Groundwater Sample Results and Data Validation Report, SDG 78915 Naval Air Warfare Center Weapons Division China Lake China Lake, California November 2019 ### LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099 Kleinfelder May 25, 2016 1039 Hyland Drive Evergreen, CO 80439 ATTN: Ms. Karin Kaiser SUBJECT: China Lake, CTO 067, Data Validation Dear Ms. Kaiser, Enclosed are the final validation reports for the fractions listed below. These SDGs were received on May 2, 2016. Attachment 1 is a summary of the samples that were reviewed for each analysis. ### LDC Project #36282: | SDG# | <u>Fraction</u> | |--|---| | 16C070
16C074
16C129
78915
78998
K1602494
K1602709 | Volatiles, PAHs, Chlorinated Pesticides, PCBs, Metals, TPH as Gasoline, TPH as Extractables, Explosives, Perchlorate, Polychlorinated Dioxins/Dibenzofurans, Perfluorinated Alkyl Acids | The data validation was performed under Level III & IV guidelines. The analyses were validated using the following documents, as applicable to each method: - Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43 and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California, February 2016 - U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.0, July 2013 - USEPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins, and Chlorinated Dibenzofurans Data Review, September 2011 - USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, August 2014 - USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, August 2014 - EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014 Please feel free to contact us if you have any questions. Sincerely, Pei Geng Project Manager/Senior Chemist | A 16C070 050216 051616 1 8 0 3 0 3 0 3 0 3 0 23 1 8 0 17 - 0 13 0 13 - 0 16 | | 6,096 pages-S | F | | | | | | | | | | | | P | Attac | chme | ent | 1 |--|--------|---------------|--------------|----------|---|----|------|------|-----|------|-----|-----|-----|------|-------------|-------------|-------------|-------------|------------|--------------|------------|-------------|-----------|-------------|------------|-----------|------------|-------------|---|---|-----|---|---|---|----------|---|---|--------|----------|-----------| | Date Date Date Date Date Date Date Society Soci | | EDD Clie | nt Select IV | | | L | DC | #3 | 628 | B2 (| (KI | ein | fel | dei | E | ⁄er | gre | en | , C | 0/ | Ch | ina | a La | ake | e, C | то | 06 | 7) | | | 11. | | | | | - | : | : | | | | A 16C070 05/02/16 05/16/16 0 2 0 1 0 1 0 0 3 0 3 0 0 3 1 0 0 3 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 | LDC | SDG# | | DATE | | | (827 | 70C- | | | | | (60 | 20A/ | TP!
(80° | H-G
15B) | TPI
(801 | H-E
15B) | Dio: | xins
90A) | Ex
(83: | pl.
30A) | CL
(68 | -O₄
(50) | PF
(53 | Cs
7M) | Cr(
(71 | (VI)
99) | | | | | | | | | | | | | | A 16C070 | Matrix | Water/Soil | | <u> </u> | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | w | s | | B | Α | 16C070 | 05/02/16 | 05/16/16 | 1 | 8 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 23 | 1 | 8 | 0 | 17 | - | - | 0 | 13 | 0 | 13 | <u> -</u> | | 0 | 16 | | | | | | | <u> </u> | | | \Box | <u> </u> | Ш | | C | Α | 16C070 | 05/02/16 | 05/16/16 | 0 | 2 | 0 | 11 | 0 | | 0 | 1 | 0 | 4 | 0 | 2 | 0 | 2 | | _ | 0 | | 0 | 1 | - | | 0 | 2 | | | | | | | | | | | | Ш | | C 16C129 | В | 16C074 | 05/02/16 | 05/16/16 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | <u> </u> - | - | 1 | 0 | 1 | 0 | <u> </u> | _ | 1 | 0 | | | | | | | | | | | | | | D 78915 05/02/16 05/16/16 1 1 13 | С | 16C129 | 05/02/16 | 05/16/16 | 2 | 0 | 2 | 1 | 2 | 14 | 1 | 0 | 2 | 9 | 2 | 0 | 2 | 1 | <u> </u> | _ | 2 | 8 | 2 | 8 | <u> </u> | _ | 2 | 1 | | | | | | | | | | | | | | D 78915 05/02/16 05/16/16 0.5/16 | С | 16C129 | 05/02/16 | 05/16/16 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0. | 0 | 1 | - | - | 0 | 19 | Ö | | - | | 0 | | | | | | | | | | | | | | | E 78998 05/02/16 05/16/16 2 1 1 | D | 78915 | 05/02/16 | 05/16/16 | - | - | - | - | | | - | - | | - | - | _ | - | - | 1 | 13 | - | - | - | - | - | - | - | _ | | | | | | | | | | | | | | E 7898 05/02/16 05/16/16 0 1 | D | 78915 | 05/02/16 | 05/16/16 | - | - | - | - | - | - | - | | _ | - | _ | - | - | - | 0 | 1 | - | - | - | - | - | - | - | - | | | | | | | | | | | | | | F K1602494 05/02/16 05/16/16 1 7 1 7 1 | Е | 78998 | 05/02/16 | 05/16/16 | - | - | - | - | - | - | - | _ | _ | - | _ | | - | - | 2 | 1 | - | - | - | - | | - | - | - | | | | | | | | | | | | | | F K1602494 05/02/16 05/16/16 | Е | 78998 | 05/02/16 | 05/16/16 | | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | 1 | - | - | - | - | - | - | - | _ | | | | | | | | | | | | | | G K1602709 05/02/16 05/16/16 | F | K1602494 | 05/02/16 | 05/16/16 | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | - | - | | 1 | 7 | - | _ | | | | | | | | | | | | | | | F | K1602494 | 05/02/16 | 05/16/16 | _ | - | - | - | - | - | - | - | - | - | _ | - | | - | - | - | - | - | - | - | 0 | | - | - | | | | | | | | | | | | | | | G | K1602709 | 05/02/16 | 05/16/16 | - | - | - | - | - | - | - | _ | - | - | _ | _ | | - | - | - | - | - | - | - | 1 | 0 | - | - |
 | **-** | \square | | | | | Total T/PG 5 10 3 6 3 20 2 4 3 38 5 10 3 21 3 16 3 23 3 23 2 8 3 20 0 0 0 0 0 0 0 0 | Total | T/PG | | | 5 | 10 | 3 | 6 | 3 | 20 | 2 | 4 | 3 | 38 | 5 | 10 | 3 | 21 | 3 | 16 | 3 | 23 | 3 | 23 | 2 | 8 | 3 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: Volatiles Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | KCH067-020 | 16C070-19 | Water | 03/08/16 | | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. ### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. ### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. Average relative response factors (RRF) for all compounds were within validation criteria with the following exceptions: | Date | Compound | RRF (Limits) | Associated
Samples | Flag | A or P | |----------|--------------------|---------------|---------------------------------|----------------------|--------| | 02/26/16 | tert-Butyl alcohol | 0.007 (≤0.01) | All water samples in SDG 16C070 | UJ (all non-detects) | А | The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria with the following exceptions: | Date | Compound | RRF (Limits) | Associated
Samples | Flag | A or P | |----------|--------------------|---------------|---------------------------------|----------------------|--------| | 03/14/17 | tert-Butyl alcohol | 0.007 (≤0.01) | All water samples in SDG 16C070 | UJ (all non-detects) | Α | ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### VI. Field Blanks Sample KCH067-020 was identified as a trip blank. No contaminants were found. Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|------------------|---------------|--------------------------------| | KCH067-019 | 03/08/16 | Carbon disulfide | 0.40 ng/L | All soil samples in SDG 16C070 | Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks. ### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits with the following
exceptions: | Spike ID
(Associated Samples) | Compound | RPD
(Limits) | Flag | A or P | |------------------------------------|--------------------|-----------------|------|--------| | KCH067-016MS/MSD
(KCH067-016**) | tert-Butyl alcohol | 24 (≤20) | NA | - | ### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### X. Field Duplicates No field duplicates were identified in this SDG. ### XI. Internal Standards All internal standard areas and retention times were within QC limits. ### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XIV. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to initial calibration and continuing calibration RRF, data were qualified as estimated in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ### China Lake CTO 067 Volatiles - Data Qualification Summary - SDG 16C070 | Sample | Compound | Flag | A or P | Reason (Code) | |------------|--------------------|----------------------|--------|----------------------------------| | KCH067-020 | tert-Butyl alcohol | UJ (all non-detects) | А | Initial calibration (RRF) (5) | | KCH067-020 | tert-Butyl alcohol | UJ (all non-detects) | А | Continuing calibration (RRF) (5) | China Lake CTO 067 Volatiles - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Volatiles - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C070 Sample ID: KCH067-002 Lab Samp ID: C070-02 Lab File ID: RCB171 Ext Btch ID: VS03C08 Calib. Ref: RCB100 | | Date Co
Date R
Date Ex
Date A
Dilution
Matrix
% Moistu
Instrume | re : 9.0 | 03 | |---|------------------------------|--|---|--| | PARAMETERS 1.1.2-TETRACHLOROETHANE 1.1.1-TRICHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.1-TRICHLOROETHANE 1.1.1-DICHLOROETHANE 1.1.1-DICHLOROETHANE 1.1.1-DICHLOROETHANE 1.1.1-DICHLOROETHANE 1.1.1-DICHLOROPENENE 1.2.3-TRICHLOROPROPANE 1.2.3-TRICHLOROPROPANE 1.2.3-TRICHLOROPROPANE 1.2.4-TRIMETHYLBENZENE 1.2.1-DIBROMO-3-CHLOROPROPANE 1.2.1-DIBROMO-3-CHLOROPROPANE 1.2-DICHLOROBENZENE 1.2-DICHLOROPROPANE 1.2-DICHLOROPROPANE 1.2-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROPROPANE 2-BUTANONE 2-CHLOROTOLUENE 2-HEXANONE 4-CHLOROTOLUENE BENZENE BROMOBLICHLOROMETHANE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMODICHLOROMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFORM CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHLOROFORM CHLOROMETHANE CIS-1.3-DICHLOROPROPENE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE CIS-1.2-DICHLOROPROPENE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE CIS-1.2-DICHLOROPROPENE DIBROMOCHLOROMETHANE DICHLORODIFLUOROMETHANE ETHYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE | TS);
 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | L):55555555577-1-1-1555568557-8-12444555557-050545555557-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 09)
1111111120200001111120111205050505111200111201112011120120105051200512000120001111120111201112011120111201112011120111201112011120111201120112011201120112011201120112011201120112011201120112011201120112 | | SURROGATE PARAMETERS 1,2-DICHLOROETHANE-D4 4-BROMOFLUGROBENZENE TOLUENE-D8 DIBROMOFLUGROMETHANE | 53.8
52.0
53.3
53.9 | SPK_AMT
55.49
55.49
55.49 | % RECOVERY
97.0
93.8
96.1
97.2 | QC LIMIT
71-136
79-119
85-116
78-119 | EN1116 | Client : KLEINFELDER Project : NAWS CHINA LAKE, CT Batch No. : 16C070 Sample ID: KCH067-004 Lab Samp ID: C070-04 Lab File ID: RCB172 Ext Btch ID: VS03C08 Calib. Ref: RCB100 | 0 067 | | llected: 03/0
eceived: 03/0
tracted: 03/0
halyzed: 03/0
Factor: 0.90
ee: 4.9 | | |--|------------------------------|---|---|--| | PARAMETERS 1,1,2-TETRACHLOROETHANE 1,1,1-TICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROPROPENE 1,2-3-TRICHLOROBENZENE 1,2-3-TRICHLOROBENZENE 1,2-4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,3-DICHLOROPROPANE 1,3-DICHLOROETHANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 2-CHLOROTOLUENE 2-BUTANONE 2-CHLOROTOLUENE 2-HEXANONE 4-CHLOROTOLUENE ACETONE BROMOCHLOROMETHANE BROMOCHLOROMETHANE BROMOCHLOROMETHANE BROMOCHLOROMETHANE BROMOCHLOROMETHANE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFORM GHLOROFORM GHLOROFORM GHLOROFORM GHLOROMETHANE DIBROMOMETHANE DIBROM | | GA: 888888888888888888888888888888888888 | L) 888888888666976888886698864884698888867828088888818676798672894698888887788 | DD) 66666666699999666696698989866669966699 | | SURROGATE PARAMETERS 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE | 47.1
45.2
46.1
44.7 | SPK_AMT
47.84
47.84
47.84
47.84 | % RECOVERY
98.4
94.4
96.3
93.5 | 71-136
79-119
85-116
78-119 | E051716 | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C070 Sample ID: KCH067-006 Lab Samp ID: C070-06 Lab File ID: RCB173 Ext Btch ID: VS03C08 Calib. Ref.: RCB100 | сто 067 | THELLAME | lected: 03/0
cceived: 03/0
racted: 03/0
racted: 03/0
Factor: 0.90
E : 2.2 | | |--|---|--|--|--| | PARAMETERS 1.1.2-TETRACHLOROETHANE 1.1.1-TICHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.1-DICHLOROETHANE 1.1.1-DICHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROPROPENE 1.2.3-TRICHLOROBENZENE 1.2.3-TRICHLOROBENZENE 1.2.4-TRIMETHYLBENZENE 1.2.1-DIBROMOGTHANE 1.2.1-DIBROMOGTHANE 1.2.1-DICHLOROPROPANE 1.2.1-DICHLOROPROPANE 1.2-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.3-DICHLOROPROPANE 2.4-DICHLOROPROPANE 2.5-DICHLOROPROPENE DIBROMOMETHANE BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROPTHANE CLLOROPTHANE CLLOROPTHANE CLLOROPTHANE CLLOROPTHANE CLLOROPTHANE DIBROMOMETHANE DIBR | TS);
 U.V. 100000000000000000000000000000000000 | QQ) - 7777777777777777777777777777777777 | L):7777774444224777776977774477739777774777777777777777 | LOD DO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1,2-DICHLOROETHANE-D4
4-BROMOFLUOROBENZENE
TOLUENE-D8
DIBROMOFLUOROMETHANE | 44.1
44.7
44.9
44.2 | 47.03
47.03
47.03
47.03 |
93.9
95.0
95.6
94.0 | 71-136
79-119
85-116
78-119 | POSHIL | Client : KLEINFELDER Project : NAWS CHINA LAKE, C Batch No. : 16C070 Sample ID: KCH067-008 Lab Samp ID: C070-08 Lab File ID: RCB174 Ext Btch ID: VS03C08 Calib. Ref.: RCB100 | TO 067 | Date Ext
Date Ar
Dilution
Matrix
% Moistur
Instrumer | eceived: 03/
tracted: 03/
nalyzed: 03/
Factor: 1.0
: SOI
re : 1.5 | 08/16
10/16
15/16 13:34
15/16 13:34
5
L | |--|--------|---|--|--| | PARAMETERS 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIGHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 2-CHLOROTOLUENE ACETONE BENZENE BROMOGENZENE BROMOGENZENE CARBON TISULFIDE TISULFIDE CARBON TISULFIDE CARBON TISULFIDE CARBON TISULFIDE TISULFI | T | פסוס פסי המימימימימימימימימימימימימימימימימימימ | DL): M3333333331111913333333313177711733333331933343113333333333 | DD9) - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | TOLUENE-D8
DIBROMOFLUOROMETHANE | 49.3 | 53.30 | 92.5 | 78-119 | 5451716 | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C070 Sample ID: KCH067-010 Lab Samp ID: C070-10 Lab File ID: RCB175 Ext Btch ID: VS03C08 Calib. Ref.: RCB100 | | Date Col
Date Re
Date Ext
Date Ar
Dilution
Matrix
% Moistur
Instrumer | lected: 03/
eceived: 03/
cracted: 03/
facted: 03/
factor: 0.9
solice: 3.8
t ID: T-0 | 03 | |--|---|--|---|--| | PARAMETERS 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE 1,2-TRICHLOROPROPANE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 1,4-DICHLOROPROPANE 1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-CHLOROFORM BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE CHLOROBENZENE CHLOROFORM CHLOROBENZENE CHLOROFORM CHLOROBENZENE CHLOROFORM CHLOROBETHANE CIS-1,3-DICHLOROPENE DIBROMOCHLOROMETHANE DIBROMOMETHANE DISULFIDE CHLOROPILUOROMETHANE ETHYLBENZENE M/P-XYLENES 4-METHYL 2-PENTANONE METHYL 1-PENTANONE 1-PE | RESUKTS) - 1 | Q):777777777777777777777777777777777777 | LD)-7777777555257777769777548739777777577172757777717515697564179359777777037 y | 00):55555555559999955595597979797555599955559559 | | SURROGATE PARAMETERS 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE | RESULTS
46.9
45.6
45.2
46.4 | 47.30
47.30
47.30
47.30
47.30 | % RECOVERY
99-1
96-3
95-5
98-2 | 71-136
79-119
85-116
78-119 | | Client: KLEINFELDER Project: NAWS CHINA LAKE, Batch No.: 16C070 Sample: ID: KCH067-011 Lab Samp ID: C070-11 Lab File ID: RCB176 Ext Btch ID: VS03C08 Calib. Ref:: RCB100 | ===================================== | Date Col
Date Re
Date Ext
Date An
Dilution
Matrix
% Moistur
Instrumen | lected: 03/6
ceived: 03/7
racted: 03/7
alyzed: 03/7
Factor: 0.9 | |
--|---------------------------------------|--|--|--| | PARAMETERS 1.1.2-TETRACHLOROETHANE 1.1.1-TRICHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TRICHLOROETHANE 1.1.1-DICHLOROETHENE 1.1-DICHLOROETHENE 1.1-DICHLOROPROPENE 1.2-3-TRICHLOROBENZENE 1.2-3-TRICHLOROBENZENE 1.2-4-TRIMETHYLBENZENE 1.2-DIBROMOG-THANE 1.2-DIBROMOG-THANE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.3-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 2-BUTANONE 2-CHLOROTOLUENE 2-CHLOROTOLUENE 2-BUTANONE 2-CHLOROTOLUENE 2-BUTANONE 2-CHLOROTOLUENE 2-CHLORODENZENE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROBENZENE CHLOROBENZENE CHLOROBENZENE CHLOROBENZENE DIBROMOMETHANE DICHLOROBETHANE CIS-1-3-DICHLOROPROPENE DIBROMOMETHANE DICHLOROBITALIENE ISOPROPYLBENZENE M/P-XYLENES 4-METHYL-2-PENTANONE METHYLENE CHLORIDE METHYL TERT-BUTYL ETHER NAPHTHALBNE N-BUTYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE TERT-BUTYLBENZENE TERT-BUTYLBEN | TSULTS) - | Q); 666666666666666666666666666666666666 | L) 6666663331736666653367296666637606263666661639369688238666666035 Y 0000000000000000000000000000000000 | 00) 333333399999993333999399999999999999 | | 1,2-DICHLOROETHANE-D4
4-BROMOFLUOROBENZENE
TOLUENE-D8
DIBROMOFLUOROMETHANE | 47.5
51.2
48.7
46.7 | 46.44
46.44
46.44
46.44 | 102
110
105
101 | 71-136
79-119
85-116
78-119 | 2251712 | Client : KLEINFELDER Project : NAWS CHINA LAKE, C
Batch No. : 16C070 Sample ID: KCH067-013 Lab Samp ID: C70-13 Lab File ID: RCB181 Ext Btch ID: VS03C08 Calib. Ref.: RCB100 | ro 067 | Date Coll Date Rec Date Extr Date And Dilution F Matrix % Moisture Instrument | ected: 03/0
ceived: 03/
acted: 03/
slyzed: 03/
factor: 0.8/
 | 08/16
10/16
15/16 17:03
15/16 17:03
2
L | |--|------------------------------|---|---|--| | PARAMETERS 1.1,1.2-TETRACHLOROETHANE 1.1,2.2-TETRACHLOROETHANE 1.1,2.2-TETRACHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROETHENE 1.1-DICHLOROETHENE 1.1-DICHLOROETHENE 1.2,3-TRICHLOROBENZENE 1.2,3-TRICHLOROBENZENE 1.2,4-TRICHLOROBENZENE 1.2,4-TRICHLOROBENZENE 1.2-DIBROMOETHANE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 1.3-DICHLOROBENZENE 2.2-DICHLOROPROPANE 2-BUTANONE 2-HEXANONE 2-CHLOROTOLUENE 2-HEXANONE 4-CHLOROTOLUENE BENOMOSENZENE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMODFORM BROMOMETHANE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROMETHANE CHLOROFORM CHLORODETHANE CIS-1,2-DICHLOROPROPENE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE CHLOROFORM CHLORODETHANE CHLOROPOPYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE THYLBENZENE THYLBENZENE THYLBENZENE THYLBENZENE THYLBENZENE THERT-BUTYLBENZENE TETRACHLOROBUTADIENE TOLUENE TRANS-1,2-DICHLOROPROPENE TRANS-1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRICHLOROFLUCORMETHANE TRICHLOROFLUCORMETHANE TRICHLOROFLUCORMETHANE TRICHLOROFLUCORMETHANE TRICHLOROFLUCORMETHANE TRICHLOROFLUCORMETHANE TRICHLOROFLUCORMETHANE TRICHLOROFLUCORMETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROFLUCORMETHANE TRIC | TS | QQ; | L):3333333333666763333715336621587333336637313633333036564736606348864333333529 Y | OD)-66666677777666666737373737366666777666666 | | 1,2-DICHLOROETHANE-D4
4-BROMOFLUOROBENZENE
TOLUENE-D8
DIBROMOFLUOROMETHANE | 44.7
39.7
40.4
45.3 | 43.16
43.16
43.16
43.16 | 104
92.0
93.6
105 | 71-136
79-119
85-116
78-119 | LISITIL | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C070 Sample ID: KCH067-014 Lab Samp ID: C070-14 Lab File ID: RCB182 Ext Btch ID: VS03C08 Calib. Ref.: RCB100 | сто 067 | Date Co
Date Re
Date Ext
Date An
Dilution
Matrix
% Moistun
Instrumen | llected: 03/eceived: 03/
tracted: 03/
nalyzed: 03/
Factor: 0.8
SOI
re : 3.9 | 08/16
10/16
15/16 17:32
15/16 17:32
7
L |
--|------------------------------|---|---|--| | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (ug/kg) | (ug/kg) | DL
(ug/kg) | (ug/kg) | | 1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROPROPENE 1,2-DICHLOROPROPENE 1,2-J-TRICHLOROBENZENE 1,2-J-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DICHLOROETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE 2-BUTANONE 2-BUTANONE 2-HEXANONE 2-HEXANONE 2-HEXANONE 2-HEXANONE 4-CHLOROTOLUENE BENZENE BROMOBENZENE BROMOBENZENE BROMODICHLOROMETHANE BROMOMETHANE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFTHANE CHLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROPROPENE DIBROMOCHLOROMETHANE DICHLOROBENZENE CHLOROFTHANE CHLOROFTHANE CIS-1,3-DICHLOROPROPENE DIBROMOCHLOROMETHANE DICHLORODIFLUOROMETHANE DIBROMOCHLOROMETHANE DISULFIDE CIS-1,3-DICHLOROPROPENE DIBROMOCHLOROMETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE ETHYLBENZENE MYP-XYLENES 4-METHYL-2-PENTANONE METHYLBENZENE MYP-XYLENE 4-METHYL-2-PENTANONE METHYLBENZENE MYP-SYLENE 4-METHYL-2-PENTANONE METHYLBENZENE N-PROPYLBENZENE THER HENDENZENE HENDEN | | ************************************** | 0:5555555111015555375513440185555145952515555555151818158571395441449.5444449.54444444444444444444444 | 99999999 1111 10000 1000 41414 0000 1000 0 0000 0 111440 110000 100000 100000 100000 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 1,2-DICHLOROETHANE-D4 | 46.5 | 45.27 | 103 | 71-136 | | 4 ² BROMOFLUOROBENZENE
TOLUENE-D8
DIBROMOFLUOROMETHANE | 46.5
40.1
43.0
47.2 | 45.27
45.27
45.27
45.27 | 103
88.5
95.1
104 | 79-119
85-116
78-119 | | ****************** | | ,
 | ======================================= | ========= |
--|------------------------------|--|---|--| | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C070 Sample ID: KCH067-016 Lab Samp ID: C070-16 Lab File ID: RCB180 Ext Btch ID: VS03C08 Calib. Ref.: RCB100 | сто 067 | Date Co
Date R
Date Ex
Date A
Dilution
Matrix
% Moistu
Instrume | llected: 03/
 eceived: 03/
 tracted: 03/
 nalyzed: 03/
 Factor: 0.9
 S0I
 re : 2.8
 nt ID : T-0 | 08/16
10/16
15/16 16:36
15/16 16:36
5
L | | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (ug/kg) | LOQ
(ug/kg) | (ug/kg) | (ug/kg) | | 1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE 1,2-DICHLOROETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROPROPANE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROPROPANE 2-BUTANONE 2-CHLOROTOLUENE 2-BUTANONE 2-CHLOROTOLUENE 2-HEXANONE 4-CHLOROTOLUENE 2-HEXANONE 4-CHLOROTOLUENE BROMODENZENE BROMODENZENE BROMOBENZENE BROMOBENZENE BROMOBENZENE BROMOMETHANE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROMETHANE CHLOROPICHUOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE CHLOROFORM CHLOROFILDOROMETHANE DISPROPYLBENZENE M/P-XYLENES 4-METHYL-2-PENTANONE METHYL-1ERT BUTYL ETHER N-PROPYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE STYRENE TERT-BUTYLBENZENE TERT-BUTYLBENZ | | . QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ | - 9999999988489999881998498509999988893939899999999998849158199999991444449899959444445544988684969884944449158199999999914 | 9888888000000000000088880909099888008880008088880800009988000000 | | VINYL CHLORIDE
TERTIARY BUTYL ALCOHOL | ND | 20 | 9.0 | | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 1,2-DICHLOROETHANE-D4
4-BROMOFLUOROBENZENE
TOLUENE-D8
DIBROMOFLUOROMETHANE | 48.8
45.0
46.0
48.7 | 48.87
48.87
48.87
48.87 | 99.8
92.2
94.2
99.7 | 71-136
79-119
85-116
78-119 | 82517/4 | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 166070 Sample ID: KCH067-018 Lab Samp ID: C070-18 Lab File ID: RCB183 Ext Btch ID: VS03C08 Calib. Ref.: RCB100 | сто 067 | Date Co
Date Re
Date Ex
Date An
Dilution
Matrix
% Moistumen
Instrumen | llected: 03/
eceived: 03/
tracted: 03/
nalyzed: 03/
Factor: 0.8
: SOII
re : 2.1 | 08/16
10/16
15/16 18:00
15/16 18:00
7
L | |--|------------------------------|--|---|--| | PARAMETERS 1,1,12-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,1-DICHLOROPROPANE 1,2-3-TRICHLOROPROPANE 1,2-3-TRICHLOROPROPANE 1,2-TRICHLOROBENZENE 1,2-TRICHLOROBENZENE 1,2-DIBROMOGTHANE 1,2-DIBROMOGTHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROETHANE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE | RESULTS (| Og) - 44444444444444444444444444444444444 | (ug/kg)
 | LOD
(ug/kg)
0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89 | | CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE CLLOROFORM CHLOROMETHANE CIS-1,2-DICHLOROPROPENE DIBROMOMETHANE DIBROMOMETHANE DICHLOROMETHANE DICHLORODIFLUOROMETHANE ETHYLBENZENE HEXACHLOROBUTADIENE ISOPROPYLBENZENE M/P-XYLENES 4-METHYL-2-PENTANONE METHYL-2-PENTANONE METHYL TERT-BUTYL ETHER NAPHTHALENE N-BUTYLBENZENE N-PROPYLBENZENE N-PROPYLBENZENE O-XYLENE P-ISOPROPYLTOLUENE SEC-BUTYLBENZENE STYRENE TERT-BUTYLBENZENE TRICHLOROFTHENE TRICHLOROFTH | XD | 44444444444444444444444444444444444444 | 0.00000 000 000000 00000 0000000000000 | 4.4849999888889999888888988888988888999999 | | 1,2-DICHLOROETHANE-D4
4-BROMOFLUOROBENZENE
TOLUENE-D8
DIBROMOFLUOROMETHANE | 46.0
40.6
42.3
46.6 | 44.43
44.43
44.43
44.43 | 104
91.3
95.1
105 | 71-136
79-119
85-116
78-119 | EN1716 | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C070 Sample ID: KCH067-020 Lab Samp ID: C070-19 Lab File ID: RCC265 Ext Btch ID: V067C11 Calib. Ref.: RBC337 | СТО 067 | Date Co
Date R
Date Ex
Date A
Dilution
Matrix
% Moistu
Instrume | llected: 03/ eceived: 03/ tracted: 03/ nalyzed: 03/ Factor: 1 : WAT re: NA nt ID: 67 | 08/16
10/16
14/16 13:59
14/16 13:59 |
--|--------------------|--|---|--| | PARAMETERS 1.1.1.2-TETRACHLOROETHANE 1.1.1.2-TETRACHLOROETHANE 1.1.2.2-TETRACHLOROETHANE 1.1.2.1.CHLOROETHANE 1.1.2.TICHLOROETHANE 1.1.2.TICHLOROETHANE 1.1.DICHLOROETHANE 1.1.DICHLOROETHANE 1.2.3-TRICHLOROBENZENE 1.2.3-TRICHLOROBENZENE 1.2.4-TRICHLOROBENZENE 1.2.4-TRICHLOROBENZENE 1.2.1.BROMOGTHANE 1.2.DIBROMOGTHANE 1.2.DICHLOROETHANE 1.2.DICHLOROETHANE 1.2.DICHLOROETHANE 1.3.5-TRIMETHYLBENZENE 1.3.5-TRIMETHYLBENZENE 1.3.5-TRIMETHYLBENZENE 1.3.5-TRIMETHYLBENZENE 1.3.DICHLOROBENZENE 1.3-DICHLOROPROPANE 1.4-DICHLOROBENZENE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROPROPANE 2.2-DICHLOROBENZENE BROMOSENZENE BROMOSENZENE BROMOSENZENE BROMOSENZENE BROMOSENZENE CHLOROFORM BROMOMETHANE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFORM CHLOROFORM CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOMETHANE DIBROMOMETHANE DIBROMOMETHANE DIBROMOMETHANE DIBROMOMETHANE DIBROMOMETHANE CIS-1.3-DICHLOROPROPENE DIBROMOMETHANE DIBROMOMETHANE DICHLORODIFLUOROMETHANE DIBROMOMETHANE CIS-1.2-DICHLOROPROPENE DIBROMOMETHANE DISPROMOMETHANE DISPROMOME | RESULTS (1971) - 1 | Q) : 00000000000000000000000000000000000 | LL):0001000055151500000311006023116001105650007050000110502073104353500110525 Y:870790000000000000000000000000000000000 | DD.) - 020000000000000000000000000000000000 | | TOLUENE-D8
DIBROMOFLUOROMETHANE | 10.0
9.97 | 10.00 | 100
99.7 | 85-114
89-112
80-119 | SLOCINIL ## LDC #: 36282A1 VALIDATION COMPLETENESS WORKSHEET SDG #: 16C070 Standard/Full Laboratory: EMAX Laboratories Inc. METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | <u></u> | Comments | |-------|--|-------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | A, Δ | | | 11. | GC/MS Instrument performance check | Δ | | | III. | Initial calibration/ICV | SW, A | % PSD = 15 1W = 20
CW = 20 | | IV. | Continuing calibration / ending cw | SW | CU = 20 | | V. | Laboratory Blanks | Δ | | | VI. | Field blanks | 500 | EB = KC4067-019 (SDG# 160074) *TB= | | VII. | Surrogate spikes | Δ | | | VIII. | Matrix spike/Matrix spike duplicates | ريس | | | IX. | Laboratory control samples | Δ | ves 17 | | X. | Field duplicates | N | | | XI. | Internal standards | Δ | | | XII. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for Standard validation. | | XIII. | Target compound identification | Δ | Not reviewed for Standard validation. | | XIV. | System performance | Δ | Not reviewed for Standard validation. | | XV. | Overall assessment of data | Α | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank ed D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Full validation | | Client ID | Lab ID | Matrix | Date | |-------------|---------------|--------------|--------|----------| | 1 | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | 2 | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | 3 | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | 4 | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | -
5 | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | 5
+
6 | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | 7 | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | 8 | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | 9 | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | 10 | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | 11 | ксн067-020 ТЗ | 16C070-19 | Water | 03/08/16 | | 12 | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | 13 | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | LDC #: 36282A1 SDG #: 16C070 Laboratory: EMAX Labo |
MPLETENESS WORKSHE Standard/Full 60B) | | Date: 5/6 Page: 2/of Reviewer: 7/ Reviewer: 7/ | |--|--|--------|--| | Client ID | Lab ID | Matrix | Date | | 14 | | | | | 15 | | | | | 16 | | | | | 17 | | | | | 18 | | | | | Notes: | | | | | MBLKIN | | | | | MBLKIS | | | | | MBLK2S | | | | | 1421123 | | 1 | | | LDC#: 36282A | | |--------------|--| |--------------|--| ### **VALIDATION FINDINGS CHECKLIST** | | Page:_ | | 2 | |-----|-----------|----------|---| | | Reviewer: | <i>f</i> | 5 | | 2nd | Reviewer: | V | | Method: Volatiles (EPA SW 846 Method 8260B) | Validation Area | Yes | No | NA | Findings/Comments | |--|--|-------------|---------------------------------------
--| | L:Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check | | | | | | Were the BFB performance results reviewed and found to be within the specified criteria? | _ | | ! | | | Were all samples analyzed within the 12 hour clock criteria? | | | Sh. 10 F 60 M | | | IIIa. Initial calibration: | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | _ | | | Were all percent relative standard deviations (%RSD) <30%/15% and relative response factors (RRF) > 0.05? | l Sutracion Alia | | tal Millianni de San | | | IIIb. Initial Calibration Verification | I | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | <u></u> | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | KINS CAPITO | State A | and the contract of the contract of the property of the contract contra | | IV. Continuing calibration | i — | I | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | / | | | | | Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs? | / | | | | | Were all percent differences (%D) ≤ 20% and relative response factors (RRF) ≥ 0.05? | Total State of the | | r 044-046 3 | | | V. Laboratory Blanks |)
 | T | · · · · · · · · · · · · · · · · · · · | | | Was a laboratory blank associated with every sample in this SDG? | / | ļ | | | | Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | I | | | | Were field blanks were identified in this SDG? | _ | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogate spikes e | 1 | 100 Tel | | | | Were all surrogate percent recovery (%R) within QC limits? | / | <u> </u> | | | | If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria? | | | _ | | LDC#: 36282A ### **VALIDATION FINDINGS CHECKLIST** Page: ν of ν Reviewer: ν 2nd Reviewer: ν | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----------|---------------------------------------|-------------------| | VIII. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | - | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | / | _ | | | IX. Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | / | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | _ | | | XI; Internal standards | | | | | | Were internal standard area counts within -50% to +100% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | | | | XII. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | • | | | | XIII: Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | ļ | | | Were chromatogram peaks verified and accounted for? | | | | | | XIVi System performance | | | | | | System performance was found to be acceptable. | | | | | | XV Overall assessment of data | | r — | , , , , , , , , , , , , , , , , , , , | | | Overall assessment of data was found to be acceptable. | | <u> </u> | | | ### TARGET COMPOUND WORKSHEET ### METHOD: VOA | | | | ···· | | |------------------------------|---------------------------------|--|-----------------------------------|----------------------------| | A. Chloromethane | AA. Tetrachloroethene | AAA. 1,3,5-Trimethylbenzene | AAAA. Ethyl tert-butyl ether | A1. 1,3-Butadiene | | B. Bromomethane | BB. 1,1,2,2-Tetrachloroethane | BBB. 4-Chlorotoluene | BBBB. tert-Amyl methyl ether | B1. Hexane | | C. Vinyl choride | CC. Toluene | CCC. tert-Butylbenzene | CCCC. 1-Chlorohexane | C1. Heptane | | D. Chloroethane | DD. Chlorobenzene | DDD. 1,2,4-Trimethylbenzene | DDDD. Isopropyl alcohol | D1. Propylene | | E. Methylene chloride | EE. Ethylbenzene | EEE. sec-Butylbenzene | EEEE. Acetonitrile | E1. Freon 11 | | F. Acetone | FF. Styrene | FFF. 1,3-Dichlorobenzene | FFFF. Acrolein | F1. Freon 12 | | G. Carbon disulfide | GG. Xylenes, total | GGG. p-Isopropyltoluene | GGGG. Acrylonitrile | G1. Freon 113 | | H. 1,1-Dichloroethene | HH. Vinyl acetate | HHH. 1,4-Dichlorobenzene | HHHH. 1,4-Dioxane | H1. Freon 114 | | I. 1,1-Dichloroethane | II. 2-Chloroethylvinyl ether | III. n-Butylbenzene | IIII. Isobutyl alcohol | I1. 2-Nitropropane | | J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane | JJJ. 1,2-Dichlorobenzene | JJJJ. Methacrylonitrile | J1. Dimethyl disulfide | | K. Chloroform | KK. Trichlorofluoromethane | KKK. 1,2,4-Trichlorobenzene | KKKK. Propionitrile | K1. 2,3-Dimethyl pentane | | L. 1,2-Dichloroethane | LL. Methyl-tert-butyl ether | LLL. Hexachlorobutadiene | LLLL. Ethyl ether | L1. 2,4-Dimethyl pentane | | M. 2-Butanone | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene | MMMM. Benzyl chloride | M1. 3,3-Dimethyl pentane | | N. 1,1,1-Trichloroethane | NN. Methyl ethyl ketone | NNN. 1,2,3-Trichlorobenzene | NNNN. lodomethane | N1, 2-Methylpentane | | O. Carbon tetrachloride | OO. 2,2-Dichloropropane | OOO. 1,3,5-Trichlorobenzene | 0000.1,1-Difluoroethane | O1. 3-Methylpentane | | P. Bromodichloromethane | PP. Bromochloromethane | PPP. trans-1,2-Dichloroethene | PPPP. Tetrahydrofuran | P1. 3-Ethylpentane | | Q. 1,2-Dichloropropane | QQ. 1,1-Dichloropropene | QQQ. cis-1,2-Dichloroethene | QQQQ. Methyl acetate | Q1. 2,2-Dimethylpentane | | R. cis-1,3-Dichloropropene | RR. Dibromomethane | RRR. m,p-Xylenes | RRRR. Ethyl acetate | R1. 2,2,3- Trimethylbutane | | S. Trichloroethene | SS. 1,3-Dichloropropane | SSS. o-Xylene | SSSS. Cyclohexane | S1. 2,2,4-Trimethylpentane | | T. Dibromochloromethane | TT. 1,2-Dibromoethane | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methyl cyclohexane | T1. 2-Methylhexane | | U. 1,1,2-Trichloroethane | UU. 1,1,1,2-Tetrachloroethane | UUU. 1,2-Dichlorotetrafluoroethane | UUUU. Allyl chloride | U1. Nonanal | | V. Benzene | VV. Isopropylbenzene | VVV. 4-Ethyltoluene | VVVV. Methyl methacrylate | V1. 2-Methylnaphthalene | | W. trans-1,3-Dichloropropene | WW. Bromobenzene | WWW. Ethanol | WWWW. Ethyl methacrylate |
W1. Methanol | | X. Bromoform | XX. 1,2,3-Trichloropropane | XXX. Di-isopropyl ether | XXXX. cis-1,4-Dichloro-2-butene | X1. 1,2,3-Trimethylbenzene | | Y. 4-Methyl-2-pentanone | YY. n-Propylbenzene | YYY. tert-Butanol | YYYY. trans-1,4-Dichloro-2-butene | Y1. | | Z. 2-Hexanone | ZZ. 2-Chlorotoluene | ZZZ. tert-Butyl alcohol | ZZZZ. Pentachloroethane | Z1. | LDC#: 36282A/ # VALIDATION FINDINGS WORKSHEET Initial Calibration | Page: | <u>/</u> of_ | / | |--------------|--------------|---| | Reviewer: | FT | | | nd Reviewer: | X | _ | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | ∕Pfease see qua | alifications below for a | I questions answered "N". | Not applicable of | questions are ide | entified as "N/A". | |-----------------|--------------------------|---------------------------|-------------------|-------------------|--------------------| |-----------------|--------------------------|---------------------------|-------------------|-------------------|--------------------| YNN/A Did the laboratory perform a 5 point calibration prior to sample analysis? Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? N/A Did the initial calibration meet the acceptance criteria? Were all %RSDs and RRFs within the validation criteria of ≤30/15 %RSD and ≥0.05 RRF? code = 5 | | <u> </u> | vvere all %RSDs and RRF | 5 WILLIII LITE VAIIC | | JI IJ MNOD AND 20.0 | 13 NNI (| | |---|----------|-------------------------|---------------------------------------|---|--|--------------------|----------------| | # | Date | Standard ID | Compound | Finding %RSD
(Limit: <u><</u> 30/15%) | Finding RRF
(Limit: <u>></u> 0.05) | Associated Samples | Qualifications | | | 2/26/16 | VO 67826-ICAL | . रेरेर | | 0.007 (20. | ol) all water | 1+/UJ/A (ND) | | | ' | | | | | , | / | | | | | · · · · · · · · · · · · · · · · · · · | - | | | | | - | | | | - | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - | - | <u> </u> | | | | | | | LDC#: 36282A ### **VALIDATION FINDINGS WORKSHEET Continuing Calibration** | Page: | /
of | 7 | |---------------|---------|---| | Reviewer: | FT | | | 2nd Reviewer: | X | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Were all %D and RRFs within the validation criteria of <20 %D and >0.05 RRF? | YIN | <u> M/A</u> \ | Were all %D and RRFs | wh = 5 | | | | | |---------|----------------|----------------------|----------|-------------------------------|-------------------------------|--------------------|----------------| | # | Date | Standard ID | Compound | Finding %D
(Limit: ≤20.0%) | Finding RRF
(Limit: ≥0.05) | Associated Samples | Qualifications | | | 3/14/17 | RCC 257-COV | 222 | | 0.007 (20.0) |) All water | (OU) A/LUTL | | | ' ' | 1 | | | | | | | - | - | | - | ļ | | | | | | | | | | | | | | - | Y N N/A Were target Blank units: wa Asso Sampling date: 3 8 | A SW 846 Me
blanks identifie
compounds c
cciated samp | ed in this SDG
detected in the
ole units: <u>\</u> | 6?
e field blanks' | ŧ? | Blanks
EB = KCH | 1067-019 | , , , , , , , , , , , , , , , , , , , | = 16e074)
SOILS (| ~ | |--|--|--|-----------------------|----------------|--------------------|--------------------|--|----------------------|---| | Field blank type: (circle one |) Field Blank | / Rinsate / Tri | ip Blank / Oth | her: <u>EB</u> | Asso | ociated Sample | ÷S: /\ U | 80112 | | | Compound | Blank ID | | T | | S | Sample Identificat | tion | | | | | EB | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | | | | | G | 0.40 | | | 1 | Blank units: Asso
Sampling date:
Field blank type: (circle one | ociated samp
e) Field Blank | | rip_Blank / Oth | ner: | Assc | ociated Sample | es: | | | | Compound | Blank ID | | | | s | Sample Identificat | tion | | | | | T | | | | | | | | | | · | 1 ' | 1 ' | 1 | 1 | 1 | 1 1 | | ı | l | # Compound Blank ID Sample Identification CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U". .LDC#: 36282A) # VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page: <u>/</u> of_ | / | |--------------------|---| | Reviewer: FT | | | 2nd Reviewer: | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Plaase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". № Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. Was a MS/MSD analyzed every 20 samples of each matrix? Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? code- 9 | # | MS/MSD ID | Compound | MS
%R (Limits) | MSD
%R (Limits) | RPD (Limits) | Associated Samples | Qualifications | |---|-----------|----------|-------------------|--------------------|--------------|--------------------|----------------| | | 12 4 13 | 222 | () | () | 24 (20) | 9 | Jout /A (ND) | | | | | () | () | () | ' | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | ., | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | LDC#: 36282A/ ### **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | 1 | _of_ | 1_ | |---------------|---|----------|----| | Reviewer:_ | | FT | | | 2nd Reviewer: | | <u> </u> | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) $A_x = Area of compound,$ A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard C_x = Concentration of compound, S = Standard deviation of the RRFs X = Mean of the RRFs | | | | X - Wear of the NN S | | | | T T | <u> </u> | | |----------|-------------|---------------------|--|----------------|-----------------|-----------------------|--------------------------|----------|--------------| | l | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(らつstd) | RRF
(50 std) | Average RRF (initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | 1003CID | 3/10/16 | (1st internal standard) | 0.389 | 0.389 | 0.358 | 0.358 | 13.88 | 13.88 | | | | | (2nd internal standard) | 1.608 | 1.608 | 1-683 | 1.683 | 6.90 | 6.90 | | | | | BB (3rd internal standard) | 1.311 | 1-311 | 1.409 | 1.409 | 4.62 | 4.62 | | | | | (4th internal standard) | | | | <u>'</u> | | | | 2 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | <u> </u> | | | (4th internal standard) | | | | | | | | 3 | | | (1st internal standard) | | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | | 4 | | | (1st internal standard) | · . | | | | | | | | | | (2nd internal standard) | | | | | | | | | | | (3rd internal standard) | | | | | | | | | | | (4th internal standard) | | | | | | | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 36282A / # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | _1_of_1_ | |---------------|----------| | Reviewer: | _ FT | | 2nd Reviewer: | al | METHOD: GC/MS
VOA (EPA SW 846 Method 8260B) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard | # | Standard ID | Calibration
Date | Compound (Reference internal Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated
RRF
(CC) | Reported
%D | Recalculated
%D | |---------|-------------|---------------------|--|--------------------------|-------------------------|-----------------------------|----------------|--------------------| | 1 | PC B16Z | 3/15/16 | C (IS1) | 0-358 | 0.325 | 0.35 | 9.2 | 9.2 | | | | | cc (IS2) | 1.683 | 1.701 | 1.70) | - | [-] | | | | | BP (IS3) | 1.409 | 1.408 | 1.408 | 0-) | 0,) | | | | | (IS4) | | | • | | | | <u></u> | | | (185) | | | | | | | 2 | | | (IS1) | | | | | | | | | | (IS2) | | | | _ | | | | | | (IS3) | | | | | | | | | | (IS4) | | | | | | | | | | (IS5) | | | | | | | 3 | | | | | | | | | | | ·
 | | | | | | | | | | | | | - | | | | | | | \
\ | | | | | | | | | 4 | | | | | · | | | | | | ; | LDC#: 36282A) ### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page: | _1_of_1_ | |---------------|----------| | Reviewer: | FT | | 2nd reviewer: | N | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | 90.0 | 49.86 | 99.7 | 99.7 | 0 | | 1,2-Dichloroethane-d4 | | 49.89 | 99.8 | 99.8 | | | Toluene-d8 | | 47-11 | 94.00 | 94.2 | | | Bromofluorobenzene | J | 46.08 | 92.2 | 92.7 | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | <u> </u> | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | 7.00 | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | <u> </u> | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Dibromofluoromethane | | | | | | | 1,2-Dichloroethane-d4 | | | | | | | Toluene-d8 | | | | | | | Bromofluorobenzene | | | | <u> </u> | | LDC#: 36282A/ ### **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page: | _1_of_1_ | |---------------|----------| | Reviewer:_ | FT | | 2nd Reviewer: | そ | METHOD: GC/MS VOA (EPA Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration RPD = IMSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration MS/MSD sample: ____ | Compound | Spike
Added
(Ug) | | Sample Spiked Sample Concentration Concentration | | Matrix Spike Percent Recovery | | Matrix Spike Duplicate Percent Recovery | | MS/MSD
RPD | | | |--------------------|------------------------|------|--|-------|-------------------------------|----------|---|----------|---------------|----------|--------------| | 1 | MS. | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 45.8 | 46.3 | ND | 48.7 | 45.1 | ما 10 | 106 | 97 | 97 | 9 | 9 | | Trichloroethene | | | | 49.5 | 46.3 | 901 | RON | 100 | 100 | 8 | 8 | | Benzene | | | | 45.75 | 此号門 | 101 | 101 | 94 | 94 | 7 | 7 | | Toluene | | | | 48.0 | 43,4 | 105 | 105 | 99 | 99 | 4 | ط | | Chlorobenzene | | | | 47.8 | 46.2 | 104 | 104 | 0.01 | 10U | 4 | 4 | | Comments: Refer to Matrix Spike/Mat | rix Spike Duplica | tes findings workshee | t for list of qualifica | ations and associate | d samples when reported | results do not agree | |---|-------------------|-----------------------|-------------------------|----------------------|-------------------------|----------------------| | within 10.0% of the recalculated result | s. % RPD | Bet Based | on oh R | | | | | | 70 | | 7- 1 | | | | | | | | | | | | LDC#:_ 36282A / # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** Page: 1_ of 1_ Reviewer: FT 2nd Reviewer:_ - METHOD: GC/MS VOA (EPA Method 8260B) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCS ID: VS03008L/C | | | pike | | d Sample | | cs | | :SD | Lcs | /LCSD | |--------------------|------|--------------|------|-------------------|----------|----------|----------|----------|----------|--------------| | Compound | (4 | dded
9 K9 | i i | entration
A 49 | Percent | Recovery | Percent | Recovery | R | PD | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalculated | | 1,1-Dichloroethene | 50.0 | 50.0 | 44.4 | 48,6 | 89 | 89 | 97 | 97 | 9 | 9 | | Trichloroethene | | | 51.\ | 53.4 | 102 | 102 | 107 | 107 | 나 | 4 | | Benzene | | | 47.1 | 49.4 | 94 | 94 | 99 | 99 | 5 | 5 | | Toluene | | | 90.6 | 52.5 | 101 | [0] | 105 | 105 | 4 | 4 | | Chlorobenzene | | | 51.2 | 53.6 | 102 | 102 | 701 | 107 | ર્ડ | 5 | | Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and | d associated samples when reported results do not agree within 10.0% | |--|--| | of the recalculated results. | | | | | | | | LDC#: 36282A) # **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification** | Page:_ | 1 | _of_ | 1 | |---------------|---|------|---| | Reviewer: | | FT | | | 2nd reviewer: | | 17 | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = (A,)(I,)(DF) Example: $\overline{(A_{is})(RRF)(V_o)(\%S)}$ Sample I.D. V: Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) ٧ or grams (g). Df Dilution factor. Percent solids, applicable to soils and solid matrices %S | Conc. = _ | (2869118)(50) | |-----------|-------------------------------------| | (18. | (2869118)(50)
31262)(1.663)(5.0) | | = | 47.1 ug/kg | | # | Sample ID | Compound | Reported
Concentration | Calculated Concentration | Ovalisiantian | |---------------|--------------|----------|---------------------------|--------------------------|--| | | Sample in | Compound | | | Qualification | | | | | | | ļ | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | ļ | | | \vdash | | | | | | | | | | | | - | | <u> </u> | | | | | | 1 | <u> </u> | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site
Name:** China Lake CTO 067 **LDC Report Date:** May 12, 2016 Parameters: Polynuclear Aromatic Hydrocarbons Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270C using Selected Ion Monitoring (SIM) All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ## IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. # V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. ## VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. ### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. # XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XIV. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/15/16 11:10 Sample ID: KCH067-001 Date Analyzed: 03/16/16 14:09 Lab Samp ID: C070-01 Dilution Factor: 1 Lab File ID: RCJ209 Matrix : SOIL Ext Btch ID: SVC013S % Moisture : 4.3 Calib. Ref.: RBJ007 Instrument ID : T-0E4 | | RESULTS | LOQ | DL | LOD | |------------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | ACENAPHTHENE | ND | 10 | 1.3 | 2.6 | | ACENAPHTHYLENE | ND | 10 | 1.3 | 2.6 | | ANTHRACENE | ND | 10 | 1.3 | 2.6 | | BENZO(A)ANTHRACENE | ND | 10 | 2.6 | 5.2 | | BENZO(A)PYRENE | ND | 10 | 1.3 | 2.6 | | BENZO(B)FLUORANTHENE | 1.6J | 10 | 1.3 | 2.6 | | BENZO(K)FLUORANTHENE | ND | 10 | 1.3 | 2.6 | | BENZO(G,H,I)PERYLENE | 3.3J | 10 | 1.3 | 2.6 | | CHRYSENE | ND | 10 | 2.3 | 5.2 | | DIBENZO(A,H)ANTHRACENE | ND | 10 | 1.3 | 2.6 | | FLUORANTHENE | 1.6J | 10 | 1.3 | 2.6 | | FLUORENE | ND | 10 | 1.3 | 2.6 | | INDENO(1,2,3-CD)PYRENE | 1.5J | 10 | 1.3 | 2.6 | | NAPHTHALENE | ND | 10 | 1.3 | 2.6 | | PHENANTHRENE | ND | 10 | 1.3 | 2.6 | | PYRENE | 1.5J | 10 | 1.3 | 2.6 | | 2-METHYLNAPHTHALENE | ND | 10 | 1.3 | 2.6 | | 1-METHYLNAPHTHALENE | ND | 10 | 1.3 | 2.6 | |
SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 2-FLUOROBIPHENYL | 643 | 696.7 | 92.3 | 46-115 | | NITROBENZENE-D5 | 677 | 696.7 | 97.2 | 44-125 | | TERPHENYL-D14 | 833 | 696.7 | 120 | 58-133 | N001716 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/15/16 11:10 Sample ID: KCH067-002 Date Analyzed: 03/16/16 14:28 Lab Samp ID: C070-02 Dilution Factor: 1 Lab File ID: RCJ210 Matrix : SOIL Ext Btch ID: SVC013S % Moisture : 9.0 Calib. Ref.: RBJ007 Instrument ID : T-0E4 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |------------------------|--------------------|----------------|---------------|----------------| | ACENAPHTHENE | ND | 11 | 1.4 | 2.7 | | ACENAPHTHYLENE | ND | 11 | 1.4 | 2.7 | | ANTHRACENE | ND | 11 | 1.4 | 2.7 | | BENZO(A)ANTHRACENE | ND | 11 | 2.7 | 5.5 | | BENZO(A)PYRENE | ND | 11 | 1.4 | 2.7 | | BENZO(B)FLUORANTHENE | ND | 11 | 1.4 | 2.7 | | BENZO(K)FLUORANTHENE | ND | 11 | 1.4 | 2.7 | | BENZO(G,H,I)PERYLENE | 3.6J | 11 | 1.4 | 2.7 | | CHRYSENE | ND | 11 | 2.4 | 5.5 | | DIBENZO(A,H)ANTHRACENE | ND | 11 | 1.4 | 2.7 | | FLUORANTHENE | ND | 11 | 1.4 | 2.7 | | FLUORENE | ND | 11 | 1.4 | 2.7 | | INDENO(1,2,3-CD)PYRENE | ND | 11 | 1.4 | 2.7 | | NAPHTHALENE | ND | 11 | 1-4 | 2.7 | | PHENANTHRENE | ND | 11 | 1.4 | 2.7 | | PYRENE | ND | 11 | 1.4 | 2.7 | | 2-METHYLNAPHTHALENE | 2.3J | 11 | 1.4 | 2.7 | | 1-METHYLNAPHTHALENE | 2.4J | 11 | 1.4 | 2.7 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 2-FLUOROBIPHENYL | 603 | 732.6 | 82.4 | 46-115 | | NITROBENZENE-D5 | 648 | 732.6 | 88.4 | 44-125 | | TERPHENYL-D14 | 815 | 732.6 | 111 | 58-133 | 8/05/716 _______ Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/15/16 11:10 Sample ID: KCH067-003 Date Analyzed: 03/16/16 14:48 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |------------------------|--------------------|---|---------------|----------------| | ACENAPHTHENE | 2.6J | 11 | 1.3 | 2.7 | | ACENAPHTHENE | 2.5J | 11 | 1.3 | 2.7 | | ANTHRACENE | ND | 11 | 1.3 | 2.7 | | BENZO(A)ANTHRACENE | 2.9J | 11 | 2.6 | 5.4 | | BENZO(A)PYRENE | ND | 11 | 1.3 | 2.7 | | BENZO(B)FLUORANTHENE | 4.9J | 11 | 1.3 | 2.7 | | BENZO(K)FLUORANTHENE | ND | 11 | 1.3 | 2.7 | | BENZO(G,H,I)PERYLENE | 2.6J | 11 | 1.3 | 2.7 | | CHRYSENE | 3.7J | 11 | 2.4 | 5.4 | | DIBENZO(A,H)ANTHRACENE | ND | 11 | 1.3 | 2.7 | | FLUORANTHENE | ND | 11 | 1.3 | 2.7 | | FLUORENE | 1.8J | 11 | 1.3 | 2.7 | | INDENO(1,2,3-CD)PYRENE | ND | 11 | 1.3 | 2.7 | | NAPHTHALENE | 3.4J | 11 | 1.3 | 2.7 | | PHENANTHRENE | ND | 11 | 1.3 | 2.7 | | PYRENE | 2.7J | 11 | 1.3 | 2.7 | | 2-METHYLNAPHTHALENE | 2.7J | 11 | 1.3 | 2.7 | | 1-METHYLNAPHTHALENE | 2.7J | 11 | 1.3 | 2.7 | | I-MEINTLNAPHINALENE | 2.10 | • | 1.5 | 2., | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 2-FLUOROBIPHENYL | 653 | 716.1 | 91.3 | 46-115 | | NITROBENZENE-D5 | 696 | 716.1 | 97.2 | 44-125 | | TERPHENYL-D14 | 803 | 716.1 | 112 | 58-133 | Ka51716 | | RESULTS | LOQ | DL | LOD | |------------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | ACENAPHTHENE | ND | 11 | 1.3 | 2.6 | | ACENAPHTHYLENE | ND | 11 | 1.3 | 2.6 | | ANTHRACENE | ND | 11 | 1.3 | 2,6 | | BENZO(A)ANTHRACENE | ND | 11 | 2.6 | 5.3 | | BENZO(A)PYRENE | ND | 11 | 1.3 | 2.6 | | BENZO(B)FLUORANTHENE | ND | 11 | 1.3 | 2.6 | | BENZO(K)FLUORANTHENE | ND | 11 | 1.3 | 2.6 | | BENZO(G,H,I)PERYLENE | ND | 11 | 1.3 | 2.6 | | CHRYSENE | ND | 11 | 2.3 | 5.3 | | DIBENZO(A,H)ANTHRACENE | ND | 11 | 1.3 | 2.6 | | FLUORANTHENE | ND | 11 | 1.3 | 2.6 | | FLUORENE | ND | 11 | 1.3 | 2.6 | | INDENO(1,2,3-CD)PYRENE | ND | 11 | 1.3 | 2.6 | | NAPHTHALENE | ND | 11 | 1.3 | 2.6 | | PHENANTHRENE | ND | 11 | 1.3 | 2.6 | | PYRENE | ND | 11 | 1.3 | 2.6 | | 2-METHYLNAPHTHALENE | ND | 11 | 1.3 | 2.6 | | 1-METHYLNAPHTHALENE | ND | 11 | 1.3 | 2.6 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 2-FLUOROBIPHENYL | 621 | 701.1 | 88.6 | 46-115 | | NITROBENZENE-D5 | 663 | 701.1 | 94.6 | 44-125 | | TERPHENYL-D14 | 803 | 701.1 | 115 | 58-133 | | | | | | | ES171L | SDG# | #: 36282A2b VALIDATIO #: 16C070 atory: EMAX Laboratories Inc. | | PLETENES:
ndard/Full | S WORKSHEET | 1 | Date: | |--------|--|--------------|-------------------------|---|-----------------|------------------| | METH | IOD: GC/MS Polynuclear Aromatic Hydro | carbons (E | EPA SW 846 | Method 8270C-SIM) | | (CVIEWEI | | | amples listed below were reviewed for eartion findings worksheets. | ch of the fo | ollowing valida | ation areas. Validatio | on findings are | noted in attache | | | Validation Area | | - | Comm | ents | | | I. | Sample receipt/Technical holding times | AA | | | | | | 11. | GC/MS Instrument performance check | A | , | | | | | 111. | Initial calibration/ICV | AIA | % PSD | 515.12 | 100 | £ 20 | | IV. | Continuing calibration / ending cal | Δ | | | | 1 = 20 | | V. | Laboratory Blanks | Δ | | | | | | VI. | Field blanks | ND CM | EB = KC | 4067-019 | (2DG H | 16074) | | VII. | Surrogate spikes | A | | · · · · · · · · · · · · · · · · · · · | | • • • • • • | | VIII. | Matrix spike/Matrix spike duplicates | A | | <u> </u> | | | | IX. | Laboratory control samples | Α | 65 10 | | | | | Χ. | Field duplicates | N | | | | | | XI. | Internal standards | Δ | | | | | | XII. | Compound quantitation RL/LOQ/LODs | <u> </u> | Not reviewed for | Standard validation. | | | | XIII. | Target compound identification | Δ | | Standard validation. | | | | XIV. | System performance | Δ | | Standard validation. | | | | XV. | Overall assessment of data | A | | | , , | | | Note: | A = Acceptable ND = No
N = Not provided/applicable R = Rin | o compounds | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blan | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 1 | KCH067-001 | | | 16C070-01 | Soil | 03/08/16 | | | KCH067-002 | | | 16C070-02 | Soil | 03/08/16 | | 3 1 | KCH067-003 | | | 16C070-03 | Soil | 03/08/16 | | 4 1 | KCH067-004** | | | 16C070-04** | Soil | 03/08/16 | | 5 I | KCH067-003MS | | | 16C070-03MS | Soil | 03/08/16 | | 6 I | KCH067-003MSD | | | 16C070-03MSD | Soil | 03/08/16 | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | lotes: | | <u> </u> | | | T T | | | N | 1BLK15 | | | | | | LDC#: 36282A3b # **VALIDATION FINDINGS CHECKLIST** | Page: | _/of2 | |---------------|-------| | Reviewer: | PT | | 2nd Reviewer: | AC. | Method: Semivolatiles (EPA SW 846 Method 8270C-SIM) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|----|-------------------| | I. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II: GC/MS Instrument performance check (Not required) | | | | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | | - | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | 7 | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) \geq 0.05? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤20% or percent recoveries (%R) 80-120%? | | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | | | | · | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | | | | V. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | VI. Field blanks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII-Surrogate spikes | | | | | | Were all surrogate percent differences (%R) within QC limits? | | | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | , | | / | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | / | | LDC#: 36282A36 # **VALIDATION FINDINGS CHECKLIST** Page: 2 of 2 Reviewer: 7 2nd Reviewer: 2 | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----------|-----------
--| | VIII. Matrix spike/Matrix spike duplicates i | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | / | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | line. | | | Was an LCS analyzed for this SDG? | / | | | | | Was an LCS analyzed per analytical batch? | 1 | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X : Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | , | | | Were target compounds detected in the field duplicates? | | | | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | | | | | Were retention times within ± 30 seconds of the associated calibration standard? | | | O decimal | | | XII. Compound quantitation | | | | and the second s | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | - | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | i i | | 2 77 3g | | System performance was found to be acceptable. | | | | | | XV. Overall assessment of data. | | | | | | Overall assessment of data was found to be acceptable. | | | | | # **VALIDATION FINDINGS WORKSHEET** # METHOD: GC/MS SVOA | A. Phenol | AA. 2-Chloronaphthalene | AAA. Butylbenzylphthalate | AAAA. Dibenzothiophene | A1. | |---------------------------------|---------------------------------|----------------------------------|---|-----| | B. Bis (2-chloroethyl) ether | BB. 2-Nitroaniline | BBB. 3,3'-Dichlorobenzidine | BBBB. Benzo(a)fluoranthene | B1. | | C. 2-Chlorophenol | CC. Dimethylphthalate | CCC. Benzo(a)anthracene | CCCC. Benzo(b)fluorene | C1. | | D. 1,3-Dichlorobenzene | DD. Acenaphthylene | DDD. Chrysene | DDDD. cis/trans-Decalin | D1. | | E. 1,4-Dichlorobenzene | EE. 2,6-Dinitrotoluene | EEE. Bis(2-ethylhexyl)phthalate | EEEE. Biphenyl | E1. | | F. 1,2-Dichlorobenzene | FF. 3-Nitroaniline | FFF. Di-n-octylphthalate | FFFF. Retene | F1. | | G. 2-Methylphenol | GG. Acenaphthene | GGG. Benzo(b)fluoranthene | GGGG. C30-Hopane | G1. | | H. 2,2'-Oxybis(1-chloropropane) | HH. 2,4-Dinitrophenol | HHH. Benzo(k)fluoranthene | HHHH. 1-Methylphenanthrene | H1. | | I. 4-Methylphenol | II. 4-Nitrophenol | III. Benzo(a)pyrene | IIII. 1,4-Dioxane | l1. | | J. N-Nitroso-di-n-propylamine | JJ. Dibenzofuran | JJJ. Indeno(1,2,3-cd)pyrene | JJJJ. Acetophenone | J1. | | K. Hexachloroethane | KK. 2,4-Dinitrotoluene | KKK. Dibenz(a,h)anthracene | KKKK. Atrazine | K1. | | L. Nitrobenzene | LL. Diethylphthalate | LLL. Benzo(g,h,i)perylene | LLLL. Benzaldehyde | L1. | | M. Isophorone | MM. 4-Chlorophenyl-phenyl ether | MMM. Bis(2-Chloroisopropyl)ether | MMMM. Caprolactam | M1. | | N. 2-Nitrophenol | NN. Fluorene | NNN. Aniline | NNNN. 2,6-Dichlorophenol | N1. | | O. 2,4-Dimethylphenol | OO. 4-Nitroaniline | OOO. N-Nitrosodimethylamine | OOOO. 2,6-Dinitrotoluene | 01. | | P. Bis(2-chloroethoxy)methane | PP. 4,6-Dinitro-2-methylphenol | PPP. Benzoic Acid | PPPP. 3-Methylphenol | P1. | | Q. 2,4-Dichlorophenol | QQ. N-Nitrosodiphenylamine | QQQ. Benzyl alcohol | QQQQ. 3&4 Methylphenol | Q1. | | R. 1,2,4-Trichlorobenzene | RR. 4-Bromophenyl-phenylether | RRR. Pyridine | RRRR. 4-Dimethyldibenzothiphene (4MDT) | R1. | | S. Naphthalene | SS. Hexachlorobenzene | SSS. Benzidine | SSSS. 2/3-Dimethyldibenzothiophene (4MDT) | S1. | | T. 4-Chloroaniline | TT. Pentachlorophenol | TTT. 1-Methylnaphthalene | TTTT. 1-Methyldibenzothiophene (1MDT) | T1. | | U. Hexachlorobutadiene | UU. Phenanthrene | UUU.Benzo(b)thiophene | υυυυ. | U1. | | V. 4-Chloro-3-methylphenol | VV. Anthracene | VVV.Benzonaphthothiophene | vvv. | V1. | | W. 2-Methylnaphthalene | WW. Carbazole | WWW.Benzo(e)pyrene | www. | W1. | | X. Hexachlorocyclopentadiene | XX. Di-n-butylphthalate | XXX. 2,6-Dimethylnaphthalene | xxxx. | X1. | | Y. 2,4,6-Trichlorophenol | YY. Fluoranthene | YYY. 2,3,5-Trimethylnaphthalene | YYYY. | Y1. | | Z. 2,4,5-Trichlorophenol | ZZ. Pyrene | ZZZ. Perylene | 7777. | Z1. | LDC#: 36282828 # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | <u>_</u> of_ | 1 | |----------------|--------------|---| | Reviewer:_ | FT | | | 2nd Reviewer:_ | pt | | | | | | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards $A_x =$ Area of compound, A_{is} = Area of associated internal standard %RSD = 100 * (S/X) C_x = Concentration of compound, S = Standard deviation of the RRFs, C_{is} = Concentration of internal standard X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |-----|-------------|---------------------|------------------------------|-------------------|-----------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Internal Standard) | RRF
(\10 std) | RRF
(10 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | ICAL | 2/2/16 | S (1st IS) | 3.98) | 3.981 | 4.006 | 4.006 | 3.76 | 3.76 | | | | | (2nd IS) | 1.437 | 1. 437 | 1.451 | 1.45 | 9.00 | 900 | | | | | TII (3rd IS) | 1.165 | 1.165 | 1.083 | 1.083 | 11-33 | 11-33 | | | | | (4th IS) | | | | | | | | Į į | | п | (5th IS) | | | | | _ | | | L | | | (6th IS) | | | | | | | | 2 | | | (1st IS) | | | | | | | | | | • | (2nd IS) | | | | | | | | | | | (3rd IS) | | | | | | | | | | | (4th IS) | | | | | | | | | | | (5th IS) | | | | | | | | | | | (6th IS) | | | | | | | | 3 | | | (1st IS) | | | | | | | | | | | (2nd IS) | | | | | | | | | | | (3rd IS) | | | | | | | | | ! | | (4th IS) | | | | | | | | | | | (5th IS) | | | | | | | | | | | (6th IS) | | | | | | | | Comments: | Refer to Initial | Calibration finding | s worksheet for | list of qualifications | s and associated | samples when | reported re | <u>sults do no</u> | <u>t agree within</u> | 10.0% of the | |--------------|------------------|---------------------|-----------------|------------------------|------------------|--------------|-------------|--------------------|-----------------------|--------------| | recalculated | results. | LDC#:_36282A2b # **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | <u>1</u> of <u>1</u> | |---------------|----------------------| | Reviewer: | FT | | 2nd Reviewer: | 9 | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_{is} = Area of associated internal standard $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ A_x = Area of compound, $C_x
= Concentration of compound,$ C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---------|-------------|---------------------|---------------------------------|--------------------------|-------------|--------------|----------|--------------| | #_ | Standard ID | Calibration
Date | Compound (Internal Standard) | Average RRF
(Initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | R0193 | 3/16/16 | <u>5</u> (1st IS) | 4.006 | 3.873 | 3.873 | 3,3 | 3.3 | | | CW | | (2 nd IS) | 1.451 | 1.395 | 1.395 | 3.9 | 3.9 | | | | | <u>TII</u> (3 rd IS) | 1.083 | 1.149 | 1.149 | 6.) | 6-1 | | | | | (4 th IS) | | | | | | | | | | (5 th IS) | | | | | | | | | | (6 th IS) | | | | | | | 2 | | | (1st_IS) | | | | | | | 1 | | | (2 rd IS) | | | | | | | l | | | (3 rd IS) | | | | | | | | | | (4 th IS) | | | | | | | | | | (5 th IS) | | | | | | | | <u> </u> | | (6 th IS) | | | | | | | 3 | | | (1st IS) | | | | | | | | | | (2 nd IS) | | | | | | | | | | (3 rd S) | | | | | | | | | | (4 th IS) | | | ,,=- | | | | | | | (5 th IS) | | | | | | | <u></u> | | | (6 th IS) | | | <u> </u> | <u></u> | <u> </u> | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 36282A2b # VALIDATION FINDINGS WORKSHEET Surrogate Results Verification | Page: | 1 | _of_ | 1 | |---------------|---|------|---| | Reviewer: | | FT | | | 2nd reviewer: | | 1 | _ | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: 盐 나 | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | 10 | 9.46 | 94.6 | 94.6 | 0 | | 2-Fluorobiphenyl | | 8.86 | 88.6 | 88.6 | 1 | | Terphenyl-d14 | J | 11.46 | 115 | 115 | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | LDC#:_36282A2b # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page: | _1_of_1 | |---------------|---------| | Reviewer: | FT | | 2nd Reviewer: | H | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) | The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compound | nds identified below | |---|----------------------| | using the following calculation: | | % Recovery = 100 * (SSC - SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation RPD = I MSC - MSC I * 2/(MSC + MSDC) MSC = Matrix spike concentration MSDC = Matrix spike duplicate concentration MS/MSD samples: _____5 → _____ | | | oike | Sample | | Sample | Matrix | Spike | Matrix Spik | e Duplicate | Ms/ | MSD | |----------------------------|------|--------------|-----------------------|------|----------|-----------|----------|-------------|-------------|----------|--------| | Compound | | lded
(Kg) | Concentration (vg (4) | | ntiation | Percent I | Recovery | Percent | Recovery | RI | PD | | | MS | MSD | 0.0 | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalc | | Phenol | | | | | _ | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | | Acenaphthene | 1430 | 1430 | 2.61 | 1050 | 1050 | 13 | 73 | 73 | 73 | U | O | | Pentachlorophenol | | | | | | | | | | | | | Pyrene | 1 | 1 | 2-68 | 1370 | 1320 | 95 | 95 | 92 | 92 | 4 | 4 | Comments: | Refer to Matrix Spike/Matrix Spike Duplicates fin | <u>dings worksheet for list of qualifications and</u> | <u>d associated samples when reported res</u> | <u>ults do not agree within</u> | |--------------|---|---|---|---------------------------------| | 10.0% of the | e recalculated results. | | | | | | | | | | | | | | | | LDC #: 36282A2b # **VALIDATION FINDINGS WORKSHEET** # Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | raye | 0_ | Щ. | |--------------|----|----| | Reviewer:_ | FT | | | 2nd Reviewer | A | | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: SYC 0135L SC | Compound | | pike
Ided
7 (4) | Conce | oike
entration | | Recovery | | SD
Recovery | | LCSD
PD | |----------------------------|---------------|-----------------------|-------|-------------------|----------|----------|----------|----------------|----------|--------------| | 30 | LCS | LCSD | LCS | I CSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | · | | | | | | | | | | 4-Chloro-3-methylphenol | <u> </u> | ļ | | | | | | | | | | Acenaphthene | 1330 | 130 | 967 | 932 | 73_ | 73 | 70 | 70 | 4 | 4 | | Pentachlorophenol | | <u> </u> | | | | | | | | | | Pyrene | \ \frac{1}{2} | <u> </u> | 1230 | 1230 | 92 | 92 | 92 | 92 | O | U_ | | | | | | | | | | · | | | | | | | | | | ` | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reporte | |---| | results do not agree within 10.0% of the recalculated results. | | | LDC# 36282A2b # **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification** | | Page:_ | 1 | _of | 1_ | |-----|------------|---|-----|----| | | Reviewer: | | FT | | | 2nd | reviewer:_ | | N | | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) Factor of 2 to account for GPC cleanup | R | Ŋ | N/A | |----|---|-----| | (図 | N | N/A | | | | | 2.0 Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | | | | 1 | |----------------|----------
--|--| | Conce | entratio | Attack the Control of | Example: | | | | $(A_{is})(RRF)(V_o)(V_i)(%S)$ | 100 110 | | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. LCS, Acenaphthene | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | () () () () | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = (599770) (40) (2) (1000) | | V_{σ} | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | Conc. = (599770) (40) (2) (1000)
(552251)(2.994) (30) | | V_{l} | = | Volume of extract injected in microliters (ul) | = \ / | | V_{t} | = | Volume of the concentrated extract in microliters (ul) | | | Df | = | Dilution Factor. | 967 ug/kg | | %S | = | Percent solids, applicable to soil and solid matrices | 7 0 | | # | Sample ID | Compound | Reported
Concentration
() | Calculated
Concentration
() | Qualification | |----------|-----------|----------|----------------------------------|------------------------------------|---------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ļ | } | | \vdash | | <u> </u> | | | | | | | | | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 12, 2016 Parameters: Chlorinated Pesticides Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC Instrument Performance Check Instrument performance was checked at 12 hour intervals. The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. Retention time windows were established as required by the method for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. Retention times of all compounds in the calibration standards were within the established retention time windows for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. # VII. Surrogates Surrogates
were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates No field duplicates were identified in this SDG. ## XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions: | Sample | Compound | RPD | Flag | A or P | |--------------|--------------------------------|------------------|---|--------| | KCH067-001 | Aldrin
Dieldrin
4,4'-DDE | 109
113
66 | J (all detects) J (all detects) J (all detects) | A | | KCH067-003 | Dieldrin
4,4'-DDT | 111
156 | J (all detects)
J (all detects) | А | | KCH067-004** | Dieldrin
Endosulfan II | 122
108 | J (all detects)
J (all detects) | А | Raw data were not reviewed for Level III validation. #### XII. Target Compound Identification All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. # XIII. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XIII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to RPD between two columns, data were qualified as estimated in three samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. # China Lake CTO 067 Chlorinated Pesticides - Data Qualification Summary - SDG 16C070 | Sample | Compound | Flag | A or P | Reason (Code) | |--------------|--------------------------------|---|--------|--| | KCH067-001 | Aldrin
Dieldrin
4,4'-DDE | J (all detects) J (all detects) J (all detects) | A | Compound quantitation (RPD between two columns) (12) | | KCH067-003 | Dieldrin
4,4'-DDT | J (all detects)
J (all detects) | А | Compound quantitation (RPD between two columns) (12) | | KCH067-004** | Dieldrin
Endosulfan II | J (all detects)
