname{LCSC}+\operatorname{LCSDC})\)
LCSC \(=\) Laboratory control sample concentration LCSDC \(=\) Laboratory control sample duplicate concentration
LCS/LCSD samples: \(39 A 015+1-1\)


Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

\section*{METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)}

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?


Example:
Sample I.D. \(N \mathbb{4 N O}\)
B9A0154-BS1

\(=0.0666 \mu \mathrm{~m} / \mathrm{L}\)


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}
\begin{tabular}{ll} 
Project/Site Name: & Former Chase Field \\
LDC Report Date: & May 23,2019 \\
Parameters: & Perfluorinated Alkyl Acids \\
Validation Level: & Stage 4 \\
Laboratory: & Vista Analytical Laboratory
\end{tabular}

Sample Delivery Group (SDG): 1900478
\begin{tabular}{|c|l|l|c|}
\hline Sample Identification & \begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline Charlie's Pasture-EW 031319 & \(1900478-01\) & Water & \(03 / 13 / 19\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Initial Assessment of Perfluorinated Compounds (PFCS) or Per- and Polyfluoroalkyl Substances (PFAS) Sites at Various Base Realignment and Closure (BRAC) Installations (June 2017), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537, Revision 1.1

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked as applicable.
All ion abundance requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\).

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(r^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, except the lowest point, all compounds were within \(70-\) \(130 \%\) of their true value. For the lowest calibration point, all compounds were within 50\(150 \%\) of their true value.

The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((S / N)\) ratio was within validation criteria.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample Field Blank was identified as a field blank. No contaminants were found.

\section*{VII. Surrogates}

Surrogates were added to all drinking water samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

\section*{VIII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{IX. Laboratory Control Samples}

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

\section*{X. Field Duplicates}

Samples Charlie's Pasture-EW 031319 and Dup-1 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ng/L)} & \multirow[b]{2}{*}{RPD (Limits)} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & Charlie's Pasture-EW 031319 & Dup-1 & & & & \\
\hline PFBS & 0.0424 & 0.0444 & - & \(0.002(\leq 0.0101)\) & - & - \\
\hline PFHxA & 0.368 & 0.401 & \(9(\leq 30)\) & - & - & - \\
\hline PHHpA & 0.183 & 0.192 & \(5(\leq 30)\) & - & - & - \\
\hline PFHxS & 1.04 & 0.886 & \(16(\leq 30)\) & - & - & - \\
\hline PFOA & 0.807 & 0.827 & \(2(\leq 30)\) & - & - & - \\
\hline PFNA & 0.0280 & 0.0316 & - & \(0.0036(\leq 0.0101)\) & - & - \\
\hline PFOS & 1.52 & 1.38 & \(10(\leq 30)\) & - & - & - \\
\hline
\end{tabular}

\section*{XI. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XII. Compound Quantitation}

All compound quantitations met validation criteria.
The laboratory indicated that PFAs are currently being reported as the sum of the branched and linear isomers so both peaks were integrated.

\section*{XIII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIV. System Performance}

The system performance was acceptable.

\section*{XV. Overall Assessment of Data}

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Former Chase Field
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1900478
No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG
Former Chase Field
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1900478

No Sample Data Qualified in this SDG

\author{
Laboratory: Vista Analytical Laboratory \\ METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537M)
}

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: \(\quad \mathrm{A}=\) Acceptable
\(\mathrm{N}=\) Not provided/applicable SW = See worksheet
ND = No compounds detected
R = Rinsate
\(\mathrm{FB}=\) Field blank
\(\mathrm{D}=\) Duplicate
TB = Trip blank
ER \(=\) Equipment blank
SB=Source blank OTHER:


VALIDATION FINDINGS CHECKLIST
Page:
Reviewer:
2nd Reviewer: \(\qquad\)

Method: LCMS (EPA Method 537 Modified)