J (all detects) | А | Compound quantitation (RPD between two columns) (12) | China Lake CTO 067 Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG #### METHOD SW3550B/8081A PESTICIDES Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/14/16 14:44 Sample ID: KCH067-001 Date Analyzed: 03/19/16 07:44 Lab Samp ID: C070-01 Dilution Factor: 1 Lab File ID: RC18055A Matrix : SOIL Ext Btch ID: CPC011S % Moisture : 4.3 Calib. Ref.: RC18052A Instrument ID : F9 _______ | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------------|-------------------|---------------|----------------| | PARAMETERS | (49/kg) | (49/kg) | (dg/kg/ | (49/kg) | | ALPHA-BHC | (ND) ND | 2.1 | 0.21 | 0.42 | | GAMMA-BHC (LINDANE) | (ND) 0.42J | 2.1 | 0.21 | 0.42 | | BETA-BHC | (ND) ND | 2.1 | 0.21 | 0.42 | | HEPTACHLOR | 0.43J (ND) | 2.1 | 0.21 | 0.42 | | DELTA-BHC | (ND) ND | 2.1 | 0.28 | 0.42 | | ALDRIN | 0.95J (0.28J) 丁(に | >) 2.1 | 0.21 | 0.42 | | HEPTACHLOR EPOXIDE | 1.2J (ND) | 2.1 | 0.21 | 0.42 | | GAMMA-CHLORDANE | (ND) ND | 2.1 | 0.21 | 0.42 | | ALPHA-CHLORDANE | (ND) ND | 2.1 | 0.21 | 0.42 | | ENDOSULFAN I | (ND) 0.75J | 2.1 | 0.21 | 0.42 | | 4,4'-DDE | 7.7 (3.9) | 2) 2.1 | 0.21 | 0.42 | | DIELDRIN | 4.3 (1.2J) J (1 | 2) 2.1 | 0.21 | 0.42 | | ENDRIN | (ND) 2.7 | 2.1 | 0.21 | 0.42 | | 4,4'-DDD | (ND) ND | 2.1 | 0.21 | 0.42 | | ENDOSULFAN II | 1.6J (ND) | 2.1 | 0.21 | 0.42 | | 4,4'-DDT | (NĎ) 19 | 2.1 | 0.21 | 0.42 | | ENDRIN ALDEHYDE | (ND) ND | 2.1 | 0.37 | 0.42 | | ENDOSULFAN SULFATE | (ND) ND | 2.1 | 0.21 | 0.42 | | ENDRIN KETONE | 0.31J (ND) | 2.1 | 0.21 | 0.42 | | METHOXYCHLOR | 2.8J (ND) | 10 | 2.1 | 4.2 | | TOXAPHENE | (ND) ND | 52 | 5.2 | 10 | | TECHNICAL CHLORDANE | (ND) ND | 52 | 10 | 21 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 12.72 (14.06) | 13.93 9 | 1.3 (101) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () 565116 #### METHOD SW3550B/8081A PESTICIDES _____ Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/14/16 14:44 Sample ID: KCH067-002 Date Analyzed: 03/19/16 08:04 Lab Samp ID: C070-02 Dilution Factor: 1 Lab File ID: RC18056A Matrix : SOIL Ext Btch ID: CPC011S % Moisture : 9.0 Calib. Ref.: RC18052A Instrument ID : F9 ______ | | RESULTS | LOQ | DL | LOD | |----------------------|---------------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | ALPHA-BHC | (ND) ND | 2.2 | 0.22 | 0.44 | | GAMMA-BHC (LINDANE) | (ND) ND | 2.2 | 0.22 | 0.44 | | BETA-BHC | (ND) ND | 2.2 | 0.22 | 0.44 | | HEPTACHLOR | (ND) ND | 2.2 | 0.22 | 0.44 | | DELTA-BHC | (ND) ND | 2.2 | 0.30 | 0.44 | | ALDRIN | (ND) ND | 2.2 | 0.22 | 0.44 | | HEPTACHLOR EPOXIDE | (ND) ND | 2.2 | 0.22 | 0.44 | | GAMMA-CHLORDANE | (ND) ND | 2.2 | 0.22 | 0.44 | | ALPHA-CHLORDANE | (ND) ND | 2.2 | 0.22 | 0.44 | | ENDOSULFAN I | (ND) ND | 2.2 | 0.22 | 0.44 | | 4,4'-DDE | 0.39J (ND) | 2.2 | 0.22 | 0.44 | | DIELDRIN | 0.33J (ND) | 2.2 | 0.22 | 0.44 | | ENDRIN | (ND) ND | 2.2 | 0.22 | 0.44 | | 4,4'-DDD | (ND) ND | 2.2 | 0.22 | 0.44 | | ENDOSULFAN II | (ND) ND | 2.2 | 0.22 | 0.44 | | 4,4'-DDT | (ND) 1.7J | 2.2 | 0.22 | 0.44 | | ENDRIN ALDEHYDE | (ND) ND | 2.2 | 0.38 | 0.44 | | ENDOSULFAN SULFATE | (ND) ND | 2.2 | 0.22 | 0.44 | | ENDRIN KETONE | (ND) ND | 2.2 | 0.22 | 0.44 | | METHOXYCHLOR | (ND) ND | 11 | 2.2 | 4.4 | | TOXAPHENE | (ND) ND | 55 | 5.5 | 11 | | TECHNICAL CHLORDANE | (ND) ND | 55 | 11 | 22 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 13.05 (13.63) | 14.65 8 | 9.1 (93.0) | 42-129 | RL: Reporting Limit Left of | is related to first column ; Right of | related to second column Final result indicated by () Ro1716 # METHOD SW3550B/8081A PESTICIDES Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/14/16 14:44 Sample ID: KCH067-003 Date Analyzed: 03/19/16 08:24 Lab Samp ID: C070-03 Dilution Factor: 1 Lab File ID: RC18057A Matrix: SOIL Ext Btch ID: CPC011S % Moisture: 6.9 Calib. Ref.: RC18052A Instrument ID: F9 ______ | | RESULTS | LOG | DL | LOD | |--------------------------|---------------|----------------|-------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | ALPHA-BHC | (ND) ND | 2.1 | | 0.43 | | GAMMA-BHC (LINDANE) | (ND) ND | 2.1 | | 0.43 | | BETA-BHC | (ND) ND | 2.1 | | 0.43 | | HEPTACHLOR | 0.321 (ND) | 2.1 | | 0.43 | | DELTA-BHC | (ND) ND | 2.1 | 0.29 | 0.43 | | ALDRIN | 3.3 (ND) | 2.1 | 0.21 | 0.43 | | HEPTACHLOR EPOXIDE | (ND) ND | 2.1 | 0.21 | 0.43 | | GAMMA-CHLORDANE | (ND) ND | 2.1 | 0.21 | 0.43 | | ALPHA-CHLORDANE | (ND)[ND | 2.1 | 0.21 | 0.43 | | ENDOSULFAN I | (ND) 1.4J | 2.1 | 0.21 | 0.43 | | 4,41-DDE | 15 (ND) | 2.1 | 0.21 | 0.43 | | DIELDRIN | 8.4 (2.4) J(| (12) 2.1 | 0.21 | 0.43 | | ENDRIN | (ND) 5.9 | 2.1 | 0.21 | 0.43 | | 4,4'-DDD | (ND) 0.74J | 2.1 | 0.21 | 0.43 | | ENDOSULFAN II | (ND) ND | 2.1 | 0.21 | 0.43 | | 4,4'-DDT | (6.9) 56 J | (2) 2.1 | 0.21 | 0.43 | | ENDRIN ALDEHYDE | (ND) ND | 2.1 | 0.38 | 0.43 | | ENDOSULFAN SULFATE | (ND) 1.8J | 2.1 | 0.21 | 0.43 | | ENDRIN KETONE | 0.85J (ND) | 2.1 | 0.21 | 0.43 | | METHOXYCHLOR | 19 (ND) | 11 | 2.1 | 4.3 | | TOXAPHENE | (ND) ND | 54 | 5.4 | 11 | | TECHNICAL CHLORDANE | (ND) ND | 54 | 11 | 21 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACIII ODO N. VVI ENE | 4/ /4 /45 77\ | 4/ 73 | 101 (107) | /3 130 | | TETRACHLORO-M-XYLENE | 14.41 (15.37) | 14.32 | 101 (107) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () Co51716 #### METHOD SW3550B/8081A PESTICIDES Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/14/16 14:44 Sample ID: KCH067-004 Date Analyzed: 03/19/16 09:25 Lab Samp ID: C070-04 Dilution Factor: 1 Lab File ID: RC18060A Matrix : SOIL Ext Btch ID: CPC011S % Moisture : 4.9 Calib. Ref.: RC18052A Instrument ID : F9 | PARAMETERS | RESULTS
(ug/kg) | Lo
(ug/kg | | LOD
(ug/kg) | |----------------------|-----------------------|------------------|------------|----------------| | ALPHA-BHC | (ND) ND | 2. | 1 0.21 | 0.42 | | GAMMA-BHC (LINDANE) | (ND) ND | 2. | | 0.42 | | BETA-BHC | (ND) ND | 2. | | 0.42 | | HEPTACHLOR
 (ND) ND | 2. | | 0.42 | | DELTA-BHC | (ND) ND | 2. | | 0.42 | | ALDRIN | 0.35J (ND) | 2. | | 0.42 | | HEPTACHLOR EPOXIDE | 0.35J (ND) | 2. | | 0.42 | | GAMMA-CHLORDANE | (ND) ND | 2. | | 0.42 | | ALPHA-CHLORDANE | 0.92J (ND) | 2. | 1 0.21 | 0.42 | | ENDOSULFAN I | (ND) ND | 2. | 1 0.21 | 0.42 | | 4,4'-DDE | 2.2 (ND) | . 2. | 1 0.21 | 0.42 | | DIELDRIN | 1.4J (0.34J) J | (12) 2. | 1 0.21 | 0.42 | | ENDRIN | (ND) 0.72J | ` / 2. | 1 0.21 | 0.42 | | 4,4'-DDD | (ND) ND | . 2. | 1 0.21 | 0.42 | | ENDOSULFAN II | (0.36J) 1.2J J | >) 2. | 1 0.21 | 0.42 | | 4,4'-DDT | (ND) 7.2 | '/ 2. | 1 0.21 | 0.42 | | ENDRIN ALDEHYDE | (ND) ND | 2. | 1 0.37 | 0.42 | | ENDOSULFAN SULFATE | (ND) 0.21J | 2. | 1 0.21 | 0.42 | | ÉNDRIN KETONE | (ND) ND | 2. | 1 0.21 | 0.42 | | METHOXYCHLOR | (ND) ND | 1 | 1 2.1 | 4.2 | | TOXAPHENE | (ND) ND | 5 | 3 5.3 | 11 | | TECHNICAL CHLORDANE | (ND) ND | 5 | 3 11 | 21 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | TETRACHLORO-M-XYLENE | 13.43 (14.66) | 14.02 | 95.8 (105) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () 565711 | SDG #
Labora | #: 16C070
ratory: EMAX Laboratories Inc. | Sta | andard/Full | S WORKSHEET | F | Date: 5/ | |-----------------|--|--------------------------------------|------------------|--|-----------------------|----------------| | The sa | HOD: GC Chlorinated Pesticides (EPA S) amples listed below were reviewed for eation findings worksheets. | | · | tion areas. Validation | findings are note | ed in attached | | <u> </u> | Validation Area | <u> </u> | <u> </u> | Comme | nts | | | 1. | Sample receipt/Technical holding times | A/A | | | | | | 11. | GC Instrument Performance Check | Δ | | | | | | III. | Initial calibration/ICV | A/A | 0/0 | psp /10/ = | 20 | | | IV. | Continuing calibration | A | | cal e | 20 | | | V. | Laboratory Blanks | A | | | | | | VI. | Field blanks | ND | EB = KCH | 067-019 (| SDG# 160 | 2074) | | VII. | Surrogate spikes | Д | | | | | | VIII. | Matrix spike/Matrix spike duplicates | A | | | | | | IX. | Laboratory control samples | Δ | 165 10 | | | | | X. | Field duplicates | N | | | | | | XI. | Compound quantitation/RL/LOQ/LODs | SW | Not reviewed for | Standard validation. | | | | XII. | Target compound identification | Δ | Not reviewed for | Standard validation. | | | | XIII. | System Performance | A | Not reviewed for | Standard validation. | | | | XIV | Overall assessment of data | <u> </u> | <u> </u> | | | | | Note: | N = Not provided/applicable R = Ri | No compound
insate
Field blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blank | SB=Source b
OTHER: | lank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-001 | | | 16C070-01 | Soil | 03/08/16 | | | KCH067-002 | | | 16C070-02 | Soil | 03/08/16 | | 3 | KCH067-003 | | | 16C070-03 | Soil | 03/08/16 | | 4 | KCH067-004** | | ****** | 16C070-04** | 03/08/16 | | | 5 | KCH067-003MS | | | 16C070-03MS | Soil | 03/08/16 | | 6 | KCH067-003MSD | | | 16C070-03MSD | Soil | 03/08/16 | | 7 | | | | | | | | | | | , | | | | | MBLKIS | | | |--------|--|--| | | | | | | | | Method: Pesticides (EPA SW 846 Method 8081) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|--------------|---|-------------------| | li Technical holding limes | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | III. GG/IBCD Institument performence oback | | | | | | Was the instrument performance found to be acceptable? | | | | | | Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift? | | | | | | Were endrin and 4,4'-DDT breakdowns \leq 15% for individual breakdown in the Evaluation mix standards? | | Sec. of the | | | | Me Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) <u>≤</u> 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | | | | Were the RT windows properly established? | | | *************************************** | | | IIII). Initial calibration varification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | - wowerender | | | | IV Continuing cilibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | Were all the retention times within the acceptance windows? | | | | | | ☑. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | Wi. Flaid blanks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | MII. Sunogete spikes/internal-Stenderds | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | | | | | LDC#: 36282 A 3a #### VALIDATION FINDINGS CHECKLIST Page: Zof Z Reviewer: FT 2nd Reviewer: / | Validation Area | Yes | No | NA | Findings/Comments | |--|-------|-------|----|-------------------| | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | \ | | | If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | / | | | Were internal standard area counts within <u>+</u> 50% of the average area calculated during calibration? | | | | | | . Marnzspike/Marnxspike duplieates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | / | | | · | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | 1 | كمحمل | F7 | | | IX Leboratory control semiples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | / | | | | | X. Fileld duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | - | | | Were target compounds detected in the field duplicates? | | | | | | XI. Garapovine quentifetian | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation? | | - | | | | Were relative percent difference (RPD) of the results between two columns ≤ 40%? | ارج ا | | | | | XII. Tengal compound identification | | | | | | Were the retention times of reported detects within the RT windows? | | | | | | XIII (Overellessessmentofolde) | | | | | | Overall assessment of data was found to be acceptable. | | | | | #### **VALIDATION FINDINGS WORKSHEET** METHOD: Pesticide/PCBs (EPA SW 846 Method 8081/8082) | A. alpha-BHC | I. Dieldrin | Q. Endrin ketone | Y. Aroclor-1242 | GG. Chlordane | |-----------------------|-----------------------|--------------------|-----------------------|---------------------------| | B. beta-BHC | J. 4,4'-DDE | R. Endrin aldehyde | Z. Aroclor-1248 | HH. Chlordane (Technical) | | C. delta-BHC | K. Endrin | S. alpha-Chlordane | AA. Aroclor-1254 | II. Arochior 1262 | | D. gamma-BHC | L. Endosulfan il | T. gamma-Chlordane | BB. Aroclor-1260 | JJ. Aroclor 1268 | | E. Heptachlor | M. 4,4'-DDD | U. Toxaphene | CC. 2,4'-DDD | KK. Oxychlordane | | F. Aldrin | N. Endosulfan sulfate | V. Aroclor-1016 | DD. 2,4'-DDE | LL. trans-Nonachlor | | G. Heptachlor epoxide | O. 4,4'-DDT | W. Aroclor-1221 | EE. 2,4'-DDT | MM. cis-Nonachlor | | H. Endosulfan I | P. Methoxychlor | X. Arodor-1232 | FF. Hexachlorobenzene | NN. | | Notes: | | |--------|--| | | | LDC#: 36282732 ### VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u> | | / | 1 | |---------------|-----|---| | Page: | of_ | _ | | Reviewer: | FT | | | 2nd Reviewer: | M | | METHOD: GC _ HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only Y N N/A N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? wde = 12 | | | | % RPD But 2 col
Findings 640 | | |---|--------------------|---------------|---------------------------------|----------------| | # | Associated Samples | Compound Name | Findings 640 | Qualifications | | | | F | 109 | Jan /A | | | | I | 113 | | | | | J | 66 | V | | | | | | | | | | | | | | | 3 | Ī | 111 | | | | | 6 | 156 | V | | | | | | , | | | | | | | | | | | | | | | 4 | I | 122 | | | | | L | 108 | 1 | Comments: | See sample calculation verification worksheet for re | calculations | | | |-----------
--|--------------|------|--| | - | | | | | | | · · · · · · · · · · · · · · · · · · · | |
 | | LDC#: 36282A3~ ### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | _ / / | |---------------| | Page:of | | Reviewer: FT | | 2nd Reviewer: | METHOD: GC Pesticides (EPA SW 846 Method 8081) The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----------|----------------|---------------------|--------------|------------------------|------------------|--------------|--------------|----------|--------------| | # | Standard
ID | Calibration
Date | Compound | CF
(20 std)
20 0 | CF (20 std) /200 | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | ICA L | 1/21/16 | endosuljan/ | 431064 | 431064 | 41 9 333.4 | 4/9333.4 | 12.1 | 12.1 | | <u> </u> | RTX OUP) | • | Methoxychlor | 146220 | 146220 | 164869-2 | 164669-2 | 15.2 | 15. K | | | | | • | | | | | | | | 2 | RTX CUP2 | | 1 | 107259 | 107259 | | 105819.2 | | 5.4 | | | | | <u>l</u> | 44563 | 44563 | 45652.3 | 45652-3 | 5.4 | 5-4 | | - | | | | | | | | | | | 3 | ļ | | • | | | | | | | | | 4 | <u> </u> | Comments: | Refer to Initial | Calibration find | <u>lings worksheet fo</u> | or list of qualification | <u>ns and associate</u> | <u>d samples when</u> | reported resu | <u>ults do not agree v</u> | <u>within 10.0% of the</u> | |--------------|------------------|------------------|---------------------------|--------------------------|-------------------------|-----------------------|---------------|----------------------------|----------------------------| | recalculated | results. | | | | | | | _ | | | | | | | | | | | | | INICLCrev.wpd LDC#: 3628273a #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | 6f/ | |---------------|------| | Reviewer: | _FT_ | | 2nd Reviewer: | 1 | METHOD: GC Pesticides (EPA SW 846 Method 8081) Percent difference (%D) = 100 * (N - C)/N Where: N = Initial Calibration Factor or Nominal Amount (ng) C = Calibration Factor from Continuing Calibration Standard or Calculated Amount (ng) | Standard ID | Calibration
Date/Time | Compound | Average CF/
CCV Conc | Reported CF/Conc CCV | Recalculated CF/Conc CCV | Reported
%D | Recalculated
%D | |-------------|--------------------------|-----------------------|-------------------------|------------------------|----------------------------|----------------|--------------------| | ccV 1607 | 3/18/16 | endosu/fan / RTX csp/ | 20.0 | 17.62 | 17.62 | 12 | 12 | | | | me thoxychlor | 200,0 | 211.66 | 211.66 | 6 | 6 | | | | 1 RTX CUPZ | | 19.51 | 19.5/ | 2 | 2 | | | | W . | J | 218.07 | 2/8.07 | 9 | 7 | | CeV 0643 | 3/19/16 | 1 | 20. D | 18.54 | 18.54 | フ | フ | | | | V | 200.0 | 226.93 | 226.93 | /3 | /3 | | | | 1 | 1 | 20.05 | 20.05 | 0 | 0 | | | | | J | 231.56 | 231.56 | 16 | 16 | Comments: _ | Refer to Continuing | <u>Calibration findings w</u> | orksheet for list of qua | <u>alifications and asso</u> | <u>ociated samples wh</u> | <u>en reported results do</u> | <u>o not agree within 10.0°</u> | <u>% of</u> | |---------------|---------------------|-------------------------------|--------------------------|------------------------------|---------------------------|---------------------------------------|---------------------------------|-------------| | the recalcula | ted results. | · · · · · · · · · · · · · · · · · · · | | | LDC#: 36287A3~ #### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | /_of_ | / | |---------------|-------|---| | Reviewer:_ | FT | | | 2nd reviewer: | n | _ | METHOD: GC Pesticides (EPA SW 846 Method 8081) | The | percent recoveries | (%R |) of surro | gates were | e recalculated | for the c | ompounds | identified | below using | na the | following | calculation: | |-----|--------------------|-----|------------|------------|----------------|-----------|----------|------------|-------------|--------|-----------|--------------| | | | | | | | | | | | | | | % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: #4 | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|----------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | Tetrachloro-m-xylene | RTXCIPI | 40.0 | 34.310 | 95.8 | 95.8 | 0 | | Tetrachloro-m-xylene | RTXCUPIL | J | 41.840 | 105 | 105 | U | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | | Sample ID: | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | · | | Reported | Recalculated | | | Tetrachloro-m-xylene | | | | | | | | Tetrachloro-m-xylene | | | | | | | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | | Sample ID: | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | Tetrachloro-m-xylene | | | | | | | | Tetrachloro-m-xylene | | | | | | | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | 1. | Sample ID: | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | Tetrachloro-m-xylene | | | | | | | | Tetrachloro-m-xylene | | | | | | | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | | | Notes: | | |--------|--| | | | LDC#: 3628773a #### **VALIDATION FINDINGS WORKSHEET** | Page:/_of/_ | Page:_ | <u></u> | 2 | |-------------|--------|---------|---| |-------------|--------|---------|---| #### Matrix Spike/Matrix Spike Duplicates Results Verification | Reviewer:_ | _FT | |---------------|-----| | 2nd Reviewer: | K | METHOD: GC Pesticides (EPA SW 846 Method 8081) The percent recoveries (%R) and Relative Percent difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I MS - MSD I * 2/(MS + MSD) MS = Matrix spike percent recovery MSD = Matrix spike duplicate percent recovery MS/MSD samples: 5 + 6 | | | Spike
.dded | Sample
Concentration | • | Sample | Matrix | k Spike | Matrix Spi | ke Duplicate | Ms | /MSD | |---------------------|------|----------------|-------------------------|-----|--------|----------|----------|------------|--------------|----------|----------| | Compound | | a ka | (ug kg | | a KW | Percent | Recovery | Percent | Recovery | F | RPD | | Boat and the second | MS | MSD | | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | gamma-BHC | 7.16 | 7.16 | NO | ઇ.અ | 8.18 | 115 | 115 | 114 | 114 | 1 |) | | 4,4'-DDT | 7.16 | 7.16 | 6.9 | 163 | 16.1 | 131 | 131 | 128 | 124 | ١ | 1 | ·
 | | | | | | | | | | | | | <u> </u> | | | | <u> </u> | l | | | | | <u> </u> | | | L | | Comments: | Refer of Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree the contract of cont | ree | |--------------
--|-----| | within 10.0% | of the recalculated results. | | | | | | | | | | LDC#: 36282732 #### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification METHOD: GC Pesticides (EPA SW 846 Method 8081A) The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = ILCS - LCSD I * 2/(LCS + LCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: PC OIISL SC | | | pike | | l Sample | L | cs | Lo | CSD | LCS | LCSD | |-----------|------|----------|------|-----------|----------|----------|----------|----------|----------|---------| | Compound | (u | ded
9 | | entration | Percent | Recovery | Percent | Recovery | RPD | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | gamma-BHC | 6.67 | 6.67 | 6.18 | 6.14 | 93 | 93 | 92 | 92 | U | 0 | | 4,4'-DDT | 1 | J | 6.55 | 7.22 | 98 | 98 | 108 | 109) | 10 | 10 | | | | | | | | | | | | - | , | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings workship | eet for list of qualifications and associated samples when reported | |--|---| | results do not agree within 10.0% of the recalculated results. | | | | | | | | LDC#: 36 28 27 73a only. #### **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification** Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Page:_ | of | | |----------------|----|---| | Reviewer:_ | 7 | 2 | | 2nd reviewer:_ | _H | | METHOD: GC Pesticides (EPA SW 846 Method 8081A) | Conc | entratio | on = $\frac{(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)}{(A_{\bullet})(RRF)(V_{\bullet})(V_{\bullet})(S)}$ | Example: | | | | |-----------------|----------|---|------------|----------|------------------|--------------| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D | #4 | <u>endsuljan</u> | I | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | _ | () | | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = | 379617 | (10) | <u>_</u> , \ | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | 367000.0 | 0.01) (0.00) | ر ۱۲ | | V _i | = | Volume of extract injected in microliters (ul) | = | | . 1 | | | √ _t | = | Volume of the concentrated extract in microliters (ul) | | 0.36 | ng Ikg | | | Df | = | Dilution Factor. | | | J '' X | | | %S | = | Percent solids, applicable to soil and solid matrices | | | V | | Were all reported results recalculated and verified for all level IV samples? | 2.0 | = Factor of 2 to accou | unt for GPC cleanup | | | | |-------------|------------------------|---------------------|----------------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration
() | Calculated
Concentration
() | Qualification | - | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: Polychlorinated Biphenyls Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the
laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### **III. Continuing Calibration** Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. #### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions: | Sample | Compound | RPD | Flag | A or P | |--------------|--------------|-----|-----------------|--------| | KCH067-001 | Aroclor-1260 | 73 | J (all detects) | А | | KCH067-002 | Aroclor-1254 | 56 | J (all detects) | А | | KCH067-003 | Aroclor-1260 | 77 | J (all detects) | А | | KCH067-004** | Aroclor-1260 | 63 | J (all detects) | А | Raw data were not reviewed for Level III validation. #### XI. Target Compound Identification All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to RPD between two columns, data were qualified as estimated in four samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ### China Lake CTO 067 Polychlorinated Biphenyls - Data Qualification Summary - SDG 16C070 | Sample | Compound | Flag | A or P | Reason (Code) | |--|--------------|-----------------|--------|--| | KCH067-001
KCH067-003
KCH067-004** | Aroclor-1260 | J (all detects) | А | Compound quantitation (RPD between two columns) (12) | | KCH067-002 | Aroclor-1254 | J (all detects) | A | Compound quantitation (RPD between two columns) (12) | #### China Lake CTO 067 Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG #### China Lake CTO 067 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG Lab File ID: SC15007A Matrix : SOIL Ext Btch ID: CPC011S % Moisture : 4.3 Calib. Ref.: SC15002A Instrument ID : GCT008 | | RESULTS | LOQ | DL | LOD | |----------------------|---------------|----------------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | AROCLOR 1016 | (ND) ND | 52 | 14 | 18 | | AROCLOR 1221 | (ND) ND | 52 | 8.7 | 18 | | AROCLOR 1232 | (ND) ND | 52 | 9.4 | 18 | | AROCLOR 1242 | (ND) ND | 52 | 9.7 | 18 | | AROCLOR 1248 | (ND) ND | 52 | 8.7 | 18 | | AROCLOR 1254 | (260) 260 | 52 | 8.7 | 18 | | AROCLOR 1260 | 69 (32J) J (| 2_) 52 | 10 | 18 | | SURROGATE PARAMETERS | RESULTS | SPK AMT % | RECOVERY | QC LIMIT | | SURROGATE FARAPLIERS | RESOLIS | 31 K_API | - KECOVEKI | WC LIMIT | | TETRACHLORO-M-XYLENE | 14.08 (15.37) | 13.93 1 | 01 (110) | 44 - 130 | Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by () E01116 ^{*} Out side of QC Limit Lab File ID: SC15008A Matrix : SOIL Ext Btch ID: CPC011S % Moisture : 9.0 Calib. Ref.: SC15002A Instrument ID : GCT008 _______ | | RESULTS | LOQ | DL | LOD | |----------------------|---------------|------------------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | AROCLOR 1016 | (ND) ND | 55 | 14 | 19 | | AROCLOR 1221 | (ND) ND | 55 | 9.1 | 19 | | AROCLOR 1232 | (ND) ND | 55 | 9.9 | 19 | | AROCLOR 1242 | (ND) ND | 55 | 10 | 19 | | AROCLOR 1248 | (ND) ND | S5 | 9.1 | 19 | | AROCLOR 1254 | (23J) 13J J (| >) 55 | 9.1 | 19 | | AROCLOR 1260 | (ND) ND | 55 | 11 | 19 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | TETRACHLORO-M-XYLENE | 13.20 (14.39) | 14.65 90 | 0.1 (98.2) | 44-130 | Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by () 8051716 ^{*} Out side of QC Limit Client : KLEINFELDER Date Collected: 03/08/16 Date Received: 03/10/16 Project: NAWS CHINA LAKE, CTO 067 Batch No.: 16C070 Sample ID: KCH067-003 Date Extracted: 03/14/16 14:44 Date Analyzed: 03/15/16 12:11 Dilution Factor: 1 Lab Samp ID: C070-03 Matrix : SOIL % Moisture : 6.9 Instrument ID : GCT008 Lab File ID: SC15009A Ext Btch ID: CPC011S Calib. Ref.: SC15002A | PARAMETERS | RESULTS
(ug/kg) | LOG
(ug/kg) | | LOD
(ug/kg) | |----------------------|--------------------|----------------|------------|----------------| | AROCLOR 1016 | (ND) ND | 54 | 14 | 18 | | AROCLOR 1221 | (ND) ND | 54 | | 18 | | AROCLOR 1232 | (ND) ND | 54 | 9.7 | 18 | | AROCLOR 1242 | (ND) ND | 54 | 10 | 18 | | AROCLOR 1248 | (ND) ND | 54 | 8.9 | 18 | | AROCLOR 1254 | 570 (580) | . 54 | 8.9 | 18 | | AROCLOR 1260 | 160 (71)] | (2) 54 | 11 | 18 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 14.15 (15.37) | 14.32 | 98.8 (107) | 44-130 | Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by () EX17/6 ^{*} Out side of QC Limit Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/14/16 14:44 Sample ID: KCH067-004 Date Analyzed: 03/15/16 13:03 Lab Samp ID: C070-04 Dilution Factor: 1 Lab File ID: SC15012A Ext Btch ID: CPC011S Calib. Ref.: SC15002A Dilution Factor: 1 Matrix : SOIL % Moisture : 4.9 Instrument ID : GCT008 | | RESULTS | LOQ | DL | LOD | |----------------------|---------------|---------------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | ***** | | | | | AROCLOR 1016 | (ND) ND | 53 | 14 | 18 | | AROCLOR 1221 | (ND) ND | 53 | 8.7 | 18 | | AROCLOR 1232 | (ND) ND | 53 | 9.5 | 18 | | AROCLOR 1242 | (ND) ND | 53 | 9.8 | 18 | | AROCLOR 1248 | (ND) ND | 53 | 8.7 | 18 | | AROCLOR 1254 | (76) 74 | 53 | 8.7 | 18 | | AROCLOR 1260 | (21J) 11J J(1 | 2) 53 | 10 | 18 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 13.56 (14.77) | 14.02 | 26.8 (105) | 44-130 | Left of | is related to first column ; Right of | related to second column Final result indicated by () Ex1716 ^{*} Out side of QC Limit | SDG# | #: 36282A3b VALIDATIO
#: 16C070
ratory: EMAX Laboratories Inc. | | PLETENE
andard/Ful | ESS WORKSHEE | | Date: 5/9 Page: /of | |-------|--|--|------------------------------|--|-------------------|---| | METH | HOD: GC Polychlorinated Biphenyls (EF | PA SW846 N | √lethod 8087 | 2) | ∠nu | d Reviewer:/ | | | amples listed below were reviewed for ention findings worksheets. | each of the f | following val | lidation areas. Validar | tion findings are | e noted in attached | | | Validation Area | | | Com | ments | | | I. | Sample receipt/Technical holding times | A /A | | | | | | II. | Initial calibration/ICV | AA | | | | | |)III. |
Continuing calibration | Δ | | | | | | IV. | Laboratory Blanks | Δ | | *************************************** | | | | V. | Field blanks | ND | EB= | KC 4067 - 01 | # P92) P | 16074) | | VI. | Surrogate spikes | A | <u> </u> | | | | | VII. | Matrix spike/Matrix spike duplicates | Δ | <u> </u> | | | , | | VIII. | Laboratory control samples | A | KW | 10 | | | | IX. | Field duplicates | Ū | | | | | | X. | Compound quantitation/RL/LOQ/LODs | SW | Not reviewer | d for Standard validation. | | , | | XI. | Target compound identification | Δ | | d for Standard validation. | | | | XII. | Overall assessment of data | A | | | | | | Note: | A = Acceptable ND = N = Not provided/applicable R = F | = No compounds
Rinsate
= Field blank | ls detected | D = Duplicate
TB = Trip blank
EB = Equipment bla | OTHER | ource blank
R: | | , | Client ID | | | Lab ID | Matrix | Date | | H | KCH067-001 | | | 16C070-01 | Soil | 03/08/16 | | | KCH067-002 | | | 16C070-02 | Soil | 03/08/16 | | 3 | KCH067-003 | | | 16C070-03 | Soil | 03/08/16 | | 4 | KCH067-004** | | | 16C070-04** | Soil | 03/08/16 | | | KCH067-003MS | | | 16C070-03MS | Soil | 03/08/16 | | | KCH067-003MSD | | | 16C070-03MSD | Soil | 03/08/16 | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 11 | | | | | | | | 12 | | | | | | | Notes: MBLKIS LDC#: 36282A3b #### VALIDATION FINDINGS CHECKLIST Page: /of // Page: /of // Page: /of // Page: Method: GC ____HPLC | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|-----|-------------------| | li Treghnicel inalding times | | | | | | Were all technical holding times met? | / | | | | | Was cooler temperature criteria met? | | | | | | illa ihikeli calibajon | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | - | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990? | | | | | | Were the RT windows properly established? | | | *** | | | (III), halital eatilbication varification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | MI. Confinuing Gellorsion | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | Were all the retention times within the acceptance windows? | | | | | | uW Itaborationy Branks | I – | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | · | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | I.v. if isjidi Bijanitas | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | i
M. Sumogric spikes | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | | | | | | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | _ | | | If any %R was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | | Will Welmk spike/weigh spike styphoetes | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | _ | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | / | | | | LDC#: 36282A3b #### VALIDATION FINDINGS CHECKLIST Page: Vof V Reviewer: F7 2nd Reviewer: V | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | Will Haboratory control samples: | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | IX Fleta applicates | | | | | | Were field duplicate pairs identified in this SDG? | | / | | | | Were target compounds detected in the field duplicates? | | | | | | X. Connected gueralititation | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | - | | | | XII Tangai compound identification | | | | 2.1870 W | | Were the retention times of reported detects within the RT windows? | / | | | | | XIII. Overall essessment of élate | | | | | | Overall assessment of data was found to be acceptable. | | | | | LDC #: 36282 735 ## VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u> | Page: | | | |-------------|-----|--| | Reviewer: | | | | nd Reviewer | n/. | | METHOD: GC HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only Y N N/A Y N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? cole = 12 | | | | % RPD Bet 2 w) | | |---|--------------------|---------------|----------------------|----------------| | # | Associated Samples | Compound Name | Findings \angle 40 | Qualifications | | | | B B | 73 | Jan /-A | | | | | | , | | | 2 | AA | 56 | J | | | | | | | | | 3 | BB | 77 | <u> </u> | | | | | | | | | 4 | BB | 63 | <u> </u> | | | | | | | | | | | | | | | · | Comments: | See sample calculation | verification worksheet f | or recalculations |
 | | | | |-----------|------------------------|--------------------------|-------------------|------|--|--|--| | | • | _ | | | | | | | | | | | | | | | LDC #: 36282A3b #### **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | | / | 1 | |---------------|----|---| | Page:_ | of | | | Reviewer:_ | FT | | | 2nd Reviewer: | A | _ | | METHOD: | GC | HPI C | | |-----------|----|---------------|--| | WILLINGD. | CC |
'''' LO. | | The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----|-------------|---------------------|------------|--------------------------|-------------------------|--------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound | CF
(<i>[O Ω</i> std) | CF
(<i>[OO</i> std) | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | ICAL | 11/17/15 | PCB-1260-1 | 3097-58 | 3097-58 | 3049-208 | 3049.208 | 14.2 | 14-2 | | | BTX-cip/ | | | | | | | | | | | RTX-cip2 | V | Į. | 3293.02 | 3293.02 | 33 26.04/ | 3326.041 | 13-6 | /3-6 | | 2 | | | | | - | 3 | 4 | | | | <u> </u> | | | | | | | * | <u> </u> |] | | | | | | | Comments: | Refer to Initia | <u>l Calibration fin</u> | <u>ndings worksh</u> | <u>eet for list of</u> | <u>qualifications</u> | and associate | <u>ed samples w</u> | vhen reported | <u>results do no</u> | <u>t agree within</u> | 10.0% of the | |--------------|-----------------|--------------------------|----------------------|------------------------|-----------------------|---------------|---------------------|---------------|----------------------|-----------------------|--------------| | recalculated | results. | 100# | 362821 | 36 | |--------|--------|----| | LDC #: | 002027 | _ | ### VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | of | _ | |---------------|----|---| | Reviewer: | FT | _ | | 2nd Reviewer: | X | _ | | METHOD: | GC | HPLC | | |---------|----|------|--| The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF -CF)/ave.CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | Cton doud | Oalib wation | | | Reported | Recalculated | Reported | Recalculated | |---|----------------|---------------------|----------|--------------------------------|--|------------------|----------|--------------| | # | Standard
ID | Calibration
Date | Compound | Average CF(ICAL)/ CCV
Conc. | CF/ Conc.
CCV | CF/ Conc.
CCV | %D | %D | | 1 | ect 10:10 | 3/15/16 | PCB-1260 | 0.002 | 498.754 | 498.754 | 0 | 0 | 2 | - | | | | | 3 | W-000-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | | | | | | | | 1 | | | | | | 4 |
Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 36 282A3b #### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | <u></u> of | _/ | |---------------|------------|----| | Reviewer: | FT | | | 2nd reviewer: | a | | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found Sample ID:___ SS = Surrogate Spiked | Surrogate | Column/Detector | Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|--------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | TCMX | RTX CIPI | 40.O | 38.7 | 96.8 | 96.8 | 0 | | TCMX | CVP2 | 1 | 42.14 | 105 | 105 | D | Sample ID: | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | Surrogate Compound | |----|----------------------------|---|---------------------|---|-----------------------------------|---|-------------------------|----|-------------------------------| | Α | Chlorobenzene (CBZ) | G | Octacosane | М | Benzo(e)Pyrene | s | 1-Chloro-3-Nitrobenzene | Y | Tetrachloro-m- xylene | | В | 4-Bromofluorobenzene (BFB) | Н | Ortho-Terphenyl | N | Terphenyl-D14 | Т | 3,4-Dinitrotoluene | Z | 2-Bromonaphthalene | | C, | a,a,a-Trifluorotoluene | _ | Fluorobenzene (FBZ) | 0 | Decachlorobiphenyl (DCB) | U | Tripentyltin | AA | Chloro-octadecane | | D | Bromochlorobenene | J | n-Triacontane | Р | 1-methylnaphthalene | V | Tri-n-propyltin | BB | 2,4-Dichlorophenylacetic acid | | E | 1,4-Dichlorobutane | К | Hexacosane | Q | Dichlorophenyl Acetic Acid (DCAA) | w | Tributyl Phosphate | СС | 2,5-Dibromotoluene | | F | 1,4-Difluorobenzene (DFB) | L | Bromobenzene | R | 4-Nitrophenol | х | Triphenyl Phosphate | | | LDC#: 3628243b ## VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page:_ | <u>_</u> of_ | _ | |---------------|--------------|---| | Reviewer:_ | FT | | | 2nd Reviewer: | A | | | | _ | | | |---------|---|----|------| | METHOD: | _ | GC | HPLC | The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration MS = Matrix spike RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100 SC = Sample concentration SA = Spike added MSD = Matrix spike duplicate MS/MSD samples: 5 + 6 | | | Spike Sample Spike Sample Added Conc. Concentration | | Matrix spike | | Matrix Spike Duplicate | | MS/MSD | | | | | |--------------------|-------------|---|-----|--------------|----|------------------------|-----------|----------|------------------|---------|----------|---------| | | pound | (1491) | 9) | Conc. | | Tex) | Percent I | Recovery | Percent Recovery | | RPD | | | | | Ms U. | MSD | 7 | MS | MASD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | | | Diesel | (8015) | | | | | | | | | | | | | Benzene | (8021B) | | | | | | | | | | | - | | Methane | (RSK-175) | | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | | | НМХ | (8330) | | | | | | | | | | | | | 2,4,6-Trinitrotolu | iene (8330) | | | | | | | | | | | | | Phorate | (8141A) | | | | | | | | | | | | | Malathion | (8141A) | | | | | - | | | | | | | | Formaldehyde | (8315A) | | | | | | | | | | | | | Aroclo (| 1260 | 179 | 119 | 155 | 33 | 319 | 9x | 98 | 92 | 92 | 4 | 4 | | | | 179 | 119 | 155 | 33 | 319 | 92 | 9x | 92 | 92 | 4 | | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 36282136 #### **VALIDATION FINDINGS WORKSHEET** ### Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | _of | _ | |---------------|-----|---| | Reviewer: | FT | | | 2nd Reviewer: | d | | | | | - | | |---------|--------|----|------| | METHOD: | \leq | GC | HPLC | The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration SA = Spike added LCS = Laboratory Control Sample LCSD = Laboratory Control Sample duplicate LCS/LCSD samples: GOCOIISL /SC | | | SI | oike | | Sample | LC | es | LC | SD | LCS/I | _CSD | |--------------------|-------------|------|---------------|----------------|----------|-----------|----------|------------------|---------|----------|---------| | | pound | (V. | lded
g Kgt | Concer
(ug | ntration | Percent F | Recovery | Percent Recovery | | RPD | | | | | LCS | LCSD | LCS | FCSD () | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | | Diesel | (8015) | | | | | | | | | | | | Benzene | (8021B) | | | | | | | | | | | | Methane | (RSK-175) | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | Naphthalene | (8310) | | | | | _ | | | | | | | Anthracene | (8310) | | | | | | | | | | | | нмх | (8330) | | | | | | | | | | | | 2,4,6-Trinitrotolu | uene (8330) | | | | | | | | | | | | Phorate | (8141A) | | | | | | | | | | | | Malathion | (8141A) | | | | | | | | | | | | Formaldehyde | (8315A) | | | | | | | | | | | | Aroclos | 1260 | 167 | 167 | 169 | 169 | 101 | 10) | 101 | 10) | 0 | ی | | | | | | | | | İ | | |] | | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 36282A3b #### **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification** | Page: _ | of | _ | |--------------|----|---| | Reviewer: _ | FT | | | 2nd Reviewer | A | | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results? | Concentration= (A)(Fv)(Df) | Example: | | | | |--|-----------------|---------------|----------|--| | (RF)(Vs or Ws)(%S/100) | Sample ID. # 4 | Compound Name | A-A | | | A= Area or height of the compound to be measured | | | | | | Fv= Final Volume of extract Df= Dilution Factor | | () | | | | RF= Average response factor of the compound | Concentration = | 216.39 (10/ | . | | | In the initial calibration | | (30.01) | (0.951) | | Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid | | | · | | 16 49 177 | | |---|---------------|----------|-----------------------------------|-------------------------------------|----------------| | # | Sample ID | Compound | Reported
Concentrations
() | Recalculated Results Concentrations | Qualifications | | | 1294-1 = 5926 | = 35.08 | 1254-1= | 35.04 | | | | 1689 | . 4 | 2 = | 48.41 | | | | | , | 3 = | 32-74 | | | | | | 4 = | 48.53 | | | | | | 5 , | 51.62 | • | | | | | Total | = 216.39 | | | | | | | | | | | | | | | | | Comments: | |
 | |-----------|------|------| | | | | | | | | | | | | | |
 |
 | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 24, 2016 Parameters: Metals Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | KCH067-001DL | 16C070-01DL | Soil | 03/08/16 | | KCH067-002DL | 16C070-02DL | Soil | 03/08/16 | | KCH067-002RE | 16C070-02RE | Soil | 03/08/16 | | KCH067-003DL | 16C070-03DL | Soil | 03/08/16 | | KCH067-004RE** | 16C070-04RE** | Soil | 03/08/16 | | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------
----------------------------------|--------|--------------------| | KCH067-009RE | 16C070-09RE | Soil | 03/08/16 | | KCH067-010RE | 16C070-10RE | Soil | 03/08/16 | | KCH067-011DL | 16C070-11DL | Soil | 03/08/16 | | KCH067-016RE** | 16C070-16RE** | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met. ### II. ICPMS Tune The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%. ## III. Instrument Calibration Initial and continuing calibrations were performed as required by the methods. The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits with the following exceptions: | Date | Lab.
Reference/ID | Analyte | %R (Limits) | Associated
Samples | Flag | A or P | |----------|----------------------|---------|--------------|--|------------------|--------| | 03/29/16 | CCV (14:19) | Boron | 182 (80-120) | KCH067-002RE
KCH067-003DL
KCH067-004RE**
KCH067-009RE
KCH067-011DL | J+ (all detects) | Р | | 03/29/16 | CCV (15:11) | Boron | 187 (80-120) | KCH067-002RE
KCH067-003DL
KCH067-004RE**
KCH067-009RE
KCH067-011DL
KCH067-016RE** | J+ (all detects) | Р | | 03/29/16 | CCV (16:00) | Boron | 184 (80-120) | KCH067-016RE** | J+ (all detects) | Р | ## IV. ICP Interference Check Sample Analysis The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits. ## V. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions: | Laboratory Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |---------------------|------------|--------------------------|--| | ICB/CCB | Selenium | 0.100 ug/L | KCH067-001
KCH067-002
KCH067-003
KCH067-004**
KCH067-005
KCH067-006
KCH067-007
KCH067-008
KCH067-009
KCH067-010 | | ICB/CCB | Molybdenum | 0.238 ug/L | KCH067-002RE
KCH067-003DL
KCH067-004RE**
KCH067-009RE
KCH067-011DL | | ICB/CCB | Molybdenum | 0.223 ug/L | KCH067-016RE** | | ICB/CCB | Antimony | 0.294 | KCH067-002RE
KCH067-003DL
KCH067-004RE**
KCH067-009RE
KCH067-011DL
KCH067-016RE** | Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Analyte | Reported
Concentration | Modified Final
Concentration | |----------------|------------|---------------------------|---------------------------------| | KCH067-001 | Selenium | 0.130 mg/Kg | 0.130U mg/Kg | | KCH067-003 | Selenium | 0.176 mg/Kg | 0.176U mg/Kg | | KCH067-005 | Selenium | 0.0595 mg/Kg | 0.0993U mg/Kg | | KCH067-003DL | Molybdenum | 2.92 mg/Kg | 2.92U mg/Kg | | KCH067-016RE** | Molybdenum | 0.244 mg/Kg | 0.244U mg/Kg | | KCH067-003DL | Antimony | 1.15 mg/Kg | 2.10U mg/Kg | | KCH067-004RE** | Antimony | 0.350 mg/Kg | 0.350U mg/Kg | | KCH067-016RE** | Antimony | 0.110 mg/Kg | 0.198U mg/Kg | # VI. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Analyte | Concentration | Associated
Samples | |------------|--------------------|---|---|---------------------------| | KCH067-019 | 03/08/16 | Boron
Calcium
Iron
Lead
Manganese
Nickel
Sodium | 4.65 ug/L
135 ug/L
9.85 ug/L
0.225 ug/L
0.318 ug/L
0.161 ug/L
42.6 ug/L | All samples in SDG 16C070 | Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions: | Sample | Analyte | Reported
Concentration | Modified Final
Concentration | |----------------|---------|---------------------------|---------------------------------| | KCH067-005 | Boron | 6.80 mg/Kg | 6.80U mg/Kg | | KCH067-006 | Boron . | 4.94 mg/Kg | 5.01U mg/Kg | | KCH067-007 | Boron | 4.62 mg/Kg | 4.90U mg/Kg | | KCH067-008 | Boron | 4.50 mg/Kg | 4.97U mg/Kg | | KCH067-010 | Boron | 9.71 mg/Kg | 9.71U mg/Kg | | KCH067-013 | Boron · | 8.91 mg/Kg | 8.91U mg/Kg | | KCH067-014 | Boron | 9.15 mg/Kg | 9.15U mg/Kg | | KCH067-016** | Boron | 7.59 mg/Kg | 7.59U mg/Kg | | KCH067-018 | Boron | 9.82 mg/Kg | 9.82U mg/Kg | | KCH067-002DL | Boron | 53.3 mg/Kg | 53.3U mg/Kg | | KCH067-010RE | Boron | 9.62 mg/Kg | 9.62U mg/Kg | | KCH067-016RE** | Boron | 7.20 mg/Kg | 7.20U mg/Kg | ## VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated
Samples) | Analyte | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P |
--|---|---|---|--|--------| | KCH067-003MS/MSD
(KCH067-003
KCH067-003DL) | Antimony
Chromium
Copper
Lead
Sodium | 40 (72-124)
46 (83-119)
68 (84-119)
-48 (84-118)
75 (79-125) | 38 (72-124)
50 (83-119)
67 (84-119)
-56 (84-118)
71 (79-125) | J- (all detects) | A | | KCH067-016MS/MSD
(KCH067-016**
KCH067-016RE**) | Antimony Calcium Chromium Copper Magnesium Potassium Vanadium | 61 (72-124)
85 (86-118)
83 (83-119)
80 (84-119)
56 (80-123)
74 (85-119)
36 (82-116) | 60 (72-124)
-
-
78 (84-119)
67 (80-123)
84 (85-119)
41 (82-116) | J- (all detects) | A | For KCH067-003MS/MSD, no data were qualified for Aluminum, Boron, Calcium, Iron, Magnesium, Manganese, and Zinc percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration. For KCH067-016MS/MSD, no data were qualified for Barium, Iron, and Manganese percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits. ## VIII. Duplicate Sample Analysis The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG. ### IX. Serial Dilution Serial dilution analysis was performed on an associated project sample. The analysis criteria were met. ## X. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## XI. Field Duplicates No field duplicates were identified in this SDG. ## XII. Internal Standards (ICP-MS) All internal standard percent recoveries (%R) were within QC limits for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ## XIII. Sample Result Verification All sample result verifications were acceptable for samples which underwent Level IV validation with the following exceptions: | Sample | Analyte | Finding | Criteria | Flag | A or P | |--|------------------------------------|--------------------------------------|--|---|--------| | KCH067-001
KCH067-003
KCH067-009
KCH067-016** | Boron | Sample result exceeded linear range. | Reported result should be within linear range. | J (all detects) | А | | KCH067-002 | Boron
Calcium
Iron
Sodium | Sample result exceeded linear range. | Reported result should be within linear range. | J (all detects) | А | | KCH067-002RE | Iron | Sample result exceeded linear range. | Reported result should be within linear range. | J (all detects) | А | | KCH067-010 | Calcium
Iron
Sodium | Sample result exceeded linear range. | Reported result should be within linear range. | J (all detects) J (all detects) J (all detects) | А | | KCH067-011 | Boron
Zinc | Sample result exceeded linear range. | Reported result should be within linear range. | J (all detects)
J (all detects) | А | Raw data were not reviewed for Level III validation. ### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the methods. In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed unusable as follows: | Sample | Analyte | Flag | A or P | |--|---|------------------|--------| | KCH067-001
KCH067-003
KCH067-009
KCH067-016** | Boron | R | А | | KCH067-002 | Boron
Calcium
Iron
Sodium | R
R
R
R | A | | KCH067-010 | Calcium
Iron
Sodium | R
R
R | Α | | KCH067-011 | Boron
Zinc | R
R | Α | | KCH067-011DL | All analytes except
Boron
Zinc | R
R | А | | KCH067-001DL
KCH067-003DL
KCH067-004RE**
KCH067-009RE
KCH067-016RE** | All analytes except
Boron | R | Α | | KCH067-002DL | All analytes except
Iron | R | А | | KCH067-002RE | All analytes except
Boron
Calcium
Sodium | R | Α | | KCH067-010RE | All analytes except
Calcium
Iron
Sodium | R | Α | Due to calibration and MS/MSD %R, data were qualified as estimated in eight samples. Due to laboratory blank contamination, data were qualified as not detected in three samples. Due to equipment blank contamination, data were qualified as not detected in nine samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. # China Lake CTO 067 Metals - Data Qualification Summary - SDG 16C070 | Sample | Analyte | 29.4,4 | Flag | A or P | Reason (Code) | |--|---|--------|--|--------|---| | KCH067-002RE
KCH067-003DL
KCH067-004RE**
KCH067-009RE
KCH067-011DL
KCH067-016RE** | Boron | | J+ (all detects) | P | Calibration (CCV) (%R) (5) | | KCH067-003 | Antimony
Chromium
Copper
Lead
Sodium | | J- (all detects) | А | Matrix spike/Matrix spike
duplicate (%R) (8) | | KCH067-016** | Antimony Calcium Chromium Copper Magnesium Potassium Vanadium | | J- (all detects) | А | Matrix spike/Matrix spike
duplicate (%R) (8) | | KCH067-001
KCH067-003
KCH067-009
KCH067-016** | Boron | | R | A | Overall assessment of data (22) | | KCH067-002 | Boron
Calcium
Iron
Sodium | | R
R
R
R | A | Overall assessment of data (22) | | KCH067-010 | Calcium
Iron
Sodium | | R
R
R | А | Overall assessment of data (22) | | KCH067-011 | Boron
Zinc | | R
R | Α | Overall assessment of data (22) | | KCH067-011DL | All analytes except
Boron
Zinc | | R
R | А | Overall assessment of data (22) | | KCH067-001DL
KCH067-003DL
KCH067-004RE**
KCH067-009RE
KCH067-016RE** | All analytes except
Boron | | R | А | Overall assessment of data (22) | | KCH067-002DL | All analytes except
Iron | | R | Α | Overall assessment of data (22) | | Sample | Analyte | Flag | A or P | Reason (Code) | |--------------|---|------|--------|---------------------------------| | KCH067-002RE | All analytes except
Boron
Calcium
Sodium | R | А | Overall assessment of data (22) | | KCH067-010RE | All analytes except
Calcium
Iron
Sodium | R | А | Overall assessment of data (22) | # China Lake CTO 067 Metals - Laboratory Blank Data Qualification Summary - SDG 16C070 | Sample | Analyte | Modified Final
Concentration | A or P | Code | |------------|----------|---------------------------------|--------|------| | KCH067-001 | Selenium | 0.130U mg/Kg | Α | 7 | | KCH067-003 | Selenium | 0.176U mg/Kg | Α | 7 | | KCH067-005 | Selenium | 0.0993U mg/Kg | Α | 7 | # China Lake CTO 067 Metals - Field Blank Data Qualification Summary - SDG 16C070 | Sample | Analyte | Modified Final
Concentration | A or P | Code | |----------------|---------|---------------------------------|--------|------| | KCH067-005 | Boron | 6.80U mg/Kg | Α | 6 | | KCH067-006 | Boron | 5.01U mg/Kg | Α | 6 | | KCH067-007 | Boron | 4.90U mg/Kg | Α | 6 | | KCH067-008 | Boron | 4.97U mg/Kg | Α | 6 | | KCH067-010 | Boron | 9.71U mg/Kg | Α | 6 | | KCH067-013 | Boron | 8.91U mg/Kg | Α | 6 | | KCH067-014 | Boron | 9.15U mg/Kg | Α | 6 | | KCH067-018 | Boron | 9.82U mg/Kg | Α | 6 | | KCH067-016RE** | Boron | 7.20U mg/Kg | А | 6 | Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-001 Date Analyzed: 03/28/16 15:13 Lab Samp ID: C070-01 Dilution Factor: 0.98 Lab File ID: 98C11043 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 4.3 Calib. Ref.: 98C11038 Instrument ID : T-198 | | RESULTS | LOQ | DL | LOD | |------------|----------|------------------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | 0040 | 400 | 40.2 | 20 5 | | Aluminum | 8910 | 102 | 10.2 | 20.5 | | Antimony | 0.423J | 0.512 | 0.102 | 0.205 | | Arsenic | 4.48 | 0.512 | 0.0512 | 0.102 | | Barium | 59.8 | 0.512 | 0.0737 | 0.102 | | Beryllium | 0.315J | 0.512 | 0.0512 | 0.102 | | Boron | 197E 🤁 | | 2.56 | 5.12 | | Cadmium | 2.28 | 0.512 | 0.0584 | 0.102 | | Calcium | 5050 | 102 | 17.4 | 20.5 | | Chromium | 10.5 | 0.512 | 0.0512 | 0.102 | | Cobalt | 6.08 | 0.512 | 0.0512 | 0.102 | | Copper | 23.9 | 0.512 | 0.102 | 0.205 | | Iron | 14100 | 102 | 5.12 | 10.2 | | Lead | 21.7 | 0.512 | 0.0512 | 0.102 | | Magnesium | 5670 | 102 | 10.2 | 20.5 | | Manganese | 202 | 0.512 | 0.157 | 0.205 | | Molybdenum | 2.24 | 0.512 | 0.102 | 0.205 | | Nickel | 6.34 | 0.512 | 0.0645 | 0.102 | | Potassium | 4280 | , 102 | 10.2 | 20.5 | | Selenium | 0.130J M | <i>(T)</i> 0.512 | 0.0512 | 0.102 | | Silver | 0.0842J | 0.512 |
0.0512 | 0.102 | | Sodium | 4220 | 102 | 10.2 | 20.5 | | Thallium | 0.117J | 0.512 | 0.0512 | 0.102 | | Vanadium | 31.6 | 0.512 | 0.195 | 0.256 | | Zinc | 57.5 | 2.05 | 0.699 | 1.02 | 411/16 9 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-001DL Date Analyzed: 03/28/16 17:58 Lab Samp ID: C070-01I Dilution Factor: 9.8 Lab File ID: 98C11080 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 4.3 Calib. Ref.: 98C11074 Instrument ID : T-I98 ________ | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | Aluminum | 9280 🔁 | 2 · 1020 | 102 | 205 | | Antimony | ND | 5.12 | 1.02 | 2.05 | | Arsenic | 4.69J | 5.12 | 0.512 | 1.02 | | Barium | 59.6 | 5.12 | 0.737 | 1.02 | | Beryllium | ND ¥ | 5.12 | 0.512 | 1.02 | | Boron | 178 | 102 | 25.6 | 51,2 | | Cadmium | 2.32J 🚓 | 5.12 | 0.584 | 1.02 | | Calcium | 5530 | 1020 | 174 | 205 | | Chromium | 11.2 | 5.12 | 0.512 | 1.02 | | Cobalt | 6.64 | 5.12 | 0.512 | 1.02 | | Copper | 26.8 | 5.12 | 1.02 | 2.05 | | Iron | 15200 | 1020 | 51.2 | 102 | | Lead | 23.1 | 5.12 | 0.512 | 1.02 | | Magnesium | 5880 | 1020 | 102 | 205 | | Manganese | 225 | 5.12 | 1.57 | 2.05 | | Molybdenum | 2.20J | 5.12 | 1.02 | 2.05 | | Nickel | 6.90 | 5.12 | 0.645 | 1.02 | | Potassium | 4590 | 1020 | 102 | 205 | | Selenium | ND | 5.12 | 0.512 | 1.02 | | Silver | ND | 5.12 | 0.512 | 1.02 | | Sodium | 4550 | 1020 | 102 | 205 | | Thallium | ND) | 5.12 | 0.512 | 1.02 | | Vanadium | 32.7 | 5.12 | 1.95 | 2.56 | | Zinc | 63.4 | 20.5 | 6.99 | 10.2 | A17/16 T | Client : KLEINFELDER | Date Collected: 03/08/16 | |------------------------------------|--------------------------------| | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-002 | Date Analyzed: 03/28/16 15:17 | | Lab Samp ID: C070-02 | Dilution Factor: 0.976 | | Lab File ID: 98C11044 | Matrix : SOIL | | Ext Btch ID: IMC031S | % Moisture : 9.0 | | Calib. Ref.: 98C11038 | Instrument ID : T-198 | | | | | PARAMETERS | RESULTS
(mg/kg) | LDQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|-------------------|---------------|----------------| | Aluminum | 15200 | 107 | 10.7 | 21.5 | | Antimony | 0.440J | 0.536 | 0.107 | 0.215 | | Arsenic | 10.2 | 0.536 | 0.0536 | 0.107 | | Barium | 114 | 0.536 | 0.0772 | 0.107 | | Beryllium | 0.535J | 0.536 | 0.0536 | 0.107 | | Boron | 53.5E ₹ | 22 10.7 | 2.68 | 5.36 | | Cadmium | 0.574 | 0.536 | 0.0611 | 0.107 | | Calcium | 16000E | 3,2 107 | 18.2 | 21.5 | | Chromium | 14.3 | 0.536 | 0.0536 | 0.107 | | Cobalt | 11.5 | 0.536 | 0.0536 | 0.107 | | Copper | 38.5 | 0.536 | 0.107 | 0.215 | | Iron | 27100E | 107 | 5.36 | 10.7 | | Lead | 6.27 | 0.536 | 0.0536 | 0.107 | | Magnesium | 9770 | 107 | 10.7 | 21.5 | | Manganese | 342 | 0.536 | 0.164 | 0.215 | | Molybdenum | 0.805 | 0.536 | 0.107 | 0.215 | | Nicke1 | 11.0 | 0.536 | 0.0676 | 0.107 | | Potassium | 5390 | 107 | 10.7 | 21.5 | | Selenium | ND | 0.536 | 0.0536 | 0.107 | | Silver | 0.0604J | 0.536 | 0.0536 | 0.107 | | Sodium | 3140E 🔁 | ≥≥ ₁₀₇ | 10.7 | 21.5 | | Thallium | 0.222J | 0.536 | 0.0536 | 0.107 | | Vanadium | 67.4 | 0.536 | 0.204 | 0.268 | | Zinc | 51.5 | 2.15 | 0.733 | 1.07 | | Client : KLEINFELDER | Date Collected: 03/08/16 | |------------------------------------|--------------------------------| | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-002RE | Date Analyzed: 03/29/16 14:27 | | Lab Samp ID: C070-02N | Dilution Factor: 0.976 | | Lab File ID: 98C12018 | Matrix : SOIL | | Ext Btch ID: IMCO31S | <pre>% Moisture : 9.0</pre> | | Calib. Ref.: 98C12016 | Instrument ID : T-198 | | | | | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|-----------------------|-----------------------|----------------| | Aluminum | 15100 R | 22 107 | 10.7 | 21.5 | | Antimony | 0.452J | 0.536 | 0.107 | 0.215 | | Arsenic | 10.3 | 0.536 | 0.0536 | 0.107 | | Barium | 110 | 0.536 | 0.0772 | 0.107 | | Beryllium | 0.545 | 0.536 | √0.0536 | 0.107 | | Boron | 51.5 | 十 10.7 (| (S) 2.68 | 5.36 | | Cadmium | 0.524J 🔁 | >> 0.536 | 0.0611 | 0.107 | | Calcium | 16300 | _ 107 | 18.2 | 21.5 | | Chromium | 14.6 R | 22 0.536 | 0.0536 | 0.107 | | Cobalt | 11.5 | 0.536 | 0.0536 | 0.107 | | Copper | 40.7 | 0.536 | 0.107 | 0.215 | | Iron | 26100E | 107 | 5.36 | 10.7 | | Lead | 6.38 | 0.536 | 0.0536 | 0.107 | | Magnesium | 10300 | 107 | 10.7 | 21.5 | | Manganese | 337 | 0.536 | 0.164 | 0.215 | | Molybdenum | 0.854 | 0.536 | 0.107 | 0.215 | | Nickel | 10.9 | 0.536 | 0.0676 | 0.107 | | Potassium | 5330 | 107 | 10.7 | 21.5 | | Selenium | ND (/ | 0.536 | 0.0536 | 0.107 | | Silver | 0.0623J ∜ | 0.536 | - 0.0536 | 0.107 | | Sodium | 3290 | 107 | 10.7 | 21.5 | | Thallium | 0.241J | ≥≥ 0.536 | 0.0536 | 0.107 | | Vanadium | 69.1 | 0.536 | 0.204 | 0.268 | | Zinc | 53.6 | 2.15 | 0.733 | 1.07 | | Client : KLEINFELDER | Date Collected: 03/08/16 | |------------------------------------|--------------------------------| | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-002DL | Date Analyzed: 03/28/16 18:03 | | Lab Samp ID: C070-02I | Dilution Factor: 4.88 | | Lab File ID: 98C11081 | Matrix : SOIL | | Ext Btch ID: IMC031S | <pre>% Moisture : 9.0</pre> | | Calib. Ref.: 98C11074 | Instrument ID : T·I98 | | | | | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |-------------|--------------------|----------------|---------------|----------------| | Aluminum | 16500 | 536 | 53.6 | 107 | | Antimony | ND | 2.68 | 0.536 | 1.07 | | Arsenic | 10.3 | 2.68 | 0.268 | 0.536 | | Barium | 117 | 2.68 | 0.386 | 0.536 | | Beryllium | 0.553J | 2.68 | 0.268 | 0.536 | | Boron | 53.3J | 53.6 | 13.4 | 26.8 | | Cadmium | 0.502J | 2.68 | 0.306 | 0.536 | | Calcium | 17400 | 536 | 91.2 | 107 | | Chromium | 15.1 | 2.68 | 0.268 | 0.536 | | Cobalt | 12.5 | 2.68 | 0.268 | 0.536 | | Copper | 43.8 ♥ | 2.68 | 0.536 | 1.07 | | Iron | 29400 | 536 | 26.8 | 53.6 | | Lead | 6.45 | 2.68 | 0.268 | 0.536 | | Magnesium | 10700 | 536 | 53.6 | 107 | | Manganese | 373 | 2.68 | 0.820 | 1.07 | | Mol ybdenum | 0.817J | 2.68 | 0.536 | 1.07 | | Nickel | 11.8 | 2.68 | . 0.338 | 0.536 | | Potassium | 5910 | 536 | 53.6 | 107 | | Selenium | ND | 2.68 | 0.268 | 0.536 | | Silver | ND | 2.68 | 0.268 | 0.536 | | Sodium | 3380 | 536 | 53.6 | 107 | | Thallium | ND | 2.68 | 0.268 | 0.536 | | Vanadium | 69.2 | 2.68 | 1.02 | 1.34 | | | 55.2 | 10.7 | 3.66 | 5.36 | | Zinc | JJ.E = | 10.7 | 5.00 | 3.50 | f7/16 8 7010 | ========= | | ======================================= | | |--------------|---|---|----------------| | Client : | KLEINFELDER | Date Collected: | 03/08/16 | | Project : | NAWS CHINA LAKE, CTO 067 | Date Received: | 03/10/16 | | SDG NO. : | 16c070 | Date Extracted: | 03/17/16 15:19 | | Sample ID: | KCH067-003 | Date Analyzed: | 03/28/16 15:35 | | Lab Samp ID: | c070-03 | Dilution Factor: | 0.976 | | Lab File ID: | 98C11048 | Matrix : | SOIL | | Ext Btch ID: | IMC031S | % Moisture : | 6.9 | | Calib. Ref.: | 98011038 | Instrument ID : | T-198 | | ======== | ======================================= | | | | | RESULTS | LOQ | DL | LOD | |------------|-----------------------|----------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Aluminum | 11800 | 2 105 | 10.5 | 21.0 | | Antimony | 0.7285-(| 0/0.524 | 0.105 | 0.210 | | Arsenic | 6.99 | 0.524 | 0.0524 | 0.105 | | Barium | 101 | 0.524 | 0.0755 | 0.105 | | Beryllium | 0.418J | 0.524 | 0.0524 | 0.105 | | Boron | 180E ₹ | L 10.5 | 2.62 | 5.24 | | Cadmium | 2.22 | 0.524 | 0.0598 | 0.105 | | Calcium | 15600 | 105 | 17.8 | 21.0 | | Chromium | 26.6丁-(8 | 5) 0.524 | 0.0524 | 0.105 | | Cobalt | 8.28 | 0.524 | 0.0524 | 0.105 | | Copper | 29.45-(8 | 0.524 | 0.105 | 0.210 | | Iron | 18300 | 105 | 5.24 | 10.5 | | Lead | 64.1 I- (8 | 0.524 | 0.0524 | 0.105 | | Magnesium | 10100 | 105 | 10.5 | 21.0 | | Manganese | 273 | 0.524 | 0.160 | 0.210 | | Molybdenum | 2.72 | 0.524 | 0.105 | 0.210 | | Nickel | 8.54 | 0.524 | 0.0660 | 0.105 | | Potassium | 5190 | 105 | 10.5 | 21.0 | | Selenium | 0.176J U (7 | 0.524 | 0.0524 | 0.105 | | Silver | 0.0775J | | 0.0524 | 0.105 | | Sodium | 5550 T-(8 | 105 | 10.5 | 21.0 | | Thallium | 0.172J | 0.524 | 0.0524 | 0.105 | | Vanadium | 45.5 | 0.524 | 0.199 | 0.262 | | Zinc | 188 | 2.10 | 0.716 | 1.05 | A17/16 4 | ====================================== | | |---|--------------------------------| | Client : KLEINFELDER | Date Collected: 03/08/16 | | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 160070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-003DL | Date Analyzed: 03/29/16 14:45 | | Lab Samp ID: C070-03I | Dilution Factor: 9.76 | | Lab File ID: 98C12022 | Matrix : SOIL | | Ext Btch ID: IMC031S | % Moisture : 6.9 | | Calib. Ref.: 98C12016 | Instrument ID : T-198 | | ======================================= | | | | RESULTS | . LOQ | DL | LOD | |------------|------------------|---|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Aluminum | 12600 | ,030 | 105 | 210 | | Antimony | 1.15J | 5.24 | 1.05 | 2.10 | | Arsenic | 6.86 | 5.24 | 0.524 | 1.05 | | Barium | 98.4 | 5.24 | 0.755 | 1.05 | | Beryllium | ND ¥ | 5.24 | 0.524 | 1.05 | | Boron | 149 57 | ' | 26.2 | 52.4 | | Cadmium |
1.88J ₹ = | | 0.598 | 1.05 | | Calcium | 16900 | 1050 | 178 | 210 | | Chromium | 28.0 | 5.24 | 0.524 | 1.05 | | Cobalt | 9.28 | . 5.24 | 0.524 | 1.05 | | Copper | 34.5 | 5.24 | 1.05 | 2.10 | | Iron | 18900 | 1050 | 52.4 | 105 | | Lead | 71.3 | 5.24 | 0.524 | 1.05 | | Magnesium | 11600 | 1050 | 105 | 210 | | Manganese | 299 | 5.24 | 1.60 | 2.10 | | Molybdenum | 2.92J | 5.24 | 1.05 | 2.10 | | Nickel | 9.05 | 5.24 | 0.660 | 1.05 | | Potassium | 5600 | 1050 | 105 | 210 | | Selenium | ND | 5.24 | 0.524 | 1.05 | | Silver | ND \ | 5.24 | 0.524 | 1.05 | | Sodium | 6250 | 1050 | 105 | 210 | | Thallium | ND | 5.24 | 0.524 | 1.05 | | Vanadium | 46.5 | 5.24 | 1.99 | 2.62 | | Zinc | 204 | 21.0 | 7.16 | 10.5 | 5/17/16 4 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-004 Date Analyzed: 03/28/16 15:57 Lab Samp 1D: C070-04 Dilution Factor: 0.971 Lab File 1D: 98C11053 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 4.9 Calib. Ref.: 98C11050 Instrument ID : T-198 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | Aluminum | 8900 | 102 | 10.2 | 20.4 | | Antimony | 0.346J | 0.511 | 0.102 | 0.204 | | Arsenic | 6.46 | 0.511 | 0.0511 | 0.102 | | Barium | 66.9 | 0.511 | 0.0735 | 0.102 | | Beryllium | 0.293J | 0.511 | 0.0511 | 0.102 | | Boron | 35.0 ₹ | 10.2 | 2.55 | 5.11 | | Cadmium | 0.284J | 0.511 | 0.0582 | 0.102 | | Calcium | 7410 | 102 | 17.4 | 20.4 | | Chromium | 10.9 | 0.511 | 0.0511 | 0.102 | | Cobalt | 7.37 | 0.511 | 0.0511 | 0.102 | | Copper | 19.7 | 0.511 | 0.102 | 0.204 | | Iron | 18700 | 102 | 5.11 | 10.2 | | Lead | 6.19 | 0.511 | 0.0511 | 0.102 | | Magnesium | 5970 | 102 | 10.2 | 20.4 | | Manganese | 193 | 0.511 | 0.156 | 0.204 | | Molybdenum | 0.631 | 0.511 | 0.102 | 0.204 | | Nickel | 6.95 | 0.511 | 0.0643 | 0.102 | | Potassium | 3430 | 102 | 10.2 | 20.4 | | Selenium | ND | 0.511 | 0.0511 | 0.102 | | Silver | ND | 0.511 | 0.0511 | 0.102 | | Sodium | 2080 | 102 | 10.2 | 20.4 | | Thallium | 0.133J | 0.511 | 0.0511 | 0.102 | | Vanadium | 48.6 | 0.511 | 0.194 | 0.255 | | Zinc | 34.1 | 2.04 | 0.697 | 1.02 | 417/16 4 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-004RE Date Analyzed: 03/29/16 14:54 Lab Samp ID: C070-04N Dilution Factor: 0.971 Lab File ID: 98C12024 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 4.9 Calib. Ref.: 98C12016 Instrument ID : T-198 | | RESULTS | LOQ | DL | LOD | |------------|---------------|----------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Aluminum | 8760 | 102 | 10.2 | 20.4 | | Antimony | 0.350J | 0.511 | 0.102 | 0.204 | | Arsenic | 6.61 | 0.511 | 0.0511 | 0.102 | | Barium | 65.7 | 0.511 | 0.0735 | 0.102 | | Beryllium | 0.299J ₩ | 0.511 | 0.0511 | 0.102 | | Boron | 33.5 づせ | | 2.55 | 5.11 | | Cadmium | 2.274 و 0.274 | ≥ /0.511 | 0.0582 | 0.102 | | Calcium | 7590 | 102 | 17.4 | 20.4 | | Chromium | 11.1 | 0.511 | 0.0511 | 0.102 | | Cobalt | 7.29 | 0.511 | 0.0511 | 0.102 | | Copper | 20.5 | 0.511 | 0.102 | 0.204 | | Iron | 17500 | 102 | 5.11 | 10.2 | | Lead | 6.25 | 0.511 | 0.0511 | 0.102 | | Magnesium | 6230 | 102 | 10.2 | 20.4 | | Manganese | 188 | 0.511 | 0.156 | 0.204 | | Molybdenum | 0.630 | 0.511 | 0.102 | 0.204 | | Nickel | 6.91 | 0.511 | 0.0643 | 0.102 | | Potassium | 3380 | 102 | 10.2 | 20.4 | | Selenium | ND | 0.511 | 0.0511 | 0.102 | | Silver | ND | 0.511 | 0.0511 | 0.102 | | Sodium | 2210 | 102 | 10.2 | 20.4 | | Thallium | 0.136J | 0.511 | 0.0511 | 0.102 | | Vanadium | 49.2 | 0.511 | 0.194 | 0.255 | | Zinc | 34.2 V | 2.04 | 0.697 | 1.02 | 417/16 8 | | *********************** | |------------------------------------|--------------------------------| | Client : KLEINFELDER | Date Collected: 03/08/16 | | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-005 | Date Analyzed: 03/28/16 16:01 | | Lab Samp ID: C070-05 | Dilution Factor: 0.966 | | Lab File ID: 98C11054 | Matrix : SOIL | | Ext Btch ID: IMCO31S | % Moisture : 2.7 | | Calib. Ref.: 98C11050 | Instrument ID : T-198 | | | | | | RESULTS | LOQ | DL | LOD | |------------|---------------------|-----------------------|-----------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | Alverne | 7720 | 00.7 | 9.93 | 10.0 | | Aluminum | 7320 | 99.3 | | 19.9 | | Antimony | 0.116J | 0.496 | 0.0993 | 0.199 | | Arsenic | 2.64 | 0.496 | 0.0496 | 0.0993 | | Barium | 68.4 | 0.496 | 0.0715 | 0,0993 | | Beryllium | 0.3231 | 0.496 | 0.0496 | 0.0993 | | Boron | 6.80J <i>V</i> (| (<i>6</i>) 9.93 | 2.48 | 4.96 | | Cadmium | 0.139j | / 0.496 | 0.0566 | 0.0993 | | Calcium | 4790 | 99.3 | 16.9 | 19.9 | | Chromium | 6.91 | 0.496 | 0.0496 | 0.0993 | | Cobalt | 4-41 | 0.496 | 0.0496 | 0.0993 | | Copper | 13.4 | 0.496 | 0.0993 | 0.199 | | Iron | 14000 | 99.3 | 4.96 | 9,93 | | Lead | 3.28 | 0.496 | 0.0496 | 0.0993 | | Magnesium | 2860 | 99.3 | 9.93 | 19.9 | | Manganese | 161 | 0.496 | 0.152 | 0,199 | | Molybdenum | 0.168J | . 0.496 | 0.0993 | 0.199 | | Nickel | 4.47 | 0.496 | 0.0625 | 0.0993 | | Potassium | 2240 | 99.3 | 9.93 | 19.9 | | Selenium | 0.0595J <i>0.00</i> | 9 <i>93</i> U0.496 (7 | 7) 0.0496 | 0.0993 | | Silver | 0.0514J | 0.496 | 0.0496 | 0.0993 | | Sodium | 221 | 99.3 | 9.93 | 19.9 | | Thallium | 0.0880J | 0.496 | 0.0496 | 0.0993 | | Vanadium | 32.9 | 0.496 | 0.189 | 0.248 | | Zinc | 20.9 | 1.99 | 0.678 | 0.993 | \$17/16 C Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-006 Date Analyzed: 03/28/16 16:06 Lab Samp ID: C070-06 Dilution Factor: 0.98 Lab File ID: 98C11055 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 2.2 Calib. Ref.: 98C11050 Instrument ID : T-198 | | RESULTS | LOQ | DL | LOD | |------------|---------|---------|----------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | Afuminum | 6770 | 100 | 10.0 | 20.0 | | Aluminum | | | | | | Antimony | 0.1161 | 0.501 | 0.100 | 0.200 | | Arsenic | 2.74 | 0.501 | 0.0501 | 0.100 | | Barium | 73.1 | 0.501 | 0.0721 | 0.100 | | Beryllium | 0.236J | 0.501 | 0.0501 | 0.100 | | Boron | 4.9415 | | 2.51 | 5.01 | | Cadmium | 0.115J | 0.501 | / 0.0571 | 0.100 | | Calcium | 6160 | 100 | 17.0 | 20.0 | | Chromium | 7.83 | 0.501 | 0.0501 | 0.100 | | Cobalt | 5.25 | 0.501 | 0.0501 | 0.100 | | Copper | 13.4 | 0.501 | 0.100 | 0.200 | | Iron | 15200 | 100 | 5.01 | 10.0 | | Lead | 2.78 | 0.501 | 0.0501 | 0.100 | | Magnesium | 2900 | 100 | 10.0 | 20.0 | | Manganese | 220 | 0.501 | 0.153 | 0.200 | | Molybdenum | 0.198J | 0.501 | 0.100 | 0.200 | | Nickel | 4.57 | 0.501 | 0.0631 | 0.100 | | Potassium | 2280 | 100 | 10.0 | 20.0 | | Selenium | ND | 0.501 | 0.0501 | 0.100 | | Silver | ND | 0.501 | 0.0501 | 0.100 | | Sodium | 199 | 100 | 10.0 | 20.0 | | Thallium | 0.0811J | 0.501 | 0.0501 | 0.100 | | Vanadium | 37.6 | 0.501 | 0.190 | 0.251 | | Zinc | 20.7 | 2,00 | 0.684 | 1.00 | | LING | 20.1 | 2.00 | J.004 | 1.00 | 400/16 8 | ========== | | ========== | | | |---|-------------------------|------------|-------------|----------------| | Client : K | LEINFELDER | Date | Collected: | 03/08/16 | | Project : N | AWS CHINA LAKE, CTO 067 | Date | Received: | 03/10/16 | | SDG NO. : 10 | 6C070 | Date | Extracted: | 03/17/16 15:19 | | Sample ID: K | СН067-007 | Date | Analyzed: | 03/28/16 16:10 | | Lab Samp ID: Co | 070-07 | Dilut | ion Factor: | 0.962 | | Lab File ID: 98 | 8C11056 | Matri | x : | SOIL | | Ext Btch ID: If | MC031S | % Moi: | sture : | 1.9 | | Calib. Ref.: 98 | 8C11050 | Instr | ument ID : | T-198 | | ======================================= | | | | | | | | | | | | | RESULTS | LOQ | DL | LOD | |------------|---------|-------------|----------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | ~~~~ | | | | | | Aluminum | 4640 | 98.1 | 9.81 | 19.6 | | Antimony | ND | 0.490 | 0.0981 | 0.196 | | Arsenic | 1.77 | 0.490 | 0.0490 | 0.0981 | | Barium | 66.6 | 0.490 | 0.0706 | 0.0981 | | Beryllium | 0.169J | 0.490 | 0.0490 | 0.0981 | | Boron | 4.62149 | 0 1 9.81 (1 | 2.45 | 4.90 | | Cadmium | 0.0987J | 0.490 | / 0.0559 | 0.0981 | | Calcium | 3570 | 98.1 | 16.7 | 19.6 | | Chromium | 4.75 | 0.490 | 0.0490 | 0.0981 | | Cobalt | 3.12 | 0.490 | 0.0490 | 0.0981 | | Copper | 8.52 | 0.490 | 0.0981 | 0.196 | | Iron | 10600 | 98.1 | 4.90 | 9.81 | | Lead | 2.06 | 0.490 | 0.0490 | 0.0981 | | Magnesium | 2240 | 98.1 | 9.81 | 19.6 | | Manganese | 118 | 0.490 | 0.150 | 0.196 | | Molybdenum | 0.142J | 0.490 | 0.0981 | 0.196 | | Nickel | 2,84 | 0.490 | 0.0618 | 0.0981 | | Potassium | 1700 | 98.1 | 9.81 | 19.6 | | Selenium | ND | 0.490 | 0.0490 | 0.0981 | | Silver | ND | 0.490 | 0.0490 | 0.0981 | | Sodium | 115 | 98.1 | 9.81 | 19.6 | | Thallium | 0.0589J | 0.490 | 0.0490 | 0.0981 | | Vanadium | 23.6 | 0.490 | 0.186 | 0.245 | | Zinc | 15.7 | 1.96 | 0.670 | 0.981 | 417/16 9 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-008 Date Analyzed: 03/28/16 16:15 Lab Samp ID: C070-08 Dilution Factor: 0.98 Lab Samp ID: C070-08 Dilution Factor: 0.98 Lab File ID: 98C11057 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 1.5 Calib. Ref.: 98C11050 Instrument ID : T-198 _____ | | DECIU TO | 1.00 | DL | 1.00 | |--------------|----------------------|-------------|----------|---------| | D.D.A.WETEDO | RESULTS | LOQ | | LOD | | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | Aluminum | 3920 | 99.5 | 9.95 | 19.9 | | | ND | 0.497 | 0.0995 | 0.199 | | Antimony | | | | | | Arsenic | 1.83 | 0.497 | 0.0497 | 0.0995 | | Barium |
41.8 | 0,497 | 0.0716 | 0.0995 | | Beryllium | 0.162J "/ | ar. 0.497 | , 0.0497 | 0.0995 | | Boron | 4.50J 4 . | 11U 9.95 (B | , | 4.97 | | Cadmium | 0.0907J | 0.497 | / 0.0567 | 0.0995 | | Calcium | 2470 | 99.5 | 16.9 | 19.9 | | Chromium | 5.20 | 0.497 | 0.0497 | 0.0995 | | Cobalt | 2.63 | 0.497 | 0.0497 | 0.0995 | | Copper | 6.78 | 0.497 | 0.0995 | 0.199 | | Iron | 10800 | 99.5 | 4.97 | 9.95 | | Lead | 1.99 | 0.497 | 0.0497 | 0.0995 | | Magnesium | 1730 | 99.5 | 9.95 | 19.9 | | Manganese | 85.7 | 0.497 | 0.152 | 0.199 | | Molybdenum | 0.146J | 0.497 | 0.0995 | 0.199 | | Nickel | 2.60 | 0.497 | 0.0627 | 0.0995 | | Potassium | 1290 | 99.5 | 9.95 | 19.9 | | Selenium | ND | 0.497 | 0.0497 | 0.0995 | | Silver | ND | 0.497 | 0.0497 | 0.0995 | | Sodium | 281 | 99.5 | 9.95 | 19.9 | | Thallium | ND | 0.497 | 0.0497 | 0.0995 | | Vanadium | 25.2 | 0.497 | 0.189 | 0.249 | | Zinc | 11.6 | 1.99 | 0.680 | 0.995 | Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-009 Date Analyzed: 03/28/16 16:19 Lab Samp ID: C070-09 Dilution Factor: 0.985 Lab File ID: 98C11058 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 2.9 Calib. Ref.: 98C11050 Instrument ID : T-198 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | | | | | | | Aluminum | 8380 | 101 | 10.1 | 20.3 | | Antimony | 1.70 | 0.507 | 0.101 | 0.203 | | Arsenic | 2.98 | 0.507 | 0.0507 | 0.101 | | Barium | 90.0 | 0.507 | 0.0730 | 0.101 | | Beryllium | 0.267J | 0.507 | 0.0507 | 0.101 | | Boron | 31.5E R | 10.1 | 2.54 | 5.07 | | Cadmium | 4.68 | 0.507 | 0.0578 | 0.101 | | Calcium | 3860 | 101 | 17.2 | 20.3 | | Chromium | 19.9 | 0.507 | 0.0507 | 0.101 | | Cobalt | 5.83 | 0.507 | 0.0507 | 0.101 | | Copper | 60.4 | 0.507 | 0.101 | 0.203 | | Iron | 1 9 500 | 101 | 5.07 | 10.1 | | Lead | 64.5 | 0.507 | 0.0507 | 0.101 | | Magnesium | 3110 | 101 | 10.1 | 20.3 | | Manganese | 237 | 0.507 | 0.155 | 0.203 | | Molybdenum | 1.64 | 0.507 | 0.101 | 0.203 | | Nickel | 18.2 | 0.507 | 0.0639 | 0.101 | | Potassium | 2380 | 101 | 10.1 | 20.3 | | Selenium | ND | 0.507 | 0.0507 | 0.101 | | Silver | 2.39 | 0.507 | 0.0507 | 0.101 | | Sodium | 187 | 101 | 10.1 | 20.3 | | Thallium | 0.0875J | 0.507 | 0.0507 | 0.101 | | Vanadium | 34.6 | 0.507 | 0.193 | 0.254 | | Zinc | 242 | 2.03 | 0.693 | 1.01 | A17/16 8 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Sample ID: KCH067-009RE Date Extracted: 03/17/16 15:19 Date Analyzed: 03/29/16 14:58 Lab Samp ID: C070-09N Dilution Factor: 0.985 Matrix : SOIL % Moisture : 2.9 Lab File ID: 98C12025 Ext Btch ID: IMC031S Instrument ID : T-198 Calib. Ref.: 98C12016 | 222222222222222222222222222 | | .========= | | | |-----------------------------|-----------------|------------------|---------|---------| | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Aluminum | 8400 😤 | 101 | 10.1 | 20.3 | | Antimony | 1.67 | 0.507 | 0.101 | 0.203 | | Arsenic | 2.99 | , 0.507 | 0.0507 | 0.101 | | Barium | 85.0 | 0.507 | 0.0730 | 0.101 | | Beryllium | 0.256J V | Q.507 | 0.0507 | 0.101 | | Boron | 30.3 ブ | └(⋟)10.1 | 2.54 | 5.07 | | Cadmium | 4.35 R= | ≥ 0.507 | 0.0578 | 0.101 | | Calcium | 3920 | 101 | 17.2 | 20.3 | | Chromium | 19.8 | 0.507 | 0.0507 | 0.101 | | Cobalt | 5.94 | 0.507 | 0.0507 | 0.101 | | Copper | 61.4 | 0.507 | 0.101 | 0.203 | | Iron | 18600 | 101 | 5.07 | 10.1 | | Lead | 64.8 | 0.507 | 0.0507 | 0.101 | | Magnesium | 3290 | 101 | 10.1 | 20.3 | | Manganese | 235 | 0.507 | 0.155 | 0.203 | | Molybdenum | 1.66 | 0.507 | 0.101 | 0.203 | | Nickel | 18.6 | 0.507 | 0.0639 | 0.101 | | Potassium | 2370 | 101 | 10.1 | 20.3 | | Selenium | ND | 0.507 | 0.0507 | 0.101 | | Silver | 2.41 | 0.507 | 0.0507 | 0.101 | | Sodium | 204 | . 101 | 10.1 | 20.3 | | Thallium | 0.0880J | 0.507 | 0.0507 | 0.101 | | Vanadium | 34.6 | 0.507 | 0.193 | 0.254 | | Zinc | 248 ✔ | 2.03 | 0.693 | 1.01 | | Client : KLEINFELDER | Date Collected: 03/08/16 | |------------------------------------|--------------------------------| | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-010 | Date Analyzed: 03/28/16 16:25 | | Lab Samp ID: C070-10 | Dilution Factor: 0.98 | | Lab File ID: 98C11059 | Matrix : SOIL | | Ext Btch ID: IMC031S | <pre>% Moisture : 3.8</pre> | | Calib. Ref.: 98C11050 | Instrument ID : T-I98 | | | | | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | Aluminum | 7500 | 102 | 10.2 | 20.4 | | Antimony | 0.178J | 0.509 | 0.102 | 0.204 | | Arsenic | 1.72 | 0.509 | 0.0509 | 0.102 | | Barium | 105 | 0.509 | 0.0733 | 0.102 | | Beryllium | 0.250J | 0.509 | 0.0509 | 0.102 | | Boron | 9.71J U | (6) 10.2 | 2.55 | 5.09 | | Cadmium | 0.284J | 0.509 | 0.0581 | 0.102 | | Calcium | 3020E ₹ | ≥≥ 102 | 17.3 | 20.4 | | Chromium | 8.10 | 0.509 | 0.0509 | 0.102 | | Cobalt | 6.07 | 0.509 | 0.0509 | 0.102 | | Copper | 17.5 | 0.509 | 0.102 | 0.204 | | Iron | 15800E 🔁 | 22 102 | 5.09 | 10.2 | | Lead | 4.12 | 0.509 | 0.0509 | 0.102 | | Magnesium | 3730 | 102 | 10.2 | 20.4 | | Manganese | 251 | 0.509 | 0.156 | 0.204 | | Molybdenum | 0.323J | 0.509 | . 0.102 | 0.204 | | Nicke1 | 5.31 | 0.509 | 0.0642 | 0.102 | | Potassium | 2790 | 102 | 10.2 | 20.4 | | Selenium | ND | 0.509 | 0.0509 | 0.102 | | Silver | 0.0746J | 0.509 | 0.0509 | 0.102 | | Sodium | 200E 🔁 | 102 | 10.2 | 20.4 | | Thallium | 0.0999J | 0.509 | 0.0509 | 0.102 | | Vanadium | 36.7 | 0.509 | 0.194 | 0.255 | | Zinc | 35.2 | 2.04 | 0.696 | 1.02 | | Client : KLEINFELDER | Date Collected: 03/08/16 | |------------------------------------|--------------------------------| | Project : NAWS CHINA LAKE. CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-010RE | Date Analyzed: 03/28/16 18:11 | | Lab Samp ID: C070-10N | Dilution Factor: 0.98 | | Lab File ID: 98C11083 | Matrix : SOIL | | Ext Btch ID: IMC031S | <pre>% Moisture : 3.8</pre> | | Calib. Ref.: 98C11074 | Instrument ID : T-198 | | | | | | | | | • | |-------------|-----------------|----------|---------|---------------| | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | • • • • • • • | | Aluminum | 7510 F | 102 | 10.2 | 20.4 | | Antimony | 0.178J | 0.509 | 0.102 | 0.204 | | Arsenic | 1.73 | 0.509 | 0.0509 | 0.102 | | Barium | 107 | 0.509 | 0.0733 | 0.102 | | Beryllium | 0.240J | 0.509 | 0.0509 | 0.102 | | Boron | 9.62J | / 10.2 | 2.55 | 5.09 | | Cadmium | 0.307J V | 0.509 | 0.0581 | 0.102 | | Calcium | 2990 | 102 | 17.3 | 20.4 | | Chromium | 8.15 | 0.509 | 0.0509 | 0.102 | | Cobalt | 6.07 | 0.509 | 0.0509 | 0.102 | | Copper | 17.6 🗸 | 0.509 | 0.102 | 0.204 | | Iron | 16200 | 102 | 5.09 | 10.2 | | Lead | 4.12 | 0.509 | 0.0509 | 0.102 | | Magnesium | 3670 ` | 102 | 10.2 | 20.4 | | Manganese | 254 | 0.509 | 0.156 | 0.204 | | Mol ybdenum | 0.327J | 0.509 | 0.102 | 0.204 | | Nickel | 5.33 | 0.509 | 0.0642 | 0.102 | | Potassium | 2790 | 102 | 10.2 | 20.4 | | Selenium | ND | 0.509 | 0.0509 | 0.102 | | Silver | 0.0746J 🕊 | 0.509 | 0.0509 | 0.102 | | Sodium | 197 | 102 | 10.2 | 20.4 | | Thallium | 0.0981J 🖊 | ≥≥ 0.509 | 0.0509 | 0.102 | | Vanadium | 36.6 | 0.509 | 0.194 | 0.255 | | Zinc | 34.6 | 2.04 | 0.696 | 1.02 | | | | | | | | Client : KLEINFELDER | Date Collected: 03/08/16 | |------------------------------------|--------------------------------| | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-011 | Date Analyzed: 03/28/16 16:29 | | Lab Samp ID: C070-11 | Dilution Factor: 0.976 | | Lab File ID: 98C11060 | Matrix : SOIL | | Ext Btch ID: IMC031S | <pre>% Moisture : 3.1</pre> | | Calib. Ref.: 98C11050 | Instrument ID : T-198 | | | | | | RESULTS | LOQ | · DL | LOD | |-------------|---------|----------------------|---------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | FAINUTETERS | (mg/kg) | (11197 K97 | (mg/kg/ | (lig/kg/ | | Aluminum | 9370 | 101 | 10.1 | 20.1 | | Antimony | 2.56 | 0.504 | 0.101 | 0.201 | | Arsenic | 2.72 | 0.504 | 0.0504 | 0.101 | | Barium | 83.2 | 0.504 | 0.0725 | 0,101 | | Beryllium | 0.273J | 0.504 | 0.0504 | 0.101 | | Boron | 46.4E ₩ | ~~ | 2.52 | 5.04 | | Cadmi um | 9.34 | 0.504 | 0.0574 | 0.101 | | Calcium | 3830 | 101 | 17.1 | 20.1 | | Chromium | 22.5 | 0.504 | 0.0504 | 0.101 | | Cobalt | 5,71 | 0.504 | 0.0504 | 0.101 | | | 99.7 | 0.504 | 0.101 | 0.201 | | Copper | | | 5.04 | 10.1 | | Iron | 22100 | 101 | | | | Lead | 140 | 0.504 | 0.0504 | 0.101 | | Magnesium | 2750 | 101 | 10.1 | 20.1 | | Manganese | 245 | 0.504 | 0.154 | 0.201 | | Mo1 ybdenum | 2.12 | 0.504 | 0.101 | 0.201 | | Nickel | 22.5 | 0.504 | 0.0635 | 0.101 | | Potassium | 2220 | 101 | 10.1 | 20.1 | | Selenium | ND | 0.504 | 0.0504 | 0.101 | | Silver | 4.05 | 0.504 | 0.0504 | 0.101 | | Sodium | 283 | 101 | 10.1 | 20.1 | | Thallium | 0.0779J | 0.504 | 0.0504 | 0.101 | | Vanadium | 35.8 | 0.504 | 0.191 | 0.252 | | Zinc | 413E R | >> 2.01 | 0.688 | 1.01 | | Client : KLEINFELDER | Date Collected: 03/08/16 | | |--------------------------------|------------------------------|----| | Project : NAWS CHINA LAKE, CTO | 067 Date Received: 03/10/16 | | | SDG NO. ; 16C070 | Date Extracted: 03/17/16 15: | 19 | | Sample ID: KCH067-011DL | Date Analyzed: 03/29/16 15: | 03 | | Lab Samp ID: CO70-11I | Dilution Factor: 1.95 | | | Lab File ID: 9BC12026 | Matrix · : SOIL | | | Ext Btch ID: IMCO31S | * Moisture : 3.1 | | | Calib. Ref.: 98C12016 | Instrument ID : T-I98 | | | | | | | PARAMETERS |
RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | 43.min. | 9390 🕞 | 2 201 | 20.1 | 40.2 | | Aluminum | | 201 | 20.1 | | | Antimony | 2.63 | 1.01 | 0.201 | 0.402 | | Arsenic | 2.84 | 1.01 | 0.101 | 0.201 | | Barium | 83.1 | 1.01 | 0.145 | 0.201 | | Beryllium | 0.292J <u>▼</u> | · εγ.01 | . 0.101 | 0.201 | | Boron | 47.2 | (5/20.1 | 5.03 | 10.1 | | Cadmium | 8.61 | \geq /1.01 | 0.115 | 0.201 | | Calcium | 3940 | 201 | 34.2 | 40.2 | | Chromium | 23.4 | 1.01 | 0.101 | 0.201 | | Cobalt | 6.02 | 1.01 | 0.101 | 0.201 | | Copper | 106 | 1.01 | 0.201 | 0.402 | | Iron | 21200 | 201 | 10.1 | 20.1 | | Lead | 143 | 1.01 | 0.101 | 0.201 | | Magnesium | 2940 | 201 | 20.1 | 40.2 | | Manganese | 248 | 1.01 | 0.308 | 0.402 | | Molybdenum | 2.09 | 1.01 | 0.201 | 0.402 | | Nickel | 22.9 | 1.01 | 0.127 | 0.201 | | Potassium | 2250 | 201 | 20.1 | 40.2 | | Selenium | ND { | 1.01 | 0.101 | 0.201 | | Silver | 4.18 | 1.01 | 0.101 | 0.201 | | Sodium | 310 | 201 | 20.1 | 40.2 | | Thallium | ND / | 1.01 | 0.101 | 0.201 | | Vanadium | 36.6 ₩ | 1.01 | 0.382 | 0.503 | | Zinc | 434 | 4.02 | 1.37 | 2.01 | | ======= | ===: | | ===== | | | |-----------|------|--------------------------|--------|-------------|----------------| | Client | : | KLEINFELDER | Date | Collected: | 03/08/16 | | Project | : | NAWS CHINA LAKE, CTO 067 | Date | Received: | 03/10/16 | | SDG NO. | : | 16C070 | Date | Extracted: | 03/17/16 15:19 | | Sample | ID: | KCH067-012 | Date | Analyzed: | 03/28/16 16:47 | | Lab Samp | ID: | C070-12 | Dilut | ion Factor: | 0.976 | | Lab File | ID: | 98C11064 | Matri | × : | SOIL | | Ext Btch | ID: | IMCO31S | % Mois | sture : | 3.5 | | Calib. Re | f.: | 98C11062 | Instr | ument ID : | T-198 | | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | Aluminum | 6440 | 101 | 10.1 | 20.2 | | Antimony | 0.183J | 0.506 | 0.101 | 0.202 | | Arsenic | 2.43 | 0.506 | 0.0506 | 0.101 | | Barium | 73.7 | 0.506 | 0.0728 | 0.101 | | Beryllium | 0.253J | 0.506 | 0.0506 | 0.101 | | Boron | 14.4 | 10.1 | 2.53 | 5.06 | | Cadmium | 0.190J | 0.506 | 0.0576 | 0.101 | | Calcium | 4550 | 101 | 17.2 | 20.2 | | Chromium | 6.27 | 0.506 | 0.0506 | 0.101 | | Cobalt | 4.19 | 0.506 | 0.0506 | 0.101 | | Copper | 11.7 | 0.506 | 0.101 | 0.202 | | Iron | 12100 | 101 | 5.06 | 10.1 | | Lead | 5.93 | 0.506 | 0.0506 | 0.101 | | Magnesium | 2590 | 101 | 10.1 | 20.2 | | Manganese | 161 | 0.506 | 0.155 | 0.202 | | Molybdenum | 0.235J | 0.506 | 0.101 | 0.202 | | Nickel | 3.71 | 0.506 | 0.0637 | 0.101 | | Potassium | 1980 | 101 | 10.1 | 20.2 | | Selenium | . ND | 0.506 | 0.0506 | 0.101 | | Silver | ND | 0.506 | 0.0506 | 0.101 | | Sodium | 389 | 101 | 10.1 | 20.2 | | Thallium | 0.0855J | 0.506 | 0.0506 | 0.101 | | Vanadium | 28.1 | 0.506 | 0.192 | 0.253 | | Zinc | 37.9 | 2.02 | 0.691 | 1.01 | 8/05/716 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-013 Date Analyzed: 03/28/16 16:52 Lab Samp ID: C070-13 Dilution Factor: 0.966 Lab File ID: 98C11065 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 5.0 Calib. Ref.: 98C11062 Instrument ID : T-198 ______ | | RESULTS | LOQ | DL | LOD | |------------|---------|------------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Aluminum | 8330 | 102 | 10.2 | 20.3 | | Antimony | 0.130J | 0.508 | 0.102 | 0.203 | | Arsenic | 2.17 | 0.508 | 0.0508 | 0.102 | | Barium | 145 | 0.508 | 0.0732 | 0.102 | | Beryllium | 0.261J | 0.508 | 0.0508 | 0.102 | | Boron | 8.91J 😥 | >U 10.2 (6 | 2.54 | 5.08 | | Cadmium | 0.110J | 0.508 ` ′ | 0.0580 | 0.102 | | Calcium | 5060 | 102 | 17.3 | 20.3 | | Chromium | 9.72 | 0.508 | 0.0508 | 0.102 | | Cobalt | 7.44 | 0.508 | 0.0508 | 0.102 | | Copper | 21.6 | 0.508 | 0.102 | 0.203 | | Iron | 17900 | 102 | 5.08 | 10.2 | | Lead | 3.22 | 0.508 | 0.0508 | 0.102 | | Magnesium | 4360 | 102 | 10.2 | 20.3 | | Manganese | 249 | 0.508 | 0.156 | 0.203 | | Molybdenum | 0.280J | 0.508 | 0.102 | 0.203 | | Nickel | 5.84 | 0.508 | 0.0641 | 0.102 | | Potassium | 3270 | 102 | 10.2 | 20.3 | | Selenium | 0.0983J | 0.508 | 0.0508 | 0.102 | | Silver | ND | 0.508 | 0.0508 | 0.102 | | Sodium | 471 | 102 | 10.2 | 20.3 | | Thallium | 0.118J | 0.508 | 0.0508 | 0.102 | | Vanadium | 41.3 | 0.508 | 0.193 | 0.254 | | Zinc | 30.6 | 2.03 | 0.695 | 1.02 | 8011/6 | | .======== | | | | |--|-----------------|-------------|--------------|------------| | Client : KLEINFELDER | | Date Colle | cted: 03/08 | 3/16 | | Project : NAWS CHINA LAKE, CTO 067 | | Date Rece | eived: 03/10 | 0/16 | | SDG NO. : 16CO70 | | Date Extra | cted: 03/17 | 7/16 15:19 | | Sample ID: KCH067-014 | | Date Anal | yzed: 03/28 | 3/16 16:56 | | Lab Samp ID: C070-14 | | Dilution Fa | ctor: 0.966 | 5 | | Lab File ID: 98C11066 | | Matrix | : SOIL | | | Ext Btch ID: IMCO31S | | % Moisture | : 3.9 | | | Calib. Ref.: 98C11062 | | Instrument | ID : T-198 | 3 | | ************************************** | | | | | | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Aluminum | 7700 | 101 | 10.1 | 20.1 | | Antimony | 0.133J | 0.503 | 0.101 | 0.201 | | Arsenic | 2.21 | 0.503 | 0.0503 | 0.101 | | Barium | 174 | 0.503 | 0.0724 | 0.101 | | Beryllium | 0.245J | 0.503 | 0.0503 | 0.101 | | Boron | 9.15J 49 | | 2.51 | 5.03 | | Cadmium | 0.123J | 0.503 | 0.0573 | 0.101 | | Calcium | 3510 | 101 | 17.1 | 20.1 | | Chromium | 9.22 | 0.503 | 0.0503 | 0.101 | | Cobalt | 5.79 | 0.503 | 0.0503 | 0.101 | | Copper | 16.2 | 0.503 | 0.101 | 0.201 | | Iron | 16400 | 1 01 | 5.03 | 10.1 | | Lead | 3.64 | 0.503 | 0.0503 | 0.101 | | Magnesium | 3610 | 101 | 10.1 | 20.1 | | Manganese | 242 | 0.503 | 0.154 | 0.201 | | Molybdenum | 0.243J | 0.503 | 0.101 | 0.201 | | Nickel | 5.39 | 0.503 | 0.0633 | 0.101 | | Potassium | 2830 | 101 | 10.1 | 20.1 | | Selenium | 0.0511J | 0.503 | 0.0503 | 0.101 | | Silver | ND | 0.503 | 0.0503 | 0.101 | | c-di- | 725 | 101 | 10 1 | 20.4 | ND 325 0.106J 39.3 30.1 Thallium Vanadium Sodium Zinc 101 0.503 0.503 2.01 0.0503 0.191 0.687 10.1 20.1 0.101 0.251 1.01 EN1116 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 SDG NO. : 16C070 Date Extracted: 03/17/16 15:19 Sample ID: KCH067-015 Date Analyzed: 03/28/16 17:01 Sample ID: KCH067-015 Date Analyzed: 03/28/16 17:01 Lab Samp ID: C070-15 Dilution Factor: 0.976 Lab File ID: 98C11067 Matrix : SOIL Lab File ID: 98C11067 Matrix : SOIL Ext Btch ID: IMC031S % Moisture : 3.6 Calib. Ref.: 98C11062 Instrument ID : T-198 | ======================================= | | | ======== | ======== | |---|--------------------|----------------|---------------|----------------| | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | | Alternative | 7770 | 101 | 40.4 | 20. 2 | | Aluminum | 7330 | 101 | 10.1 | 20.2 | | Antimony | 0.108J | 0.506 | 0.101 | 0.202 | | Arsenic | 2.73 | 0.506 | 0.0506 | 0.101 | | Barium | 80.3 | 0.506 | 0.0729 | 0.101 | | Beryllium | 0.293J | 0.506 | 0.0506 | 0.101 | | Boron | 14.4 | 10.1 | 2.53 | 5.06 | | Cadmium | 0.131J | 0.506 | 0.0577 | 0.101 | | Calcium | 4890 | 101 | 17.2 | 20.2 | | Chromium | 8.32 | 0.506 | 0.0506 | 0.101 | | Cobalt | 4.72 | 0.506 | 0.0506 | 0.101 | | Copper | 15.3 | 0.506 | 0.101 | 0.202 | | Iron | 15400 | 101 | 5.06 | 10.1 | | Lead | 2.94 | 0.506 | 0.0506 | 0.101 | | Magnesium | 3110 | 101 | 10.1 | 20.2 | | Manganese | 180 | 0.506 | 0.155 | 0.202 | | Molybdenum | 0.337J | 0.506 | 0.101 | 0.202 | | Nickel | 5.32 | 0.506 | 0.0638 | 0.101 | | Potassium | 2470 | 101 | 10.1 | 20.2 | | Selenium | 0.0596J | 0.506 | 0.0506 | 0.101 | | Silver | ND | 0.506 | 0.0506 | 0.101 | | Sodium | 491 | 101 | 10.1 | 20.2 | | Thallium | 0.0930J | 0.506 | 0.0506 | 0.101 | | Vanadium | 33.2 | 0.506 | 0.192 | 0.253 | | Zinc | 23.9 | 2.02 | 0.692 | 1.01 | | ======================================= | .======== | | ========== | ======= | |---|--------------------------------|-------------------|---------------|-----------| | Client : KLEINFELDER | | Date Col | lected: 03/08 | /16 | | Project : NAWS CHINA LAKE, CTO 067 | | Date Re | ceived: 03/10 | /16 | | SDG NO. : 16C070 | | Date Ext | racted: 03/17 | 716 15:19 | | Sample ID: KCH067-016 | | Date Ana | alyzed: 03/28 | /16 17:18 | | Lab Samp ID: C070-16 | | Dilution | Factor: 0.962 | | | Lab File ID: 98C11071 | | Matrix | : SOIL | | | Ext Btch ID: IMCO31S | | % Moistur | e : 2.8 | | | Calib. Ref.: 98C11062 | | Instrumen | t ID : T-198 | | | | | | | ======== | | | | | | | | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | ****** | | | | | | Aluminum | 7220 | 39.0 | 9.90 | 19.8 | | Antimony | 0.112J <i>プ</i> ー | (o 0.495 | 0.0990 | 0.198 | | Arsenic | 2.48 | 0.495 | 0.0495 | 0.0990 | | Barium | 111 | 0.495 | 0.0713 | 0.0990 | | Beryllium | 0.224J | 0.495 | 0.0495 | 0.0990 | | Boron | 7.59EJ 🤝 | 9.90 حد | 2.47 | 4.95 | | Cadmium | 0.117J
5050 J-(
7.31 S-1 | 30.495 | 0.0564 | 0.0990 | | Calcium | 5050 J-(| (T) 99.0 | 16.8 | 19.8 | | Chromium | | • •••• | 0.0495 | 0.0990 | | Cobalt | 5.65
16.05-13 | 0.495 | 0.0495 | 0.0990 | | Copper | 16.05-(7 | 8 0.495 | 0.0990 | 0.198 | | Iron | 15400 | 99.0 | 4.95 | 9.90 | | Lead | 2.39 | o \ 0.495 | 0.0495 | 0.0990 | | Magnesium | 3820 | 0 / 99.0 | 9.90 | 19.8 | | Manganese | 221 | 0.495 | 0.151 | 0.198 | | Molybdenum | 0.247J | 0.495 | 0.0990 | 0.198 | | Nickel | 5.01 | √0.495 | 0.0624 | 0.0990 | | Potassium | 2840 J-() | Ø) 99.0 | 9.90 | 19.8 | | Selenium | ND | 0.495 | 0.0495 | 0.0990 | | Silver | ND | 0.495 | 0.0495 | 0,0990 | | Sodium | 384 | 99.0 | 9.90 | 19.8 | | Thallium |
0.100J | 0.495 | 0.0495 | 0.0990 | | Vanadium | 36.8 J~(| 8) 0.495 | 0.188 | 0.247 | | Zinc | 23.7 | [′] 1.98 | 0.676 | 0.990 | | ======================================= | | ========= | ======== | ======== | |---|---------|------------|---|------------| | Client : KLEINFELDER | | Date Col | lected: 03/0 | 8/16 | | Project : NAWS CHINA LAKE, | CTO 067 | Date Red | ceived: 03/1 | 0/16 | | SDG NO. : 16C070 | | Date Ext | racted: 03/1 | 7/16 15:19 | | Sample ID: KCH067-016RE | | Date Ana | alyzed: 03/29 | 9/16 15:33 | | Lab Samp ID: CO70-16N | | Dilution i | actor: 0.96 | 2 | | Lab File ID: 98C12033 | | Matrix | : SOIL | | | Ext Btch ID: IMCO31S | | % Moisture | : 2.8 | | | Calib. Ref.: 98C12028 | | Instrument | : ID : T-19 | 8 | | | | ========= | ======================================= | | | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | ~~ | | | | | | | | LUD | |--------------|----------------------|----------|----------------|---------| | PARAMETERS (| (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | 7050 k3 ² | | | 40.0 | | Aluminum | 1000 11- | 99.0 | 9.90 | 19.8 | | • |).110J (| 0.495 | 0.0990 | 0.198 | | Arsenic | 2.51 | 0.495 | 0.0495 | 0.0990 | | Barium | 105 / | 0.495 | 0.0713 | 0.0990 | | Beryllium 0 | 0.227J 🗸 | 0.495 | ρ.0495 | 0.0990 | | | 7.201 UJ | 9.90(5,6 | 6) 2.47 | 4.95 | | Cadmium 0 | .110J ₽≥> | - 0.495 | 0.0564 | 0.0990 | | Calcium | 5020 \ | 99.0 | 16.8 | 19.8 | | Chromium | 7.33 | 0.495 | 0.0495 | 0.0990 | | Cobalt | 5.68 | 0.495 | 0.0495 | 0.0990 | | Copper | 16.3 | 0.495 | 0.0990 | 0.198 | | Iron 1 | 4500 | 99.0 | 4.95 | 9.90 | | Lead | 2.46 | 0.495 | 0.0495 | 0.0990 | | Magnes i um | 3950 | 99.0 | 9.90 | 19.8 | | Manganese | 214 | 0.495 | 0.151 | 0.198 | | Molybdenum 0 | 1.244J | 0.495 | 0.0990 | 0.198 | | Nickel | 4.87 | 0.495 | 0.0624 | 0.0990 | | Potassium | 2820 | 99.0 | 9.90 | 19.8 | | Selenium | ND { | 0.495 | 0.0495 | 0.0990 | | Silver | ND | 0.495 | 0.0495 | 0.0990 | | Sodium | 402 | 99.0 | 9.90 | 19.8 | | Thallium 0 | .109J | 0.495 | 0.0495 | 0.0990 | | Vanadium | 36.6 | 0.495 | 0.188 | 0.247 | | Zinc | 24.2 | 1.98 | 0.676 | 0.990 | 417/16 9_ _________ Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 : 160070 SDG NO. Date Extracted: 03/17/16 15:19 Sample ID: KCH067-017 Date Analyzed: 03/28/16 17:40 Dilution Factor: 0.985 Lab Samp ID: C070-17 : S01L Lab File 1D: 98C11076 Matrix % Moisture : 0.0 Instrument ID : T-198 Ext Btch ID: IMC031S Calib. Ref.: 98C11074 LOD RESULTS LOQ DL PARAMETERS (mg/kg) (mg/kg) (mg/kg) (mg/kg) -----------7350 98.5 9.85 19.7 Aluminum Antimony 0.142J 0.493 0.0985 0.197 0.0493 3.34 0.493 0.0985 Arsenic Barium 99.4 0.493 0.0709 0.0985 0.493 0.0493 0.0985 Beryllium 0.286J 9.94 9.85 2.46 4.93 Boron 0.201J 0.493 0.0561 0.0985 Cadmium 7640 98.5 19.7 Calcium 16.7 Chromium 7.30 0.493 0.0493 0.0985 0.0493 0.0985 5.17 0.493 Cobalt 16.7 0.493 0.0985 0.197 Copper 4.93 98.5 9.85 14300 Iron 9.97 0.493 0.0493 0.0985 Lead 98.5 3530 9.85 19.7 Magnesium 220 0.493 0.151 0.197 Manganese 0.339J Molybdenum 0.493 0.0985 0.197 6.22 0.493 0.0621 0.0985 Nickel Potassium 2620 98.5 9.85 19.7 0.0584J 0.493 0.0493 0.0985 Selenium ND 0.493 0.0493 0.0985 Silver 250 98.5 9.85 19.7 Sodium 0.102J 0.493 0.0493 0.0985 Thallium Vanadium 27.4 0.493 0.187 0.246 1.97 0.985 69.7 0.673 Zinc Leinb | ====================================== | | |---|--------------------------------| | Client : KLEINFELDER | Date Collected: 03/08/16 | | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG_NO. : 160070 | Date Extracted: 03/17/16 15:19 | | Sample ID: KCH067-018 | Date Analyzed: 03/28/16 17:45 | | Lab Samp ID: C070-18 | Dilution Factor: 0.976 | | Lab File ID: 98C11077 | Matrix : SOIL | | Ext Btch ID: IMCO31S | % Moisture : 2.1 | | Calib. Ref.: 98C11074 | Instrument ID : T-198 | | #\$ | | | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | Aluminum | 7500 | 99.7 | 9.97 | 19.9 | | Antimony | 0.132J | 0.498 | 0.0997 | 0.199 | | Arsenic | 2.48 | 0.498 | 0.0498 | 0.0997 | | Barium | 115 | 0.498 | 0.0718 | 0.0997 | | Beryllium | 0.236J | 0.498 | 0.0498 | 0.0997 | | Boron | 9.82J 🚅 | 7U 9.97(6) | 2.49 | 4.98 | | Cadmium | 0.121J | 0.498 | 0.0568 | 0.0997 | | Calcium | 6990 | 99.7 | 16.9 | 19.9 | | Chromium | 8.61 | 0.498 | 0.0498 | 0.0997 | | Cobalt | 5.91 | 0.498 | 0.0498 | 0.0997 | | Copper | 15.9 | 0.498 | 0.0997 | 0.199 | | Iron | 14200 | 99.7 | 4.98 | 9.97 | | Lead | 2.97 | 0.498 | 0.0498 | 0.0997 | | Magnesium | 3650 | 99.7 | 9.97 | 19.9 | | Manganese | 240 | 0.498 | 0.153 | 0.199 | | Molybdenum | 0.425J | 0.498 | 0.0997 | 0.199 | | Nickel | 5.78 | 0.498 | 0.0628 | 0.0997 | | Potassium | 2870 | 99.7 | 9.97 | 19.9 | | Selenium | 0.0528J | 0.498 | 0.0498 | 0.0997 | | Silver | ND | 0.498 | 0.0498 | 0.0997 | | Sodium | 434 | 99.7 | 9.97 | 19.9 | | Thallium | 0.107J | 0.498 | 0.0498 | 0.0997 | | Vanadium | 32.5 | 0.498 | 0.189 | 0.249 | | Zinc | 27.4 | 1.99 | 0.681 | 0.997 | 8051116 ### METHOD SW7471A MERCURY BY COLD VAPOR Client : KLEINFELDER Project: NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Matrix : SOIL InstrumentID : 47 CLIENT EMAX RESULTS DIL'N MOIST LOQ DL LOD ANALYSIS PREPARATION DATA CAL PREP COLLECTION RECEIVED SAMPLE ID SAMPLE ID (mg/kg) FACTOR (%) (mg/kg) (mg/kg) (mg/kg) DATETIME DATETIME FILE ID REF BATCH DATETIME DATETIME MBLK1S HGC017SB ND 0.020 03/25/1611:12 03/24/1618:05 M47C013011 M47C013 HGC017S NA 1 NA 0.10 0.010 NA LCS1S HGC017SL 0.424 1 NA 0.10 0.010 03/25/1611:14 03/24/1618:05 M47C013012 M47C013 HGC017S NA NA LCD1S HGC017SC 0.418 1 NA 0.10 0.010 0.020 03/25/1611:16 03/24/1618:05 M47C013D13 M47C013 HGC017S NA NA KCH067-003 C070-03 NO 1 6.9 0.11 0.011 0.021 03/25/1611:21 03/24/1618:05 M47C013015 M47C013 HGC017S 03/08/1609:40 03/10/16 KCH067-003MS C070-03M 0.466 1 6.9 0.11 0.011 03/25/1611:25 03/24/1618:05 M47C013017 M47C013 HGC017S 03/08/1609:40 03/10/16 KCH067-003MSD C070-03S 0.466 1 6.9 0.11 0.011 0.021 03/25/1611:28 03/24/1618:05 M47C013018 M47C013 HGC0175 03/08/1609:40 03/10/16 KCH067-016 C070-16 ND 1 2.8 0.10 0.010 0.020 03/25/1611:32 03/24/1618:05 M47C013020 M47C013 HGC017S 03/08/1615:00 03/10/16 KCH067-016MS 0.445 2.8 0.020 03/25/1611:40 03/24/1618:05 M47C013024 M47C013 HGC017S 03/08/1615:00 03/10/16 C070-16M 1 0.10 KCH067-016MSD C070-16S 0.445 1 2.8 0.10 0.010 0.020 03/25/1611:43 03/24/1618:05 M47C013025 M47C013 HGC017S 03/08/1615:00 03/10/16 KCH067-001 C070-01 ND 1 4.3 0.10 0.010 0.021 03/25/1611:45 03/24/1618:05 M47C013026 M47C013 HGC017S 03/08/1609:15 03/10/16 KCH067-002 C070-02 ND 1 9.0 0.11 0.011 0.022 03/25/1611:47 03/24/1618:05 M47C013027 M47C013 HGC017S 03/08/1609:30 03/10/16 KCH067-004 C070-04 1 0.021 03/25/1611:49 03/24/1618:05 M47C013028 M47C013 HGC017S 03/08/1609:55 03/10/16 ND 4.9 0.10 0.010 KCH067-005 C070-05 ND 1 2.7 0.10 0.010 0.020 03/25/1611:51 03/24/1618:05 M47C013029 M47C013 HGC017S 03/08/1613:25 03/10/16 KCH067-006 C070-06 ND 1 2.2 0.10 0.010 0.020 03/25/1611:53 03/24/1618:05 M47C013030 M47C013 HGC017S 03/08/1613:40 03/10/16 KCH067-007 C070-07 ND 1 1.9 0.10 0.010 0.020 03/25/1611:55 03/24/1618:05 M47C013031 M47C013 HGC017S 03/08/1613:45 03/10/16 ND KCH067-008 C070-08 1 1.5 0.099 0.0099 03/25/1611:58 03/24/1618:05 M47C013032 M47C013 HGC017S 03/08/1613:55 03/10/16 KCH067-009 C070-09 ND 1 2.9 0.10 0.010 0.020 03/25/1612:04 03/24/1618:05 M47C013035 M47C013 HGC017S 03/08/1614:00 03/10/16 KCH067-010 C070-10 1 3.8 0.10 0.010 03/25/1612:06 03/24/1618:05 M47C013036 M47C013 HGC017S 03/08/1614:05 03/10/16 KCH067-011 C070-11 ND 1 3.1 0.10 0.010 03/25/1612:08 03/24/1618:05 M47C013037 M47C013 HGC017S 03/08/1614:10 03/10/16 KCH067-012 C070-12 ND 1 3.5 0.10 0.010 0.020 03/25/1612:11 03/24/1618:05 M47C013038 M47C013 HGC017S 03/08/1614:20 03/10/16 KCH067-013 C070-13 ND 1 5.0 0.10 0.010 0.021 03/25/1612:13 03/24/1618:05 M47C013039 M47C013 HGC017S 03/08/1614:25 03/10/16 KCH067-014 C070-14 ND 1 3.9 0.10 0.010 0.020 03/25/1612:15 03/24/1618:05 M47C013040 M47C013 HGC017S 03/08/1614:30 03/10/16 KCH067-015 C070 - 15 1 3.6 0.10 0.010 0.020 03/25/1612:18 03/24/1618:05 M47C013041 M47C013 HGC017S 03/08/1614:50 03/10/16 KCH067-017 C070-17 ND 1 0.0 0.10 0.01003/25/1612:20 03/24/1618:05 M47C013042 M47C013 HGC017S 03/08/1615:20 03/10/16 KCH067-018 C070-18 ND 1 2.1 0.10 0.010 0.020 03/25/1612:22 03/24/1618:05 M47C013043 M47C013 HGC017S 03/08/1615:30 03/10/16 | | VALIDATION COMPLETENESS MODIFIES | 1 . 1 | |---------------------------|-----------------------------------|--| | _DC #: <u>36282A4a</u> | VALIDATION COMPLETENESS WORKSHEET | Date: <u>קל או</u> ני | | SDG #: 16C070 | Standard/Full | Page: <u> </u> tof <u> ² </u> | | _aboratory: EMAX Laborato | ries Inc. | Reviewer:_ 🕉 | | - | / 846 Method 6020A/747ØA) | 2nd Reviewer: 📕 | | METHOD: Metals (EPA SW | / 846 Method 6020A/747ØA) | _ | The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-----------|--|-----|---| | l. | Sample receipt/Technical holding times | A | 318/14 | | II. | ICP/MS Tune | A | | | 111. | Instrument Calibration | SW | | | IV. | ICP Interference Check Sample (ICS) Analysis | A | | | V. | Laboratory Blanks | SW | | | VI. | Field Blanks | SW | EB=KCHO67-OP (596:16C074)
MSID=(R20) (21.22) | | VII. | Matrix Spike/Matrix Spike Duplicates | SW | MSID=(R.20) (21.22) | | VIII. | Duplicate sample analysis | N | , | | IX. | Serial Dilution | A | | | <u>x.</u> | Laboratory control
samples | A | LCSID | | XI. | Field Duplicates | 1) | | | XII. | Internal Standard (ICP-MS) | A | Not reviewed for Standard Validation | | XIII. | Sample Result Verification 30 | SWX | Not reviewed for Standard validation. | | | Overall Assessment of Data | SUP | | A = Acceptable N = Not provided/applicable Note: SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Full validation Client ID Lab ID Matrix Date KCH067-001 16C070-01 Soil 03/08/16 16C070-02 KCH067-002 Soil 03/08/16 3 KCH067-003 16C070-03 Soil 03/08/16 KCH067-004** 16C070-04** Soil 03/08/16 5 KCH067-005 16C070-05 Soil 03/08/16 6 KCH067-006 16C070-06 Soil 03/08/16 KCH067-007 16C070-07 Soil 03/08/16 8 KCH067-008 16C070-08 Soil 03/08/16 9 KCH067-009 16C070-09 Soil 03/08/16 10 KCH067-010 16C070-10 Soil 03/08/16 11 KCH067-011 16C070-11 Soil 03/08/16 12 KCH067-012 16C070-12 Soil 03/08/16 13 KCH067-013 16C070-13 Soil 03/08/16 14 KCH067-014 16C070-14 Soil 03/08/16 KCH067-015 16C070-15 Soil 03/08/16 | LDC | #: | 36282A4a | |-----|-------------|-----------| | | <i>"</i> ·— | OOZOZITIA | #### **VALIDATION COMPLETENESS WORKSHEET** SDG #: 16C070 Laboratory: EMAX Laboratories Inc. Standard/Full Reviewer: 3 2nd Reviewer: METHOD: Metals (EPA SW 846 Method 6020A/7470A) | | Client ID | Lab ID | Matrix | Date | |------|---------------|--------------|--------------|----------| | 16 | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | 17 | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | 18 | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | 19 | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | 20 | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | | 21 | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | 22 | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | 23 | #1DL | | | | | 24 | #2DL | | | | | 25_ | #2RE | | | | | 26 | #3DL | | | | | 27 | #4RE | | | | | 28 | #9RE | | | | | 29 | #10RE | | | | | 30_ | #11DL | | | | | 31 | #16RE | | · <u>-</u> - | | | 32 | | | | | | 33 | | | | | | 34 | | | | | | 35 | | | | | | 36 | | | | | | 37 | | | | | | 38 | | | | | | 39 | | | | | | 40 | | | | | | Vote | S: | | | | #### VALIDATION FINDINGS CHECKLIST Method: Metals (EPA SW 846 Method 6010B/7000/6020) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|----|-------------------| | I. Technical holding times | | | | | | All technical holding times were met. | / | | | | | Cooler temperature criteria was met. | / | | | | | II. ICP/MS Tune | | | | | | Were all isotopes in the tuning solution mass resolution within 0.1 amu? | | | | | | Were %RSD of isotopes in the tuning solution ≤5%? | / | | | | | III. Calibration | | | | | | Were all instruments calibrated daily, each set-up time? | \ | | | | | Were the proper number of standards used? | / | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits? | | / | | | | Were all initial calibration correlation coefficients ≥ 0.995? | / | | | | | IV. Blanks | | | | | | Was a method blank associated with every sample in this SDG? | / | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | / | | | | V. ICP Interference Check Sample | | | | | | Were ICP interference check samples performed daily? | / | | | | | Were the AB solution percent recoveries (%R) with the 80-120% QC limits? | / | | | | | VI. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | / | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL. | / | | | | | VII. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils? | | | | | #### VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: 30 2nd Reviewer: 1 | Validation Avec | Yes | No | NA | Eindings/Commonts | |---|-----|----|------|-------------------| | Validation Area | 103 | | 11/4 | Findings/Comments | | VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8) | | | | | | Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration? | / | | | | | If the %Rs were outside the criteria, was a reanalysis performed? | / | | | | | IX. ICP Serial Dilution | | | | | | Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)? | / | | | | | Were all percent differences (%Ds) < 10%? | _ | | | | | Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data. | į | / | | | | X. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | | | | | XI. Overall assessment of data | | | | , | | Overall assessment of data was found to be acceptable. | / | | | | | XII. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | / | | | | Target analytes were detected in the field duplicates. | | | / | | | XIII. Field blanks | | | | | | Field blanks were identified in this SDG. | / | | | | | Target analytes were detected in the field blanks. | / | | | | LDC #: 30282A4G # VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference Page: _of _ Reviewer: _ 2nd reviewer: __A All circled elements are applicable to each sample. | T I | - | | |-----------|-----------------|--| | Comple ID | NA 4-1- | Towart Amphito Lint (TAL) | | Sample ID | <u>iviatrix</u> | COOMAOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | | 1-18 | \rightarrow | (Alýsb)(As)(Ba)(Ba)(Ca)(Ca)(Cr)(Co)(Cu),(Fe)(Pb)(Mg)(Mn),(Hg)(Ni)(K, Se)(Ag)(Na),(Tl,(V),Zn)(Mo)(B,Sn, Ti, | | 15 | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | 120.19-22 | 5 | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | 23-31 | 5 | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Analysis Method | | ICP | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B,
Sn, Ti, | | ICP-MS | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | GEAA | | Al Sh As Ba Be Cd Ca Cr Co Cu Fe Ph Mg Mn Hg Ni K Se Ag Na Ti V Zn Mo B Sn Ti | Comments: Mercury by CVAA if performed LDC #: 36282A4a ### VALIDATION FINDINGS WORKSHEET Calibration | Page:_ | <u>l</u> of | |---------------|--------------| | Reviewer: | QD | | 2nd Reviewer: | - | METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000) | F | Please se | e qualifications | below for all | questions answered | "N". Not applicable | questions are ide | entified as "N/A" | |---|--------------|------------------|---------------|--------------------|---------------------|--------------------|---------------------| | • | Marc 2 2 2 . | | | 4444 | | quodiantio and inc | minimod do 1477 t . | Were all instruments calibrated daily, each set-up time, and were the proper number of standards used? Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110% for all analytes except mercury (80-120%)? LEVEL IX ONLY: Y N N N Was a midrange cyanide standard distilled? N N/A Are all correlation coefficients >0.995? <u>প N N/A</u> Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recalculation Worksheet for recalculations. | # | Date | Calibration ID | Analyte | %R | Associated Samples | Qualification of Data | |--------------|----------|---------------------------------------|---------|-----|--------------------|-----------------------| | 1 | 03/29/16 | CCV (14:19) | В | 182 | 25-28, 30 | J+det/P (det) (05) | | П | | · · · · · · · · · · · · · · · · · · · | | | | | | П | 03/29/16 | CCV (15:11) | В | 187 | 25-28, 30-31 | J+det/P (det) (05) | | | | | | | | | | П | 03/29/16 | CCV (16:00) | В | 184 | 31 | J+det/P (det) (05) | | П | | | | | | | | | | | | | | | | П | | | | | | | | П | | | | | | | | П | - | | | | | | П | | | | | | | | $\ \Box \ $ | | | | | | | | П | | | | | | | | | | | | | | | | | | - | | | | | | Comments: |
 |
 | | |-----------|------|------|--| | | | | | | - |
 |
 | | ### VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES Page: 1 of 1 Reviewer: JD 2nd Reviewer: 7 METHOD: Metals (EPA SW 864 Method 6010/6020/7000) Soil preparation factor applied: 50X Sample Concentration units, unless otherwise noted: Associated Samples: 1-11 (07)mg/kg Samale_identification. Analyte Maximum Maximum Maximum Blank 1 3 5 PB^a PB^a ICB/CCB^a Action (ua/L) (ua/L)Limit (ma/Ka) 0.100 0.130/0.512 0.0993V Associated Samples: 25-28, 30 (07)Sample Concentration units, unless otherwise noted: mg/kg Sample Identification 25 26 Analyte Maximum Maximum Maximum Blank PB^a ICB/CCB^a PB^a Action (mg/Kg) (ua/L) (ua/L) Limit 2.92/5.241/ Мо 0.238 0.817/2.68 Sample Concentration units, unless otherwise noted: mg/kg Associated Samples: 31 (07)Samula klanii kalima Analyte Maximum Maximun Maximum Blank 31 PBa PB^a ICB/CCB^a Action (ug/L) (ma/Ka) (ug/L) Limit Мо 0.223 0.244/0.495 mg/kg Associated Samples: 25-28, 30-31 (07)Sample Concentration units, unless otherwise noted: Sample Identification Maximum Maximum Maximum 27 31 Analyte Blank 26 PB^a ICB/CCB^a PBa Action (ma/Ka) (ug/L) (ug/L) Limit 0.350/0.511-0.110/0.495 Sb 0.294 1.15/5:24 210 Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. LDC #: 36282A4a ### VALIDATION FINDINGS WORKSHEET Field Blanks Page: \of \ Reviewer: \of \omega 2nd Reviewer: \omega **METHOD:** Trace Metals (EPA Method 200.7/200.8) Blank units: ug/L Associated sample units: mg/kg Sampling date: 03/08/16 Soil factor applied 50X Field blank type: (circle one) Field Blank / Rinsate / Other: (EB/) Associated Samples: All (06) | TICIU DIATIK L | 7 P O 1 (| 110/11010 | | | | | ciated carrie | 7003 | 100) | | | | |----------------|--------------------------------|--------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|-----------------------|--------------------------------|-----------------------|-----------------------|-----------------------| | Analyte | Blank ID | | Sample Identification | | | | | | | | | | | | KCH067-019
(SDG:
16C074) | Action Limit | 5 | 6 | 7 | 8 | 10 | 13 | 14 | 16 | 18 | 24 | | В | 4.65 | | 6.80/ 9.93 | 4.94/ 10.0 - | 4.62/ 9.81 | 4.50/9 .05 - | 9.71/ 10:2 | 8.91/ 10.2 | 9.1 <u>5/10.1 -</u> | 7.59/9 .90 | 9.82/ 9.97 | 53.3/ 53.6 | | Ca | 135 | 67.5 | | 5.01 | 4.90 | 4.97 | | | | | | | | Fe | 9.85 | | | | | | | | | | | | | Pb | 0.225 | | | | | | | | | | | | | Mn | 0.318 | | | | | | | | | | | | | Ni | 0.161 | | <u> </u> | | | | | | | | | | | Na | 42.6 | | | | | | | | | | | | | Analyte | Blank ID | | Sample Identification | | | | | | | | |---------|--------------------------------|--------------|-----------------------|-----------------------|---|--|--|--|-------|--------------| | | KCH067-019
(SDG:
16C074) | Action Limit | 29 | 31 | | | | | | | | В | 4.65 | | 9.62/1 0.2 | 7.20/ 9.90 | _ | | | | | | | Ca | 135 | 67.5 | | | | | | |
ļ | | | Fe | 9.85 | | | | | | | | | | | Pb | 0.225 | | | | | | | | |
<u> </u> | | Mn | 0.318 | | | | | | | | | | | Ni | 0.161 | | | | | | | | | | | Na | 42.6 | | | | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". LDC #: 36282A4 ## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page:_ | <u>\</u> of <u>\</u> | |----------------|----------------------| | Reviewer: | SD | | 2nd Reviewer:_ | <u> </u> | METHOD: Trace metals (EPA SW 846 Method 6010/7000) | RI | ase see qualifications | below for all questions | s answered "N". Not | t applicable questions | are identified as "N/A". | |----|------------------------|-------------------------|---------------------|------------------------|--------------------------| | | | | | | | Y/N N/A Was a matrix spike analyzed for each matrix in this SDG? Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. \underline{Y} N N/A Were all duplicate sample relative percent differences (RPD) \leq 20% for samples? EVEL IV ONLY: Y) N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. | # | MS/MSD ID | Matrix | Analyte | MS
%Recovery | MSD
%Recovery | RPD (Limits) | Associated Samples | Qualifications | Postspike
(75-125) | |---|-----------|----------|---------|-----------------|------------------|--------------|--------------------|--------------------|-----------------------| | | 19/20 | S | Sb | 40 (72-124) | 38 (72-124) | | 3, 26 | J-/UJ/A (det) (08) | | | | | | Cr | 46 (83-119) | 50 (83-119) | | | J-/UJ/A (det) (08) | | | | | | Cu | 68 (84-119) | 67 (84-119) | | | J-/UJ/A (det) (08) | | | | | | Pb | -48 (84-118) | -56 (84-118) | | | J-/UJ/A (det) (08) | 104 | | | | | Na | 75 (79-125) | 71 (79-125) | | | J-/UJ/A (det) (08) | | | | | | | | | | | | | | | 21/22 | S | Sb | 61 (72-124) | 60 (72-124) | | 16, 31 | J-/UJ/A (det) (08) | | | | | | Ca | 85 (86-118) | | | | J-/UJ/A (det) (08) | | | Ш | | | Cr | 83 (83-119) | | | | J-/UJ/A (det) (08) | | | | | | Cu | 80 (84-119) | 78 (84-119) | | | J-/UJ/A (det) (08) | | | Ш | | | Mg | 56 (80-123) | 67 (80-123) | | | J-/UJ/A (det) (08) | | | Ш | | | K | 74 (85-119) | 84 (85-119) | | | J-/UJ/A (det) (08) | | | Щ | | <u> </u> | V | 36 (82-116) | 41 (82-116) | | | J-/UJ/A (det) (08) | <u></u> | | Ш | Ш | | | | | | | | | | | Ш | l | | | | | | Comments: | 19/20: AI | B Ca | Fe Mo | <u>ı, Mn, Zn > 4</u> | X | |-----------------|------------|--------|-----------|-------------------------|----| | JOH 1111 CH 163 | 10/20.711, | D, Oa, | I C, IVIO | <u>, 19111, </u> | /\ | 21/22: Ba, Fe, Mn, LDC #: 36282C4a # VALIDATION FINDINGS WORKSHEET Sample Result Verification | Page: <u>\</u> | of <u></u> | |----------------|------------| | Reviewer: = | 72 | | 2nd Reviewer_ | 9 | METHOD: Metals (EPA SW 846 Method 6010/6020/7000) | # | Sample ID | Analyte | Result (units) | RL (units) | Finding | Qualifications | |--------|--|---------------|----------------|------------|----------------|----------------| | | 1 | В | | | > Linear range | J/A (20) | | | ······································ | | | | | 077 (20) | | | 2 | B, Ca, Fe, Na | | | > Linear range | J/A (20) | | \ | | | | | | | | | 25 | Fe | | | > Linear range | J/A (20) | | | 3 | В | | | > Linear range | J/A (20) | | | | | | | | | | | 9 | В | | | > Linear range | J/A (20) | | | 10 | Ca, Fe, Na | | | > Linear range | J/A (20) | | | | 04,10,114 | | | Emilian rango | | | | 11 | B, Zn | | | > Linear range | J/A (20) | | | 16 | В | | | > Linear range | J/A (20) | - | | | | | | | | _ | | | | | | | | \top | | | _ | | | | | Comments: |
 |
 |
 | |-----------|------|------|------| | | | | | | | | | | ### VALIDATION FINDINGS WORKSHEET Overall Assessment of Data | Page:
_ | $\sqrt{\text{of } 3}$ | |---------------|-----------------------| | Reviewer: | 20 | | 2nd Reviewer: | <u> </u> | **METHOD:** Trace Metals (EPA CLP SOW ILM02.1) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. <u>Y)N N/A</u> Was the overall quality and usability of the data acceptable? | # | Date | Sample ID | Finding | Associated Samples | Qualifications | |---|------|-----------|---|--------------------|----------------| | | | 1 | B (exceeds calibration range) | 1 | R/A (22) | | | | 2 | B, Ca, Fe, Na (exceeds calibration range) | 2 | R/A (22) | | | | 25 | Fe (exceeds calibration range) | 25 | R/A (22) | | | | 3 | B (exceeds calibration range) | 3 | R/A (22) | | | | 9 | B (exceeds calibration range) | 9 | R/A (22) | | | | 10 | Ca, Fe, Na (exceeds calibration range) | 10 | R/A (22) | | | | 11 | B, Zn (exceeds calibration range) | 11 | R/A (22) | | | | 16 | B (exceeds calibration range) | 16 | R/A (22) | | | | | | | | LDC #: 36282C4a ### VALIDATION FINDINGS WORKSHEET Overall Assessment of Data | | Page: _ | <u> 2</u> of <u>3</u> | |-----|-----------|-----------------------| | | Reviewer: | 3D | | 2nd | Reviewer: | <u> </u> | **METHOD:** Trace Metals (EPA CLP SOW ILM02.1) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. Y/N N/A Was the overall quality and usability of the data acceptable? All except ... = 6020 only to not include Hy | | | | | a | | |---|------|-----------|---|--------------------|----------------| | # | Date | Sample ID | Finding | Associated Samples | Qualifications | | | | 23 | All Except B (Dilution not neccesary) | 23 | R/A (22) | | | | 24 | All Except Fe (Dilution not necessary) | 24 | R/A (22) | | | | 25 | All Except B, Ca, Na, (Reanalysis not necessary for other analytes except Fe exceeds calibration range) | 25 | R/A (22) | | | | 26 | All Except B (Dilution not necesary) | 26 | R/A (22) | | | | 27 | All Except B (Designated as more technically sound by lab) | 27 | R/A (22) | | | | 28 | All Except B (Reanalysis not necessary) | 28 | R/A (22) | | | | 29 | All Except Ca, Fe, Na (Reanalysis not | 29 | R/A (22) | | | | 20 | necessary) | 20 | D/A (22) | | | | 30 | All Except B (Dilution not necessary) | 30 | R/A (22) | LDC #: 36282C4a ### VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u> | Pa | age: _ | <u>3</u> of | 3 | |----------|--------|-------------|-------------| | Revie | wer: _ | S | <u>></u> | | nd Revie | wer: _ | <u> </u> | | METHOD: Trace Metals (EPA CLP SOW ILM02.1) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. (\underline{Y}) N N/A Was the overall quality and usability of the data acceptable? | # | Date | Sample ID | Finding | Associated Samples | Qualifications | |---|------|-----------|---|--------------------|----------------| | | | 31 | All Except B (Reanalysis not necessary) | 31 | R/A (22) | · | _ | Comments:_ |
 |
 | | | | |------------|------|------|------|--|--| | | | |
 | | | | | | | | | | LDC #: 36282A4a #### **VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification** | Page:_ | <u>\</u> _of_ | <u> </u> | |---------------|---------------|----------| | Reviewer: | 35 | > | | 2nd Reviewer: | K | | **METHOD:** Trace Metals (See cover) An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula: $%R = Found \times 100$ True Where, Found = concentration (in ug/L) of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source | | | | | | Recalculated | Reported | | |------------------|---------------------------------|---------|--------------|-------------|-------------------|----------|---------------------| | Standard ID | Type of Analysis | Element | Found (ug/L) | True (ug/L) | %R | %R | Acceptable
(Y/N) | | | ICP (Initial calibration) | | | | | | | | IW
12:43 | ICP/MS (Initial calibration) | Сo | 296. Sugl | 300 vg/L | 99%2 | 99%R | 3 | | JCV 15:03 | CVAA (Initial calibration) | Ha | 2.05va/c | 300 yol | 103%R | 103%. | * | | | ICP (Continuing calibration) | | J | 3 | | | | | (LV (S)
16:38 | ICP/MS (Continuing calibration) | Cu | 230.5 ugl | 250 ugic | 92%2 | 92%R | 57 | | CCV
(1:254 | CVAA (Contining calibration) | Ha | 2.03 ugl | | 102% e | 102%P | 4 | | | GFAA (Initial calibration) |) |) | <u> </u> | | | | | | GFAA (Continuing calibation) | | | | | | | | Comments: | |
 |
 | | | | | |-----------|------|------|------|---|---|------|--| | | | | | | - | | | | |
 |
 | | , | | | | | |
 |
 |
 |
 | |
 | | LDC #: 36282AUG #### **VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet** | Page:_ | <u>\</u> of _\ | |---------------|----------------| | Reviewer: | Q.C. | | 2nd Reviewer: | \sim | **METHOD:** Trace Metals (EPA SW 846 Method 6010/6020/7000) Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = Found_x 100$ True Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = Concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration An ICP serial dilution percent difference (%D) was recalculated using the following formula: $%D = |I-SDR| \times 100$ Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5) | Sample ID | Type of Analysis | Element | Found / S / I
(units) | True / D / SDR (units) | Recalculated %R / RPD / %D | Reported
%R / RPD / %D | Acceptable
(Y/N) | |-----------------|---------------------------|---------|--------------------------|------------------------|----------------------------|---------------------------|---------------------| | ILS AB
13:05 | ICP interference check | Cx | 20,080/1 | 20 vg/L | 100% | 100% | C | | LCS
11-14 | Laboratory control sample | Ha | 0.425 mg/Kg | 0.414 malka | 103 %R | 102%R | J* | | MS
17:05 | Matrix spike | S | (SSR-SR)
18-1 malka | 199 malka | 91%R | 91%R | Z | | MSO
17:09 | Duplicate | Ag | 18.92mg/kg | 18.73 mg/kg | 1%280 | 1% RPD | | | 3ER
17:23 | ICP serial dilution | K | 6095 ugl | 5744 vgic | 6%0 | 6%0 | - | | Comments: | Rounding | | | | | |-----------|----------|------|--|---------|--| | | |
 | | · · · · | | | | | | | | | LDC #: 36282A4g #### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | <u>10</u> | |---------------|-----------| | Reviewer:_ | OD | | 2nd reviewer: | A. | | METH | IOD: Trace Metals (EPA | A SW 846 Method 6010/6020/7000) | | | | | | | | |--|--|---------------------------------|---|--|---------------------|--|--|--|--| | Y N
Y N
Detected
equation Concern | V = Final volume (ml) FU 100ml
. Vol. = Initial volume (ml) or weight (G) エッレニスカス | | | | | | | | | | # | Sample ID | Analyte | Reported
Conceptration
(Mવેપ્લિ) | Calculated
Concentration
(Wg \\ | Acceptable
(Y/N) | | | | | | | Ц | 14 | &900
8900 | 8900 | 4 | | | | | | | 16 | ν | 36.8 | 36.8 | | | | | | | | 27 | В | 33.5 | 23.5 | 4 | | | | | | | 331 | В | 7.20 | 7.20 | 7 | · | Note:_ | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 12, 2016 Parameters: Hexavalent Chromium Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | KCH067-009 | 16C070-09 | Soil |
03/08/16 | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | | KCH067-003DUP | 16C070-03DUP | Soil | 03/08/16 | | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | KCH067-016DUP | 16C070-16DUP | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Hexavalent Chromium by Environmental Protection Agency (EPA) SW 846 Method 7199 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met. #### II. Initial Calibration All criteria for the initial calibration were met. #### III. Continuing Calibration Continuing calibration frequency and analysis criteria were met. #### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. #### VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VII. Duplicate Sample Analysis Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XI. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Hexavalent Chromium - Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Hexavalent Chromium - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG METHOD SW7199 HEXAVALENT CHROMIUM Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Matrix : SOIL InstrumentID : 59 | CLIENT
SAMPLE ID | EMAX
SAMPLE ID | RESULTS
(ug/kg) | DIL'N.
FACTOR | MOIST | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | ANALYSIS
DATETIME | PREPARATION
DATETIME | DATA
FILE ID | CAL
REF | PREP
BATCH | COLLECTION
DATETIME | RECEIVED
DATETIME | |---------------------|-------------------|--------------------|------------------|-------|----------------|---------------|----------------|----------------------|-------------------------|-----------------|------------|---------------|------------------------|----------------------| | MBLK1S | HCC002SB | ND | 1 | NA | 100 | 13 | 40 | 03/18/1612:06 | 03/16/1614:01 | IC19003 | IC19001 | HCC002S | NA | NA | | LCS1S | CSC002SL | 981 | 1 | NA | 100 | 13 | 40 | 03/18/1612:27 | 03/16/1614:01 | IC19005 | IC19001 | HCC002S | NA | NA | | KCH067-003 | C070-03 | 1750 | 1 | 6.9 | 107 | 14 | 43 | 03/18/1613:08 | 03/16/1614:01 | IC19009 | IC19001 | HCC002S | 03/08/1609:40 | 03/10/16 | | KCH067-003DUP | C070-03D | 1770 | 1 | 6.9 | 107 | 14 | 43 | 03/18/1613:29 | 03/16/1614:01 | IC19011 | IC19001 | HCC002S | 03/08/1609:40 | 03/10/16 | | KCH067-003MS | C070-03M | 3840 | 1 | 6.9 | 107 | 14 | 43 | 03/18/1614:11 | 03/16/1614:01 | IC19015 | IC19013 | HCC002S | 03/08/1609:40 | 03/10/16 | | KCH067-003MSD | C070-03S | 3730 | 1 | 6.9 | 107 | 14 | 43 | 03/18/1614:32 | 03/16/1614:01 | IC19017 | IC19013 | HCC002S | 03/08/1609:40 | 03/10/16 | | KCH067-001 | C070-01 | 1780 | 1 | 4.3 | 104 | 13.6 | 41.8 | 03/18/1615:34 | 03/16/1614:01 | IC19023 | IC19013 | HCC002S | 03/08/1609:15 | 03/10/16 | | KCH067-002 | C070-02 | 275 | 1 | 9.0 | 110 | 14.3 | 44 | 03/18/1616:25 | 03/16/1614:01 | IC19027 | IC19025 | HCC002S | 03/08/1609:30 | 03/10/16 | | KCH067-004 | C070-04 | 424 | 1 | 4.9 | .105 | 13.7 | 42.1 | 03/18/1616:46 | 03/16/1614:01 | IC19029 | IC19025 | HCC002S | 03/08/1609:55 | 03/10/16 | | KCH067-005 | C070-05 | ND | 1 | 2.7 | 103 | 13.4 | 41.1 | 03/18/1617:07 | 03/16/1614:01 | IC19031 | IC19025 | HCC002S | 03/08/1613:25 | 03/10/16 | | KCH067-006 | C070-06 | ND | 1 | 2.2 | 102 | 13.3 | 40.9 | 03/18/1617:27 | 03/16/1614:01 | IC19033 | IC19025 | HCC002S | 03/08/1613:40 | 03/10/16 | | KCH067-007 | C070-07 | ND | 1 | 1.9 | 102 | 13.3 | 40.8 | 03/18/1617:48 | 3 03/16/1614:01 | IC19035 | IC19025 | HCC002S | 03/08/1613:45 | 03/10/16 | | KCH067-008 | C070-08 | ND | 1 | 1.5 | 102 | 13.2 | 40.6 | 03/18/1618:30 | 03/16/1614:01 | IC19039 | IC19037 | HCC002S | 03/08/1613:55 | 03/10/16 | | KCH067-009 | C070-09 | ND | 1 | 2.9 | 103 | 13.4 | 41.2 | 03/18/1618:51 | 03/16/1614:01 | IC19041 | IC19037 | HCC002S | 03/08/1614:00 | 03/10/16 | | KCH067-010 | C070-10 | ND | 1 | 3.8 | 104 | 13.5 | 41.6 | 03/18/1619:11 | . 03/16/1614:01 | IC19043 | IC19037 | HCC002S | 03/08/1614:05 | 03/10/16 | | KCH067-011 | C070-11 | ND | 1 | 3.1 | 103 | 13.4 | 41.3 | 03/18/1619:32 | 03/16/1614:01 | IC19045 | IC19037 | HCC002S | 03/08/1614:10 | 03/10/16 | | KCH067-012 |
C070-12 | ND | 1 | 3.5 | 104 | 13.5 | 41.5 | 03/18/1619:53 | 3 03/16/1614:01 | IC19047 | IC19037 | HCC002S | 03/08/1614:20 | 03/10/16 | | KCH067-013 | C070-13 | ND | 1 | 5.0 | 105 | 13.7 | 42.1 | 03/18/1620:35 | 03/16/1614:01 | IC19051 | IC19049 | HCC002S | 03/08/1614:25 | 03/10/16 | | KCH067-014 | C070-14 | ND | 1 | 3.9 | 104 | 13.5 | 41.6 | 03/18/1620:55 | 03/16/1614:01 | IC19053 | IC19049 | HCC002S | 03/08/1614:30 | 03/10/16 | | KCH067-015 | C070-15 | ND | 1 | 3.6 | 104 | 13.5 | 41.5 | 03/18/1621:16 | 03/16/1614:01 | IC19055 | IC19049 | HCC002S | 03/08/1614:50 | 03/10/16 | | KCH067-017 | C070-17 | 57.53 | 1 | 0.0 | 100 | 13 | 40 | 03/18/1621:37 | / 03/16/1614:01 | . IC19057 | IC19049 | HCC002S | 03/08/1615:20 | 03/10/16 | | KCH067-018 | C070-18 | ND | 1 | 2.1 | 102 | 13.3 | 40.9 | 03/18/1621:58 | 3 03/16/1614:01 | IC19059 | IC19049 | HCC002S | 03/08/1615:30 | 03/10/16 | | KCH067-016 | C070-16 | ND | 1 | 2.8 | 103 | 13.4 | 41.2 | 03/18/1622:40 | 03/16/1614:01 | IC19063 | IC19061 | HCC002S | 03/08/1615:00 | | | KCH067-016DUP | C070-16D | ND | 1 | 2.8 | 103 | 13.4 | 41.2 | | 03/16/1614:01 | | IC19061 | HCC002S | 03/08/1615:00 | | | KCH067-016MS | C070-16M | 1840 | 1 | 2.8 | 103 | 13.4 | 41.2 | | 03/16/1614:01 | | IC19061 | HCC002S | 03/08/1615:00 | | | KCH067-016MSD | C070-16S | 1680 | 1 | 2.8 | 103 | 13.4 | 41.2 | | 2 03/16/1614:01 | | IC19061 | HCC002S | 03/08/1615:00 | _ | | KCH067-002R | C070-02R | 127 | 1 | 9.0 | 110 | 14.3 | 44 | 03/22/1615:44 | 03/16/1614:01 | IC22003 | IC22001 | HCC002S | 03/08/1609:30 | 03/10/16 | | SDG | #: 36282A6 VALIDATI
#: 16C070
ratory: EMAX Laboratories Inc. | | PLETENES:
andard/Full | S WORKSHEE | 1 | Date: 5 10 10 10 10 10 10 10 | |-------|--|---|--------------------------|---|-------------------|--| | METH | HOD: (Analyte) Hexavalent Chromium | (EPA SW84 | 6 Method 719 | 9) | | | | | amples listed below were reviewed for attitudings worksheets. | each of the f | ollowing valida | ation areas. Valida | tion findings are | noted in attache | | | Validation Area | | | Com | ments | | | 1. | Sample receipt/Technical holding times | A | 3/8/10 | | | | | - 11 | Initial calibration | A | | | | | | III. | Calibration verification | IA | | | | | | IV | Laboratory Blanks | A | | | | | | V | Field blanks | <i>UD</i> | EB=KC | 2)910-5004 | 586:1600 | u) | | VI. | Matrix Spike/Matrix Spike Duplicates | | MSID= | (A,ZO) (ZZ | , 73) | | | VII. | Duplicate sample analysis | A | DOB | - | | | | VIII. | Laboratory control samples | A | LCS | | | | | IX. | Field duplicates | N | | | | | | X. | Sample result verification | A | Not reviewed for | r Standard validation. | | | | xı_ | Overall assessment of data | | | | A | | | Note: | N = Not provided/applicable R = I | = No compound
Rinsate
: Field blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment bl | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-001 | | | 16C070-01 | Soil | 03/08/16 | | 2 | KCH067-002 | | | 16C070-02 | Soil | 03/08/16 | | | KCH067-003 | | | 16C070-03 | Soil | 03/08/16 | | | KCH067-004** | | | 16C070-04** | Soil | 03/08/16 | | | KCH067-005 | | | 16C070-05 | Soil | 03/08/16 | | | KCH067-006 | | | 16C070-06 | Soil | 03/08/16 | | 7 | KCH067-007 | | | 16C070-07 | Soil | 03/08/16 | | | KCH067-008 | | <u>.</u> | 16C070-08 | Soil | 03/08/16 | | I | Client ID | LabiD | Matrix | Date | |----------|--------------|-------------|--------|----------| | 1_ | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | 2 | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | 3 | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | 4_ | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | 5 | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | 6 | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | 7 | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | 8 | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | 9 | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | 10 | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | 11 | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | 12 | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | 13 | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | 14 | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | 15 | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | 16 | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | 17 | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | SDG
abo | #:36282A6VALIDATION CO #:16C070 pratory: EMAX Laboratories Inc. HOD: (Analyte) Hexavalent Chromium (EPA S) | | Date: SR Page: Zof Z Reviewer: SR | | |-------------|---|--------------|-----------------------------------|----------| | | Client ID | Lab ID | Matrix | Date | | 18 | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | 19 | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | 20 | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | | 21 | KCH067-003DUP | 16C070-03DUP | Soil | 03/08/16 | | 22 | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | 23 | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | 24 | KCH067-016DUP | 16C070-16DUP | Soil | 03/08/16 | | 25 | | | | | | 26 | | | | | | 27 | Λ | | | | | 27 | | | | | Notes: #### **VALIDATION FINDINGS CHECKLIST** Page: 1 of 2 Reviewer: 10 2nd Reviewer: 1 Method:Inorganics (EPA Method Soc Cover) | All technical holding times were met. Cooler temperature criteria was met. II. Calibration Were all instruments calibrated daily, each set-up time? Ware the proper number of standards used? Were all initial calibration correlation coefficients ≥ 0.995? Were all initial and continuing calibration verification %Rs within the 90-110% QC Immits? Were sitrant checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 CC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of < CRDL(≤ 2X CRDL for soil) was used for samples that were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample | Method:Inorganics (EPA Method Sou Cover) | | | | | |---|--|-----|----|----------|-------------------| | All technical holding times were
met. Cooler temperature criteria was met. II. Calibration Were all instruments calibrated daily, each set-up time? Ware the proper number of standards used? Were all initial calibration correlation coefficients ≥ 0.995? Were all initial and continuing calibration verification %Rs within the 90-110% QC Immits? Were sitrant checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 CC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of < CRDL(≤ 2X CRDL for soil) was used for samples that were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample values were < 5X the CRDL including when only one of the duplicate sample | Validation Area | Yes | No | NA | Findings/Comments | | All technician ricinitian training unines were linet. Cooler temperature criteria was met. ### Cooler temperature criteria was met. ################################### | I. Technical holding times | | , | | | | ### Calibration Were all instruments calibrated daily, each set-up time? Were the proper number of standards used? Were all initial calibration correlation coefficients ≥ 0.995? Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? Were itirant checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) #### Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks ##### Was there contamination in the method blanks? If yes, please see the Blanks ################################### | All technical holding times were met. | / | | | | | Were all instruments calibrated daily, each set-up time? Were the proper number of standards used? Were all initial calibration correlation coefficients > 0.995? Were all initial and continuing calibration verification %Rs within the 90-110% QC iminits? Were threat checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) Was a method blank associated with every sample in this SDG? Was a method blank associated with every sample in this SDG? Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike(IMS) and duplicate and Duplicates Were a matrix spike (IMS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Solf I Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) < 20% for waters and < 33% for soil samples? A control limit of < GRDL(2 xX CRD L for soil) was used for samples that were < 5X the CRDL. V. Laboratory control samples Nas an LCS analyzed for this SDG? Nas an LCS analyzed for this SDG? Nas an LCS analyzed per extraction batch? Nere the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? VI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Cooler temperature criteria was met. | | | <u> </u> | | | Were the proper number of standards used? Were all initial calibration correlation coefficients > 0.9957 Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? Were titrant checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soll / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) < 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL. V. Laboratory control samples Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-10% (85-115% for Method 300.0) QC limits? Wire performance evaluation (PE) samples performed? | II. Calibration | | | | | | Were all initial calibration correlation coefficients ≥ 0.995? Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? Were balance checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks varialidation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) < 20% for waters and < 35% for soil samples? A control limit of < CRDL(≤ 2X CRDL for soil) was used for samples that were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL, including when only one of the duplicate samples with the samples of this SDG? Was an LCS analyzed for this SDG? Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? W. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were all instruments calibrated daily, each set-up time? | _ | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? Were titrant checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD parcent recoveries (%R) and the relative percent differences (RPD) ≤ 20% for soil) was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL. W. Laboratory control samples Nas an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) Qc limits? VI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were the proper number of standards used? | / | | | | | Were titrant checks performed as required? (Level IV only) Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP)
analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD parcent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL. V. Laboratory control samples Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-113% for Method 300.0) QC limits? VI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were all initial calibration correlation coefficients ≥ 0.995? | / | | | | | Were balance checks performed as required? (Level IV only) III. Blanks Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil! / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 CC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) < 20% for waters and < 35% for soil samples? A control limit of < CRDL(< 2X CRDL for soil) was used for samples that were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL. V. Laboratory control samples Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? VI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | / | | | | | Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 CC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) < 20% for waters and ≤ 35% for soil samples? A control limit of 5 CRDL(5 2X CRDL for soil) was used for samples that were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL. V. Laboratory control samples Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? W. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were titrant checks performed as required? (Level IV only) | | | _ | | | Was a method blank associated with every sample in this SDG? Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL. V. Laboratory control samples Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? W. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were balance checks performed as required? (Level IV only) | | | _ | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) < 20% for waters and < 35% for soil samples? A control limit of < CRDL(s 2X CRDL for soil) was used for samples that were < 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL. V. Laboratory control samples Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? VI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | III. Blanks | | | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL. V. Laboratory control samples Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? VI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Was a method blank associated with every sample in this SDG? | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL. W. Laboratory control samples Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? W. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | / | | | | SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL ≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL. W. Laboratory control samples Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? W. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL. V. Laboratory control samples Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the
LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? VI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | / | | | | | waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were < 5X the CRDL. W. Laboratory control samples Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? WI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | \ | | | | | Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? W. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | \ | | | | | Was an LCS analyzed for this SDG? Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? W. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | V. Laboratory control samples | | | | | | Was an LCS analyzed per extraction batch? Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? WI. Regional Quality Assurance and Quality Control Were performance evaluation (PE) samples performed? | Was an LCS anaylzed for this SDG? | _ | | | | | Within the 80-120% (85-115% for Method 300.0) QC limits? VI. Regional Quality Assurance and Quality Control Nere performance evaluation (PE) samples performed? | Was an LCS analyzed per extraction batch? | / | | | | | Nere performance evaluation (PE) samples performed? | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | / | | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were the performance evaluation (PE) samples within the acceptance limits? | Were performance evaluation (PE) samples performed? | | | | | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | | | LDC #: 3628214 #### **VALIDATION FINDINGS CHECKLIST** Page: Zof Z Reviewer: 200 2nd Reviewer: 1 | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | VII. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | | | | | Were detection limits < RL? | / | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | / | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | 1 | | | | Target analytes were detected in the field duplicates. | | _ | | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | / | | | | | Target analytes were detected in the field blanks. | | / | | | LDC #: 36282 PC #### Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | Page:_ | 1 | of. | <u> </u> | |----------|-----|----------|--------------------------| | Reviewe | ::_ | <u> </u> | $\overline{\mathcal{Q}}$ | | 2nd Revi | ew | er: | M | | Method: Inorganics, Method See Coves | | |---|--| | The correlation coefficient (r) for the calibration of was recalculated.Calibration date: | | An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula: %R = <u>Found X 100</u> Where, Found = concentration of each analyte measured in the analysis of the ICV or CCV solution True True = concentration of each analyte in the ICV or CCV source | | | | **** | | Recalculated | Reported | Acceptable | |---------------------------------------|---------|---------------------|--------------|-----------|---------------------|---------------------|---------------| | Type of analysis | Analyte | Standard | Conc. (ug/l) | Area | r or r ² | r or r ² | (Y/N) | | Initial calibration | | s1 | 0 | 0 | | | | | | | s2 | 0.2 | 0.0000157 | 0.9998 | 0.9998 | _ | | | دام | s3 | 0.5 | 0.0000504 | | | 4 | | | C5 16 | s4 | 1 | 0.0001022 | | | \mathcal{I} | | | | s5 | 2 | 0.000194 | | | | | | | s6 | 5 | 0.0005014 | | | | | | | s7 | 7.5 | 0.0007527 | | | | | | | s8 | 10 | 0.0010231 | | | | | ICV 13:57
Calibration verification | CE | Found
3.72 Sugil | troe
40al | | 93°1,8 | 93%R | | | CCV Sign
Calibration verification | Cs | 1.900 vg | Zugle | | 95%R | 95%2 | 7 | | Calibration verification | | | | | | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 36282 A ### VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page:_ | <u>\</u> of _ \ | |---------------|-----------------| | Reviewer: | 30 | | 2nd Reviewer: | 7 | | | | 0 | () | | |---------------------|--------|-----|-------|--| | METHOD: Inorganics, | Method | Soe | Cover | | Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: $%R = \frac{Found}{True} \times 100$ Where, Found = concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = \underline{|S-D|} \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration | Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated %R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |--------------|---------------------------|---------|----------------------|---------------------|-----------------------|----------------------|---------------------| | LCS
12:27 | Laboratory control sample | C+10 | 981.3 ug/kg | 1000 ug/kg | 98%R | 98% | 7)- | | MS | Matrix spike sample | | (SSR-SR) | 2000 y Kg | 92%.E | 92% | | | DUP | Duplicate sample | 4 | OU | 20 | 0% & 80 | 0%,630 |) | | Comments: | | | |-----------|--|--| | | | | | | | | | | | | LDC #: 36282A ### **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification | Page:_ | <u>\</u> of \ | |---------------|---------------| | Reviewer: | SD | | 2nd reviewer. | M / | | Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A | | | | | | | | |--|--|--|--|--|--
--|--| | recalculated and verified using the following equation: | | | | | | | | | Concentration = $A - (-0.000035)$ Recalculation: $0.0000787 - (-0.000035) = 0.807$ | | | | | | | | | | | | | | | | | | Concentration = $A - (-0.000035)$ Recalculation: $0.0000787 - (-0.000035) = 0.80$ 0.0001018 $0.0000787 In. w= 12.507g$ $FV= (00m) % solids = 0.951 peop factor = 62.5 (12.507g) (0.951)$ | | | | | | | | | Reported Calculated Concentration Accepta # Sample ID Analyte (\(\omega \) \(\omega \(| | | | | | | | | 4 C+6 424 424 Y | Note: | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: Total Petroleum Hydrocarbons as Gasoline Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | KCH067-020 | 16C070-19 | Water | 03/08/16 | | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Total Petroleum Hydrocarbons (TPH) as Gasoline by Environmental Protection Agency (EPA) SW 846 Method 8015B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. ### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ## **III. Continuing Calibration** Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### V. Field Blanks Sample KCH067-020 was identified as a trip blank. No contaminants were found. Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. ### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Field Duplicates No field duplicates were identified in this SDG. ## X. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ## XI. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. ### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG ### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG ### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG Lab File ID: EC10023A Matrix : SOIL Ext Btch ID: GMC009S % Moisture : 9.0 Calib. Ref.: EC10014A Instrument ID : GCT039 | PARAMETERS
GASOL INE | RESULTS
(mg/kg)