\(\qquad\)
2nd Reviewer:
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? & , & & & \\
\hline \multicolumn{5}{|l|}{\(\times\) Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & \(T\) & & & \\
\hline Were target compounds detected in the field duplicates? & & & & \\
\hline \multicolumn{5}{|l|}{XI. Labeled compounds} \\
\hline \multicolumn{5}{|l|}{Were labeled compound percent recoveries (\%R) within the QC limits?} \\
\hline \multicolumn{5}{|l|}{XII, Compound quantitation} \\
\hline \multicolumn{5}{|l|}{Did the laboratory reporting limits (RL) meet the QAPP RLs?} \\
\hline \multicolumn{5}{|l|}{Did reported results include both branched and linear isomers?} \\
\hline \multicolumn{5}{|l|}{Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?} \\
\hline Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? & \[
r
\] & & & \\
\hline \multicolumn{5}{|l|}{XIII. Target compound identification} \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \[
1
\] & & & \\
\hline \multicolumn{5}{|l|}{XIV. System performance} \\
\hline System performance was found to be acceptable. & / & & & \\
\hline \multicolumn{5}{|l|}{XIII. Overall assessment of data} \\
\hline Overall assessment of data was found to be acceptable. & \[
1
\] & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET
\begin{tabular}{|c|c|c|c|}
\hline A. Pefluoronexanoic acic (PFHXA) & & & \\
\hline B. Perfluoroheptanoic acid (PFHPA) & & & \\
\hline c. Perfuorococanoic acid (PFOA) & & & \\
\hline D. Perflurorononanic acid (PFNA) & & & \\
\hline E. Perflurodecanoic acid (PFDA) & & & \\
\hline F. Perfluroundeanoic acid (PFUnA) & & & \\
\hline G. Perflurorocodecanoic acid (PFDOA) & & & \\
\hline H. Perfucorotidecanoic acid (PFTTiDA) & & & \\
\hline 1. Pefluworetradeanoic acid (PFTeDA) & & & \\
\hline J. Perfluorobutanesulfonic acid (PFBS) & & & \\
\hline K. Perfiurorexeanesulfonic acid (PFH \(\times\) S) & & & \\
\hline L. Pefluoroneplanesulifonic acid (PFHHS) & & & \\
\hline M. Perfluorooctanesulfonic acid (PFOS) & & & \\
\hline N. Perfluordecanesulforic acid (PFDS) & & & \\
\hline O. Perflurooctane Sulionamide (FOSA) & & & \\
\hline P. Perfluorobutanoic acid (PFEA) & & & \\
\hline Q. Perfluoropentanoic acis (PFPPA) & & & \\
\hline R. 1 TH, 1 H, 2 2H, 2H-perfluoroctane sulfonale (6.2FTS) & & & \\
\hline S. \(1 \mathrm{H}, 1 \mathrm{l}, 2 \mathrm{H}, 2 \mathrm{HH}\)-perfluorodecane sulfonate ( 8.2 FTS ) & & & \\
\hline T. N-M.methy perflurooctanesulforamidoacetic acid (NMeFOSAA) & & & \\
\hline U. N-ELYy Perflurooctanesulfonamido aceicic acid (NEIFOSAA) & & & \\
\hline  & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: PFCs (EPA Method 537, Rev.1.1))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|c|}{Concentration (ng/L)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& (\leq 30) \\
& \text { RPD }
\end{aligned}
\]} & \multirow{2}{*}{Difference} & \multirow{2}{*}{Limits} & \multirow{2}{*}{Qual} \\
\hline & 1 & 2 & & & & \\
\hline PFBS & 0.0424 & 0.0444 & & 0.002 & \(\leq 0.0101\) & \\
\hline PFHxA & 0.368 & 0.401 & 9 & & & \\
\hline PHHpA & 0.183 & 0.192 & 5 & & & \\
\hline PFHxS & 1.04 & 0.886 & 16 & & & \\
\hline PFOA & 0.807 & 0.827 & 2 & & & \\
\hline PFNA & 0.0280 & 0.0316 & & 0.0036 & \(\leq 0.0101\) & \\
\hline PFOS & 1.52 & 1.38 & 10 & & & \\
\hline
\end{tabular}

\section*{Method: PFACs (EPA Method 537)}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date }
\end{gathered}
\] & Analyte & Standard & (Y) Concentration & \begin{tabular}{l}
\[
\overline{(X)}
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{3/28/2019} & \multirow[t]{10}{*}{PFOA} & 1 & 0.250 & 0.3114790 \\
\hline & & 2 & 0.500 & 0.4559950 \\
\hline & & 3 & 1.000 & 0.9430580 \\
\hline & & 4 & 2.000 & 1.8980310 \\
\hline & & 5 & 5.000 & 4.8326870 \\
\hline & & 6 & 10.000 & 9.8324550 \\
\hline & & 7 & 25.000 & 23.5652720 \\
\hline & & 8 & 50.000 & 48.8485250 \\
\hline & & 9 & 75.000 & 72.3284030 \\
\hline & & 10 & 100.000 & 97.7633500 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{||l||c||c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient \((\mathrm{s})\) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.97244451 & 0.970341 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999965 & 0.99978 \\
\hline \hline
\end{tabular}