ND | LOQ
(mg/kg)
1.1 | DL
(mg/kg)

0.27 | LOD
(mg/kg)

0.53 | |---|------------------------------|-----------------------|---------------------------|----------------------------| | SURROGATE PARAMETERS 4-BROMOFLUOROBENZENE | RESULTS

1.76 | SPK_AMT

2.132 | % RECOVERY | QC LIMIT | Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:06 8/05716 Lab Samp ID: C070-04 Dilution Factor: 0.85 Lab File ID: EC10024A Matrix : SOIL Ext Btch ID: GMC009S % Moisture : 4.9 Calib. Ref.: EC10014A Instrument ID : GCT039 Latib. Ref.: EC10014A Instrument ID : GC1059 RESULTS LOQ DL LOD PARAMETERS (mg/kg) (mg/kg) (mg/kg) (mg/kg) GASOLINE ND 0.89 0.22 0.45 SURROGATE PARAMETERS RESULTS SPK_AMT % RECOVERY QC LIMIT 4-BROMOFLUOROBENZENE 1.48 1.788 82.9 67-134
Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:06 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Date Collected: 03/08/16 Date Received: 03/10/16 Date Extracted: 03/11/16 02:39 Sample ID: KCH067-006 Date Analyzed: 03/11/16 02:39 Dilution Factor: 1 Lab Samp ID: C070-06 Matrix : SOIL % Moisture : 2.2 Lab File ID: EC10026A Ext Btch ID: GMC009S Instrument ID : GCT039 Calib. Ref.: EC10025A ______ LOQ RESULTS DL LOD PARAMETERS (mg/kg) (mg/kg) (mg/kg) (mg/kg) -----_____ 0.26 ND 1.0 0.51 GASOLINE SURROGATE PARAMETERS RESULTS SPK_AMT % RECOVERY QC LIMIT 1.44 2.045 70.6 67-134 ------ Parameter H-C Range Gasoline C6-C10 4-BROMOFLUOROBENZENE METHANOL EXTRACTION: 03/10/16 15:06 Ext Btch ID: GMC009S % Moisture : 1.5 Calib. Ref.: EC10025A Instrument ID : GCT039 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | GASOLINE | ND | 1.1 | 0.26 | 0.53 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 4-BROMOFLUOROBENZENE | 1.55 | 2.112 | 73.4 | 67-134 | | | | | | | Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:06 Se051716 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/11/16 03:56 Sample ID: KCH067-010 Date Analyzed: 03/11/16 03:56 RESULTS LOQ DL LOD (mg/kg) **PARAMETERS** (mg/kg) (mg/kg) (mg/kg) -----0.89 0.22 0.45 GASOLINE ND RESULTS SURROGATE PARAMETERS SPK_AMT % RECOVERY QC LIMIT 1.788 75.0 67-134 -----4-BROMOFLUOROBENZENE 1.34 Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:08 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/11/16 04:35 Date Analyzed: 03/11/16 04:35 Sample ID: KCH067-011 Dilution Factor: 0.92 Lab Samp ID: C070-11 Matrix : SOIL % Moisture : 3.1 Lab File ID: EC10029A Ext Btch ID: GMC009S Instrument ID : GCT039 Calib. Ref.: EC10025A | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | GASOLINE | ND | 0.95 | 0.24 | 0.47 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | 4-BROMOFLUOROBENZENE 1.36 1.899 71.5 67-134 _______ H-C Range Parameter Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:08 Sa51116 Date Collected: 03/08/16 Date Received: 03/08/16 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Date Received: 03/10/16 Date Extracted: 03/11/16 05:14 Sample ID: KCH067-013 Date Analyzed: 03/11/16 05:14 Dilution Factor: 0.87 Lab Samp ID: C070-13 Matrix : SOIL % Moisture : 5.0 Lab File ID: EC10030A Ext Btch ID: GMC009S Instrument ID : GCT039 Calib. Ref.: EC10025A ________________ RESULTS LOQ DL LOD (mg/kg) (mg/kg) PARAMETERS (mg/kg) (mg/kg) GASOLINE 0.92 0.23 ND 0.46 SURROGATE PARAMETERS RESULTS SPK_AMT % RECOVERY QC LIMIT 1.832 70.6 67-134 4-BROMOFLUOROBENZENE 1.29 Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:08 SLOTITIL ___________ Lab File ID: EC10031A Matrix : SOIL Ext Btch ID: GMC009S % Moisture : 3.9 Calib. Ref.: EC10025A Instrument ID : GCT039 | PARAMETERS
 | RESULTS
(mg/kg)

ND | LOQ
(mg/kg)

0.88 | DL
(mg/kg)

0.22 | LOD
(mg/kg)

0.44 | |---|------------------------------|----------------------------|---------------------------|----------------------------| | SURROGATE PARAMETERS 4-BROMOFLUOROBENZENE | RESULTS

1.22 | SPK_AMT

1.769 | % RECOVERY | QC LIMIT | Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:08 So51716 Lab File ID: EC10033A Matrix : SOIL Ext Btch ID: GMC009S % Moisture : 2.8 Calib. Ref.: EC10025A Instrument ID : GCT039 | PARAMETERS
GASOLINE | RESULTS
(mg/kg)
 | LOQ
(mg/kg)

0.91 | DL
(mg/kg)

0.23 | LOD
(mg/kg)

0.45 | |---|------------------------|----------------------------|---------------------------|----------------------------| | SURROGATE PARAMETERS 4-BROMOFLUOROBENZENE | RESULTS

1.39 | SPK_AMT
1.811 | % RECOVERY
77.0 | QC LIMIT
67-134 | Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:08 Stations _______ Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/11/16 06:31 Sample ID: KCH067-018 Date Analyzed: 03/11/16 06:31 Lab Samp ID: C070-18 Dilution Factor: 0.94 Lab Samp ID: C070-18 Dilution Factor: 0.94 Lab File ID: EC10032A Matrix : SOIL Ext Btch ID: GMC009S % Moisture : 2.1 Calib. Ref.: EC10025A Instrument ID : GCT039 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | GASOLINE | ND | 0.96 | 0.24 | 0.48 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 4-BROMOFLUOROBENZENE | 1.43 | 1.920 | 74.4 | 67-134 | Parameter H-C Range Gasoline C6-C10 METHANOL EXTRACTION: 03/10/16 15:08 805171b ______ Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/12/16 Date Received: 03/10/16 Date Extracted: 03/12/16 01:36 Sample ID: KCH067-020 Date Analyzed: 03/12/16 01:36 Lab Samp ID: C070-19 Dilution Factor: 1 Matrix : WATER % Moisture : NA Lab File ID: EC11022A Ext Btch ID: VG39C07 Instrument ID : GCT039 Calib. Ref.: EC11017A _________ RESULTS LOQ DL LOD (mg/L) (mg/L) (mg/L) (mg/L) PARAMETERS ND 0.10 0.010 GASOLINE 0.020 RESULTS SPK_AMT % RECOVERY QC LIMIT SURROGATE PARAMETERS 0.0347 0.04000 86.6 69-133 4-BROMOFLUOROBENZENE Parameter H-C Range C6-C10 Gasol ine # **VALIDATION COMPLETENESS WORKSHEET** Laboratory: EMAX Laboratories Inc. LDC #: 36282A7 SDG #: 16C070 Standard/Full Reviewer: 2nd Reviewer: METHOD: GC TPH as Gasoline (EPA SW 846 Method 8015B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|---------------------------------------| | 1. | Sample receipt/Technical holding times | A /A | | | II. | Initial calibration/ICV | ALA | % PSD/101 = 20 | | III. | Continuing calibration | Δ | CU = 20 | | IV. | Laboratory Blanks | A | 504 # | | V. | Field blanks | ND | EB = KCHO67-019 (160074) TB=11 | | VI. | Surrogate spikes | Δ | | | VII. | Matrix spike/Matrix spike duplicates | Δ | | | VIII. | Laboratory control samples | Δ | KS 10 | | IX. | Field duplicates | N | | | X. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for Standard validation. | | XI. | Target compound identification | | Not reviewed for Standard validation. | | XII | Overall assessment of data | <u> </u> | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | ** Inc | icates sample underwent Full validation | | | | |---------|---|--------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | -
1 | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | 2 | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | 3 | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | 4 | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | 5 | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | 6 | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | -
7 | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | 8 | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | 9 | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | _
10 | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | 11 | ксн067-020 Т В | 16C070-19 | Water | 03/08/16 | | 12 | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | 13 | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | 14_ | | | | | | 15 | | | | | | 16 | MBLKIW | | | | | 17 | MBLKIS | | | | LDC#: 36282A7 # VALIDATION FINDINGS CHECKLIST Page: __of __ Reviewer: _____2 2nd Reviewer: ______ Method: GC _____HPLC | Validation Area | Yes | No | NA | Findings/Comments | |--|-----------------------------|----------------------|------------|-------------------| | ii. Tedhnued boting unes | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | - | | | | If a Initial callbration | | 1.00 | 165 | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990? | | _ | - | | | Were the RT windows properly established? | and to high property of the | متاجعة فلأفضاء معران | | | | Ills linkel cellbration verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | 10.4.11.11 | | | IIII. Confunuing Gellloretion | | = | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | Were all the retention times within the acceptance windows? | | Steam Theory | | | | JW Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | · | | Was
there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | (V. II tspatistenks | | - | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VI. Surriogiate golkes | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | | | | | | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any %R was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | | Will Tylamic spilke/watthix spilke displicat€s | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | - | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | LDC#: 36282A7 ## VALIDATION FINDINGS CHECKLIST | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | Witt Leboratory control sargales | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | / | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | IX. Figis significations | | | | 1. 50-93 | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | | | | X. Gernpounci quertilitation | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XII. Tangat compound dentitiento | | | | | | Were the retention times of reported detects within the RT windows? | | | | | | XIII. (Overall essessment of deta | | | | | | Overall assessment of data was found to be acceptable. | | | | | | | 36282A | 7 | |--------|--------|---| | LDC #: | - 2 | | | LUC #. | | | # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | of | |---------------|----| | Reviewer:_ | FT | | 2nd Reviewer: | 17 | | | | | METHOD: GC_ |
HPLC | | |-------------|------------|--| The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----------|-------------|---------------------|---------------|-----------------|----------------|--------------|--------------|----------|--------------| | #_ | Standard ID | Calibration
Date | Compound | CF
(SDご std) | CF
(らつじstd) | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | ICAL | 2/18/16 | GRO (C, -CID) | 17177 | 17/77 | 16318.3 | 16318.3 | 4.6 | 4.6 | | | | · | <u> </u> | | | | | | | | | | | 2 | , | | | | | | | | 3 | | | | | - | 4 | | | | | | , | N _ | | | | | | | | | | | Comments: Refer to Initial Calibration findings | worksheet for list of qualifications and asso | ociated samples when reported results | do not agree within 10.0% of the | |---|---|---------------------------------------|----------------------------------| | recalculated results. | | | | | - | | | | | | | | | | LDC #: | 3 | 6 | 2827 | T | |--------|---|---|------|---| | | | | | | # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | <u></u> | _/ | |---------------|---------|----| | Reviewer:_ | FT | | | 2nd Reviewer: | 0 | | | METHOD: | GC |
HPLC | | |---------|----|-----------------|--| The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF -CF)/ave.CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | Standard | Calibration | | | Reported | Recalculated | Reported | Recalculated | |---|------------|-------------|-----------|--------------------------------|------------------|------------------|----------|--------------| | # | D D | Date | Compound | Average CF(ICAL)/ CCV
Conc. | CF/ Conc.
CCV | CF/ Conc.
CCV | %D | %D | | 1 | ce V 18:53 | 3/10/16 | GRO G-CID | ۵٠۵٥ | 478.39 | 478.39 | 4 | 4 | 2 | ccv 0200 | 3/11/16 | L | 5vo. 0 | 431.66 | 431.66 | 14 | 14 | 3 | _ | | | | 4 | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 36 282 A7 METHOD: __GC __ HPLC # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | of | |----| | FT | | 7 | | | The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | 4-BFB | | 40 | 30.79 | 17 | 77 | 0 | Sample ID: | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | • | | Reported | Recalculated | Surrogate Compound | |----|----------------------------|---|---------------------|---|-----------------------------------|---|-------------------------|----|-------------------------------| | Α | Chlorobenzene (CBZ) | G | Octacosane | М | Benzo(e)Pyrene | s | 1-Chloro-3-Nitrobenzene | Υ | Tetrachloro-m- xylene | | В | 4-Bromofluorobenzene (BFB) | Н | Ortho-Terphenyl | N | Terphenyl-D14 | Т | 3,4-Dinitrotoluene | Z | 2-Bromonaphthalene | | C. | a,a,a-Trifluorotoluene | l | Fluorobenzene (FBZ) | 0 | Decachlorobiphenyl (DCB) | U | Tripentyltin | AA | Chloro-octadecane | | D | Bromochlorobenene | J | n-Triacontane | P | 1-methylnaphthalene | V | Tri-n-propyltin | BB | 2,4-Dichlorophenylacetic acid | | E | 1,4-Dichlorobutane | к | Hexacosane | Q | Dichlorophenyl Acetic Acid (DCAA) | w | Tributyl Phosphate | СС | 2,5-Dibromotoluene | | F | 1,4-Difluorobenzene (DFB) | L | Bromobenzene | R | 4-Nitrophenol | X | Triphenyl Phosphate | | | LDC #: 36 28 24] # VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page: | <u>_</u> of | • | |---------------|-------------|---| | Reviewer: | FT | | | 2nd Reviewer: | 4 | | | | | | | METHOD: | ✓ GC | HPLC | |---------|------|------| The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration MS = Matrix spike RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100 SC = Sample concentration SA = Spike added MSD = Matrix spike duplicate MS/MSD samples: $\sqrt{\gamma} + \sqrt{3}$ | | · | Sp | ike | Sample | Spike S | Sample | Matrix | spike | Matrix Spik | e Duplicate | MS/N | /ISD | |----------------------|-----------|------|-------|-----------------|-------------|----------|-----------|----------|-------------|-------------|----------|---------| | Compo | und | (mg | ded) | Conc.
(me Ke | Concer (wy | ntration | Percent I | Recovery | Percent I | Recovery | RF | ָםי | | | | ms | MSD | | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | 22.9 | 23. | 44 | 19.4 | 20,8 | 85 | 85 | 90 | 90 | 6 | 6 | | Diesel | (8015) | | | | | | | | | | | | | Benzene | (8021B) | | | | | | | | | | | | | Methane | (RSK-175) | | | | | | | · | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | | | нмх | (8330) | | | | | | | | | | | | | 2,4,6-Trinitrotoluen | e (8330) | | | · | | | | | | | | | | Phorate | (8141A) | | | | | | | | , | | | | | Malathion | (8141A) | - | | | - | | | | | | | | | Formaldehyde | (8315A) | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. % RPD Passed on 2/2 Pass LDC#:_36282A] ## **VALIDATION FINDINGS WORKSHEET** # Laboratory Control Sample/Laboratory Control Sample Duplicates Results
Verification | Page: | of | |---------------|----| | Reviewer:_ | FT | | 2nd Reviewer: | 9 | | | | | METHOD: | ∕GC | HPLC | |---------------|-----|--------| | ##E () OD. | | 111 60 | The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate LCS/LCSD samples: GMC009SL/SC | | | S | oike | | Sample | LC | cs | LC | SD | LCS/I | CSD | |---------------------|-----------|------|--------------|----------------|----------|-----------|----------|------------------|---------|----------|---------| | Compo | ound | (Ma | lded
(Kg) | Concei
(MX | ntration | Percent I | Recovery | Percent Recovery | | RPD | | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | 25.0 | 15.0 | 219 | 25,0 | 87 | 87 | 100 | 001 | 13 | 13 | | Diesel | (8015) | | | | | | | | | | *** | | Benzene | (8021B) | | | | | | | | | | | | Methane | (RSK-175) | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | | нмх | (8330) | | | | | | | | | | | | 2,4,6-Trinitrotolue | ne (8330) | | | | - | | | | | | | | Phorate | (8141A) | | | | | | | | | | | | Malathion | (8141A) | | | | | | | | | | | | Formaldehyde | (8315A) | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | | 36282A7 | Page:of
Reviewer:FT_
2nd Reviewer: < | | | | | | |---|-----------------------------|---|----------------------------|-------------------------------------|----------------|--|--| | METHO
Y N/N/
Y N N/ | A Were all reported re | results recalculated and verified for
ed results for detected target com | | eported results? | | | | | A= Area Fv= Fina Df= Dilut RF= Avera In the Vs= Initia Ws= Initia | Concentration = (A)(Fv)(Df) | | | | | | | | # | Sample ID | Compound | Reported
Concentrations | Recalculated Results Concentrations | Qualifications | | | | | | | | | | | | | | | | 77a h | · | Comments: # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 13, 2016 Parameters: Total Petroleum Hydrocarbons as Extractables Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | KCH067-001DL | 16C070-01DL | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. ### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ## III. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### V. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. ## VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control
samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. ## X. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ## XI. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed unusable as follows: | Sample | Compound | Flag | A or P | |--------------|---------------|------|--------| | KCH067-001DL | All compounds | R | А | The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. ## China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 16C070 | Sample | Compound | Flag | A or P | Reason (Code) | |--------------|---------------|------|--------|---------------------------------| | KCH067-001DL | All compounds | R | Α | Overall assessment of data (22) | ### China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG ### China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG Lab File ID: LC16007A Matrix : SOIL Ext Btch ID: DSC012S % Moisture : 4.3 Calib. Ref.: LC16004A Instrument ID : D5 | PARAMETERS | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | DIESEL | ND | 10 | 2.6 | 5.2 | | JP-5 | 3.1J | 21 | 2.6 | 5.2 | | MOTOR OIL | 91 | 21 | 2.6 | 5.2 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | BROMOBENZENE | 97.0 | 104.5 | 92.8 | 60-130 | | HEXACOSANE | 29.5 | 26.12 | 113 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 2x1716 | ========= | | | ======== | | | |---|--------------------------|-----------------------|------------|--|--| | Client : | KLEINFELDER | Date Collected: 03/08 | 3/16 | | | | Project : | NAWS CHINA LAKE, CTO 067 | Date Received: 03/10 |)/16 | | | | Batch No. : | 16c070 | Date Extracted: 03/15 | 6/16 13:30 | | | | Sample ID: | KCH067-001 | Date Analyzed: 03/15 | /16 19:55 | | | | Lab Samp ID: | C070-01I | Dilution Factor: 2 | | | | | Lab File ID: | LC15017A | Matrix : SOIL | | | | | Ext Btch ID: | DSC012S | % Moisture : 4.3 | | | | | Calib. Ref.: | LC15011A | Instrument ID : D5 | | | | | 221111120556888217411557855222552255785578555555555555555665555555555 | | | | | | | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | n/ | 22) 21 | | | | DIESEL | ND K | 22/ 21 | 5.2 | 10 | | JP-5 | ND | 42 | 5.2 | 10 | | MOTOR OIL | 62 | 42 | 5.2 | 10 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 93.8 | 104.5 | 89.8 | 60-130 | | HEXACOSANE | 31.8 | 26.13 | 121.7 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | DIESEL | ND | 11 | 2.7 | 5.5 | | JP-5 | ND | 22 | 2.7 | 5.5 | | MOTOR OIL | ND | 22 | 2.7 | 5.5 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 103 | 109.9 | 93.5 | 60-130 | | HEXACOSANE | 30.9 | 27.47 | 113 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 ENTIL. Lab File ID: LC16008A Matrix : SOIL Ext Btch ID: DSC012S % Moisture : 6.9 Calib. Ref.: LC16004A Instrument ID : D5 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | DIESEL | ND | 11 | 2.7 | 5.4 | | JP-5 | ND | 21 | 2.7 | 5.4 | | MOTOR OIL | 160 | 21 | 2.7 | 5.4 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 104 | 107.4 | 96.7 | 60-130 | | HEXACOSANE | 29.3 | 26.85 | 109 | 60-130 | | | | | | | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | DIESEL | ND | 11 | 2.6 | 5.3 | | JP-5 | ND | 21 | 2.6 | 5.3 | | MOTOR OIL | ND | 21 | 2.6 | 5.3 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 4 | | | | | | BROMOBENZENE | 95.4 | 105.2 | 90.7 | 60-130 | | HEXACOSANE | 27.6 | 26.29 | 105 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 8W17/b Lab File ID: LC15026A Matrix : SOIL Ext Btch ID: DSC012S % Moisture : 2.7 Calib. Ref.: LC15024A Instrument ID : D5 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD | |----------------------|--------------------|----------------|---------------|-----------------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | DIESEL | ND | 10 | 2.6 | 5.1 | | JP-5 | ND | 21 | 2.6 | 5.1 | | MOTOR OIL | 2.6J | 21 | 2.6 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 89.8 | 102.8 | 87.3 | 60-1 3 0 | | HEXACOSANE | 26.4 | 25.69 | 103 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 _______ Date Collected: 03/08/16 Date Received: 03/10/16 Date Extracted: 03/10/16 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Date Received: 03/10/16 Date Extracted: 03/15/16 13:30 Sample ID: KCH067-006 Date Analyzed: 03/15/16 22:44 Lab Samp ID: C070-06 Dilution Factor: 1 Matrix : SOIL % Moisture : 2.2 Lab File ID: LC15027A Ext Btch ID: DSC0128 Instrument ID : D5 Calib. Ref.: LC15024A _____ | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | DIESEL | ND | 10 | 2.6 | 5.1 | | JP-5 | ND | 20 | 2.6 | 5.1 | | MOTOR OIL | ND | 20 | 2.6 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 88.1 | 102.2 | 86.1 | 60-130 | | HEXACOSANE | 26.6 | 25.56 | 104 | 60-130 | | | | | | | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | DIESEL | ND | 10 | 2.5 | 5.1 | | JP-5 | ND | 20 | 2.5 | 5.1 | | MOTOR OIL | ND | 20 | 2.5 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 88.0 | 101.9 | 86.4 | 60-130 | | HEXACOSANE | 26.3 | 25.48 | 103 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 ESTAL _______ ______ | | RESULTS | LOQ | DŁ | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | DIESEL | ND | 10 | 2.5 | 5.1 | | JP-5 | ND | 20 | 2.5 | 5.1 | | MOTOR OIL | ND | 20 | 2.5 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | BROMOBENZENE | 84.2 | 101.5 | 82.9 | 60-130 | | HEXACOSANE | 26.4 | 25.38 | 104 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 Sat 1716 | PARAMETERS | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | DIESEL | 210 | 10 | 2.6 | 5.1 | | JP-5 | 180 | 21 | 2.6 | 5.1 | | MOTOR OIL | ND | 21 | 2.6 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | BROMOBENZENE | 94.4 | 103.0 | 91.7 | 60-130 | | HEXACOSANE | 27.6 | 25.75 | 107 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 SOSTAL | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C070 Sample ID: KCH067-010 Lab Samp ID: C070-10N Lab File ID: LC16012A Ext Btch ID: DSC012S Calib. Ref.: LC16004A | CTO 067 | Date F
Date Ex
Date A
Dilution
Matrix
% Moistu | ollected: 03/
deceived: 03/
dracted: 03/
dracted: 03/
nalyzed: 03/
n Factor: 1
: SOI
dre : 3.8
ent ID : D5 | (10/16
(15/16 13:30
(16/16 14:17 | |---|--------------------|---|--|--| | PARAMETERS | RESULTS
(mg/kg) | | | LOD
(mg/kg) | | ********* | | | | | | DIESEL | 84 | 10 | 2.6 | 5.2 | | JP-5 | 83 | 21 | 2.6 | 5.2 | | MOTOR OIL | ND | 21 | 2.6 | 5.2 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | • • • • • • • | | | | BROMOBENZENE | 89.3 | 104.0 | 85.9 | 60-130 | | HEXACOSANE | 25.0 | 25.99 | 96.2 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 Shinib Instrument ID : D5 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | DIESEL | 180 | 10 | 2.6 | 5.2 | | JP-5 | 150 | 21 | 2.6
 5.2 | | MOTOR OIL | ND | 21 | 2.6 | 5.2 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 93.7 | 103.2 | 90.8 | 60-130 | | HEXACOSANE | 27.9 | 25.80 | 108 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 Calib. Ref.: LC16004A _______ RESULTS DL PARAMETERS (mg/kg) (mg/kg) (mg/kg) (mg/kg) 5.2 DIESEL ND 10 2.6 JP-5 ND 21 2.6 5.2 5.2 MOTOR OIL ND 2.6 21 SPK_AMT % RECOVERY QC LIMIT SURROGATE PARAMETERS RESULTS 103.6 85.1 60-130 25.91 99.2 60-130 -----BROMOBENZENE 88.2 HEXACOSANE 25.7 Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16CO70 Sample ID: KCH067-013 Date Collected: 03/08/16 Date Received: 03/10/16 Date Extracted: 03/15/16 13:30 Date Analyzed: 03/16/16 00:43 Lab Samp ID: C070-13 Lab File ID: LC15034A Dilution Factor: 1 Matrix : SOIL % Moisture : 5.0 Ext Btch ID: DSC012S Calib. Ref.: LC15024A Instrument ID : D5 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | DIESEL | ND | 11 | 2.6 | 5.3 | | JP-5 | ND | 21 | 2.6 | 5.3 | | MOTOR OIL | ND | 21 | 2.6 | 5.3 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 89.0 | 105.3 | 84.6 | 60-130 | | HEXACOSANE | 26.1 | 26.32 | 99.1 | 60-130 | H-C Range C10-C24 Parameter Diesel JP-5 C8-C18 | ======================================= | ======== <u></u> | |---|--------------------------------| | Client : KLEINFELDER | Date Collected: 03/08/16 | | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | Batch No. : 160070 | Date Extracted: 03/15/16 13:30 | | Sample ID: KCH067-014 | Date Analyzed: 03/16/16 14:51 | | Lab Samp ID: C070-14N | Dilution Factor: 1 | | Lab File ID: LC16014A | Matrix : SOIL | | Ext Btch ID: DSC012S | % Moisture : 3.9 | | Calib. Ref.: LC16004A | Instrument ID : D5 | | | | | PARAMETERS | RESULTS | LOQ | DL | LOD | |--|-----------------------------|---------------------------|---------------------------|------------------| | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | DIESEL | 8.8J | 10 | 2.6 | 5.2 | | JP-5 | 7.9J | 21 | 2.6 | 5.2 | | MOTOR OIL | ND | 21 | 2.6 | 5.2 | | SURROGATE PARAMETERS BROMOBENZENE HEXACOSANE | RESULTS

94.7
28.1 | SPK_AMT
104.1
26.01 | % RECOVERY
91.0
108 | 60-130
60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 _______ Date Collected: 03/08/16 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Date Received: 03/10/16 Date Extracted: 03/15/16 13:30 Sample ID: KCH067-015 Date Analyzed: 03/16/16 01:50 Lab Samp ID: C070-15 Dilution Factor: 1 Matrix : SOIL % Moisture : 3.6 Instrument ID : D5 Lab File ID: LC15038A Ext Btch ID: DSC012S Calib. Ref.: LC15036A | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | DIESEL | ND | 10 | 2.6 | 5.2 | | JP-5 | ND | 21 | 2.6 | 5.2 | | MOTOR OIL | ND | 21 | 2.6 | 5.2 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 88.4 | 103.7 | 85.2 | 60-130 | | HEXACOSANE | 24.8 | 25.93 | 95.7 | 60-130 | Parameter ∺-C Range C10-C24 Diesel JP-5 C8-C18 825/716 _______ | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | DIESEL | ND | 10 | 2.6 | 5.1 | | JP-5 | ND | 21 | 2.6 | 5.1 | | MOTOR OIL | ND | 21 | 2.6 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 89.7 | 102.9 | 87.2 | 60-130 | | HEXACOSANE | 25.3 | 25.72 | 98.5 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 SC051716 ________ | PARAMETERS | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | DIESEL | ND | 10 | 2.5 | 5.0 | | JP-5 | ND | 20 | 2.5 | 5.0 | | MOTOR OIL | 69 | 20 | 2.5 | 5.0 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | BROMOBENZENE | 90.4 | 100.0 | 90.4 | 60-130 | | HEXACOSANE | 26.9 | 25.00 | 108 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 Sta5,716 Lab File ID: LC15043A Matrix : SOIL Ext Btch ID: DSC012S % Moisture : 2.1 Calib. Ref.: LC15036A Instrument ID : D5 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | DIESEL | ND | 10 | 2.6 | 5.1 | | JP-5 | ND | 20 | 2.6 | 5.1 | | MOTOR OIL | ND | 20 | 2.6 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMÏT | | | | | | | | BROMOBENZENE | 85.1 | 102.1 | 83.3 | 60-130 | | HEXACOSANE | 24.3 | 25.54 | 95.0 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 E057116 ### **VALIDATION COMPLETENESS WORKSHEET** Standard/Full SDG #: 16C070 Laboratory: EMAX Laboratories Inc. LDC #: 36282A8 Reviewer: 2nd Reviewer: METHOD: GC TPH as Extractables (EPA SW 846 Method 8015B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|------------------|---------------------------------------| | l. | Sample receipt/Technical holding times | AIA | | | II. | Initial calibration/ICV | Δ /Δ | % psD/101 = 20
col ∈ w | | III. | Continuing calibration | Δ | ca Ew | | IV. | Laboratory Blanks | Δ | 2/4 | | V. | Field blanks | DN | EB = KCH067-019 (160074) | | VI. | Surrogate spikes | Δ | | | VII. | Matrix spike/Matrix spike duplicates | Δ | | | VIII. | Laboratory control samples | 4 | 0 cas | | IX. | Field duplicates | N | | | X. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for Standard validation. | | XI. | Target compound identification | ٨ | Not reviewed for Standard validation. | | XII | Overall assessment of data | SW | | Note: A = Acceptable N = Not provided/applicable ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: SW = See worksheet ** Indicates sample underwent Full validation | Inu | icates sample underwent Full validation | | | | |----------------|---|-------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1 | KCH067-001 | 16C070-01 | Soil | 03/08/16 | | 2 | KCH067-002 | 16C070-02 | Soil | 03/08/16 | | †
3 | KCH067-003 | 16C070-03 | Soil | 03/08/16 | | 4 | KCH067-004** | 16C070-04** | Soil | 03/08/16 | | 5 | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | 6 | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | 7 | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | 8 | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | + 9 | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | 10 | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | 11 | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | 12 | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | 1 3 | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | +
14 | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | 15 | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | 16 | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | ∔
17 | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | SDG
Labo | #:36282A8 | F
2nd F | Date: 5/9 Page: 26f 2 Reviewer: 69 Reviewer: 69 | | |-------------|---------------|--------------|---|----------| | | Client ID | Lab ID | Matrix | Date | | 18 | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | 19 | KCH067-003MS | 16C070-03MS | Soil | 03/08/16 | | 20 | KCH067-003MSD | 16C070-03MSD | Soil | 03/08/16 | | 21 | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | 22 | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | 23 | # IDL | 160070-01 PL | SOIL | 3/8/16 | | 24 | | | | | | 25 | | | | | | 26 | | | | | | 27 | | | | | | Note | S: | | | | | LDC #: | 3 | 6 | 2 | ४ | z | A | Y | |--------|---|---|---|---|---|---|---| |--------|---|---|---|---|---|---|---| ### **VALIDATION FINDINGS CHECKLIST** | Page:_/of_ | 2 | |---------------|----| | Reviewer:/ | =) | | 2nd Reviewer: | 7 | Method: GC _____HPLC | Wetnod:GCHPLC | | | | | |--|-----|---------------------|-------------------|---| | Validation Area | Yes | No | NA | Findings/Comments | | ll Jeanneal holding ilmes. | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | Santana Fard I | in terror and the | | | Na mittell cellionamon | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990? | | _ | | | | Were the RT windows properly established? | | | | | | Illa, Initial calibration verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | **** | | | IIII. (Cojntinuijāji eşlilbration | | | | | | Was a continuing calibration analyzed daily? | | | | *************************************** | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | Were all the retention times within the acceptance windows? | | | | | | INV. Szelőjörreköny (Steraks) | | - |
 | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | \V F\é)iGHBleinks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | W. Surregate spires | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | | | | | | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | | | | If any %R was less than 10 percent, was a reanalysis performed to confirm %R? | | | _ | | | Witi Wettrix spilke/wettrix spilke dyphoates | | an alma artaba arta | le mellem et me | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | LDC#: 36282AX ## **VALIDATION FINDINGS CHECKLIST** | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| |
 VMI Halboratony admital statingles | | | | | | Was an LCS analyzed for this SDG? | Z | | | | | Was an LCS analyzed per extraction batch? | / | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | / | | | | | IIX i≣idati şiyalıçates | - | | | | | Were field duplicate pairs identified in this SDG? | | / | | | | Were target compounds detected in the field duplicates? | | | / | | | X, (Configuratic Quentification) | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | _ | | | | | 241. Tanget compound identification | | | | | | Were the retention times of reported detects within the RT windows? | / | | | | | MIII. Oweren essessment of date | | | | | | Overall assessment of data was found to be acceptable. | / | | | | | | 36 | 2 X | 2 | AX | |--------|----|-----|---|----| | LDC #: | _ | - 4 | - | ٠٧ | # VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u> | of/ | |-----| | FT | | 1 | | | METHOD: GC _ HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only | <u>/Ŷ</u> | N | N/A | |-----------|---|-----| | Y | M | N/A | Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? Cod1-# 22 | # | Associated Samples | Compound Name | Findings | Qualifications | |---|--------------------|---------------|----------|----------------| | | 23 | all | difuted | P/A | Comments: _ | See sample calculation verification worksheet for recalculations |
 | | | |-------------|--|------|--|--| | _ | | | | | | | | | | | LDC#: 36282AJ ### **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | <u>/</u> of | _ | |----------------|-------------|---| | Reviewer:_ | FT | _ | | 2nd Reviewer:_ | K | | | METHOD: GC |
HPLC | |------------|-----------| The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----------|-------------|---------------------|--------------|----------------|-----------------------------------|--------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound | CF
(らりつstd) | CF
(<i>5</i> ひ <i>()</i> std) | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | IGAL | 3/9/16 | Diese c10-cm | 33825 | 3382 | 31896.9 | 3/896.9 | 12.9 | 12-9 | <u> </u> | 1 | | | | | | | | | | 2 | 3 | 4 | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | | | <u> </u> | 1 | | 1 | | | | L | | L | | Comments: | Refer to Initial | <u>Calibration fir</u> | <u>idings workshee</u> | t for list of | qualifications | <u>s and associa</u> | <u>ited samples</u> | when reporte | <u>ed results do n</u> | ot agree withir | 10.0% of the | |--------------|------------------|------------------------|------------------------|---------------|----------------|----------------------|---------------------|--------------|------------------------|-----------------|--------------| | recalculated | l results. | LDC #:_ | उ | 6 | 28 | 21 | |---------|---|---|----|----| |---------|---|---|----|----| # VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | of | _ | |----------------|----|---| | Reviewer:_ | FT | | | 2nd Reviewer:_ | R | | | METHOD: | GC |
HPLC | | |---------|----|----------|--| The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF -CF)/ave.CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | Standard | Calibration | | | Reported | Recalculated | Reported | Recalculated | |---|-----------|-------------|----------------|--------------------------------|------------------|------------------|----------|--------------| | # | D | Date | Compound | Average CF(ICAL)/ CCV
Conc. | CF/ Conc.
CCV | CF/ Conc.
CCV | %D | %D | | 1 | ecv 14:48 | 3/15/16 | Diesel C10-C24 | 5v0. O | 489.25 | 489.75 | 2 | 2 | 2 | cov 0116 | 3/16/16 | J | 200.0 | 493-21 | 493.21 | | / | | | | | | | | | - | | | | | | | | | | | | | 3 | cev 1149 | 3/16/16 | l 1 | 500.0 | 47836 | 478.36 | 4 | y | | | | | | | : | | | | | | | | | | : | | | | | 4 | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC#: 36 | 282AS | |----------|-------| |----------|-------| ### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | _/ | |---------------|----|----| | Reviewer:_ | FT | | | 2nd reviewer: | N | | METHOD: __ GC __ HPLC The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: # 16 | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |---------------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | Brom obenzene | | 100 | 87.167 | 87-2 | 872 | O | | thexacosane | | 25 | 24.635 | 98,5 | 98.5 | Ũ | | | | | | | | | | | | | | - | | | Sample ID: | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | Surrogate Compound | |----|----------------------------|---|---------------------|---|-----------------------------------|-----|-------------------------|----|-------------------------------| | А | Chlorobenzene (CBZ) | G | Octacosane | М | Benzo(e)Pyrene | s | 1-Chloro-3-Nitrobenzene | Y | Tetrachloro-m- xylene | | В | 4-Bromofluorobenzene (BFB) | Н | Ortho-Terphenyl | N | Terphenyl-D14 | Т | 3,4-Dinitrotoluene | Z | 2-Bromonaphthalene | | C, | a,a,a-Trifluorotoluene | ı | Fluorobenzene (FBZ) | 0 | Decachlorobiphenyl (DCB) | U | Tripentyltin | AA | Chloro-octadecane | | D | Bromochlorobenene | J | n-Triacontane | Р | 1-methylnaphthalene | V | Tri-n-propyltin | 8B | 2,4-Dichlorophenylacetic acid | | E | 1,4-Dichlorobutane | к | Hexacosane | Q | Dichlorophenyl Acetic Acid (DCAA) | w | Tributyl Phosphate | cc | 2,5-Dibromotoluene | | F | 1,4-Difluorobenzene (DFB) | L | Bromobenzene | R | 4-Nitrophenol | L x | Triphenyl Phosphate | | | | LDC #: | 3628214 | |--------|---------| | LDC #. | ~ | # VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page:_ | of_ | _ | |---------------|-----|---| | Reviewer: | FT | _ | | 2nd Reviewer: | × | | METHOD: __ GC __HPLC The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC - SC)/SA
Where SSC = Spiked sample concentration MS = Matrix spike RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100 SC = Sample concentration SA = Spike added MSD = Matrix spike duplicate MS/MSD samples: P + 20 | | | | ike
ded | Sample
Coņç. | Spike Sample | | Matrix spike | | Matrix Spike Duplicate | | MS/MSD | | |---------------------|-----------|-----|------------|-----------------|---------------|-----|------------------|---------|------------------------|---------|----------|---------| | Comp | ound | (mg | | (malky | Concentration | | Percent Recovery | | Percent Recovery | | RPD | | | | | MS | MSD |)
)
) | мѕ | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | | | Diesel | (8015) | 537 | 537 | 40 | 519 | 547 | 97 | 97 | 102 | 102 | ٥ | 6 | | Benzene | (8021B) | | | | | | | | | • | | | | Methane | (RSK-175) | | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | - | | | | | | | | - | | | | Anthracene | (8310) | | | | | | | | | | | | | НМХ | (8330) | | | | | | | | | | | | | 2,4,6-Trinitrotolue | ne (8330) | | | | | | | | | | | | | Phorate | (8141A) | | | | | | | | | | | | | Malathion | (8141A) | | | | | | | | | | | | | Formaldehyde | (8315A) | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC #: | 36 | 28 | 21 | Y | |--------|----|----|----|---| | LUUT. | | _ | | _ | ### **VALIDATION FINDINGS WORKSHEET** | aboratory Control | Sample/Laboratory | / Control Sample | Duplicates | Results Verification | |-------------------|-------------------|------------------|-------------------|-----------------------| | | | | | Trouming Tollingation | | Page:_ | _of_ | _/ | |---------------|------|----| | Reviewer:_ | FT | | | 2nd Reviewer: | 1 | | | METHOD: | GC | HPLC | |---------|----|------| The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration SA = Spike added LCS = Laboratory Control Sample LCSD = Laboratory Control Sample duplicate LCS/LCSD samples: DSCO125L | | | Sp | oike | Spike Sample | | LCS | | LCSD | | LCS/LCSD | | | |---------------------|-----------|-----|---------------|--------------|---------------|----------|------------------|----------|------------------|----------|---------|--| | Comp | Compound | | Added (ma Kg) | | Concentration | | Percent Recovery | | Percent Recovery | | RPD | | | | | LCS | LCSD | LCS | (L)CSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | | Gasoline | (8015) | | | | | | | | - 1-1-1 | | | | | Diesel | (8015) | 500 | 500 | 57 | 523 | 114 | 114 | 105 | 105 | ٩ | O) | | | Benzene | (8021B) | | | | | | | | | | | | | Methane | (RSK-175) | | | | | ***** | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | _ | | | | | - | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | | | нмх | (8330) | | | | | | | | | | | | | 2,4,6-Trinitrotolue | ne (8330) | | | | | | | | | | | | | Phorate | (8141A) | | | | | | | | | | | | | Malathion | (8141A) | | | | | | | | | | | | | Formaldehyde | (8315A) | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC #: | 36282AJ | |--------|---------| |--------|---------| ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | | / | , | |--------------|----|---| | Page: | of | | | Reviewer: | FT | | | nd Reviewer: | a | | | METHOD: | GC | _ HPLC | |---------|----|--------| | | <u> </u> | 1. | | |---|----------|----------|-----| | / | <u>Y</u> | <u>N</u> | N/A | | , | V | N. | N/A | | | _ | | | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results? | Concentration= (A)(Fv)(Df)
(RF)(Vs or Ws)(%S/100) | Example:
Sample ID | DSC0125L Comp | bound Name Dissol | cp - a zy | |---|-----------------------|-----------------------------------|---|----------------| | A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid | Concentratio | 1771778 | 8 (10)
87324 (10) | = | | # Sample ID | Compound | Reported
Concentrations
() | Recalculated Results Concentrations () | Qualifications | comments: | | | | |-----------|-----------------|-------------|---------------------------------------| | ommenis. | | | | | |
 | | ··· · · · · · · · · · · · · · · · · · | | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: Explosives Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation ### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Explosives by Environmental Protection Agency (EPA) SW 846 Method 8330A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the
affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. ### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0% for all compounds. Retention time windows were established as required by the method for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### **III. Continuing Calibration** Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 15.0% for all compounds. Retention times of all compounds in the calibration standards were within the established retention time windows for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. ### V. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. ### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Field Duplicates No field duplicates were identified in this SDG. ### X. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XI. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Explosives - Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Explosives - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Explosives - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG ### METHOD SW8330A EXPLOSIVES | ========= | ========= | ====== | ======== | . === ===== | :======== | ======= | |--------------|---------------|----------|--------------------|--------------------|----------------|----------------| | Client : | KLEINFELDER | | | Date Col | lected: 03/08 | 3/16 | | Project : | NAWS CHINA LA | AKE, CTO | 067 | Date Re | eceived: 03/10 | 1/16 | | Batch No. : | 160070 | • | | Date Ext | racted: 03/15 | /16 16:30 | | Sample ID: | KCH067-005 | | | Date Ar | nalyzed: 03/16 | /16 19:42 | | Lab Samp ID: | C070-05 | | | Dilution | Factor: 1 | | | Lab File ID: | XC16007A | | | Matrix | : S01L | | | Ext Btch ID: | EXCOO6S | | | % Moistur | e : NA | | | Calib. Ref.: | XC16002A | | | Instrumer | nt ID : T-081 | | | PARAMETERS | | | RESULTS
(ug/kg) | L0Q
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | | нмх | | | ND | 400 | 50 | 100 | | RDX | | | ND | 400 | 50 | 100 | | 1,3,5-TNB | | | ND | 400 | 50 | 100 | | 1,3-DNB | | | ND | 400 | 50 | 100 | | TETRYL | | | ND | 400 | 57 | 100 | | NITROBENZENE | | | ND | 400 | 50 | 100 | | | | | | | | | | NIIKUDENZENE | ND | 400 | 20 | 100 | | |----------------------|---------|---------|------------|----------|--| | 2,4,6~TNT | ND | 400 | 50 | 100 | | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | | 2,6-DNT | ND | 400 | 56 | 100 | | | 2,4-DNT | ND | 400 | 55 | 100 | | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | | | 3,4-DINITROTOLUENE | 2140 | 2000 | 107 | 60-140 | | | | | | | | | Note: All positive results are confirmed by Biphenyl column Stattle ### METHOD SW8330A EXPLOSIVES Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/15/16 16:30 Sample ID: KCH067-006 Date Analyzed: 03/16/16 20:18 Lab Samp ID: C070-06 Dilution Factor: 1 Lab File ID: XC16008A Matrix : SOIL Ext Btch ID: EXC006S % Moisture : NA Calib. Ref.: XC16002A Instrument ID : T-081 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | 10000 | | | | 400 | | НМХ | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2310 | 2000 | 116 | 60-140 | Note: All positive results are confirmed by Biphenyl column 805171/s ## METHOD SW8330A EXPLOSIVES Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Sample ID: KCH067-007 Date Collected: 03/08/16 Date Received: 03/10/16 Date Extracted: 03/15/16 16:30 Date Analyzed: 03/16/16 21:01 Dilution Factor: 1 Lab Samp ID: C070-07 Lab File ID: XC16009A : SOIL Matrix Ext Btch ID: EXCOO6S % Moisture Instrument ID : T-081 Calib. Ref.: XC16002A | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1.3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNY | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2170 | 2000 | 108 | 60-140 | Note: All positive results are confirmed by Biphenyl column ## METHOD SW8330A EXPLOSIVES Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTD 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/15/16 16:30 Sample ID: KCH067-008 Date Analyzed: 03/16/16 21:38 Lab Samp ID: C070-08 Dilution Factor: 1 Lab File ID: XC16010A Matrix : SOIL Ext Btch ID: EXC006S % Moisture : NA Calib. Ref.: XC16002A Instrument ID : T-081 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | нмх | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TÉTRYL | NĎ | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2130 | 2000 | 106 | 60-140 | Note: All positive results are confirmed by Biphenyl column Stori116 ### METHOD SW8330A EXPLOSIVES | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | HMX | 280J | 400 | 50 | 100 |
| RDX | 4600 | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2060 | 2000 | 103 | 60-140 | Note: All positive results are confirmed by Biphenyl column SCOJITIL | PARAMETERS | RESULTS
(ug/kg) | L0Q
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | нмх | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ŇD | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2140 | 2000 | 107 | 60-140 | Note: All positive results are confirmed by Biphenyl column 86251716 Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C070 Date Extracted: 03/15/16 16:30 Sample ID: KCH067-011 Date Analyzed: 03/16/16 23:41 Lab Samp ID: C070-11 Dilution Factor: 1 Lab File ID: XC16013A Matrix : SOIL Ext Btch ID: EXC006S % Moisture : NA Calib. Ref.: XC16002A Instrument ID : T-081 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | нмх | 440 | 400 | 50 | 100 | | RDX | 2000 | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TÉTRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2100 | 2000 | 105 | 60-140 | Note: All positive results are confirmed by Biphenyl column South | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | НМХ | 390J | 400 | 50 | 100 | | RDX | 620 | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | | | | | | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2250 | 2000 | 113 | 60-140 | Note: All positive results are confirmed by Biphenyl column 8/201716 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | HMX | ND | 400 | 50 | 100 | | RDX | · ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2120 | 2000 | 106 | 60-140 | Note: All positive results are confirmed by Biphenyl column Souns | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | HMX | 92J | 400 | 50 | 100 | | RDX | 150J | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TÉTRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2.4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2180 | 2000 | 109 | 60-140 | Note: All positive results are confirmed by Biphenyl column Sto5/7/6 ________ Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Date Collected: 03/08/16 Date Received: 03/10/16 Date Extracted: 03/15/16 16:30 Sample ID: KCH067-015 Date Analyzed: 03/17/16 04:18 Lab Samp ID: C070-15 Dilution Factor: 1 : SOIL : NA Lab File ID: XC16020A Matrix Ext Btch ID: EXCO06S % Moisture Calib. Ref.: XC16015A Instrument ID : T-081 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 7 /-PINITPOTOLUENE | 2150 | 2000 | 107 | 40-1/0 | | 3,4-DINITROTOLUENE | 2150 | 2000 | 107 | 60-140 | Note: All positive results are confirmed by Biphenyl column 8605/7/16 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 7 / 5747755701 1545 | 2050 | 7000 | 400 | 40.440 | | 3,4-DINITROTOLUENE | 2050 | 2000 | 102 | 60-140 | Note: All positive results are confirmed by Biphenyl column SOUTTIL __________ | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|----------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | нмх | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 9 5 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2100 | 2000 | 105 | 60-140 | Note: All positive results are confirmed by Biphenyl column. to51716 Date Collected: 03/08/16 Date Received: 03/10/16 Date Extracted: 03/10/16 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Sample ID: KCH067-018 Date Extracted: 03/15/16 16:30 Date Analyzed: 03/17/16 07:41 Lab Samp ID: C070-18 Lab File ID: XC16025A Dilution Factor: 1 Matrix : SOIL % Moisture : NA Ext Btch ID: EXCOO6S Instrument ID : T-081 Calib. Ref.: XC16015A ~~~ | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4~AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2120 | 2000 | 106 | 60-140 | Note: All positive results are confirmed by Biphenyl column SCOTTIL ## **VALIDATION COMPLETENESS WORKSHEET** SDG #: 16C070 LDC #: 36282A40 Laboratory: EMAX Laboratories Inc. Standard/Full Reviewer: 2nd Reviewer: METHOD: HPLC Explosives
(EPA SW 846 Method 8330) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | A/A | F-7 | | II. | Initial calibration/ICV | Δ /Δ | % PSD = 20 101 = 200 15 | | 111. | Continuing calibration | Δ | cw ≤ 20 15 | | IV. | Laboratory Blanks | | | | V. | Field blanks | ND | EB- KCH067-019 (160074) | | VI. | Surrogate spikes | Δ | / | | VII. | Matrix spike/Matrix spike duplicates | \triangle | | | VIII. | Laboratory control samples | Α | Les D | | łX. | Field duplicates | N | | | Χ. | Compound quantitation RL/LOQ/LODs | | Not reviewed for Standard validation. | | XI. | Target compound identification | Δ | Not reviewed for Standard validation. | | XII. | System performance | V | Not reviewed for Standard validation. | | XIII | Overall assessment of data | | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | | Client ID | Lab ID | Matrix | Date | |------------|---------------|--------------|--------|----------| | | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | · | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | - | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | - | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | - | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | 0 | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | 4 – | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | <u>y</u> - | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | 3 | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | 4 | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | 5 | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | 6 | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | | LDC #: 36282A40 VALIDATION COMPLETENESS WORKSHEET SDG #: 16C070 Standard/Full Laboratory: EMAX Laboratories Inc. METHOD: HPLC Explosives (EPA SW 846 Method 8330) | | | | | | Date: 5/9
Page: 20f 2
Reviewer: 57
2nd Reviewer: | | | | |--|-----------|--|--|--|--|---|---|--------|------| | | Client ID | | | | | Lab ID | N | latrix | Date | | 17 | | | | | | | | | | | 18 | | | | | | | | | | | 19 | | | | | | | | | | | 20 | | | | | | | | | | | 21_ | | | | | | | | | | | Note | s: | | | | | | | | | | | MBLKIS | ## VALIDATION FINDINGS CHECKLIST | Page: /of_ | 2 | |---------------|---| | Reviewer: | E | | 2nd Reviewer: | | LDC #: 36282A40 V | Validation Area | Yes | No | NA | Findings/Comments | |--|----------|------------------------|-------------------|-------------------| | IJ Technical holding times | | | | | | Were all technical holding times met? | / | | | | | Was cooler temperature criteria met? | | | rus ribeernos | | | Ila Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | <i></i> | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990? | | | | | | Were the RT windows properly established? | | a contract contract of | and ordered the | | | IIIb, Initial calibration venfication (1994) | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | _ | | | | Were all percent differences (%D) ≤ 15%? | | | STANDARD STANDARD | | | III. Continuing calibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) ≤ 15%? | | | | | | Were all the retention times within the acceptance windows? | | | | | | M Laboratory Branks | <u> </u> | | | | | Was a laboratory blank associated with every sample in this SDG? | _ | _ | | | | Was a laboratory blank analyzed for each matrix and concentration? | / | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | V/ Fred Banks | | | | | | Were field blanks identified in this SDG? | / | | | | | Were target compounds detected in the field blanks? | | | | | | VI. Surrogaterspikes | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | _ | | | | | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | _ | | | If any %R was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | | VIII Marrix:spike/Matrix:spike/duplicates | i
I | | I | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | / | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | / | | | | LDC#: 36782AU ## VALIDATION FINDINGS CHECKLIST Page: 2 of 2 Reviewer: 5 2nd Reviewer: 5 | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | Witt Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | IX Filate applicates | | | | | | Were field duplicate pairs identified in this SDG? | | / | - | | | Were target compounds detected in the field duplicates? | | | | | | X. Compound quantitation | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | \ | | | | XII. Tranget compound identification | | | | 2012 PAY 51 | | Were the retention times of reported detects within the RT windows? | | | | | | XIII Overell estessiment of deta | | | | | | Overall assessment of data was found to be acceptable. | | | | | LDC #: 36282A4() ## **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | of | | |---------------|----|--| | Reviewer:_ | FT | | | 2nd Reviewer: | 37 | | | | | | The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----------|-------------|---------------------|---------------|-----------------|------------------|--------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound | CF
(Vo⊘ std) | CF
(10 Ustd) | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | ICAL | 1/27/16 | HMX (C18) | 145 | 145.15 | 151.7 | 151.7 | 6.9 | 6.9 | | | . 1 | • | 2,4,6 THT | 430 | 429.24 | 410.8 | 410.8 | 6.3 | 6.3 | | | | | | | | | | | | | 2 | ICAL | 1/20/16 | HMX (Bipleny) | 124 | 123.6 | 122.9 | 122.9 | 9-8 | 9-8 | | | | | 2.4,6 TNT | 321 | 310.7 | 322.0 | 322.0 | 6-1 | 6-1 | | | | | | | | | | | | | 3 | <u> </u> | | | | | | | | | | | 4 | Comments: | Refer to Initial | Calibration fi | <u>ndings works</u> | <u>sheet for list</u> | of qualificat | ions and as | sociated: | <u>samples wh</u> | <u>nen reported</u> | <u>results do</u> | not agree w | <u>thin 10.0%</u> | of the | |--------------|------------------|----------------|---------------------|-----------------------|---------------|---------------|-----------|-------------------|---------------------|-------------------|-------------|---------------------------------------|--------| | recalculated | l results. | | | | | . | | | | | | · · · · · · · · · · · · · · · · · · · | | | LDC #: | 3628 | ZAYC | |--------|------|------| |--------|------|------| ## VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification | Page:_ | <u>/</u> _of_ | _/ | |---------------|---------------|----| | Reviewer: | FT | | | 2nd Reviewer: | | | METHOD: GC C HPLC The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF -CF)/ave.CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | Standard | Calibration | | | Reported | Recalculated | Reported | Recalculated | |----------|-----------|-------------|---------------|--------------------------------|------------------|------------------|------------|--------------| | # | ID | Date | Compound | Average CF(ICAL)/ CCV
Conc. | CF/ Conc.
CCV | CF/ Conc.
CCV | %D | %D | | 1 | acv 1618 | 3/16/16 | AMX (CIX |
40 O. O | P151-7 403.7 | 5 403.75 | 1 | | | | | | 2,4,6-[NT | 400.0 | 384.47 | 384.47 | <u></u> | 4 | | | | | | | | W | | | | 2 | cev 01:01 | 37/17 | HMX (C18) | 400. O | P 151-7 418,3 | 3 418.33 | S | 5 | | | | | 2,4,6-TNT | 400. O | 392.95 | 39295 | 2 | 2 | | | | | | | | | | | | <u> </u> | ccv 1246 | 3/22/16 | (0) | | | 0.0.0 | | . 1 | | 3 | 1201 1796 | | HMX (Bipheny) | 200. O | 219.40 | 219.40 | 10 | 10 | | | | | 2,4,6-TNT | 200. O | JX3.57 | 183.57 | 8 | <u> </u> | | | | | | | | | | | | 4 | | | | | | | | | | | | | | | | | Table 1980 | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. ## **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | 1 | of_ | 1 | |---------------|---|-----|---| | Reviewer: | | F |) | | 2nd reviewer: | | M | | LDC #: 36 282 AYO METHOD: GC HPLC The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: # 12 | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |--------------------|-----------------|---------------------|--------------------|---------------------|---------------------|--| | | | | | Reported | Recalculated | | | 3,4- Dinitropluene | C-18 ch A | 2050 | 2000 | 102 | 102 | D | | | | | | | | | | | | | | | | ······································ | Sample ID:_____ | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | 1 | | Sample ID: | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|---|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | LDC #:_ | 362 | 821 | 40 | |---------|-----|-----|----| | | | | | ### **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | of | | |---------------|----|--| | Reviewer:_ | FT | | | 2nd Reviewer: | A | | METHOD: ^ The percent recoveries (%B) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration MS = Matrix spike RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100 SC = Sample concentration SA = Spike added MSD = Matrix spike duplicate MS/MSD samples: | | | Sr | oike | Sample | Spike | Sample | Matrix | spike | Matrix Spik | e Duplicate | MS/I | VISD | |---------------------|-----------|------|-------|--------|------------------|----------|-----------|----------|-------------|-------------|----------|---------| | Comp | ound | (ug | ded) | Conc. | Concer
(u.s. | ntration | Percent I | Recovery | Percent I | Recovery | RF | סי | | | | ms | MSD | | Ms U | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | | | Diesel | (8015) | | | | | | | | | | | | | Benzene | (8021B) | | | | | | | | | | | | | Methane | (RSK-175) | | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | | | НМХ | (8330) | 2000 | 2000 | 7D | 2360 | 2150 | 118 | 118 | 107 | 107 | 10 | 10 | | 2,4,6-Trinitrotolue | ne (8330) | 2000 | 2000 | ND | 1980 | 2020 | 49 | 99 | 10 | 10 1 | 2 | 2 | | Phorate | (8141A) | | | | | | | | | | | | | Malathion | (8141A) | | | | | | | | | | | | | Formaldehyde | (8315A) | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC #: 36282199 | (V) | |-----------------|-----| |-----------------|-----| ### **VALIDATION FINDINGS WORKSHEET** ## Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page: | of_ | _ | |--------------|-----|---| | Reviewer: | FT | | | 2nd Reviewer | :_A | | | | - | | METHOD: 💆 GC HPLC The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate LCS/LCSD samples: FX COOGSL /SC | | LCS | dded | Conce
(na | ntration | | | II | | | | |---------|--|--|--|--|--|--
---|--|---|--| | | LCS | 1 | | | Percent Recovery | | Percent Recovery | | RPD | | | | | LCSD | LCS | CSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | 015) | | | | | | | | | | | | 015) | | | | | | | | | | | | 021B) | | | | | | | | | | | | SK-175) | | | | | | | | | | | | 151) | | | | | | | | | | | | 151) | | | | | | | | | | | | 310) | | | | | | | | | | | | 310) | | | | | | | | | | | | 330) | 2000 | 2000 | 2190 | 2300 | 109 | 109 | 115 | 115 | 5 | 2 | | 330) | J | J | 2110 | 2080 | 106 | 106 | 104 | 104 | 2 | 2 | | 141A) | | | | | | , | | | | | | 141A) | | | | | | | | | | | | 315A) | C | 015) 021B) 05K-175) 051) 051) 0510) 0530) 0530) 0530) 0541A) | 015) 021B) 05K-175) 051) 051) 0510 0510) 0530) 0530) 0530) 05330) 0541A) | 015) 021B) 05K-175) 051) 051) 0510 0510) 0530) 0530) 0530) 0530) 0530) 0530) 0530) 0530) 0530) 0530) 0530) | 1015) 1021B) 105K-175) 1051) 1051) 1051) 1051) 1071 1071 1071 1071 1071 1071 1071 10 | 1015) 1021B) 105K-175) 1051) 1051) 1051) 1051) 1071) 1 | 1015) 1021B) 105K-175) 1051) 1 | 1015) 1021B) 105K-175) 1051) 1051) 10610) 1070) 10810) 10810) 1091) 1091 1091 1091 1091 1091 1091 | 1015) 1021B) 105K-175) 1051) 1051) 1071 10810) 10810) 1091 1091 115 1091 1091 1091 1091 1091 | 1015) 1021B) 1036-175) 1051) 1051) 1071 10810) 10810) 1091 1091 1091 1151 1151 1151 1151 1151 | 1015) 1021B) 105K-175) 1051) 1051) 1051) 1051) 1071) 1080) 1080) 1091 1091 1091 1091 1091 1091 1091 10 | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 36282A4 ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: | 1 | of_ | 1 | |---------------|---|-----|---| | Reviewer: | | F | 7 | | 2nd Reviewer: | - | 4 | | | METHOD: | GC | HPLC | |---------|----|------| | _ | | | | | , ` | \ | | |---|---------------|---|-----| | | <u>"Y</u> | N | N/A | | / | Υ | N | N/A | | | $\overline{}$ | 7 | | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results? | Concentration= (A)(Fv)(Df) | Example: | | | | | | | |---|----------|------|----------------|--|--|--|--| | (RF)(Vs or Ws)(%S/100 | 0) | 1.0. | oound Name ₩ΜΧ | | | | | | A= Area or height of the compound to be measured Ev= Final Volume of extract | | | | | | | | | Df= Dilution Factor RF= Average response factor of the compound | | | | | | | | | # Sample ID Compound Reported Recalculated Results Concentrations Concentrations Qualifications | | | | | | | | | · | Comments: | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** China Lake CTO 067 **LDC Report Date:** May 12, 2016 Parameters: Perchlorate Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C070 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | KCH067-018 | 16C070-18 | Soil | 03/08/16 | | KCH067-016MS | 16C070-16MS | Soil | 03/08/16 | | KCH067-016MSD | 16C070-16MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perchlorate by Environmental Protection Agency (EPA) SW 846 Method 6850 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the
raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance check was performed prior to initial calibration. All perchlorate ion signal to noise ratio requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990. The isotope ratios were within QC limits. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 15.0% for all compounds. The percent differences (%D) of the limit of detection verification (LODV) standard were less than or equal to 30.0%. The isotope ratios were within QC limits. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-019 (from SDG 16C074) was identified as an equipment blank. No contaminants were found. #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Internal Standards All internal standard areas and retention times were within QC limits. #### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Perchlorate - Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Perchlorate - Laboratory Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG China Lake CTO 067 Perchlorate - Field Blank Data Qualification Summary - SDG 16C070 No Sample Data Qualified in this SDG METHOD SW6850 PERCHLORATE Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C070 Matrix : SOIL InstrumentID : GO | Client | EMAX | RESULT | מיוזה | MOIST | L00 | DL | I On | ANALYSIS | PREPARATION | DATA | CAL | PREP | COLLECTION | RECEIVED | |---------------|-----------|----------------|-------|-------|---------|---------|------|---------------|-----------------|-----------|-----------|-----------|---------------|----------| | SAMPLE ID | SAMPLE ID | (ug/kg) | | (%) | (ug/kg) | (ug/kg) | | DATETIME | DATETIME | FILE ID | REF | BATCH | DATETIME | DATETIME | | | | | | | | | | | | | | | | | | MBLK1S | PLC002SB | ND | 1 | NΑ | 4 | 0.5 | 1 | 03/23/1615:38 | 03/15/1610:37 | 16MC23024 | MC23021 | 16PLC002S | NA | NA | | LCS1S | PLC002SL | 4.50 | 1 | NA | 4 | 0.5 | 1 | 03/23/1615:53 | 03/15/1610:37 | 16MC23025 | MC23021 | 16PLC002S | NA | NA | | LCD1S | PLC002SC | 4.48 | 1 | NA | 4 | 0.5 | 1 | 03/23/1616:08 | 3 03/15/1610:37 | 16MC23026 | MC23021 | 16PLC002S | NA | NA | | KCH067-005 | C070-05 | ND | 1 | 2.7 | 4.11 | 0.514 | 1.03 | 03/23/1616:25 | 03/15/1610:37 | 16MC23027 | MC23021 | 16PLC002S | 03/08/1613:25 | 03/10/16 | | KCH067-006 | C070-06 | ND | 1 | 2.2 | 4.09 | 0.511 | 1.02 | 03/23/1616:40 | 03/15/1610:37 | 16MC23028 | MC23021 | 16PLC002S | 03/08/1613:40 | 03/10/16 | | KCH067-007 | C070-07 | ND | 1 | 1.9 | 4.08 | 0.51 | 1.02 | 03/23/1616:55 | 03/15/1610:37 | 16MC23029 | MC23021 | 16PLC002S | 03/08/1613:45 | 03/10/16 | | KCH067-008 | C070-08 | ND | 1 | 1.5 | 4.06 | 0.508 | 1.02 | 03/23/1617:10 | 03/15/1610:37 | 16MC23030 | MC23021 | 16PLC002S | 03/08/1613:55 | 03/10/16 | | KCH067-009 | C070-09 | ND | 1 | 2.9 | 4.12 | 0.515 | 1.03 | 03/23/1617:24 | 03/15/1610:37 | 16MC23031 | MC23021 | 16PLC002S | 03/08/1614:00 | 03/10/16 | | KCH067-010 | C070-10 | ND | 1 | 3.8 | 4.16 | 0.52 | 1.04 | 03/23/1617:39 | 03/15/1610:37 | 16MC23032 | MC23021 / | 16PLC002S | 03/08/1614:05 | 03/10/16 | | KCH067-011 | C070-11 | 1.63J | 1 | 3.1 | 4.13 | 0.516 | 1.03 | 03/23/1617:53 | 3 03/15/1610:37 | 16MC23033 | MC23021/ | 16PLC002S | 03/08/1614:10 | 03/10/16 | | KCH067-012 | C070-12 | 22.4 | 1 | 3.5 | 4.15 | 0.518 | 1.04 | 03/24/1611:54 | 03/15/1610:37 | 16MC23051 | MC23046 | 16PLC002S | 03/08/1614:20 | 03/10/16 | | KCH067-013 | C070-13 | 2.1 7 J | 1 | 5.0 | 4.21 | 0.526 | 1.05 | 03/24/1612:09 | 03/15/1610:37 | 16MC23052 | MC23046 | 16PLC002S | 03/08/1614:25 | 03/10/16 | | KCH067-014 | C070-14 | 4.79 | 1 | 3.9 | 4.16 | 0.52 | 1.04 | 03/24/1612:23 | 3 03/15/1610:37 | 16MC23053 | MC23046 | 16PLC002S | 03/08/1614:30 | 03/10/16 | | KCH067-015 | C070-15 | ND | 1 | 3.6 | 4.15 | 0.519 | 1.04 | 03/24/1612:38 | 3 03/15/1610:37 | 16MC23054 | MC23046 | 16PLC002S | 03/08/1614:50 | 03/10/16 | | KCH067-016 | C070-16 | 2.53J | 1 | 2.8 | 4.12 | 0.514 | 1.03 | 03/24/1612:52 | 2 03/15/1610:37 | 16MC23055 | MC23046 | 16PLC002S | 03/08/1615:00 | 03/10/16 | | KCH067-016MS | C070-16M | 7.10 | 1 | 2.8 | 4.12 | 0.514 | 1.03 | 03/24/1613:07 | 03/15/1610:37 | 16MC23056 | MC23046 | 16PLC002S | 03/08/1615:00 | 03/10/16 | | KCH067-016MSD | C070-16S | 7.04 | 1 | 2.8 | 4.12 | 0.514 | 1.03 | 03/24/1613:21 | 03/15/1610:37 | 16MC23057 | MC23046 | 16PLC002S | 03/08/1615:00 | 03/10/16 | | KCH067-017 | C070-17 | 24.4 | 1 | 0.0 | 4 | 0.5 | 1 | 03/24/1613:36 | 03/15/1610:37 | 16MC23058 | MC23046 | 16PLC002S | 03/08/1615:20 | 03/10/16 | | KCH067-018 | C070-18 | 5.13 | 1 | 2.1 | 4.09 | 0.511 | 1.02 | 03/24/1613:51 | 03/15/1610:37 | 16MC23059 | MC23046 | 16PLC002S | 03/08/1615:30 | 03/10/16 | #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 36282A87 SDG #: 16C070 Laboratory: EMAX Laboratories Inc. Standard/Full Reviewer: 2nd Reviewer: METHOD: LC/MS Perchlorate (EPA SW846 Method 6850) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-----------
--|--------------|---------------------------------------| | <u>J.</u> | Sample receipt/Technical holding times | AIA | | | 11. | GC/MS Instrument performance check | 1 | auto Tune 2 | | 111. | Initial calibration/ICV | AIA | 0/0 PND ±20 1 1W ± 15 | | IV. | Continuing calibration | A | P CU = 15 LODV =] | | V. | Laboratory Blanks | Λ | | | VI. | Field blanks | NN | EB = KCH067-019 (160074) | | VII. | Surrogate spikes | 2 | not 12 quired (160074) | | VIII. | Matrix spike/Matrix spike duplicates | \(\) | V | | IX. | Laboratory control samples | Δ | KSIP | | X. | Field duplicates | N | | | XI. | Internal standards | <u> </u> | | | XII. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for Standard validation. | | XIII. | Target compound identification | Δ | Not reviewed for Standard validation. | | XIV. | System performance | 4 | Not reviewed for Standard validation. | | XV. | Overall assessment of data | Δ | | A = Acceptable Note: N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | "" Inc | licates sample underwent Full validation | | | | |-----------------------------|--|-------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1 | KCH067-005 | 16C070-05 | Soil | 03/08/16 | | 2 | KCH067-006 | 16C070-06 | Soil | 03/08/16 | | -
3 | KCH067-007 | 16C070-07 | Soil | 03/08/16 | | 4 | KCH067-008 | 16C070-08 | Soil | 03/08/16 | | -
5 | KCH067-009 | 16C070-09 | Soil | 03/08/16 | | 5
6
7
7
8
19 | KCH067-010 | 16C070-10 | Soil | 03/08/16 | | →
7 | KCH067-011 | 16C070-11 | Soil | 03/08/16 | | 1
8 | KCH067-012 | 16C070-12 | Soil | 03/08/16 | | 1
9 | KCH067-013 | 16C070-13 | Soil | 03/08/16 | | ተ
10 | KCH067-014 | 16C070-14 | Soil | 03/08/16 | | 11 | KCH067-015 | 16C070-15 | Soil | 03/08/16 | | †
12 | KCH067-016** | 16C070-16** | Soil | 03/08/16 | | †
13 | KCH067-017 | 16C070-17 | Soil | 03/08/16 | | SDG
Labo | #:_ 36282A87 VALIDATION COMPLETE #:_ 16C070 Standard pratory: EMAX Laboratories Inc. THOD: LC/MS Perchlorate (EPA SW846 Method 6850) | 2nd | Date: <u>5/10/16</u> Page: <u>7</u> 6f <u>7</u> Reviewer: <u>F7</u> 2nd Reviewer: <u>/</u> t | | | |-------------|---|----------|--|--------|----------| | | Client ID | | Lab ID | Matrix | Date | | 14 | KCH067-018 | | 16C070-18 | Soil | 03/08/16 | | 15 | KCH067-016MS | | 16C070-16MS | Soil | 03/08/16 | | 16 | KCH067-016MSD | | 16C070-16MSD | Soil | 03/08/16 | | 17 | | | | | | | 18 | | | | | | | 19 | | | | | | | 20 | | | | | | | 21 | | | | | | | Note | PS: | <u> </u> | | | | | | | | | | | | | | | | | | LDC#: 36282A87 ## VALIDATION FINDINGS CHECKLIST | | Page:_ | _/of_ | 2 | |--------|----------|-------|---| | Re | viewer:_ | | ラ | | 2nd Re | viewer: | a | | Method: Perchlorate (EPA SW 846 Method 6850) | Validation Area | Yes | No | NA | Findings/Comments | |--|---|--------------------|-------------------|---| | If Technical holding times | | | | | | Were all technical holding times met? | _ | | | | | Was cooler temperature criteria met? | | | | | | II. LC/MS instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the specified criteria? | / | | | | | Were the Perchlorate ions within ±0.3 m/z of mass 99,101 and 107? | | | | | | IIIa: Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | W | | V | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990? | 1 | | | | | Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8? | / | zana dzione su pos | second control to | | | IIIb: Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | <u> </u> | | | | Were all percent differences (%D) ≤ 15%? | | Car(1988 In 1989) | (vumberezote | | | IV. Continuing calibration | | l | · · · · · · | | | Was a continuing calibration analyzed daily? | / | | | | | Were all percent differences (%D) of the mid-range continuing calibration \leq 15%? | / | | | | | Were all percent differences (%D) of the low-range continuing calibration ≤ 50%? | / | | | | | Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8? | V | L. | n sousses | | | V≼Laboratory Blanks: | | Γ | l . | na tempanakan perakan dan kelalah dan kelalah dan kelalah dan berapakan dan berapakan dan berapakan dan berapa
I | | Was a laboratory blank associated with every sample in this SDG? | , , | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | ļ | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | ~ | | | | VI-Eield blanks | | | | | | Were field blanks identified in this SDG? | ~ | | | | | Were target compounds detected in the field blanks? | | / | | | | VIII: Mátrix spike/Matrix spike duplicates | e de la companya | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | LDC#: 36282 A87 ### VALIDATION FINDINGS CHECKLIST Page: of 2 Reviewer: F2 2nd Reviewer: M | Validation Area | Yes | No | NA | Findings/Comments | |---|------|--------------|-------------|----------------------| | | 163 | NO | INA | r indings/continents | | IX. Laboratory control samples | | | Tarini
I | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | / | <u> </u> | | | Were target compounds detected in the field duplicates?. | | | | | | XI sinternal standards | | | | | | Were internal standard area counts within \pm 50% of the associated calibration standard? | _ | | | | | Were retention times of m/z 89 (Cl18O ₃ -) within 0.2 minutes of m/z 83 (ClO ₃ -)? | | | | | | XII.:Compound quantitation | | -46 | | *** | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XIII. Target compound identification | 34 S | | | | | Were relative retention times (RRT's) within 0.98 to 1.02? | | <u> </u> | | | | Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8? | | <u> </u> | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | | | | | | XIII Overall assessment of data | T-/ | <i>)</i>
 | T | | | Overall assessment of data was found to be acceptable. | | | | | LDC#: 36282 A87 SDG#: 10 cored ## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification Page:____of___ Reviewer:___/= 2nd Reviewer:_<u>/</u> Method: LCMS Perchlorate (Method 6850) | Calibration | : | | | (Y) | (X) | |-------------|--------|-------------|----------|-------------|---------------| | Date | System | Compound | Standard | Response | Concentration | | 3/3/2016 | LCMS | Perchlorate | 1 | 0.092049784 | 0.1 | | | | | 2 | 0.181001406 | 0.2 | | | | | 3 | 0.473018348 | 0.5 | | | | | 4 | 0.958156512 | 1 | | | | | 5 | 1.944112791 | 2 | | | | | 6 | 4.823551117 | 5 | | | | | 7 | 6.972141437 | 7.5 | **Regression Output** Reported | Constant | 0.022419 | -0.002295 | |------------------------------------|----------|-----------| | Std Err of Y Est | | | | R Squared | 0.999451 | 0.999500 | | Degrees of Freedom | | | | X Coefficient(s) | 0.937859 | 0.948471 | | Std Err of Coef. | | | | Correlation Coefficient | 0.999725 | | | Coefficient of Determination (r^2) | 0.999451 | 0.999500 | LDC#:_ 36282187 ### **VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification** | | / | | |---------------|----|----| | Page:_ | of | _/ | | Reviewer: | 9 | • | | 2nd Reviewer: | K | _ | METHOD: LC/MS Perchlorate (EPA Method 6850) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF Where: ave. RRF = initial calibration average RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | Reported
RRF
(CC) | Recalculated RRF (CC) | Reported
%D | Recalculated %D | |---|-------------|---------------------|--|--------------------------|-------------------------|------------------------|----------------|-----------------| | | MC2302) | 3/23/16 | | 2.0 | 1970 | 1.970 | 1.5 | 1.5 | | | | | | | | | | | | 2 | MC23046 | 3/24/16 | Perchlorace | 2.0 | 2.031 | 2.031 | 1.6 | 1.6 | | | | | | | | | | | | 3 | Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 36282187 ### **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page: | of_ | _/ | |---------------|-----|----| | Reviewer:_ | P | 7 | | 2nd Reviewer: | M | | METHOD: LC/MS perchlorate(EPA Method 6850) | The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below | |---| | using the following calculation: | % Recovery = 100 * (SSR - SR)/SA Where: SSR = Spiked sample result, SR = Sample result SA = Spike added RPD = I MSR - MSDR I * 2/(MSR + MSDR) MS/MSD samples: K 4 16 | | Sr
Ad | Spike
Added Co | | Spiked Sample
Concentration | | Matrix | Spike | Matrix Spik | e Duplicate | Reported | Recalculat
ed | |------------|----------|-------------------|---------|--------------------------------|------|-----------|-------------------------|-------------|-------------|----------|------------------| | Compound | ('vg | lkg) | (ng/kg) | (na | lkd | Percent I | ercent Recovery Percent | | Recovery | RPD | RPD | | | MS | MSD | | MS | MSD | Reported | Recalc | Reported | Recalc | | | | Perchloran | 4.115 | 4.115 | 2-53 | 7.10 | 7.04 | 111 | 111 | IIU | CII | ١ | ١ | *** | Comments: | Refer to Matrix Spike/Matrix | Spike Duplicate find | ngs worksheet for lis | t of qualifications a | nd associated sa | amples when repo | orted results do n | ot agree within | |--------------|------------------------------|----------------------|-----------------------|-----------------------|------------------|------------------|--------------------|-----------------| | 10.0% of the | e recalculated results. | | | | | | | | LDC#: 36282187 ## VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Sample Results Verification</u> | | Page:_ | of_ | / | |-----|------------|-----|---| | | Reviewer:_ | _ 5 | 2 | | 2nd | Reviewer:_ | X | | | | | | | METHOD: LC/MS Perchlorate (EPA Method 6850) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCS - LCSD I * 2/(LCS + LCSD) LCS = Laboraotry control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS ID: Les 10 | Compound | Ad | ike
ded
KA | Spiked Sample Concentration (wax 44 Percent Recovery | | I CSD Percent Recovery | | L CS/L CSD
RPD | | | | |--------------|----|------------------|--|------|------------------------|--------|-------------------|--------|--------------|--------------| | *** | |) | LCS | | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Perchlo rale | 4 | 4 | 4.50 | 4.48 | 112 | 112 | 112 | 112 | _O | 0 | | | | | | | | | | | | | | | | | | | _ | - | Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. C:\Users\ftanguilig\Desktop\WORKSHEETS\LCMS 6850\L4\LCSCLC 331.0M.wpd LDC#: 36282A87 ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | <u>1_of_1_</u> | |----------------|----------------| | Reviewer:_ | FT | | 2nd reviewer:_ | A | METHOD: LCMS (EPA SW 846 Method 6850) | M | N | N/A | |-----------|---|-----| | <u> Y</u> | N | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Concen | tration | $n = \frac{(A_{\cdot})(I_{s})(V_{\cdot})(DF)(2.0)}{(A_{ts})(RRF)(V_{o})(V_{\cdot})(%S)}$ | |----------------|---------|--| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | l _s | = | Amount of internal standard added in nanograms (ng) | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | V_{l} | = | Volume of extract injected in microliters (ul) | | V_t | = | Volume of the concentrated extract in microliters (ul) | | Df | = | Dilution Factor. | | %S | = | Percent solids, applicable to soil and solid matrices only. | | | | | | Example: | |---| | Sample I.D. # 12, Perichlorau | | $conc. = \frac{\left(\frac{14039}{122932} + 0.00229468\right)(40)}{(0.948471)(2)(0.972)}$ | | (0.948471)(2)(0.972) | | 2.53 ug/kg | 2.0 Factor of 2 to account for GPC cleanup Reported Calculated Concentration Concentration # Sample ID Compound Qualification # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: Volatiles Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-019 | 16C074-01 | Water | 03/08/16 | | KCH067-021 | 16C074-02 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical
advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. Average relative response factors (RRF) for all compounds were within validation criteria with the following exceptions: | Date | Compound | RRF (Limits) | Associated
Samples | Flag | A or P | |----------|--------------------|---------------|---------------------------|----------------------|--------| | 02/26/16 | tert-Butyl alcohol | 0.007 (≥0.01) | All samples in SDG 16C074 | UJ (all non-detects) | Α | The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria with the following exceptions: | Date | Compound | RRF (Limits) | Associated
Samples | Flag | A or P | |----------|--------------------|---------------|---------------------------|----------------------|--------| | 03/14/16 | tert-Butyl alcohol | 0.007 (≥0.01) | All samples in SDG 16C074 | UJ (all non-detects) | Α | #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-021 was identified as a trip blank. No contaminants were found. Sample KCH067-019 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|------------------|---------------|-----------------------------------| | KCH067-019 | 03/08/16 | Carbon disulfide | 0.40 ug/L | No associated samples in this SDG | Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|----------|---------------|-----------------------| | KCH067-042 | 03/15/16 | Acetone | 4.1 ug/L | KCH067-019 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Level III validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Level III validation. #### XIV. System Performance Raw data were not reviewed for Level III validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to initial calibration and continuing calibration RRF, data were qualified as estimated in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### China Lake CTO 067 Volatiles - Data Qualification Summary - SDG 16C074 | Sample | Compound | Flag | A or P | Reason (Code) | |--------------------------|--------------------|----------------------|--------|----------------------------------| | KCH067-019
KCH067-021 | tert-Butyl alcohol | UJ (all non-detects) | А | Initial calibration (RRF) (5) | | KCH067-019
KCH067-021 | tert-Butyl alcohol | UJ (all non-detects) | Α | Continuing calibration (RRF) (5) | #### China Lake CTO 067 Volatiles - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Volatiles - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG #### METHOD SW5030B/8260B VOLATILE ORGANICS BY GC/MS | Client : KLEINFELDER Project : NAWS CHINA LAKE, CT Batch No. : 16C074 Sample ID: KCH067-019 Lab Samp ID: C074-01 Lab File ID: RCC281 Ext Btch ID: V067C11 Calib. Ref.: RBC337 | 0 067 | Date Col Date Re Date Ex: Date Ar Dilution Matrix % Moistur Instrumer | llected: 03/leceived: 03/
tracted: 03/
nalyzed: 03/
Factor: 1
: WATI | 08/16
10/16
14/16 20:46
14/16 20:46
ER | |--|------------------------------|---|--|--| | PARAMETERS 1.1.1.2-TETRACHLOROETHANE 1.1.1.1-TRICHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TRICHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROETHENE 1.1-DICHLOROETHENE 1.1-DICHLOROPROPENE 1.2-3-TRICHLOROBENZENE 1.2-3-TRICHLOROBENZENE 1.2-4-TRICHLOROBENZENE 1.2-4-TRICHLOROBENZENE 1.2-DIBROMO-3-CHLOROPROPANE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.2-DICHLOROBENZENE 1.3-DICHLOROPROPANE 1.2-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 1.3-DICHLOROPROPANE 2-BUTANONE 2-CHLOROTOLUENE 2-BUTANONE 2-CHLOROTOLUENE ACETONE BENZENE BROMOCHLOROMETHANE BROMOCHLOROMETHANE BROMOCHLOROMETHANE BROMOFORM BROMOMETHANE CHLOROBENZENE CHLOROFORM CHLOROBENZENE CHLOROFORM CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE CHLOROFTHANE CHLOROFTHANE CHLOROFTHANE CHLOROFTHANE CHLOROFTHANE CHLOROPTHANE CHLOROPTHANE CHLOROPTHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DISPROMOCHLOROMETHANE N-PROPYLBENZENE
M-PROPYLBENZENE M-PROPYLBENZENE TERT-BUTYLBENZENE TER | T | Q) 000000000000000000000000000000000000 | LL):001100005555150000310006023160001056650070500005070705000011053573104353500010525 Y- 97/ | D1):000000000000000000000000000000000000 | | TOLUENE-D8 DIBROMOFLUOROMETHANE | 10.0
9.88
10.1
10.1 | 10.00
10.00 | 101
101 | 89-112
80-119 | Sto9116 #### METHOD SW5030B/8260B VOLATILE ORGANICS BY GC/MS | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C074 Sample ID: KCH067-021 Lab Sample ID: C074-02 Lab File ID: RCC266 Ext Btch ID: V067C11 Calib. Ref.: RBC337 | cto 067 | Date Co
Date R
Date Ex
Date A
Dilution
Matrix
% Moistu
Instrume | llected: 03/
eceived: 03/
tracted: 03/
nalyzed: 03/
Factor: 1
: WAT | 08/16
10/16
14/16 14:24
14/16 14:24
ER | |--|---|--|--|---| | PARAMETERS 1.1.2-TETRACHLOROETHANE 1.1.1-TRICHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.2-TETRACHLOROETHANE 1.1.1-DICHLOROETHANE 1.1-DICHLOROETHANE 1.1-DICHLOROPTOPENE 1.2.3-TRICHLOROBENZENE 1.2.3-TRICHLOROBENZENE 1.2.4-TRICHLOROBENZENE 1.2.4-TRIMETHYLBENZENE 1.2-DIBROMOG-3-CHLOROPROPANE 1.2-DICHLOROETHANE 1.2-DICHLOROETHANE 1.2-DICHLOROPROPANE 1.3-DICHLOROETHANE 1.3-DICHLOROBENZENE 2.2-DICHLOROPROPANE 2-CHLOROTOLUENE 2-BUTANONE 2-CHLOROTOLUENE ACETONE BROMOBENZENE BROMOBENZENE BROMOBICHLOROMETHANE BROMOMETHANE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROFORM CHLOROMETHANE CHLOROFORM CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMORETHANE ETHYLENE ETHYLENE ETHYLENE MY-YYLENES 4-METHYL-2-PENTANONE METHYLENE METHYLENE METHYLENE METHYLENE TETPTER THE THE TETPTER TOROTORITH THE TETPTER THE TETPTER THE TOROTORITH THE TETPTER THE TOROTORITH THE TETPTER THE TOROTORITH THE TETPTER TH | RESULTS (ug/L) | Instrume | | 87 - 2220202020202020202020202020202020202 | | NAPHTHALENE N-BUTYLBENZENE N-BUTYLBENZENE O-XYLENE P-ISOPROPYLTOLUENE SEC-BUTYLBENZENE STYRENE TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROFTHENE TERTIARY BUTYL ALCOHOL | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 0.000000000000000000000000000000000000 | 0 1.30
0 1.30
0 0.20
0 0.52
0 0.52
0 0.20
0 0 0.20
0 0 0.20
0 0 0.20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | SURROGATE PARAMETERS 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE | RESULTS
9.73
9.85
10.1
9.91 | SPK_AMT
10.00
10.00
10.00
10.00 | % RECOVERY
97.3
98.5
101
99.1 | 81-118
85-114
89-112
80-119 | Somb | SDG 7 | #:36282B1 VALIDATIO
#:_16C074
atory:_EMAX_Laboratories_Inc | | LETENESS
tandard | S WORKSHEET | | Date: 5/9/
Page: 1of /
Reviewer: F7 | |-----------------|--|---------------|---------------------|---|----------------|---| | METH | IOD: GC/MS Volatiles (EPA SW 846 Me | thod 8260E | 3) | | 2nd F | Reviewer: | | The sa
alida | amples listed below were reviewed for eation findings worksheets. | ich of the fo | ollowing valida | tion areas. Validatio | n findings are | noted in attached | | | Validation Area | | | Comm | ents | | | I. | Sample receipt/Technical holding times | A /A | | | | | | 11. | GC/MS Instrument performance check | Δ | | | | | | III. | Initial calibration/ICV | SWIA | % RSD | 415 | 101 | 14 20 | | IV. | Continuing calibration / Ending cw | SW | • | | Ca | 1 = 20 | | V. | Laboratory Blanks | Δ | SR = KO | 4067-042 (| 16C 129) | | | VI. | Field blanks | SW | EB= 1 | + TB- | 2 | | | VII. | Surrogate spikes | Δ | | | | | | VIII. | Matrix spike/Matrix spike duplicates | N | ac s | sample > | | | | IX. | Laboratory control samples | A | ws ID | sample > | | | | X. | Field duplicates | N | | | | | | XI. | Internal standards | Δ | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | A | | | | | | Note: | A = Acceptable N = Not provided/applicable R = Rir | lo compounds | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blan | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-019 | | | 16C074-01 | Water | 03/08/16 | | | KCH067-021 | | | 16C074-02 | Water | 03/08/16 | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | ا و | COLUMN TO THE PARTY OF PART | | | | | | | Votes | : | ***** | | | <u> </u> | | | 1 | MBLKIW | | | | 1 1 | | ### TARGET COMPOUND WORKSHEET #### METHOD: VOA | | | TABLE IN CO. | | | |------------------------------|---------------------------------|--|-----------------------------------|----------------------------| | A. Chloromethane | AA. Tetrachloroethene | AAA. 1,3,5-Trimethylbenzene | AAAA. Ethyl tert-butyl ether | A1. 1,3-Butadiene | | B. Bromomethane | BB. 1,1,2,2-Tetrachloroethane | BBB. 4-Chlorotoluene | BBBB. tert-Amyl methyl ether | B1. Hexane | | C. Vinyl choride | CC. Toluene | CCC. tert-Butylbenzene | CCCC. 1-Chlorohexane | C1. Heptane | | D. Chloroethane | DD. Chlorobenzene | DDD. 1,2,4-Trimethylbenzene | DDDD. Isopropyl
alcohol | D1. Propylene | | E. Methylene chloride | EE. Ethylbenzene | EEE. sec-Butylbenzene | EEEE. Acetonitrile | E1. Freon 11 | | F. Acetone | FF. Styrene | FFF. 1,3-Dichlorobenzene | FFFF. Acrolein | F1. Freon 12 | | G. Carbon disulfide | GG. Xylenes, total | GGG. p-Isopropyltoluene | GGGG. Acrylonitrile | G1. Freon 113 | | H. 1,1-Dichloroethene | HH. Vinyl acetate | HHH. 1,4-Dichlorobenzene | HHHH. 1,4-Dioxane | H1. Freon 114 | | I. 1,1-Dichloroethane | II. 2-Chloroethylvinyl ether | III. n-Butylbenzene | IIII. Isobutyl alcohol | I1. 2-Nitropropane | | J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane | JJJ. 1,2-Dichlorobenzene | JJJJ. Methacrylonitrile | J1. Dimethyl disulfide | | K. Chloroform | KK. Trichlorofluoromethane | KKK. 1,2,4-Trichlorobenzene | KKKK. Propionitrile | K1. 2,3-Dimethyl pentane | | L. 1,2-Dichloroethane | LL. Methyl-tert-butyl ether | LLL. Hexachlorobutadiene | LLLL. Ethyl ether | L1. 2,4-Dimethyl pentane | | M. 2-Butanone | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene | MMMM. Benzyl chloride | M1. 3,3-Dimethyl pentane | | N. 1,1,1-Trichloroethane | NN. Methyl ethyl ketone | NNN. 1,2,3-Trichlorobenzene | NNNN. lodomethane | N1. 2-Methylpentane | | O. Carbon tetrachloride | OO. 2,2-Dichloropropane | OOO. 1,3,5-Trichlorobenzene | OOOO.1,1-Difluoroethane | O1. 3-Methylpentane | | P. Bromodichloromethane | PP. Bromochloromethane | PPP. trans-1,2-Dichloroethene | PPPP. Tetrahydrofuran | P1. 3-Ethylpentane | | Q. 1,2-Dichloropropane | QQ. 1,1-Dichloropropene | QQQ. cis-1,2-Dichloroethene | QQQQ. Methyl acetate | Q1. 2,2-Dimethylpentane | | R. cis-1,3-Dichloropropene | RR. Dibromomethane | RRR. m,p-Xylenes | RRRR. Ethyl acetate | R1. 2,2,3- Trimethylbutane | | S. Trichloroethene | SS. 1,3-Dichloropropane | SSS. o-Xylene | SSSS. Cyclohexane | S1. 2,2,4-Trimethylpentane | | T. Dibromochloromethane | TT. 1,2-Dibromoethane | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methyl cyclohexane | T1. 2-Methylhexane | | U. 1,1,2-Trichloroethane | UU. 1,1,1,2-Tetrachloroethane | UUU. 1,2-Dichlorotetrafluoroethane | UUUU. Allyl chloride | U1. Nonanal | | V. Benzene | VV. Isopropylbenzene | VVV. 4-Ethyltoluene | VVVV. Methyl methacrylate | V1. 2-Methylnaphthalene | | W. trans-1,3-Dichloropropene | WW. Bromobenzene | WWW. Ethanol | WWWW. Ethyl methacrylate | W1. Methanol | | X. Bromoform | XX. 1,2,3-Trichloropropane | XXX. Di-isopropyl ether | XXXX. cis-1,4-Dichloro-2-butene | X1. 1,2,3-Trimethylbenzene | | Y. 4-Methyl-2-pentanone | YY. n-Propylbenzene | YYY. tert-Butanol | YYYY. trans-1,4-Dichloro-2-butene | Y1. | | Z. 2-Hexanone | ZZ. 2-Chlorotoluene | ZZZ. tert-Butyl alcohol | ZZZZ. Pentachloroethane | Z1. | LDC #: 36282B #### **VALIDATION FINDINGS WORKSHEET Initial Calibration** | Page:1_of | | |---------------|--| | Reviewer: FT | | | 2nd Reviewer: | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | Please see qualifications below for al | questions answered "N". Not applicable | questions are identified as "N/A". | |--|--|------------------------------------| |--|--|------------------------------------| Did the laboratory perform a 5 point calibration prior to sample analysis? W/N N/A N/A N/A Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?_____ Did the initial calibration meet the acceptance criteria? Were all %RSDs and RRFs within the validation criteria of <30/15 %RSD and >0.05 RRF.2 1,00- 5 | N |)N/A | Were all %RSDs and RR | Fs within the valid | dation criteria of ≤3 | 0/15 %RSD and ≥0.0 |)5 RRF ? | coll- | |---|----------|-----------------------|---|----------------------------------|--|---|----------------| | # | Date | Standard ID | Compound | Finding %RSD
(Limit: ≤30/15%) | Finding RRF
(Limit: <u>></u> 0.05) | Associated Samples | Qualifications | | | 2 26 16 | 1067B26-IGAL | 2 22 | | 0.007 (20.0 | 114 (1 | (ON) ALLIL | | | • | | | | ` | * | | | | ļ | | | | | **** | | | | | | | | | | | | | | | | | | * | <u> </u> | | | | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | <u> </u> | 1 | | | | | | | | | | with the state of | ALL |]. | | | | | | | - · · · · · · · · · · · · · · · · · · · | LDC#: 36282 B #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration** | Page:/_of′ | / | |---------------|---| | Reviewer:_FT | | | 2nd Reviewer: | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Were all %D and RRFs within the validation criteria of <20 %D and >0.05 RRF? 1.-01 - 5 | <u> </u> | <u>N/A</u> V | Vere all %D and RRFs | wd1 = 5 | | | | | |----------|--------------|----------------------|----------|--|-------------------------------|--------------------|----------------| | # | Date | Standard ID | Compound | Finding %D
(Limit: <u><</u> 20.0%) | Finding RRF
(Limit: ≥0.05) | Associated Samples | Qualifications | | | 3/14/16 | RCC257-CCV | 222 | | 0.007 (70.0) | all | (00) A/Lu[L | | | | | | | | / | | | | | | | | | | | | | | | | | | | | | ļ | | | | | | | | | <u> </u> | | | | | | | | | ļ | | | | | | | | | <u> </u> | | | | | <u> </u> | | | | | | | | | | | | | ļ | | | | | | | | | - | | | | | | | | | - | | | | | | | | | - | | | | | | | | | \vdash | | | | | | | | | <u> </u> | ļ | ı | חר | #. | 362 | 9 | 23 | |---|----|----|--------|-----|------| | ᆫ | UU | # | - DO L | - U | حروت | ## VALIDATION FINDINGS WORKSHEET Field Blanks | Page: <u>/</u> of | / | |-------------------|---| | Reviewer: FT | | | nd Reviewer 😿 | | | | blanks identifient to the blanks identified | ed in this SDG
detected in the | field blanks | ? | | | | | 2nd Re | viewer: 🔏 | |---
--|-----------------------------------|---------------|---------------|------|--|-------|------|--------|-----------| | Field blank type: (circle on | µட்) Field Blank | / Rinsate / Tri | p Blank / Oth | er: EB | Asso | ciated Samp | les: | none | | | | Compound | Blank ID | | | | S | ample Identific | ation | | | | | | 1 | 1 | | | | | | | | | | G | 0.40 | ····- | Blank units: White Ass
Sampling date: 3 15
Field blank type: (circle on | 5/16 | | 9 | er: <u>SB</u> | | ౖౖ HO67 - (
ciated Sampl | | 1 (| (QN | | | Compound | Blank ID | | | | S | ample Identific | ation | | | | | | 58 | | | | | | | | | | | F | 4,1 | 1 | | | | | | | <u>,, </u> | | | | | | | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U". # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 12, 2016 Parameters: Polynuclear Aromatic Hydrocarbons Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-019 | 16C074-01 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270C using Selected Ion Monitoring (SIM) All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses
specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Level III validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Level III validation. #### XIV. System Performance Raw data were not reviewed for Level III validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. #### China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG #### METHOD SW3520C/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS SIM | Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO Batch No. : 16C074 Sample ID: KCH067-019 Lab Samp ID: C074-01 Lab File ID: RCH084 Ext Btch ID: SVC011W Calib. Ref.: RAH047 | 0 067 | Date Col
Date Re
Date Ext
Date An
Dilution
Matrix
% Moistur
Instrumen | e :NA | 10/16
14/16 13:45
16/16 15:33
8
ER | |---|---|--|----------------------|---| | PARAMETERS ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(B)FLUORANTHENE BENZO(G, H, I)PERYLENE CHRYSENE DIBENZO(A, H)ANTHRACENE FLUORANTHENE FLUORANTHENE INDENO(1, 2, 3-CD)PYRENE NAPHTHALÉNE INDENO(1, 2, 3-CD)PYRENE NAPHTHALÉNE PYRENE 2-METHYLNAPHTHALENE 1-METHYLNAPHTHALENE | RESULTS (ug/L) ND | Loq
(ug/L)
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49 | DL) | LOD
(ug/L)
0.098
0.098
0.098
0.098
0.098
0.098
0.098
0.098
0.098
0.098
0.098
0.098 | | SURROGATE PARAMETERS 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 | RESULTS
14.0
15.4
15.3 | SPK_AMT 2
19.60
19.60
19.60 | 71.5
78.3
78.2 | QC LIMIT
53-106
55-111
58-132 | to The | SDG i | #: 36282B2b VALIDATIO #: 16C074 atory: EMAX Laboratories Inc. | | PLETENES
Standard | S WORKSHEET | | Date: <u>5 /9 //</u>
Page: <u>1 of _/</u>
Reviewer: | |--------|---|--------------|----------------------|---|-----------------|---| | | IOD: GC/MS Polynuclear Aromatic Hydro | ocarbons (| EPA SW 846 | Method 8270C-SIM | 2110 | Reviewer: F7
Reviewer: M | | | amples listed below were reviewed for ea
tion findings worksheets. | ich of the f | ollowing valid | ation areas. Validatio | on findings are | noted in attached | | | Validation Area | | | Comm | nents | | | 1. | Sample receipt/Technical holding times | ΔΙΔ | | | | | | 11. | GC/MS Instrument performance check | Δ | | | | | | III. | Initial calibration/ICV | AIA | % PAD | =15,1× | ICV = | 5 20 | | IV. | Continuing calibration / ending CW | Δ | | | CW = | 2 W | | V. | Laboratory Blanks | A | | | | | | VI. | Field blanks | ND | EB = | 1 SB = K | CH067-0 | 42 (160129 | | VII. | Surrogate spikes | | | , | | 1 | | VIII. | Matrix spike/Matrix spike duplicates | N | 8C 5 | sample | | | | IX. | Laboratory control samples | A | 100 10 | 3 | | | | Х. | Field duplicates | N | | | | | | XI. | Internal standards | \triangle | | | - | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | XIII. | Target compound identification | N | | <u> </u> | | | | XIV. | System performance | N | | | | | | | | A | <u> </u> | | | | | XV. | N = Not provided/applicable R = Rir | lo compound | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blar | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-019 | | | 16C074-01 | Water | 03/08/16 | | 2 | | _ | | | | | | 3 | | | | | | | | 4 | | _ | | | | | | 5 | | | | | _ | | | 6 | | | | | | | | 7 | | _ | | | | | | 8 | | | | | | | | 9 | | | | | | | | Notes: | : <u> </u> | | 1 1 | una Tild | | —————————————————————————————————————— | | N | BKIN | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 12, 2016 Parameters: **Chlorinated Pesticides** Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-019 | 16C074-01 | Water | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler
temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC Instrument Performance Check Instrument performance was checked at 12 hour intervals. The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions: | Date | Standard | Column | Compound | %D | Associated
Samples | Flag | A or P | |----------|----------|----------|-------------------------------------|----------------|------------------------------|--|--------| | 03/15/16 | ccv | RTX-CLP2 | alpha-BHC
gamma-BHC
delta-BHC | 28
21
21 | All samples in SDG
16C074 | UJ (all non-detects)
UJ (all non-detects)
UJ (all non-detects) | Α | #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Compound Quantitation Raw data were not reviewed for Level III validation. #### XII. Target Compound Identification Raw data were not reviewed for Level III validation. #### XIII. System Performance Raw data were not reviewed for Level III validation. #### XIII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to continuing calibration %D, data were qualified as estimated in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## China Lake CTO 067 Chlorinated Pesticides - Data Qualification Summary - SDG 16C074 | Sample | Compound | Flag | A or P | Reason (Code) | |------------|-------------------------------------|--|--------|---------------------------------| | KCH067-019 | alpha-BHC
gamma-BHC
delta-BHC | UJ (all non-detects)
UJ (all non-detects)
UJ (all non-detects) | Α | Continuing calibration (%D) (5) | China Lake CTO 067 Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG ### METHOD SW3520C/8081A PESTICIDES Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C074 Date Extracted: 03/14/16 11:45 Sample ID: KCH067-019 Date Analyzed: 03/15/16 15:50 Lab Samp ID: C074-01 Dilution Factor: 1 Lab File ID: RC15012A Matrix : WATER Ext Btch ID: CPC010W % Moisture : NA Calib. Ref.: RC15005A Instrument ID : F9 _______ | | RESULTS | | DL | LOD | |------------------------------|--------------------|--------------|------------|----------------| | PARAMETERS | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | AL DUA DUO | (ND) ND UJ (S) | 0.40 | 0.0050 | 0.040 | | ALPHA-BHC | (ND) ND | 0.10
0.10 | | 0.010 | | GAMMA-BHC (LINDANE) BETA-BHC | | 0.10 | | 0.010
0.010 | | HEPTACHLOR | (ND) ND
(ND) ND | 0.10 | | 0.010 | | DELTA-BHC | (ND) ND WJ (5) | 0.10 | | 0.010 | | ALDRIN | (ND) ND | 0.10 | | 0.010 | | HEPTACHLOR EPOXIDE | (ND) ND | 0.10 | | 0.010 | | GAMMA-CHLORDANE | (ND) ND | 0.10 | | 0.010 | | ALPHA-CHLORDANE | (ND) ND | 0.10 | | 0.010 | | ENDOSULFAN I | (ND) ND | 0.10 | | 0.010 | | 4,4'-DDE | (ND) ND | 0.10 | | 0.010 | | DIELDRIN | (ND) ND | 0.10 | | 0.010 | | ENDRIN | (ND) ND | 0.10 | | 0.010 | | 4,4'-DDD | (ND) ND | 0.10 | | 0.010 | | ENDOSULFAN II | (ND) ND | 0.10 | _ | 0.010 | | 4.4'-DDT | (ND) ND | 0.10 | 0.0050 | 0.010 | | ENDRIN ALDEHYDE | (ND) ND | 0.10 | 0.0050 | 0.010 | | ENDOSULFAN SULFATE | (ND) ND | 0.10 | 0.0050 | 0.010 | | ENDRIN KETONE | (ND) ND | ~ 0.10 | 0.0050 | 0.010 | | METHOXYCHLOR | (ND) ND | 1.0 | 0.050 | 0.10 | | TOXAPHENE | (ND) ND | 2.0 | 0.25 | 0.50 | | TECHNICAL CHLORDANE | (ND) ND | 1.0 | 0.25 | 0.50 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 0.3390 (0.4145) | 0.4000 8 | 34.8 (104) | 44-124 | #### RL: Reporting limit Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by () Note: Technical Chlordane result was reported from analysis run data file ID RC22008 associated with calibration file ID RC22005. ENTING | SDG #
Labora | t: 16C074
atory: EMAX Laboratories Inc. | Si | tandard | S WORKSHEE | | Date: 5 /c Page: _/ of Reviewer: | |---------------------------------------|--|--|---------------------------------------|--|------------------|----------------------------------| | METH | OD: GC Chlorinated Pesticides (EPA | SW846 Metho | od 8081A) | | | | | | amples listed below were reviewed for ion findings worksheets. | each of the fo | llowing valida | tion areas. Validat | ion findings are | noted in attached | | | Validation Area | | | Com | ments _ | | | | Sample receipt/Technical holding times | A ,A | | | | | | I.
 | GC Instrument Performance Check | Δ | | | | | | · · · · · · · · · · · · · · · · · · · | Initial calibration/ICV | A/A | ٥ | % PSD/ICV | £ 20 | | | IV. | Continuing calibration | SW | | COV | £ 20) | | | V. | Laboratory Blanks | Δ | | | | - | | VI. | Field blanks | NO | EB= | SB- 1 | cc 4067-0 | 42 (160129 | | VII. | Surrogate spikes | \triangle | | | | | | VIII. | Matrix spike/Matrix spike duplicates | N | ac. | sample | | | | IX. | Laboratory control samples | A | ias Ir | V . | | | | X. | Field duplicates | N | | | | | | XI. | Compound quantitation/RL/LOQ/LODs | N | | | | | | XII. | Target compound identification | N | | | | | | XIII. | System Performance | N | | | · · · · | | | LXIV | Overall assessment of data | <u>\</u> | | | | | | Note: | N = Not provided/applicable R = | = No compounds
Rinsate
= Field blank | detected | D = Duplicate
TB = Trip blank
EB = Equipment bla | OTHER | rce blank | | | Client ID | | | Lab ID | Matrix | Date | |
 1 1 | CH067-019 | | | 16C074-01 | Water | 03/08/16 | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | · · · · · · · · · · · · · · · · · · · | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 11 | | | | | | | | Notes: | | | | | | | MOLKIN ### **VALIDATION FINDINGS WORKSHEET** METHOD: Pesticide/PCBs (EPA SW 846 Method 8081/8082) | A. alpha-BHC | I. Dieldrin | Q. Endrin ketone | Y. Aroclor-1242 | GG. Chlordane | |-----------------------|-----------------------|--------------------|-----------------------|---------------------------| | B. beta-BHC | J. 4,4'-DDE | R. Endrin aldehyde | Z. Aroclor-1248 | HH. Chlordane (Technical) | | C. delta-BHC | K. Endrin | S. alpha-Chlordane | AA. Aroclor-1254 | II. Arochlor 1262 | | D. gamma-BHC | L. Endosulfan II | T. gamma-Chlordane | BB. Aroclor-1260 | JJ. Aroclor 1268 | | E. Heptachlor | M. 4,4'-DDD | U. Toxaphene | CC. 2,4'-DDD | KK. Oxychlordane | | F. Aldrin | N. Endosulfan sulfate | V. Aroclor-1016 | DD. 2,4'-DDE | LL. trans-Nonachlor | | G. Heptachlor epoxide | O. 4,4'-DDT | W. Aroclor-1221 | EE. 2,4'-DDT | MM. cis-Nonachlor | | H. Endosulfan I | P. Methoxychlor | X. Aroclor-1232 | FF. Hexachlorobenzene | NN. | | Notes: | |
 | |--------|--------------|---| | |
<u> </u> |
· · · · · · · · · · · · · · · · · · · | | LDC #: 50 | 282B | 300 | |-----------|------|-----| |-----------|------|-----| #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration** | Page:_ | / _{of_} / | |----------------|--------------------| | Reviewer:_ | FT | | 2nd Reviewer:_ | R | | | _ | Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Mhat type of continuing calibration calculation was performed? $_$ %D or $_$ %R N/N/A Were continuing calibration standards analyzed at the required frequencies? Y N N/A Did the continuing calibration standards meet the %D / %R validation criteria of ≤20.0% / 80-120%? Level IV Only Were the retention times for all calibrated compounds within their respective acceptance windows? ww = 5 | | L/N/A/ | Were the retention t | illies
ioi ali cai | ibrated compou | nas within their res | spective acce | plance windows? | 000 = 0 | |----------|----------------|---|--------------------|---|----------------------|---------------------------------------|--------------------|----------------| | | | | Detector/ | | %D | | | | | # | Date | Standard ID | Column | Compound | (Limit ≤ 20.0) | RT (limit) | Associated Samples | Qualifications | | | 3 15 16 | PC15005B-CW | RTX-CUPZ | A | 28 | | A II | DN S/LN/L | | | | | | D | 2) | | 1 | | | | | | | C | 21 | | J | V | | | | | | | | | • | - | | | | | | | | | | | | | | | - | : | · | | | | | | | | | | | | | 7,4 | | | | | | **** | A - WANGE | | | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | <u> </u> | | | | | | | | | <u> </u> | | - · · · · · · · · · · · · · · · · · · · | - | . | | | | | | | | | | 1 | | | | | | | | | \vdash | | | | | | | | | | - | | | | | | | | | | $\ -$ | | | | | | | | | | - | | | - | | | H-Sr | | | | | | | · · · · | - · · · · · · · · · · · · · · · · · · · | | | | | | Ц | 1 | | | | | | I | <u> </u> | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 11, 2016 Parameters: Polychlorinated Biphenyls Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-019 | 16C074-01 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. # III. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. # IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. # VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # IX. Field Duplicates No field duplicates were identified in this SDG. # X. Compound Quantitation Raw data were not reviewed for Level III validation. # XI. Target Compound Identification Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Polychlorinated Biphenyls - Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG #### METHOD SW3520C/8082 PCBs Lab Samp ID: C074-01 Dilution Factor: 1 Lab File ID: SC15016A Matrix : WATER Ext Btch ID: CPC010W % Moisture : NA Calib. Ref.: SC15002A Instrument ID : GCT008 ______ | | RESULTS | <u>L</u> i | DC DL | LOD | |----------------------|-----------------|------------|-------------|----------| | PARAMETERS | (ug/L) | (ug/l | L) (ug/L) | (ug/L) | | | | | | | | AROCLOR 1016 | (ND) ND | 1 | .0 0.45 | 0.50 | | AROCLOR 1221 | (ND) ND | 1 | .0 0.29 | 0.50 | | AROCLOR 1232 | (ND) ND | 1 | .0 0.25 | 0.50 | | AROCLOR 1242 | (ND) ND | 1 | .0 0.25 | 0.50 | | AROCLOR 1248 | (ND) ND | 1 | .0 0.25 | 0.50 | | AROCLOR 1254 | (ND) ND | 1 | .0 0.25 | 0.50 | | AROCLOR 1260 | (ND) ND | 1 | .0 0.31 | 0.50 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | TETRACHLORO-M-XYLENE | 0.3434 (0.3751) | 0.4000 | 85.8 (93.8) | 60-130 | Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by () 851716 ^{*} Out side of QC Limit | | | | | S WORKSHEET | | Date: 5/ | |---------|--|--|---------------------|---|-------------------------|---| | | #: <u>16C074</u> | S | tandard | | _ | Page:_/_of/ | | Labor | atory: EMAX Laboratories Inc. | | | | Pand F | Page: /of /
Reviewer: /=
Reviewer: // | | METH | HOD: GC Polychlorinated Biphenyl | s (EPA SW846 M | ethod 8082) | | ZIIG I |
COVICOVOI. | | | | | | | 5 | | | | amples listed below were reviewed
tion findings worksheets. | tor each of the fo | ollowing valida | tion areas. Validati | on findings are | noted in attached | | - Tanaa | | | | | | | | | Validation Area | | | Comr | nents | | | 1. | Sample receipt/Technical holding times | A/A | , | | | | | II. | Initial calibration/ICV | AIA | 0/0 1 | POD/IN = | 20 | | | III. | Continuing calibration | Δ | | | 20 | | | IV. | Laboratory Blanks | Δ | | | | | | V. | Field blanks | ND | EB=1 | _5B = K | CHO67 - | 042 | | VI. | Surrogate spikes | Δ | | | (160) | 29) | | VII. | Matrix spike/Matrix spike duplicates | 7 | oc | sample | | | | VIII. | Laboratory control samples | A | LCS I | <u> </u> | | | | IX. | Field duplicates | N | | | | | | X. | Compound quantitation/RL/LOQ/LODs | N | | | | | | XI. | Target compound identification | N | | | | | | LXIL | Overall assessment of data | | | | | | | Note: | A = Acceptable N = Not provided/applicable SW = See worksheet | ND = No compounds
R = Rinsate
FB = Field blank | detected | D = Duplicate
TB = Trip blank
EB = Equipment blan | SB=Sour
OTHER:
nk | ce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-019 | | | 16C074-01 | Water | 03/08/16 | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | 1 11 11 11 11 11 11 | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 11 | | | | | | | | 12 | | | | | | | | 13 | | | - | L | | | | Notes | • | | | | | | MBLKW # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 13, 2016 Parameters: Metals Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-019 | 16C074-01 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7470A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other # I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met. #### II. ICPMS Tune The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%. #### III. Instrument Calibration Initial and continuing calibrations were performed as required by the methods. The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits. ### IV. ICP Interference Check Sample Analysis The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits. # V. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions: | Laboratory Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |---------------------|---------|--------------------------|---------------------------| | ICB/CCB | Iron | 5.17 ug/L | All samples in SDG 16C074 | Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Analyte | Reported
Concentration | Modified Final
Concentration | |------------|---------|---------------------------|---------------------------------| | KCH067-019 | Iron | 9.85 ug/L | 10.0U ug/L | #### VI. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Analyte | Concentration | Associated
Samples | |------------|--------------------|---|---|--------------------------------------| | KCH067-019 | 03/08/16 | Boron
Calcium
Iron
Lead
Manganese
Nickel
Sodium | 4.65 ug/L
135 ug/L
9.85 ug/L
0.225 ug/L
0.318 ug/L
0.161 ug/L
42.6 ug/L | No associated samples in this
SDG | Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Analyte | Concentration | Associated
Samples | |------------|--------------------|---|---|---------------------------| | KCH067-042 | 03/15/16 | Barium
Boron
Calcium
Chromium
Copper
Lead
Magnesium
Sodium | 0.277 ug/L
4.00 ug/L
34.7 ug/L
0.101 ug/L
0.811 ug/L
0.0528 ug/L
7.51 ug/L
35.3 ug/L | All samples in SDG 16C074 | Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions: | Sample | Analyte | Reported
Concentration | Modified Final
Concentration | |------------|---------|---------------------------|---------------------------------| | KCH067-019 | Boron | 4.65 ug/L | 5.00U ug/L | | | Lead | 0.225 ug/L | 0.225U ug/L | | | Sodium | 42.6 ug/L | 50.0U ug/L | # VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## VIII. Duplicate Sample Analysis The laboratory has indicated that there were no
duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG. #### IX. Serial Dilution Serial dilution analysis was performed on an associated project sample. The analysis criteria were met. ## X. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # XI. Field Duplicates No field duplicates were identified in this SDG. # XII. Internal Standards (ICP-MS) ICP-MS was not utilized in this SDG. #### XIII. Sample Result Verification Raw data were not reviewed for Level III validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the methods. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected in one sample. Due to source blank contamination, data were qualified as not detected in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. # China Lake CTO 067 Metals - Data Qualification Summary - SDG 16C074 # No Sample Data Qualified in this SDG # China Lake CTO 067 Metals - Laboratory Blank Data Qualification Summary - SDG 16C074 | Sample | Analyte | Modified Final
Concentration | A or P | Code | |------------|---------|---------------------------------|--------|------| | KCH067-019 | Iron | 10.0U ug/L | А | 7 | # China Lake CTO 067 Metals - Field Blank Data Qualification Summary - SDG 16C074 | Sample | Analyte | Modified Final
Concentration | A or P | Code | |------------|-------------------------|---|--------|------| | KCH067-019 | Boron
Lead
Sodium | 5.00U ug/L
0.225U ug/L
50.0U ug/L | A | 6 | ### METHOD SW6020A METALS BY ICP-MS | Client : KLEINFELDER | Date Collected: 03/08/16 | |------------------------------------|--------------------------------| | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/10/16 | | SDG NO. : 16C074 | Date Extracted: 03/16/16 11:07 | | Sample ID: KCH067-019 | Date Analyzed: 03/24/16 12:39 | | Lab Samp ID: C074-01 | Dilution Factor: 1 | | Lab File ID: F6C08022 | Matrix · : WATER | | Ext Btch ID: IMC027W | <pre>% Moisture : NA</pre> | | Calib. Ref.: F6C08016 | Instrument ID : T-IF6 | | | | | | RESULTS 100 DI 100 | | PARAMETERS | RESULTS
(ug/L) | L0Q
(ug/L) | DL
(ug/L) | LOD
(ug/L) | |------------|-------------------|-----------------|-------------------|---------------| | Aluminum | ND | 100 | 10.0 | 20.0 | | Antimony | ND | 1.00 | 0.250 | 0.500 | | Arsenic | ND | 1.00 | 0.100 | 0.200 | | Barium | ND | 1.00 | 0.250 | 0.500 | | Beryllium | ND | 1.00 | . 0.0500 | 0.100 | | Boron | 4.65J 🗲 | 10.0 | (b) 2.50 | 5.00 | | Cadmium | ND | 1.00 | 0.100 | 0.200 | | Calcium | 135 | 100 | 13.0 | 25.0 | | Chromium | ND | 1.00 | 0.100 | 0.200 | | Cobalt | ND | 1.00 | 0.100 | 0.200 | | Copper | ND | 1.00 |) 0.250 | 0.500 | | Iron | 9.85J | 0.0 U 100 | (T / 5.00 | 10.0 | | Lead | 0.225J | 1.00 | (6)0.0500 | 0.100 | | Magnesium | ND | 100 | 5.00 | 10.0 | | Manganese | 0.318J | 1.00 | 0.100 | 0.200 | | Molybdenum | ND | 2.00 | 0.250 | 0.500 | | Nickel | 0.161J | 1.00 | 0.100 | 0.200 | | Potassium | ND | 100 | 10.0 | 20.0 | | Selenium | ND | 1.00 | 0.150 | 0.300 | | Silver | ND | 1.00 | 0.100 | 0.200 | | Sodium | 42.6J S | 2. U 100 | (<i>b</i>) 25.0 | 50.0 | | Thallium | ND | 1.00 | 0.100 | 0.200 | | Vanadium | ND | 1.00 | 0.250 | 0.500 | | Zinc | ND | 20.0 | 5.00 | 10.0 | \$17/16 8 #### METHOD SW7470A MERCURY BY COLD VAPOR Project : NAWS CHINA LAKE, CTO 067 InstrumentID : 47 Batch No. : 16C074 | CLIENT | EMAX | RESULTS | DIL'N | MOIST | LOQ | DL | LOD | ANALYSIS | PREPARATION | DATA | CAL | PREP | COLLECTION | RECEIVED | |------------|-----------|---------|--------|-------|--------|-----------------|--------|---------------|---------------|------------|---------|---------|---------------|---| | SAMPLE ID | SAMPLE ID | (ug/L) | FACTOR | (X) | (ug/L) | (ug/L) | (ug/L) | DATETIME | DATETIME | FILE ID | REF | BATCH | DATETIME | DATETIME | | | | | | | | • • • • • • • • | | | | | | | | • | | MBLK1W | HGC014WB | ND | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:11 | 03/22/1616:30 | M47C011011 | M47C011 | HGC014W | NA | NA | | LCS1W | HGC014WL | 2.38 | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:13 | 03/22/1616:30 | M47C011012 | M47C011 | HGC014W | NA | NA | | LCD1W | HGC014WC | 2.40 | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:15 | 03/22/1616:30 | M47C011013 | M47C011 | HGC014W | NA | NA | | KCH067-019 | C074-01 | ND | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:42 | 03/22/1616:30 | M47C011025 | M47C011 | HGC014W | 03/08/1617:35 | 03/10/16 | | | | | | | WORKSHEET | Г | Date: 5/10/ | |--------|---|--------------------------------------|-------------|---------------------------------------|--|-------------------|------------------| | | :16C074
atory:_EMAX_Laboratories Inc | 3 | Standard | a | | | _ Page: <u> </u> | | Labora | ROLY. EINIAN LABORATORIES IIIC. | | | | | | Reviewer: | | METH | OD: Metals (EPA SW 846 Method 6020 | OA/7470A) | | | | | | | The ee | mentes listed below, were reviewed for a | ach of the f | iallawina v | volidati. | on areas Validati | ian findinga ara | noted in attache | | | imples listed below were reviewed for e
ion findings worksheets. | acii oi iile i | ollowing \ | valluatit | on areas. Validati | ion illidings are | noted in attache | | | | | <u> </u> | | | | | | | Validation Area | | 1 | | Comr | ments | | | l. | Sample receipt/Technical holding times | A | 03/5 | 21/8 | | | | | II. | ICP/MS Tune | A | | (| | | | | 111. | Instrument Calibration | A | | | | | | | IV. | ICP Interference Check Sample (ICS) Analysis | A | 1 | | | | | | V. | Laboratory Blanks | SW | | | | | | | VI. | Field Blanks | 300 | FR- | 65 | ; SB=KCH065 | 1-01/2/50/- | 16(178) | | VI. | Matrix Spike/Matrix Spike Duplicates | 100 | 25 |) | , 36- Farice | 1-0421300- | | | VIII. | | 1) | | | | | | | IX. | Duplicate sample analysis | | | | | | | | | Serial Dilution | A | الخكا | <u></u> | | | | | X | Laboratory control samples | 12 | 1000 | <u> </u> | | | | | XI. | Field Duplicates Internal Standard (ICP-MS) | 13 | Not | Pa | nerseg | | | | XIII. | | | 1001 | 72 | DECRECT | | | | XIV | Sample Result Verification Overall Assessment of Data | 1 R | | · · · · · · · · · · · · · · · · · · · | | | | | Note: | A = Acceptable ND = N = Not provided/applicable R = R | No compound
insate
Field blank | ls detected | | D = Duplicate
TB = Trip blank
EB = Equipment bla | OTHER: | rce blank | | | Client ID | | | | _ab ID | Matrix | Date | | | (CH067-019 | | · | 1. | 16C074-01 | Water | 03/08/16 | | 2 | 2 - C - C - C - C - C - C - C - C - C - | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | | | | | | | | | 6 | | | | | | | | | 7 | | ***** | | | | | * | | 8 | | | | | age (White Mark) | | | | 9 | | | | | | | | | 10 | | | | | | | | | 11 | | | | | | | | | - | | | | - | ···· | | | Notes: LDC #: 3628284 # VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference Page: of Pag All circled elements are applicable to each sample. | Sample ID | | \bigcirc | |-----------|---|--| | | W | (Al/Sb)(As)(Ba)(Be),Cd,Ca)(Cr,Co)(Cu),Fe,Pb,)Mg) Mn/Hg/Ni)(K)(Se),Ag(Na),TI)(V)/Zn,Mo), B) Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag,
Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Analysis Method | | ICP | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | ICP-MS | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | GEAA | | Al Sh. As. Ba. Be. Cd. Ca. Cr. Co. Cu. Fe. Ph. Mg. Mn. Hg. Ni, K. Se. Ag. Na. Tl. V. Zn. Mo. B. Sn. Ti. | Comments: Mercury by CVAA if performed LDC #: 36282B4a Maximum PBª <u>(mg/Ka)</u> Analyte Fe #### **VALIDATION FINDINGS WORKSHEET** PB/ICB/CCB QUALIFIED SAMPLES Page: 1 of 1 Reviewer: JD METHOD: Metals (EPA SW 864 Method 6010/6020/7000) Maximum PB^a (ug/L) Soil preparation factor applied: 2nd Reviewer: Sample Concentration units, unless otherwise noted: ΑII (m) **Associated Samples:** ug/L Sample Identification Maximum Blank 1 ICB/CCB^a Action (ug/L) Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. 9.85/100 10.0 U I imit 5.17 LDC #: 36282B4a # VALIDATION FINDINGS WORKSHEET Field Blanks Page: lof \ Reviewer: \(\square \) 2nd Reviewer: \(\square \) METHOD: Trace Metals (EPA Method 200.7/200.8) Blank units: ug/L Associated sample units: mg/kg Sampling date: 03/08/16 Soil factor applied 50X Field blank type: (circle one) Field Blank / Rinsate / Other: EB Associated Samples: None (06) | Analyte | Blank ID | | Sample Identification | | | | | | | | | | |---------|----------|--------------|-----------------------|---------------------------------------|--|--|---|--|--|--|--|--| | | 1 | Action Limit | No Qual. | | | | | | | | | | | В | 4.65 | | | | | | | | | | | | | Ca | 135 | 67.5 | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | Fe | 9.85 | | . , | <u> </u> | | | | | | | | | | Pb | 0.225 | | | _ | | | | | | | | | | Mn | 0.318 | | | | | | _ | | | | | | | Ni | 0.161 | | | | | | | | | | | | | Na | 42.6 | | | | | | | | | | | | Blank units: ug/L Associated sample units: ug/L | | 7 (| | / Hotel Blank / Hillocks / Guilott GB/ / Hoodstated Guillotte. / Hill \documents | | | | | | | | | | |---------|--------------------------------|--------------|--|----------|--|--|----------|--|--|---|--|--| | Analyte | Blank ID | | Sample Identification | | | | | | | | | | | | KCH067-042
(SDG:16C12
9) | Action Limit | 1 | | | | | | | | | | | Ва | 0.277 | | | | | | | | | : | | | | В | 4.00 | | 4.65/1 0.0 \$ | Na | | | | | | | | | | Ca | 34.7 | | | <u>'</u> | | | <u> </u> | | | | | | | Cr | 0.101 | | | | | | | | | | | | | Cu | 0.811 | | | | | | | | | | | | | Pb | 0.0528 | | 0.225/ 1.00 | | | | | | | | | | | Mg | 7.51 | | | | | | | | | | | | | Na | 35.3 | | 42.6/ 100. (| 00 | | | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 12, 2016 Parameters: Hexavalent Chromium Validation Level: Level III **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-019 | 16C074-01 | Water | 03/08/16 | | KCH067-019MS | 16C074-01MS | Water | 03/08/16 | | KCH067-019MSD | 16C074-01MSD | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Hexavalent Chromium by Environmental Protection Agency (EPA) SW 846 Method 7199 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other # I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met. #### II. Initial Calibration All criteria for the initial calibration were met. # III. Continuing Calibration Continuing calibration frequency and analysis criteria were met. ### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. # VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VII. Duplicate Sample Analysis The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. # X. Sample Result Verification Raw data were not reviewed for Level III validation. # XI. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The
quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Hexavalent Chromium - Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Hexavalent Chromium - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG METHOD SW7199 HEXAVALENT CHROMIUM Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C074 Matrix : WATER InstrumentID : 59 | | | | | - | | | | | | | | | | | |---------------|----------|----------|--------|-------|-------------------|--------|--------|---------------|---|---------|---------|---------|---------------|----------| | CLIENT | EMAX | RESULTS | DIL'N. | MOIST | LOQ | DL | LOD | ANALYSIS | PREPARATION | DATA | CAL | PREP | COLLECTION | RECEIVED | | SAMPLE ID | SAMPLE I |) (ug/L) | FACTOR | (%) | (ug/L) | (ug/L) | (ug/L) | DATETIME | DATETIME | FILE ID | REF | BATCH | DATETIME | DATETIME | | ******* | | | | | • • • • • • • • • | | | | • | | | | | | | MBLK1W | HCC005WB | ND | 1 | NA | 0.2 | 0.05 | 0.1 | 03/15/1616:18 | 03/15/1616:10 | IC15003 | IC15001 | HCC005W | NA | NA | | LCS1W | HCC005WL | 1.90 | 1 | NA | 0.2 | 0.05 | 0.1 | 03/15/1616:38 | 03/15/1616:10 | IC15005 | IC15001 | HCC005W | NA | NA | | LCD1W | HCC005WC | 1.98 | 1 | NA | 0.2 | 0.05 | 0.1 | 03/15/1616:59 | 03/15/1616:10 | IC15007 | IC15001 | HCC005W | NA | NA | | KCH067-019 | C074-01 | ND | 1 | NA | 0.2 | 0.05 | 0.1 | 03/15/1617:20 | 03/15/1616:10 | IC15009 | IC15001 | HCC005W | 03/08/1617:35 | 03/10/16 | | KCH067-019MS | C074-01M | 1.10 | 1 | NA | 0.2 | 0.05 | 0.1 | 03/15/1618:02 | 03/15/1616:10 | IC15013 | IC15011 | HCC005W | 03/08/1617:35 | 03/10/16 | | KCH067-019MSD | C074-01S | 1.01 | 1 | NA | 0.2 | 0.05 | 0.1 | 03/15/1618:22 | 03/15/1616:10 | IC15015 | IC15011 | HCC005W | 03/08/1617:35 | 03/10/16 | | SDG# | :36282B6
:16C074
atory:_EMAX_Laboratories | | | PLETENESS
Standard | S WORKSHEET | Rev | Date: 5/10/
Page: 1 of 1
iewer: 55
iewer: 6 | |--------|--|-----------------------------------|-----------|---|--|-----------------------|--| | The sa | OD: (Analyte) Hexavale
amples listed below were
ion findings worksheets. | | | | | | | | | Validation A | Δrea | | | Comme | ents | | | 1. | Sample receipt/Technical ho | | A | 3/8/16 | * | <u></u> | | | | Initial calibration | | A | | | | | | III. | Calibration verification | | A | | | | | | IV | Laboratory Blanks | | A | | | | | | V | Field blanks | | <i>DD</i> | EB=CI |) ; SB = KCHOO- | 1-042/506. | 166129) | | VI. | Matrix Spike/Matrix Spike Du | plicates | A | MSID= | (2,3) | | / | | VII. | Duplicate sample analysis | | N | | | | | | VIII. | Laboratory control samples | | A | LCSID | | | | | IX. | Field duplicates | | 2 | | | | | | X. | Sample result verification | | N | | | | | | XI | Overall assessment of data | | A | | | | | | Note: | A = Acceptable N = Not provided/applicable SW = See worksheet | ND = No
R = Rinsa
FB = Fiel | | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blank | SB=Source b
OTHER: | olank | | C | Client ID | | | | Lab ID | Matrix | Date | | 1 K | (CH067-019 | | | - | 16C074-01 | Water | 03/08/16 | | 2 K | (CH067-019MS | | | | 16C074-01MS | Water | 03/08/16 | | 3 K | (CH067-019MSD | | | | 16C074-01MSD | Water | 03/08/16 | | 4 | | | | | | | | | 5 | | | | | | | | | 6 | | | | | | | | | 7 | | | | | | | | | 8 | | | | | | | | | 9 | | | | | | | | | 10 | | | ****** | | | | | | 11 | ··· | | | | | | | | 12 | | | | | | | | | 13 | | | | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | 14 | | | | *************************************** | | <u> </u> | | | 15 | | | | | 1 | | 1 | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: Total Petroleum Hydrocarbons as Gasoline Validation Level: Level III **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-019 | 16C074-01 | Water | 03/08/16 | | KCH067-021 | 16C074-02 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Total Petroleum Hydrocarbons (TPH) as Gasoline by Environmental Protection Agency (EPA) SW 846 Method 8015B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. # **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ## III. Continuing Calibration Continuing calibration was performed at the required frequencies. Percent differences (%D) were less than or equal to 20.0% for all compounds. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-021 was identified as a trip blank. No contaminants were found. Sample KCH067-019 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. ## VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix
Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. ## X. Compound Quantitation Raw data were not reviewed for Level III validation. ## XI. Target Compound Identifications Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. #### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG #### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG #### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG ## METHOD SW5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C074 Date Extracted: 03/16/16 14:42 Sample ID: KCH067-019 Date Analyzed: 03/16/16 14:42 Lab Samp ID: C074-01 Dilution Factor: 1 Lab Samp ID: CU74-01 Lab File ID: EC16008A Ext Btch ID: VG39C08 Calib. Ref.: EC16003A Instrument ID: GCT039 4-BROMOFLUOROBENZENE 0.0329 0.04000 82.2 69-133 Parameter H-C Range Gasoline C6-C10 SUSINIE ## METHOD SW5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP Lab Samp 10: CU74-02 Lab File ID: EC16009A Ext Btch ID: VG39C08 Calib. Ref.: EC16003A Instrument ID: GCT039 | PARAMETERS GASOL INE | RESULTS | LOQ | DL | LOD | |---|-----------------------|---------|-----------------|----------| | | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | | | | | | | | ND | 0.10 | 0.010 | 0.020 | | SURROGATE PARAMETERS 4-BROMOFLUOROBENZENE | RESULTS