Method: PFACs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|}
\hline Calibration Date & Analyte & Standard & (Y) Concentration & \begin{tabular}{l}
\[
\overline{(X)}
\] \\
Area
\end{tabular} \\
\hline \multirow[t]{10}{*}{3/28/2019} & \multirow[t]{10}{*}{PFOS} & 1 & 0.232 & 0.2365741 \\
\hline & & 2 & 0.464 & 0.3770290 \\
\hline & & 3 & 0.928 & 0.6450009 \\
\hline & & 4 & 1.860 & 1.3866577 \\
\hline & & 5 & 4.640 & 3.7668348 \\
\hline & & 6 & 9.240 & 7.9072546 \\
\hline & & 7 & 23.10 & 18.761660 \\
\hline & & 8 & 46.20 & 40.878403 \\
\hline & & 9 & 69.40 & 62.960426 \\
\hline & & 10 & 92.50 & 80.724788 \\
\hline
\end{tabular}

Linear through the origin
\begin{tabular}{||l||c|c||}
\hline \hline Constant & calculated & Reported \\
\hline\(X\) Coefficient(s) & 0.000000 & 0.0000 \\
\hline Correlation Coefficient & 0.88238504 & 0.875608 \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.999735 & 0.99859 \\
\hline
\end{tabular}

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{ll} 
\% Difference \(=100^{*}\) (ave. RRF - RRF)/ave. RRF & Where: \\
RRF \(=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\) & \(R R F=\) continuing calibration RRF \\
& \\
& \(A_{x}=\) Area of compound,
\end{tabular}\(\quad\)\begin{tabular}{l} 
Aritial calibration average RRF \\
\\
\\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recialculated & Reported & Recalculated \\
\hline \# & Standard ID & Calibration Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & 1903287.38 & \[
3 / 319
\] & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA \()\) & 10.0 & \[
10.1
\] & (0).1 & \[
0.6
\] & \[
0.8
\] \\
\hline & & 7 & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & \[
924
\] & \[
87
\] & \[
869
\] & 5.8 & \[
5.3
\] \\
\hline & & & & & & & & 1 \\
\hline 2 & \(190300 \mathrm{H}_{2} 2\) & \[
3 / 30 / 19
\] & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & 0.00 & 2.15 & \[
2.15
\] & \[
80
\] & 7.8 \\
\hline & & 7 & PFOS ( \({ }^{13} \mathrm{C}_{8}-\) PFOS \()\) & \[
1,36
\] & \[
1.40
\] & \[
1.40
\] & \[
24.5
\] & \[
24.5
\] \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{33} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: / of / Reviewer: 2nd Reviewer: \(\sqrt{6}\)

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|c|c|}
\hline \% Recovery \(=100\) * (SC/SA & Where: & \[
\text { SSC }=\text { Spike concentration }
\]
\[
\text { SA }=\text { Spike added }
\] & \\
\hline \(R P D=1 \operatorname{LCSC}-\operatorname{LCSDC} \mathrm{I}^{*} 2 /(\operatorname{CSC}+\operatorname{LCSDC})\) & & LCSC \(=\) Laboratory control sample concentration & LCSDC \(=\) Laboratory control sample duplicate concentration \\
\hline LCS/LCSD samples: \(\qquad\) \(\exists 9<0124\) & \[
\beta S
\] & \[
B \leq \infty 1
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Spike } \\
\left(\text { Added }_{5}^{5} / 4\right)
\end{gathered}
\]} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Spike } \\
\text { Concentration } \\
1
\end{gathered}
\]} & \multicolumn{2}{|l|}{C.CS} & \multicolumn{2}{|l|}{\(\frac{\text { LCsD }}{\text { Percent Recovery }}\)} & \multicolumn{2}{|c|}{\begin{tabular}{l}
ICSI CSn \\
RPD
\end{tabular}} \\
\hline Wax mettix & Lcs 1 & LCSD & LCS & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline PFOA & 00800 & 0.0800 & 0.0832 & 0.0766 & 104 & 104 & 95.8 & 95.8 & 818 & \(8 \rightarrow 6\) \\
\hline PFOS & 0.0740 & 0.0740 & 0.0701 & 0.075 & \(9+8\) & Q4.7 & 96.6 & \(96 \cdot 6\) & 1.89 & 1.98 \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)


Example:
Sample I.D. \(\qquad\) uFOS
conc. \(=\left(\right.\) s. \(_{\text {P }}^{e} 3 x+8\). \(^{T} x\) 4.9(e2)(0.875608)

\[
=1.52 \mu_{\varepsilon} / \angle
\]
```