0.0304 | SPK_AMT | % RECOVERY 76.1 | QC LIMIT | Parameter H-C Range Gasoline C6-C10 8051716 | | | | | | | -1- | |-----------------|---|--|-----------------|---|--|---------------------| | | | | | WORKSHEET | 1 | Date: 5/9 | | SDG #
Labora | t: 16C074
atory: <u>EMAX Laboratories Inc.</u> | 5 | tandard | | | Page: 1 of 1 | | | | | | | | Reviewer: | | METH | OD: GC TPH as Gasoline (EPA SW 84 | 16 Method 80 | 015B) | | | _ | | | amples listed below were reviewed for e
ion findings worksheets. | ach of the fo | ollowing valida | tion areas. Validation | on findings are | e noted in attached | | | Validation Area | | | Comn | nents | | | l. | Sample receipt/Technical holding times | Δ Δ | | | | <u> </u> | | H. | Initial calibration/ICV | A /A | | | | | | 111. | Continuing calibration | Δ | | | | | | IV. | Laboratory Blanks | 4 | | | | | | V. | Field blanks | ND | EB = 1 | TB = | - 2 | | | VI. | Surrogate spikes | A | SB= K | CH067-042 | (SUG I | 60124) | | VII. | Matrix spike/Matrix spike duplicates | 2 | 80 5 | sample) | | | | VIII. | Laboratory control samples | A | 165 14 |) | | | | IX. | Field duplicates | 2 | | | | | | X. | Compound quantitation RL/LOQ/LODs | N | | | | | | XI. | Target compound identification | N | | | - | | | XII | Overall assessment of data | | | | | | | Note: | N = Not provided/applicable R = R | No compounds
kinsate
Field blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blar | OTHER | urce blank
:: | | | Client ID | | | Lab ID | Matrix | Date | | 1 F | CCH067-019 | | | 16C074-01 | Water | 03/08/16 | | 2 H | CH067-021 | | | 16C074-02 | Water | 03/08/16 | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 11 | | | | | | | | 12 | | | | | | | | 13 | **** | | | * | | | | Notes: | | | | | | | | M | BLKIW | | | | _ | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 13, 2016 Parameters: Total Petroleum Hydrocarbons as Extractables Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-019 | 16C074-01 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. ## III. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-019 was
identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. ## X. Compound Quantitation Raw data were not reviewed for Level III validation. ## XI. Target Compound Identifications Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG #### METHOD SW3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION __________ Client : KLEINFELDER Date Collected: 03/08/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/10/16 Batch No. : 16C074 Date Extracted: 03/14/16 12:00 Sample ID: KCH067-019 Date Analyzed: 03/15/16 14:14 Lab Samp ID: C074-01 Dilution Factor: 0.94 Lab File ID: LC15009A Matrix : WATER Ext Btch ID: DSC011W % Moisture : NA Calib. Ref.: LC15004A Instrument ID : D5 ______ | | RESULTS | LOQ | DL | FOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | | | | | | | DIESEL | ND | 0.47 | 0.047 | 0.094 | | JP-5 | ND | 0.47 | 0.047 | 0.094 | | MOTOR OIL | ND | 0.47 | 0.047 | 0.094 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 0.957 | 0.9400 | 102 | 60-130 | | HEXACOSANE | 0.253 | 0.2350 | 108 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 8201716 | SDG :
Labor
METH
The s | #:36282B8 | S
/ 846 Metho | tandard
d 8015B) | | WORKSHEET ion areas. Validation | Revi
2nd Revi | | |--|--|---------------------------------------|---------------------------------------|-----|--|-----------------------|----------| | | Validation Area | | | | Comme | ents | | | 1. | Sample receipt/Technical holding times | A/A | - | | | | | | II. | Initial calibration/ICV | A /A | % | P | D/1CV = 3 | W | | | III. | Continuing calibration | Δ | , , , , , , , , , , , , , , , , , , , | • | D/1CV = 3 | 2V | | | IV. | Laboratory Blanks | Δ | | | | | (5, 4) | | V. | Field blanks | ND | EB = | :] | SB = KC | 4067-042 (| 16C129 | | VI. | Surrogate spikes | \triangle | | | | | | | VII. | Matrix spike/Matrix spike duplicates | 2 | 0 5 | > | | | | | VIII. | Laboratory control samples | <u> </u> | ICO | 10 | , | | | | IX. | Field duplicates | 7 | | | | | | | X. | Compound quantitation RL/LOQ/LODs | N | | | | | | | XI. | Target compound identification | N | | | | | | | IXII_ | Overall assessment of data | | | | | | | | Note: | N = Not provided/applicable R = R | No compounds
insate
Field blank | detected | | D = Duplicate TB = Trip blank EB = Equipment blank | SB=Source b
OTHER: | lank | | | Client ID | | | | Lab ID | Matrix | Date | | 1 | KCH067-019 | | | | 16C074-01 | Water | 03/08/16 | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | | | | | | | | | 6 | | | | | | | | | 7 | | | | | | | | | 8 | | | | | | | | | 9 | | | | | | | | | 10 | | | | | | | | | 11 | | | | | | | | | 12 | | | | | | | | | 13 | ala de la filosopa de la companiona l | | | | | | | | Notes | | | | | To the second se | | | | l l | BLKIW | <u>=</u> | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 11, 2016 Parameters: **Explosives** Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-019 | 16C074-01 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been
evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Explosives by Environmental Protection Agency (EPA) SW 846 Method 8330A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0% for all compounds. ## III. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 15.0% for all compounds. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. ## X. Compound Quantitation Raw data were not reviewed for Level III validation. ## XI. Target Compound Identifications Raw data were not reviewed for Level III validation. ## XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. ## China Lake CTO 067 Explosives - Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Explosives - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Explosives - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG ## METHOD SW8330A EXPLOSIVES Lab File ID: XC14021A Matrix : WATER Ext Btch ID: EXC004W % Moisture : NA Calib. Ref.: XC14014A Instrument ID : T-081 ______ | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | | ***** | | | | | нмх | ND | 1.0 | 0.10 | 0.20 | | RDX | ND | 1.0 | 0.16 | 0.40 | | 1,3,5-TNB | ND | 1.0 | 0.10 | 0.20 | | 1,3-DNB | ND | 1.0 | 0.10 | 0.20 | | TETRYL | ND | 1.0 | 0.10 | 0.20 | | NITROBENZENE | ND | 1.0 | 0.10 | 0.20 | | 2,4,6-TNT | ND | 1.0 | 0.16 | 0.40 | | 4-AM-2,6-DNT | ND | 1.0 | 0.20 | 0.20 | | 2-AM-4,6-DNT | ND | 1.0 | 0.10 | 0.20 | | 2,6-DNT | ND | 1.0 | 0.10 | 0.20 | | 2,4-DNT | ND | 1.0 | 0.12 | 0.20 | | 2-NITROTOLUENE | ND | 1.0 | 0.11 | 0.20 | | 3-NITROTOLUENE | ND | 1.0 | 0.16 | 0.40 | | 4-NITROTOLUENE | ND | 1.0 | 0.10 | 0.20 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 4.07 | 4.000 | 102 | 60-140 | Note: All positive results are confirmed by Biphenyl column Satistib | SDG
Labo
MET
The s | #: 36282B40 VALIDATION #: 16C074 ratory: EMAX Laboratories Inc. HOD: HPLC Explosives (EPA SW 846 Means) samples listed below were reviewed for eation findings worksheets. | S
lethod 8330) | tandard | S WORKSHE | F
2nd F | Date: Page: _/of _ Reviewer: Reviewer: | |------------------------------------|--|---------------------------------------|----------|---|------------|---| | | Validation Area | | | Cc | omments | | | 1. | Sample receipt/Technical holding times | Δ /Δ | | | | | | II. | Initial calibration/ICV | △,△ | % | RD 520 | 101 = 15 | | | 111. | Continuing calibration | Α | | | 101 ETS | 2 | | IV. | Laboratory Blanks | Δ | | | | / 504 | | V. | Field blanks | ND | EB= | 1 SB= | KC 4067-04 | L (160129) | | VI. | Surrogate spikes | | | | | | | VII. | Matrix spike/Matrix spike duplicates | 2 | QC | sangle | | | | VIII | | A | | D | | | | IX. | Field duplicates | N | | | | | | X. | Compound quantitation RL/LOQ/LODs | N | | | | | | XI. | Target compound identification | N | - 1 | | | | | XII. | System performance | N | | | | | | XIII | | A | | | | | | Note: | N = Not provided/applicable $R = R$ | No compounds
insate
Field blank | detected | D = Duplicate
TB = Trip blank
EB = Equipmen | | ce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-019 | | | 16C074-01 | Water | 03/08/16 | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 11 | | | | | | | | 12 | | | | | | | | Votes | | | | | | | | | MORIN | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 12, 2016 Parameters: Perchlorate Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C074 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-019 | 16C074-01 | Water | 03/08/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards
using professional experience. The analyses were performed by the following method: Perchlorate by Environmental Protection Agency (EPA) SW 846 Method 6850 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance check was performed prior to initial calibration. All perchlorate ion signal to noise ratio requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990. The isotope ratios were within QC limits. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 15.0% for all compounds. The percent differences (%D) of the limit of detection verification (LODV) standard were less than or equal to 30.0%. The isotope ratios were within QC limits. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 (from SDG 16C129) was identified as a source blank. No contaminants were found. ## VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## **VIII. Laboratory Control Samples** Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Internal Standards All internal standard areas and retention times were within QC limits. ## XI. Compound Quantitation Raw data were not reviewed for Level III validation. ## XII. Target Compound Identifications Raw data were not reviewed for Level III validation. ## XIII. System Performance Raw data were not reviewed for Level III validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Perchlorate - Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Perchlorate - Laboratory Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG China Lake CTO 067 Perchlorate - Field Blank Data Qualification Summary - SDG 16C074 No Sample Data Qualified in this SDG METHOD SW6850 PERCHLORATE : KLEINFELDER Client Matrix : WATER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C074 InstrumentID : GO | Client
SAMPLE ID | EMAX
SAMPLE ID | RESULT DIL'
(ug/L) FACT | OR (%) | L0Q
(ug/L) | DL
(ug/L) | | PREPARATION
DATETIME | DATA
FILE ID | CAL
REF | PREP
BATCH | COLLECTION
DATETIME | RECEIVED
DATETIME | |--------------------------|----------------------------------|----------------------------|----------------------|-------------------|-------------------|---|-------------------------|-------------------------------------|------------------------|------------------------|------------------------|----------------------| | MBLK1W
LCS1W
LCD1W | PLC006WB
PLC006WL
PLC006WC | ND
0.588
0.550 | 1 NA
1 NA
1 NA | 0.5
0.5
0.5 | 0.1
0.1
0.1 | 0.2 03/23/1611:28
0.2 03/23/1611:45
0.2 03/23/1611:59 | NA
NA | 16MC23007
16MC23008
16MC23009 | 7 MC23004
3 MC23004 | 16PLC006W
16PLC006W | I NA
I NA | NA
NA
NA | | KCH067-019 | C074-01 | ND | 1 NA | 0.5 | 0.1 | 0.2 03/23/1612:14 | | 16MC23010 | | | 03/08/1617:35 | | | SDG# | #: 36282B87 VALIDATIO #: 16C074 atory: EMAX Laboratories Inc. | | LETENE
tandard | SS WORKSHE | | Date: 5/9/
Page: _/of _/
Reviewer: | |----------|---|---------------|--------------------------|--|--------------------|--| | МЕТН | IOD: LC/MS Perchlorate (EPA SW846 N | 1ethod 6850 |)) | | 2nd | Reviewer: | | | amples listed below were reviewed for eation findings worksheets. | ach of the fo | ollowing va | lidation areas. Valida | ation findings are | noted in attached | | | Validation Area | | | Cor | nments | | | l. | Sample receipt/Technical holding times | AIA | | | | | | 11. | GC/MS Instrument performance check | Δ | auto | tune | | | | III. | Initial calibration/ICV | AIA | 12 | 10V £ | = 15 | | | IV. | Continuing calibration | A | | cv s | = 15 Le | DV 530 | | V. | Laboratory Blanks | A | | | | (406 | | VI. | Field blanks | ON | Εĺ | 3 = 1 | SB= KCHO6 | 7-042 (160)2 | | VII. | Surrogate spikes | 2 | not | required | | | | VIII. | Matrix spike/Matrix spike duplicates | 2 | 80 | sample | | | | IX. | Laboratory control samples | Δ | ics | 10 | | | | Χ. | Field duplicates | N | | | | | | XI. | Internal standards | | | | | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | XIII. | Target compound identification | N | | | | | | XIV. | System performance | N | • | | | | | XV. | Overall assessment of data | | | | | | | Note: | A = Acceptable ND = N N = Not provided/applicable R = Rir | lo compounds | detected | D = Duplicate
TB = Trip blank
EB = Equipment t | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | -
1 | KCH067-019 | | | 16C074-01 | Water | 03/08/16 | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | - | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | lotes: | | | | | | | | <u>\</u> | MBLKIW | | | | | | | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report **Project/Site Name:** China Lake CTO 067 **LDC Report Date:** May 11, 2016 Parameters: Volatiles Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-042 | 16C129-19 | Water | 03/15/16 | | KCH067-043 | 16C129-20 | Water | 03/15/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data
validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A bromofluorobenzene (BFB) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. Average relative response factors (RRF) for all compounds were within validation criteria with the following exceptions: | Date | Compound | RRF (Limits) | Associated
Samples | Flag | A or P | |----------|--------------------|---------------|---------------------------|----------------------|--------| | 02/26/16 | tert-Butyl alcohol | 0.007 (≥0.01) | All samples in SDG 16C129 | UJ (all non-detects) | Α | The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria with the following exceptions: | Date | Compound | RRF (Limits) | Associated
Samples | Flag | A or P | |----------|--------------------|---------------|---------------------------|----------------------|--------| | 03/22/16 | tert-Butyl alcohol | 0.007 (≥0.01) | All samples in SDG 16C129 | UJ (all non-detects) | Α | #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Analysis
Date | Compound | Concentration | Associated
Samples | |----------|------------------|--------------------|---------------|---------------------------| | MBLK1W | 03/22/16 | Methylene chloride | 0.91 ug/L | All samples in SDG 16C129 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks. #### VI. Field Blanks Sample KCH067-043 was identified as a trip blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|----------|---------------|-----------------------------------| | KCH067-042 | 03/15/16 | Acetone | 4.1 ug/L | No associated samples in this SDG | #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Level III validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Level III validation. #### XIV. System Performance Raw data were not reviewed for Level III validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to initial calibration and continuing calibration RRF, data were qualified as estimated in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. #### China Lake CTO 067 Volatiles - Data Qualification Summary - SDG 16C129 | Sample | Compound | Flag | A or P | Reason (Code) | |--------------------------|--------------------|----------------------|--------|----------------------------------| | KCH067-042
KCH067-043 | tert-Butyl alcohol | UJ (all non-detects) | А | Initial calibration (RRF) (5) | | KCH067-042
KCH067-043 | tert-Butyl alcohol | UJ (all non-detects) | Α | Continuing calibration (RRF) (5) | China Lake CTO 067 Volatiles - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Volatiles - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG #### METHOD SW5030B/8260B VOLATILE ORGANICS BY GC/MS | Client : KLEINFELDER Project : NAWS CHINA LAKE, Batch No. : 16C129 Sample ID: KCH067-042 Lab Samp ID: C129-19N Lab File ID: RCC442 Ext Btch ID: V067C17 Calib. Ref.: RBC337 | | Date Co
Date R
Date Ex
Date A
Dilution
Matrix
% Moistu
Instrume | FACTOR:
: WAT
re : NA | |
--|------------------------------|--|--|--| | PARAMETERS 11,1,2-TETRACHLOROETHANE 11,1-2-TETRACHLOROETHANE 11,2-TETRACHLOROETHANE 11,2-TETRACHLOROETHANE 11,2-TETRACHLOROETHANE 11,2-TETRACHLOROETHANE 11,1-DICHLOROETHANE 11,1-DICHLOROETHANE 11,1-DICHLOROETHENE 11,1-DICHLOROETHENE 11,2-JICHLOROBRYZENE 12,3-TRICHLOROBRYZENE 12,4-TRICHLOROBRYZENE 12,4-TRIMETHYLBENZENE 12,2-DIBROMO-3-CHLOROPROPANE 12,2-DITCHLOROBENZENE 12,2-DICHLOROETHANE 12,2-DICHLOROETHANE 12,2-DICHLOROPROPANE 13,3-DICHLOROPROPANE 13,3-DICHLOROPROPANE 13,3-DICHLOROPROPANE 13,3-DICHLOROPROPANE 13,3-DICHLOROPROPANE 2-BUTANONE 2-CHEXANONE 2-CHEXANONE 2-CHEXANONE 4-CHLOROTOLUENE ACETONE BROMOCHLOROMETHANE BROMOBENZENE BROMOBENZENE BROMOBENZENE BROMOBENZENE BROMOBENZENE BROMOBETHANE CHLOROFORM CHLOROFTHANE CHSOMOMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DIBROMOCHLOROMETHANE DISPROMOMETHANE CHLOROFTHENE THYL BENZENE M-METHYL -2-PENTANONE METHYL TERT-BUTYL ETHER N-BUTYLBENZENE N-PROPPYLBENZENE N-PROPPYLBENZENE N-PROPPYLBENZENE N-PROPPYLBENZENE N-PROPPYLBENZENE TETRACHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRICHLOROFTHONE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPR | TS | | LL): 001100005555151500003110060231-6001105650070500005110307730435550010525 | 00.) 1 000000000000000000000000000000000 | | SURROGATE PARAMETERS 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE | 9.56
9.53
9.73
9.93 | SPK_AMT
10.00
10.00
10.00
10.00 | % RECOVERY
95.6
95.3
97.3
99.3 | 81-118
85-114
85-112
89-112 | 5/25/7/6 #### METHOD SW5030B/8260B VOLATILE ORGANICS BY GC/MS | Client : KLEINFELDER Project : NAWS CHINA LAKE, C Batch No. : 16C129 Sample ID: KCH067-043 Lab Samp ID: C129-20N Lab File ID: RCC443 Ext Btch ID: V067C17 Calib. Ref: RBC337 | ето 067 | Matrix
% Moistu
Instrume | אנוט: 10 | ER | |--|---|---|---|--| | PARAMETERS 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,1,2-TETRACHLOROETHANE 1,1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROPROPENE 1,2-3-TRICHLOROBENZENE 1,2-4-TRICHLOROBENZENE 1,2-4-TRICHLOROBENZENE 1,2-1-DIBROMOETHANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 1,3-DICHLOROPROPANE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 2,2-DICHLOROPROPANE 2-BUTANONE 2-CHLOROTOLUENE 2-HEXANONE 4-CHLOROTOLUENE 2-HEXANONE 4-CHLOROTOLUENE BROMOETHANE CHLOROFORM BROMOBENZENE BROMOETHANE CARBON DISULFIDE CARBON SISULFIDE CARBON SISULFIDE CARBON TETRACHLORIDE CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROPROPANE DIBROMOMETHANE DICHLOROFITHANE DICHLOROFITHANE DICHLOROFITHANE DICHLOROFITHANE DICHLOROFITHANE DICHLOROFORM CHLOROFORM CHLOROPTHANE DICHLOROPTHANE DICH | ###################################### | | 07 | 0) 1 0000000000000000000000000000000000 | | TETRACHLOROETHENE TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE TERTIARY BUTYL ALCOHOL | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 1.00 | 0.2535
00.1101
00.1105
00.1105
00.115
00.115 | 0.50
00.220
00.220
00.220
00.320
00.320 | | SURROGATE PARAMETERS 1,2-DICHLOROETHANE-D4 4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE | RESULTS
9.62
9.54
9.69
9.95 | SPK_AMT
10.00
10.00
10.00
10.00 | % RECOVERY
96.2
95.4
97.0
99.5 | 81-118
85-114
89-112
80-119 | 8651716 | SDG #
_abora | :36282C1VALIDATIO
t:_16C129atory:_EMAX_Laboratories_IncOD:_GC/MS_Volatiles_(EPA_SW_846_Met | Si | tandard | | WORKSHEET | 2nd | Date: | |-----------------
--|-------------------------------------|-------------|-----------|---|---------------------------------------|----------------------| | | amples listed below were reviewed for eation findings worksheets. | ch of the fo | llowing v | validatio | on areas. Validatio | on findings are | noted in attached | | | Validation Area | | | · · · | Comm | ents | | | I. | Sample receipt/Technical holding times | A/A | | | | <u>-</u> | | | II. | GC/MS Instrument performance check | | , | | | | | | III. | Initial calibration/ICV | ∆لىي | <u>°</u> /0 | PSI |) 415 | 1 | $\omega \leq \omega$ | | IV. | Continuing calibration rnding ccv | SW | • | | | | WEN | | V. | Laboratory Blanks | ςw | | | | | | | VI. | Field blanks | الىبى | SP | 3=1 | TB= | 2 | | | VII. | Surrogate spikes | | | | , | | | | VIII. | Matrix spike/Matrix spike duplicates | N | 0.0 | · | Sample | | | | IX. | Laboratory control samples | A | ias | ID | | | | | X. | Field duplicates | N | | 1.4 | | | | | XI. | Internal standards | | | | | · · · · · · · · · · · · · · · · · · · | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | | XIII. | Target compound identification | N | | | | | | | XIV. | System performance | N | | | | | | | | | | | | | | | | XV. | Overall assessment of data | | | | | | | | Note: | N = Not provided/applicable R = Rin | lo compounds
isate
ield blank | detected | | D = Duplicate
TB = Trip blank
EB = Equipment blan | OTHER: | irce blank
: | | - | Client ID | | | | _ab ID | Matrix | Date | | + | (CH067-042 > B | | | | 16C129-19 | Water | 03/15/16 | | | CH067-043 TB | | | | 16C129-20 | Water | 03/15/16 | | 3 | 1.4 | <u>-</u> | | | · <u>·</u> | | 33.10. | | 4 | | | | - | · · · · · · · · · · · · · · · · · · · | | | | 5 | | | | | | | | | 6 | A CONTRACTOR OF THE | | | | | | | | 7 | | | | <u> </u> | | | | | 8 | | | | | | | | | 9 | | | | | | | | | lotes: | | | 77.000 | | | | | MBIKIN #### TARGET COMPOUND WORKSHEET #### **METHOD: VOA** | WEIROD, VOA | | | | | |------------------------------|---------------------------------|--|-----------------------------------|----------------------------| | A. Chloromethane | AA. Tetrachloroethene | AAA. 1,3,5-Trimethylbenzene | AAAA. Ethyl tert-butyl ether | A1. 1,3-Butadiene | | B. Bromomethane | BB. 1,1,2,2-Tetrachloroethane | BBB. 4-Chlorotoluene | BBBB. tert-Amyl methyl ether | B1. Hexane | | C. Vinyl choride | CC. Toluene | CCC. tert-Butylbenzene | CCCC. 1-Chlorohexane | C1. Heptane | | D. Chloroethane | DD. Chlorobenzene | DDD. 1,2,4-Trimethylbenzene | DDDD. Isopropyl alcohol | D1. Propylene | | E. Methylene chloride | EE. Ethylbenzene | EEE. sec-Butylbenzene | EEEE. Acetonitrile | E1. Freon 11 | | F. Acetone | FF. Styrene | FFF. 1,3-Dichlorobenzene | FFFF. Acrolein | F1. Freon 12 | | G. Carbon disulfide | GG. Xylenes, total | GGG. p-isopropyltoluene | GGGG. Acrylonitrile | G1. Freon 113 | | H. 1,1-Dichloroethene | HH. Vinyl acetate | HHH. 1,4-Dichlorobenzene | HHHH. 1,4-Dioxane | H1. Freon 114 | | I. 1,1-Dichloroethane | II. 2-Chloroethylvinyl ether | III. n-Butylbenzene | IIII. Isobutyl alcohol | I1. 2-Nitropropane | | J. 1,2-Dichloroethene, total | JJ. Dichlorodifluoromethane | JJJ. 1,2-Dichlorobenzene | JJJJ. Methacrylonitrile | J1. Dimethyl disulfide | | K. Chloroform | KK. Trichlorofluoromethane | KKK. 1,2,4-Trichlorobenzene | KKKK. Propionitrile | K1. 2,3-Dimethyl pentane | | L. 1,2-Dichloroethane | LL. Methyl-tert-butyl ether | LLL. Hexachlorobutadiene | LLLL. Ethyl ether | L1. 2,4-Dimethyl pentane | | M. 2-Butanone | MM. 1,2-Dibromo-3-chloropropane | MMM. Naphthalene | MMMM. Benzyl chloride | M1. 3,3-Dimethyl pentane | | N. 1,1,1-Trichloroethane | NN. Methyl ethyl ketone | NNN. 1,2,3-Trichlorobenzene | NNNN. lodomethane | N1. 2-Methylpentane | | O. Carbon tetrachloride | OO. 2,2-Dichloropropane | OOO. 1,3,5-Trichlorobenzene | OOOO.1,1-Diffuoroethane | O1. 3-Methylpentane | | P. Bromodichloromethane | PP. Bromochloromethane | PPP. trans-1,2-Dichloroethene | PPPP. Tetrahydrofuran | P1. 3-Ethylpentane | | Q. 1,2-Dichloropropane | QQ. 1,1-Dichloropropene | QQQ. cis-1,2-Dichloroethene | QQQQ. Methyl acetate | Q1. 2,2-Dimethylpentane | | R. cis-1,3-Dichloropropene | RR. Dibromomethane | RRR. m,p-Xylenes | RRRR. Ethyl acetate | R1. 2,2,3- Trimethylbutane | | S. Trichloroethene | SS. 1,3-Dichloropropane | SSS. o-Xylene | SSSS. Cyclohexane | S1. 2,2,4-Trimethylpentane | | T. Dibromochloromethane | TT. 1,2-Dibromoethane | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | TTTT. Methyl cyclohexane | T1. 2-Methylhexane | | U. 1,1,2-Trichloroethane | UU. 1,1,1,2-Tetrachloroethane | UUU. 1,2-Dichlorotetrafluoroethane | UUUU. Allyl chloride | U1. Nonanal | | V. Benzene | VV. Isopropylbenzene | VVV. 4-Ethyltoluene | VVV. Methyl methacrylate | V1. 2-Methylnaphthalene | | W. trans-1,3-Dichloropropene | WW. Bromobenzene | WWW. Ethanol | WWWW. Ethyl methacrylate | W1. Methanol | | X. Bromoform | XX. 1,2,3-Trichloropropane | XXX. Di-isopropyl ether | XXXX. cis-1,4-Dichloro-2-butene | X1. 1,2,3-Trimethylbenzene | | Y. 4-Methyl-2-pentanone | YY. n-Propylbenzene | YYY. tert-Butanol | YYYY. trans-1,4-Dichloro-2-butene | Y1. | | Z. 2-Hexanone | ZZ. 2-Chlorotoluene | ZZZ. tert-Butyl alcohol | ZZZZ. Pentachloroethane | Z1. | | LDC - | μ. | 362820 | |-------|----|--------| | LDC 7 | #: | | #### VALIDATION FINDINGS WORKSHEET Initial Calibration | Page:/of_ | 1 | |---------------|---| | Reviewer:_FT | | | 2nd Reviewer: | | | | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) | PΙε | ease see | qualifications | below for a | I questions answered "N | l". Not applicable | questions are identified as "N/A" | | |-----|----------|----------------|-------------|-------------------------|--------------------|-----------------------------------|--| | | | | | | | | | N/A Did the laboratory perform a 5 point calibration prior to sample analysis? Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? N N/A Did the initial calibration meet the acceptance criteria? Y N N/A Were all %RSDs and RRFs within the validation criteria of ≤30/15 %RSD and ≥0.05 RRF? | code= | کا | |-------|----| | | | | # | Date | Standard ID | Compound | Finding %RSD
(Limit: <u>≤</u> 30/15%) | Finding RRF
(Limit: <u>></u> 0.05) | Associated Samples | Qualifications | |----------|---------|--------------|------------|--|--|--------------------|----------------| | | 2/26/16 | V067B26-ICAL | そそそ | | 0.007 (20.0 | oi) all | 7+/n7/4 MD | | | | | | | • | / | , | | | | | | | | | , | <u> </u> | | | | | | | | | <u> </u> | | | | | | | | | ⊩ | <u> </u> | LDC#: 362020/ ## VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u> | Page:_ | <u>/</u> of_ | / | |---------------|--------------|---| | Reviewer: | FT | | | 2nd Reviewer: | R | | | | _ | | METHOD: GC/MS VOA (EPA SW 846 Method 8260B) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N/A Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? M M/A Were all %D and RRFs within the validation criteria of ≤20 %D and ≥0.05 RRF? coolo=5 | <u> </u> | <u> </u> | vere all
%D and RRFS | Within the validation c | TICHA OI SZO 70D AIR | 2 ≥ 0.00 IXIXI ? | | | |----------|----------|----------------------|-------------------------|-------------------------------|-------------------------------|--------------------|---| | # | Date | Standard ID | Compound | Finding %D
(Limit: ≤20.0%) | Finding RRF
(Limit: ≥0.05) | Associated Samples | Qualifications | | | 3/22/16 | RCC 434-COV | マナナ | | 0.007 (20.01 | all | J+/UJ/A NY | | | | | | | , , | | , | | - | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | | | ļ | | | | | | | 1 | | | | | | | | | | | - | | | | | | | | | - | LDC #: | 36 | 282 | 0/ | |--------|----|-----|----| |--------|----|-----|----| ### VALIDATION FINDINGS WORKSHEET Blanks | _/ _{of_} | 1 | |-------------------|--------| | FΤ | | | R | | | | of
 | | METHOD, COMENON (ED | \ C\A/ Q4C Matha | M GOCOD) | | | | | | | ZIIG INGVIEW | -1 | |--------------------------------|--------------------|----------------|-------------------|-----------------|------------------|------------------|-----|-------|--------------|---------------------------------------| | METHOD: GC/MS VOA (EPA | | | WATER ALLE TO THE | 1.1 | | | | | | | | Please see qualifications belo | ow for all questic | ons answered | "N". Not appli | cable question | ns are identifie | ed as "N/A". | | | | | | Y N N/A Was a method bla | ank associated w | vitn every sam | iple in this SD | G? | | | | | | | | Y N N/A Was a method bla | ank analyzed at I | least once eve | ery 12 hours to | or each matrix | and concentra | ation? | | | | | | Y N N/A Was there contan | ination in the m | ethod blanks? | ' If yes, please | e see the qual | ifications belov | N. | 1 | , | ` | | | | 122/16 | | | | | | All | (ND |) | | | Conc. units: va 1 | | | Asse | ociated Samp | les: | - | | (102 | <u>/</u> | · · · · · · · · · · · · · · · · · · · | | Compound | Blank ID | | | . " | Sa | mple Identificat | ion | | | | | | MBLKIW | | | | | | | | | | | E | 0.91 | : | Blank analysis date: | | | | | | | | | | | | Conc. units: | | | Asso | ciated Samples: | | | | | | | | Compound | Blank ID | | | | Sa | mple Identificat | ion | - | | | | | | All results were qualified using the criteria stated below except those circled. Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U". | LDC#: 36282C/ | | | VALIDAT | | INGS WOR
Blanks | KSHEET | | | Rev | Page:of
viewer:_FT
eviewer: | |---|--------------------------|-----------------------------------|-----------------------|----------|--------------------|-------------------|----------|----------|-------------|-----------------------------------| | METHOD: GC/MS VOA (EP.
Y N N/A Were field b
Y N N/A Were target
Blank units: VA Asso
Sampling date: 3 15
Field blank type: (circle one | olanks identifie | ed in this SDG
detected in the | 3?
e field blanks' | .? | | | | | 2nd Rev | viewer: | | Field blank type: (circle one | ⊒ 11∕0
e) Field Blank | / Rinsate / Tr | ip Blank / Oth | ner: SB | Asso | ociated Sampl | les: | none | | = | | Compound | Blank ID | | | | s | Sample Identifica | ation | | | | | | | <u> </u> | | <u> </u> | <u> </u> | | | | | | | F | 4.1 | | | | <u> </u> | | | | | | | | | | | | <u> </u> | | | | | | | Trity was | | <u> </u> | | | <u> </u> | | | <u> </u> | | <u> </u> | | | <u> </u> | · | | | <u> </u> | <u> </u> | | <u> </u> | ļ | | | | <u> </u> | <u> </u> | | - | <u> </u> | <u></u> | | <u> </u> | <u> </u> | | | | | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | | | <u> </u> | | - | | <u> </u> | | | | | | | | | | | <u></u> | | | | | <u>L</u> | | | <u></u> | | | Blank units: Asso
Sampling date:
Field blank type: (circle one | | | ip Blank / Oth | ner: | Asso | ociated Sample | les: | | | | | Compound | Blank ID | | | | S | ample Identifica | ation | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U". # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 12, 2016 Parameters: Polynuclear Aromatic Hydrocarbons Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-032** | 16C129-09** | Soil | 03/15/16 | | KCH067-033 | 16C129-10 | Soil | 03/15/16 | | KCH067-041 | 16C129-18 | Water | 03/15/16 | | KCH067-042 | 16C129-19 | Water | 03/15/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270C using Selected Ion Monitoring (SIM) All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14
Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC/MS Instrument Performance Check A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds. In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990. Average relative response factors (RRF) for all compounds were within validation criteria. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds. All of the continuing calibration relative response factors (RRF) were within validation criteria. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found. #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits with the following exceptions: | LCS ID
(Associated Samples) | Compound | RPD
(Limits) | Flag | A or P | |--|---|--|--|--------| | SVC017WL/WC
(All water samples in SDG 16C129) | Acenaphthene
Acenaphthylene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene | 26 (<20)
27 (<20)
27 (<20)
29 (<20)
28 (<20) | UJ (all non-detects) | Р | #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### **XIV. System Performance** The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to LCS/LCSD RPD, data were qualified as estimated in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 16C129 | Sample | Compound | Flag | A or P | Reason (Code) | |--------------------------|---|--|--------|---| | KCH067-041
KCH067-042 | Acenaphthene
Acenaphthylene
Naphthalene
2-Methylnaphthalene
1-Methylnaphthalene | UJ (all non-detects) | Р | Laboratory control samples
(%R) (10) | China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG #### METHOD SW3520C/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS SIM | Client : KLEINFELDER | | D-+- C- | | ========
^7 /15 /14 | ==== | |---|-------------|------------|----------|------------------------|------| | | | Date Coll | | | | | Project : NAWS CHINA LAKE, C | TO 067 | Date Rec | eived: (| 03/17/16 | | | Batch No. : 16C129 | | Date Extr | acted: (| 03/21/16 13 | 3:45 | | Sample ID: KCHO67-041 | | Date Ana | lyzed: (| 03/24/16 1 | 7:44 | | Lab Samp ID: C129-18 | | Dilution F | actor: ' | 1 | | | Lab File ID: RCJ395 | | Matrix | : ١ | WATER | | | Ext Btch ID: SVC017W | | % Moisture | : : ! | ΑV | | | Calib. Ref.: RBJ007 | | Instrument | ID : 1 | Г-ОЕ4 | | | ======================================= | =========== | ======== | ===== | ======== | ==== | | | RESULTS | LOQ | 0 | DL | LOD | | PARAMETERS | (ug/L) | (ug/L) | (ug/l | _) (u | g/L) | | | | | | | | | ACENAPHTHENE | ND UJ | (o) 0.50 | 0.0 | 50 (| 0.10 | | | RESULTS | LOQ | DL | LOD | |-------------------------|---------|---------------------|------------|----------| | PARAMETERS | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | | | ·. < | | | | ACENAPHTHENE | ND UJ | (10 /) 0.50 | 0.050 | 0.10 | | ACENAPHT HYLENE | ND 🎝 | 0.50 | 0.050 | 0.10 | | ANTHRACENE | ND | 0.50 | 0.050 | 0.10 | | BENZO(A)ANTHRACENE | ND | 0.50 | 0.090 | 0.20 | | BENZO(A)PYRENE | ND | 0.50 | 0.050 | 0.10 | | BENZO(B) FLUORANTHENE | ND | 0.50 | 0.050 | 0.10 | | BENZO(K)FLUORANTHENE | ND | 0.50 | 0.050 | 0.10 | | BENZO(G,H,I)PERYLENE | ND | 0.50 | 0.050 | 0.10 | | CHRYSENE | ND | 0.50 | 0.060 | 0.20 | | DIBENZO(A, H)ANTHRACENE | ND | 0.50 | 0.050 | 0.10 | | FLUORANTHENE | ND | 0.50 | 0.050 | 0.10 | | FLUORENE | ND | 0.50 | 0.050 | 0.10 | | INDENO(1,2,3-CD)PYRENE | ND | 0.50 | 0.050 | 0.10 | | NAPHTHALENE | ND UJ (| . / | 0.050 | 0.10 | | PHENANTHRENE | ND | 0.50 | 0.050 | 0.10 | | PYRENE | ND | 0.50 | 0.050 | 0.10 | | 2-METHYLNAPHTHALENE | ND NZ | (0) 0.50 | 0.050 | 0.10 | | 1-METHYLNAPHTHALENE | ND 🎝 | 0.50 | 0.050 | 0.10 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 2-FLUOROBIPHENYL | 15.3 | 20.00 | 76.5 | 53-106 | | NITROBENZENE-D5 | 16.6 | 20.00 | 82.8 | 55-111 | | TERPHENYL-D14 | 17.9 | 20.00 | 89.6 | 58-132 | 86251716 ### METHOD SW3520C/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS SIM _______ Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Date Collected: 03/15/16 Date Received: 03/17/16 Date Extracted: 03/21/16 13:45 Date Analyzed: 03/24/16 18:04 Sample ID: KCH067-042 Lab Samp ID: C129-19 Dilution Factor: 1.11 Lab File ID: RCJ396 Matrix : WATER Ext Btch ID: SVC017W % Moisture : NA Instrument ID : T-OE4 Calib. Ref.: RBJ007 | PARAMETERS | RESULTS
(ug/L) | LOQ
(ug/L) | DL
(ug/L) | LOD
(ug/L) | |-------------------------|-------------------|---------------|--------------|---------------| | ACENAPHTHENE | ND VJ | (0) 0.56 | 0.056 | 0.11 | | ACENAPHTHYLENE | ND V | 0.56 | 0.056 | 0.11 | | ANTHRACENE | ND | 0.56 | 0.056 | 0.11 | | BENZO(A)ANTHRACENE | ND | 0.56 | 0.10 | 0.22 | | BENZO(A)PYRENE | ND | 0.56 | 0.056 | 0.11 | | BENZO(B)FLUORANTHENE | ND | 0.56 | 0.056 | 0.11 | | BENZO(K)FLUORANTHENE | ND | 0.56 | 0.056 | 0.11 | | BENZO(G,H,I)PERYLENE | ND | 0.56 | 0.056 | 0.11 | | CHRYSENE | ND | 0.56 | 0.067 | 0.22 | | DIBENZO(A, H)ANTHRACENE | ND | 0.56 | 0.056 | 0.11 | | FLUORANTHENE | ND | 0.56 | 0.056 | 0.11 | | FLUORENE | ND | 0.56 | 0.056 | 0.11 | | INDENO(1,2,3-CD)PYRENE | ND . | 0.56 | 0.056 | 0.11 | | NAPHTHALENE | ND UJ (| 10) 0.56 | 0.056 | 0.11 | | PHENANTHRENE | ND | 0.56 | 0.056 | 0.11 | | PYRENE | ND | 0.56 | 0.056 | 0.11 | | 2-METHYLNAPHTHALENE | ND Vユ(| (2) 0.56 | 0.056 | 0.11 | | 1-METHYLNAPHTHALENE | ND 🕹 | 0.56 | 0.056 | 0.11 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3.51.100001.0051.00 | 40 / | 77 70 | 02.7 | F7 104 | | 2-FLUOROBIPHENYL | 18.4 | 22.20 | 82.7 | 53-106 | | NITROBENZENE-D5 | 19.9 | 22.20 | 89.8 | 55-111 | | TERPHENYL-D14 | 20.8 | 22.20 | 93.8 | 58-132 | 8/25/7/6 ### METHOD SW3550B/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS SIM ________ | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |------------------------|--------------------|----------------|---------------|----------------| | ACENAPHTHENE | ND | 10 | 1.3 | 2.5 | | ACENAPHTHYLENE | ND | 10 | 1.3 | 2.5 | | ANTHRACENE | 3.5) | 10 | 1.3 | 2.5 |
 BENZO(A)ANTHRACENE | 69 | 10 | 2.5 | 5.1 | | BENZO(A)PYRENE | 73 | 10 | 1.3 | 2.5 | | BENZO(B)FLUORANTHENE | 150 | 10 | 1.3 | 2.5 | | BENZO(K) FLUORANTHENE | 43 | 10 | 1.3 | 2.5 | | BENZO(G,H,I)PERYLENE | 55 | 10 | 1.3 | 2.5 | | CHRYSENE | 130 | 10 | 2.2 | 5.1 | | DIBENZO(A,H)ANTHRACENE | 13 | 10 | 1.3 | 2.5 | | FLUORANTHENE | 160 | 10 | 1.3 | 2.5 | | FLUORENE | ND | 10 | 1.3 | 2.5 | | INDENO(1,2,3-CD)PYRENE | 51 | 10 | 1.3 | 2.5 | | NAPHTHALENE | ND | 10 | 1.3 | 2.5 | | PHENANTHRENE | 41 | 10 | 1.3 | 2.5 | | PYRENE | 130 | 10 | 1.3 | 2.5 | | 2-METHYLNAPHTHALENE | ND | 10 | 1.3 | 2.5 | | 1-METHYLNAPHTHALENE | ND | 10 | 1.3 | 2.5 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 2-FLUOROBIPHENYL | 557 | 678.2 | 82.2 | 46-115 | | NITROBENZENE-D5 | 585 | 678.2 | 86.2 | 44-125 | | TERPHENYL-D14 | 720 | 678.2 | 106 | 58-133 | 8651716 #### METHOD SW3550B/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS SIM _______ Client : KLEINFELDER Date Collected: 03,12,12 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 - 140120 Date Extracted: 03/22/16 10:39 Sample ID: KCH067-033 Date Analyzed: 03/23/16 19:14 Lab Samp ID: C129-10 Dilution Factor: 1 Lab File ID: RCJ367 Matrix : SOIL % Moisture : 1.5 Instrument ID : T-0E4 Ext Btch ID: SVC018S Calib. Ref.: RBJ007 | | RESULTS | LOQ | DL | LOD | |------------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | ACENAPHTHENE | ND | 10 | 1.3 | 2.5 | | ACENAPHTHYLENE | ND | 10 | 1.3 | 2.5 | | ANTHRACENE | ND | 10 | 1.3 | 2.5 | | BËNZO(A)ANTHRACENE | ND | 10 | 2.5 | 5.1 | | BENZO(A)PYRENE | ND | 10 | 1.3 | 2.5 | | BENZO(B)FLUORANTHENE | ND | 10 | 1.3 | 2.5 | | BENZO(K)FLUORANTHENE | ND | 10 | 1.3 | 2.5 | | BENZO(G,H,I)PERYLENE | ND | 10 | 1.3 | 2.5 | | CHRYSENE | ND | 10 | 2.2 | 5.1 | | DIBENZO(A,H)ANTHRACENE | ИD | 10 | 1.3 | 2.5 | | FLUORANTHENE | ND | 10 | 1.3 | 2.5 | | FLUORENE | ND | 10 | 1.3 | 2.5 | | INDENO(1,2,3-CD)PYRENE | ND | 10 | 1.3 | 2.5 | | NAPHTHALENE | ND | 10 | 1.3 | 2.5 | | PHENANTHRENE | ND | 10 | 1.3 | 2.5 | | PYRENE | ND | 10 | 1.3 | 2.5 | | 2-METHYLNAPHTHALENE | ND | 10 | 1.3 | 2.5 | | 1-METHYLNAPHTHALENE | ND | 10 | 1.3 | 2.5 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 2-FLUOROBIPHENYL | 554 | 676.9 | 81.9 | 46-115 | | NITROBENZENE-D5 | 584 | 676.9 | 86.3 | 44-125 | | TERPHENYL-D14 | 691 | 676.9 | 102 | 58-133 | SC051116 | SDG #
_abor | #:_16C129
atory:_EMAX_Laboratories Inc | Sta | ndard/Full | WORKSHEET | R
2nd R | Date: 5//0 Page: / of / eviewer: 7 | |----------------|--|-------------------|------------------|--|--------------------|------------------------------------| | METH | IOD: GC/MS Polynuclear Aromatic Hydro | carbons (l | EPA SW 846 N | Method 8270C-SIM) | | | | | amples listed below were reviewed for eaction findings worksheets. | ch of the fo | ollowing valida | tion areas. Validation | findings are r | noted in attached | | | Validation Area | | | Comme | nts | | | I. | Sample receipt/Technical holding times | A /A | | | | | | II. | GC/MS Instrument performance check | Δ | | | | | | 10. | Initial calibration/ICV | Δ / Δ | % PSD. | = 15 ,2 | 101 | = 20 | | IV. | Continuing calibration funding car | Δ | , | , | ca | =20 | | V. | Laboratory Blanks | Δ | | | | | | VI. | Field blanks | N1) | EB = 3 | 5 SB- | 4 | | | VII. | Surrogate spikes | \wedge | | | | | | VIII. | Matrix spike/Matrix spike duplicates | 2 | 05 | | | | | IX. | Laboratory control samples | SW | 1cs 10 | | | | | X. | Field duplicates | N | | | | | | XI. | Internal standards | Δ | | | | | | XII. | Compound quantitation RL/LOQ/LODs | A | Not reviewed for | Standard validation. | | | | XIII. | Target compound identification | Δ | | Standard validation. | | | | XIV. | System performance | Δ | | Standard validation. | | | | XV. | Overall assessment of data | A | | | | | | lote: | A = Acceptable ND = No
N = Not provided/applicable R = Rin | o compound: | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blank | SB=Sourc
OTHER: | ce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-032** | | | 16C129-09** | Soil | 03/15/16 | | - | KCH067-033 | - | | 16C129-10 | Soil | 03/15/16 | | 3 | KCH067-041 | | | 16C129-18 | Water | 03/15/16 | | | KCH067-042 SB | | | 16C129-19 | Water | 03/15/16 | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | lotes: | | | | | | | LDC#: 36282C2b #### **VALIDATION FINDINGS CHECKLIST** | <u>/</u> of_ | 2 | |--------------|--------------| | | F7 | | | | | | <u>/</u> of_ | Method: Semivolatiles (EPA SW 846 Method 8270C-SIM) | Validation Area | Yes | No | NA | Findings/Comments | |--|-------------------|------------------|-------------|-------------------| | I. Technical holding times | | i
Name of the | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | | | | II. GC/MS Instrument performance check (Not required) | | | | | | Were the DFTPP performance results reviewed and found to be within the specified criteria? | / | | | | | Were all samples analyzed within the 12 hour clock criteria? | | | | | | IIIa. Initial calibration | | | 4:31 | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) \geq 0.05? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | | | | IIIb: Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | _ | | | | | Were all percent differences (%D) ≤20% or percent recoveries (%R) 80-120%? | | 1 | 1.0400.1415 | | | IV. Continuing calibration | | | | | | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? | / | | | | | Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05? | | | 2 38322378 | | | V. Laboratory Blanks | T | , | ///t | % | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | ļ | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | _ | | | | VI. Field blanks | | | | <u> 1</u> 9 | | Were field blanks identified in this SDG? | / | | | | | Were target compounds detected in the field blanks? | * 31 8 Va No. 124 | | <u> </u> | | | VII. Surrogate spikes | 1 | | | | | Were all surrogate percent differences (%R) within QC limits? | / | _ | | | | If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R? | | | / | | | If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | LDC#: 36282C26 #### **VALIDATION FINDINGS CHECKLIST** Page: Vof V Reviewer: F7 2nd Reviewer: | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|----|-------------------| | VIII. Matrix spike/Matrix spikė duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | / | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | IX. Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per analytical batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | / | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | / | | | XI. Internal standards | | | | | | Were internal standard area counts within -50% or +100% of the associated calibration standard? | | | | | | Were retention times within \pm 30 seconds of the associated calibration standard? | | | | | | XII. Compound quantitation | 12/ | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | - | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | _ | | | | XIII. Target compound identification | | | | | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | / | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | / | | | | | Were chromatogram peaks verified and accounted for? | | | | | | XIV. System performance | | | | | | System performance was found to be acceptable. | / | | | | | XV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | #### **VALIDATION FINDINGS WORKSHEET** #### METHOD: GC/MS SVOA | A. Phenol | AA. 2-Chloronaphthalene | AAA. Butylbenzylphthalate | AAAA. Dibenzothiophene | A1. | |---------------------------------|---------------------------------|----------------------------------|---|-----| | B. Bis (2-chloroethyl) ether | BB. 2-Nitroaniline | BBB. 3,3'-Dichlorobenzidine | BBBB.
Benzo(a)fluoranthene | B1. | | C. 2-Chlorophenol | CC. Dimethylphthalate | CCC. Benzo(a)anthracene | CCCC. Benzo(b)fluorene | C1. | | D. 1,3-Dichlorobenzene | DD. Acenaphthylene | DDD. Chrysene | DDDD. cis/trans-Decalin | D1. | | E. 1,4-Dichlorobenzene | EE. 2,6-Dinitrotoluene | EEE. Bis(2-ethylhexyl)phthalate | EEEE. Biphenyl | E1. | | F. 1,2-Dichlorobenzene | FF. 3-Nitroaniline | FFF. Di-n-octylphthalate | FFFF. Retene | F1. | | G. 2-Methylphenol | GG. Acenaphthene | GGG. Benzo(b)fluoranthene | GGGG. C30-Hopane | G1. | | H. 2,2'-Oxybis(1-chloropropane) | HH. 2,4-Dinitrophenol | HHH. Benzo(k)fluoranthene | HHHH. 1-Methylphenanthrene | H1. | | I. 4-Methylphenol | II. 4-Nitrophenol | III. Benzo(a)pyrene | IIII. 1,4-Dioxane | 11. | | J. N-Nitroso-di-n-propylamine | JJ. Dibenzofuran | JJJ. Indeno(1,2,3-cd)pyrene | JJJJ. Acetophenone | J1. | | K. Hexachloroethane | KK. 2,4-Dinitrotoluene | KKK. Dibenz(a,h)anthracene | KKKK. Atrazine | K1. | | L. Nitrobenzene | LL. Diethylphthalate | LLL. Benzo(g,h,i)perylene | LLLL. Benzaldehyde | L1. | | M. Isophorone | MM. 4-Chlorophenyl-phenyl ether | MMM. Bis(2-Chloroisopropyl)ether | MMMM. Caprolactam | M1. | | N. 2-Nitrophenol | NN. Fluorene | NNN. Aniline | NNNN. 2,6-Dichlorophenol | N1. | | O. 2,4-Dimethylphenol | OO. 4-Nitroaniline | OOO. N-Nitrosodimethylamine | OOOO. 2,6-Dinitrotoluene | 01. | | P. Bis(2-chloroethoxy)methane | PP. 4,6-Dinitro-2-methylphenol | PPP. Benzoic Acid | PPPP. 3-Methylphenol | P1. | | Q. 2,4-Dichlorophenol | QQ. N-Nitrosodiphenylamine | QQQ. Benzyl alcohol | QQQQ. 3&4 Methylphenol | Q1. | | R. 1,2,4-Trichlorobenzene | RR. 4-Bromophenyl-phenylether | RRR. Pyridine | RRRR. 4-Dimethyldibenzothiphene (4MDT) | R1. | | S. Naphthalene | SS. Hexachlorobenzene | SSS. Benzidine | SSSS. 2/3-Dimethyldibenzothiophene (4MDT) | S1. | | T. 4-Chloroaniline | TT. Pentachlorophenol | TTT. 1-Methylnaphthalene | TTTT. 1-Methyldibenzothiophene (1MDT) | T1. | | U. Hexachlorobutadiene | UU. Phenanthrene | UUU.Benzo(b)thiophene | UUUU. | U1. | | V. 4-Chloro-3-methylphenol | VV. Anthracene | VVV.Benzonaphthothiophene | ww. | V1. | | W. 2-Methylnaphthalene | WW. Carbazole | WWW.Benzo(e)pyrene | www. | W1. | | X. Hexachlorocyclopentadiene | XX. Di-n-butylphthalate | XXX. 2,6-Dimethylnaphthalene | XXXX. | X1. | | Y. 2,4,6-Trichlorophenol | YY. Fluoranthene | YYY. 2,3,5-Trimethylnaphthalene | YYYY. | Y1. | | Z. 2,4,5-Trichlorophenol | ZZ. Pyrene | ZZZ. Perylene | ZZZZ. | Z1. | LDC #: 36282 C2b #### VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS) | | 1 | / | |---------------|-------|---| | Page: . | /_of_ | | | Reviewer: | FT | | | 2nd Reviewer: | ~ | | | | | | METHOD: GC/MS BNA (EPA SW 846 Method 8270D) Alease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A Was a LCS required? Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? coole= 10 | # | LCS/LCSD ID | Compound | LCS
%R (Limits) | LCSD
%R (Limits) | RPD (Limits) | Associated Samples | Qualifications | |------------|-------------|---|--------------------|---------------------|--------------|--------------------|----------------| | | SUCOTUL/WC | ५५ | () | () | 26 (20) | all water | (ON) 9/LNIL | | | | 00 | () | () | 27 () | | | | | | _ 3 | () | () | 27 () | | | | L | | W | () | () | 29 () | | | | | | TTT | () | () | 20 ()) | | V | | | | | () | () | () | | | | <u> </u> | | | () | () | () | | | | <u> </u> | | | () | () | () | | | | <u> </u> | | | () | () | () | | | | <u> </u> | | | () | () | () | | | | <u> </u> | | | () | () | () | | | | <u> </u> | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | , | | | ļ | | | () | () | () | | | | | | | | | () | | | | <u> </u> - | | | () | () | () | | | | \vdash | | ,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | () | () | () | | | | | | | () | () | () | | | | | | | () | () | () | | | | - | | | () | () | () | | | | | | | () | () | () | | | LDC#: 36282C2b #### **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | <u>/of/</u> | |----------------|-------------| | Reviewer:_ | FT | | 2nd Reviewer:_ | 9 | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) $A_x =$ Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, S = Standard deviation of the RRFs, C_{is} = Concentration of internal standard X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----------|-------------|---------------------|------------------------------|------------------|-----------------|--------------------------|--------------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Internal Standard) | RRF
(10 std) | RRF
(10 std) | Average RRF
(initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | ICAL | 2/2/16 | (1st IS) | 3.98) | 3.981 | 4.006 | 4.006 | 3.76 | 3.76 | | | | | (2nd IS) | 1.437 | 1. 437 | 1.451 | 1.45 | 9.00 | 900 | | | | | III (3rd IS) | 1.165 | 1.165 | 1.083 | 1.083 | 11-33 | 11-33 | | | | | (4th IS) | | | | | | | | | | | (5th IS) | | | | | | | | <u> </u> | | | (6th IS) | | | | | | | | 2 | | | (1st IS) | | | | | | | | | ſ | | (2nd IS) | | | | | | | | | | | (3rd IS) | | | | | | | | | | | (4th IS) | | | | | | | | | | | (5th IS) | | | | | | | | | | | (6th IS) | | | | | | | | 3 | | | (1st IS) | | | | | | | | | | | (2nd IS) | | | | | | | | | | | (3rd IS) | | | | | | | | | | | (4th IS) | | | | | | | | | | | (5th IS) | | | | | | | | | | | (6th IS) | | | | | | | | Comments: | Refer to Initial | Calibration : | <u>findings w</u> | orksheet fo | r list of | qualifications | and a | associated | samples | when | reported | results d | o not agre | e within | 10.0% of the | |--------------|------------------|---------------|-------------------|-------------|-----------|----------------|-------|------------|---------|------|----------|-----------|------------|----------|--------------| | recalculated | results. | LDC#: 36282cab #### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:_ | 1 | of_ | 1 | | |---------------|---|-----|---|---| | Reviewer: | | FT | | | | 2nd Reviewer: | | _ | | | | | _ | | | _ | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF $A_x =$ Area of compound, A_{is} = Area of associated internal standard $C_x = Concentration of compound,$ C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |----------|-------------|---------------------|------------------------------|--------------------------|-------------|--------------|----------|--------------| | #_ | Standard ID | Calibration
Date | Compound (Internal Standard) | Average RRF
(Initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | cev | 3/23/16 | \$ (1st IS) | 4.006 | 3.85 | 3.85 | 3.9 | 3.9 | | |] | , , | YY (2 nd IS) | 1.45 | 1.395 | 1.395 | 3.9 | 3.9 | | i | | | III (3 rd IS) | 1.083 | 1.158 | 1.158 | 6.9 | 6.9 | | | | | (4 th IS) | | | | | • | | | | | (5 th IS) | | | | | | | | <u> </u> | | (6 th IS) | | | | | | | 2 | | | (1st IS) | | | | | | | 1 | | | (2 nd IS) | | | | | | | | | | (3 rd IS) | | | | | | | | | | (4 th 1S) | | | | | | | 1 | | | (5 th IS) | | | | | | | <u> </u> | | | (6 th IS) | | | | | | | 3 | | · | (1st IS) | | | | | | | | | | (2 nd IS) | | | | | | | | | | (3 rd IS) | | | ļ | | | | | | | (4 th IS) | | | | | | | | | | (5 th IS) | | | | | | | | | | (6 th IS) | | | <u> </u> | L | <u> </u> | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 36282 C2b ## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification | Page: | <u>1_ot_1_</u> | |---------------|----------------| | Reviewer: | FT | | 2nd reviewer: | n/ | METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: # | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | 10.0 | 8.62 | 86.2 | 86.2 | ь | | 2-Fluorobiphenyl | 1 | 8.22 | 82.2 | 82.2 | | | Terphenyl-d14 | 1 | 10.61 | 106 | 106 | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID:_____ | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------
-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |------------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Nitrobenzene-d5 | | | | | | | 2-Fluorobiphenyl | | | | | | | Terphenyl-d14 | | | | | | | Phenol-d5 | | | | | | | 2-Fluorophenol | | | | | | | 2,4,6-Tribromophenol | | | | | | | 2-Chlorophenol-d4 | | | | | | | 1,2-Dichlorobenzene-d4 | | | | | | LDC #:_36282C2b #### **VALIDATION FINDINGS WORKSHEET** ### Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Page: 1 of 1 Reviewer: FT 2nd Reviewer:__ METHOD: GC/MS BNA (EPA SW 846 Method 8270C) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SC/SA Where: SSC = Spike concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCS/LCSD samples: SVC0185L/SC | Compound | Ad | pike
Ided | Conce | oike
ntration | | Recovery | | SD | | LCSD | |----------------------------|----------|--------------|-------|------------------|----------|----------|----------|--------|----------|--------------| | | LCS | LCSD | LCS | I CSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Phenol | | | | | | | | | | | | N-Nitroso-di-n-propylamine | | | | | | | | | | | | 4-Chloro-3-methylphenol | | | | | | | | | | | | Acenaphthene | 1330 | 1330 | 1010 | 943 | 76 | 76 | 71 | 77 | 7 | 17 | | Pentachlorophenol | | | | | | | | | | _ | | Pyrene | <u> </u> | | 1320 | 1270 | 99 | 99 | 95 | 95 | 4 | 4 | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 3628202 ### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | 1_of_1_ | |-----------------|---------| | Reviewer:_ | FT | | 2nd reviewer: - | #/ | METHOD: GC/MS BNA (EPA SW 846 Method 8270C) | / | Y | Ŋ | N/A | |---|---|----|-----| | | Υ | λĺ | N/A | | 1 | | _ | | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Concentration = $(A_i)(I_s)(V_i)(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(\%S)$ A_x = Area of the characteristic ion (EICP) for the compound to be measured A_{is} = Area of the characteristic ion (EICP) for the specific internal standard I_s = Amount of internal standard added in nanograms (ng) V_o = Volume or weight of sample extract in milliliters (ml) or grams (g). V₁ = Volume of extract injected in microliters (ul) V_t = Volume of the concentrated extract in microliters (uI) Df = Dilution Factor. %S = Percent solids, applicable to soil and solid matrices 2.0 = Factor of 2 to account for GPC cleanup | xample: | |---------| | | conc. = (37891) (40) (2) (1000) (1902181) (1.330) (30) (0.983) = 41 mg/kg | 2.0 | = Factor of 2 to accou | nt for GPC cleanup | | | | |-----|------------------------|--|----------------------------------|------------------------------------|---------------------------------------| | # | Sample ID | Compound | Reported
Concentration
() | Calculated
Concentration
() | Qualification | İ | | | | | : | ************************************** | ······································ | | | · · · · · · · · · · · · · · · · · · · | ······································ | | | <u> </u> | | | | | | | | | | | | *** | | | | | | | | | <u></u> | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 12, 2016 Parameters: Chlorinated Pesticides Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-022 | 16C129-01 | Soil | 03/15/16 | | KCH067-022DL | 16C129-01DL | Soil | 03/15/16 | | KCH067-023 | 16C129-02 | Soil | 03/15/16 | | KCH067-023DL | 16C129-02DL | Soil | 03/15/16 | | KCH067-024 | 16C129-03 | Soil | 03/15/16 | | KCH067-024DL | 16C129-03DL | Soil | 03/15/16 | | KCH067-025 | 16C129-04 | Soil | 03/15/16 | | KCH067-025DL | 16C129-04DL | Soil | 03/15/16 | | KCH067-026** | 16C129-05** | Soil | 03/15/16 | | KCH067-026DL** | 16C129-05DL** | Soil | 03/15/16 | | KCH067-027 | 16C129-06 | Soil | 03/15/16 | | KCH067-027DL | 16C129-06DL | Soil | 03/15/16 | | KCH067-028 | 16C129-07 | Soil | 03/15/16 | | KCH067-028DL | 16C129-07DL | Soil | 03/15/16 | | KCH067-029 | 16C129-08 | Soil | 03/15/16 | | KCH067-029DL | 16C129-08DL | Soil | 03/15/16 | | KCH067-041 | 16C129-18 | Water | 03/15/16 | | KCH067-042 | 16C129-19 | Water | 03/15/16 | | KCH067-022MS | 16C129-01MS | Soil | 03/15/16 | | KCH067-022MSD | 16C129-01MSD | Soil | 03/15/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip
Blanks - 19 Internal standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other # I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. GC Instrument Performance Check Instrument performance was checked at 12 hour intervals. The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. Retention time windows were established as required by the method for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. # IV. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions: | Date | Standard | Column | Compound | %D | Associated
Samples | Flag | A or P | |---------------------|----------|----------|-----------|----|--|----------------------|--------| | 03/22/16
(16:15) | ccv | RTX CLP2 | alpha-BHC | 22 | All water samples in SDG
16C129 | UJ (all non-detects) | Α | | 03/22/16
(20:18) | ccv | RTX CLP2 | alpha-BHC | 23 | KCH067-022
KCH067-023
KCH067-024
KCH067-025
KCH067-027
KCH067-029 | UJ (all non-detects) | А | | Date | Standard | Column | Compound | %D | Associated
Samples | Flag | A or P | |---------------------|----------|----------|--|----------------|--|--|--------| | 03/23/16
(20:25) | ccv | RTX CLP2 | alpha-BHC
gamma-BHC | 31
25 | KCH067-022DL
KCH067-023DL
KCH067-024DL
KCH067-025DL
KCH067-027DL
KCH067-028
KCH067-029DL | UJ (all non-detects)
UJ (all non-detects) | A | | 03/24/16
(20:03) | ccv | RTX CLP1 | gamma-Chlordane
alpha-Chlordane
Endosulfan I | 34
24
21 | KCH067-026**
KCH067-026DL**
KCH067-028DL | J (all detects)
UJ (all non-detects) | А | | 03/24/16
(20:03) | ccv | RTX CLP2 | Aldrin | 22 | KCH067-026**
KCH067-026DL**
KCH067-028DL | J (all detects)
UJ (all non-detects) | А | Retention times of all compounds in the calibration standards were within the established retention time windows for samples which underwent Level IV validation. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found. # VII. Surrogates Surrogates were added to all samples as required by the method. Surrogate recoveries (%R) were not within QC limits for several samples. No data were qualified for samples analyzed at greater than or equal to 5X dilution. # VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were not within the QC limits for KCH067-022MS/MSD. No data were qualified for Dieldrin since the parent sample results were greater than 4X the spiked concentration. Relative percent differences (RPD) were within QC limits. # IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. # X. Field Duplicates No field duplicates were identified in this SDG. # XI. Compound Quantitation All compound quantitations met validation criteria with the following exceptions: | Sample | Compound | Finding | Criteria | Flag | A or P | |--|---|---|---|---|--------| | KCH067-022 | Dieldrin
Chlordane (Technical) | Sample result exceeded calibration range. | Reported result should be within calibration range. | J (all detects)
J (all detects) | Α | | KCH067-023
KCH067-026**
KCH067-028 | alpha-Chlordane
gamma-Chlordane
Chlordane (Technical) | Sample result exceeded calibration range. | Reported result should be within calibration range. | J (all detects) J (all detects) J (all detects) | A | | KCH067-024 | alpha-Chlordane
gamma-Chlordane | Sample result exceeded calibration range. | Reported result should be within calibration range. | J (all detects) J (all detects) | Α | | KCH067-025 | alpha-Chlordane
gamma-Chlordane
4,4'-DDE
4,4'-DDT
Chlordane (Technical) | Sample result exceeded calibration range. | Reported result should be within calibration range. | J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) | Α | | KCH067-027
KCH067-029 | alpha-Chlordane
gamma-Chlordane
Dieldrin
Chlordane (Technical) | Sample result exceeded calibration range. | Reported result should be within calibration range. | J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) | А | The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions: | Sample | Compound | RPD | Flag | A or P | |--------------|--|----------------------|---|--------| | KCH067-022 | gamma-Chlordane
Dieldrin
4,4'-DDT
Chlordane (Technical) | 52
78
45
45 | J (all detects) J (all detects) J (all detects) J (all detects) | А | | KCH067-022DL | gamma-Chlordane
alpha-Chlordane | 75
67 | J (all detects) J (all detects) | А | | Sample | Compound | RPD | Flag | A or P | |----------------|---|-------------------------------|---|--------| | KCH067-023 | gamma-Chlordane
Dieldrin
4,4'-DDT
Chlordane (Technical) | 84
50
89
63 | J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) | A | | KCH067-023DL | alpha-Chlordane
4,4'-DDT | 52
49 | J (all detects) J (all detects) | A | | KCH067-024 | gamma-Chlordane
alpha-Chlordane
4,4'-DDT | 42
50
79 | J (all detects) J (all detects) J (all detects) | A | | KCH067-024DL | alpha-Chlordane | 73 | J (all detects) | A | | KCH067-025 | gamma-Chlordane
4,4'-DDE
4,4'-DDT
Chlordane (Technical) | 90
85
83
69 | J (all detects) J (all detects) J (all detects) J (all detects) | A | | KCH067-025DL | alpha-Chlordane
Dieldrin | 78
151 | J (all detects) J (all detects) | А | | KCH067-026** | gamma-Chlordane
alpha-Chlordane
Dieldrin
Endrin
Chlordane (Technical) | 144
147
95
102
52 | J (all detects) J (all detects) J (all detects) J (all detects) J (all detects) | А | | KCH067-026DL** | alpha-Chlordane | 51 | J (all detects) | А | | KCH067-027 | gamma-Chlordane
alpha-Chlordane
4,4'-DDT
Chlordane (Technical) | 82
81
81
56 | J (all detects) J (all detects) J (all detects) J (all detects) | A | | KCH067-027DL | alpha-Chlordane | 70 | J (all detects) | А | | KCH067-028DL | alpha-Chlordane
4,4'-DDE | 74
48 | J (all detects) J (all detects) | А | | KCH067-029 | Aldrin
gamma-Chlordane
4,4'-DDE
Dieldrin | 57
65
57
42 | J (all detects) J (all detects) J (all detects) J (all detects) | A | | KCH067-029DL | alpha-Chlordane
4,4'-DDE
4,4'-DDT | 76
63
56 | J (all detects) J (all detects) J (all detects) | A | Raw data were not reviewed for Level III validation. # XII. Target Compound Identification All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. # XIII. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed unusable as follows: | Sample | Compound | Flag | A or P | |--|---|-----------------------|--------| | KCH067-022 | Dieldrin
Chlordane (Technical) | R
R | Α | | KCH067-022DL | All compounds except Dieldrin Chlordane (Technical) | R | Α | | KCH067-023
KCH067-026**
KCH067-028 | alpha-Chlordane
gamma-Chlordane
Chlordane (Technical) | R
R
R | Α | | KCH067-023DL
KCH067-026DL**
KCH067-028DL | All compounds except
alpha-Chlordane
gamma-Chlordane
Chlordane (Technical) | R | Α | | KCH067-024 | alpha-Chlordane
gamma-Chlordane | R
R | А | | KCH067-024DL | All
compounds except
alpha-Chlordane
gamma-Chlordane | R | Α | | KCH067-025 | alpha-Chlordane
gamma-Chlordane
4,4'-DDE
4,4'-DDT
Chlordane (Technical) | R
R
R
R
R | Α | | Sample | Compound | Flag | A or P | |------------------------------|---|------------------|--------| | KCH067-025DL | All compounds except
alpha-Chlordane
gamma-Chlordane
4,4'-DDE
4,4'-DDT
Chlordane (Technical) | R | А | | KCH067-027
KCH067-029 | alpha-Chlordane
gamma-Chlordane
Dieldrin
Chlordane (Technical) | R
R
R
R | Α | | KCH067-027DL
KCH067-029DL | All compounds except
alpha-Chlordane
gamma-Chlordane
Dieldrin
Chlordane (Technical) | R | Α | Due to continuing calibration %D and RPD between two columns, data were qualified as estimated in ten samples. The quality control criteria reviewed, as discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation, all other results are considered valid and usable for all purposes. # China Lake CTO 067 Chlorinated Pesticides - Data Qualification Summary - SDG 16C129 | | | | | - | |--|--|--|--------|--| | Sample | Compound | Flag | A or P | Reason (Code) | | KCH067-041
KCH067-042
KCH067-022
KCH067-023
KCH067-024
KCH067-025
KCH067-027
KCH067-029 | alpha-BHC | UJ (all non-detects) | Α | Continuing calibration (%D) (5) | | KCH067-028 | alpha-BHC
gamma-BHC | UJ (all non-detects)
UJ (all non-detects) | Α | Continuing calibration (%D) (5) | | KCH067-026**
KCH067-026DL**
KCH067-028DL | gamma-Chlordane
alpha-Chlordane
Endosulfan I
Aldrin | J (all detects)
UJ (all non-detects) | A | Continuing calibration (%D) (5) | | KCH067-022 | gamma-Chlordane
4,4'-DDT | J (all detects)
J (all detects) | A | Compound quantitation (RPD between two columns) (12) | | KCH067-023 | Dieldrin
4,4'-DDT | J (all detects)
J (all detects) | Α | Compound quantitation (RPD between two columns) (12) | | KCH067-024
KCH067-027 | 4,4'-DDT | J (all detects) | Α | Compound quantitation (RPD between two columns) (12) | | KCH067-023DL
KCH067-024DL
KCH067-025DL
KCH067-026DL**
KCH067-027DL
KCH067-028DL
KCH067-029DL | alpha-Chlordane | J (all detects) | А | Compound quantitation (RPD between two columns) (12) | | KCH067-026** | Dieldrin
Endrin | J (all detects)
J (all detects) | А | Compound quantitation (RPD between two columns) (12) | | KCH067-029 | Aldrin
4,4'-DDE | J (all detects)
J (all detects) | А | Compound quantitation (RPD between two columns) (12) | | KCH067-022 | Dieldrin
Chlordane (Technical) | R
R | А | Overall assessment of data (22) | | KCH067-022DL | All compounds except
Dieldrin
Chlordane (Technical) | R | А | Overall assessment of data (22) | | KCH067-023
KCH067-026**
KCH067-028 | alpha-Chlordane
gamma-Chlordane
Chlordane (Technical) | R
R
R | A | Overall assessment of data (22) | | Sample | Compound | Flag | A or P | Reason (Code) | |--|---|-----------------------|--------|---------------------------------| | KCH067-023DL
KCH067-026DL**
KCH067-028DL | All compounds except
alpha-Chlordane
gamma-Chlordane
Chlordane (Technical) | R | A | Overall assessment of data (22) | | KCH067-024 | alpha-Chlordane
gamma-Chlordane | R
R | A | Overall assessment of data (22) | | KCH067-024DL | All compounds except
alpha-Chlordane
gamma-Chlordane | R | А | Overall assessment of data (22) | | KCH067-025 | alpha-Chlordane
gamma-Chlordane
4,4'-DDE
4,4'-DDT
Chlordane (Technical) | R
R
R
R
R | A | Overall assessment of data (22) | | KCH067-025DL | All compounds except alpha-Chlordane gamma-Chlordane 4,4'-DDE 4,4'-DDT Chlordane (Technical) | R | А | Overall assessment of data (22) | | KCH067-027
KCH067-029 | alpha-Chlordane
gamma-Chlordane
Dieldrin
Chlordane (Technical) | R
R
R
R | A | Overall assessment of data (22) | | KCH067-027DL
KCH067-029DL | All compounds except
alpha-Chlordane
gamma-Chlordane
Dieldrin
Chlordane (Technical) | R | A | Overall assessment of data (22) | China Lake CTO 067 Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Chlorinated Pesticides - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG _______ Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-022 Date Analyzed: 03/22/16 20:59 Lab Samp ID: C129-01 Dilution Factor: 1 Lab File ID: RC22025A Matrix : SOIL Lab File ID: RC22025A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 1.5 Calib. Ref.: RC22023A Instrument ID : F9 RESULTS LOQ DL LOD **PARAMETERS** (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ND) ND (J(S) 0.41 ALPHA-BHC 2.0 0.20 GAMMA-BHC (LINDANE) (ND) ND 2.0 0.20 0.41 BETA-BHC (ND) ND 2.0 0.20 0.41 **HEPTACHLOR** (ND) ND 2.0 0.20 0.41 (ND) ND 2.0 0.41 0.27 DELTA-BHC (ND) ND 2.0 0.20 0.41 ALDRIN (ND) ND 2.0 0.20 0.41 HEPTACHLOR EPOXIDE GAMMA-CHLORDANE 9.4 (16) 2.0 0.20 0.41 (17) | 13 2.0 0.20 0.41 ALPHA-CHLORDANE (ND) ND 2.0 0.20 0.41 ENDOSULFAN I 7.9 (11) 2.0 0.20 0.41 4,4'-DDE 140E (320E) R(>2) 2.0 0.20 0.41 DIELDRIN (ND) 0.56J ENDRIN 2.0 0.20 0.41 (ND) 0.71J 2.0 0.20 0.41 4,41-DDD ENDOSULFAN II 0.26J (ND) 2.0 0.20 0.41 6.1 (9.6) J(12) 2.0 0.20 0.41 4.4'-DDT ENDRIN ALDEHYDE (ND) ND 2.0 0.36 0.41 (ND) 0.35J 2.0 0.20 0.41 ENDOSULFAN SULFATE (ND) ND 2.0 0.20 0.41 ENDRIN KETONE (ND) ND METHOXYCHLOR 10 2.0 4.1 (ND) ND 51 5.1 10 TOXAPHENE 380 (600E) R(>->) 51 10 20 TECHNICAL CHLORDANE | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | |----------------------|---------------|---------|------------|----------| | | | | | | | TETRACHLORO-M-XYLENE | 13.12 (14.04) | 13.53 | 96.9 (104) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () ______ Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Sample ID: KCH067-022DL Lab File ID: RC22058A Ext Btch ID: CPC019S Calib. Ref.: RC22057A Date Collected: 03/15/16 Date Received: 03/21/16 Date Extracted: 03/21/16 Date Analyzed: 03/23/16 Received: 03/15/16 03/21/16 | | RESULTS | LOQ | DL | LOD | |----------------------|-----------------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | (ND) ND R(22) | | | | | ALPHA-BHC | | | 2.0 | 4.1 | | GAMMA-BHC (LINDANE) | (ND) ND | 20 | 2.0 | 4.1 | | BETA-BHC | (ND) ND | 20 | 2.0 | 4.1 | | HEPTACHLOR | (ND) ND | 20 | 2.0 | 4.1 | | DELTA-BHC | (ND) ND | 20 | 2.7 | 4.1 | | ALDRIN | (ND) ND | 20 | 2.0 | 4.1 | | HEPTACHLOR EPOXIDE | (ND) ND | 20 | 2.0 | 4.1 | | GAMMA-CHLORDANE | 9.61 (21) | 20 | 2.0 | 4.1 | | ALPHA-CHLORDANE | 32 (16J) | 20 | 2.0 | 4.1 | | ENDOSULFAN I | (ND) ND | 20 | 2.0 | 4.1 | | 4,4'-DDE | (14J) 13J 🛂 | 20 | 2.0 | 4.1 | | DIELDRIN | 340 (440) | 20 | 2.0 | 4.1 | | ENDRIN | (ND) ND $R(22)$ | .) 20 | 2.0 | 4.1 | | 4,4'-DDD | (ND) 3.1J Ì | 20 | 2.0 | 4.1 | | ENDOSULFAN II | (ND) ND | 20 | 2.0 | 4.1 | | 4,4'-DDT | (13J) 12J | 20 | 2.0 | 4.1 | | ENDRIN ALDEHYDE | (ND) ND | 20 | 3.6 | 4.1 | | ENDOSULFAN SULFATE | (ND) ND | 20 | 2.0 | 4.1 | | ENDRIN KETONE | (ND) ND | 20 | 2.0 | 4.1 | | METHOXYCHLOR | (ND) ND | 100 | 20 | 41 | | TOXAPHENE | (ND) ND V | 510 | 51 | 100 | | TECHNICAL CHLORDANE | (930) 930 | 510 | 100 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 14.05 (15.43) | 13.53 | 104 (114) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () 82511/6 ________ Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-023 Date Analyzed: 03/22/16 22:01 Lab Samp ID: C129-02 Dilution Factor: 1 Lab Samp ID: C129-02 Dilution Factor: 1 Lab File ID: RC22028A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 4.3 Calib. Ref.: RC22023A Instrument ID : F9 ______ | | RESULTS | LOG | DL DL | LOD | |----------------------|--------------------|--------------|-------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | ALPHA-BHC | (ND) ND 45(5) | 2.1 | 0.21 | 0.42 | | GAMMA-BHC (LINDANE) | (ND) 14 | 2.1 | | 0.42 | | BETA-BHC | (ND) ND | 2.1 | | 0.42 | | HEPTACHLOR | (ND) ND | 2.1 | | 0.42 | | DELTA-BHC | (ND) 3.8 | 2.1 | 0.28 | 0.42 | | ALDRIN | 2.01 (2.2) | 2.1 | 0.21 | 0.42 | | HEPTACHLOR EPOXIDE | (ND) ND | 2.1 | 0.21 | 0.42 | | GAMMA-CHLORDANE | 130E (320E) R(2-2 | ·) 2.1 | 0.21 | 0.42 | | ALPHA-CHLORDANE | 190E (270E) | 2.1 | 0.21 | 0.42 | | ENDOSULFAN I | 3.2 (ND) | 2.1 | 0.21 | 0.42 | | 4,4'-DDE | (19) 18 | 2.1 | 0.21 | 0.42 | | DIELDRIN | (52) 87E J(12) | 2.1 | 0.21 | 0.42 | | ENDRIN | (ND) 12 | 2.1 | 0.21 | 0.42 | | 4,4'-DDD | (ND) ND | 2.1 | 0.21 | 0.42 | | ENDOSULFAN II | (ND) ND | 2.1 | 0.21 | 0.42 | | 4,4'-DDT | 8.5 (22) J(12 | .) 2.1 | 0.21 | 0.42 | | ENDRIN ALDEHYDE | (ND) ND | 2.1 | 0.37 | 0.42 | | ENDOSULFAN SULFATE | (ND) 1.9J | 2.1 | 0.21 | 0.42 | | ENDRIN KETONE | (ND) ND | 2.1 | 0.21 | 0.42 | | METHOXYCHLOR | (ND) ND | 10 | 2.1 | 4.2 | | TOXAPHENE | (ND) ND | . 52 | 5.2 | 10 | | TECHNICAL CHLORDANE | 1400E (2700E) K(>> | -)
52 | ! 10 | 21 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 12.11 (13.33) | 13.93 | 87.0 (95.7) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () ________ Ext Btch ID: CPC019S % Moisture : 4.3 Calib. Ref.: RC22057A Instrument ID : F9 RESULTS LOQ DL LOD (ug/kg) **PARAMETERS** (ug/kg) (ug/kg) (ug/kg) (ND) ND 4.2 ALPHA-BHC 42 8.4 (ND) ND 42 8.4 GAMMA-BHC (LINDANE) 4.2 (ND) ND 42 4.2 8.4 BETA-BHC (ND) ND 42 4.2 8.4 **HEPTACHLOR** 42 DELTA-BHC (ND) 5.9J5.6 8.4 42 4.2 8.4 (ND) ND ALDRIN HEPTACHLOR EPOXIDE (ND) ND 42 4.2 8.4 330 (460) 42 4.2 8.4 GAMMA-CHLORDANE 680E (400) ALPHA-CHLORDANE 42 4.2 8.4 (ND) ND 42 8.4 ENDOSULFAN I 4.2 (31J) 25J 42 4.2 8.4 4,41-DDE 100 (130) 42 4.2 8.4 DIELDRIN ENDRIN (ND) ND 42 4.2 8.4 4,4'-DDD (ND) ND 42 4.2 8.4 42 (ND) ND 4.2 8.4 ENDOSULFAN II 201 (331) 4,41-DDT 42 4.2 8.4 (ND) ND 42 7.3 8.4 ENDRIN ALDEHYDE ENDOSULFAN SULFATE (ND) ND 42 4.2 8.4 (ND) ND ENDRIN KETÖNE 42 4.2 8.4 (ND) ND 210 42 84 METHOXYCHLOR (ND) ND 1000 100 210 TOXAPHENE TECHNICAL CHLORDANE 3400 (4100) 1000 210 420 SPK_AMT % RECOVERY QC LIMIT RESULTS SURROGATE PARAMETERS ______ RL: Reporting limit Left of | is related to first column; Right of | related to second column Final result indicated by () TETRACHLORO-M-XYLENE 16.35 (17.23) SCOTTIL 117 (124) 42-129 13.93 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Sample ID: KCH067-024 Lab Samp ID: C129-03 Lab File ID: RC22029A Ext Btch ID: CPC019S Date Collected: 03/15/16 Date Received: 03/21/16 13:45 Date Analyzed: 03/22/16 22:21 Dilution Factor: 1 Matrix : SOIL Moisture : 2.1 _____ Instrument ID : F9 | | RESULTS | LOQ | DL | LOD | |----------------------|------------------------------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | cupy lup 11-5(e) | | | | | ALPHA-BHC | (ND) ND 45(5) |) 2.0 | 0.20 | 0.41 | | GAMMA-BHC (LINDANE) | (ND) ND | 2.0 | 0.20 | 0.41 | | BETA-BHC | (ND) ND | 2.0 | 0.20 | 0.41 | | HEPTACHLOR | (ND) ND | 2.0 | 0.20 | 0.41 | | DELTA-BHC | (ND) ND | 2.0 | 0.28 | 0.41 | | ALDRIN | (0.26J) 0.24J | 2.0 | 0.20 | 0.41 | | HEPTACHLOR EPOXIDE | (ND) ND | 2.0 | 0.20 | 0.41 | | GAMMA-CHLORDANE | 27E (45E) 2(2.2-) | 2.0 | 0.20 | 0.41 | | ALPHA-CHLORDANE | (55E) 36E | 2.0 | 0.20 | 0.41 | | ENDOSULFAN I | 0.49J (ND) | 2.0 | 0.20 | 0.41 | | 4,4'-DDE | 9.0 (10) | 2.0 | 0.20 | 0.41 | | DIELDRIN | 1.4J (ND) | 2.0 | 0.20 | 0.41 | | ENDRIN | (ND) 0.84J | 2.0 | 0.20 | 0.41 | | 4,4'-DDD | (ND) ND | 2.0 | 0.20 | 0.41 | | ENDOSULFAN II | (ND) ND | 2.0 | 0.20 | 0.41 | | 4.4'-DDT | 1.01 (2.3) 5(1 | 2.0 | 0.20 | 0.41 | | ENDRIN ALDEHYDE | (ND) ND | 2.0 | 0.36 | 0,41 | | ENDOSULFAN SULFATE | (ND) ND | 2.0 | 0.20 | 0.41 | | ENDRIN KETONE | (ND) ND | 2.0 | 0.20 | 0.41 | | METHOXYCHLOR | (ND) ND | 10 | 2.0 | 4.1 | | TOXAPHENE | (ND) ND | 51 | 5.1 | 10 | | TECHNICAL CHLORDANE | 470 (500) | 51 | 10 | 20 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 12.70 (15.28) | 13.62 9 | 3.2 (112) | 42-129 | RL: Reporting limit Calib. Ref.: RC22023A Left of | is related to first column ; Right of | related to second column Final result indicated by () Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-024DL Date Analyzed: 03/23/16 22:06 Lab Samp ID: C129-03I Dilution Factor: 5 Lab File ID: RC22062A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 2.1 Calib. Ref.: RC22057A Instrument ID : F9 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | ALPHA-BHC | (ND) ND R(2) |) 10 | 1.0 | 2.0 | | GAMMA-BHC (LINDANE) | (ND) ND | 10 | 1.0 | 2.0 | | BETA-BHC | (ND) ND | 10 | 1.0 | 2.0 | | HEPTACHLOR | (ND) ND | 10 | 1.0 | 2.0 | | DELTA-BHC | (ND) ND | 10 | 1.4 | 2.0 | | ALDRIN | (ND) ND | 10 | 1.0 | 2.0 | | HEPTACHLOR EPOXIDE | (ND) ND | 10 | 1.0 | 2.0 | | GAMMA-CHLORDANE | 39 (53) | . 10 | 1.0 | 2.0 | | ALPHA-CHLORDANE | (86) 40 ブルス |) 10 | 1.0 | 2.0 | | ENDOSULFAN I | (ND) ND R(22) | 10 | 1.0 | 2.0 | | 4,4'-DDE | (15) 12 ` ` 1 | 10 | 1.0 | 2.0 | | DIELDRIN | (ND) ND | 10 | 1.0 | 2.0 | | ENDRIN | (ND) ND | 10 | 1.0 | 2.0 | | 4,4'-DDD | (ND) ND | 10 | 1.0 | 2.0 | | ENDOSULFAN II | (ND) ND | 10 | 1.0 | 2.0 | | 4,4'-DDT | (ND) 2.8J | 10 | 1.0 | 2.0 | | ENDRIN ALDEHYDE | (ND) ND | 10 | 1.8 | 2.0 | | ENDOSULFAN SULFATE | (ND) ND | 10 | 1.0 | 2.0 | | ENDRIN KETONE | (ND) ND | 10 | 1.0 | 2.0 | | METHOXYCHLOR | (ND) ND | 51 | 10 | 20 | | TOXAPHENE | (ND) ND | 260 | 26 | 51 | | TECHNICAL CHLORDANE | 550 (580) | 260 | 51 | 100 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | TETRACHLORO-M-XYLENE | 16.11 (16.26) | 13.62 | 118 (119) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () _______ Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Date Collected: 03/15/16 Date Received: 03/17/16 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-025 Date Analyzed: 03/22/16 22:42 Lab Samp ID: C129-04 Dilution Factor: 1 Lab File ID: RC22030A Matrix : SOIL % Moisture : 4.3 Ext Btch ID: CPC0198 Calib. Ref.: RC22023A Instrument ID : F9 | | RESULTS | Lo | DQ DL | LOD | |----------------------|------------------------|----------------|--------------|----------| | PARAMETERS | (ug/kg) | (ug/k | g) (ug/kg) | (ug/kg) | | | | | | | | ALPHA-BHC | (ND) ND U | 5(5) 2 | .1 0.21 | 0.42 | | GAMMA-BHC (LINDANE) | (ND) 32E | 2 | .1 0.21 | 0.42 | | BETA-BHC | 24 (ND) | 2 | .1 0.21 | 0.42 | | HEPTACHLOR | (ND) 1.6J | 2 | .1 0.21 | 0.42 | | DELTA-BHC | (ND) 1.1J | 2 | .1 0.28 | 0.42 | | ALDRIN | 1.2J (ND) | 2 | .1 0.21 | 0.42 | | HEPTACHLOR EPOXIDE | 17 (ND) | , 2 | .1 0.21 | 0.42 | | GAMMA-CHLORDANE | 140E (370E) R | ンン) 2. | .1 0.21 | 0.42 | | ALPHA-CHLORDANE | 210E (300E) J | 2. | .1 0.21 | 0.42 | | ENDOSULFAN I | 5.0 (ND) | 2. | 1 0.21 | 0.42 | | 4,4'-DDE | 170E (420E) R | (プン) 2. | .1 0.21 | 0.42 | | DIELDRIN | 42 (46) | 2. | .1 0.21 | 0.42 | | ENDRIN | (ND) 10 | 2. | .1 0.21 | 0.42 | | 4,4'-DDD | (ND) ND | 2. | .1 0.21 | 0.42 | | ENDOSULFAN II | (ND) ND | 2. | .1 0.21 | 0.42 | | 4,4'-DDT | 220E (530E) Q (| 22) 2. | .1 0.21 | 0.42 | | ENDRIN ALDEHYDE | (ND) ND | 2. | .1 0.37 | 0.42 | | ENDOSULFAN SULFATE | (ND) 2.2 | 2. | 1 0.21 | 0.42 | | ENDRIN KETONE | (ND) ND | 2. | .1 - 0.21 | 0.42 | | METHOXYCHLOR | (ND) ND | | 0 2.1 | 4.2 | | TOXAPHENE | (ND) ND | <i>-</i> . ! | 5.2 | 10 | | TECHNICAL CHLORDANE | 2100E (4300E) R | (22) | 52 10 | 21 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | (13.73) 13.19 | 13.93 | 98.5) 94.7 | 42-129 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | |----------------------|-----------------|---------|-------------|----------| | | | | | | | TETRACHLORO-M-XYLENE | (13.73) 13.19 | 13.93 | (98.5) 94.7 | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () Sto51716 ______ Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Sample ID: KCH067-025DL Lab Samp ID: C129-04I Lab File ID: RC22063A Ext Btch ID: CPC019S Calib. Ref.: RC22057A Date Collected: 03/15/16 Date Received: 03/21/16 13:45 Date Analyzed: 03/23/16 22:26 Date Analyzed: 03/23/16 22:26 Matrix : SOIL Moisture : 4.3 Instrument ID : F9 | | RESULTS | LOG | _ | LOD | |----------------------|---------------|----------------|-------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | ALPHA-BHC | (ND) ND Á | 2(22) 84 | 8.4 | 17 | | GAMMA-BHC (LINDANE) | (ND) ND | 84 | - | 17 | | BETA-BHC | (ND) ND | 84 | | 17 | | HEPTACHLOR | (ND) ND | 84 | - · | 17 | | DELTA-BHC | (ND) ND | 84 | | 17 | | ALDRIN | (ND) ND | 84 | | 17 | | HEPTACHLOR EPOXIDE | (ND) ND | ₩ 84 | | 17 | | GAMMA-CHLORDANE | 360 (460) | . 84 | | 17 | | ALPHA-CHLORDANE | (840) 370 | 「(1) 84 | 8.4 | 17 | | ENDOSULFAN I | (ND) ND R | (22) 84 | 8.4 | 17 | | 4,4'-DDE | 520 (540) | 84 | 8.4 | 17 | | DIELDRIN | (11J) 79J 🗜 | 2(22) 84 | 8.4 | 17 | | ENDRIN | (ND) ND | 84 | 8.4 | 17 | | 4,4'-DDD | (ND) ND | 84 | 8.4 | 17 | | ENDOSULFAN II | (ND) ND | ¥ 84 | 8.4 | 17 | | 4,4'-DDT | 540 (570) | 84 | 8.4 | 17 | | ENDRIN ALDEHYDE | (ND) ND R | (22) 84 | 15 | 17 | | ENDOSULFAN SULFATE | (ND) ND | 84 | 8.4 | 17 | | ENDRIN KETONE | (ND) ND | 84 | 8.4 | 17 | | METHOXYCHLOR | (ND) ND | 420 | 84 | 170 | | TOXAPHENE | (ND) ND | ↓ 2100 | 210 | 420 | | TECHNICAL CHLORDANE | (6000) 5800 | 2100 | 420 | 840 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 14.47 (17.42) | 13.93 | 104 (125) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () E251716 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-026 Date Analyzed: 03/24/16 20:44 Lab Samp ID: C129-05K Dilution Factor: 20 Lab File ID: RC22087A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 3.9 Calib. Ref.: RC22085A Instrument ID : F9 _______ | | RESULTS | S LO | DL. | LOD | |----------------------|-------------|--------------------|-------------|----------| | PARAMETERS | (ug/kg) | (ug/kg | (ug/kg) | (ug/kg) | | | | | | | | ALPHA-BHC | (ND) ND | 42 | | 8.3 | | GAMMA-BHC (LINDANE) | (ND) ND | 42 | | 8.3 | | BETA-BHC | (ND) ND | 42 | | 8.3 | | HEPTACHLOR | (ND) 270 | 42 | | 8.3 | | DELTA-BHC | 22J (ND) | - ^ | | 8.3 | | ALDRIN | 270 (ND) | NJ(5) 42 | 2 4.2 | 8.3 | | HEPTACHLOR EPOXIDE | 2600E (ND) | | | 8.3 | |
GAMMA-CHLORDANE | 2300E (140 | | | 8.3 | | ALPHA-CHLORDANE | 2000E (130 | 100E) \ \ \ 42 | 2 4.2 | 8.3 | | ENDOSULFAN I | 540 (ND) | NJ(5) 48 | 2 4.2 | 8.3 | | 4,4'-DDE | 2400E (ND) |) - 42 | 2 4.2 | 8.3 | | DIELDRIN | 1100 (390 |)) J(12) 42 | 2 4.2 | 8.3 | | ENDRIN | (150) 460 | ↓ 42 | 2 4.2 | 8.3 | | 4,4'-DDD | (ND) ND | 42 | 4.2 | 8.3 | | ENDOSULFAN II | 390 (ND) | 42 | 4.2 | 8.3 | | 4,4'-DDT | (270) 240 | 42 | 4.2 | 8.3 | | ENDRIN ALDEHYDE | (ND) ND | 42 | 7.3 | 8.3 | | ENDOSULFAN SULFATE | (ND) ND | 42 | 4.2 | 8.3 | | ENDRIN KETONE | (ND) ND | 42 | 2 4.2 | 8.3 | | METHOXYCHLOR | (ND) ND | 210 | 42 | 83 | | TOXAPHENE | (ND) ND | 1000 | 100 | 210 | | TECHNICAL CHLORDANE | 76000E (130 | 1000E) 2(z>) 1000 | 210 | 420 | | SURROGATE PARAMETERS | RESULTS | S SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 12.30 (13. | 52) 13.87 | 88.7 (97.5) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-026DL Date Analyzed: 03/24/16 20:23 Lab Samp ID: C129-05J Dilution Factor: 2000 | PARAMETERS | RESUL
(ug/l | | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|----------------|------------|----------------|----------------|----------------| | ALPHA-BHC | (ND) NE | R(22 | 4200 | 420 | 830 | | GAMMA-BHC (LINDANE) | (ND) NE | | 4200 | 420 | 830 | | BETA-BHC | (ND) NE | | 4200 | 420 | 830 | | HEPTACHLOR | (ND) ND | | 4200 | 420 | 830 | | DELTA-BHC | (ND) ND | | 4200 | 560 | 830 | | ALDRIN | (ND) NE | | 4200 | 420 | 830 | | HEPTACHLOR EPOXIDE | (ND) NE | | 4200 | 420 | 830 | | GAMMA-CHLORDANE | 20000 (2 | 24000) J(S | 4200 | 420 | 830 | | ALPHA-CHLORDANE | (37000) 22 | | V(12)4200 | 420 | 830 | | ENDOSULFAN I | (ND) NE | R(22) | 4200 | 420 | 830 | | 4,4'-DDE | 960J (N | | 4200 | 420 | 830 | | DIELDRIN | 1000J (N | (0) | 4200 | 420 | 830 | | ENDRIN | (ND) 60 |)OJ | 4200 | 420 | 830 | | 4,4'-DDD | (ND) ND |) | 4200 | 420 | 830 | | ENDOSULFAN II | (ND) ND |) | 4200 | 420 | 830 | | 4,4'-DDT | (ND) ND |) | 4200 | 420 | 830 | | ENDRIN ALDEHYDE | (ND) ND |) | 4200 | 730 | 830 | | ENDOSULFAN SULFATE | (ND) ND |) | 4200 | 420 | 830 | | ENDRIN KETONE | (ND) ND | , | 4200 | 420 | 830 | | METHOXYCHLOR | (ND) ND |) | 21000 | 4200 | 8300 | | TOXAPHENE | (ND) ND | y | 100000 | 10000 | 21000 | | TECHNICAL CHLORDANE | (200000) 20 | 00000 | 100000 | 21000 | 42000 | | SURROGATE PARAMETERS | RESUL | .TS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | (ND) ND |) | 13.87 (0.00 | 00000*) 0.0000 | 000* 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () _____ Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-027 Date Analyzed: 03/22/16 23:23 Lab Samp ID: C129-06 Dilution Factor: 1 Lab File ID: RC22032A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 5.6 Calib. Ref.: RC22023A Instrument ID : F9 | | RESULTS | LOQ | DL | LOD | |----------------------|-----------------------|------------------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | ALPHA-BHC | (ND) ND 45(S | 2.1 | 0.21 | 0.42 | | GAMMA-BHC (LINDANE) | (ND) ND | 2.1 | 0.21 | 0.42 | | BETA-BHC | (ND) ND | 2.1 | 0.21 | 0.42 | | HEPTACHLOR | (ND) ND | 2.1 | 0.21 | 0.42 | | DELTA-BHC | (ND) 9.8 | 2.1 | 0.29 | 0.42 | | ALDRIN | (ND) 1.6J | 2.1 | 0.21 | 0.42 | | HEPTACHLOR EPOXIDE | 34E (ND) | 2.1 | 0.21 | 0.42 | | GAMMA-CHLORDANE | 180E (430E) R(> | 2. 1 | 0.21 | 0.42 | | ALPHA-CHLORDANE | 170E (400E) | 2.1 | 0.21 | 0.42 | | ENDOSULFAN I | (ND) 10 | 2.1 | 0.21 | 0.42 | | 4,41-DDE | (ND) ND | 2.1 | 0.21 | 0.42 | | DIELDRIN | 110E (160E) R(27 | 나) 2.1 | 0.21 | 0.42 | | ENDRIN | (ND) ND | 2.1 | 0.21 | 0.42 | | 4,4'-DDD | (ND) ND | 2.1 | 0.21 | 0.42 | | ENDOSULFAN II | (ND) ND | 2.1 | 0.21 | 0.42 | | 4,4'-DDT | 5.1 (12) ゴ(1 2 | 2.1 | 0.21 | 0.42 | | ENDRIN ALDEHYDE | (ND) 3.1 | 2.1 | 0.37 | 0.42 | | ENDOSULFAN SULFATE | (ND) 1.8J | 2.1 | 0.21 | 0.42 | | ENDRIN KETONE | 1.2J (ND) | 2.1 | 0.21 | 0.42 | | METHOXYCHLOR | (ND) ND | 11 | 2.1 | 4.2 | | TOXAPHENE | (ND) ND | , 53 | 5.3 | 11 | | TECHNICAL CHLORDANE | 2300E (4100E) R(> | >) 53 | 11 | 21 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | TETRACHLORO-M-XYLENE | 15.83 (16.48) | 14.12 | 112 (117) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () 825/7/6 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-027DL Date Analyzed: 03/23/16 23:07 Lab Samp ID: C129-061 Dilution Factor: 40 Lab File ID: RC22065A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 5.6 Calib. Ref.: RC22057A Instrument ID : F9 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | | | | | | | ALPHA-BHC | (ND) ND R(22) | 85 | 8.5 | 17 | | GÁMMA-BHC (LINDANE) | (ND) ND | 85 | 8.5 | 17 | | BETA-BHC | (ND) ND | 85 | 8.5 | 17 | | HEPTACHLOR | (ND) ND | 85 | 8.5 | 17 | | DELTA-BHC | (ND) 14J | 85 | 11 | 17 | | ALDRIN | (ND) ND | 85 | 8.5 | 17 | | HEPTACHLOR EPOXIDE | 50J (ND) 🗸 | 85 | 8.5 | 17 | | GAMMA-CHLORDANE | 550 (680) | 85 | 8.5 | 17 | | ALPHA-CHLORDANE | 1200E (580) J (12 | -) 85 | 8.5 | 17 | | ENDOSULFAN I | (ND) $ 17J R(>2)$ | 85 | 8.5 | 17 | | 4,4'-DDE | 15J (ND) 🗸 | 85 | 8.5 | 17 | | DIELDRIN | (200) 190 | 85 | 8.5 | 17 | | ENDRIN | (ND) ND R 22 |) 85 | 8.5 | 17 | | 4,4'-DDD | (ND) ND j | 85 | 8.5 | 17 | | ENDOSULFAN II | (ND) ND | 85 | 8.5 | 17 | | 4,4'-DDT | (ND) 13J | 85 | 8.5 | 17 | | ENDRIN ALDEHYDE | (ND) ND | 85 | 15 | 17 | | ENDOSULFAN SULFATE | (ND) ND | 85 | 8.5 | 17 | | ENDRIN KETONE | (ND) ND | 85 | 8.5 | 17 | | METHOXYCHLOR | (ND) ND | 420 | 85 | 170 | | TOXAPHENE | (ND) ND V | 2100 | 210 | 420 | | TECHNICAL CHLORDANE | 6000 (6000) | 2100 | 420 | 850 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 14.83 (16.04) | 14.12 | 105 (114) | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () SCOTTILL : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Date Received: 03/17/16 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-028 Date Analyzed: 03/23/16 23:28 Lab Samp ID: C129-07I Dilution Factor: 20 : SOIL Lab File ID: RC22066A Matrix Ext Btch ID: CPC019S % Moisture : 2.3 Instrument ID : F9 Calib. Ref.: RC22057A RESULTS LOQ LOD DL **PARAMETERS** (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ND) ND 8.2 ALPHA-BHC 4.1 GAMMA-BHC (LINDANE) (ND) ND 41 4.1 8.2 (ND) ND BETA-BHC 41 4.1 8.2 **HEPTACHLOR** (ND) ND 41 4.1 8.2 (ND) ND DELTA-BHC 8.2 (ND) ND ALDRIN 41 8.2 4.1 HEPTACHLOR EPOXIDE 41 4.1 8.2 1700E (2300E) R(>> GAMMA-CHLORDANE 41 4.1 8.2 (3000E) 2000E ALPHA-CHLORDANE 4.1 8.2 (ND) 70 (300) 210 41 8.2 ENDOSULFAN I 4.1 4,4'-DDE 41 4.1 8.2 (290) 290 DIELDRIN 41 4.1 8.2 ENDRIN (ND) ND 8.2 4.1 (ND) ND (ND) ND 84 (120) 4,4'-DDD 41 8.2 4.1 ENDOSULFAN II 41 8.2 4.1 4,41-DDT 41 8.2 4.1 ENDRIN ALDEHYDE (ND) ND 41 8.2 7.2 (ND) ND ENDOSULFAN SULFATE 41 4.1 8.2 ENDRIN KETONE (ND) ND 41 8.2 4.1 (ND) ND METHOXYCHLOR 200 82 41 TOXAPHENE (ND) ND 100 200 1000 19000E (22000E) (2(>>-) TECHNICAL CHLORDANE 1000 200 410 RESULTS QC LIMIT SURROGATE PARAMETERS SPK_AMT % RECOVERY 14.75 (15.21) 13.64 108 (111) 42-129 RL: Reporting limit TETRACHLORO-M-XYLENE Left of | is related to first column ; Right of | related to second column Final result indicated by () Stating Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-028DL Date Analyzed: 03/24/16 21:24 Lab Samp ID: C129-07J Dilution Factor: 200 Lab File ID: RC22089A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 2.3 Calib. Ref.: RC22085A Instrument ID : F9 ______ | PARAMETERS | RESULTS
(ug/kg) | Lo Q
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|------------------------|----------------|----------------| | ALPHA-BHC | (ND) IND R(2 | -2) 410 | 41 | 82 | | GAMMA-BHC (LINDANE) | (ND) ND | 410 | 41 | 82 | | BETA-BHC | (ND) ND | 410 | 41 | 82 | | HEPTACHLOR | 45J (ND) | 410 | 41 | 82 | | DELTA-BHC | (ND) ND | 410 | 55 | 82 | | ALDRIN | (ND) ND | 410 | 41 | 82 | | HEPTACHLOR EPOXIDE | (ND) ND | 410 | 41 | 82 | | GAMMA-CHLORDANE | 1700 (2000) 그(| 5) 410 | 41 | 82 | | ALPHA-CHLORDANE | (3900) 1800 | √ (12) 410 | 41 | 82 | | ENDOSULFAN I | (ND) ND ₹(> | (خر) 410 | 41 | 82 | | 4,4'-DDE | (260J) 160J | 410 | 41 | 82 | | DIELDRIN | (290J) 260J | 410 | 41 | 82 | | ENDRIN | (ND) ND | 410 | 41 | 82 | | 4,41-DDD | (ND) ND | 410 | 41 | 82 | | ENDOSULFAN II | (ND) ND | 410 | 41 | 82 | | 4,41-DDT | 71J (90J) | 410 | 41 | 82 | | ENDRIN ALDEHYDE | (ND) ND | 410 | 72 | 82 | | ENDOSULFAN SULFATE | (ND) ND | 410 | 41 | 82 | | ENDRIN KETONE | (ND) ND | 410 | 41 | 82 | | METHOXYCHLOR | (ND) ND | 2000 | 410 | 820 | | TOXAPHENE | (ND) ND | 10000 | 1000 | 2000 | | TECHNICAL CHLORDANE | (23000) 20000 | 10000 | 2000 | 4100 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | (ND) ND | 13.64 (0.00 | 00000*) 0.0000 | 00* 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () 80517/6 Calib. Ref.: RC22023A Instrument ID : F9 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg)
| DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | FARAFIETERS | | | | | | ALPHA-BHC | ON DAICON | 5) 2.0 | 0.20 | 0.41 | | GAMMA-BHC (LINDANE) | (ND) 3.9 | 2.0 | 0.20 | 0.41 | | BETA-BHC | 2.9 (ND) | 2.0 | 0.20 | 0.41 | | HEPTACHLOR | (ND) 0.88J | 2.0 | 0.20 | 0.41 | | DELTA-BHC | (ND) 0.33J | 2.0 | 0.27 | 0.41 | | ALDRIN | (0.63」) 0.35」 ゴ(ラ | -) 2.0 | 0.20 | 0.41 | | HEPTACHLOR EPOXIDE | (ND) ND | 2.0 | 0.20 | 0.41 | | GAMMA-CHLORDANE | 97E (190E) R 22 | <i>-)</i> 2.0 | 0.20 | 0.41 | | ALPHA-CHLORDANE | (200E) 170E 💃 | 2.0 | 0.20 | 0.41 | | ENDOSULFAN I | (ND) ND | 2.0 | 0.20 | 0.41 | | 4,4'-DDE | 10 (18) 7 (7 | ረ) 2.0 | 0.20 | 0.41 | | DIELDRIN | 98E (150E) R(2) | ·) 2.0 | 0.20 | 0.41 | | ENDRIN | (ND) 5.3 | 2.0 | 0.20 | 0.41 | | 4,41-DDD | (ND) ND | 2.0 | 0.20 | 0.41 | | ENDOSULFAN II | (ND) ND | 2.0 | 0.20 | 0.41 | | 4,4'-DDT | 6.4 (9.5) | 2.0 | 0.20 | 0.41 | | ENDRIN ALDEHYDE | (ND) ND | 2.0 | 0.35 | 0.41 | | ENDOSULFAN SULFATE | (ND) ND | 2.0 | 0.20 | 0.41 | | ENDRIN KETONE | (ND) ND | 2.0 | 0.20 | - 0.41 | | METHOXYCHLOR | (ND) ND | 10 | 2.0 | 4.1 | | TOXAPHENE | (ND) ND | 51 | 5.1 | 10 | | TECHNICAL CHLORDANE | 1500E (1900E) R(> | 2) 51 | 10 | 20 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | TETRACHLORO-M-XYLENE | 13.60 (13.63) | 13.52 | 101 (101) | 42-129 | RL: Reporting limit Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by () 8017/6 ______ Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 13:45 Sample ID: KCH067-029DL Date Analyzed: 03/23/16 23:48 Lab Samp ID: C129-08I Dilution Factor: 20 Lab File ID: RC22067A Matrix : SOIL Ext Btch ID: CPC019S % Moisture : 1.4 Calib. Ref.: RC22057A Instrument ID : F9 | | RESULTS | LOQ | DL | LOD | |----------------------|-----------------|---------------|--------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | ALPHA-BHC | (ND) ND P(> | 2) 41 | 4.1 | 8.1 | | GAMMA-BHC (LINDANE) | (ND) ND | 41 | | 8.1 | | BETA-BHC | (ND) ND | 41 | | 8.1 | | HEPTACHLOR | (ND) ND | 41 | | 8.1 | | DELTA-BHC | (ND) ND | 41 | 5.5 | 8.1 | | ALDRIN | (ND) ND | 41 | 4.1 | 8.1 | | HEPTACHLOR EPOXIDE | (ND) ND | 41 | 4.1 | 8.1 | | GAMMA-CHLORDANE | 200 (230) | . 41 | 4.1 | 8.1 | | ALPHA-CHLORDANE | (470) 210 J(| 그) 41 | 4.1 | 8.1 | | ENDOSULFAN I | (ND) 8.2J R(> | ≥) 41 | 4.1 | 8.1 | | 4,4'-DDE | (25J) 13J 🔾 | 41 | 4.1 | 8.1 | | DIELDRIN | (170) 170 | 41 | 4.1 | 8.1 | | ENDRIN | (ND) ND P2(> | ~Z) 41 | 4.1 | 8.1 | | 4,4'-DDD | (ND) ND | 41 | 4.1 | 8.1 | | ENDOSULFAN II | (ND) ND | 41 | 4.1 | 8.1 | | 4,4'-DDT | 6.21 (111) | 41 | 4.1 | 8.1 | | ENDRIN ALDEHYDE | (ND) ND | 41 | 7.1 | 8.1 | | ENDOSULFAN SULFATE | (ND) ND | 41 | 4.1 | 8.1 | | ENDRIN KETONE | (ND) ND | 41 | 4.1 | 8.1 | | METHOXYCHLOR | (ND) ND | 200 | | 81 | | TOXAPHENE | (ND) ND | 1000 | | 200 | | TECHNICAL CHLORDANE | (2400) 2400 | 1000 | 200 | 410 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | (14.85) 18.19 | 13.52 | (110) 135* | 42-129 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () ___________ Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Date Collected: 03/15/16 Date Received: 03/17/16 Date Extracted: 03/17/16 16:30 Sample ID: KCH067-041 Date Analyzed: 03/22/16 17:36 Lab Samp ID: C129-18 Dilution Factor: 1.1 Lab File ID: RC22015A Matrix : WATER Ext Btch ID: CPC014W % Moisture : NA Calib. Ref.: RC22011A Instrument ID : F9 | | RESULTS | LOG | DL | LOD | |----------------------|-----------------|---------|------------|----------| | PARAMETERS | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | ALPHA-BHC | E) TN DN (CDN) | 0.11 | 0.0055 | 0.011 | | GAMMA-BHC (LINDANE) | (ND) ND | 0.11 | 0.0055 | 0.011 | | BETA-BHC | (ND) 0.22 | 0.11 | 0.0077 | 0.011 | | HEPTACHLOR | (ND) ND | 0.11 | 0.0077 | 0.011 | | DELTA-BHC | (ND) ND | 0.11 | 0.0077 | 0.011 | | ALDRIN | (ND) 0.044J | 0.11 | 0.0055 | 0.011 | | HEPTACHLOR EPOXIDE | (ND) ND | 0.11 | 0.0055 | 0.011 | | GAMMA-CHLORDANE | (ND) ND | 0.11 | 0.0055 | 0.011 | | ALPHA-CHLORDANE | (ND) ND | 0.11 | 0.0055 | 0.011 | | ENDOSULFAN I | (ND) ND | 0.11 | 0.0088 | 0.011 | | 4,4'-DDE | (ND) ND | 0.11 | 0.0055 | 0.011 | | DIELDRIN | (ND) ND | 0.11 | 0.0055 | 0.011 | | ENDRIN | (ND) ND | 0.11 | 0.0088 | 0.011 | | 4,4'-DDD | (ND) ND | 0.11 | 0.0055 | 0.011 | | ENDOSULFAN II | (ND) ND | 0.11 | 0.0055 | 0.011 | | 4,4'-DDT | (ND) ND | 0.11 | 0.0055 | 0.011 | | ENDRIN ALDEHYDE | (ND) ND | 0.11 | 0.0055 | 0.011 | | ENDOSULFAN SULFATE | (ND) ND | 0.11 | 0.0055 | 0.011 | | ENDRIN KETONE | (ND) ND | 0.11 | 0.0055 | 0.011 | | METHOXYCHLOR | (ND) ND | 1.1 | 0.055 | 0.11 | | TOXAPHENE | (ND) ND | 2.2 | 0.28 | 0.55 | | TECHNICAL CHLORDANE | (ND) ND | 1.1 | 0.28 | 0.55 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 0.4331 (0.4827) | 0.4400 | 98.4 (110) | 44-124 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/17/16 16:30 Sample ID: KCH067-042 Date Analyzed: 03/22/16 17:56 Lab Samp ID: C129-19 Dilution Factor: 1.14 Lab File ID: RC22016A Ext Btch ID: CPC014W Moisture : NA Calib. Ref.: RC22011A Instrument ID : F9 ______ | | RESULTS | LOG | DL | LOD | |----------------------|-----------------|---------|------------|----------| | PARAMETERS | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | | | | | | | ALPHA-BHC | (ND) ND WJ(5) | 0.11 | 0.0057 | 0.011 | | GAMMA-BHC (LINDANE) | (ND) ND | 0.11 | 0.0057 | 0.011 | | BETA-BHC | (ND) ND | 0.11 | 0.0080 | 0.011 | | HEPTACHLOR | (ND) ND | 0.11 | 0.0080 | 0.011 | | DELTA-BHC | (ND) ND | 0.11 | 0.0080 | 0.011 | | ALDRIN | (ND) 0.028J | 0.11 | 0.0057 | 0.011 | | HEPTACHLOR EPOXIDE | (ND) ND | 0.11 | 0.0057 | 0.011 | | GAMMA-CHLORDANE | (ND) ND | 0.11 | 0.0057 | 0.011 | | ALPHA-CHLORDANE | (ND) ND | 0.11 | 0.0057 | 0.011 | | ENDOSULFAN I | (ND) ND | 0.11 | 0.0091 | 0.011 | | 4,41-DDE | (ND) ND | 0.11 | 0.0057 | 0.011 | | DIELDRIN | (ND) ND | 0.11 | 0.0057 | 0.011 | | ENDRIN | (ND) ND | 0.11 | 0.0091 | 0.011 | | 4,4'-DDD | (ND) ND | 0.11 | 0.0057 | 0.011 | | ENDOSULFAN II | (ND) ND | 0.11 | 0.0057 | 0.011 | | 4,4'-DDT | (ND) ND | 0.11 | 0.0057 | 0.011 | | ENDRIN ALDEHYDE | (ND) ND | 0.11 | 0.0057 | 0.011 | | ENDOSULFAN SULFATE | (ND) ND | 0.11 | 0.0057 | 0.011 | | ENDRIN KETONE | (ND) ND | 0.11 | 0.0057 | 0.011 | | METHOXYCHLOR | (ND) ND | 1.1 | 0.057 | 0.11 | | TOXAPHENE | (ND) ND | 2.3 | 0.28 | 0.57 | | TECHNICAL CHLORDANE | (ND) ND | 1.1 | 0.28 | 0.57 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | TETRACHLORO-M-XYLENE | 0.4365 (0.4695) | 0.4560 | 95.7 (103) | 44-124 | RL: Reporting limit Left of | is related to first column ; Right of | related to second column Final result indicated by () # LDC #: 36282C3a # **VALIDATION COMPLETENESS WORKSHEET** SDG #: 16C129 Laboratory: EMAX Laboratories Inc. Standard/Full Reviewer: 2nd Reviewer: METHOD: GC Chlorinated Pesticides (EPA SW846 Method 8081A) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-------------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | Δ / Δ | | | 11. | GC Instrument Performance Check | Δ | | | III. | Initial calibration/ICV | A/A | % psp/101 = 20
car \$ 20 | | IV. | Continuing calibration | رسي | CW 4 20 | | V. | Laboratory Blanks | _A | | | VI. | Field blanks | ND | EB= 17 SB=18' | | VII. | Surrogate spikes | SW | | | VIII. | Matrix spike/Matrix spike duplicates | رسي | | | IX. | Laboratory control samples | A | 100 10 | | X. | Field duplicates | N | | | XI. | Compound quantitation/RL/LOQ/LODs | یس | Not reviewed for Standard validation. | | XII. | Target compound identification | Δ | Not reviewed for Standard validation. | | XIII. | System Performance | A | Not reviewed for Standard validation. | | XIV | Overall assessment of data | SW | | A = Acceptable Note: N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: | ** Inc | ** Indicates sample underwent Full validation | | | | | | | | | |----------|---|---------------|--------|----------|--|--|--|--|--| | <u> </u> | Client ID | Lab ID | Matrix | Date | | | | | | | 1_ | KCH067-022 | 16C129-01 | Soil | 03/15/16 | | | | | | | 2 | KCH067-022DL | 16C129-01DL | Soil | 03/15/16 | | | | | | | 3 | KCH067-023 | 16C129-02 | Soil | 03/15/16 | | | | | | | 4 | KCH067-023DL | 16C129-02DL | Soil | 03/15/16 | | | | | | | 5 | KCH067-024 | 16C129-03 | Soil | 03/15/16 | | | | | | | 6 | KCH067-024DL | 16C129-03DL | Soil | 03/15/16 | | | | | | | 7 | KCH067-025 | 16C129-04 | Soil | 03/15/16 | | | | | | | 8 | KCH067-025DL | 16C129-04DL | Soil | 03/15/16 | | | | | | | 9 | KCH067-026** | 16C129-05** | Soil | 03/15/16 | | | | | | | 10 | KCH067-026DL** | 16C129-05DL** | Soil | 03/15/16 | | | | | | | 11 | KCH067-027 | 16C129-06 | Soil | 03/15/16 | | | | | | | 12 | KCH067-027DL | 16C129-06DL | Soil | 03/15/16 | | | | | | | 13 | KCH067-028 | 16C129-07 | Soil | 03/15/16 | | | | | | | 14 | KCH067-028DL | 16C129-07DL | Soil | 03/15/16 | | | | | | | 15 | KCH067-029 | 16C129-08 | Soil | 03/15/16 | | | | | | | SDG
.abo | #:36282C3a | Date: 5//
Page: 26f_
Reviewer: 5/
2nd Reviewer: 1/ | | | |-------------
---------------|---|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 16 | KCH067-029DL | 16C129-08DL | Soil | 03/15/16 | | 17 | KCH067-041 | 16C129-18 | Water | 03/15/16 | | 18 | KCH067-042 | 16C129-19 | Water | 03/15/16 | | 19 | KCH067-022MS | 16C129-01MS | Soil | 03/15/16 | | 20 | KCH067-022MSD | 16C129-01MSD | Soil | 03/15/16 | | 21 | | | | | | 22 | | | | | | 22 | | | | | | NI | otoc: | |----|-------| | IN | ULCO. | | 1 | MBLKIW | | | | |---|---------|--|--|--| | - | MB LK15 | | | | | | | | | | | | | | | | | Page: | of | 1 | |---------------|----|------------| | Reviewer: | | F 7 | | 2nd Reviewer: | | 1/ | Method: Pesticides (EPA SW 846 Method 8081) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|-------------------|---------------------|-------------------| | ij. Tischniceji kolding (limes | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | 200000 | | | III. GO/ECD Instrument performance/check | T | | | | | Was the instrument performance found to be acceptable? | / | | | | | Were Evaluation mix standards analyzed prior to the initial calibration and at beginning of each 12-hour shift? | | | | | | Were endrin and 4,4'-DDT breakdowns ≤ 15% for individual breakdown in the Evaluation mix standards? | | | | | | Me Initial calloration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | / | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990? | | | | | | Were the RT windows properly established? | | Selevinistri. | estativismicin we i | | | Mo. Initial calibration varification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | Cinimater April 1 | | | | ily. Continumo calibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | _ | | | | Were all the retention times within the acceptance windows? | | | | | | W. Laboratory Blanks | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | | | | Wil vinalci blanks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | | | | VII. Surrogete spikes/internel Stenderds | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | | | | | LDC#: 36287030 # **VALIDATION FINDINGS CHECKLIST** Page: Vof V Reviewer: FT 2nd Reviewer: V | Validation Area | Yes | No | NA | Findings/Comments | |--|----------|---------|----|-------------------| | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | _ | | | If any percent recovery (%R) was less than 10 percent, was a reanalysis performed to confirm %R? | | | / | | | Were internal standard area counts within \pm 50% of the average area calculated during calibration? | | P)
V | 1 | | | VII. Marix spike/Marix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | _ | | | | (IX. Leiboratony control samples | | | | | | Was an LCS analyzed for this SDG? | / | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | / | | | | | X. Filaid ouplicates | | | | | | Were field duplicate pairs identified in this SDG? | | | - | | | Were target compounds detected in the field duplicates? | <u> </u> | | | | | ୍ୟା : ©ampaquasi quentitation | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation? | _ | | | | | Were relative percent difference (RPD) of the results between two columns ≤ 40%? | | / | | | | XII. Tengak compound idantification | | | | | | Were the retention times of reported detects within the RT windows? | | | | | | XIII Overall assessment of deta | | | | | | Overall assessment of data was found to be acceptable. | | | | | # **VALIDATION FINDINGS WORKSHEET** METHOD: Pesticide/PCBs (EPA SW 846 Method 8081/8082) | A. alpha-BHC | I. Dieldrin | Q. Endrin ketone | Y. Aroclor-1242 | GG. Chlordane | |-----------------------|-----------------------|--------------------|-----------------------|---------------------------| | B. beta-BHC | J. 4,4'-DDE | R. Endrin aldehyde | Z. Aroclor-1248 | HH. Chlordane (Technical) | | C. delta-BHC | K. Endrin | S. alpha-Chlordane | AA. Aroclor-1254 | II. Arochlor 1262 | | D. gamma-BHC | L. Endosulfan II | T. gamma-Chlordane | BB. Aroclor-1260 | JJ. Aroclor 1268 | | E. Heptachlor | M. 4,4'-DDD | U. Toxaphene | CC. 2,4'-DDD | KK. Oxychlordane | | F. Aldrin | N. Endosulfan sulfate | V. Aroclor-1016 | DD. 2,4'-DDE | LL. trans-Nonachlor | | G. Heptachlor epoxide | O. 4,4'-DDT | W. Aroclor-1221 | EE. 2,4'-DDT | MM. cis-Nonachlor | | H. Endosulfan I | P. Methoxychlor | X. Aroclor-1232 | FF. Hexachlorobenzene | NN. | | Notes: |
 | |
 | | |--------|------|------|------|--| | |
 |
 |
 | | | LDC #: | 36282 | ८३५ | |--------|-------|-----| |--------|-------|-----| # **VALIDATION FINDINGS WORKSHEET Continuing Calibration** | Page:_ | <u></u> | _/ | |---------------|---------|----| | Reviewer: | FŢ | _ | | 2nd Reviewer: | 7 | _ | | | | | wd = 5 Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". What type of continuing calibration calculation was performed? ___%D or ___%R N N/A Were continuing calibration standards analyzed at the required frequencies? Y N/A Did the continuing calibration standards meet the %D / %R validation criteria of ≤20.0% / 80-120%? Were the retention times for all calibrated compounds within their respective acceptance windows? Level IV Only | # | Date | Standard ID | Detector/
Column | Compound | %D
(Limit ≤ 20.0) | RT (limit) | Associated Samples | Qualifications | | | |----------|---------|-------------|---------------------|----------|----------------------|------------|--------------------|----------------|-------|--| | | 3/22/16 | cav | RTX CLP2 | A | 22 | | All Water | Jau/NJ/A (ND) | | | | _ | 16:15 | | | | | | + MBLKIS | J | | | | 4 | | | | | | | | | | | | \dashv | | ٦. | | | | | | | | | | | 3/22/16 | ccv | RTX CIPZ | A | 23 | | 1, 3, 5, 7, 11, 15 | A/W/A | (ND) | | | | 20:18 | | | | | | 19/20 | | | | | _ | | | | | | ļ. | / | | | | | - | | | | | | | | | | | | \dashv | 3/23/16 | cov | RTX CVP2 | A | 31 | | 2,4,6,8,12, | 1/W/A | (40) | | | | 20:25 | | | D | 25 | | 13,16 | 1 | :
: | | | | | | | | \dashv | | | | | | | | | | | | | 3/24/16 | con | RTXOUPI | Τ | 34 | | 9,10,14 | 1 Lu L | (ND+D | | | | 20:03 | | | 5 | 74 | | , , | | | | | _ | | | 1 | Н | 2 | | | | | | | | | | RTXCUPZ | F | 22 | | 1 | | J | | | LDC #: | 362 | 82 | C39 | |--------|-----|----|-----| |--------|-----|----|-----| # VALIDATION FINDINDS WORKSHEET <u>Surrogate Recovery</u> | _ | / | 7 | |---------------|----|----| | Page: | of | _′ | | Reviewer: | FT | _ | | 2nd Reviewer: | | | | | | | METHOD: _GC _HPLC Are surrogates required by the method? Yes____ or No___ Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Bromobenzene N N/A Were surrogates spiked into all samples and blanks? Y N N/A Did all surrogate recoveries (%R) meet the QC limits? | # | Sample
ID | | Detec
Colu | | Surrogate
Compound | | %R (Limits) | | | Qualifications | | | |----|-----------------------|-------|---------------|-----------|-----------------------|----------------|-----------------------------------|------------------|---------------|---------------------------------------|-----------------------|---------------------------------------| | | 10, 14 | Su | سر ال | gate | was , | di V | ited out (| |) | nο | qu. | 2 75x DL | | | 1 | | | 7 | | | (| |) | | | | | | | | | | | | (| |) | | | | | | - | | | | | | (| |) | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | · · · · · · · · · · · · · · · · · · · | | | | | 16 | | 2/ R | TX CLP2 | · Y | | 135 (| 42 | -129) | no | g u | 20 x DL | | | | | | | | | (| • |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | · | | | (| |) | | | | | | | | | | * | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |) | | | | | | | | | | | | (| |)_ | | | | | | | | | | | | (| |) | | | | | | Surrogate Compo | und | | Surroga | ate Compound | | Surrogate Compound | | Surrogate Co | mpound | | | | А | Chlorobenzene (CBZ) G | | O |
ctacosane | М | Benzo(e)Pyrene | s | 1-Chloro-3-Nitro | obenzene | Υ | Tetrachloro-m- xylene | | | В | 4-Bromofluorobenzene | (BFB) | Н | Orth | no-Terphenyl | N | Terphenyl-D14 | Т | 3,4-Dinitroto | oluene | Z | 2-Bromonaphthalene | | C, | a,a,a-Trifluorotoluer | ne | 1 | Fluoro | benzene (FBZ) | 0 | Decachlorobiphenyl (DCB) | U | Tripentyltin | | AA | Chloro-octadecane | | D | Bromochiorobener | | J | | Friacontane | Р | 1-methylnaphthalene | V | Tri-n-prop | | ВВ | 2,4-Dichlorophenylacetic acid | | E | E 1,4-Dichlorobutane | | K | He | exacosane | Q | Dichlorophenyl Acetic Acid (DCAA) | W_ | Tributyl Pho | sphate | CC | 2,5-Dibromotoluene | 4-Nitrophenol Triphenyl Phosphate 1.4-Difluorobenzene (DFB) | LDC #: 36282c3 | Ĺ | |----------------|---| |----------------|---| ### **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates | Page:_ | / _{of_} / | |---------------|--------------------| | Reviewer:_ | FT | | 2nd Reviewer: | N | | _ | | METHOD: GC HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Please see qualifications are identified as "N/A". Y /N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? Y N N/A Was an MS/MSD analyzed every 20 samples for each matrix or whenever a sample extraction was performed? Were the MS/MSD percent recoveries (%R) and relative percent differences (RPD) within QC limits? Y/N /N/A MSD MS/MSD ID Compound %R (Limits) %R (Limits) RPD (Limits) Associated Samples Qualifications 19420 -1200 (56-136) -1300 56-136 1,2 parent))))))) LDC#: 36282 C3a # VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs | Page: _ | | / | |---------------|----|---| | Reviewer: | FT | | | 2nd Reviewer: | N | | METHOD: ___GC __ HPLO Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only Y N N/A Y N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? cod = 20 | #_ | Associated Samples | Compound Name | Findings | Qualifications | |----------|--------------------|------------------|---------------|----------------| | | l. 1 | I, HH | x'd cal Range | Jout /A | | | | 2) P. I. | | | | | 3,9,13 | S,T,HH | | | | | 5 | 5, T | | | | | | | | | | | 7 | 5, T, J, O, HH | | | | | # 9 11 15 | | | | | - | 1 9 11, 15 | 5, T, I, HH | <u> </u> | V | | | F1 13 | FZ | | | | | | | | | | | | | | | | | , | | | | | | | | | | | Comments: | See sample calculation verification worksheet for recalculations | |-----------|--| | - | | | | | LDC#: 36282 C3a # VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs | | / | | |---------------|----|---| | Page: | of | _ | | Reviewer: | FT | | | 2nd Reviewer: | De | | | | - | _ | METHOD: __GC __ HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only / N N/A //N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? eode = 12 | | | | % RPD But 2 co) | | |---|--------------------|---------------|----------------------|----------------| | # | Associated Samples | Compound Name | Findings $\angle 40$ | Qualifications | | | 1 | т | 52 | / dut/ A | | | | l I | <u>צד</u> | | | | | b | 45 | | | | | HН | 45 | | | | | | | | | | 2 | T | 75 | | | | | S | 67 | | | | | | | | | | 3 | T | 84 | | | | | I | 30 | | | | | 6. | 89 | | | | | НН | 63 | | | | | | | | | | - | | | | | | 4 | S | 52 | | | | | 8 | 49 | | | Comments: | See sample calculation verification worksheet for recalculations | | |-----------|--|--| | | | | | | | | LDC#: 3628203a # VALIDATION FINDINGS WORKSHEET <u>Compound Quantitation and Reported CRQLs</u> | Page: | _/ _{of_} | ر | |---------------|-------------------|---| | Reviewer: | FT | | | 2nd Reviewer: | M | | | | | | METHOD: __GC __ HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only Y /N N/A Y N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? code = 12 | | | | % RPD Bet 2 40
Findings \(\perp 40\) | | |---|--------------------|---------------|---|----------------| | # | Associated Samples | Compound Name | Findings ≤ 40 | Qualifications | | | 5 | | 42 | Jan /A | | | | S | 50 | | | | | 6 | 79 | | | | 6 | S | 73 | | | | 7 | Т | 90 | | | | | 1 | 85 | | | | | Ø | 83 | | | | | HH | 69 | | | | | | | | | | 8 | 5 | 78 | | | | | T | 121 | Comments: | See sample calculation verification worksheet for recalculations | | | |-----------|--|--|--| | • | | | | | | | | | LDC#: 36282 C3a # VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs | Page: | / _{of} | | |---------------|-----------------|--| | Reviewer: | FT | | | 2nd Reviewer: | W | | | | V | | |---------|------|--------| | METHOD: | GC _ | _ HPLC | Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". /Level IV/D Only N/A Y N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? well = 12 | | | | 1% RPD Bet 2001 | | |---|---------------------------------------|---------------|----------------------------------|----------------| | # | Associated Samples | Compound Name | % RPD Bet 2 00/
Findings = 40 | Qualifications | | | 9 | T | 144 | Jen /A | | | | S | 147 | | | | | I | 95 | | | | | K | 102 | | | | | нн | 52 | | | | | | | | | | 10 | S | 5) | | | | | | | | | | 1.1 | T | 82 | | | | | <u>S</u> | 以 | | | | | ♦ | 81 | | | | | НН | 56 | | | | | | | | | | 12 | 5 | 70 P | V | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | Comments: | See sample calculation verification worksheet for recalculations | | | |-----------|--|------|--| | • | | | | | | |
 | | LDC#: 36202 C3a # VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs | Page: _ | of | _ | |---------------|----|---| | Reviewer: _ | FT | | | 2nd Reviewer: | M | | METHOD: VGC __ HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only Y N N/A Y N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? Did the reported results for detected target compounds agree within 10.0% of the recalculated results? coll - 12 | | | | % RPD Bet 200)
Findings = 40 | | |---|--------------------|---------------|---------------------------------|----------------| | # | Associated Samples | Compound Name | Findings 40 | Qualifications | | | 12 | 6 | 70 | Jan. /A | | | | | | | | | | | | | | | 14 | 5 | 74 | | | | | J | 48 | | | | | | | | | | 15 | F_ | 57 | | | | | T | 65 | | | | | J | 57 | | | | | I | 42 | | | | | | | | | | | 5 | 76 | | | | | 7 | 63 | | | | | B | 56 | | | | | | | | | | | | | | | Comments: | See sample calculation verification worksheet for recalculations | | |
 | |-----------|--|--|--|------| | | | | | | | | | | |
 | LDC #: 36282C3A # VALIDATION FINDINGS WORKSHEET Overall Assessment of Data | Page: | _/ _{of} | _/ | |--------------|------------------|----| | Reviewer: | FT | | | nd Reviewer: | 4 | | METHOD: _GC __HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. <u>VN N/A</u> Was the overall quality and usability of the data acceptable? code = 22 | # | Associated samples | Compounds | Findings | Qualifications | |---|--------------------|---------------------------|---------------|----------------| | | 1 | 工, HH | x'd cal Range | R/A | | | 2 | all except I, HH | difuted | | | | 3,9,13 | 5, T, HH | xld cal Range | | | | 4, 10, 14 | all except S.T. HH | dituted | | | | 5 | S, T | X'd cal Range | | | | 6 | all exapt s, T | dituted | | | | 7 | S, T, J, &, H-1) | x'd cal Range | | | | 8 | all except S, T, J, B, HH | ditated | | | Comments: | | | |-----------|--|------| | | | | | | |
 | LDC #: 36292C3~ # VALIDATION FINDINGS WORKSHEET Overall Assessment of Data | Page: | / _{of} | _/ | |---------------|-----------------|----| | Reviewer: | FT | | | 2nd Reviewer: | M | _ | METHOD: VGC __ HPLC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. Y N/A Was the overall quality and usability of the data acceptable? wh = 22 | | | | | <u> </u> | |---|--------------------|------------------------|---------------|----------------| | # | Associated samples | Compounds | Findings | Qualifications | | | 11, 15 | S, T, I, HH | X d cal Range | P/A | | | | | 1:1-1:0 | | | | 12, 16 | all except S, T, I, HH | diluted | J. | | | ····· | 1/ | 1 | | | | | | Comments: | | | | |-------------|----------|--|--| | | | | | | | <u>"</u>
 | | LDC#: 36282C3a # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | 5 / | 1 | |-----------------|---| | Page:of | | | Reviewer: FT | | | 2nd Reviewer: M | _ | METHOD: GC Pesticides (EPA SW 846 Method 8081) The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---------|----------------|---------------------|--------------|------------------------|------------------|--------------|--------------|----------|--------------| | # | Standard
ID | Calibration
Date | Compound | CF
(20 std)
20 0 | CF (20 std) /200 | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | ICA L | 1/21/16 | endosuljan/ | 431064 | 431064 | 41 9 333.4 | 4/9333.4 | 12.7 | 12.1 | | | RTX OUP1 | ' | Methoxychlor | 146220 | 146220 | 164669-2 | 164669.2 | 15.2 | 15. 8 | | | | | , | | · | | | | | | | | | | | | | | | | | 2 | RTX CUP2 | | 1 | 107259 | 107259 | 105819.2 | | | 5.8 | | <u></u> | | | <u> </u> | 44563 | 44563 | 45652.3 | 45652-3 | 5.4 | 5-4 | 3 | 4 | Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10 | 0.0% of the | |--|-------------| | recalculated results. | | | | | | | | INICLCrev.wpd LDC#: 362820 3a ### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification** | Page:/ | _of | 1 | |---------------|-----|---| | Reviewer: | FT | _ | | 2nd Reviewer: | 9 | | | _ | _ | _ | METHOD: GC Pesticides (EPA SW 846 Method 8081) Percent difference (%D) = 100 * (N - C)/N Where: N = Initial Calibration Factor or Nominal Amount (ng) C = Calibration Factor from Continuing Calibration Standard or Calculated Amount (ng) | Standard ID | Calibration
Date/Time | Compound | Average CF/
CCV Conc | Reported CF/Conc | Recalculated CF/Conc | Reported %D | Recalculated %D | |-------------|--------------------------|----------------------|-------------------------|------------------|----------------------|-------------|-----------------| | | | | | ccv | ccv | | | | cov 16:15 | 3/22/16 | endosulan 1 RIX CUPI | 20.0 | 19.17 | 19.17 | 4 | 4) | | | | methoxychlo(| 200.O | 203.87 | 20387 | 2 | 2 | | | | RTX CLP2 | 20.0 | 21.25 | 21.5 | 6 | 6 | | | | | 200.O | 207.31 | 207.31 | 4 | 1 | | cev 20:18 | 3/22/16 | | | 20.24 | 20.24 | ١ | 1 | | | ' | | | 226.17 | 226.17 | 13 | 13 | | | | | | 21.74 | 21.74 | 9 | 9 | | | | | | 226.34 | 226.34 | 13 | 13 | | cu 20:03 | 3/24/16 | | | 15.80 | 15.80 | 21 | 2) | | | | | | 199.76 | 199.76 | 0 | 0 | | | | | | 17.07 | 17.07 | 15 | 15 | | | | | J | 207.96 | 207.96 | 4 | 4 | | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications a | nd associated samples when reported results do not agree within 10.0% of | |---|--| | the recalculated results. | | | | | | | | LDC#: 3678203a ### VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification** | Page:_ | of | |---------------|--------------| | Reviewer:_ | FT | | 2nd reviewer: | $A \nearrow$ | METHOD: GC Pesticides (EPA SW 846 Method 8081) % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: 9 | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|----------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | Tetrachloro-m-xylene | RTX oup) | 40 | 35.467 | 88.7 | 88.7 | O | | Tetrachloro-m-xylene | l | J/ | 38.981 | 97,5 | 97.5 | U | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | | Sample ID: | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | 1 | | | Reported | Recalculated | | | Tetrachloro-m-xylene | | | | | | | | Tetrachloro-m-xylene | | | | ! | | | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | | Sample ID: | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | Tetrachloro-m-xylene | | | | | | | | Tetrachloro-m-xylene | | | | | | | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | | Sample ID: | Surrogate | Column | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |----------------------|--------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | ····· | | Reported | Recalculated | | | Tetrachloro-m-xylene | | | | | | | | Tetrachloro-m-xylene | | | | | | | | Decachlorobiphenyl | | | | | | | | Decachlorobiphenyl | | | | | | | | Notes: |
 |
 | |--------|------|-----------------| | |
 |
 | LDC#: 36282c3a #### **VALIDATION FINDINGS WORKSHEET** | Page:_ | of | | |--------|----|--| | Page:_ | of | | ## Matrix Spike/Matrix Spike Duplicates Results Verification | Reviewer:_ | FT | |---------------|----| | 2nd Reviewer: | | METHOD: GC Pesticides (EPA SW 846 Method 8081) The percent recoveries (%R) and Relative Percent difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = IMS - MSDI*2/(MS + MSD) MS = Matrix spike percent recovery MSD = Matrix spike duplicate percent recovery MS/MSD samples:__ | | | pike | Sample | | Sample | Matri | x Spike | Matrix Spil | ke Duplicate | MS | /MSD | |-----------|-------|------|---------------|------|-----------|----------|----------|-------------|--------------|----------|---------------------------------------| | Compound | () (| ided | Concentration | | entration | Percent | Recovery | Percent | Recovery | F | RPD | | | MS | MSD | 0.0 | MS | MSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | gamma-BHC | 6.77 | 6.77 | ND | 5.02 | 5.04 | 74 | 74 | 74 | 74 | U | О | | 4,4'-DDT | V | 7 | 9.6 | 17.9 | 16.7 | 123 | 123 | 105 | 105 | フ | 7 | | | | | | 1 | | | | | | | <u></u> | | | | | | | | | | | | | · | | | | | | | | | | | | | <u> </u> | | | L | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | Comments: Refer of Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree | |---| | within 10.0% of the recalculated results. | | | | | LDC#: 36282c3へ ## **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification | Page:of | 1 | |-----------------|---| | Reviewer: | | | 2nd Reviewer: 4 | | | | | METHOD: GC Pesticides (EPA SW 846 Method 8081A) The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100* (SSC-SC)/SA Where: SSC = Spiked sample concentration SA = Spike added SC = Concentration RPD = I LCS - LCSD I * 2/(LCS + LCSD) LCS = Laboratory control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS/LCSD samples: CP 10195L SC | | S | pike | | Spiked Sample LCS | | LCSD Percent Recovery | | LCS/LCSD
RPD | | | |-----------|------|------|-----------------------|-------------------|------------------|-----------------------|----------|-----------------|----------|---------| | Compound | | ided | Concentration (ng K9 | | Percent Recovery | | | | | | | | LCS | LCSD | LCS | LcsD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | gamma-BHC | 6.67 | 6.67 | 8.32 | 8.23 | 125 | 125 | 125 | 125 | U | 0 | | 4,4'-DDT | 1 | V | 8.33 | 8.17 | 125 | 125 | 122 | 122 | 2 | 2 | · | | | | | | , | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported | |---| | esults do not agree within 10.0% of the recalculated results. | | | | | LDC #: 36282c3a # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | of | _ | |----|--------| | E | 2 | | Ā | | | | of
 | METHOD: GC
Pesticides (EPA SW 846 Method 8081A) | Y | M | N/A | |-----|---|-----| | (Y/ | N | N/A | Df %S # Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conce | entratio | on = $\frac{(A_{\nu})(I_{\nu})(V_{\nu})(DF)(2.0)}{(A_{t_{\nu}})(RRF)(V_{\nu})(V_{\nu})(\%S)}$ | |-----------------|----------|---| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | | A _{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | | l _s | = | Amount of internal standard added in nanograms (ng) | | V _o | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | | V_{i} | = | Volume of extract injected in microliters (ul) | | V_{t} | = | Volume of the concentrated extract in microliters (ul) | Percent solids, applicable to soil and solid matrices Compound 2.0 = Factor of 2 to account for GPC cleanup Dilution Factor. Sample ID only. | or (| 270 ng | | | |------|---------------------------|-----------------------------|---------------| | = | 270 ug | Ikg | | | | • | ' U | | | | | | | | | Reported
Concentration | Calculated
Concentration | | | | () | () | Qualification | Sample I.D. $\frac{49}{120}$, $\frac{4}{1}$ PD $\frac{1}{120}$ Conc. = $\frac{12119673}{312997.5}$ $\frac{10}{30}$ $\frac{20}{0.961}$ # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 11, 2016 Parameters: Polychlorinated Biphenyls Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | Laboratory Sample | Matrix | Collection
Date | |-------------------|--|-----------------------| | | | | | 16C129-19 | l Water | l 03/15/16 | | | Laboratory Sample
Identification
16C129-19 | Identification Matrix | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polychlorinated Biphenyls (PCBs) by Environmental Protection Agency (EPA) SW 846 Method 8082 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### III. Continuing Calibration Continuing calibration was performed at required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. #### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-042 was identified as a source blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Field Duplicates No field duplicates were identified in this SDG. ### X. Compound Quantitation Raw data were not reviewed for Level III validation. ### XI. Target Compound Identification Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. # China Lake CTO 067 Polychlorinated Biphenyls - Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Polychlorinated Biphenyls - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Polychlorinated Biphenyls - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG #### METHOD SW3520C/8082 PCBs __________ Calib. Ref.: KC18004A Instrument ID : GCT071 | | RESULTS | LC | Q DL | LOD | |----------------------|-----------------|---------|------------|----------| | PARAMETERS | (ug/L) | (ug/L |) (ug/L) | (ug/L) | | | | | | | | AROCLOR 1016 | (ND) ND | 1. | 1 0.51 | 0.57 | | AROCLOR 1221 | (ND) ND | 1. | 1 0.33 | 0.57 | | AROCLOR 1232 | (ND) ND | 1. | 1 0.28 | 0.57 | | AROCLOR 1242 | (ND) ND | 1. | 1 0.28 | 0.57 | | AROCLOR 1248 | (ND) ND | 1. | 1 0.28 | 0.57 | | AROCLOR 1254 | (ND) ND | 1. | 1 0.28 | 0.57 | | AROCLOR 1260 | (ND) ND | 1. | 1 0.35 | 0.57 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | TETRACHLORO-M-XYLENE | 0.4467 (0.4704) | 0.4560 | 98.0 (103) | 60-130 | Left of \mid is related to first column ; Right of \mid related to second column Final result indicated by () 5651716 ^{*} Out side of QC Limit | | | | LETENESS
tandard | WORKSHEET | | Date: 5/10 | |---------
--|--|----------------------------|--|-----------------|---| | | :16C129
atory:_EMAX_Laboratories_Inc | 3 | landard | | 1 | Page: <u> /</u> of <u> /</u>
Reviewer: ⊭ | | | | (EDA CVA/QAC M | oth and 0000) | | | Reviewer: | | MEIH | OD: GC Polychlorinated Biphenyls | (EPA SVV846 IVI | etnod 8082) | | | | | | imples listed below were reviewed | for each of the fo | llowing validat | ion areas. Validati | on findings are | noted in attached | | validat | ion findings worksheets. | | | | | | | | Validation Area | | | Comr | nents | | | l. | Sample receipt/Technical holding times | AIA | | | | | | 11. | Initial calibration/ICV | AIA | | | | | | III. | Continuing calibration | Δ | | | | | | IV. | Laboratory Blanks | Δ | | | | | | V. | Field blanks | NO | 5B=1 | | | | | VI. | Surrogate spikes | Δ | 1 | | | | | VII. | Matrix spike/Matrix spike duplicates | 7 | oc s | ampl | | | | VIII. | Laboratory control samples | A | ves 1p | | | | | IX. | Field duplicates | N | | | | | | Χ. | Compound quantitation/RL/LOQ/LODs | N | | | | | | XI. | Target compound identification | N | | | | | | ווא | Overall assessment of data | | | | | | | Note: | N = Not provided/applicable | ND = No compounds
R = Rinsate
FB = Field blank | detected | D = Duplicate
TB = Trip blank
EB = Equipment bla | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 F | (CH067-042 | | | 16C129-19 | Water | 03/15/16 | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | ,,_ | | | | 8 | A444 - Caraba Carab | TECTOR 1 | | | | | | 9 | | | | | | | | 10 | | | | PA = - 01 - | | | | 11 | | | | | | | | 12 | | | | | | | | 13 | - Inches | | | | | | | Notes: | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 24, 2016 Parameters: Metals Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-032** | 16C129-09** | Soil | 03/15/16 | | KCH067-033 | 16C129-10 | Soil | 03/15/16 | | KCH067-034 | 16C129-11 | Soil | 03/15/16 | | KCH067-035 | 16C129-12 | Soil | 03/15/16 | | KCH067-036 | 16C129-13 | Soil | 03/15/16 | | KCH067-037 | 16C129-14 | Soil | 03/15/16 | | KCH067-038 | 16C129-15 | Soil | 03/15/16 | | KCH067-039 | 16C129-16 | Soil | 03/15/16 | | KCH067-040 | 16C129-17 | Soil | 03/15/16 | | KCH067-041 | 16C129-18 | Water | 03/15/16 | | KCH067-042 | 16C129-19 | Water | 03/15/16 | | KCH067-035MS | 16C129-12MS | Soil | 03/15/16 | | KCH067-035MSD | 16C129-12MSD | Soil | 03/15/16 | | KCH067-041MS | 16C129-18MS | Water | 03/15/16 | | KCH067-041MSD | 16C129-18MSD | Water | 03/15/16 | | KCH067-032DL** | 16C129-09DL** | Soil | 03/15/16 | | KCH067-037DL | 16C129-14DL | Soil | 03/15/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following methods: Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7470A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met. #### II. ICPMS Tune The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%. #### III. Instrument Calibration Initial and continuing calibrations were performed as required by the methods. The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits. #### IV. ICP Interference Check
Sample Analysis The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions: | Laboratory Blank ID | Analyte | Maximum
Concentration | Associated
Samples | |---------------------|------------|--------------------------|--| | PB (prep blank) | Copper . | 0.308 ug/L | All water samples in SDG 16C129 | | ICB/CCB | Molybdenum | 0.203 ug/L | KCH067-032**
KCH067-033
KCH067-034
KCH067-035 | Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Analyte | Reported
Concentration | Modified Final
Concentration | |------------|---------|---------------------------|---------------------------------| | KCH067-042 | Copper | 0.811 ug/L | 0.811U ug/L | | Sample | Analyte | Reported
Concentration | Modified Final
Concentration | |------------|------------|---------------------------|---------------------------------| | KCH067-033 | Molybdenum | 0.324 mg/Kg | 0.324U mg/Kg | | KCH067-034 | Molybdenum | 0.195 mg/Kg | 0.195U mg/Kg | | KCH067-035 | Molybdenum | 0.310 mg/Kg | 0.310U mg/Kg | #### VI. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Analyte | Concentration | Associated
Samples | |------------|--------------------|--|---|--------------------------------| | KCH067-041 | 03/15/16 | Aluminum Barium Boron Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Sodium Zinc | 21.6 ug/L
1.09 ug/L
4.36 ug/L
122 ug/L
0.284 ug/L
1.34 ug/L
27.5 ug/L
0.570 ug/L
17.7 ug/L
0.800 ug/L
0.156 ug/L
156 ug/L
152 ug/L
8.14 ug/L | All soil samples in SDG 16C129 | Sample KCH067-042 was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Analyte | Concentration | Associated
Samples | |------------|--------------------|---|---|-----------------------| | KCH067-042 | 03/15/16 | Barium
Boron
Calcium
Chromium
Copper
Lead
Magnesium
Sodium | 0.277 ug/L
4.00 ug/L
34.7 ug/L
0.101 ug/L
0.811 ug/L
0.0528 ug/L
7.51 ug/L
35.3 ug/L | KCH067-041 | Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions: | Sample | Analyte | Reported
Concentration | Modified Final
Concentration | |--------------|-----------|---------------------------|---------------------------------| | KCH067-033 | Boron | 8.19 mg/Kg | 8.19U mg/Kg | | KCH067-034 | Boron | 5.65 mg/Kg | 5.65U mg/Kg | | | Sodium | 94.9 mg/Kg | 94.9U mg/Kg | | KCH067-035 | Boron | 5.36 mg/Kg | 5.36U mg/Kg | | | Sodium | 71.3 mg/Kg | 71.3U mg/Kg | | KCH067-036 | Boron | 6.06 mg/Kg | 6.06U mg/Kg | | | Sodium | 77.3 mg/Kg | 77.3U mg/Kg | | KCH067-037 | Boron | 6.18 mg/Kg | 6.18U mg/Kg | | | Sodium | 81.9 mg/Kg | 81.9U mg/Kg | | KCH067-038 | Boron | 5.40 mg/Kg | 5.40U mg/Kg | | | Sodium | 77.5 mg/Kg | 77.5U mg/Kg | | KCH067-039 | Boron | 5.75 mg/Kg | 5.75U mg/Kg | | | Sodium | 85.8 mg/Kg | 85.8U mg/Kg | | KCH067-040 | Boron | 5.70 mg/Kg | 5.70U mg/Kg | | | Sodium | 85.7 mg/Kg | 85.7U mg/Kg | | KCH067-041 | Boron | 4.36 ug/L | 5.00U ug/L | | | Chromium | 0.284 ug/L | 0.284U ug/L | | | Lead | 0.570 ug/L | 0.570U ug/L | | | Magnesium | 17.7 ug/L | 17.7U ug/L | | KCH067-037DL | Sodium | 70.6 mg/Kg | 97.4U mg/Kg | ## VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions: | Spike ID
(Associated
Samples) | Analyte | MS (%R)
(Limits) | MSD (%R)
(Limits) | Flag | A or P | |-------------------------------------|----------------------------------|--|-----------------------------------|--|--------| | KCH067-035MS/MSD
(KCH067-035) | Aluminum
Calcium
Manganese | 135 (78-124)
132 (86-118)
120 (85-116) | 132 (78-124)
132 (86-118)
- | J+ (all detects)
J+ (all detects)
J+ (all detects) | A | | KCH067-035MS/MSD
(KCH067-035) | Vanadium | - | 73 (82-116) | J- (all detects) | А | For KCH067-035MS/MSD, no data were qualified for Barium and Iron percent recoveries (%R) outside the QC limits since the parent sample results were greater than 4X the spike concentration. Relative percent differences (RPD) were within QC limits. #### VIII. Duplicate Sample Analysis The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG. #### IX. Serial Dilution Serial dilution analysis was performed on an associated project sample. The analysis criteria were met. #### X. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### XI. Field Duplicates No field duplicates were identified in this SDG. #### XII. Internal Standards (ICP-MS) All internal standard percent recoveries (%R) were within QC limits for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. Sample Result Verification All sample result verifications were acceptable for samples which underwent Level IV validation with the following exceptions: | Sample | Analyte | Finding | Criteria | Flag | A or P | |--------------|---------|--------------------------------------|--|-----------------|--------| | KCH067-032** | Boron | Sample result exceeded linear range. | Reported result should be within linear range. | J (all detects) | Α | | KCH067-037 | Iron | Sample result exceeded linear range. | Reported result should be within linear range. | J (all detects) | А | Raw data were not reviewed for Level III validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the methods. In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed unusable as follows: | Sample | Analyte | Flag | A or P | |----------------|------------------------------|------|--------| | KCH067-032** | Boron | R | Α | | KCH067-037 | Iron . | R | А | | KCH067-032DL** | All analytes except
Boron | R | А | | KCH067-037DL | All analytes except
Iron | R | Α | Due to MS/MSD %R, data were qualified as estimated in one sample. Due to laboratory blank contamination, data were qualified as not detected in four samples. Due to equipment blank and source blank contamination, data were qualified as not detected in ten samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ### China Lake CTO 067 Metals - Data Qualification Summary - SDG 16C129 | Sample | Analyte | Flag | A or P | Reason (Code) | |----------------|----------------------------------|--|--------|---| | KCH067-035 | Aluminum
Calcium
Manganese | J+ (all detects)
J+ (all detects)
J+ (all detects) | A | Matrix spike/Matrix spike
duplicate (%R) (8) | | KCH067-035 | Vanadium | J- (all detects) | A | Matrix spike/Matrix spike
duplicate (%R) (8) | | KCH067-032** | Boron | R | А | Overall assessment of data (22) | | KCH067-037 | Iron | R | А | Overall assessment of data (22) | | KCH067-032DL** | All analytes except
Boron | R | Α | Overall assessment of data (22) | | KCH067-037DL | All analytes except
Iron | R | Α | Overall assessment of data (22) | # China Lake CTO 067 Metals - Laboratory Blank Data Qualification Summary - SDG 16C129 | Sample | Analyte | Modified Final
Concentration | A or P | Code | |------------|--------------|---------------------------------|--------|------| | KCH067-042 | Copper | 0.811U ug/L | Α | 7 | | KCH067-033 | Molybdenum . | 0.324U mg/Kg | Α | 7 | | KCH067-034 | Molybdenum | 0.195U mg/Kg | Α | 7 | | KCH067-035 | Molybdenum | 0.310U mg/Kg | Α | 7 | # China Lake CTO 067 Metals - Field Blank Data Qualification Summary - SDG 16C129 | Sample | Analyte | Modified Final
Concentration | A or P | Code | |------------|-----------------|---------------------------------|--------|------| | KCH067-033 | Boron | 8.19U mg/Kg | Α | 6 | | KCH067-034 | Boron
Sodium | 5.65U mg/Kg
94.9U mg/Kg | А | 6 | | Sample | Analyte | Modified
Final
Concentration | A or P | Code | |------------|--|--|--------|------| | KCH067-035 | Boron
Sodium | 5.36U mg/Kg
71.3U mg/Kg | А | 6 | | KCH067-036 | Boron
Sodium | 6.06U mg/Kg
77.3U mg/Kg | Α | 6 | | KCH067-037 | Boron
Sodium | 6.18U mg/Kg
81.9U mg/Kg | Α | 6 | | KCH067-038 | Boron
Sodium | 5.40U mg/Kg
77.5U mg/Kg | Α | 6 | | KCH067-039 | Boron
Sodium | 5.75U mg/Kg
85.8U mg/Kg | Α | 6 | | KCH067-040 | Boron
Sodium | 5.70U mg/Kg
85.7U mg/Kg | Α | 6 | | KCH067-041 | Boron
Chromium
Lead
Magnesium | 5.00U ug/L
0.284U ug/L
0.570U ug/L
17.7U ug/L | Α | 6 | #### METHOD SW6020A METALS BY ICP-MS Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Date Collected: 03/15/16 Date Received: 03/17/16 Date Extracted: 03/23/16 15:08 SDG NO. : 16C129 Sample ID: KCH067-032 Date Analyzed: 03/28/16 13:36 Lab Samp ID: C129-09 Lab File ID: 98C11021 Dilution Factor: 0.971 Matrix : SOIL % Moisture : 1.7 Ext Btch ID: IMCO40S Calib. Ref.: 98C11016 Instrument ID : T-198 | | | ========= | | |---------|--|--|--| | RESULTS | LOQ | DL | LOD | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | 5650 | 98.8 | 9.88 | 19.8 | | 0.890 | 0.494 | 0.0988 | 0.198 | | 6.11 | 0.494 | 0.0494 | 0.0988 | | 35.2 | 0.494 | 0.0711 | 0.0988 | | 0.203J | 0.494 | 0.0494 | 0.0988 | | 25.1E 🥂 | 22) 9.88 | 2.47 | 4.94 | | 0.779 | 0.494 | 0.0563 | 0.0988 | | 18200 | 98.8 | 16.8 | 19.8 | | 8.04 | 0.494 | 0.0494 | 0.0988 | | 3.16 | 0.494 | 0.0494 | 0.0988 | | 8.87 | 0.494 | 0.0988 | 0.198 | | 10200 | 98.8 | 4.94 | 9.88 | | 23.9 | 0.494 | 0.0494 | 0.0988 | | 4140 | 98.8 | 9.88 | 19.8 | | 157 | 0.494 | 0.151 | 0.198 | | 0.802 | 0.494 | 0.0988 | 0.198 | | 4.17 | 0.494 | 0.0622 | 0.0988 | | 2490 | 98.8 | 9.88 | 19.8 | | 0.0630J | 0.494 | 0.0494 | 0.0988 | | 0.181J | 0.494 | 0.0494 | 0.0988 | | 454 | 98.8 | 9.88 | 19.8 | | 0.0666J | 0.494 | 0.0494 | 0.0988 | | 20.7 | 0.494 | 0.188 | 0.247 | | 385 | 1.98 | 0,675 | 0.988 | | | (mg/kg) 5650 0.890 6.11 35.2 0.203J 25.1E 0.779 18200 8.04 3.16 8.87 10200 23.9 4140 157 0.802 4.17 2490 0.0630J 0.181J 454 0.0666J 20.7 | (mg/kg) (mg/kg) 5650 98.8 0.890 0.494 6.11 0.494 35.2 0.494 0.203J 0.494 25.1E 0.494 18200 98.8 8.04 0.494 3.16 0.494 8.87 0.494 10200 98.8 23.9 0.494 4140 98.8 157 0.494 4140 98.8 157 0.494 4140 98.8 0.802 0.494 4.17 0.494 2490 98.8 0.0630J 0.494 0.181J 0.494 454 98.8 0.0666J 0.494 20.7 0.494 | (mg/kg) (mg/kg) (mg/kg) 5650 98.8 9.88 0.890 0.494 0.0988 6.11 0.494 0.0494 35.2 0.494 0.0711 0.203J 0.494 0.0563 18200 98.8 16.8 8.04 0.494 0.0494 3.16 0.494 0.0494 3.16 0.494 0.0494 3.16 0.494 0.0494 3.16 0.494 0.0494 4.140 98.8 9.88 157 0.494 0.0988 157 0.494 0.0494 4140 98.8 9.88 157 0.494 0.151 0.802 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.17 0.494 0.0988 4.19 0.0666J 0.494 0.0494 454 98.8 9.88 0.0666J 0.494 0.0494 20.7 0.494 0.0494 | 5/17/16 9 #### METHOD SW6020A METALS BY ICP-MS Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 SDG NO. : 16C129 Date Extracted: 03/23/16 15:08 Sample ID: KCH067-032DL Date Analyzed: 03/28/16 17:49 | | 1 | | | | |------------|-----------------|---------|---------|---------| | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Aluminum | 5640 | 197 | 19.7 | 39.5 | | Antimony | 0.869J | 0.987 | 0.197 | 0.395 | | Arsenic | 6.23 | 0.987 | 0.0987 | 0.197 | | Barium | 34.5 | 0.987 | 0.142 | 0.197 | | Beryllium | 0.205J V | 0.987 | 0.0987 | 0.197 | | Boron | 25.4 | 19.7 | 4.93 | 9.87 | | Cadmium | 0.726 ا | 2 0.987 | 0.112 | 0.197 | | Calcium | 19100 ` | 197 | 33.6 | 39.5 | | Chromium | 8.08 | 0.987 | 0.0987 | 0.197 | | Cobalt | 3.24 | 0.987 | 0.0987 | 0.197 | | Copper | 9.05 | 0.987 | 0.197 | 0.395 | | Iron | 10300 | 197 | 9.87 | 19.7 | | Lead | 23.9 | 0.987 | 0.0987 | 0.197 | | Magnesium | 4110 | 197 | 19.7 | 39.5 | | Manganese | 162 | 0.987 | 0.302 | 0.395 | | Molybdenum | 0.775J | 0.987 | 0.197 | 0.395 | | Nickel | 4.22 | 0.987 | 0.124 | 0.197 | | Potassium | 2570 | 197 | 19.7 | 39.5 | | Selenium | ND } | 0.987 | 0.0987 | 0,197 | | Silver | 0.174J | 0.987 | 0.0987 | 0.197 | | Sodium | 454 | . 197 | 19.7 | 39.5 | | Thallium | ND) | 0.987 | 0.0987 | 0.197 | | Vanadium | 20.8 | 0.987 | 0.375 | 0.493 | | Zinc | 387 V | 3.95 | 1.35 | 1.97 | 9/17/16 8 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 SDG NO. : 16C129 Date Extracted: 03/23/16 15:08 Sample ID: KCH067-033 Date Analyzed: 03/28/16 13:40 Lab Samp ID: C129-10 Dilution Factor: 0.966 ______ | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|------------------|---------------|----------------| | Aluminum | 4010 | 98.1 | 9.81 | 19.6 | | Antimony | 0.437J | 0.490 | 0.0981 | 0.196 | | Arsenic | 2.68 | 0.490 | 0.0490 | 0.0981 | | Barium | 33.5 | 0.490 | 0.0706 | 0.0981 | | Beryllium | 0.1513 | 0.490 | 0.0490 | 0.0981 | | Boron | 8.19J U | (6) 9.81 | 2.45 | 4.90 | | Cadmium | 0.163J ` | ` / 0.490 | 0.0559 | 0.0981 | | Calcium | 7780 | 98.1 | 16.7 | 19.6 | | Chromium | 4.33 | 0.490 | 0.0490 | 0.0981 | | Cobalt | 2.07 | 0.490 | 0.0490 | 0.0981 | | Copper | 5.55 | 0.490 | 0.0981 | 0.196 | | Iron | 6710 | 98.1 | 4.90 | 9.81 | | Lead | 2.74 | 0.490 | 0.0490 | 0.0981 | | Magnesium | 2420 | 98.1 | 9.81 | 19.6 | | Manganese | 111 | ∖ 0.490 | 0.150 | 0.196 | | Molybdenum | 0.324J <i>V</i> (| ア) 0.490 | 0.0981 | 0.196 | | Nickel | 2.52 | . 0.490 | 0.0618 | 0.0981 | | Potassium | 1400 | 98.1 | 9.81 | 19.6 | | Selenium | ND | 0.490 | 0.0490 | 0.0981 | | Silver | ND | 0.490 | 0.0490 | 0.0981 | | Sodium | 112 | 98.1 | 9.81 | 19.6 | | Thallium | ND | 0.490 | 0.0490 | 0.0981 | | Vanadium | 14.1 | 0.490 | 0.186 | 0.245 | | Zinc | 24.8 | 1.96 | 0.670 | 0.981 | 47/16 9 _____ Date Collected: 03/15/16 Client : KLEINFELDER Date Received: 03/17/16 Date Extracted: 03/23/16 15:08 : NAWS CHINA LAKE, CTO 067 Project SDG NO. : 16C129 Sample ID: KCH067-034 Date Analyzed: 03/28/16 13:45 Lab Samp ID: C129-11 Lab File ID: 98C11023 Dilution Factor: 0.966 : SOIL Matrix Ext Btch ID: IMC040S % Moisture : 0.4 Calib. Ref.: 98C11016 Instrument ID : T-198 ________ | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|-----------------|---------------|----------------| | Aluminum | 2050 | 97.0 | 9.70 | 19.4 | | Antimony | 0.179J | 0.485 | 0.0970 | 0.194 | | Arsenic | 2.79 | 0.485 | 0.0485 | 0.0970 | | Barium | 111 | 0.485 | 0.0698 | 0.0970 | | Beryllium | 0.0961J | 0.485 | 0.0485 | 0.0970 | | Boron | 5.65J <i>U</i> | <i>(6)</i> 9.70 | 2.42 | 4.85 | | Cadmium | 0.0643J | 0.485 | 0.0553 | 0.0970 | | Calcium | 3850 | 97.0 | 16.5 | 19.4 | | Chromium | 9.76 | 0.485 | 0.0485 | 0.0970 | | Cobalt | 3.06 | 0.485 | 0.0485 | 0.0970 | | Copper | 3.35 | 0.485 | 0.0970 | 0.194 | | Iron | 13400 | 97.0 | 4.85 | 9.70 | | Lead | 2.47 | 0.485 | 0.0485 | 0.0970 | | Magnesium | 866 | 97.0 | 9.70 | 19.4 | | Manganese | 54.7 | 10.485 | 0.148 | 0.194 | | Molybdenum | 0.195J <i>仏(</i> | 7/0.485 | 0.0970 | 0.194 | | Nickel | 1.71 | 0.485 | 0.0611 | 0.0970 | | Potassium | 729 | 97.0 | 9.70 | 19.4 | | Selenium | ND | 0.485 | 0.0485 | 0.0970 | | Silver | 0.0879J | 0.485 | 0.0485 | 0.0970 | | Sodium | 94.9J U (| 6) 97.0 | 9.70 | 19.4 | | Thallium | ND ` | 0.485 | 0.0485 | 0.0970 | | Vanadium | 37.8 | 0.485 | 0.184 | 0.242 | | Zinc | 9.51 | 1.94 | 0.662 | 0.970 | | ======================================= | | |---|---| | Client : KLEINFELDER | Date Collected: 03/15/16 | | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/17/16 | | SDG NO. : 16C129 | Date Extracted: 03/23/16 15:08 | | Sample ID: KCH067-035 | Date Analyzed: 03/28/16 14:15 | | Lab Samp ID: C129-12 | Dilution Factor: 0.976 | | Lab File ID: 98C11030 | Matrix : SOIL | | Ext Btch ID: IMC040S | % Moisture : 0.5 | | Calib. Ref.: 98C11028 | Instrument ID : T-198 | | | ======================================= | | | RESULTS | LOQ | DL | LOD | |------------|---------------------|-------------------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | .03 | | | | Aluminum | 1970 5+ | (D) 98.1 | 9.81 | 19.6 | | Antimony | 0.203J | 0.490 | 0.0981 | 0.196 | | Arsenic | 3.43 | 0.490 | 0.0490 | 0.0981 | | Barium | 199 | 0.490 | 0.0706 | 0.0981 | | Beryllium | 0.0978J | 0.490 | 0.0490 | 0.0981 | | Boron | 5.36J N | (() 9.81 | 2.45 | 4.90 | | Cadmium | 0.0697J | | 0.0559 | 0.0981 | | Calcium | 5040 J + | (8) 98.1 | 16.7 | 19.6 | | Chromium | 9.98 | 0.490 | 0.0490 | 0.0981 | | Cobalt | 2.17 | 0.490 | 0.0490 | 0.0981 | | Copper |
3.82 | 0.490 | 0.0981 | 0.196 | | Iron | 15700 | 98.1 | 4.90 | 9.81 | | Lead | 3.05 | 0.490 | 0.0490 | 0.0981 | | Magnesium | 948 | 98.1 | 9.81 | 19.6 | | Manganese | 57.2 JH | (J 0.490 | 0.150 | 0.196 | | Molybdenum | 0.310J 🗸 (| 7) 0.490 | 0.0981 | 0.196 | | Nickel | 1.88 | 0.490 | 0.0618 | 0.0981 | | Potassium | 763 | 98.1 | 9.81 | 19.6 | | Selenium | ND | 0.490 | 0.0490 | 0.0981 | | Silver | ND | 0.490 | 0.0490 | 0.0981 | | Sodium | 71.3J V(/ | 6) 98.1 | 9.81 | 19.6 | | Thallium | ND . | | 0.0490 | 0.0981 | | Vanadium | 42.15-(| 8)0.490 | 0.186 | 0.245 | | Zinc | 8.51 | 1.96 | 0.670 | 0.981 | 411/16 4 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 SDG NO. : 16C129 Date Extracted: 03/23/16 15:08 Sample ID: KCH067-036 Date Analyzed: 03/28/16 14:24 Lab Samp ID: C129-13 Dilution Factor: 0.98 Lab File ID: 98C11032 Matrix : SOIL Ext Btch ID: IMC040S % Moisture : 2.3 Calib. Ref.: 98C11028 Instrument ID : T-198 | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|----------------|---------------|----------------| | Aluminum | 2530 | 100 | 10.0 | 20.1 | | Antimony | 0.197J | 0.502 | 0.100 | 0.201 | | Arsenic | 3.20 | 0.502 | 0.0502 | 0.100 | | Barium | 230 | 0.502 | 0.0722 | 0.100 | | Beryllium | 0.107J | . \ 0.502 | 0.0502 | 0.100 | | Boron | 6.06J b | (6) 10.0 | 2.51 | 5.02 | | Cadmium | 0.0824J | 0.502 | 0.0572 | 0.100 | | Calcium | 7270 | 100 | 17.1 | 20.1 | | Chromium | 11.5 | 0.502 | 0.0502 | 0.100 | | Cobalt | 2.13 | 0.502 | 0.0502 | 0.100 | | Copper | 3.82 | 0.502 | 0.100 | 0.201 | | Iron | 17600 | 100 | 5.02 | 10.0 | | Lead | 2.73 | 0.502 | 0.0502 | 0.100 | | Magnesium | 1280 | . 100 | 10.0 | 20.1 | | Manganese | 72.2 | 0.502 | 0.153 | 0.201 | | Molybdenum | 0.228J | 0.502 | 0.100 | 0.201 | | Nickel | 2.01 | 0.502 | 0.0632 | 0.100 | | Potassium | 838 | 100 | 10.0 | 20.1 | | Selenium | ND | 0.502 | 0.0502 | 0.100 | | Silver | 0.0585J | 0.502 | 0.0502 | 0.100 | | Sodium | 77.3J (| (6) 100 | 10.0 | 20.1 | | Thallium | ND | / 0.502 | 0.0502 | 0.100 | | Vanadium | 46.8 | 0.502 | 0.191 | 0.251 | | Zinc | 10.1 | 2.01 | 0.685 | 1.00 | 5/17/16 8 _______ Date Collected: 03/15/16 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Date Extracted: 03/23/16 15:08 SDG NO. : 16C129 Sample ID: KCH067-037 Lab Samp ID: C129-14 Date Analyzed: 03/28/16 14:29 Dilution Factor: 0.957 Matrix : SOIL % Moisture : 1.6 Lab File ID: 98C11033 Ext Btch ID: IMCO40S Calib. Ref.: 98C11028 Instrument ID : T-198 | | RESULTS | LOQ | DL | LOD | |------------|------------------|----------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Atuminum | 2630 | 97.3 | 9.73 | 19.5 | | Antimony | 0.307J | 0.486 | 0.0973 | 0.195 | | Arsenic | 4.79 | 0.486 | 0.0486 | 0.0973 | | Barium | 253 | 0.486 | 0.0700 | 0.0973 | | Beryllium | 0.112J | 0.486 | 0.0486 | 0.0973 | | Boron | 6.18J U (| (b) 9.73 | 2.43 | 4.86 | | Cadmium | 0.105J | 0.486 | 0.0554 | 0.0973 | | Calcium | 6850 | 97.3 | 16.5 | 19.5 | | Chromium | 27.0 | 0.486 | 0.0486 | 0.0973 | | Cobalt | 3.74 | 0.486 | 0.0486 | 0.0973 | | Copper | 4.62 | 0.486 | 0.0973 | 0.195 | | Iron | 38000E R | 22 97.3 | 4.86 | 9.73 | | Lead | 4.61 | 0.486 | 0.0486 | 0.0973 | | Magnesium | 1430 | 97.3 | 9.73 | 19.5 | | Manganese | 105 | 0.486 | 0.149 | 0.195 | | Molybdenum | 0.383J | 0.486 | 0.0973 | 0.195 | | Nickel | 3.44 | 0.486 | 0.0613 | 0.0973 | | Potassium | 909 | 97.3 | 9.73 | 19.5 | | Selenium | 0.0573J | 0.486 | 0.0486 | 0.0973 | | Silver | ND , | 0.486 | 0.0486 | 0.0973 | | Sodium | 81.9J U (| 6 97.3 | 9.73 | 19.5 | | Thallium | ND | 0.486 | 0.0486 | 0.0973 | | Vanadium | 111 | 0.486 | 0.185 | 0.243 | | Zinc | 13.7 | 1.95 | 0.664 | 0.973 | 5/17/16 2 7011 | ======================================= | ======================================= | |---|---| | Client : KLEINFELDER | Date Collected: 03/15/16 | | Project : NAWS CHINA LAKE, CTO 067 | Date Received: 03/17/16 | | SDG NO. : 16C129 | Date Extracted: 03/23/16 15:08 | | Sample ID: KCH067-037DL | Date Analyzed: 03/28/16 17:54 | | Lab Samp ID: C129-14I | Dilution Factor: 4.79 | | Lab File ID: 98C11079 | Matrix : SOIL | | Ext Btch ID: IMCO40S | % Moisture : 1.6 | | Calib. Ref.: 98C11074 | Instrument ID : T-198 | | | | | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------------|--------------------|----------------|---------------|----------------| | Aluminum | 2690 🕞 | | 48.7 | 97.4 | | Antimony | ND T | 2.43 | 0.487 | 0.974 | | Arsenic | 5.04 | 2.43 | 0.243 | 0.487 | | | 249 | | | | | Barium
Barium | 1 | 2.43 | 0.350 | 0.487 | | Beryllium | ND I | 2.43 | 0.243 | 0.487 | | Boron | ND | 48.7 | 12.2 | 24.3 | | Cadmium | ND | 2.43 | 0.277 | 0.487 | | Calcium | 7220 | 487 | 82.8 | 97.4 | | Chromium | 27.0 | 2.43 | 0.243 | 0.487 | | Cobalt | 3.88 / | 2.43 | 0.243 | 0.487 | | Copper | 4.77 ♥ | 2.43 | 0.487 | 0.974 | | Iron | 39700 | 487 | 24.3 | 48.7 | | Lead | 4.76 | 2.43 | 0.243 | 0.487 | | Magnesium | 1450 '] | 487 | 48.7 | 97.4 | | Manganese | 110 | 2.43 | 0.745 | 0.974 | | Molybdenum | ND | 2.43 | 0.487 | 0.974 | | Nickel | 3.54 | 2.43 | 0.307 | 0.487 | | Potassium | 913 | 487 | 48.7 | 97.4 | | Selenium | ND | 2.43 | 0.243 | 0.487 | | Silver | ND | 2.43 | 0.243 | 0.487 | | | 70.6J | 487 | | 97.4 | | Sodium | | | 48.7 | | | Thallium | ND | 2.43 | 0.243 | 0.487 | | Vanadium | 108 | 2.43 | 0.925 | 1.22 | | Zinc | 14.7 ¥ | 9.74 | 3.32 | 4.87 | A17/16 9_ 7012 | | | ======================================= | |------------------------------------|----------|---| | Client : KLEINFELDER | 1 | Date Collected: 03/15/16 | | Project : NAWS CHINA LAKE, CTO 067 | _ | Date Received: 03/17/16 | | SDG NO. : 16C129 | : | Date Extracted: 03/23/16 15:08 | | Sample ID: KCH067-038 | | Date Analyzed: 03/28/16 14:33 | | Lab Samp ID: C129-15 | | Dilution Factor: 0.985 | | Lab File ID: 98C11034 | | Matrix : SOIL | | Ext Btch ID: IMCO40S | | % Moisture : 1.3 | | Calib. Ref.: 98C11028 | : | Instrument ID : T-198 | | | ======== | | | PARAMETERS | RESULTS
(mg/kg) | LOQ
(mg/kg) | DL
(mg/kg) | LOD
(mg/kg) | |------------|--------------------|--------------------|---------------|----------------| | Aluminum | 2120 | 99.8 | 9.98 | 20.0 | | Antimony | 0.156J | 0.499 | 0.0998 | 0.200 | | Arsenic | 3.31 | 0.499 | 0.0499 | 0.0998 | | Barium | 17.2 | 0.499 | 0.0719 | 0.0998 | | Beryllium | 0.0788J | . \ 0.499 | 0.0499 | 0.0998 | | Boron | 5.40J U(| b) 9.98 | 2.49 | 4.99 | | Cadmium | 0.0580J | [/] 0.499 | 0.0569 | 0.0998 | | Calcium | 6350 | 99.8 | 17.0 | 20.0 | | Chromium | 6.16 | 0.499 | 0.0499 | 0.0998 | | Cobalt | 1.56 | 0.499 | 0.0499 | 0.0998 | | Соррег | 3.49 | 0.499 | 0.0998 | 0.200 | | Iron | 8850 | 99.8 | 4.99 | 9.98 | | Lead | 2.68 | 0.499 | 0.0499 | 0.0998 | | Magnesium | 1330 | 99.8 | 9.98 | 20.0 | | Manganese | 51.8 | 0.499 | 0.153 | 0.200 | | Molybdenum | 0.200J | 0.499 | 0.0998 | 0.200 | | Nickel | 1.45 | . 0.499 | 0.0629 | 0.0998 | | Potassium | 688 | 99.8 | 9.98 | 20.0 | | Selenium | ND | 0.499 | 0.0499 | 0.0998 | | Silver | 0.0867J | 7) 0.499 | 0.0499 | 0.0998 | | Sodium | 77.5j V((| 6 / 99.8 | 9.98 | 20.0 | | Thallium | ND | 0.499 | 0.0499 | 0.0998 | | Vanadium | 22.9 | 0.499 | 0.190 | 0.249 | | Zinc | 10.5 | 2.00 | 0.682 | 0.998 | 3/17/16 9 | ========= | | ========= | | ======= | | ===== | |---|--------------------------|-----------|----------------|------------|----------|-------| | Client : | KLEINFELDER | | Date C | collected: | 03/15/16 | | | Project : | NAWS CHINA LAKE, CTO 067 | | Date | Received: | 03/17/16 | | | SDG NO. : | 16C129 | | Date E | xtracted: | 03/23/16 | 15:08 | | Sample ID: | KCH067-039 | | Date | Analyzed: | 03/28/16 | 14:37 | | Lab Samp ID: | C129-16 | | Dilutio | n Factor: | 0.971 | | | Lab File ID: ' | 98C11035 | | Matrix | : | SOIL | | | Ext Btch ID: | IMCO40S | | % Moist | ure : | 1.1 | | | Calib. Ref.: ' | 98C11028 | | Instrum | ent ID : | T-198 | | | ======================================= | | | :==== = | ======== | ======= | ===== | | | | RESULTS | LOQ | | DL | LOD | | | RESULTS | LOQ | DL | LOD | |----------------|-----------|----------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | A Learning and | 2180 | . 98.2 | 9.82 | 19.6 | | Aluminum | | | 0.0982 | | | Antimony | 0.143J | 0.491 | | 0.196 | | Arsenic | 3.02 | 0.491 | 0.0491 | 0.0982 | | Barium | 19.0 | 0.491 | 0.0707 | 0.0982 | | Beryllium | 0.08931 | () 0.491 | 0.0491 | 0.0982 | | Boron | 5.75J U(1 | 6 / 9.82 | 2.45 | 4.91 | | Cadmium | 0.0645J | 0.491 | 0.0560 | 0.0982 | | Calcium | 7370 | 98.2 | 16.7 | 19.6 | | Chromium | 3.91 | 0.491 | 0.0491 | 0.0982 | | Cobalt | 1.35 | 0.491 | 0.0491 | 0.0982 | | Copper | 2.94 | 0.491 | 0.0982 | 0.196 | | Iron | 5740 | 98.2 | 4.91 | 9.82 | | Lead | 2,10 | 0.491 | 0.0491 | 0.0982 | | Magnesium | 1370 | 98.2 | 9.82 | 19.6 | | Manganese | 51.1 | 0.491 | 0.150 | 0.196 | | Molybdenum | 0.216J | 0.491 | 0.0982 | 0.196 | | Nickel | 1.26 | 0.491 | 0.0619 | 0.0982 | | Potassium | 708 | 98.2 | 9.82 | 19.6 | | Selenium | ND | 0.491 | 0.0491 | 0.0982 | | Silver | 0.128J | . 0.491 | 0.0491 | 0.0982 | | Sodium | 85.8J M | 6) 98.2 | 9.82 | 19.6 | | Thallium | ND () | / 0.491 | 0.0491 | 0.0982 | | Vanadium | 14.1 | 0.491 | 0.187 | 0.245 | | Zinc | 8.24 | 1.96 | 0.671 | 0.982 | 4/1/16 9 | <u> </u> | ========= | | |------------------------------------|-----------|--------------------------------| | Client : KLEINFELDER | | Date Collected: 03/15/16 | | Project : NAWS CHINA LAKE, CTO 067 | | Date Received: 03/17/16 | | SDG NO. : 16C129 | 1 | Date Extracted: 03/23/16 15:08 | | Sample ID: KCH067-040 | i | Date Analyzed: 03/28/16 14:42 | | Lab Samp ID: C129-17 | ÷ . | Dilution Factor: 0.971 | | Lab File ID: 98C11036 | 1 |
Matrix : SOIL | | Ext Btch ID: IMCO40S | | % Moisture : 1.0 | | Calib. Ref.: 98C11028 | | Instrument ID : T-198 | | | | | | | RESULTS | LOQ | DL | LOD | |------------|-----------|-----------------|---------|---------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | Alumin⊔m | 2260 | 98.1 | 9.81 | 19.6 | | Antimony | 0.143J | 0.490 | 0.0981 | 0.196 | | Arsenic | 3.09 | 0.490 | 0.0490 | 0.0981 | | Barium | 21.5 | 0.490 | 0.0706 | 0.0981 | | Beryllium | 0.0920J | . /) 0.490 | 0.0490 | 0.0981 | | Boron | 5.70J U (| (b) 9.81 | 2.45 | 4.90 | | Cadmium | 0.0621J | 0.490 | 0.0559 | 0.0981 | | Calcium | 6600 | 98.1 | 16.7 | 19.6 | | Chromium | 9.16 | 0.490 | 0.0490 | 0.0981 | | Cobalt | 1.67 | 0.490 | 0.0490 | 0.0981 | | Copper | 4.02 | 0.490 | 0.0981 | 0.196 | | Iron | 11700 | 98.1 | 4.90 | 9.81 | | Lead | 2.44 | 0.490 | 0.0490 | 0.0981 | | Magnesium | 1390 | 98.1 | 9.81 | 19.6 | | Manganese | 70.5 | 0.490 | 0.150 | 0.196 | | Molybdenum | 0.192J | 0.490 | 0.0981 | 0.196 | | Nickel | 1.61 | 0.490 | 0.0618 | 0.0981 | | Potassium | 747 | , 98.1 | 9.81 | 19.6 | | Selenium | ND | 0.490 | 0.0490 | 0.0981 | | Silver | 0.312J | 0.490 | 0.0490 | 0.0981 | | Sodium | 85.7J 🖊 (| 6) 98.1 | 9.81 | 19.6 | | Thallium | ND | 0.490 | 0.0490 | 0.0981 | | Vanadium | 31.4 | 0.490 | 0.186 | 0.245 | | Zinc | 9.11 | 1.96 | 0.670 | 0.981 | 5/11/16 8 | | | ======= | | ======= | |---|---|------------|-----------------|----------------| | Client : KLEINFELDER | 1 | Date Col | lected: 03/15 | /16 | | Project : NAWS CHINA LAKE, CTO 067 | ı | Date Re | ceived: 03/17 | //16 | | SDG NO. : 16C129 | | Date Ext | racted: 03/23 | /16 11:55 | | Sample ID: KCH067-041 | · · · · · · · · · · · · · · · · · · · | Date Ana | alyzed: 03/28 | /16 18:56 | | Lab Samp ID: C129-18 | ; | Dilution (| factor: 1 | | | Lab File ID: 98C11093 | | Matrix | : WATER | | | Ext Btch ID: IMC039W | | % Moisture | e : NA | | | Calib. Ref.: 98C11085 | : : | Instrument | : ID : T-198 | | | ======================================= | ======================================= | | | ======= | | | | | | | | | RESULTS | LOQ | DL | LOD | | PARAMETERS | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | | | | | | | Aluminum | 21.6J | 100 | 10.0 | 20.0 | | Antimony | : ND | 1.00 | 0.250 | 0.500 | | Arsenic | ND | 1.00 | 0.100 | 0.200 | | Barium | 1.09 | 1.00 | 0.250 | 0.500 | | Beryllium | ND - AO. | 1.00 | 10.0500 | 0.100 | | Boron | 4.36J S. U | (10.0 (| <i>6</i> / 2.50 | 5.00 | | Cadmium | ND | 1.00 | 0.100 | 0.200 | | Calcium | 122 | 100 | 13.0 | 25.0 | | Chromium | 0.284J V (6 | 1.00 | 0.100 | 0.200 | | Cobalt | ND ′ | 1.00 | 0.100 | 0.200 | | Copper | 1.34 | 1.00 | 0.250 | 0.500 | | Iron | 27.5J | 100 | 5.00 | 10.0 | | Lead | 0.570J U(6 | / 1.00 | 0.0500 | 0.100 | | Magnesium | 17.71 U(6) |) 100 | 5.00 | 10.0 | | Manganese | 0.8001 | 1.00 | 0.100 | 0.200 | | Molybdenum | ND
0.454 | 2.00 | 0.250 | 0.500 | | Nickel | 0.156J | 1.00 | 0.100 | 0.200 | | Potassium | 156 | 100 | 10.0 | 20.0 | | Selenium | ND
ND | 1.00 | 0.150 | 0.300
0.200 | | Silver | | 1.00 | 0.100 | | | Sodium | 152
ND | 100 | 25.0 | 50.0 | | Thallium | | 1.00 | 0.100 | 0.200 | | Vanadium | ND
9 17 1 | 1.00 | 0.250 | 0.500 | | Zinc | 8.14J | 20.0 | 5.00 | 10.0 | Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 SDG NO. : 16C129 Sample ID: KCH067-042 Lab Samp ID: C129-19 Date Collected: 03/15/16 Date Received: 03/17/16 Date Extracted: 03/23/16 11:55 Date Analyzed: 03/28/16 19:05 Dilution Factor: 1 Matrix : WATER % Moisture : NA Instrument ID : T-198 Lab File ID: 98C11095 Ext Btch ID: IMC039W Calib. Ref.: 98C11085 | PARAMETERS | RESULTS
(ug/L) | LOQ
(ug/L) | DL
(ug/L) | LOD
(ug/L) | |------------|-------------------|---------------|--------------|---------------| | Aluminum | ND | 100 | 10.0 | 20.0 | | Antimony | ND | 1.00 | 0.250 | 0.500 | | Arsenic | ND | 1.00 | 0.100 | 0.200 | | Barium | 0.277J | 1.00 | 0.250 | 0.500 | | Beryllium | ND | 1.00 | 0.0500 | 0.100 | | Boron | 4.00J | 10.0 | 2.50 | 5.00 | | Cadmium | ND | 1.00 | 0.100 | 0.200 | | Calcium | 34.7J | 100 | 13.0 | 25.0 | | Chromium | 0.101J | 1.00 | 0.100 | 0.200 | | Cobalt | ND | 1.00 | 0.100 | 0.200 | | Copper | 0.811J U | (7) 1.00 | 0.250 | 0.500 | | Iron | ND | / 100 | 5.00 | 10.0 | | Lead | 0.0528J | 1.00 | 0.0500 | 0.100 | | Magnesium | 7.51J | 100 | 5.00 | 10.0 | | Manganese | ND | 1.00 | 0.100 | 0.200 | | Molybdenum | ND | 2.00 | 0.250 | 0.500 | | Nickel | ND | 1.00 | 0.100 | 0.200 | | Potassium | ND | 100 | 10.0 | 20.0 | | Selenium | ND | 1.00 | 0.150 | 0.300 | | Silver | ND | 1.00 | 0.100 | 0.200 | | Sodium | 35.31 | 100 | 25.0 | 50.0 | | Thallium | ND | 1.00 | 0.100 | 0,200 | | Vanadium | ND | 1.00 | 0.250 | 0.500 | | Zinc | ND | 20.0 | 5.00 | 10.0 | 8651716 ### METHOD SW7470A MERCURY BY COLD VAPOR Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Matrix : WATER InstrumentID : 47 | CLIENT
SAMPLE ID | EMAX
SAMPLE ID | RESULTS (ug/L) | DIL'N
FACTOR | | L0Q
(ug/L) | DL
(ug/L) | LOD
(ug/L) | ANALYSIS
DATETIME | PREPARATION
DATETIME | DATA
FILE ID | CAL
REF | PREP
BATCH | COLLECTION
DATETIME | RECEIVED
DATETIME | |---------------------|-------------------|----------------|-----------------|-----------|---------------|--------------|---------------|----------------------|-------------------------|-----------------|------------|---------------|------------------------|----------------------| | | | | ••••• | • • • • • | | | | | | | | | | | | MBLKIW | HGC014WB | ND | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:11 | 03/22/1616:30 | M47C011011 | M47C011 | HGC014W | NA | NA | | LCS1W | HGC014WL | 2.38 | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:13 | 03/22/1616:30 | M47C011012 | M47C011 | HGC014W | NA | NA | | LCD1W | HGC014WC | 2.40 | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:15 | 03/22/1616:30 | M47C011013 | M47C011 | HGC014W | NA | NA | | KCH067-041 | C129-18 | ND | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:46 | 03/22/1616:30 | M47C011027 | M47C011 | HGC014W | 03/15/1614:00 | 03/17/16 | | KCH067-042 | C129-19 | ND | 1 | NA | 0.50 | 0.050 | 0.10 | 03/23/1610:48 | 03/22/1616:30 | M47C011028 | M47C011 | HGC014W | 03/15/1614:40 | 03/17/16 | 865/1116 ## METHOD SW7471A MERCURY BY COLD VAPOR Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Matrix : SOIL InstrumentID : 47 | | EMAX
SAMPLE ID | | DIL'N
FACTOR | MOIST | LOQ
(mg/kg) | DL
(ma/ka) | | ANALYSIS
DATETIME | PREPARATION
DATETIME | DATA
FILE ID | CAL
REF | PREP
BATCH | COLLECTION DATETIME | RECEIVED
DATETIME | |-----------------|-------------------|---------|-----------------|-------|----------------|---------------|-------|----------------------|-------------------------|-----------------|------------|---------------|---------------------|----------------------| | STATE TO | | | | | | | | | | | | | | | | MBLK1S | HGC012SB | ND | 1 | NA | 0.10 | 0.010 | 0.020 | 03/21/1614:21 | 03/21/1611:40 | M47C009011 | M47C009 | HGC012S | NA | NA | | LCS1S | HGC012SL | 0.445 | 1 | NA | 0.10 | 0.010 | 0.020 | 03/21/1614:24 | 03/21/1611:40 | M47C009012 | M47C009 | HGC012S | NA | NA | | LCD1S | HGC012SC | 0.434 | 1 | NA | 0.10 | 0.010 | 0.020 | 03/21/1614:26 | 03/21/1611:40 | M47C009013 | M47C009 | HGC012S | NA | NA | | KCH067-035 | C129-12 | ND | 1 | 0.5 | 0.10 | 0.010 | 0.020 | 03/21/1614:30 | 03/21/1611:40 | M47C009015 | M47C009 | HGC012S | 03/15/1612:15 | 03/17/16 | | KCH067-035MS | C129-12M | 0.444 | 1 | 0.5 | 0.099 | 0.0099 | 0.020 | 03/21/1614:35 | 03/21/1611:40 | M47C009017 | M47C009 | HGC012S | 03/15/1612:15 | 03/17/16 | | KCH067 · 035MSD | C129-12S | 0.439 | 1 | 0.5 | 0.098 | 0.0098 | 0.020 | 03/21/1614:37 | 03/21/1611:40 | M47C009018 | M47C009 | HGC012S | 03/15/1612:15 | 03/17/16 | | KCH067-032 | C129-09 | ND | 1 | 1.7 | 0.10 | 0.010 | 0.020 | 03/21/1614:40 | 03/21/1611:40 | M47C009019 | M47C009 | HGC012S | 03/15/1611:20 | 03/17/16 | | KCH067-033 | C129-10 | ND | 1 | 1.5 | 0.10 | 0.010 | 0.020 | 03/21/1614:42 | 03/21/1611:40 | M47C009020 | M47C009 | HGC012S | 03/15/1611:35 | 03/17/16 | | KCH067-034 | C129-11 | ND | 1 | 0.4 | 0.10 | 0.010 | 0.020 | 03/21/1614:48 | 03/21/1611:40 | M47C009023 | M47C009 | HGC012S | 03/15/1612:10 | 03/17/16 | | KCH067-036 | C129-13 | ND | 1 | 2.3 | 0.10 | 0.010 | 0.020 | 03/21/1614:50 | 03/21/1611:40 | M47C009024 | M47C009 | HGC012S | 03/15/1612:30 | 03/17/16 | | KCH067-037 | C129-14 | ND | 1 | 1.6 | 0.10 | 0.010 | 0.020 | 03/21/1614:52 | 03/21/1611:40 | M47C009025 | M47C009 | HGC012S | 03/15/1612:40 | 03/17/16 | | KCH067-038 | C129-15 | 0.0256J | 1 | 1.3 | 0.10 | 0.010 | 0.020 | 03/21/1614:55 | 03/21/1611:40 | M47C009026 | M47C009 | HGC012S | 03/15/1612:50 | 03/17/16 | | KCH067-039 | C129-16 | ND | 1 | 1.1 | 0.10 | 0.010 | 0.020 | 03/21/1614:58 | 03/21/1611:40 | M47C009027 | M47C009 | HGC012S | 03/15/1613:00 | 03/17/16 | | KCH067-040 | C129-17 | ND | 1 | 1.0 | 0.10 | 0.010 | 0.020 | 03/21/1615:00 | 03/21/1611:40 | M47C009028 | M47C009 | HGC012S | 03/15/1613:05 | 03/17/16 | ta51716 | LDC #: 3628 | 2C4a VALIDATION COMPLETENESS | WORKSHEET Date:_ | |----------------|------------------------------|------------------| | SDG #: 16C12 | Standard/Full | Page:_ | | Laboratory: EM | AX Laboratories Inc. | Reviewer: | METHOD: Metals (EPA SW 846 Method 6020A/7470A) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|--| | l. | Sample receipt/Technical holding times | A | 3/15/16 | | II. | ICP/MS Tune | A | | | 111. | Instrument Calibration | A | | | IV. | ICP Interference Check Sample (ICS) Analysis | A | | | V. | Laboratory Blanks | SW | | | VI. | Field Blanks | SW | EB= (10) SB=(11) | | VII. | Matrix Spike/Matrix Spike
Duplicates | SW | EB= (10) SB=(11)
MSD=(12,13)(14,15) | | VIII. | Duplicate sample analysis | 7 | , | | IX. | Serial Dilution | A | | | X. | Laboratory control samples | A | LCSID | | XI. | Field Duplicates | 2 | | | XII. | Internal Standard (ICP-MS) | A | Not reviewed for Standard validation | | XIII. | Sample Result Verification 30 | SUK | Not reviewed for Standard validation. | | XIV | Overall Assessment of Data | SUR | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: 2nd Reviewe ** Indicates sample underwent Full validation | | Client ID | | Lab ID | Matrix | Date | |----|---------------|------------|--------------|--------|----------| | 1 | KCH067-032** | | 16C129-09** | Soil | 03/15/16 | | 2 | KCH067-033 | | 16C129-10 | Soil | 03/15/16 | | 3 | KCH067-034 | | 16C129-11 | Soil | 03/15/16 | | 4 | KCH067-035 | | 16C129-12 | Soil | 03/15/16 | | 5 | KCH067-036 | | 16C129-13 | Soil | 03/15/16 | | 6 | KCH067-037 | | 16C129-14 | Soil | 03/15/16 | | 7 | KCH067-038 | | 16C129-15 | Soil | 03/15/16 | | 8 | KCH067-039 | | 16C129-16 | Soil | 03/15/16 | | 9 | KCH067-040 | | 16C129-17 | Soil | 03/15/16 | | 10 | KCH067-041 | | 16C129-18 | Water | 03/15/16 | | 11 | KCH067-042 | | 16C129-19 | Water | 03/15/16 | | 12 | KCH067-035MS | AII | 16C129-12MS | Soil | 03/15/16 | | 13 | KCH067-035MSD | 4 | 16C129-12MSD | Soil | 03/15/16 | | 14 | KCH067-041MS | All louthy | 16C129-18MS | Water | 03/15/16 | | 15 | KCH067-041MSD | | 16C129-18MSD | Water | 03/15/16 | | Labo | #: 36282C4a VALIDATION (#: 16C129 bratory: EMAX Laboratories Inc. HOD: Metals (EPA SW 846 Method 6020A/74 | 2nd | Date: Sholi) Page: Zof Z Reviewer: Reviewer: | | |------|---|--------|--|------| | | Client ID | Lab ID | Matrix | Date | | 16 | #1DL #1 | | | | | 17 | #6DL | | | | | 18 | | | | | | 19 | | | | | | 20_ | | | | | | Note | S: | | | | LDC#: 36282CHa Page: \of \frac{7}{2} Reviewer: \frac{3}{2} 2nd Reviewer: \frac{1}{2} Method: Metals (EPA SW 846 Method 6010B/7000/6020) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----|----|-------------------| | I. Technical holding times | | | | | | All technical holding times were met. | \ | | | | | Cooler temperature criteria was met. | / | | | | | II. ICP/MS Tune | | | | | | Were all isotopes in the tuning solution mass resolution within 0.1 amu? | _ | | | | | Were %RSD of isotopes in the tuning solution ≤5%? | / | | | | | III. Calibration | | | | | | Were all instruments calibrated daily, each set-up time? | | | | | | Were the proper number of standards used? | | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury) QC limits? | | | | | | Were all initial calibration correlation coefficients <u>></u> 0.995? | | | | - | | IV. Blanks | | | | | | Was a method blank associated with every sample in this SDG? | / | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | / | | | | | V. ICP Interference Check Sample | | | | | | Were ICP interference check samples performed daily? | | | | | | Were the AB solution percent recoveries (%R) with the 80-120% QC limits? | / | | | | | VI. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | | / | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of +/- RL(+/-2X RL for soil) was used for samples that were \leq 5X the RL, including when only one of the duplicate sample values were \leq 5X the RL. | / | | | | | VII. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | / | | | | | Was an LCS analyzed per extraction batch? | / | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils? | | | | | ## **VALIDATION FINDINGS CHECKLIST** Page: 2of 7 Reviewer: 200 2nd Reviewer: 7 | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | VIII. Internal Standards (EPA SW 846 Method 6020/EPA 200.8) | | | | | | Were all the percent recoveries (%R) within the 30-120% (6020)/60-125% (200.8) of the intensity of the internal standard in the associated initial calibration? | 1 | | | | | If the %Rs were outside the criteria, was a reanalysis performed? | / | | | | | IX. ICP Serial Dilution | | | | | | Was an ICP serial dilution analyzed if analyte concentrations were > 50X the MDL (ICP)/>100X the MDL(ICP/MS)? | 1 | | | | | Were all percent differences (%Ds) < 10%? | / | | | | | Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data. | | / | | | | X. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | | | | | XI. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | 1 | | | | | XII. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | / | | | | Target analytes were detected in the field duplicates. | | | / | | | XIII. Field blanks | | | | | | Field blanks were identified in this SDG. | / | | | | | Target analytes were detected in the field blanks. | / | | | | ## VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference | Page:_ | i of | |---------------|------| | Reviewer: | | | 2nd reviewer: | n- | All circled elements are applicable to each sample. | T T | | | |-----------|----------|---| | 01- 10 | NA -4 | Townst Analysis Lint (TAL) | | Sample ID | iviatrix | Target Analyte List (TAL) | | 1-9 | | AI, Sb As Ba Ba, Cd Ca, Cr Co Cul Fe Pb Mg Mn Hg Nij K, Se Ag Na Tij V Zn Mo B Sn, Ti, | | <u> </u> | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | 10-11 | W | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B)Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | AC12-13 | | (Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B)Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | AC-14-15 | W | (Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B) Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | 16-17 | 5 | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, 😾 Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | , | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | | | Analysis Method | | ICP | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | | ICP-MS | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V,
Zn, Mo, B, Sn, Ti, | | GEAA | | Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti, | Comments: Mercury by CVAA if performed Maximum PB^a (mg/Kg) Analyte ## **VALIDATION FINDINGS WORKSHEET** PB/ICB/CCB QUALIFIED SAMPLES Page: 1 of 1 Reviewer: JD METHOD: Metals (EPA SW 864 Method 6010/6020/7000) Maximum PB^a (ug/L) 0.308 Sample Concentration units, unless otherwise noted: Maximum ICB/CCB^a (ug/L) Blank Action Limit. Soil preparation factor applied: **Associated Samples:** All Waters (07) Sample dentification. 2nd Reviewer: | Sample Concentration units, unless otherwise noted | | | | | mg/l | (g | Ass | sociated Sam | nples: | 1-4 (07) | | | | |--|---------------------------------------|--------------------------------------|---|-------|--------------------------|--|-------------------------|--------------|---------------|--|-----------------|--|--| | | | | | 100 M | , (#1 8) | ja j | 1,500 | Sample I | dentification | i i de la companya d | 44.7 0 0 | | | | Analyte | Maximum
PB ^a
(mg/Kg) | Maximum
PB ^a
(ug/L) | Maximum
ICB/CCB ^a
(ug/L) | | 2 | 3 | 4 | | | | | | | | Мо | | | 0.203 | | 0.324/ 0.49 0 | 0.195/0 .485 - | 0.310/0 .490 | | | | | | | Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element. ug/L 11 0.811/1.00 - ## VALIDATION FINDINGS WORKSHEET Field Blanks Page: Zof Z Reviewer: 2nd Reviewer: 2 **METHOD:** Trace Metals (EPA Method 200.7/200.8) Blank units: ug/L Associated sample units: mg/kg Sampling date: 03/15/16 Soil factor applied 50X Field blank type: (circle one) Field Blank / Rinsate / Other: (EB) Associated Samples: All Soils (06) | Field blank type: (circle one) Field Blank / Rinsate / Other: | | | | | (EB) Associated Samples: All Soils (06) | | | | | | | | |---|----------|--------------|------------------------|-------------------------|---|------------------------|-------------------------|-----------------------|-----------------------|-----------------------|----------------------|---------| | Analyte | Blank ID | | | | | Sa | mple Identifica | ation | | | | | | | 10 | Action Limit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 17 | - | | Al | 21.6 | | | | | | | | | | | | | Ва | 1.09 | 0.545 | | | | | | | | | | | | В | 4.36 | | 8.19/ 9.81- | 5.65/ 9.70 - | 5.36/ 9.81 | 6.06/ 10.0 | 6.18/ 9.73 | 5.40/ 9.98 | 5.75/ 9.82 | 5.70/9 :81 | | <u></u> | | Ca | 122 | 61 | | | | | | | | : | | | | Cr | 0.284 | | | | | | | | | | | | | Cu | 1.34 | 0.67 | | | | | | | | | | _ | | Fe | 27.5 | | | | | | | | | | | | | Pb | 0.570 | | | | | | | | | | | | | Mg | 17.7 | | | _ | | | | | | | | | | Mn | 0.800 | | | | | | | | | | | | | Ni | 0.156 | | | | | | | | | | | | | К | 156 | 78 | | | | | | | | | | | | Na | 152 | 76 | | 94.9/ 97.0 | 71.3/ 98:1- | 77.3/ 100 - | 81.9 /07.3 - | 77.5/ 99.8 | 85.8/ 98.2 | 85.7/ 98.1 | 70.6/ 487 | | | Zn | 8.14 | | | | | | | | | | 97.4 | И | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". ## VALIDATION FINDINGS WORKSHEET Field Blanks Page: _of _ Reviewer: _ 2nd Reviewer: __ METHOD: Trace Metals (EPA Method 200.7/200.8) Blank units: ug/L Associated sample units: ug/L Sampling date: 03/15/16 Soil factor applied Sind blank type: (circle one) Field Blank / Ringate / Other: | ield blank t | ield blank type: (circle one) Field Blank / Rinsate / Other: <u>(SB)</u> Associated Samples: 10 (06) | | | | | | | | | | | | | |--------------|--|--------------|--------------------------|--|--|--|--|--|--|--|--|--|--| | Analyte | Blank ID | | Sample Identification | | | | | | | | | | | | 1979 T | 11 | Action Limit | 10 | | | | | | | | | | | | Ва | 0.277 | | | | | | | | | | | | | | В | 4.00 | | 4.36/1 0.0 | | | | | | | | | | | | Ca | 34.7 | | | | | | | | | | | | | | Cr | 0.101 | | 0.284/ 1.00 - | | | | | | | | | | | | Cu | 0.811 | | | | | | | | | | | | | | Pb | 0.0528 | | 0.570/ 1.00 - | | | | | | | | | | | | Mg | 7.51 | | 17.7/ [00 | | | | | | | | | | | | Na | 35.3 | | | | | | | | | | | | | ## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates | Page:_ | i_of | |---------------|------| | Reviewer: | CC | | 2nd Reviewer: | 4 | METHOD: Trace metals (EPA SW 846 Method 6010/7000) | E | le: | ase s | see qualifications | below for all | l questions answered | "N". Not applicable | questions are identified as "N/A" | | |---|-----|-------|--------------------|---------------|----------------------|---------------------|-----------------------------------|---| | , | ٠, | | | | | | | • | Y/N N/A Was a matrix spike analyzed for each matrix in this SDG? Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. N N/A Were all duplicate sample relative percent differences (RPD) \leq 20% for samples? **LEVEL IV ONLY:** Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. | # | MS/MSD ID | Matrix | Analyte | MS
%Recovery | MSD
%Recovery | RPD (Limits) | Associated Samples | Qualifications | |---|-----------|--------|---------|-----------------|------------------|--------------|--------------------|--------------------| | | 12/13 | s | Al | 135 (78-124) | 132 (78-124) | | 4 | J+det/A (det) (08) | | | | | Ca | 132 (86-118) | 132 (86-118) | | | J+det/A (det) (08) | | | | | Mn | 120 (85-116) | | | | J+det/A (det) (08) | | | | | V | | 73 (82-116) | | | J-/UJ/A (det) (08) | Ш | | | | | | | | | | | | | | | | - | Щ | | | | <u></u> | | | 4.47 | | | Ш | _ | Ш | | | | | | | | | | Ш | | | | | | | | | | Comments: | 12/13: Ba, Fe > 4X | | | | |-----------|--------------------|--|------|--| | | | | | | | | | |
 | | ## VALIDATION FINDINGS WORKSHEET Sample Result Verification METHOD: Metals (EPA SW 846 Method 6010/6020/7000) | # | Sample ID | Analyte | Result (units) | RL (units) | Finding | Qualifications | |-----|---------------------------------------|---------|----------------|------------|----------------|----------------| | | 1 | В | | • | > Linear range | J/A (20) | | | 10.6 | Fe | | | > Lines renge | 1/4 (20) | | _ | 186 | | | | > Liner range | J/A (20) | _ _ | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | - | <u></u> | Comments: ## **VALIDATION FINDINGS WORKSHEET Overall Assessment of Data** | Page: _ | <u>\</u> of | |---------------|---------------| | Reviewer: | OZ | | 2nd Reviewer: | | METHOD: Trace Metals (EPA CLP SOW ILM02.1) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data. Was the overall quality and usability of the data acceptable? Allered = 6000 only -- Do not include Hay | # | Date | Sample ID | Finding | Associated Samples | Qualifications | |---|------|-----------|--|--------------------|----------------| | | | 1 | B (exceeds calibration range) | 1 | R/A (22) | | | | 12 G | Fe (exceeds calibration range) | 10 | R/A (22) | | | | | | | | | | | 16 | All Except B (dilution not necessary) | 16 | R/A (22) | | | | 17 | All Except Fe (dilution not necessary) | 17 | R/A (22) | Comments: | | | | |-----------|------|-------|--| | | | | | | |
 |
/ | | ## **VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification** | | Page:_ | <u> </u> | |-----|-----------|----------| | | Reviewer: | 20 | | 2nd | Reviewer: | 4 | **METHOD:** Trace Metals (See cover) An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula: $%R = Found \times 100$ True Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution True = concentration (in ug/L) of each analyte in the ICV or CCV source | Standard ID | Type of Analysis | Element | Found (ug/L) | True (ug/L) | Recalculated
%R | Reported
%R | Acceptable
(Y/N) | |--------------|---------------------------------|---------|--------------|-------------
--------------------|----------------|---------------------| | | ICP (Initial calibration) | - 1 | | | | | | | 5CV
12:43 | ICP/MS (Initial calibration) | Ca | 29890 ugl | 30000 yol | 100%P | 100%R | J | | JCV
14213 | CVAA (Initial calibration) | Ha | 1.95 vg/v | | 98%R | 98%.e | 7 | | | ICP (Continuing calibration) | | 2 | 3 | | | | | CCV (2) | ICP/MS (Continuing calibration) | Cr | 245.3 vg/ | 250 vg/L | 487-R | 98%.R | 7) | | 257 | CVAA (Contining calibration) | Ha | 2-11-916 | Zugl | 106%2 | 98%R
106%R | 4 | | | GFAA (Initial calibration) | | 3 | 3 | | | , | | | GFAA (Continuing calibation) | | | | | | | | Comments: | | | |-----------|--|--| | | | | | | | | ## **VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet** | Page:_ | <u>`</u> of_\ | |---------------|---------------| | Reviewer: | 30 | | 2nd Reviewer: | 47 | **METHOD:** Trace Metals (EPA SW 846 Method 6010/6020/7000) | Percent recoveries (%R) for an ICP | interference check sample, a laboratory | control sample and a matrix spike sam | ple were recalculated using the following formula | |------------------------------------|---|---------------------------------------|---| |------------------------------------|---|---------------------------------------|---| $%R = Found \times 100$ True Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = Concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = \underline{|S-D|} \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration An ICP serial dilution percent difference (%D) was recalculated using the following formula: $%D = II-SDRI \times 100$ Where, I = Initial Sample Result (mg/L) SDR = Serial Dilution Result (mg/L) (Instrument Reading x 5) | Sample ID | Type of Analysis | Element | Found / S / I
(units) | True / D / SDR (units) | Recalculated %R / RPD / %D | Reported
%R / RPD / %D | Acceptable
(Y/N) | |-----------------|---------------------------|---------|--------------------------|------------------------|----------------------------|---------------------------|---------------------| | ICS AB
13205 | ICP interference check | (ک | 21.81 41 | Zougic | 139% | 109%8 | Ľ | | LCS
14124 | Laboratory control sample | Hq | 445.2 mg/kg | 0.416 mg/kg | (07%R | 107%2 | 7 | | 2 | Matrix spike |) | (SSR-SR) | | | | | | 7 | Duplicate | | | | | | | | 7) | ICP serial dilution | | | | | | | | Comments: | | | | | |-----------|---------------------------------------|--|--|--| | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | LDC #: 368204a ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | \ | _of_' | <u></u> | |---------------|---|-------|---------| | Reviewer: | _ | 72 | > | | 2nd reviewer: | | A | | | METH | OD: Trace Metals (EPA | A SW 846 Method 6010/6020/7000) | | | | | | | |-----------------------------------|---|--|---|-----------------------------|---------------------|--|--|--| | Please
Y N I
Y N I
Y N I | N/A Have results | ow for all questions answered "N". Not appl
been reported and calculated correctly?
ithin the calibrated range of the instrument
ion limits below the CRDL? | | | | | | | | Detect | Detected analyte results for () A were recalculated and verified using the following | | | | | | | | | Concent | tration = $\frac{(RD)(FV)(Dil)}{(In. Vol.)}$ | Prep Factor: 10 Recalculation: |).368agr)(| (e)(/w00i | (mg - 5.18) | | | | | RD
FV
In. Vol.
Dil | FV = Final volume (ml) n. Vol. = Initial volume (ml) or weight (G) FV = 100 ml | | | | | | | | | # | Sample ID | Analyte | Reported
Concentration
(IM2 \\2) | Calculated
Concentration | Acceptable
(Y/N) | | | | | | 1 | A | 5650 | 5640 | 4 2 | | | | | | | Sb | 0.890 | 0.88 | Y* | | | | | | | As As | 6-11 | 6.11 | 3 | | | | | | | Ba | 35.7 | 35.2 | | | | | | | | Be | 0.203 | 0.203 | ↓ | | | | | # | Sample ID Analyte | | Reported
Concentration
(W/2\K2) | Calculated
Concentration | Acceptable
(Y/N) | |---|-------------------|--------------|---------------------------------------|-----------------------------|---------------------| | | 1 | Al | 5650 | 5640 | 42 | | | | Sb | 0.890 | 0.88 | ¥* | | | | As. | 6-11 | 6.11 | 7 | | | | Ba | 35.7 | 35.2 | | | | | Be | 0.203 | 0.203 | + | | | 16 | В | 25.4 | zs.s | グ* | | | 1 | له | 0.79 | 0.209 | 7) | | | \ | Ca | 18200 | 18200 | 7 | | | | Cs | 40.8 | 8.03 | J* | | | | Co | 3.16 | 3.16 | 7 | | | | Cu | 78.8 | 8.87 | | | | | Fe | 10200 | 10200 | | | | | Pb | 23.9 | 23.9 | | | | | Mq | 4140 | 4140 | | | | | MY | 127 | 157 | | | | | Mo | 0.802 | 0.802 | | | | | <i>D</i> : | 4.17 | 4.17 | | | | | \leftarrow | 2490 | 2490 | | | | | Se | 0.0630 | 0.0630 | | | | Ŷ | 4 | 0-181 | 0.181 | 4 | | Note: | | | | |-------|------|------|--| | |
 |
 | | | |
 | | | LDC #: 30282CUA ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification Page: C of C Reviewer: S 2nd reviewer: A METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000) | YN
YN
YN | N/A Have results w N/A Are all detection | ow for all questions answered "Note the properties and calculated continuing the calibrated range of the tion limits below the CRDL? | orrectly?
instruments and within the line | ear range of the IC | P? | | |-----------------------------|--|--|--|--|---------------------|--| | Detec:
equati | ted analyte results for _
on: | ste pa | were recalcu | lated and verified | using the following | | | Concen | tration = $\frac{(RD)(FV)(Dil)}{(In. Vol.)}$ | Reca | alculation: | | | | | RD
FV
In. Vol.
Dil | = Raw data conce = Final volume (m = Initial volume (m = Dilution factor | | | | | | | # | Sample ID | Analyte | Reported
Concentration
(۲۷4 Va.) | Calculated
Concentration
(Mg (Kg) | Acceptable
(Y/N) | | | | \ | Na | 424 | 434 | C | | | | l l | 17 | 0-0666 | 0.0666 | | | | | | V | 20.7 | 20.7 | | | | | <u> </u> | Zn | 385 | 38.2 | | | | | | | | | | | | | 45 39 | | | | | | | | | | | | ``` | ļ | | | | | | | | | <u> </u> | | | | <u> </u> | | | | Note:_ | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 12, 2016 Parameters: Hexavalent Chromium Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | Sample Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | KCH067-032** | 16C129-09** | Soil | 03/15/16 | | KCH067-033 | 16C129-10 | Soil | 03/15/16 | | KCH067-041 | 16C129-18 | Water | 03/15/16 | | KCH067-042 | 16C129-19 | Water | 03/15/16 | | KCH067-032MS | 16C129-09MS | Soil | 03/15/16 | | KCH067-032MSD | 16C129-09MSD | Soil | 03/15/16 | ^{**}Indicates sample underwent Level IV validation ## Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Hexavalent Chromium by Environmental Protection Agency (EPA) SW 846 Method 7199 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during
data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ## **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition. All technical holding time requirements were met. ## II. Initial Calibration All criteria for the initial calibration were met. ## III. Continuing Calibration Continuing calibration frequency and analysis criteria were met. ## IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found. ## VI. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## VII. Duplicate Sample Analysis The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. ## X. Sample Result Verification All sample result verifications were acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ## XI. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Hexavalent Chromium - Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Hexavalent Chromium - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Hexavalent Chromium - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG METHOD SW7199 HEXAVALENT CHROMIUM Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Matrix : SOIL InstrumentID : 59 | The state of s | | | | | | · | | | | | | | | | |--|----------|-----------------|--------|-----------|---------|---|---------|---------------|---------------|---------|---------|---------|---------------|----------| | CLIENT | EMAX | RESULTS | DIL'N. | MOIST | | DL | LOD | ANALYSIS | PREPARATION | DATA | CAL | PREP | COLLECTION | RECEIVED | | SAMPLE ID | SAMPLE I |) (ug/kg) | FACTOR | (%) | (ug/kg) | (ug/kg) | (ug/kg) | DATETIME | DATETIME | FILE ID | REF | BATCH | DATETIME | DATETIME | | ******** | | · | ••••• | • • • • • | | • | ••••• | | | | | | ••••• | | | MBLK1S | HCC003SB | ND | 1 | NA | 100 | 13 | 40 | 03/28/1613:24 | 03/24/1615:20 | IC26003 | IC26001 | HCC003S | NA | NA | | LCS1S | CSC003SL | 1080 | 1 | NA | 100 | 13 | 40 | 03/28/1613:45 | 03/24/1615:20 | IC26005 | IC26001 | HCC003S | NA | NA | | KCH067-032 | C129-09 | 6 32 | 1 | 1.7 | 102 | 13.2 | 40.7 | 03/28/1614:26 | 03/24/1615:20 | IC26009 | IC26001 | HCC003S | 03/15/1611:20 | 03/17/16 | | KCH067-032MS | C129-09M | 2490 | 1 | 1.7 | 102 | 13.2 | 40.7 | 03/28/1615:08 | 03/24/1615:20 | IC26013 | IC26011 | HCC003S | 03/15/1611:20 | 03/17/16 | | KCH067-032MSD | C129-09S | 2350 | 1 | 1.7 | 102 | 13.2 | 40.7 | 03/28/1615:29 | 03/24/1615:20 | IC26015 | IC26011 | HCC003S | 03/15/1611:20 | 03/17/16 | | KCH067-033 | C129-10 | 70.1J | 1 | 1.5 | 102 | 13.2 | 40.6 | 03/28/1616:31 | 03/24/1615:20 | IC26021 | IC26011 | HCC003S | 03/15/1611:35 | 03/17/16 | METHOD SW7199 HEXAVALENT CHROMIUM Matrix Client : KLEINFELDER : WATER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 InstrumentID : 59 | CLIENT | EMAX | RESULTS | DIL'N. | MOIST | . F00 | DL | LOD | ANALYSIS | PREPARATION | DATA | CAL | PREP | COLLECTION | RECEIVED | |------------|-----------|---------|--------|-------|--------|--------|--------|---------------|---------------|---------|---------|---------|---------------|----------| | SAMPLE ID | SAMPLE ID | (ug/L) | FACTOR | (%) | (ug/L) | (ug/L) | (ug/L) | DATETIME | DATETIME | FILE ID | REF | BATCH | DATETIME | DATETIME | | | | | | | | | | | | •••• | | | | | | MBLK1W | HCC007WB | ND | 1 | NA | 0.2 | 0.05 | 0.1 | 03/17/1612:23 | 03/17/1612:45 | IC17003 | IC17001 | HCC007W | NA | NA | | LCS1W | HCC007WL | 1.86 | 1 | NA | 0.2 | 0.05 | 0.1 | 03/17/1612:44 | 03/17/1612:45 | IC17005 | IC17001 | HCC007W | NA | NA | | LCD1W | HCC007WC | 1.86 | 1 | NA | 0.2 | 0.05 | 0.1 | 03/17/1613:05 | 03/17/1612:45 | IC17007 | IC17001 | HCC007W | NA | NA | | KCH067-042 | C129-19 | ND | 1 | NA | 0.2 | 0.05 | 0.1 | 03/17/1614:49 | 03/17/1612:45 | IC17017 | IC17011 | HCC007W | 03/15/1614:40 | 03/17/16 | | KCH067-041 | C129-18I | ND | 10 | NA | 2 | 0.5 | 1 | 03/17/1615:49 | 03/17/1612:45 | IC17021 | IC17019 | HCC007W | 03/15/1614:00 | 03/17/16 | | I. Sample re II Initial calit III. Calibration IV Laboraton V Field blan VI. Matrix Spi VII. Laboraton IX. Field dupl X. Sample re XI Overall as Note: A = Accep N = Not p SW = See | | | ındard/Full | | | Date: <u>≤ ro/</u>
Page: ∫ of <u>√</u>
Reviewer: <u>⁻</u>
Reviewer: <u>/</u> | |---|---
------------------------------------|------------------|--|--------|---| | II Initial calit III. Calibration IV Laborator V Field blan VI. Matrix Spi VII. Duplicate VIII. Laborator IX. Field dupl X. Sample re XI Overall as Note: A = Accept N = Not pt SW = Seet* Indicates sample | llyte) <u>Hexavalent Chromium (E</u>
ted below were reviewed for ea
gs worksheets. | | | | | C | | II Initial calit III. Calibration IV Laborator V Field blan VI. Matrix Spi VII. Duplicate VIII. Laborator IX. Field dupl X. Sample re XI Overall as Note: A = Accept N = Not pt SW = See Indicates sample | Validation Area | | | Comr | ments | | | III. Calibration IV Laborator V Field blan VI. Matrix Spi VII. Duplicate VIII. Laborator IX. Field dupli X. Sample re XI Overall as Note: A = Accept N = Not p SW = See * Indicates sample | ceipt/Technical holding times | A | 3/15/10 | | | | | IV Laborator V Field blan VI. Matrix Spi VII. Duplicate VIII. Laborator IX. Field dupl X. Sample re XI Overall as Note: A = Accept N = Not pt SW = See * Indicates sample | pration | A | | | | | | V Field blan VI. Matrix Spi VII. Duplicate VIII. Laborator IX. Field dupl X. Sample re XI Overall as Note: A = Acceptor N = Not ptor SW = Seet Indicates sample | n verification | A | | | | | | VI. Matrix Spi VII. Duplicate VIII. Laborator IX. Field dupl X. Sample re XI. Overall as Note: A = Acception Sign Sign Sign Sign Sign Sign Sign Sig | y Blanks | A | | | | | | VII. Duplicate VIII. Laborator IX. Field dupl X. Sample re XI. Overall as Note: A = Acception N = Not poor SW = See * Indicates sample | ks | N0 | EB=(3 | SPS=(| (4) | | | VIII. Laboraton IX. Field dupl X. Sample re XI Overall as Note: A = Accept N = Not p SW = See * Indicates sample | ke/Matrix Spike Duplicates | A | MSID = | | , | | | IX. Field dupl X. Sample re XI. Overall as Note: A = Acception N = Not pto SW = Seetindicates sample | sample analysis | N | | | | | | X. Sample re XI. Overall as Note: A = Acception N = Not p SW = See * Indicates sample | control samples | A | LCSID | | | | | XI Overall as Note: A = Accept N = Not p SW = See * Indicates sample | cates | N | | | | | | Note: A = Accep N = Not p SW = See * Indicates sample | sult verification | A | Not reviewed for | Standard validation. | | | | N = Not p
SW = See
* Indicates sample | sessment of data | IA | <u> </u> | | | | | Client ID | rovided/applicable R = Rir | lo compound
nsate
ield blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment bla | OTHER | rce blank | | OHOHEID | | | | Lab ID | Matrix | Date | | 1 KCH067-032 |)** | | | 16C129-09** | Soil | 03/15/16 | | 2 KCH067-033 | 3 | | | 16C129-10 | Soil | 03/15/16 | | 3 KCH067-04 | | | | 16C129-18 | Water | 03/15/16 | | 4 KCH067-042 | | | | 16C129-19 | Water | 03/15/16 | | 5 KCH067-032 | PMS | | | 16C129-09MS | Soil | 03/15/16 | | 6 KCH067-032 | RMSD | | | 16C129-09MSD | Soil | 03/15/16 | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 11 | | | | | | | | 12 | | | | | | | | 13 | | | | | | | | 14 | | | | | | | | 15 | | | | | | | | Notes: | | | | | | | ## VALIDATION FINDINGS CHECKLIST Page: of Z Reviewer: SS 2nd Reviewer: N Method:Inorganics (EPA Method Spe (ave() | Method.morganics (EPA Method 🔑 (SPA) | | T | <u> </u> | T | |--|-----|----|----------|--| | Validation Area | Yes | No | NA | Findings/Comments | | I. Technical holding times | | | | | | All technical holding times were met. | | | | | | Cooler temperature criteria was met. | | | | | | II. Calibration | | | | | | Were all instruments calibrated daily, each set-up time? | / | | | | | Were the proper number of standards used? | / | | | | | Were all initial calibration correlation coefficients <u>></u> 0.995? | | | | | | Were all initial and continuing calibration verification %Rs within the 90-110% QC limits? | / | | | | | Were titrant checks performed as required? (Level IV only) | | | _ | | | Were balance checks performed as required? (Level IV only) | | | _ | <u>† </u> | | III. Blanks | | | | | | Was a method blank associated with every sample in this SDG? | | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | | / | | | | IV. Matrix spike/Matrix spike duplicates and Duplicates | | | | | | Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water. | / | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. | 1 | | | | | Were the MS/MSD or duplicate relative percent differences (RPD) \leq 20% for waters and \leq 35% for soil samples? A control limit of \leq CRDL(\leq 2X CRDL for soil) was used for samples that were \leq 5X the CRDL, including when only one of the duplicate sample values were \leq 5X the CRDL. | / | | | | | V. Laboratory control samples | | | | | | Was an LCS anaylzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | / | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits? | / | | | | | VI. Regional Quality Assurance and Quality Control | | | | | | Were performance evaluation (PE) samples performed? | | | / | | | Were the performance evaluation (PE) samples within the acceptance limits? | | | / | | LDC#: 3678200 #### **VALIDATION FINDINGS CHECKLIST** Page: 1_ of 2 Reviewer: 30 2nd Reviewer: _____ | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | VII. Sample Result Verification | | | | | | Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | | | | | Were detection limits < RL? | / | | | | | VIII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | / | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | 1 | | | | Target analytes were detected in the field duplicates. | | | / | | | X. Field blanks | | | | | | Field blanks were identified in this SDG. | | | | | | Target analytes were detected in the field blanks. | | / | | | LDC #: 36282CSO # Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification | Page: of | | |------------------------|--| | Reviewer: SS | | | 2nd Reviewer: <u>/</u> | | | Method: Inorganics, Meth | od <u>See Co</u> | ves | |-----------------------------------|----------------------------|--| | The correlation coefficient (r) f | or the calibration of | was recalculated.Calibration date: 1 20/16 | | An initial or continuing calibrat | ion verification percent r | recovery (%R) was recalculated for each type of analysis using the following formula: | | %R = <u>Found X 100</u> | Where, | Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution | | True | | True = concentration of each analyte in the ICV or CCV source | | | | | | | Recalculated | Reported | |------------------|---------|----------|--------------|------|---------------------|---------------------| | Type of analysis | Analyte | Standard | Conc. (ug/l) | Area | r or r ² | r or r ² | | | | | | | Recalculated | Reported | Acceptable | |---------------------------------------|---------|----------|--------------|-----------|---------------------|---------------------|------------| | Type of analysis | Analyte | Standard | Conc. (ug/l) | Area | r or r ² | r or r ² | (Y/N) | | Initial calibration | | s1 | 0 | 0 | | | | | | - | s2 | 0.2 | 0.0000157 | 0.9998 | 0.9998 | | | | | s3 | 0.5 | 0.0000504 | | | J | | | 1 +50 | s4 | 1 | 0.0001022 | | | | | | | s5 | 2 | 0.000194 | | | | | | ſ | s6 | 5 | 0.0005014 | | | | | | | s7 | 7.5 | 0.0007527 | | | | | | | s8 | 10 | 0.0010231 | | | | | JW 13:57 | | Found | True | | 1-21- | | | | Calibration verification | | 3705 byl | 4ugl- | | 93%R | 93% | | | CCV 14:47
Calibration verification | 4 | 1.949-54 | Zugil | | 97% | 97% | 1 | | Calibration verification | | | | | | | | Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 3628266 ## VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet | Page:_ | <u> </u> | |---------------|----------| | Reviewer: | 30 | | 2nd Reviewer: | 1 | | METHOD: Inorganics, Method | Sa | Lover | |----------------------------|----|-------| | | | | Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula: %R = <u>Found</u> x 100 True Where, Found = \wedge concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). True = concentration of each analyte in the source. A sample and duplicate relative percent difference (RPD) was recalculated using the following formula: $RPD = |S-D| \times 100$ Where, S = Original sample concentration (S+D)/2 D = Duplicate sample concentration |
Sample ID | Type of Analysis | Element | Found / S
(units) | True / D
(units) | Recalculated %R / RPD | Reported
%R / RPD | Acceptable
(Y/N) | |--------------|---------------------------|---------|----------------------|---------------------|-----------------------|----------------------|---------------------| | LCS
13245 | Laboratory control sample | Carp | ionylkg | 1000 vz/kg | (08%E | 128%.R | 7 | | MS
15:08 | Matrix spike sample | | (SSR-SR) | 2000 ug/kg | 93%R | 93/2 | | | MSD
15:29 | Duplicate sample | 1 | 234649/169 | 2493 Uglkg | 6% RRD | 6%R90 | | | Comments: |
 | | | |-----------|------|------|--| | | | | | | | |
 | | | |
 |
 | | LDC#:36782C60 ## **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification | Page:_ | 2 of | | |--------------|------|---| | Reviewer:_ | S | > | | nd reviewer: | ×C | 7 | | METHOD: Inorganics, Method See Cover | | |--|--------| | Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A | | | Compound (analyte) results for reported with a positive detect recalculated and verified using the following equation: | | | Concentration = $A - (-0.0000035)$ Recalculation: 0.000035 (com/)(5) | 2.5) | | 0.0001018
A=0.0001229 265dts=0.983
FU=100ml Par == 625 | 0983)- | | # | Sample ID | Analyte | Reported
Concentration
(La(kg) | Calculated
Concentration
(レタ(ドム) | Acceptable
(Y/N) | |---|-----------|---------|--------------------------------------|--|---------------------| | | (| C+6 | 632 | (19/kg)
(6352 | 7 | | | | | | | 3 | Note: | | |-------|--| | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: Total Petroleum Hydrocarbons as Gasoline Validation Level: Level III **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-042 | 16C129-19 | Water | 03/15/16 | | KCH067-043 | 16C129-20 | Water | 03/15/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Total Petroleum Hydrocarbons (TPH) as Gasoline by Environmental Protection Agency (EPA) SW 846 Method 8015B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### **III. Continuing Calibration** Continuing calibration was performed at the required frequencies. Percent differences (%D) were less than or equal to 20.0% for all compounds. #### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-043 was identified as a trip blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Compound Quantitation Raw data were not reviewed for Level III validation. #### **XI. Target Compound Identifications** Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. #### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG #### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG #### China Lake CTO 067 Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG ## METHOD SW5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP Client : KLEINFELDER Date Collected: 03/15/16 Date Received: 03/17/16 Date Extracted: 03/21/16 14:45 Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Sample ID: KCH067-042 Date Analyzed: 03/21/16 14:45 Lab Samp ID: C129-19 Dilution Factor: 1 Matrix : WATER % Moisture : NA Lab File ID: EC21008A Ext Btch ID: VG39C10 Instrument ID : GCT039 Calib. Ref.: EC21003A DL LOQ RESULTS LOQ DL (mg/L) (mg/L) LOD **PARAMETERS** (mg/L) (mg/L) --------------------0.10 GASOLINE ND 0.010 0.020 RESULTS ----- 0.0338 Parameter H-C Range Gasoline C6-C10 SURROGATE PARAMETERS 4-BROMOFLUOROBENZENE 8651116 #### METHOD SW5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP
Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Date Collected: 03/15/16 Date Received: 03/17/16 Date Extracted: 03/21/16 15:24 Sample ID: KCH067-043 Date Analyzed: 03/21/16 15:24 Dilution Factor: 1 Lab Samp ID: C129-20 Matrix : WATER % Moisture : NA Lab File ID: EC21009A Ext Btch ID: VG39C10 Instrument ID : GCT039 Calib. Ref.: EC21003A _______ RESULTS LOQ DL (mg/L) DL LOD **PARAMETERS** (mg/L) (mg/L) -----0.010 ND 0.10 0.020 GASOLINE SPK_AMT % RECOVERY QC LIMIT SURROGATE PARAMETERS RESULTS 0.04000 77.0 69-133 0.0308 H-C Range Parameter C6-C10 4-BROMOFLUOROBENZENE Gasoline 8/2011/10 | SDG
Labo
MET
The s | #:36282C7 VALIDATI #:_16C129 ratory:_EMAX Laboratories Inc. HOD: GC TPH as Gasoline (EPA SW 8 samples listed below were reviewed for ation findings worksheets. | St
46 Method 80 | tandard
015B) | WORKSHEE | 2nd | Date: 5 // Page: _/of Reviewer: Reviewer: | |------------------------------------|--|--|--|--|---------------------------------------|---| | | Validation Area | | | Con | nments | | | 1. | Sample receipt/Technical holding times | A/Δ | | | | | | II. | Initial calibration/ICV | ΔΙΔ | | | | | | 113. | Continuing calibration | Δ | | | | | | IV. | | Δ | | | | | | V. | Field blanks | ND | 5B=1 | T.B = | - 32 | | | VI. | Surrogate spikes | Δ | | | ~ | | | VII. | - | N | ८३८ ड | amples | · · · · · · · · · · · · · · · · · · · | | | VIII | | A | 100/ | Panples | _ | | | IX. | Field duplicates | N | | · · · · · · · · · · · · · · · · · · · | | | | Χ. | Compound quantitation RL/LOQ/LODs | N | | | | | | XI. | | N | | | | | | XII. | Overall assessment of data | A | | | | | | Note: | N = Not provided/applicable R = | = No compounds
Rinsate
= Field blank | detected | D = Duplicate
TB = Trip blank
EB = Equipment b | OTHER | irce blank
: | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-042 | | | 16C129-19 | Water | 03/15/16 | | 2 | KCH067-043 | | | 16C129-20 | Water | 03/15/16 | | 3 | | | | | | | | 4 | | | | | | | | 5 | | · · · · · · · · · · · · · · · · · · · | | | | | | 6 | | | ************************************** | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | 11 | | | | | | | | 12 | | | | | | | | 13 | | · · · · · | | | | | | Votes | | | T T | | | | | $\vdash \vdash$ | MBLKIW | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 13, 2016 Parameters: Total Petroleum Hydrocarbons as Extractables Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-032** | 16C129-09** | Soil | 03/15/16 | | KCH067-033 | 16C129-10 | Soil | 03/15/16 | | KCH067-041 | 16C129-18 | Water | 03/15/16 | | KCH067-042 | 16C129-19 | Water | 03/15/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds. #### III. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 20.0% for all compounds. #### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XI. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and
usable for all purposes. China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG ## METHOD SW3550B/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | | | | | DIESEL | ND | 10 | 2.5 | 5.1 | | JP-5 | ND | 20 | 2.5 | 5.1 | | MOTOR OIL | 6.5J | 20 | 2.5 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | BROMOBENZENE | 99.8 | 101.7 | 98.1 | 60-130 | | HEXACOSANE | 30.4 | 25.43 | 119 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 8251716 ## METHOD SW3550B/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION ________ | PARAMETERS | RESULTS | LOQ | DL | LOD | |----------------------|---------|----------------|------------|----------| | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | DIESEL | ND | 10 | 2.5 | 5.1 | | JP-5 | ND | 20 | 2.5 | 5.1 | | MOTOR OIL | ND | 20 | 2.5 | 5.1 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | BROMOBENZENE | 100 | 101.5 | 98.8 | 60-130 | | HEXACOSANE | 29.7 | 25. 3 8 | 117 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 8451716 ## METHOD SW3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION _______ Lab File ID: LC18020A Matrix : WATER Ext Btch ID: DSC015W % Moisture : NA Calib. Ref.: LC18016A Instrument ID : D5 | PARAMETERS | RESULTS
(mg/L) | LOQ
(mg/L) | DL
(mg/L) | LOD
(mg/L) | |----------------------|-------------------|---------------|--------------|---------------| | DIESEL | ND | 0.50 | 0.050 | 0.10 | | JP-5 | ND | 0.50 | 0.050 | 0.10 | | MOTOR OIL | ND | 0.50 | 0.050 | 0.10 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | BROMOBENZENE | 0.965 | 1.000 | 96.5 | 60-130 | | HEXACOSANE | 0.249 | 0.2500 | 99.4 | 60-130 | Parameter H-C Range Diesel C10-C24 JP-5 C8-C18 8/05/1/6 #### METHOD SW3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION Client : KLEINFELDER Date Collected: 03/17/16 Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Date Extracted: 03/17/16 13:45 Date Analyzed: 03/18/16 16:33 Dilution Factor: 1 Dilution Factor. | Matrix : WATER % Moisture : NA Lab File ID: LC18021A Ext Btch ID: DSC015W Calib. Ref.: LC18016A Instrument ID : D5 ________ | PARAMETERS | RESULTS (mg/L) | LOQ
(mg/L) | DL
(mg/L) | LOD
(mg/L) | |--|---------------------------|----------------------------|----------------------------|----------------------------------| | DIESEL
JP-5
MOTOR OIL | ND
ND
ND | 0.50
0.50
0.50 | 0.050
0.050
0.050 | 0.10
0.10
0.10 | | SURROGATE PARAMETERS BROMOBENZENE HEXACOSANE | RESULTS
0.972
0.247 | SPK_AMT
1.000
0.2500 | % RECOVERY
97.2
98.7 | 0C LIMIT

60-130
60-130 | Parameter H-C Range C10-C24 Diesel C8-C18 JP-5 825176 | SDG | #:36282C8 VALIDATIC #:_16C129 ratory:_EMAX_Laboratories_Inc | | PLETENES
ndard/Full | S WORKSHEET | F
2nd F | Date: 5 //c Page: _/of _ Reviewer: | |-------------------------|--|--------------------------------------|-------------------------------|--|----------------|------------------------------------| | МЕТ | HOD: GC TPH as Extractables (EPA SW | ' 846 Metho | od 8015B) | | 2110 1 | teviewer | | | samples listed below were reviewed for eation findings worksheets. | ach of the fo | ollowing valid | lation areas. Validatio | n findings are | noted in attached | | | Validation Area | | | Comm | ents | | | Į. | Sample receipt/Technical holding times | AIA | | | | | | II. | Initial calibration/ICV | AIA | % F | CCV = 21 |) | | | 111. | Continuing calibration | A | • | car = 21 |) | | | IV. | Laboratory Blanks | Δ | | | | | | V. | Field blanks | NN | EB= 3 | 3 SB= | 4 | | | VI. | Surrogate spikes | Λ | | | | | | VII. | Matrix spike/Matrix spike duplicates | 7 | లు | | | | | VIII. | | A | vas li | 0 | | | | IX. | Field duplicates | Ŋ | | | | | | X. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for | or Standard validation. | | | | XI. | Target compound identification | A | Not reviewed for | or Standard validation. | | | | XII | Overall assessment of data | Δ | | | | | | Note:
* India | N = Not provided/applicable R = Ri | No compounds
nsate
Field blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment blanl | OTHER: | rce blank | | | Client ID | | | Lab ID | Matrix | Date | | 11 | KCH067-032** | | | 16C129-09** | Soil | 03/15/16 | | <u>-</u> 1 | KCH067-033 | | | 16C129-10 | Soil | 03/15/16 | | - 3 * | KCH067-041 EB | | | 16C129-18 | Water | 03/15/16 | | $\frac{1}{4} \nu$ | KCH067-042 | | | 16C129-19 | Water | 03/15/16 | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | 1 | | | 11 | | | | | | | | 12 | | | | | | | | 13
Notes | | | | | | | | Ψ. Τ | MRIVIS | | | | | | MBLKIW LDC #: 36 282 05 VALIDATION FINDINGS CHECKLIST | Page: /of | 2 | |---------------|----| | Reviewer: | -7 | | 2nd Reviewer: | | | Method: | G C | HPLC | |---------|------------|------| | Validation Area ा जिल्लोकाह्ना क्रिक्ट ग्राह्म अस्ति । Were all technical holding times met? Was cooler temperature criteria met? | Yes | No | NA | Findings/Comments | |--|---------------------------|---------------------|-------------------|-------------------| | Were all technical holding times met? | | | | | | | | | | | | Was cooler temperature criteria met? | | | | | | 나는 사람들이 하는 아들리는 그 그는 그는 그는 그는 그들은 그들은 그는 그는 그는 그들은 그들은 그렇게 하고 있다. 그들은 그들은 그를 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없을 때문에 없다. | | | -0-21-do-2000-000 | | | Ura Initial callbration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990? | | | | | | Were the RT windows properly established? | | | | | | ills, linited cellomation verification. | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | (M). (Communag cellibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) ≤ 20% or percent recoveries (%R) 80-120%? | | | | | | Were all the retention times within the acceptance windows? | | na a na na nashika. | | | | JW, Leibonettony išteraks | - | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | processor of a confidence | | | | | W I-hand Isteriks | | | | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | 1 | | | IVAL Signroggate golkes | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | | | | | | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | / | | | If any %R was less than 10 percent, was a reanalysis performed to confirm %R? | | | \ | | | MII Werds selkefuerds selke digelicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | / | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | LDC#: 36282C8 ## VALIDATION FINDINGS CHECKLIST | Validation Area | V | Na | Ī.,, | Fin din 10 annual t | |---|-----|----|------|---------------------| | Validation Area VAIII Laboratory control samples | Yes | No | NA | Findings/Comments | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | IX d⊇ielidiojujulteatjas | | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | V | | | | X. Congressati desativation | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XII Transper cranaproventel referrifficativos | | | | | | Were the retention times of reported detects within the RT windows? | | | | | | Mili Overell essessment of Gette | | | | | | Overall assessment of data was found to be acceptable. | | | | | LDC#: 36282 C8 ### **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | | / | | |---------------|-----|---| | Page:_ | of | - | | Reviewer:_ | FT_ | | | 2nd Reviewer: | 1 | | | | | | | METHOD: GC | HPLC | | |------------|------|--
 The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----------|-------------|---------------------|----------------|----------------|----------------|--------------|--------------|----------|--------------| | #_ | Standard ID | Calibration
Date | Compound | CF
(ごごStd) | CF
(500std) | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | ICAL | 3/9/16 | Diesel Cro-czy | 33825 | 33825 | 31896.9 | 3/896.9 | 12.9 | 12.9 | <u> </u> | | | | | | | | | | | 2 | | | | | | | | | | | | | • | <u> </u> | <u> </u> | | | | | | | | | | 3 | | | | | | | | | | | | | • | # | l | | | | | | | | | | Comments: | Refer to Initial | <u>Calibration</u> | findings | <u>worksheet f</u> | or list o | <u>it qualification</u> | ns and | <u>associated</u> | samples ' | <u>when r</u> | <u>eported</u> | <u>results c</u> | do not ag | ree withi | <u>ი 10.0% (</u> | of the | |--------------|------------------|--------------------|----------|--------------------|-----------|-------------------------|--------|-------------------|-----------|---------------|----------------|------------------|-----------|-----------|------------------|--------| | recalculated | l results. | ى قى LDC#: | 6 | 2 | 82 | cs | |------------|---|---|----|----| |------------|---|---|----|----| ## VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u> | Page:_ | of | _/ | |----------------|----|----| | Reviewer:_ | FT | | | 2nd Reviewer:_ | R | | | METHOD: | GC | HPLC | | |---------|----|------|--| The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF -CF)/ave.CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | Standard | Calibration | | | Reported | Recalculated | Reported | Recalculated | |---|----------|-------------|---------------|--------------------------------|------------------|------------------|----------|--------------| | # | ID | Date | Compound | Average CF(ICAL)/ CCV
Conc. | CF/ Conc.
CCV | CF/ Conc.
CCV | %D | %D | | 1 | cev 1250 | 3/21/16 | Diesel Go-czy | 500.0 | 442.28 | 442.28 | 12 | 12 | 2 | 3 | 4 | | | | | 1.1 | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC #: | 362 | 82 | cz | |--------|-----|----|----| | | | | | ## **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page:_ | of | _/ | |----------------|----|----| | Reviewer:_ | FT | | | 2nd reviewer:_ | M | | METHOD: GC __ HPLC The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:_ | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |--------------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | Bromobenzene | | loO | 98.07 | 9x, 1 | 98.1 | 0 | | Hexacosane | | × | 29.873 | n-19 119 | 119 | υ | | | | | | | | | | | | | | | | | Sample ID: | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | Surrogate Compound | | Surrogate Compound | | Surrogate Compound | | Surrogate Compound | | Surrogate Compound | |----|----------------------------|---|---------------------|---|-----------------------------------|---|-------------------------|----|-------------------------------| | Α | Chlorobenzene (CBZ) | G | Octacosane | М | Benzo(e)Pyrene | s | 1-Chloro-3-Nitrobenzene | Y | Tetrachloro-m- xylene | | В | 4-Bromofluorobenzene (BFB) | Н | Ortho-Terphenyl | N | Terphenyl-D14 | т | 3,4-Dinitrotoluene | z | 2-Bromonaphthalene | | C, | a,a,a-Trifluorotoluene | _ | Fluorobenzene (FBZ) | 0 | Decachlorobiphenyl (DCB) | U | Tripentyltin | AA | Chloro-octadecane | | D | Bromochlorobenene | j | n-Triacontane | Р | 1-methylnaphthalene | V | Tri-n-propyltin | ВВ | 2,4-Dichlorophenylacetic acid | | E | 1,4-Dichlorobutane | К | Hexacosane | Q | Dichlorophenyl Acetic Acid (DCAA) | w | Tributyl Phosphate | СС | 2,5-Dibromotoluene | | F | 1,4-Difluorobenzene (DFB) | L | Bromobenzene | R | 4-Nitrophenol | x | Triphenyl Phosphate | | | | LDC #: | 3628268 | |--------|---------| |--------|---------| #### **VALIDATION FINDINGS WORKSHEET** ## Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Page:_ | _of | |---------------|-----| | Reviewer:_ | FT | | 2nd Reviewer: | 4 | | - | | | METHOD: | ´ GC | HPLC | |---------|------|------| The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate LCS/LCSD samples: DSCO 17SL /SC | | | S | oike | Spike S | Sample | LC | CS | LC | SD | LCS/I | _CSD | |---------------------|------------|------|------------|---------|----------|-----------|----------|-----------|----------|----------|---------| | Comp | ound | (mg | lded
KG | (Mg | ntration | Percent I | Recovery | Percent I | Recovery | RF | סי | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | | Diesel | (8015) | 500 | 500 | 4915 | 511 | 99 | 99 | 102 | 102 | 3 | 3 | | Benzene | (8021B) | | | | | - | | | | | | | Methane | (RSK-175) | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | | нмх | (8330) | | | | | | | | ' : | | | | 2,4,6-Trinitrotolue | ene (8330) | | | | | | _ | | | | | | Phorate | (8141A) | | | | | | | | | | | | Malathion | (8141A) | | | | | | | | · | | | | Formaldehyde | (8315A) | | | | | | | | - | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC #: | 36 | 2 | 8708 | |--------|----|---|------| |--------|----|---|------| ## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page: _ | of | | |-------------|----|---| | Reviewer: | FT | | | nd Reviewer | W | _ | | | r | | |---------|------|--------| | METHOD: | GC _ | _ HPLO | | | | ^ / | / | | |---|----------|----------|-----|--| | / | <u>Y</u> | M | N/A | | | / | Y/ | <u>N</u> | N/A | | | | _ | | | | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results? | Conce | ntration= (A)(Fv)(Df) | Example: | | | Δ | | | | | |---|--|------------------|---|---------------------------------------|----------------|--|--|--|--| | A= Aı
Fv= Fi | (RF)(Vs or Ws)(%S/100
rea or height of the compound to be
inal Volume of extract | Sample ID | 上 Com | pound Name | r 6. | | | | | | Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample | | und Concentratio | Concentration = 126429 (10) = 19173.41117 (10.03) (0.983) | | | | | | | | | itial weight of the sample
ercent Solid | | = 6.5 mg/kg | | | | | | | | # | Sample ID | Compound | Reported
Concentrations | Recalculated Results Concentrations (| Qualifications | Comm | nents: | | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 11, 2016 Parameters: **Explosives** Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | Sample
Identification | Laboratory Sample
Identification | Matrix | Collection
Date | |-----------------------|-------------------------------------|--------|--------------------| | KCH067-032** | 16C129-09** | Soil | 03/15/16 | | KCH067-033 | 16C129-10 | Soil | 03/15/16 | | KCH067-034 | 16C129-11 | Soil | 03/15/16 | | KCH067-035 | 16C129-12 | Soil | 03/15/16 | | KCH067-036 | 16C129-13 | Soil | 03/15/16 | | KCH067-037 | 16C129-14 | Soil | 03/15/16 | | KCH067-038 | 16C129-15 | Soil | 03/15/16 | | KCH067-039 | 16C129-16 | Soil | 03/15/16 | | KCH067-040 | 16C129-17 | Soil | 03/15/16 | | KCH067-041 | 16C129-18 | Water | 03/15/16 | | KCH067-042 | 16C129-19 | Water | 03/15/16 | | KCH067-035MS | 16C129-12MS | Soil | 03/15/16 | | KCH067-035MSD | 16C129-12MSD | Soil | 03/15/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Explosives by Environmental Protection Agency (EPA) SW 846 Method 8330A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 15.0% for all compounds. Retention time windows were established as required by the method for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ## III. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 15.0% for all compounds. Retention times of all compounds in the calibration standards were within the established retention time windows for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ### IV. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### V. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found. #### VI. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. ## VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. ## X. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. The sample results for detected compounds from the two columns were within 40% relative percent difference (RPD) with the following exceptions: | Sample | Compound | RPD | Flag | A or P | |------------|----------|-----|-----------------|--------| | KCH067-034 | НМХ | 46 | J (all detects) | Α | Raw data were not reviewed for Level III validation. #### XI. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XII. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to RPD between two columns, data were qualified as estimated in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. ## China Lake CTO 067 Explosives - Data Qualification Summary - SDG 16C129 | Sample | Compound | Flag | A or P | Reason (Code) | |------------|----------|-----------------|--------|--| | KCH067-034 | нмх | J (all detects) | А | Compound quantitation (RPD between two columns) (12) | ### China Lake CTO 067 Explosives - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 **Explosives - Field Blank Data Qualification Summary - SDG 16C129** No Sample Data Qualified in this SDG | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | HMX | ND | /00 | 50 | 100 | | | · · · = | 400 | | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5~TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2110 | 2000 | 106 | 60-140 | Note: All positive results are confirmed by Biphenyl column Stat1716 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/22/16 15:17 Sample ID: KCH067-033 Date Analyzed: 03/23/16 19:34 Lab Samp ID: C129-10 Dilution
Factor: 1 Lab File ID: XC23013A Matrix : SOIL Ext Btch ID: EXC008S % Moisture : NA Calib. Ref.: XC23002A Instrument ID : T-081 | PARAMETERS | RESULTS
(ug/kg) | LOQ
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | | | | | · · · · | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2040 | 2000 | 102 | 60-140 | Note: All positive results are confirmed by Biphenyl column 82517/6 Date Collected: 03/15/16 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Date Received: 03/17/16 Date Extracted: 03/22/16 15:17 Sample ID: KCH067-034 Date Analyzed: 03/23/16 22:14 Lab Samp ID: C129-11 Lab File ID: XC23017A Dilution Factor: 1 Matrix : SOIL % Moisture : NA Ext Btch ID: EXCOORS Instrument ID : T-081 Calib. Ref.: XC23015A | | RESULTS | LOQ | DL | LOD | |----------------------|---------|----------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | ٠٠٠٠٠ | | | | HMX | 54J J | (12) 400 | 50 | 100 | | RDX | 120J | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2090 | 2000 | 104 | 60-140 | Note: All positive results are confirmed by Biphenyl column E051716 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/22/16 15:17 Sample ID: KCH067-035 Date Analyzed: 03/23/16 22:50 Lab Samp ID: C129-12 Dilution Factor: 1 Lab File ID: XC23018A Matrix : SOIL Ext Btch ID: EXC008S % Moisture : NA Calib. Ref.: XC23015A Instrument ID : T-081 | PARAMETERS | RESULTS
(ug/kg) | L0Q
(ug/kg) | DL
(ug/kg) | LOD
(ug/kg) | |----------------------|--------------------|----------------|---------------|----------------| | нмх | ND | 400 | 50 | 100 | | RDX | 140J | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2060 | 2000 | 103 | 60-140 | Note: All positive results are confirmed by Biphenyl column TOSIMIL Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16c129 Date Extracted: 03/22/16 15:17 Sample ID: KCH067-036 Date Analyzed: 03/24/16 00:54 Lab Samp ID: C129-13 Dilution Factor: 1 Lab File ID: XC23021A Matrix : SOIL Ext Btch ID: EXC008S % Moisture : NA Calib. Ref.: XC23015A Instrument ID : T-081 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ₩D | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2080 | 2000 | 104 | 60-140 | Note: All positive results are confirmed by Biphenyl column EX1716 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/22/16 15:17 Sample ID: KCH067-037 Date Analyzed: 03/24/16 01:30 RESULTS LOQ DL LOD (ug/kg) **PARAMETERS** (ug/kg) (ug/kg) (ug/kg) 400 50 HMX ND 100 400 100 RDX ND 50 1,3,5-TNB ND 400 50 100 1,3-DNB ND 400 50 100 400 57 100 TETRYL ND NITROBENZENE ND 400 50 100 ND 400 50 100 2,4,6-TNT 4-AM-2,6-DNT ND 400 50 100 2-AM-4,6-DNT ND 400 50 100 2,6-DNT ND 400 56 100 400 55 100 2,4-DNT ND 2-NITROTOLUENE ND 400 76 200 95 200 400 3-NITROTOLUENE ND 4-NITROTOLUENE ND 400 99 200 | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | |----------------------|---------|---------|------------|----------| | | | | | | | 3,4-DINITROTOLUENE | 2110 | 2000 | 106 | 60-140 | Note: All positive results are confirmed by Biphenyl column 805/116 ________ Ext Btch ID: EXC008S % Moisture : NA Calib. Ref.: XC23015A Instrument ID : T-081 | | :::======= | | | | |----------------------|------------|---------|------------|----------| | PARAMETERS | RESULTS | LOQ | DL | LOD | | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2080 | 2000 | 104 | 60-140 | Note: All positive results are confirmed by Biphenyl column 8/0/1/16 Date Collected: 03/15/16 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Sample ID: KCH067-039 Lab Samp ID: C129-16 Date Received: 03/17/16 Date Extracted: 03/22/16 15:17 Date Analyzed: 03/24/16 02:50 Dilution Factor: 1 Matrix : SOIL % Moisture : NA Lab File ID: XC23024A Ext Btch ID: EXCOORS Calib. Ref.: XC23015A Instrument ID : T-081 ______ | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | HMX | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | 3,4-DINITROTOLUENE | 2010 | 2000 | 100 | 60-140 | Note: All positive results are confirmed by Biphenyl column \$ N/16 | | RESULTS | LOQ | DL | LOD | |----------------------|---------|---------|------------|----------| | PARAMETERS | (ug/kg) | (ug/kg) | (ug/kg) | (ug/kg) | | | | | | | | нмх | ND | 400 | 50 | 100 | | RDX | ND | 400 | 50 | 100 | | 1,3,5-TNB | ND | 400 | 50 | 100 | | 1,3-DNB | ND | 400 | 50 | 100 | | TETRYL | ND | 400 | 57 | 100 | | NITROBENZENE | ND | 400 | 50 | 100 | | 2,4,6-TNT | ND | 400 | 50 | 100 | | 4-AM-2,6-DNT | ND | 400 | 50 | 100 | | 2-AM-4,6-DNT | ND | 400 | 50 | 100 | | 2,6-DNT | ND | 400 | 56 | 100 | | 2,4-DNT | ND | 400 | 55 | 100 | | 2-NITROTOLUENE | ND | 400 | 76 | 200 | | 3-NITROTOLUENE | ND | 400 | 95 | 200 | | 4-NITROTOLUENE | ND | 400 | 99 | 200 | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | | | | | | 3,4-DINITROTOLUENE | 2070 | 2000 | 103 | 60-140 | Note: All positive results are confirmed by Biphenyl column 8251716 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 16:05 Sample ID: KCH067-041 Date Analyzed: 03/23/16 15:35 Lab Samp ID: C129-18 Dilution Factor: 1 : WATER : NA Lab File ID: XC23007A Matrix Ext Btch ID: EXCOOPW % Moisture Calib. Ref.: XC23002A Instrument ID : T-081 RESULTS LOQ DL LOD (ug/L) PARAMETERS (ug/L) (ug/L) (ug/L) -------------HMX ND 1.0 0.10 0.20 0.40 1.0 0.16 RDX ND 1.0 1,3,5-TNB ND 0.10 0.20 0.20 1,3-DNB ND 0.10 1.0 TETRYL ND 0.10 0.20 NITROBENZENE ND 1.0 0.10 0.20 2,4,6-TNT ND 1.0 0.16 0.40 1.0 4-AM-2,6-DNT 0.20 ND 0.20 1.0 2-AM-4,6-DNT ND 0.10 0.20 0.20 0.10 1.0 2,6-DNT ND 2,4-DNT ND 1.0 0.12 0.20 1.0 2-NITROTOLUENE 0.11 0.20 ND 3-NITROTOLUENE ND 1.0 0.16 0.40 4-NITROTOLUENE ND 1.0 0.10 0.20 SPK_AMT % RECOVERY QC LIMIT SURROGATE PARAMETERS RESULTS -----3,4-DINITROTOLUENE 4.15 4.000 104 60-140 Note: All positive results are confirmed by Biphenyl column 8/15/1/16 Client : KLEINFELDER Date Collected: 03/15/16 Project : NAWS CHINA LAKE, CTO 067 Date Received: 03/17/16 Batch No. : 16C129 Date Extracted: 03/21/16 16:05 Sample ID: KCH067-042 Date Analyzed: 03/23/16 16:11 Lab Samp ID: C129-19 Dilution Factor: 1 Lab File ID: XC23008A
Matrix : WATER Ext Btch ID: EXC009W % Moisture : NA Calib. Ref.: XC23002A Instrument ID : T-081 | | RESULTS | LOQ | DL | LOD | | |----------------------|---------|---------|------------|----------|--| | PARAMETERS | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | | | | | | | | | HMX | ND | 1.0 | 0.10 | 0.20 | | | RDX | ND | 1.0 | 0.16 | 0.40 | | | 1,3,5-TNB | ND | 1.0 | 0.10 | 0.20 | | | 1,3-DNB | ND | 1.0 | 0.10 | 0.20 | | | TETRYL | ND | 1.0 | 0.10 | 0.20 | | | NITROBENZENE | ND | 1.0 | 0.10 | 0.20 | | | 2,4,6-TNT | ND | 1.0 | 0.16 | 0.40 | | | 4-AM-2,6-DNT | ND | 1.0 | 0.20 | 0.20 | | | 2-AM-4,6-DNT | ND | 1.0 | 0.10 | 0.20 | | | 2,6-DNT | ND | 1.0 | 0.10 | 0.20 | | | 2,4-DNT | ND | 1.0 | 0.12 | 0.20 | | | 2-NITROTOLUENE | ND | 1.0 | 0.11 | 0.20 | | | 3-NITROTOLUENE | ND | 1.0 | 0.16 | 0.40 | | | 4-NITROTOLUENE | ND | 1.0 | 0.10 | 0.20 | | | SURROGATE PARAMETERS | RESULTS | SPK_AMT | % RECOVERY | QC LIMIT | | | - / | | | | | | | 3,4-DINITROTOLUENE | 3.96 | 4.000 | 99.1 | 60-140 | | Note: All positive results are confirmed by Biphenyl column 8051716 # LDC #: 36282C40 VALIDATION COMPLETENESS WORKSHEET Date SDG #: 16C129 Standard/Full Page: Laboratory: EMAX Laboratories Inc. METHOD: HPLC Explosives (EPA SW 846 Method 8330) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|---------------------------------------| | l. | Sample receipt/Technical holding times | A/A | | | II. | Initial calibration/ICV | AA | % PSD 520 KV 515 | | III. | Continuing calibration | Δ | % PSD = 20 CV = 15
CCV = 15 | | IV. | Laboratory Blanks | Δ | | | V. | Field blanks | UN | EB=10 SB=11 | | VI. | Surrogate spikes | 4 | | | VII. | Matrix spike/Matrix spike duplicates | Δ | | | VIII. | Laboratory control samples | A | res/D | | IX. | Field duplicates | N | • | | X | Compound quantitation RL/LOQ/LODs | رسي | Not reviewed for Standard validation. | | XI. | Target compound identification | Δ | Not reviewed for Standard validation. | | XII. | System performance | Δ | Not reviewed for Standard validation. | | XIII | Overall assessment of data | | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Full validation Client ID Lab ID Matrix Date KCH067-032** 16C129-09** Soil 03/15/16 KCH067-033 16C129-10 Soil 03/15/16 +3 KCH067-034 16C129-11 Soil 03/15/16 +4 KCH067-035 Soil 16C129-12 03/15/16 5 KCH067-036 16C129-13 Soil 03/15/16 KCH067-037 Soil 03/15/16 16C129-14 7 KCH067-038 16C129-15 Soil 03/15/16 8 KCH067-039 16C129-16 Soil 03/15/16 9 KCH067-040 16C129-17 Soil 03/15/16 10 KCH067-041 16C129-18 03/15/16 Water 11 KCH067-042 Water 16C129-19 03/15/16 KCH067-035MS Soil 12 16C129-12MS 03/15/16 13 KCH067-035MSD 16C129-12MSD Soil 03/15/16 14 MBLKIS 15 LDC#: 36282C4() ## VALIDATION FINDINGS CHECKLIST | Page: / c | of | |---------------|----| | Reviewer: | D | | 2nd Reviewer: | n | | Method: | GC | HPLC | |---------|----|---------| | weulou | GC | // HPLC | | | | | | Validation Area | Yes | No | NA | Findings/Comments | |--|-------|----|--------------|-------------------| | l: Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | | **** | | | IIa Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥0.990? | | | | | | Were the RT windows properly established? | | | n Secondor | | | IIb Initial calibration verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | · | | | | Were all percent differences (%D) ≤ 15%? | | | e en la comp | | | III Continuing callocation | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) ≤ 15%? | | _ | | | | Were all the retention times within the acceptance windows? | | | | | | (IV/Laboratory/Blanks) | | | | | | Was a laboratory blank associated with every sample in this SDG? | | | | | | Was a laboratory blank analyzed for each matrix and concentration? | | | | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | 0.000 | / | | | | V.F.eidiBlanks | | |)
 | | | Were field blanks identified in this SDG? | | | | | | Were target compounds detected in the field blanks? | | | <u> </u> | | | MLSurrogate spikes in the | | | | | | Were all surrogate percent recovery (%R) within the QC limits? | | _ | | | | If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R? | | | _ | - | | If any %R was less than 10 percent, was a reanalysis performed to confirm %R? | | | | | | MIL Matrixispike/Matrixispike/duplicates | ı | | I | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | 7 | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | LDC#: 36282C4U ## VALIDATION FINDINGS CHECKLIST | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|----|----|-------------------| | Will Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | IÁX (≅ia)tā akgaltojatas | | | | | | Were field duplicate pairs identified in this SDG? | | | | | | Were target compounds detected in the field duplicates? | | | / | | | X. Compound germilation | | | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | | | | | XII. Transpar comprovement islamitification | | | | | | Were the retention times of reported detects within the RT windows? | | | | | | XIII. Overell ausersoment of élate | | | | | | Overall assessment of data was found to be acceptable. | | | | | ## **VALIDATION FINDINGS WORKSHEET** _METHOD: ____GC ___HPLC | 8310 | 8330 | 8151 | 8141 | 8141(Con't) | 8021B | |---------------------------|-------------------------------|----------------------|---------------------|--------------------|-------------------| | A. Acenaphthene | A. HMX | A. 2,4-D | A. Dichlorvos | V. Fensulfothion | V. Benzene | | B. Acenaphthylene | B. RDX | B. 2,4-DB | B. Mevinphos | W. Bolstar | CC. Toluene | | C. Anthracene | C. 1,3,5-Trinitrobenzene | C. 2,4,5-T | C. Demeton-O | X. EPN | EE. Ethyl Benzene | | D. Benzo(a)anthracene | D. 1,3-Dinitrobenzene | D. 2,4,5-TP | D. Demeton-S | Y. Azinphos-methyl | SSS. O-Xylene | | E. Benzo(a)pyrene | E. Tetryl | E. Dinoseb | E. Ethoprop | Z. Coumaphos | RRR. MP-Xylene | | F. Benzo(b)fluoranthene | F. Nitrobenzene | F. Dichlorprop | F. Naled | AA. Parathion | GG. Total Xylene | | G. Benzo(g,h,i)perylene | G. 2.4.6-Trinitrotoluene | G. Dicamba | G. Sulfotep | BB. Trichloronate | | | H. Benzo(k)fluoranthene | H. 4-Amino-2,6-dinitrotoluene | H. Dalapon | H. Phorate | CC. Trichlorinate | | | i. Chrysene | I. 2-Amino-4,6-dinitrotoluene | I. MCPP | I. Dimethoate | DD. Trifluralin | | | J. Dibenz(a,h)anthracene | J. 2,4-Dinitrotolune | J. MCPA | J. Diazinon | EE. Def | | | K. Fluoranthene | K. 2,6-Dinitrotoluene | K. Pentachlorophenol | K. Disulfoton | FF. Prowl | | | L. Fluorene | L. 2-Nitrotoluene | L 2,4,5-TP (silvex) | L. Parathion-methyl | GG. Ethion | | | M. Indeno(1,2,3-cd)pyrene | M. 3-Nitrotoluene | M. Silvex | M. Ronnel | | | | N. Naphthalene | N. 4-Nitrotoluene | | N. Malathion | | | | O. Phenanthrene | 0. | | O. Chlorpyrifos | | | | P. Pyrene | P. | | P. Fenthion | | | | Q. | Q | | Q. Parathion-ethyl | | | | R. | | | R. Trichlornate | | | | S. | | | S. Merphos | | | | | | | T. Stirofos | | | | | | | U. Tokuthion | | | | Notes: |
 | | |
 | | |--------|------|-------------|------|-----------------|---| | |
 | |
 |
 | · | LDC#: 36282C40 ## **VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs** | | / | , | |---------------|-----|-----| | Page: | of | . ′ | | Reviewer: | FT_ | _ | | 2nd Reviewer: | _/(| | Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Level IV/D Only Y N N/A Were CRQLs adjusted for sample dilutions, dry weight factors, etc.? <u>/N N/A</u> Did the reported results for detected target compounds agree within 10.0% of the recalculated results? code = 12 | | | I and the second | % RPD Bot 2 columns | | |---|--------------------
--|---------------------|----------------| | # | Associated Samples | Compound Name | %RPD Bot 2 columns | Qualifications | | | 3 | Δ | 46 | Jat /A | W | Comments: | See sample calculation verification worksheet for recalculations | | |-----------|--|--| | | | | | | | | LDC#: 36282 C40 ## **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page: | / _= | | |----------------|----------|--| | rage | 0_ | | | Reviewer: | FT | | | 2nd Reviewer:_ | <u> </u> | | METHOD: GC The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations: CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors X = Mean of calibration factors | | | | | _Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----|-------------|---------------------|---------------|----------------|------------------|--------------|--------------|----------|--------------| | #_ | Standard ID | Calibration
Date | Compound | CF
(lののstd) | CF
(\OO std) | CF (initial) | CF (intial) | %RSD | %RSD | | 1 | ICA L | 1/27/16 | HMX (C18) | 145 | 145.15 | 151.7 | 151.7 | 6.9 | 6.7 | | | | * | 2,4,6 TNT | 430 | 429.84 | 410.8 | 410.8 | 6.3 | 6.3 | | | | | | | | | | | | | 2 | ICAL | 1/20/16 | HMX (Bipheny) | 124 | 123.6 | 122.9 | 122.9 | 9.8 | ግ.8 | | | | | Z4,6 TUT | 32 | 320.7 | 322.0 | 322.0 | 6.1 | 6.) | | | | | | | | | | | | | 3 | | | | | - | : | | | | | | | 4 | | | | | | | <u> </u> | | | | | | | | | | | | | h | | | | | | | | | | | | | L | <u> </u> | <u> </u> | 1 | | | | | | | | Comments: | Refer to Initial | Calibration findings | worksheet for list of | qualifications and | associated samples | s when reported | results do not agree with | in 10.0% of the | |---------------------|------------------|----------------------|-----------------------|---------------------------------------|--------------------|-----------------|---------------------------|-----------------| | <u>recalculated</u> | results. | | | · · · · · · · · · · · · · · · · · · · | | | | | | LDC #: | 36 Z | 82 | C40 | |--------|------|----|-----| |--------|------|----|-----| ## VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification | Page:_ | <u></u> | |---------------|---------| | Reviewer:_ | FT | | 2nd Reviewer: | rt | METHOD: GC _______ The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. CF -CF)/ave.CF Where: ave. CF = initial calibration average CF CF = continuing calibration CF A = Area of compound C = Concentration of compound | | Standard
ID | Calibration
Date | Compound | Average CF(ICAL)/ CCV | Reported CF/ Conc. | Recalculated CF/ Conc. | Reported
%D | Recalculated %D | |---------|----------------|---------------------|-------------|-----------------------|---------------------|-------------------------|----------------|-----------------| | # | | | | Conc. | ССV
425.58 | CCV | 78.5 | 760 | | 1 | COV 12:55 | 3/23/16 | HMX (C18) | 400.0 | 151.7 F7 | 425.38 | 4 | 6 | | | | | 2,4,6-TNT | 400.0 | 428.11 | 428.11 | 7 | 7 | | | | | | | | | | | | 2 | ccv 13:15 | 3/28/16 | 1 (Biphenyl |) zoo. 0 | 219.63 | 219.63 | 10 | 10 | | | | · | 1 0 | 200.0 | 191.47 | 191.47 | 4 | 7 | 3 | <u></u> | | | | | | | | | | 4 | Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC#: 36282C | 40 | |--------------|----| |--------------|----| ## VALIDATION FINDINGS WORKSHEET <u>Surrogate Results Verification</u> | Page:_ | <u>of</u> | _/ | |---------------|-----------|----| | Reviewer: | FT | | | 2nd reviewer: | M | | METHOD: GC HPLC The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID:___ | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |---------------------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | | | 3,4- Dinitrotoluene | c-18 (cn A) | 200 | 211.7 | 106 | 106 | Ō | | | | | | | | | | | | | | | | | Sample ID: | Surrogate | Column/Detector | Surrogate
Spiked | Surrogate
Found | Percent
Recovery | Percent
Recovery | Percent
Difference | |-----------|-----------------|---------------------|--------------------|---------------------|---------------------|-----------------------| | | | | | Reported | Recalculated | Surrogate Compound | | Surrogate Compound | | Surrogate Compound | | Surrogate Compound | | Surrogate Compound | |----|----------------------------|---|---------------------|---|-----------------------------------|---|-------------------------|----|-------------------------------| | Α | Chlorobenzene (CBZ) | G | Octacosane | М | Benzo(e)Pyrene | s | 1-Chloro-3-Nitrobenzene | Y | Tetrachloro-m- xylene | | В | 4-Bromofluorobenzene (BFB) | Н | Ortho-Terphenyl | N | Terphenyl-D14 | Т | 3,4-Dinitrotoluene | Z | 2-Bromonaphthalene | | C, | a,a,a-Trifluorotoluene | ı | Fluorobenzene (FBZ) | 0 | Decachlorobiphenyl (DCB) | U | Tripentyltin | AA | Chloro-octadecane | | D | Bromochlorobenene | j | n-Triacontane | Р | 1-methylnaphthalene | V | Tri-n-propyltin | ВВ | 2,4-Dichlorophenylacetic acid | | E | 1,4-Dichlorobutane | к | Hexacosane | Q | Dichlorophenyl Acetic Acid (DCAA) | w | Tributyl Phosphate | СС | 2,5-Dibromotoluene | | F | 1,4-Difluorobenzene (DFB) | L | Bromobenzene | R | 4-Nitrophenol | x | Triphenyl Phosphate | | | | LDC | #: | હ6 | 28 | 20 | 40 | |-----|----|----|----|----|----| | | | | | | | ## VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u> | Page:_ | <u></u> | _1 | |------------|----------|----| | Reviewer:_ | FT | | | d Reviewer | M | | METHOD: GC HPLC PLC) The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC - SC)/SA Where SSC = Spiked sample concentration SC = Sample concentration MS = Matrix spike RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100 SA = Spike added MSD = Matrix spike duplicate MS/MSD samples: 12 + 13 | | | Sp | ike | Sample | | Sample | Matrix | spike | Matrix Spik | e Duplicate | MS/I | MSD | |---------------------|------------|----------------|----------|--------|----------------------|--------|------------------|---------|------------------|-------------|----------|---------| | Compound | | Added (Ng Ka) | | Conc. | Concentration (Ng FJ | | Percent Recovery | | Percent Recovery | | RPD | | | | | Ms U | MSD | 70 | Ms | Wisd | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | | | Diesel | (8015) | | | | | | | | | | | | | Benzene | (8021B) | | | | | | | | | | | | | Methane | (RSK-175) | | | | | | | | | | | |
| 2,4-D | (8151) | | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | , | | HMX | (8330) | 2000 | 2000 | 2 | 2070 | 2090 | 103 | 103 | 104 | 104 | 1 | 1 | | 2,4,6-Trinitrotolue | ene (8330) | V | ↓ | Ą | 1920 | 1970 | 96 | 96 | 99 | 99 | 3 | 3 | | Phorate | (8141A) | | | | | | | | , | | | | | Malathion | (8141A) | | | | | | | | | | | | | Formaldehyde | (8315A) | Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC #:_ | 36 | 282040 | |---------|----|--------| |---------|----|--------| METHOD: ## **VALIDATION FINDINGS WORKSHEET** | Page:_ | of | _/ | |-----------|----|----| | Reviewer: | FT | | Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification | Reviewer: | FT | |----------------|----| | 2nd Reviewer:_ | X | The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation: %Recovery = 100 * (SSC/SA) SSC = Spiked sample concentration SA = Spike added RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 LCS = Laboratory Control Sample LCSD = Laboratory Control Sample duplicate LCS/LCSD samples:___ | | | Sı | oike | Spike | Sample | LC | cs | LC | SD | LCS/I | .CSD | |---------------------|--------------|-------------------|------|---------------|--------|------------------|---------|------------------|---------|----------|---------| | Compound | | Added
(ug Kg) | | Concentration | | Percent Recovery | | Percent Recovery | | RPD | | | | | LCS | LCSD | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. | | Gasoline | (8015) | | | | | | | | | | | | Diesel | (8015) | | | | | | | | | | | | Benzene | (8021B) | | | | | | | | | | 7 112 | | Methane | (RSK-175) | | | | | | | | | | | | 2,4-D | (8151) | | | | | | | | | | | | Dinoseb | (8151) | | | | | | | | | | | | Naphthalene | (8310) | | | | | | | | | | | | Anthracene | (8310) | | | | | | | | | | | | нмх | (8330) | 2000 | 2000 | 2250 | 2210 | 112 | 112 | 111 | 111 | 2 | 2 | | 2,4,6-Trinitrotolue | ene (8330) 🗸 | 2000 | 2000 | 2020 | 1930 | 101 | 101 | 96 | 96 | د) | 5 | | Phorate | (8141A) | | | | | | | | | | | | Malathion | (8141A) | | | | | | | | | | | | Formaldehyde | (8315A) | Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. | LDC #:36282 C4D METHOD:GCHPLC | | ON FINDINGS WORKS e Calculation Verificat | · | Page:of
Reviewer: <i>FT</i>
2nd Reviewer: <i>K</i> | | | |---|-------------------------------|---|-----------------|--|--|--| | Y N N/A Were all reported results recalculated results for | | | ported results? | | | | | (RF)(Vs or Ws)(%S/100) A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid | | $\frac{\text{EXCOODSL}}{\text{(ICS)}}$ on = $\frac{34100}{(151.7)}$ | (20) | = | | | | # Sample ID | Reported Recalculated Results | | | | | | | | | | | | | | | | | | | · | | | | Comments: | | | | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 12, 2016 Parameters: Perchlorate Validation Level: Level III & IV Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): 16C129 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-032** | 16C129-09** | Soil | 03/15/16 | | KCH067-033 | 16C129-10 | Soil | 03/15/16 | | KCH067-034 | 16C129-11 | Soil | 03/15/16 | | KCH067-035 | 16C129-12 | Soil | 03/15/16 | | KCH067-036 | 16C129-13 | Soil | 03/15/16 | | KCH067-037 | 16C129-14 | Soil | 03/15/16 | | KCH067-038 | 16C129-15 | Soil | 03/15/16 | | KCH067-039 | 16C129-16 | Soil | 03/15/16 | | KCH067-040 | 16C129-17 | Soil | 03/15/16 | | KCH067-041 | 16C129-18 | Water | 03/15/16 | | KCH067-042 | 16C129-19 | Water | 03/15/16 | | KCH067-035MS | 16C129-12MS | Soil | 03/15/16 | | KCH067-035MSD | 16C129-12MSD | Soil | 03/15/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perchlorate by Environmental Protection Agency (EPA) SW 846 Method 6850 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. ### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ## I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance check was performed prior to initial calibration. All perchlorate ion signal to noise ratio requirements were met. ### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r²) was greater than or equal to 0.990. The isotope ratios were within QC limits. The percent differences (%D) of the initial
calibration verification (ICV) standard were less than or equal to 15.0% for all compounds. ## IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 15.0% for all compounds. The percent differences (%D) of the limit of detection verification (LODV) standard were less than or equal to 30.0%. The isotope ratios were within QC limits. ## V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks. #### VI. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found. Sample KCH067-042 was identified as a source blank. No contaminants were found. ## VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ## IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Internal Standards All internal standard areas and retention times were within QC limits. ## XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes. China Lake CTO 067 Perchlorate - Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Perchlorate - Laboratory Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG China Lake CTO 067 Perchlorate - Field Blank Data Qualification Summary - SDG 16C129 No Sample Data Qualified in this SDG METHOD SW6850 PERCHLORATE 1 1.1 1 1.0 4.04 4.04 ND ND C129-16 C129·17 Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 KCH067-039 KCH067-040 Matrix : SOIL InstrumentID : GO 1.01 03/21/1620:21 03/21/1610:30 16MC21025 MC21020 16PLC003S 03/15/1613:00 03/17/16 1.01 03/21/1620:36 03/21/1610:30 16MC21026 MC21020 16PLC003S 03/15/1613:05 03/17/16 | Client
SAMPLE ID | EMAX
SAMPLE ID | RESULT (
(ug/kg) f | | MOIST | LOQ
(ug/kg) | DL
(ug/kg) | | ANALYSIS
DATETIME | PREPARATION
DATETIME | DATA
FILE ID | CAL
REF | PREP
BATCH | COLLECTION
DATETIME | RECEIVED
DATETIME | |---------------------|-------------------|-----------------------|---|-------|----------------|---------------|------|----------------------|-------------------------|-----------------|------------|---------------|------------------------|----------------------| | MBLK1S | PLC003SB | ND ND | 1 | NA. | 4 | 0.5 | 1 | 03/21/1616:10 | 03/21/1610:30 | 16MC21008 | 3 MC21004 | 16PLC003S |
S NA | NA. | | LCS1S | PLC003SL | 4.36 | 1 | NA | 4 | 0.5 | 1 | | 03/21/1610:30 | | | 16PLC003S | | NA | | KCH067-032 | C129-09 | 2.32J | 1 | 1.7 | 4.07 | 0.509 | 1.02 | 03/21/1616:54 | 03/21/1610:30 | 16MC2101 | 1 MC21004 | 16PLC003S | 5 03/15/1611:20 | | | LCD1S | PLC003SC | 4.52 | 1 | NA | 4 | 0.5 | 1 | 03/21/1617:11 | 03/21/1610:30 | 16MC21012 | 2 MC21004 | 16PLC0035 | S NA | NA | | KCH067-033 | C129-10 | ND | 1 | 1.5 | 4.06 | 0.508 | 1.02 | 03/21/1617:26 | 03/21/1610:30 | 16MC21013 | 3 MC21004 | 16PLC003S | 03/15/1611:35 | 03/17/16 | | KCH067-034 | C129-11 | 1.99J | 1 | 0.4 | 4.02 | 0.502 | 1 | 03/21/1617:41 | 03/21/1610:30 | 16MC21014 | 4 MC21004 | 16PLC003S | 03/15/1612:10 | 03/17/16 | | KCH067-035 | C129-12 | ND | 1 | 0.5 | 4.02 | 0.503 | 1.01 | 03/21/1617:55 | 03/21/1610:30 | 16MC2101 | 5 MC21004 | 16PLC0039 | 03/15/1612:15 | 03/17/16 | | KCH067-035MS | C129-12M | 4.86 | 1 | 0.5 | 4.02 | 0.503 | 1.01 | 03/21/1618:10 | 03/21/1610:30 | 16MC2101 | 6 MC21004 | 16PLC003S | 6 03/15/1612:15 | 03/17/16 | | KCH067-035MSD | C129-12S | 4.86 | 1 | 0.5 | 4.02 | 0.503 | 1.01 | 03/21/1618:39 | 9 03/21/1610:30 | 16MC21018 | 3 MC21004 | 16PLC0039 | 03/15/1612:15 | 03/17/16 | | KCH067-036 | C129·13 | ND | 1 | 2.3 | 4.09 | 0.512 | 1.02 | 03/21/1619:37 | 7 03/21/1610:30 | 16MC21022 | 2 MC21020 | 16PLC0039 | 3 03/15/1612:30 | 03/17/16 | | KCH067-037 | C129-14 | ND | 1 | 1.6 | 4.07 | 0.508 | 1.02 | 03/21/1619:52 | 2 03/21/1610:30 | 16MC21023 | 3 MC21020 | 16PLC0035 | 5 03/15/1612:40 | 03/17/16 | | KCH067-038 | C129-15 | ND | 1 | 1.3 | 4.05 | 0.507 | 1.01 | 03/21/1620:07 | 7 03/21/1610:30 | 16MC21024 | 4 MC21020 | 16PLC0035 | 3 03/15/1612:50 | 03/17/16 | | | | | _ | | | | | | | | | | | | 0.506 0.505 METHOD SW6850 PERCHLORATE Client : KLEINFELDER Project : NAWS CHINA LAKE, CTO 067 Batch No. : 16C129 Matrix : WATER InstrumentID : GO | Client
SAMPLE ID | EMAX
SAMPLE ID | RESULT
(ug/L) | | MOIST | LOQ
(ug/L) | DL
(ug/L) | | PREPARATION
DATETIME | DATA
FILE ID | CAL
REF | PREP
BATCH | COLLECTION
DATETIME | RECEIVED
DATETIME | |--|--|----------------------------------|------------------|----------------------------|---------------------------------|---------------------------------|---|-------------------------|---|-------------------------------|---------------|------------------------|----------------------| | MBLK1W
LCS1W
LCD1W
KCH067-041
KCH067-042 | PLC006WB
PLC006WL
PLC006WC
C129-18
C129-19 | ND
0.588
0.550
ND
ND | 1
1
1
1 | NA
NA
NA
NA
NA | 0.5
0.5
0.5
0.5
0.5 | 0.1
0.1
0.1
0.1
0.1 | 0.2 03/23/1611:28
0.2 03/23/1611:45
0.2 03/23/1611:59
0.2 03/23/1613:56
0.2 03/23/1614:11 | NA
NA
NA | 16MC23007
16MC23008
16MC23009
16MC23017
16MC23018 | MC23004
MC23004
MC23004 | | NA | | Post17/6 #### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 36282C87 SDG #: 16C129 Laboratory: EMAX Laboratories Inc. Standard/Full Reviewer: 2nd Reviewer: METHOD: LC/MS Perchlorate (EPA SW846 Method 6850) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|----------|---------------------------------------| | l | Sample receipt/Technical holding times | 4/4 | | | 11. | GC/MS Instrument performance check | <u>A</u> | auto ture | | III. | Initial calibration/ICV | 414 | 12 101 = 15 | | IV. | Continuing calibration | A | COVE 15 LOOV = 30 | | V. | Laboratory Blanks | Δ | | | VI. | Field blanks | ND | EB = 10 SB = 11 | | VII. | Surrogate spikes | 2 | not require | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | A | LCS 10 | | X. | Field duplicates | N | | | XI. | Internal standards | Δ | | | XII. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for Standard validation. | | XIII. | Target compound identification | Λ | Not reviewed for Standard validation. | | XIV. | System performance | Ā | Not reviewed for Standard validation. | | XV. | Overall assessment of data | Δ | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank OTHER: SB=Source blank Indicates sample underwent Full validation | | Client ID | Lab ID | Matrix | Date | |----|---------------|--------------|--------|----------| | 1 | KCH067-032** | 16C129-09** | Soil | 03/15/16 | | 2 | KCH067-033 | 16C129-10 | Soil | 03/15/16 | | 3 | KCH067-034 | 16C129-11 | Soil | 03/15/16 | | 1 | KCH067-035 | 16C129-12 | Soil | 03/15/16 | | 5 | KCH067-036 | 16C129-13 | Soil | 03/15/16 | | 3 | KCH067-037 | 16C129-14 | Soil | 03/15/16 | | 7 | KCH067-038 | 16C129-15 | Soil | 03/15/16 | | 3 | KCH067-039 | 16C129-16 | Soil | 03/15/16 | |) | KCH067-040 | 16C129-17 | Soil | 03/15/16 | | 10 | KCH067-041 €B | 16C129-18 | Water | 03/15/16 | | 11 | KCH067-042 SB | 16C129-19 | Water | 03/15/16 | | 2 | KCH067-035MS | 16C129-12MS | Soil | 03/15/16 | | 13 | KCH067-035MSD | 16C129-12MSD | Soil | 03/15/16 | | SD0
Labo | #:_36282C87
G#:_16C129
oratory: <u>EMAX Laborator</u>
F HOD: LC/MS Perchlorat | 2n | Date: 5/10/16 Page: 8f_2 Reviewer: F2 d Reviewer: F2 | | | |-------------|---|------|--|--------|------| | | Client ID | | Lab ID | Matrix | Date | | 14 | | | | | | | 15 | |
 | | | | | 16 | | | | | | | 17 | | | | | | | 18_ | | | | | | | Note | es: | | | | | | | MBLKIW | | | | | | | MBLKIS | | | | | | | - | | | | | | | | | | | | LDC#: 36282 C87 # VALIDATION FINDINGS CHECKLIST | Page:/of^ | _ | |-------------------|---| | Reviewer: | > | | 2nd Reviewer: 📉 🔏 | | Method: Perchlorate (EPA SW 846 Method 6850) | The tribute (E. 71 ov. 6 to Motified 6660) | | | | |
--|-------------|--------------------|-----------------------------|--| | Validation Area | Yes | No | NA | Findings/Comments | | Il. Technical holding times | | | | | | Were all technical holding times met? | | | | | | Was cooler temperature criteria met? | | ou-de colonia (M.) | | | | II. LC/MS Instrument performance check | • | | - | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Were the instrument performance reviewed and found to be within the specified criteria? | | | | | | Were the Perchlorate ions within ±0.3 m/z of mass 99,101 and 107? | | | Signa Artista International | | | IIIa: Initial calibration | 1 | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | ļ | | | Were all percent relative standard deviations (%RSD) ≤ 20%? | | | | | | Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of \geq 0.990? | _ | - | | | | Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8? | | | | | | IIIb¬Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | | | | | | Were all percent differences (%D) ≤ 15%? | | | n-adiamen | | | IV. Continuing calibration/ | | - | | 200 | | Was a continuing calibration analyzed daily? | | | <u> </u> | | | Were all percent differences (%D) of the mid-range continuing calibration ≤ 15%? | | | <u> </u> | | | Were all percent differences (%D) of the low-range continuing calibration ≤ 50%? | | <u> </u> | | | | Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8? | | | | | | V. Laboratory Blanks | | | - | | | Was a laboratory blank associated with every sample in this SDG? | / | | ļ | | | Was a laboratory blank analyzed for each matrix and concentration? | | <u> </u> | ļ | | | Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet. | | | _ | | | VIs Field blanks | | | | and the second s | | Were field blanks identified in this SDG? | | <u></u> | | | | Were target compounds detected in the field blanks? | | _ | + | | | VIII: Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | 1 | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | LDC#: 36282C87 # VALIDATION FINDINGS CHECKLIST Page: $\sqrt[2]{of}$ Reviewer: $\sqrt[2]{f}$ 2nd Reviewer: $\sqrt[2]{f}$ | Validation Area | Yes | No | NA | Findings/Comments | |---|---------|----|--|---| | IX. Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | X. Field duplicates | | | | | | Were field duplicate pairs identified in this SDG? | | - | | | | Were target compounds detected in the field duplicates?. | | | | | | XI; internal standards | | // | far ord | | | Were internal standard area counts within \pm 50% of the associated calibration standard? | | | | | | Were retention times of m/z 89 (Cl ¹⁸ O ₃ -) within 0.2 minutes of m/z 83 (ClO ₃ -)? | | | | | | XII: Compound quantitation: | 4.00 | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | _ | | | | Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | | | | | XIII. Target compound identification | .v. 912 | | | | | Were relative retention times (RRT's) within 0.98 to 1.02? | | | | | | Was the isotope ratio of ³⁵ Cl/ ³⁷ Cl or m/z 99/101 within 2.3 to 3.8? | | | Maria de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela | 3-34 COMMAN AND AND AND AND AND AND AND AND AND A | | XIV. System performance | (| r | T . | | | System performance was found to be acceptable. | | | Emachana vi | | | XIII/ Overall assessment of data | | | | 18 (18 (18 (18 (18 (18 (18 (18 (18 (18 (| | Overall assessment of data was found to be acceptable. | | | | | | LDC#:_ | 3628 | 2087 | |--------|------|-------| | SDG#: | معع | coner | | _ | | | # VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification | / | , | 1 | |-----------|-------|-----------| | Page: | of_ | | | Reviewer: | | <u>F7</u> | | 2nd Revie | wer:_ | 1 | | | | _ | Method: LCMS Perchlorate (Method 6850) | Calibration | | | | (Y) | (X) | |-------------|--------|-------------|----------|-------------|---------------| | Date | System | Compound | Standard | Response | Concentration | | 3/3/2016 | LCMS | Perchlorate | 1 | 0.092049784 | 0.1 | | | | | 2 | 0.181001406 | 0.2 | | | | ĺ | 3 | 0.473018348 | 0.5 | | | | | 4 | 0.958156512 | 1 | | | | | 5 | 1.944112791 | 2 | | | | | 6 | 4.823551117 | 5 | | | | | 7 | 6.972141437 | 7.5 | **Regression Output** Reported | Constant | 0.022419 | -0.002295 | |------------------------------------|----------|-----------| | Std Err of Y Est | | | | R Squared | 0.999451 | 0.999500 | | Degrees of Freedom | | | | X Coefficient(s) | 0.937859 | 0.948471 | | Std Err of
Coef. | | | | Correlation Coefficient | 0.999725 | | | Coefficient of Determination (r^2) | 0.999451 | 0.999500 | LDC#: 36282087 ## **VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification** | Page: | of | _/ | |----------------|-----|----| | Reviewer:_ | F | 2 | | 2nd Reviewer:_ | _1_ | | METHOD: LC/MS Perchlorate (EPA Method 6850) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_{is} = Area of associated internal standard $C_x = Concentration of compound,$ C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated_ | |---|-------------|---------------------|--|--------------------------|-------------|--------------|----------|---------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | MCZIOOH | 3/21/16 | Perchlorau | 2.0 | 2.083 | 2.083 | 4.15 | 4-15 | | - | | | | | | | | | | H | | | | | | | | | | Н | | | | | | | | | | 2 | | | : | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | 3 | L | Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. C:\Users\ftanguilig\Desktop\WORKSHEETS\LCMS 6850\L4\CONCLC 331.0M.wpd LDC#: 36282 C87 # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page: <u></u> of_ | _/ | |-------------------|-----| | Reviewer: | = 7 | | 2nd Reviewer: | | | | _ | **METHOD:** LC/MS perchlorate(EPA Method 6850) The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSR - SR)/SA Where: SSR = Spiked sample result, SR = Sample result SA = Spike added RPD = I MSR - MSDR I * 2/(MSR + MSDR) MS/MSD samples: 12 + 13 | | Sp
Ad | ike
ded | Sample
Concentration | Spiked
Concer | Sample
ntration | Matrix | Spike | Matrix Spik | e Duplicate | Reported | Recalculat
ed | |-------------|----------|------------|-------------------------|------------------|--------------------|----------|----------|-------------|-------------|----------|------------------| | Compound | (ug | lkg | (ng/feg) | ¹ no | 1/kg | Percent | Recovery | Percent I | Recovery | RPD | RPD | | | MS | MSD | **** | MS | MSD | Reported | Recalc | Reported | Recalc | ***** | | | Perchlorale | 4.020 | 4.020 | DA | 4.86 | 4.80 | 121 | 121 | 121 | 12) | O | 0 | <u> </u> | | | | | | | | | | | | | | | | · | Comments: | Refer to Matrix Spike/Matrix | <u>Spike Duplicate findings v</u> | <u>vorksheet for list of </u> | <u>qualifications and a</u> | associated samples when | reported results do not ag | <u>ree within</u> | |--------------|------------------------------|-----------------------------------|-------------------------------|-----------------------------|-------------------------|----------------------------|-------------------| | 10.0% of the | e recalculated results. | LDC#: 36282C87 # VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification | | Page:_ | | _ | |-----|-----------|---|---| | | Reviewer: | | 2 | | 2nd | Reviewer: | X | - | | | | | _ | METHOD: LC/MS Perchlorate (EPA Method 6850) | The percent recoveries (%R) and Relative Percent Difference (R | RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were | |---|---| | recalculated for the compounds identified below using the following | ring calculation: | % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCS - LCSD I * 2/(LCS + LCSD) LCS = Laboraotry control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCSID: KS10 801 | Compound | Ad
(V9 | ike
ded
(49) | (ve | ntration | | CS.
Recovery | | SD
Recovery | | LCSD
PD | |-------------|-----------|--------------------|------|----------|----------|-----------------|----------|----------------|----------|--------------| | | LCSD |) | LCS | I CSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | Perchharain | 4.0 | 4.0 | 4.36 | 4.52 | 109 | 109 | 113 | 113 | 4 | 4 | | | , | | | | | , | 1 | _ | Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. C:\Users\ftanguilig\Desktop\WORKSHEETS\LCMS 6850\L4\LCSCLC 331.0M.wpd LDC#: 36282087 # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | <u>1_</u> of_1_ | |----------------|-----------------| | Reviewer: | FT | | 2nd reviewer:_ | 1_ | METHOD: LCMS (EPA SW 846 Method 6850) | / | Y | N | N/A | |---|------------|---|-----| | | Y / | N | N/A | Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? | Conc | entratio | on = $\frac{(A_{\bullet})(I_{\bullet})(V_{\bullet})(DF)(2.0)}{(A_{\bullet})(RRF)(V_{\bullet})(V_{\bullet})(%S)}$ | Example: | |----------------|----------|--|----------------| | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. # | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | 14409 | | l _s | = | Amount of internal standard added in nanograms (ng) | Conc. = 135629 | | V _° | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | 10.94 | | V_{l} | = | Volume of extract injected in microliters (ul) | = | | V_{t} | = | Volume of the concentrated extract in microliters (ul) | | | Df | = | Dilution Factor. | <i>ک</i> . آ | | %S | = | Percent solids, applicable to soil and solid matrices only. | | | Example: | |--| | Sample I.D. # 1 Perchlorale | | Conc. $= \frac{14409}{135629} + 0.00229468)(40)$
= (0.948471)(2.007)(0.983) | | (0.948471) (z.007) (0.983 | | 2.32 ug/kg | | | | 2.0 | = Factor of 2 to accou | nt for GPC cleanup | | | | |-----|------------------------|--------------------|----------------------------------|------------------------------------|---------------| | # | Sample ID | Compound | Reported
Concentration
() | Calculated
Concentration
() | Qualification | <u> </u> | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 **LDC Report Date:** May 13, 2016 Parameters: Polychlorinated Dioxins/Dibenzofurans Validation Level: Level III & IV Laboratory: APPL, Inc. Sample Delivery Group (SDG): 78915 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-005 | AZ30248 | Soil | 03/08/16 | | KCH067-006 | AZ30249 | Soil | 03/08/16 | | KCH067-007 | AZ30250 | Soil | 03/08/16 | | KCH067-008 | AZ30251 | Soil | 03/08/16 | | KCH067-009 | AZ30252 | Soil | 03/08/16 | | KCH067-010 | AZ30253 | Soil | 03/08/16 | | KCH067-011 | AZ30254 | Soil | 03/08/16 | | KCH067-012 | AZ30255 | Soil | 03/08/16 | | KCH067-013 | AZ30256 | Soil | 03/08/16 | | KCH067-014 | AZ30257 | Soil | 03/08/16 | | KCH067-015 | AZ30258 | Soil | 03/08/16 | | KCH067-016** | AZ30259** | Soil | 03/08/16 | | KCH067-017 | AZ30260 | Soil | 03/08/16 | | KCH067-018 | AZ30261 | Soil | 03/08/16 | | KCH067-019 | AZ30262 | Water | 03/08/16 | | KCH067-016MS | AZ30259MS | Soil | 03/08/16 | | KCH067-016MSD | AZ30259MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental
Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (September 2011). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. HRGC/HRMS Instrument Performance Check Instrument performance was checked at the required daily frequency. Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%. The static resolving power was at least 10,000 (10% valley definition). #### III. Initial Calibration and Initial Calibration Verification A five point initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all labeled and unlabeled compounds. The ion abundance ratios for all PCDDs and PCDFs were within validation criteria. The minimum S/N ratio was greater than or equal to 10 for each unlabeled compounds and labeled compounds for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for unlabeled compounds and less than or equal to 30.0% for labeled compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for labeled and less than or equal to 30.0% for unlabeled compounds. The ion abundance ratios for all PCDDs and PCDFs were within validation criteria. The minimum S/N ratio was greater than or equal to 10 for each unlabeled compounds and labeled compounds for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. # V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Laboratory
Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |------------------------|--------------------|--|--|--| | 160406-MB | 04/06/16 | OCDD Total HpCDD Total HpCDF Total HxCDF Total PeCDF Total TCDD Total TCDD | 1.8 ng/Kg
0.50 ng/Kg
0.25 ng/Kg
0.30 ng/Kg
0.28 ng/Kg
0.088 ng/Kg
0.24 ng/Kg | KCH067-009 | | 160321-MB | 03/21/16 | 1,2,3,4,6,7,8-HpCDD
OCDF
Total HpCDD
Total HxCDF | 0.55 ng/Kg
0.36 ng/Kg
0.55 ng/Kg
0.054 ng/Kg | KCH067-005
KCH067-006
KCH067-007
KCH067-008
KCH067-010
KCH067-011
KCH067-012
KCH067-013
KCH067-014
KCH067-015
KCH067-015
KCH067-016**
KCH067-017 | | 160318-MB | 03/18/16 | 2,3,4,6,7,8-HxCDF OCDD Total HpCDD Total HpCDF Total HxCDF Total PeCDF Total TCDD Total TCDD | 4.2 pg/L
43 pg/L
2.1 pg/L
9.5 pg/L
20 pg/L
1.4 pg/L
1.1 pg/L
2.5 pg/L | All water samples in SDG 78915 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |------------|---------------------|---------------------------|---------------------------------| | KCH067-009 | Total HpCDD | 1.5 ng/Kg | 1.5J ng/Kg | | | Total TCDD | 0.29 ng/Kg | 0.29J ng/Kg | | KCH067-005 | 1,2,3,4,6,7,8-HpCDD | 0.43 ng/Kg | 0.43U ng/Kg | | | Total HpCDD | 0.56 ng/Kg | 0.56J ng/Kg | | KCH067-006 | 1,2,3,4,6,7,8-HpCDD | 0.21 ng/Kg | 0.21U ng/Kg | | | Total HpCDD | 0.21 ng/Kg | 0.21U ng/Kg | | | Total HxCDF | 0.21 ng/Kg | 0.21J ng/Kg | | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------|---------------------|---------------------------|---------------------------------| | KCH067-007 | 1,2,3,4,6,7,8-HpCDD | 8.1 ng/Kg | 8.1J ng/Kg | | | OCDF | 7.9 ng/Kg | 7.9J ng/Kg | | | Total HpCDD | 8.1 ng/Kg | 8.1J ng/Kg | | | Total HxCDF | 6.2 ng/Kg | 6.2J ng/Kg | | KCH067-008 | 1,2,3,4,6,7,8-HpCDD | 0.33 ng/Kg | 0.33U ng/Kg | | | OCDF | 0.22 ng/Kg | 0.22U ng/Kg | | | Total HpCDD | 0.80 ng/Kg | 0.80J ng/Kg | | | Total HxCDF | 0.27 ng/Kg | 0.27J ng/Kg | | KCH067-010 | Total HpCDD | 0.31 ng/Kg | 0.31U ng/Kg | | KCH067-011 | 1,2,3,4,6,7,8-HpCDD | 1.5 ng/Kg | 1.5J ng/Kg | | | Total HpCDD | 1.5 ng/Kg | 1.5J ng/Kg | | KCH067-012 | 1,2,3,4,6,7,8-HpCDD | 0.32 ng/Kg | 0.32U ng/Kg | | | Total HpCDD | 0.32 ng/Kg | 0.32U ng/Kg | | KCH067-014 | Total HpCDD | 0.25 ng/Kg | 0.25U ng/Kg | | | Total HxCDF | 0.27 ng/Kg | 0.27J ng/Kg | | KCH067-015 | 1,2,3,4,6,7,8-HpCDD | 0.29 ng/Kg | 0.29U ng/Kg | | | Total HpCDD | 0.29 ng/Kg | 0.29U ng/Kg | | | Total HxCDF | 2.3 ng/Kg | 2.3J ng/Kg | | KCH067-016** | Total HpCDD | 0.32 ng/Kg | 0.32U ng/Kg | | KCH067-017 | 1,2,3,4,6,7,8-HpCDD | 5.3 ng/Kg | 5.3J ng/Kg | | | Total HpCDD | 5.3 ng/Kg | 5.3J ng/Kg | | KCH067-019 | OCDD | 57 pg/L | 57J pg/L | | | Total HxCDF | 10 pg/L | 10U pg/L | | | Total PeCDF | 7.2 pg/L | 7.2J pg/L | #### VI. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|--|--|----------------------------------| | KCH067-019 | 03/08/16 | OCDD
OCDF
Total HxCDF
Total PeCDF | 57 pg/L
4.0 pg/L
10 pg/L
7.2 pg/L | All soil samples in SDG
78915 | Sample KCH067-042 (from SDG 76998) was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|--
---|-----------------------------------| | KCH067-042 | 03/15/16 | 2,3,4,6,7,8-HxCDF
OCDD
Total HpCDF
Total HxCDF
Total HxCDD | 2.4 pg/L
25 pg/L
2.8 pg/L
2.4 pg/L
1.9 pg/L | All water samples in SDG
78915 | Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------|-------------|---------------------------|---------------------------------| | KCH067-005 | Total PeCDF | 12 ng/Kg | 12J ng/Kg | | KCH067-006 | OCDD | 1.6 ng/Kg | 1.6U ng/Kg | | | Total HxCDF | 0.21 ng/Kg | 0.21U ng/Kg | | KCH067-007 | OCDD | 139 ng/Kg | 139J ng/Kg | | | OCDF | 7.9 ng/Kg | 7.9J ng/Kg | | | Total HxCDF | 6.2 ng/Kg | 6.2U ng/Kg | | | Total PeCDF | 1.0 ng/Kg | 1.0U ng/Kg | | KCH067-008 | OCDD | 2.3 ng/Kg | 2.3U ng/Kg | | | OCDF | 0.22 ng/Kg | 0.22U ng/Kg | | | Total HxCDF | 0.27 ng/Kg | 0.27U ng/Kg | | KCH067-010 | OCDD | 3.0 ng/Kg | 3.0U ng/Kg | | | Total PeCDF | 0.15 ng/Kg | 0.15U ng/Kg | | KCH067-012 | Total PeCDF | 0.45 ng/Kg | 0.45U ng/Kg | | KCH067-013 | Total PeCDF | 0.12 ng/Kg | 0.12U ng/Kg | | KCH067-014 | OCDD | 1.6 ng/Kg | 1.6U ng/Kg | | | Total HxCDF | 0.27 ng/Kg | 0.27U ng/Kg | | | Total PeCDF | 0.23 ng/Kg | 0.23U ng/Kg | | KCH067-015 | OCDD | 2.4 ng/Kg | 2.4U ng/Kg | | | Total HxCDF | 2.3 ng/Kg | 2.3U ng/Kg | | KCH067-016** | OCDD | 0.93 ng/Kg | 0.93U ng/Kg | | | Total PeCDF | 0.35 ng/Kg | 0.35U ng/Kg | | KCH067-017 | OCDD | 47 ng/Kg | 47U ng/Kg | | | Total PeCDF | 0.52 ng/Kg | 0.52U ng/Kg | | KCH067-018 | Total PeCDF | 0.36 ng/Kg | 0.36U ng/Kg | | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |------------|-------------|---------------------------|---------------------------------| | KCH067-019 | OCDD | 57 pg/L | 57J pg/L | | | Total HxCDF | 10 pg/L | 10J pg/L | #### VII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### VIII. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Internal Standards All internal standard recoveries (%R) were within QC limits. #### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected or estimated in thirteen samples. Due to equipment blank and source blank contamination, data were qualified as not detected or estimated in thirteen samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. ### China Lake CTO 067 # Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 78915 # No Sample Data Qualified in this SDG # China Lake CTO 067 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 78915 | Sample | Compound | Modified Final
Concentration | A or P | Code | |--------------|---|--|--------|------| | KCH067-009 | Total HpCDD
Total TCDD | 1.5J ng/Kg
0.29J ng/Kg | А | 7 | | KCH067-005 | 1,2,3,4,6,7,8-HpCDD
Total HpCDD | 0.43U ng/Kg
0.56J ng/Kg | А | 7 | | KCH067-006 | 1,2,3,4,6,7,8-HpCDD
Total HpCDD
Total HxCDF | 0.21U ng/Kg
0.21U ng/Kg
0.21J ng/Kg | А | 7 | | KCH067-007 | 1,2,3,4,6,7,8-HpCDD
OCDF
Total HpCDD
Total HxCDF | 8.1J ng/Kg
7.9J ng/Kg
8.1J ng/Kg
6.2J ng/Kg | А | 7 | | KCH067-008 | 1,2,3,4,6,7,8-HpCDD
OCDF
Total HpCDD
Total HxCDF | 0.33U ng/Kg
0.22U ng/Kg
0.80J ng/Kg
0.27J ng/Kg | А | 7 | | KCH067-010 | Total HpCDD | 0.31U ng/Kg | А | 7 | | KCH067-011 | 1,2,3,4,6,7,8-HpCDD
Total HpCDD | 1.5J ng/Kg
1.5J ng/Kg | А | 7 | | KCH067-012 | 1,2,3,4,6,7,8-HpCDD
Total HpCDD | 0.32U ng/Kg
0.32U ng/Kg | А | 7 | | KCH067-014 | Total HpCDD
Total HxCDF | 0.25U ng/Kg
0.27J ng/Kg | A | 7 | | KCH067-015 | 1,2,3,4,6,7,8-HpCDD
Total HpCDD
Total HxCDF | 0.29U ng/Kg
0.29U ng/Kg
2.3J ng/Kg | А | 7 | | KCH067-016** | Total HpCDD | 0.32U ng/Kg | А | 7 | | KCH067-017 | 1,2,3,4,6,7,8-HpCDD
Total HpCDD | 5.3J ng/Kg
5.3J ng/Kg | А | 7 | | Sample | Compound | Modified Final
Concentration | A or P | Code | |------------|------------------------------------|-----------------------------------|--------|------| | KCH067-019 | OCDD
Total HxCDF
Total PeCDF | 57J pg/L
10U pg/L
7.2J pg/L | Α | 7 | # China Lake CTO 067 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 78915 | Sample | Compound | Modified Final
Concentration | A or P | Code | |--------------|--|--|--------|------| | KCH067-005 | Total PeCDF | 12J ng/Kg | Α | 6 | | KCH067-006 | OCDD
Total HxCDF | 1.6U ng/Kg
0.21U ng/Kg | Α | 6 | | KCH067-007 | OCDD
OCDF
Total HxCDF
Total PeCDF | 139J ng/Kg
7.9J ng/Kg
6.2U ng/Kg
1.0U ng/Kg | A | 6 | | KCH067-008 | OCDD
OCDF
Total HxCDF | 2.3U ng/Kg
0.22U ng/Kg
0.27U ng/Kg | А | 6 | | KCH067-010 | OCDD
Total PeCDF | 3.0U ng/Kg
0.15U ng/Kg | Α | 6 | | KCH067-012 | Total PeCDF | 0.45U ng/Kg | Α | 6 | | KCH067-013 | Total PeCDF | 0.12U ng/Kg | Α | 6 | | KCH067-014 | OCDD
Total HxCDF
Total PeCDF | 1.6U ng/Kg
0.27U ng/Kg
0.23U ng/Kg | Α | 6 | | KCH067-015 | OCDD
Total HxCDF | 2.4U ng/Kg
2.3U ng/Kg | Α | 6 | | KCH067-016** | OCDD
Total PeCDF | 0.93U ng/Kg
0.35U ng/Kg | Α | 6 | | KCH067-017 | OCDD
Total PeCDF | 47U ng/Kg
0.52U ng/Kg | Α | 6 | | KCH067-018 | Total PeCDF | 0.36U ng/Kg | Α | 6 | | KCH067-019 | OCDD
Total HxCDF | 57J pg/L
10J pg/L | Α | 6 | Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 APPL Inc. ARF: 78915 908 North Temperance Avenue Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-005 APPL ID: AZ30248 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date An | alysis Date | |-----------|---------------------------------------|----------|-----------|----------|-------|-------------|-------------| | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.43 J (| 1(7) 12.5 | 0.43PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.10 U | 12.5 | 0.10PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.056 U | 12.5 | 0.056DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.13 J | 12.5 | 0.13PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.053 U | 12.5 | 0.053DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.043 U | 12.5 | 0.043DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.13 U | 12.5 | 0.13PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.040 U | 12.5 | 0.040DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.062 U | 12.5 | 0.062DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.042 U | 12.5 | 0.042DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.074 U | 12.5 | 0.074DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.13 U | 12.5 | 0.13PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.078 U | 12.5 | 0.078DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.076 U | 5.0 | 0.076DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.12 Ų | 5.0 | 0.12PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | OCDD | 2.8 U | 25.0 | 2.8PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | OCDF | 0.16 U | 25.0 | 0.16PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HPCDD | 0.56 J 🕻 | T(7) 12.5 | 0.56PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HPCDF | 0.44 U | 12.5 | 0.44PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HXCDD | 0.17 J | 12.5 | 0.42PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HXCDF | 0.54 U | 12.5 | 0.54PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL PECDD | 0.022 U | _/, 12.5 | 0.022DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL PECDF | | J(b) 12.5 | 0.64PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL TCDD | 0.15 U | 5.0 | 0.15PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL TCDF | 0.19 J | 5.0 | 0.57PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 93.1 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 86.6 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 93.4 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) |
96.7 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 97.3 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | | 85.3 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 84.2 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 81.3 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 79.8 | 40-135 | | % | 03/21/16 | 04/04/16 | J = Estimated value. 2001716 Quant Method: 160302_8290 Run #: 160404_HR_05 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-006 APPL ID: AZ30249 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Sample Co | Direction Date. 03/06/10 | | | QCG. #029ACTO0-100321-200 | | | | | |-----------|---------------------------------------|---------|-------------|---------------------------|-------|--------------|------------|--| | Method | Analyte | Result | | EDL/EMPC | Units | Ext Date Ana | lysis Date | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.21 J | U(7) 12.5 | 0.21PC | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.023 U | 12.5 | 0.023DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.028 U | 12.5 | 0.028DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.030 U | 12.5 | 0.030DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.027 U | 12.5 | 0.027DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.030 U | 12.5 | 0.030DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.026 U | 12.5 | 0.026DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.029 U | 12.5 | 0.029DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.031 U | 12.5 | 0.031DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,7,8-PECDD | 0.044 U | 12.5 | 0.044DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 1,2,3,7,8-PECDF | 0.056 U | 12.5 | 0.056DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.14 J | 12.5 | 0.14PC | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 2,3,4,7,8-PECDF | 0.059 U | 12.5 | 0.059DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 2,3,7,8-TCDD | 0.052 U | 5.0 | 0.052DL | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | 2,3,7,8-TCDF | 0.24 J | 5.0 | 0.24PC | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | OCDD | | U(6) 25.0 | 1.6PC | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | OCDF | 0.15 U | 25.0 | 0.15PC | ng/Kg | 03/21/16 | 04/04/16 | | | | TOTAL HPCDD | | U(7) 12.5 | 0.25PC | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | TOTAL HPCDF | 0.084 J | 12.5 | 0.15PC | ng/Kg | 03/21/16 | 04/04/16 | | | | TOTAL HXCDD | 0.037 U | 12.5 | 0.037PC | ng/Kg | 03/21/16 | 04/04/16 | | | | TOTAL HXCDF | 0.21 J | U(7) 12.5(6 | | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | TOTAL PECDD | 0.044 U | 12.5 | 0.044DL | ng/Kg | 03/21/16 | 04/04/16 | | | | TOTAL PECDF | 0.063 U | 12.5 | 0.063PC | ng/Kg | 03/21/16 | 04/04/16 | | | | TOTAL TCDD | 0.65 U | 5.0 | 0.65PC | ng/Kg | 03/21/16 | 04/04/16 | | | | TOTAL TCDF | 0.47 J | 5.0 | 0.97PC | ng/Kg | 03/21/16 | 04/04/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 101 | 40-135 | | % | 03/21/16 | 04/04/16 | | | | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 92.4 | 40-135 | | % | 03/21/16 | 04/04/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 95.0 | 40-135 | | % | 03/21/16 | 04/04/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 97.9 | 40-135 | | % | 03/21/16 | 04/04/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 106 | 40-135 | | % | 03/21/16 | 04/04/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 90.8 | 40-135 | | % | 03/21/16 | 04/04/16 | | | | SURROGATE: 13C-2,3,7,8-TCDD (S) | 95.2 | 40-135 | | % | 03/21/16 | 04/04/16 | | | | SURROGATE: 13C-2,3,7,8-TCDF (S) | 92.3 | 40-135 | | % | 03/21/16 | 04/04/16 | | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 91.2 | 40-135 | | % | 03/21/16 | 04/04/16 | | J = Estimated value. 56051716 Quant Method: 160302_8290 Run #: 160404_HR_06 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-007 Sample Collection Date: 03/08/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78915 ____ APPL ID: AZ30250 QCG: \$829ACTO6-160321-2062 | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | alysis Date | |-----------|---------------------------------------|----------|-----------------|----------|-------|--------------|-------------| | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 8.1 J < | $\sqrt{7}$ 12.5 | 8.1PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.17 U | 12.5 | 0.17DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.20 U | 12.5 | 0.20DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.050 ∪ | 12.5 | 0.050DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.063 U | 12.5 | 0.063DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.17 U | 12.5 | 0.17PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.39 U | 12.5 | 0.39PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.089 U | 12.5 | 0.089PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.074 U | 12.5 | 0.074DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.027 U | 12.5 | 0.027DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.059 U | 12.5 | 0.059DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 3.3 U | 12.5 | 3.3PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.062 U | 12.5 | 0.062DL | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.15 U | 5.0 | 0.15PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.099 U_ | 5.0 | 0.099PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | OCDD | | $(6)_{125.0}$ | 139PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | OCDF | | 5(6,7)25.0 | 7.9PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HPCDD | 8.1 J 🥄 | | 8.4PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HPCDF | 1.6 J | 12.5 | 5.9PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HXCDD | 0.089 J | 12.5 | 0.37PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL HXCDF | | 17(6)12.5 (| | ng/Kg | 03/21/16 | 04/04/16 | | | TOTAL PECDD | 0.067 U | 12.5 | 0.067PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL PECDF | | (6)12.5 | 1.6PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL TCDD | 0.15 U | 5.0 | 0.15PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | TOTAL TCDF | 0.20 J | 5.0 | 0.56PC | ng/Kg | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 96.3 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 79.6 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 85.9 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 99.3 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 93.1 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | | 86.1 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 86.2 | 40-135 | | % | 03/21/16 | 04/04/16 | | | SURROGATE: 13C-2,3,7,8-TCDF (S) | 84.7 | 40-135 | | % | 03/21/16 | 04/04/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 84.7 | 40-135 | | % | 03/21/16 | 04/04/16 | J = Estimated value. ROSINIL Quant Method: 160302_8290 Run #: 160404_HR_14 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-008 APPL ID: AZ30251 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Sample Ci | Direction Date. 05/06/10 | | | QCG. \$629AC1O0-100321-200 | | | | | |-----------|---------------------------------------|-----------------|-----------------|----------------------------|-------|--------------|------------|--| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | lysis Date | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.33 J <i>U</i> | (7) 12.5 | 0.33PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.029 U | 12.5 | 0.029DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.034 U | 12.5 | 0.034DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.052 U | 12.5 | 0.052DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.032 U | 12.5 | 0.032DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.053 U | 12.5 | 0.053DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.032 U | 12.5 | 0.032DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.050 U | 12.5 | 0.050DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.038 U | 12.5 | 0.038DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,7,8-PECDD | 0.038 U | 12.5 | 0.038DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 1,2,3,7,8-PECDF | 0.030 U | 12.5 | 0.030DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.069 U | 12.5 | 0.069PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 2,3,4,7,8-PECDF | 0.031 U | 12.5 | 0.031DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 2,3,7,8-TCDD | 0.019 U | 5.0 | 0.019DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | 2,3,7,8-TCDF | 0.077 U | 5.0 | 0.077PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | OCDD | | (6)25.0 | | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A |
OCDF | | (6,7)25.0 | 0.22PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL HPCDD | | 7 12.5 | 0.80PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL HPCDF | 0.071 J | 12.5 | 0.25PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL HXCDD | 0.17 U | (12.5 | 0.17PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL HXCDF | | J(6)12.5 (| | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL PECDD | 0.060 ∪ | ^{12.5} | 0.060PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL PECDF | 0.12 U | 12.5 | 0.12PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL TCDD | 0.029 J | 5.0 | 0.098PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | TOTAL TCDF | 0.024 J | 5.0 | 0.20PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 108 | 40-135 | | % | 03/21/16 | 04/05/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 91.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 96.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 105 | 40-135 | | % | 03/21/16 | 04/05/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 99.7 | 40-135 | | % | 03/21/16 | 04/05/16 | | | | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 92.1 | 40-135 | | % | 03/21/16 | 04/05/16 | | | | SURROGATE: 13C-2,3,7,8-TCDD (S) | 92.4 | 40-135 | | % | 03/21/16 | 04/05/16 | | | | SURROGATE: 13C-2,3,7,8-TCDF (S) | 93.7 | 40-135 | | % | 03/21/16 | 04/05/16 | | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 94.9 | 40-135 | | % | 03/21/16 | 04/05/16 | | J = Estimated value. E05/7/6 Quant Method: 160302_8290 Run #: 160404_HR_15 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-009 APPL ID: AZ30252 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160406-2066 | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date An | alysis Date | |-----------|---------------------------------------|----------|-----------------|----------|--------|-------------|-------------| | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 1.5 J | 12.5 | 1.5PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.54 U | 12.5 | 0.54PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.13 U | 12.5 | 0.13PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.060 U | 12.5 | 0.060DL | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.066 U | 12.5 | 0.066DL | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.21 U | 12.5 | 0.21PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.065 U | 12.5 | 0.065DL | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.13 U | 12.5 | 0.13PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.13 U | 12.5 | 0.13PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.066 U | 12.5 | 0.066DL | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.10 U | 12.5 | 0.10DL | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.16 U | 12.5 | 0.16PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.23 U | 12.5 | 0.23PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.052 U | 5.0 | 0.052DL | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.11 U | 5.0 | 0.11DL | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | OCDD | 9.1 U | 25.0 | 9.1PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | OCDF | 0.20 U | $-(-1)^{25.0}$ | 0.20PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL HPCDD | | J (7)12.5 | 1.6PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL HPCDF | 1.4 U | 12.5 | 1.4PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL HXCDD | 0.23 U | 12.5 | 0.23PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL HXCDF | 1.5 U | 12.5 | 1.5PC | .ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL PECDD | 0.16 J | 12.5 | 0.45PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL PECDF | 0.74 U | 12.5 | 0.74PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL TCDD | 0.29 J ~ | ゴ(フ) 5.0 | 0.60PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | TOTAL TCDF | 1.3 U | 5.0 | 1.3PC | ng/Kg | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 77.3 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 73.3 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 76.4 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 74.3 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 69.8 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 65.4 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 66.3 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 65.9 | 40-135 | | % | 04/06/16 | 04/12/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 68.9 | 40-135 | | % | 04/06/16 | 04/12/16 | J = Estimated value. EDSTIL Quant Method: 160302_8290 Run #: 160411_HR_18 Instrument: Magneto Sequence: 160411 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-010 APPL ID: AZ30253 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Sample Collection Date, 03/06/16 QCG: \$629AC106-160321-206 | | | | | | | 0321-2002 | |---|---------------------------------------|----------|-----------------|----------|-------|--------------|-------------| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | alysis Date | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.33 U | 12.5 | 0.33PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.068 U | 12.5 | 0.068PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.065 U | 12.5 | 0.065DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.034 U | 12.5 | 0.034PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.041 U | 12.5 | 0.041DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.030 U | 12.5 | 0.030DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.040 U | 12.5 | 0.040DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.029 U | 12.5 | 0.029DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.058 U | 12.5 | 0.058PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.033 U | 12.5 | 0.033DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.034 U | 12.5 | 0.034DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.042 U | 12.5 | 0.042DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.036 U | 12.5 | 0.036DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.029 U | 5.0 | 0.029DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.17 U | 5.0 | 0.17PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDD | 3.0 J V | 1(6)25.0 | 3.0PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDF | 0.20 U | 25.0 | 0.20PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDD | 0.31 J V | (7) 12.5 | 0.65PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDF | 0.077 J | 12.5 | 0.38PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDD | 0.12 J | 12.5 | 0.44PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDF | 0.33 U | 12.5 | 0.33PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDD | 0.035 J | 12.5 | 0.32PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDF | 0.15 J U | (6) 12.5 | 0.82PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDD | 0.30 U | 5.0 | 0.30PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDF | 0.24 J | 5.0 | 0.41PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 67.2 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 62.1 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 66.3 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 67.7 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 61.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 56.7 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 56.5 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 61.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 56.9 | 40-135 | | % | 03/21/16 | 04/05/16 | J = Estimated value. EN 1716 Quant Method: 160302_8290 Run #: 160404_HR_17 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-011 APPL ID: AZ30254 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Sample Ci | Direction Date: 05/00/10 | | | Q. | CG. #02 | 29/10/100 | 321-2002 | |-----------|---------------------------------------|---------|---------|----------|---------|--------------|------------| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | lysis Date | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 1.5 J J | (7)12.5 | 1.5PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.11 U | 12.5 | 0.11DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.13 U | 12.5 | 0.13DL | ng/Kg |
03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.099 U | 12.5 | 0.099DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.17 U | 12.5 | 0.17PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.10 U | 12.5 | 0.10DŁ | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.10 U | 12.5 | 0.10DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.096 U | 12.5 | 0.096DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.12 U | 12.5 | 0.12DL | | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.10 U | 12.5 | 0.10DL | | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.14 U | 12.5 | 0.14DL | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.12 U | 12.5 | 0.12PC | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.11 U | 12.5 | 0.11PC | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.14 U | 5.0 | 0.14PC | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.23 U | 5.0 | 0.23PC | | 03/21/16 | 04/05/16 | | EPA 8290A | | 13 U | 25.0 | | | 03/21/16 | 04/05/16 | | EPA 8290A | | 0.45 U | 25.0 | 0.45PC | ng/Kg | 03/21/16 | 04/05/16 | | | TOTAL HPCDD | | (フ)12.5 | 1.5PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDF | 0.75 U | 12.5 | 0.75PC | ng/Kg | 03/21/16 | 04/05/16 | | | TOTAL HXCDD | 0.50 ∪ | 12.5 | 0.50PC | ng/Kg | 03/21/16 | 04/05/16 | | | TOTAL HXCDF | 1.2 U | 12.5 | 1.2PC | ng/Kg | 03/21/16 | 04/05/16 | | | TOTAL PECDD | 0.18 U | 12.5 | 0.18PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDF | 0.78 ∪ | 12.5 | 0.78PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | | 0.14 U | 5.0 | 0.14PC | ng/Kg | 03/21/16 | 04/05/16 | | | TOTAL TCDF | 0.44 J | 5.0 | 2.3PC | ng/Kg | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 57.4 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 58.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 61.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 60.7 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 55.9 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 53.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-2,3,7,8-TCDD (S) | . 54.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-2,3,7,8-TCDF (S) | 51.9 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 49.9 | 40-135 | | % | 03/21/16 | 04/05/16 | J = Estimated value. 56051716 Quant Method: 160302_8290 Run #: 160404_HR_18 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-012 APPL ID: AZ30255 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Sample Co | onection bate. co/co/re | | | <u> </u> | 30. ψ0 2 | 29/10/100-100 | 321-2002 | |-----------|---------------------------------------|----------|---------------|----------|-----------------|---------------|------------| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | lysis Date | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.32 J U | (7)12.5 | 0.32PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.046 U | ´ 12.5 | 0.046DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.055 U | 12.5 | 0.055DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.090 U | 12.5 | 0.090DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.040 U | 12.5 | 0.040DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.092 U | 12.5 | 0.092DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.039 U | 12.5 | 0.039DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.14 U | 12.5 | 0.14PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.047 U | 12.5 | 0.047DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.017 U | 12.5 | 0.017DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.074 U | 12.5 | 0.074DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.15 U | 12.5 | 0.15PC | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.078 U | 12.5 | 0.078DL | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.014 U | 5.0 | 0.014DL | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.10 U | 5.0 | 0.10PC | | 03/21/16 | 04/05/16 | | EPA 8290A | OCDD | 2.2 U | 25.0 | 2.2PC | | 03/21/16 | 04/05/16 | | EPA 8290A | | 0.041 U | 25.0 | 0.041DL | | 03/21/16 | 04/05/16 | | | TOTAL HPCDD | | (7) 12.5 | 0.44PC | | 03/21/16 | 04/05/16 | | | TOTAL HPCDF | 0.50 U | 12.5 | 0.50PC | | 03/21/16 | 04/05/16 | | | TOTAL HXCDD | 0.25 J | 12.5 | 0.56PC | | 03/21/16 | 04/05/16 | | | TOTAL HXCDF | 0.53 U | 12.5 | 0.53PC | | 03/21/16 | 04/05/16 | | | TOTAL PECDD | 0.18 U | (12.5 | 0.18PC | ng/Kg | | 04/05/16 | | EPA 8290A | TOTAL PECDF | 0.45 J W | (b) 12.5 | 0.45PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDD | 0.067 J | 5.0 | 0.23PC | ng/Kg | 03/21/16 | 04/05/16 | | | TOTAL TCDF | 0.22 J | 5.0 | 1.0PC | ng/Kg | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 105 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 97.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 98.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 104 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 98.1 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 91.3 | 40-135 | • | % | 03/21/16 | 04/05/16 | | EPA 8290A | | 88.3 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 89.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 91.2 | 40-135 | | % | 03/21/16 | 04/05/16 | J = Estimated value. F051716 Quant Method: 160302_8290 Run #: 160404_HR_19 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-013 Sample Collection Date: 03/08/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78915 111.70313 APPL ID: AZ30256 QCG: \$829ACTO6-160321-2062 | Sample Co | Direction Date. 03/06/10 | | | | JG. 402 | 29/101/00-100 | 321-2002 | |-----------|---------------------------------------|----------|-----------|----------|---------|---------------|------------| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | lysis Date | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.051 U | 12.5 | 0.051DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.20 J | 12.5 | 0.20PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.049 U | 12.5 | 0.049DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.034 U | 12.5 | 0.034DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.047 U | 12.5 | 0.047DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.035 U | 12.5 | 0.035DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.046 U | 12.5 | 0.046DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.033 U | 12.5 | 0.033DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.055 U | 12.5 | 0.055DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.030 U | 12.5 | 0.030DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.059 U | 12.5 | 0.059DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.049 U | 12.5 | 0.049DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.062 U | 12.5 | 0.062DL | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.033 U | 5.0 | 0.033DL | | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.17 U | 5.0 | 0.17PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDD | 0.70 U | 25.0 | 0.70PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | | 0.045 U | 25.0 | 0.045DL | | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDD | 0.051 U | 12.5 | 0.051DL | | 03/21/16 | 04/05/16 | | | TOTAL HPCDF | 0.20 J | 12.5 | 0.20PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDD | 0.18 U | 12.5 | 0.18PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDF | 0.20 U | 12.5 | 0.20PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDD | 0.039 U | ر مر 12.5 | 0.039PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDF | 0.12 J U | | 0.52PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDD | 0.52 U | 5.0 | 0.52PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDF | 0.60 U | 5.0 | 0.60PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 103 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 94.5 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 101 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 106 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 98.0 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 90.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-2,3,7,8-TCDD (S) | 89.3 | 40-135 | | % | 03/21/16 | 04/05/16 | | | SURROGATE: 13C-2,3,7,8-TCDF (S) | 91.4 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 84.4 | 40-135 | | % | 03/21/16 | 04/05/16 | J = Estimated value. 8651716 Quant Method: 160302_8290 Run #: 160404_HR_24 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908
North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-014 APPL ID: AZ30257 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date An | alysis Date | |-----------|---------------------------------------|----------|------------------|----------|-------|-------------|-------------| | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.051 U | 12.5 | 0.051DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.037 U | 12.5 | 0.037DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.044 U | 12.5 | 0.044DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.048 U | 12.5 | 0.048DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.042 U | 12.5 | 0.042DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.049 U | 12.5 | 0.049DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.041 U | 12.5 | 0.041DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.046 U | 12.5 | 0.046DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.049 U | 12.5 | 0.049DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.037 U | 12.5 | 0.037DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.032 U | 12.5 | 0.032DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.13 U | 12.5 | 0.13PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.034 U | 12.5 | 0.034DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.036 U | 5.0 | 0.036DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.097 U | 5.0 | 0.097PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDD | 1.6 J l | 1 (6) 25.0 | 1.6PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDF | 0.13 U | 25.0 | 0.13PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDD | 0.25 J l | 人(フ) 12.5 | 0.25PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDF | 0.47 U | 12.5 | 0.47PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDD | 0.14 U | . 7. 12.5 | 0.14PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDF | 0.27 J し | 1(6,7)2.5 | 0.55PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDD | 0.077 J | 12.5 | 0.45PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDF | 0.23 J L | J (b) 12.5 | 0.55PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDD | 0.069 U | 5.0 | 0.069PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDF | 0.31 U | 5.0 | 0.31PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 84.9 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 72.0 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 78.4 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 85.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 79.5 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 70.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 73.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 71.0 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 75.5 | 40-135 | | % | 03/21/16 | 04/05/16 | J = Estimated value. E251716 Quant Method: 160302_8290 Run #: 160404_HR_25 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78915 Sample ID: KCH067-015 APPL ID: AZ30258 Sample Collection Date: 03/08/16 QCG: \$829ACTO6-160321-2062 | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date An | alysis Date | |-----------|---------------------------------------|----------|------------|----------|-------|-------------|-------------| | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.29 J U | (7) 12.5 | 0.29PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.14 U | 12.5 | 0.14PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.065 U | 12.5 | 0.065DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.047 U | 12.5 | 0.047DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.092 U | 12.5 | 0.092DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.048 ∪ | 12.5 | 0.048DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.25 U | 12.5 | 0.25PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.046 U | 12.5 | 0.046DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.11 U | 12.5 | 0.11DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.068 U | 12.5 | 0.068DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.044 U | 12.5 | 0.044DL | ng/Kg | 03/21/16 | 04/05/16 | | EPÅ 8290A | 2,3,4,6,7,8-HXCDF | 0.52 U | 12.5 | 0.52PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.046 U | 12.5 | 0.046DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.11 U | 5.0 | 0.11DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.10 U | 5.0 | 0.10PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDD | | (b) 25.0 | 2.4PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDF | 0.18 U | 25.0 | 0.18PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDD | | (ブ) 12.5 | 0.39PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDF | 0.59 U | 12.5 | 0.59PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDD | 0.11 J | (12.5 | 0.22PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDF | | J(6)12.5 (| | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDD | 0.26 U | 12.5 | 0.26PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDF | 1.9 U | 12.5 | 1.9PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDD | 0.84 U | 5.0 | 0.84PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDF | 0.97 U | 5.0 | 0.97PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 107 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 98.7 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 101 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 106 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 102 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 91.9 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 84.7 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 89.1 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 92.5 | 40-135 | | % | 03/21/16 | 04/05/16 | J = Estimated value. 820716 Quant Method: 160302_8290 Run #: 160404_HR_26 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-016 Sample Collection Date: 03/08/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78915 APPL ID: AZ30259 QCG: \$829ACTQ6-160321-2062 | Sample Co | ollection Date: 03/08/16 | - | | | CO. 902 | 29ACTO6-160 | 7321-2002 | |-----------|---------------------------------------|----------|----------------------|-----------|---------|--------------|-------------| | Method | Analyte | Resuit | PQL | EDL/EMPC | Units | Ext Date Ana | alysis Date | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.069 U | 12.5 | - 0.069DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.052 U | 12.5 | 0.052DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.061 U | 12.5 | 0.061DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.038 U | 12.5 | 0.038PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.045 U | 12.5 | 0.045DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.048 U | 12.5 | 0.048DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.044 U | 12.5 | 0.044DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.046 U | 12.5 | 0.046DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.053 U | 12.5 | 0.053DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.056 U | 12.5 | 0.056DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.047 U | 12.5 | 0.047DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.11 U | 12.5 | 0.11PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.050 U | 12.5 | 0.050DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.052 U | 5.0 | 0.052DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.25 U | 5.0 | 0.25PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDD | | U(6) 25.0 | 0.93PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | OCDF | 0.039 U | 25.0 | 0.039PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDD | 0.32 J (| ^{人(フ)} 12.5 | 0.64PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HPCDF | 0.058 U | 12.5 | 0.058PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDD | 0.12 U | 12.5 | 0.12PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL HXCDF | 0.11 U | 12.5 | 0.11PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDD | 0.24 U | 12.5 | 0.24PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL PECDF | 0.35 J (| J(6\12.5 | 0.65PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDD | 0.026 U | 5.0 | 0.026DL | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | TOTAL TCDF | 0.53 U |
5.0 | 0.53PC | ng/Kg | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 82.3 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 73.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 78.0 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 80.2 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 84.8 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 74.4 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 73.0 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 70.6 | 40-135 | | % | 03/21/16 | 04/05/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 71.5 | 40-135 | | % | 03/21/16 | 04/05/16 | J = Estimated value. E051716 Quant Method: 160302_8290 Run #: 160404_HR_27 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-017 Sample Collection Date: 03/08/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78915 APPL ID: AZ30260 QCG: \$829ACTO6-160321-2062 | Method Analyte Result PQL EDL/EMPC Units Ext Date Analysis Date EPA 8290A 1,2,3,4,6,7,8-HPCDF 0.40 U 12.5 5.3 PC ng/Kg 0.3/21/16 0.405/16 EPA 8290A 1,2,3,4,7,8-HPCDF 0.16 U 12.5 0.16 DL ng/Kg 0.3/21/16 0.405/16 EPA 8290A 1,2,3,4,7,8-HXCDD 0.17 U 12.5 0.17 DL ng/Kg 0.3/21/16 0.405/16 EPA 8290A 1,2,3,6,7,8-HXCDD 0.17 U 12.5 0.19 DL ng/Kg 0.3/21/16 0.405/16 EPA 8290A 1,2,3,6,7,8-HXCDF 0.19 U 12.5 0.19 DL ng/Kg 0.3/21/16 0.405/16 EPA 8290A 1,2,3,7,8-HXCDF 0.19 U 12.5 0.19 DL ng/Kg 0.3/21/16 0.405/16 EPA 8290A 1,2,3,7,8-HXCDF 0.19 U 12.5 0.19 DL ng/Kg 0.3/21/16 0.405/16 EPA 8290A 1,2,3,7,8-PECDF 0.93 U 12.5 0.09 DL ng/Kg 0.3/21/16 0.405/16 E | Sample Collection Date: 03/00/10 QCG: \$629AC1O0-100321-2002 | | | | | | | | | |--|--|---|---------|-------------------|----------|-------|--------------|-------------|--| | EPA 8290A 1,2,3,4,6,7,8-HPCDF | Method | Analyte | | | EDL/EMPC | Units | Ext Date Ana | alysis Date | | | EPA 8290A 1,2,3,4,6,7,8-HPCDF | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 5.3 J | ゴ(フ) 12.5 | 5.3PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,4,7,8+HXCDD 0.17 U 12.5 0.17DL ng/Kg 0.32116 0.405/16 EPA 8290A 1,2,3,4,7,8+HXCDD 0.19 U 12.5 0.19DL ng/Kg 0.3211/16 0.405/16 EPA 8290A 1,2,3,6,7,8+HXCDD 0.19 U 12.5 0.17DL ng/Kg 0.3211/6 0.405/16 EPA 8290A 1,2,3,7,8,9+HXCDD 0.16 U 12.5 0.16DL ng/Kg 0.3211/6 0.405/16 EPA 8290A 1,2,3,7,8,9+HXCDF 0.22 U 12.5 0.19DL ng/Kg 0.3211/6 0.405/16 EPA 8290A 1,2,3,7,8,9-HXCDF 0.22 U 12.5 0.2DL ng/Kg 0.3211/6 0.405/16 EPA 8290A 1,2,3,7,8-PECDF 0.093 U 12.5 0.09DL ng/Kg 0.3211/6 0.405/16 EPA 8290A 1,2,3,7,8-PECDF 0.20 U 1.5 0.09BDL ng/Kg 0.3211/6 0.405/16 EPA 8290A 2,3,4,6-7,8-HXCDF 0.20 U 1.5 0.09BDL ng/Kg 0.321/16 0.405/16 | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | | | 0.40PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,4,7,8-HXCDF | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.16 U | 12.5 | 0.16DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,6,7,8-HXCDD 0.17 U 12.5 0.17DL ng/kg 0.3/21/16 0.4/05/16 EPA 8290A 1,2,3,6,7,8-HXCDF 0.19 U 12.5 0.19DL ng/kg 03/21/16 04/05/16 EPA 8290A 1,2,3,7,8,9-HXCDF 0.16 U 12.5 0.22DL ng/kg 03/21/16 04/05/16 EPA 8290A 1,2,3,7,8,9-HXCDF 0.22 U 12.5 0.22DL ng/kg 03/21/16 04/05/16 EPA 8290A 1,2,3,7,8-PECDF 0.093 U 12.5 0.093L ng/kg 03/21/16 04/05/16 EPA 8290A 2,3,4,6,7,8-HXCDF 0.093 U 12.5 0.093L ng/kg 03/21/16 04/05/16 EPA 8290A 2,3,4,7,8-PECDF 0.093 U 12.5 0.098DL ng/kg 03/21/16 04/05/16 EPA 8290A 2,3,4,7,8-PECDF 0.098 U 12.5 0.098DL ng/kg 03/21/16 04/05/16 EPA 8290A 2,3,7,8-TCDF 0.097 U 5.0 0.097 U 5.0 0.097 U ng/kg 03/21/16 | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.17 U | 12.5 | 0.17DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,6,7,8-HXCDF | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.19 U | 12.5 | 0.19DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,7,8,9-HXCDD | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.17 U | 12.5 | 0.17DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,7,8,9+HXCDF | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.19 U | 12.5 | 0.19DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,7,8-PECDD | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.16 U | 12.5 | 0.16DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 1,2,3,7,8-PECDF | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.22 U | 12.5 | 0.22DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 2,3,4,6,7,8-HXCDF | EPA 8290A | 1,2,3,7,8-PECDD | 0.19 U | 12.5 | 0.19DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 2,3,4,7,8-PECDF 0.098 U 12.5 0.098 L ng/kg 03/21/16 04/05/16 EPA 8290A 2,3,7,8-TCDD 0.097 U 5.0 0.097 D ng/kg 03/21/16 04/05/16 EPA 8290A 2,3,7,8-TCDF 0.20 U 5.0 0.20 PC ng/kg 03/21/16 04/05/16 EPA 8290A OCDD 47 U(b) 25.0 47PC ng/kg 03/21/16 04/05/16 EPA 8290A OCDF 0.24 U 25.0 0.24 D ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDD 5.3 J T 12.5 5.3 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDF 1.8 U 12.5 1.8 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.1 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.0 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 1.0 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19 DL ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19 DL ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.72 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 86.9 40-135 | EPA 8290A | 1,2,3,7,8-PECDF | 0.093 U | 12.5 | 0.093DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A 2,3,7,8-TCDD 0.097 U 5.0 0.097 D ng/Kg 03/21/16 04/05/16 EPA 8290A 2,3,7,8-TCDF 0.20 J 5.0 0.20 PC ng/Kg 03/21/16 04/05/16 EPA 8290A OCDD 47 U(b) 25.0 47 PC ng/Kg 03/21/16 04/05/16 EPA 8290A OCDF 0.24 U 25.0 0.24 D ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDD 5.3 J (7) 12.5 5.3 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDF 1.8 U 12.5 1.8 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.0 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.0 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDF 1.0 U 12.5 1.0 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19 DL ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19 DL ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/Kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 86.9 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 88.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290 | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.20 U | 12.5 | 0.20DL | ng/Kg | 03/21/16 |
04/05/1.6 | | | EPA 8290A 2,3,7,8-TCDF 0.20 J 5.0 0.20PC ng/Kg 03/21/16 04/05/16 EPA 8290A OCDD 47 U(b) 25.0 47PC ng/Kg 03/21/16 04/05/16 EPA 8290A OCDF 0.24 U 25.0 0.24 D ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDD 5.3 J (7) 12.5 5.3PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDF 1.8 U 12.5 1.8 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.8 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.0 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 1.9 U 12.5 0.19DL ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19DL ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19DL ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.52 J U(b) 12.5 0.72PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/Kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 99.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HPCDF (S) 86.9 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDF (S) 85.0 40-135 % 03/21/16 04/05/16 | EPA 8290A | 2,3,4,7,8-PECDF | 0.098 U | 12.5 | 0.098DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A OCDD | EPA 8290A | 2,3,7,8-TCDD | 0.097 U | 5.0 | 0.097DL | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A OCDF EPA 8290A TOTAL HPCDD 5.3 J J (7) 12.5 5.3PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDF 1.8 U 12.5 1.8PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.1PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDF 1.0 U 12.5 1.0PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19DL ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.72PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDF 0.43 J 5.0 0.58PC ng/kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD 13C-2,3,7,8 | EPA 8290A | 2,3,7,8-TCDF | 0.20 J | | | | 03/21/16 | 04/05/16 | | | EPA 8290A TOTAL HPCDD 5.3 J 7)12.5 5.3 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HPCDF 1.8 U 12.5 1.8 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.1 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDF 1.0 U 12.5 1.0 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19 DL ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19 DL ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDF 0.52 J U (b) 12.5 0.7 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDF 0.43 J 5.0 0.5 BPC ng/kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 99.0 40-135 | EPA 8290A | OCDD | 47 | 以(6) 25.0 | 47PC | ng/Kg | 03/21/16 | | | | EPA 8290A TOTAL HPCDF | | | | | | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A TOTAL HXCDD 1.1 U 12.5 1.1PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL HXCDF 1.0 U 12.5 1.0PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19DL ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDF 0.52 J \(\begin{array}{c} \bex | | | 5.3 J | | | | 03/21/16 | 04/05/16 | | | EPA 8290A TOTAL HXCDF EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19 D 0.72 P 12 | | | 1.8 U | [′] 12.5 | | | 03/21/16 | 04/05/16 | | | EPA 8290A TOTAL PECDD 0.19 U 12.5 0.19DL ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL PECDF 0.52 J U (b) 12.5 0.72PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDF 0.43 J 5.0 0.58PC ng/Kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 99.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 86.9 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 103 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDF (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 | | | | | | | | | | | EPA 8290A TOTAL PECDF EPA 8290A TOTAL TCDD D.79 U D.79 U D.79 D D.79 C D | | | | | | ng/Kg | | | | | EPA 8290A TOTAL TCDD 0.79 U 5.0 0.79 PC ng/Kg 03/21/16 04/05/16 EPA 8290A TOTAL TCDF 0.43 J 5.0 0.58 PC ng/Kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 99.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 86.9 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 103 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 86.6 40-135 % 03/21/16 04/05/16 | EPA 8290A | TOTAL PECDD | 0.19 U | 12.5 | | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A TOTAL TCDF 0.43 J 5.0 0.58PC ng/Kg 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 99.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 86.9 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 103 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 86.6 40-135 % 03/21/16 04/05/16 | | | | U(6) 12.5 | | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 99.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 86.9 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 103 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 86.6 40-135 % 03/21/16 04/05/16 | | | 0.79 U | 5.0 | 0.79PC | ng/Kg | | 04/05/16 | | | EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 86.9 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 103 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 86.6 40-135 % 03/21/16 04/05/16 | EPA 8290A | TOTAL TCDF | 0.43 J | 5.0 | 0.58PC | ng/Kg | 03/21/16 | 04/05/16 | | | EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 108 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 103 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 86.6 40-135 % 03/21/16 04/05/16 | | | | | | | | | | | EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 103 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 86.6 40-135 % 03/21/16 04/05/16 | | • | | | | | | | | | EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 88.3 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16
04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 86.6 40-135 % 03/21/16 04/05/16 | | | 108 | 40-135 | | % | 03/21/16 | 04/05/16 | | | EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 85.6 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 86.6 40-135 % 03/21/16 04/05/16 | | | | 40-135 | | | | 04/05/16 | | | EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 85.0 40-135 % 03/21/16 04/05/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 86.6 40-135 % 03/21/16 04/05/16 | | , , | 88.3 | | | | | | | | EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 86.6 40-135 % 03/21/16 04/05/16 | EPA 8290A SURROGATE: 13C-OCDD (S) 106 40-135 % 03/21/16 04/05/16 | | | | | | | | | | | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 106 | 40-135 | | % | 03/21/16 | 04/05/16 | | J = Estimated value. 25C1716 Quant Method: 160302_8290 Run #: 160404_HR_28 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-018 Sample Collection Date: 03/08/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78915 APPL ID: AZ30261 QCG: \$829ACTO6-160321-2062 | Garripio G | G. C. | | | | | | | |------------|---|-----------------|-----------------|----------|-------|--------------|-------------| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | alysis Date | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 0.57 U | 12.5 | 0.57PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.045 U | 12.5 | 0.045DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.065 U | 12.5 | 0.065PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.042 U | 12.5 | 0.042DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.070 U | 12.5 | 0.070DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.043 U | 12.5 | 0.043DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.068 U | 12.5 | 0.068DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.041 U | 12.5 | 0.041DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.081 U | 12.5 | 0.081DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.034 U | 12.5 | 0.034DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.034 U | 12.5 | 0.034DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.073 U | 12.5 | 0.073DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.036 U | 12.5 | 0.036DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.019 U | 5.0 | 0.019DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.024 U | 5.0 | 0.024DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | OCDD | 3.9 U | 25.0 | 3.9PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | OCDF | 0.077 U | 25.0 | 0.077DL | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL HPCDD | 0.63 U | 12.5 | 0.63PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL HPCDF | 0.055 J | 12.5 | 0.43PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL HXCDD | 0.18 U | 12.5 | 0.18PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL HXCDF | 0.23 U | 12.5 | 0.23PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL PECDD | 0.061 J | 12.5 | 0.54PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL PECDF | 0.36 J U | <i>(b)</i> 12.5 | 0.40PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL TCDD | 0.20 U | 5.0 | 0.20PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | TOTAL TCDF | 0.31 J | 5.0 | 0.51PC | ng/Kg | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 92.8 | 40-135 | | % | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 76.3 | 40-135 | | % | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 95.7 | 40-135 | | % | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 102 | 40-135 | | % | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 84.3 | 40-135 | | % | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 77.6 | 40-135 | | % | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 84.1 | 40-135 | | % | 03/21/16 | 04/06/16 | | | SURROGATE: 13C-2,3,7,8-TCDF (S) | 82.6 | 40-135 | | % | 03/21/16 | 04/06/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 88.2 | 40-135 | | % | 03/21/16 | 04/06/16 | | | | | | | | | | J = Estimated value. E051716 Quant Method: 160302_8290 Run #: 160404_HR_29 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Printed: 04/08/16 4:59:40 PM Form 1 - APPL Standard GC - No MC Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-019 Sample Collection Date: 03/08/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78915 APPL ID: AZ30262 QCG: \$829ACTO6-160318-2062 | Sample Co | Gample Collection Pate: 03/00/10 | | | | | | | |-----------|---------------------------------------|--------|-------------------------------|----------|-------|--------------|------------| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | lysis Date | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 3.5 U | 125.0 | 3.5PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.61 U | 125.0 | 0.61DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 1.3 U | 125.0 | 1.3PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.93 U | 125.0 | 0.93DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.52 U | 125.0 | 0.52DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.94 U | 125.0 | 0.94DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.51 U | 125.0 | 0.51DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.90 U | 125.0 | 0.90DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.60 U | 125.0 | 0.60DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,7,8-PECDD | 0.82 U | 125.0 | 0.82DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 1,2,3,7,8-PECDF | 0.60 U | 125.0 | 0.60DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 2.7 U | 125.0 | 2.7PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 2,3,4,7,8-PECDF | 0.93 U | 125.0 | 0.93PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 2,3,7,8-TCDD | 0.70 U | 50.0 | 0.70DL | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | 2,3,7,8-TCDF | 0.83 U | 50.0 | 0.83PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | OCDD | 57 J 🗸 | (b)250.0 (7 | 7) 57PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | OCDF | 4.0 J | 250.0 | 4.0PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | TOTAL HPCDD | 4.1 U | 125.0 | 4.1PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | TOTAL HPCDF | 4.1 U | 125.0 | 4.1PC | pg/L | 03/18/16 | 04/03/16 | | EPÄ 8290A | TOTAL HXCDD | 0.98 U | 125.0 | 0.98PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | TOTAL HXCDF | 10 J U | <u> プ</u> (6) 125.0(フ | ') 15PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | TOTAL PECDD | 1.6 U | (125.0) | 1.6PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | TOTAL PECDF | 7.2 JJ | (b) _{125.0} | 12PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | TOTAL TCDD | 0.86 U | 50.0 | 0.86PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | TOTAL TCDF | 0.83 U | 50.0 | 0.83PC | pg/L | 03/18/16 | 04/03/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 78.3 | 40-135 | | % | 03/18/16 | 04/03/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 74.6 | 40-135 | | % | 03/18/16 | 04/03/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 78.4 | 40-135 | | % | 03/18/16 | 04/03/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 81.9 | 40-135 | | % | 03/18/16 | 04/03/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 72.8 | 40-135 | | % | 03/18/16 | 04/03/16 | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 66.2 | 40-135 | | % | 03/18/16 | 04/03/16 | | | SURROGATE: 13C-2,3,7,8-TCDD (S) | 69.7 | 40-135 | | % | 03/18/16 | 04/03/16 | | EPA 8290A | | 69.5 | 40-135 | | % | 03/18/16 | 04/03/16 | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 65.0 | 40-135 | | % | 03/18/16 | 04/03/16 | | | | | | | | | | J = Estimated value. SLOSINIE Quant Method: 160302_8290 Run #: 160403_HR_06 Instrument: Magneto Sequence: 160403 Dilution Factor: 1 Initials: RP Printed: 04/08/16 5:12:53 PM Form 1 - APPL Standard GC - No MC #### LDC #: 36282D21 SDG #: 78915 Laboratory: APPL, Inc. # **VALIDATION COMPLETENESS WORKSHEET** Standard/Full | Date: | 5/12/16 | |---------------|---------| | Page:_ | 10f Z | | Reviewer: | P | | 2nd Reviewer: | 'I' | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW846 Method 8290A) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|--------------|---------------------------------------| | 1. | Sample receipt/Technical holding times | 4/4 | | | II. | HRGC/HRMS Instrument performance check | Δ | | | Ш. | Initial calibration/ICV | 414 | % PSD = 20 101 = 20/30 mlabely | | IV. | Continuing calibration | Α | ' | | V | Laboratory Blanks | კლ | | | VI. | Field blanks | 200 | EB = 15 SB- KCH067-042 | | VII. | Matrix spike/Matrix spike duplicates | A | EB = 15 SB= KCH067-042 (78998) | | VIII. | Laboratory control samples | Α | دعا | | IX. | Field duplicates | N | | | X. | Internal standards | Δ | | | XI. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for Standard validation. | | XII. | Target compound identification | A | Not reviewed for Standard validation. | | XIII. | System performance | A | Not reviewed for Standard validation. | | XIV.
| Overall assessment of data | <u>\(\)</u> | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Full validation | Indicates sample underwent Full validation | | | | |--|-----------|--------|-------------| | Client ID | Lab ID | Matrix | Date | | 2 KCH067-005 | AZ30248 | Soil | 03/08/16 | | г ксно67-006 | AZ30249 | Soil | 03/08/16 | | KCH067-007 | AZ30250 | Soil | 03/08/16 | | У КСН067-008 | AZ30251 | Soil | 03/08/16 | | 5 3 ксно67-009 | AZ30252 | Soil | 03/08/16 | | 6 2 KCH067-010 | AZ30253 | Soil | 03/08/16 | | У КСН067-011 | AZ30254 | Soil | 03/08/16 | | % KCH067-012 | AZ30255 | Soil | 03/08/16 | | 2 KCH067-013 | AZ30256 | Soil | 03/08/16 | | 02 KCH067-014 | AZ30257 | Soil | 03/08/16 | | 12 KCH067-015 | AZ30258 | Soil | 03/08/16 | | 27 KCH067-016** | AZ30259** | Soil | 03/08/16 | | 3 2 KCH067-017 | AZ30260 | Soil | 03/08/16 | | 4 XCH067-018 | AZ30261 | Soil | 03/08/16 | | LDC #:_ | 36282D21 | | |----------|-----------------|--| | SDG #: | 78915 | | | Laborate | ory: APPL, Inc. | | # **VALIDATION COMPLETENESS WORKSHEET** Standard/Full Date: 5/12/16 Page: 20f 2 Reviewer: 77 2nd Reviewer: 1 METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW846 Method 8290A) | _ | | | | | |-------------|-------------------------------------|-----------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 15 | KCH067-019 | AZ30262 | Water | 03/08/16 | | 16 2 | KCH067-016MS | AZ30259MS | Soil | 03/08/16 | | 17 2 | 1 msd | V MSD | 1 | | | 18 | | | | | | 19 | | | | | | 20 | | | | | | 21 | | | | | | Notes: | | | | | | 1 | 160318-MB | | | | | 2 | 16032 - MB | | | | | 3 | 160318-MB
160321-MB
160406-MB | | | | | | | | | | #### VALIDATION FINDINGS CHECKLIST | Page: <u>/</u> of | 2 | |-------------------|---| | Reviewer: | 2 | | 2nd Reviewer: // | _ | Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|------------|-------|---| | I. Technical holding times | | | gát. | | | All technical holding times were met. | | | | | | Cooler temperature criteria was met. | | | | | | II. GC/MS Instrument performance check | | | | | | Was PFK exact mass 380.9760 verified? | | | | | | Were the retention time windows established for all homologues? | / | | | | | Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ? | / | | | | | Is the static resolving power at least 10,000 (10% valley definition)? | / | | | | | Was the mass resolution adequately check with PFK? | | | | | | Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified? | | 46.000 | | | | Illa. Initial calibration | | | | | | Was the initial calibration performed at 5 concentration levels? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and labeled compounds ? | / | | | | | Did all calibration standards meet the Ion Abundance Ratio criteria? | | | | | | Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10? | / | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | _ | | | | | Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ? | | | | | | IV. Continuing calibration | | | | | | Was a contiuning calibration performed at the beginning and end of each 12 hour period? | _ | | | | | Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ? | / | | | | | Did all routine calibration standards meet the Ion Abundance Ratio criteria? | / | | | | | Was the signal to noise ratio for each target compound and for each recovery and internal standard <u>></u> 10? | | | | | | V. Laboratory Blanks | | | | | | Was a method blank associated with every sample in this SDG? | | | | | | Was a method blank performed for each matrix and whenever a sample extraction was performed? | _ | · | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet? | | L | | | | VI. Field blanks | | | | | | Field blanks were identified in this SDG. | / | | | *************************************** | | Target compounds were detected in the field blanks. | | | | | | VII. Matrix spike/Matrix spike duplicates | | ele .
S | J. A. | | LDC#: 3628202 #### VALIDATION FINDINGS CHECKLIST Page: 7 of 7 Reviewer: 7 2nd Reviewer: 7 | Validation Area | Yes | No | NA | Findings/Comments | |---|----------------------|----|----|--------------------| | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | ,, | | | , mango, e ammonto | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | / | | | | | VIII. Laboratory control samples | | | | | | Was an LCS analyzed per extraction batch? | / | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | | | | | Target compounds were detected in the field duplicates. | | | _ | | | X. Internal standards | | | | * () | | Were internal standard recoveries within the 40-135% criteria? | | | | | | Was the minimum S/N ratio of all internal standard peaks ≥ 10? | | | | | | XI. Compound quantitation | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | | 1 | | | | XII. Target compound identification | | | | | | For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard? | / | | | | | For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration? | | | | | | For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution? | _ | | | | | Did compound spectra contain all characteristic ions listed in the table attached? | | | | | | Was the Ion Abundance Ratio for the two quantitation ions within criteria? | | | ļ | | | Was the signal to noise ratio for each target compound and labeled standard > 2.5? | _ | | | | | Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)? | _ | | | | | For PCDF identification, was any signal (S/N ≥ 2.5, at ± seconds RT) detected in the corresponding PCDPE channel? | | | | | | Was an acceptable lock mass recorded and monitored? | | | | | | XIII. System performance | ## 13
<u>1</u> 93 | | | | | System performance was found to be acceptable. | | | | | | XIV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | #### **VALIDATION FINDINGS WORKSHEET** METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) | A. 2,3,7,8-TCDD | F. 1,2,3,4,6,7,8-HpCDD | K. 1,2,3,4,7,8-HxCDF | P. 1,2,3,4,7,8,9-HpCDF | U. Total HpCDD | |----------------------|------------------------|------------------------|------------------------|----------------| | B. 1,2,3,7,8-PeCDD | G. OCDD | L. 1,2,3,6,7,8-HxCDF | Q. OCDF | V. Total TCDF | | C. 1,2,3,4,7,8-HxCDD | H. 2,3,7,8-TCDF | M. 2,3,4,6,7,8-HxCDF | R. Total TCDD | W. Total PeCDF | | D. 1,2,3,6,7,8-HxCDD | I. 1,2,3,7,8-PeCDF | N. 1,2,3,7,8,9-HxCDF | S. Total PeCDD | X. Total HxCDF | | E. 1,2,3,7,8,9-HxCDD | J. 2,3,4,7,8-PeCDF | O. 1,2,3,4,6,7,8-HpCDF | T. Total HxCDD | Y. Total HpCDF | | Notes: | | | |--------|--|--| | | | | | LDC | #. | 36 | 282 02 | 1 | |-----|----|----|--------|---| | LDC | #* | | | • | # VALIDATION FINDINGS WORKSHEET Blanks | Page:of | | |---------------|---| | Reviewer: | 2 | | 2nd Reviewer: | | Code = 7 METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Were all samples associated with a method blank? YN N/A Was a method blank performed for each matrix and whenever a sample extraction was performed? Y/N N/A Was the method blank contaminated? | Blank extraction date: 식 | <u>6 16</u> | Blank analysis date:_ | 4/12/1 | |--------------------------|-------------|-----------------------|--------| | Conc. units: na ka | | | | Associated samples: | Compound | Blank ID | | | Sam | ple Identificatio | on |
* | |
--|----------|----|--------|-----|-------------------|----|-------|--| | The first and the confident of the first f | 160406- | MP | 5 | | | | | | | G | 1.8 | | _ | | | | | | | U | 0.50 | | 1.57 | | | |
 | | | 7 | 0.25 | | _ | | | | | | | Χ | 0.30 | | - | | | | | | | W | 0.28 | | - | | | | | | | R | 0.088 | | 0.29] | | | | | | | ✓ | 0.24 | | - | , | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC#: 36282 D2/ # VALIDATION FINDINGS WORKSHEET Blanks | Page: <u>/</u> of/ | | |--------------------|--| | Reviewer: | | | 2nd Reviewer: | | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YN N/A Were all samples associated with a method blank? Y N/A Was a method blank performed for each matrix and whenever a sample extraction was performed? code = " YN N/A Was the method blank contaminated? Blank extraction date: 3|21|16 Blank analysi Conc. units: いる | とっ Blank analysis date: 4 4 16 Associated samples: 1-74, 6-714 | Compound | Blank ID | | | | Sam | ple Identification | on | <u></u> | | | | | |------------|----------|----|--------|--------|--------|------------------------------|------|---------|------|-------|--|--| | | 160321- | MB | 1 | 2 | 3 | 4 | 57 | 6 | 17 | 8 | | | | € Р | 0.55 | | 0.43 V | 0.21 U | 8.17 | 0.334 | 1.5 | - | 1.57 | 0.321 | | | | · Q | 0.36 | | | | 7.9) | 0.224 | -/ | _ | | | | | | t y | 0.55 | | 0.563 | 0.21 U | 793811 | 0.80] | 1/51 | 0.314 | 1.57 | 0.32 | | | | * | 0.054 | | | 0.21 | 621 | 0.27] | _ | _ | - | : | | | | | | | | | | | | | | | | | | W | -, ,= ··= ₁ , , , | | | 4 | | | | | | | | | | | **** | ggggg | | | | | | | | | | | | | | 7 EDL | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC#: 36282D/ ## **VALIDATION FINDINGS WORKSHEET Blanks** | / | 1 | |---------------|---| | Page: /_of | | | Reviewer:_ 🖋 | 7 | | 2nd Reviewer: | _ | | WETHOD: HRGC/HRMS Dioxins/Dibenzofurans | (EPA | SW | 846 | Method | d 8290° | |---|------|----|-----|--------|---------| |---|------|----|-----|--------|---------| Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A Were all samples associated with a method blank? Was a method blank performed for each matrix and whenever a sample extraction was performed? N/A Y/N N/A Was the method blank contaminated? Plank extraction date: ろに Blank analysi Blank analysis date: 4 4 16 Associated samples:___ | Conc. units: na ka | Diam | k allalysis ua | ite | | | ssociated sa | mpies:i | + + | | , | |--------------------|----------|----------------|-----------------------|-------|---------|--------------|---------|-----|--|---| | Compound | Blank ID | | Sample Identification | | | | | | | | | | 160321- | MB | 10 | 11 | 12 | 13 | JA F7 | | | | | ۴ ۲ | 0.55 | | - | 0.294 | _ | 5.31 | | | | | | e Q | 0.36 | | _ | · ••• | - | - | | | | | | ж ч | 0.55 | | 0.254 | 0.294 | 0.324 | 5.3) | | | | | | * * | 0.054 | | 0.27) | 2.31 | - | - | <u></u> | | | | | | | · | * 7 E D L | | | | | | · | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC#: 36282D2) ## **VALIDATION FINDINGS WORKSHEET** Blanks | Page:_ | _/of/ | |---------------|----------| | Reviewer: | <u>P</u> | | 2nd Reviewer: | K | | WETHOD: HRGC/HRMS Dioxins/Dibenzofurans | (EPA | SW 846 | Method 82 | 90) | |---|------|--------|-----------|-----| |---|------|--------|-----------|-----| Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were all samples associated with a method blank? Was a method blank performed for each matrix and whenever a sample extraction was performed? Y/N N/A Was the method blank contaminated? Blank extraction date: 3|18|16 Blank analysis Blank analysis date:_ Associated samples: | Conc. units: pall | | | | | | | | | | | |-------------------|----------|----|-----------------------|--|--|--|--|--|--|---| | Compound | Blank ID | | Sample Identification | | | | | | | | | | 160318- | NB | 175 | | | | | | | | | № M | 4.2 | | - | | | | | | | | | ₹ G | 43 | | 573 | | | | | | | | | * Y | 2. | | _ | | | | | | | | | ▶ Y | 9.5 | | <u> </u> | | | | | | | | | ≠ X | 20 | | 104 | | | | | | | | | * W | 1.4 | | 7.27 | | | | | | | | | * R | 1.) | | - | | | | | | | | | * V | 2.5 | | _ | : | * > EOL | | | | | | | | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC#: 3628202) #### **VALIDATION FINDINGS WORKSHEET** Field Blanks | Page: | of/ | |---------------|-----| | Reviewer: | 7 | | 2nd Reviewer: | | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) ✓ N N/A Were field blanks identified in this SDG? Blank units: pg/l Associated sample units: ng Sampling date: 3 8 16 Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples: | Compound | Blank ID | | Sample Identification | | | | | | | | |----------|-------------|----------|-----------------------|-------|-------|-------|------|-------|-------|-------| | | 15 | ١ | 2 | 3 | 4 | 6 | 8 | 9 | 10 | [] | | G | 57 | - | 1.64 | (139) | 2.34 | 3.0 U | | | 1.64 | 2.4VI | | Q | 4.0 | 0.364 | _ | 7.93 | D.22U | - | | | - | - | | X | 10 | <u>-</u> | 0.214 | 6.24 | 0.274 | - | | | 0.274 | 2.34 | | W | 7.2 | 12 AJ | | 1.04 | | 0.154 | 2454 | 0.124 | 0.234 | - | | | | | | | | | | | | | | RQL | | | | | | | | | | | Blank units: pg / Associated sample units: ng / g Sampling date: 3 | 8 | 16 Field blank type: (circle one) Field Blank / Rinsate / Other EB Associated Samples: All XOIL > | Compound | Blank ID | | Sample Identification | | | | | | | |----------|----------|--------|-----------------------|-------|-----|----------|--|--|--| | | 15 | 17 | 13 | 14 | 1 (| (4) | | | | | 9 | 57 | 0.934 | 470 | | | | | | | | Q | 40 | | _ | | | | | | | | X | 10 | | - | | | | | | | | W | 7.2 | 0.35 U | 0.524 | 0.361 | | ļ | CRQL | | | <u> </u> | | | <u> </u> | | | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING
STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CRQL # VALIDATION FINDINGS WORKSHEET Field Blanks | Page:_ | of_ | _ | |-------------|-----|---| | Reviewer: | D | 2 | | nd Reviewer | M | , | | | | | | <u>Sianks</u> | | | | Reviewer: 2nd Reviewer: X | |---|---------------------|-----------------------|---------|---------------|------------------|----------|------|---------------------------| | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) (YN N/A Were field blanks identified in this SDG? Blank units: px L Associated sample units: pg L Sampling date: 3 S L L L L L L L L L | | | | | | code = 6 | | | | Sampling date: つりょういち
Field blank type: (circle one | ال
) Field Blank | / Rinsate / Other: 50 | Associa | ted Samples: | | aıl | wair | . 3 | | Compound | Blank ID | | | S | ample Identifica | ntion | | | | | SB | 12 | | | | | | | | Μ | 7.4 | | | | | | | | | G | 25 | 57] | | | | | | | | 7 | 2.8 | | | | | | | | | X | 2.4 | Loi | | | | | | | | T | 1.9 | | | | | | | | | CRQL | | | | | 17 | | | | | Blank units: Asso
Bampling date:
Field blank type: (circle one | _ | | Associa | ted Samples: | | | | | | Compound | Blank ID | | | S | ample Identifica | ition | , | | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". LDC#: 3628202/ ## **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | F | Page:_ | <u></u> | 1 | |------------|---------|---------|----------| | Revi | iewer:_ | | <u>2</u> | | 2nd Revi | ewer:_ | R | _ | | ZIIG IXEVI | CWCI | | _ | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$ average RRF = sum of the RRFs/number of standards A_x = Area of compound, A_{is} = Area of associated internal standard %RSD = 100 * (S/X) C_x = Concentration of compound, C_{is} = Concentration of internal standard C_{is} = Standard deviation of the RRFs, C_{is} = Concentration of internal standard C_{is} = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---------|-------------|---------------------|--|--------------------------|--------------------------|------------------------------|---------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | Average
RRF (initial) | RRF
(といっろ ^{std)} | RRF
(C 5-3 std) | %RSD | %RSD | | 1 | IGA L | 3/2/16 | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | 0.951858 | 0.951858 | 0.91456 | 0.91456 | 3.29222 | 3.2922 | | | | , , | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | 1.07768 | 1.07768 | 1.09162 | 1.09162 | 5.022 | 5.022 | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | 1.05456 | 1.05456 | 1.02/52 | 1-02/52 | 2.30779 | 2.3077 | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | 0.990196 | 0.990196 | 0.96245 | 0.96245 | 3-63217 | | | | | | OCDF (13C-OCDD) | 1.21618 | 1.21618 | 1.18811 | 1.18811 | 5.75034 | 5.75034 | | 2 | | | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)
2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | | | | | | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | | | | | | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | | | | | | | | <u></u> | | | OCDF (13C-OCDD) | | | | | | | | 3 | | ; | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | | | | , | | | | | | | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | | | | | | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | | | | | | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | | | | | | | | | | | OCDF (13C-OCDD) | | | | | | | | Comments: | Refer to Initial | Calibration findin | <u>gs worksheet for</u> | <u>list of qualificatio</u> | <u>ns and associated</u> | samples when | reported result | <u>s do not agree withir</u> | <u>10.0% of the </u> | |--------------|------------------|--------------------|-------------------------|-----------------------------|--------------------------|--------------|-----------------|------------------------------|----------------------| | recalculated | results. | LDC#: 36282D 2/ ## **VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification** | | D | / | 1 | |-----|-----------|-----|---| | | Page:_ | or_ | | | | Reviewer: | Z | 2 | | 2nd | Reviewer: | | | | | | | | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF $A_x =$ Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard Cis = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|---|-------------|----------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | Average RRF | RRF | RRF | %D | n/ D | | # | Standard ID | | Compound (Reference internal Standard) | (initial) | (CC) | (CC) | | <u>%</u> D | | 1 | 160404_HR_ | 4/4/16 | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | 0.95/858 | 0.826 | 0.826 | 13.2 | 13.2 | | | 02 ce/ | • | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | 1.07768 | 1.02 | 1.025 | 4.9 | 4.9, | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | 1.05456 | 0.990 | 0.990 | 6./ | 6./ | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | 0.990196 | 6.775 | 0.975 | 1.5 | /-5 | | | | | OCDF (13C-OCDD) | 1.21618 | 1.175 | 1.175 | 3-4 | 3.4 | | 2 | 160404_HR | 4/6/16 | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | | 0.825 | 0.825 | 13.4 | 13.4 | | | _ 41 ca | | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | 1.028 | 1.028 | 4.7 | 4.7 | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | 1.053 | 1.053 | 0.7 | 0.2 | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | | 0.976 | 0.976 | 1-4 | 1-4 | | | | | OCDF (13C-OCDD) | <u> </u> | 1.190 | 1-190 | 2-2 | 2.2 | | 3 | 160404 HR | 4/5/16 | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | | 0.791 | 0.791 | 17-0 | 17.0 | | | _2/ cev | , - | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | 0.969 | 0.969 | (0-) | 10.1 | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | 1.014 | 1.014 | 39 | 3.9 | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | V | 0.950 | 0-950 | 4.0 | 4.0 | | | | | OCDF (13C-OCDD) | | 1.148 | 1-148 | ما . ک | 5.6 | Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. C:\Users\jgo\Desktop\WorkSheets\8290\L4\CONCLC90.wpd LDC#: 36282/D2/ # **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | Page:_ | / _{of_} | _/ | |---------------|------------------|----| | Reviewer: | 7= | 2 | | 2nd Reviewer: | X | | | | _ | _ | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) | The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified | ed below | |---|----------| | using the following calculation: | | % Recovery = 100 * (SSR - SR)/SA Where: SSR = Spiked sample result, SR = Sample result SA = Spike added RPD = I MSR - MSDR I * 2/(MSR + MSDR) MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery MS/MSD samples: 16 + 17 | | Ad | oike
ded | Sample
Concentra | tion | Concer | Sample
ntration | | Spike | Matrix Spik | e Duplicate | MS/I | WISD | |---------------------|------|-------------|---------------------|------------|--------|--------------------|----------|----------|-------------|-------------|----------|--------| | Compound | (ng | (kg) | (ng/k | a / | (ng | 1Key | Percent | Recovery | Percent | Recovery | RPD | RPD | | | MS | MSD | 9 (| J | MS | MSD | Reported | Recalc | Reported | Recalc | Reported | Recalc | | 2,3,7,8-TCDD | 33.4 | 33.3 | QN | _ | 32.3 | 34.7 | 96.7 | 96.7 | 104 | 104 | 7.2 | 7.2 | | 1,2,3,7,8-PeCDD | 83.6 | 83.6 | | | 81.6 | 85.4 | 97.6 | 97.6 | 102 | 102 | 4.6 | 46 | | 1,2,3,4,7,8-HxCDD | 83.6 | 83.6 | | | 72.8 | 13.6 | 87.1 | 87.1 | 8X.O | <i>₩0</i> | 1.] | 1.1 | | 1,2,3,4,7,8,9-HpCDF | 83.6 | 83.6 | | | 662 | 67.8 | 79.2 | 79.2 | ४।.\ | 81.1 | 2.4 | 2.4 | | OCDF | 167 | 167 | | , | 127 | 134 | 76 | 76 | 80.2 | 80.7 | 5.4 | 5.4 | - | | | | | | | | | | | _ | | | | | | | | | | | | | |
| | | | | | | | | | Comments: | Refer to Matrix | Spike/Matrix | Spike Duplicate | findings work | sheet for list of | of qualifications | and associated | samples when | reported resu | <u>ults do not agree</u> | within 10.0% of the | |--------------|-----------------|--------------|-----------------|---------------|-------------------|-------------------|----------------|--------------|---------------|--------------------------|---------------------| | recalculated | l results. | | | | | | | | 1 | | | | | • | | | | | | | _ | | | | | | | | | | | - | | | | | | LDC#: 36282/D2/ # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page:_ | 1 | _of_ | 1 | |----------------|---|------------|---| | Reviewer: | | 1 | 2 | | 2nd Reviewer:_ | | <u>'21</u> | | | | | | | METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = ILCS - LCSD I * 2/(LCS + LCSD) LCS = Laboraotry control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCSID: 160321 - 105 | Compound | Ad | Spike Spiked Sample Added Concentration (ng 43 (ng 54) | | I CS Percent Recovery | | | Recovery | | LCSD
PD | | |---------------------|------|--|------|-----------------------|----------|--------|----------|--------|------------|--------| | | LCS | J CSD | LCS | LCSD | Reported | Recalc | Reported | Recalc | Reported | Recalc | | 2,3,7,8-TCDD | 49.8 | NA | 43.8 | 74 | 8y.U | G.Y.S | | | | | | 1,2,3,7,8-PeCDD | 124 | | 109 | | 87.9 | 87.9 | | | | | | 1,2,3,4,7,8-HxCDD | 124 | | 99.6 | | 80.3 | 80.3 | | | | | | 1,2,3,4,7,8,9-HpCDF | 124 | | 89.5 | | 72.2 | | | | | | | OCDF | 249 | | 187 | | 75. | 75.1 | NA | 1 | , | | | Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 3628202) Df %S Dilution Factor. #### **VALIDATION FINDINGS WORKSHEET** # Sample Calculation Verification Were all reported results recalculated and verified for all level IV samples? | Page:_1 | of_1_ | |---------------|-------| | Reviewer: | F7 | | 2nd reviewer: | A | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) Percent solids, applicable to soil and solid matrices | YNN | I/A | Were all recalculated results for detected ta | rget compounds agree within 10.0% of the reported results? | |----------------|----------|--|--| | Concer | ntration | $f = \frac{(A_s)(I_s)(DF)}{(A_s)(RRF)(V_s)(\%S)}$ | Example: | | A _x | = | Area of the characteristic ion (EICP) for the compound to be measured | Sample I.D. <u>#12</u> , <u>OCOD</u> : | | A_{is} | = | Area of the characteristic ion (EICP) for the specific internal standard | (2.99 69 40 × 10 ²) | | 1 _s | = | Amount of internal standard added in nanograms (ng) | Conc. = 3.040940 ×10 / (200) (0.05) (100) | | V_{o} | = | Volume or weight of sample extract in milliliters (ml) or grams (g). | (1.9 12 105 X105) (1.07099) (15.33) 0.972 | | RRF | = | Relative Response Factor (average) from the initial calibration | = 1.155929 4105 | Reported Calculated Concentration Concentration Compound Sample ID Qualification # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 13, 2016 Parameters: Polychlorinated Dioxins/Dibenzofurans Validation Level: Level III & IV Laboratory: APPL, Inc. Sample Delivery Group (SDG): 78998 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-032** | AZ30748** | Soil | 03/15/16 | | KCH067-033 | AZ30749 | Soil | 03/15/16 | | KCH067-041 | AZ30750 | Water | 03/15/16 | | KCH067-042 | AZ30751 | Water | 03/15/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (September 2011). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) SW 846 Method 8290A All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - **Holding Times** 1 - Sample Preservation (Cooler Temp) 2 - Sample Custody 3 - Missing Deliverables 4 - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) 9 - Laboratory Control Sample ICP Interference Check 10 - 11 - 12 **RPD Between Two Columns** - 13 Surrogates - Field Duplicates 14 - Furnace QC 15 - 16 Serial Dilution - **Chemical Recoveries** 17 - 18 Trip Blanks - 19 Internal Standards - Linear Range Exceeded 20 - Potential False Positives 21 - Do not use, other result more technically sound 22 - 23 Other #### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. HRGC/HRMS Instrument Performance Check Instrument performance was checked at the required daily frequency. Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%. The static resolving power was at least 10,000 (10% valley definition). #### III. Initial Calibration and Initial Calibration Verification A five point initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all labeled and unlabeled compounds. The ion abundance ratios for all PCDDs and PCDFs were within validation criteria. The minimum S/N ratio was greater than or equal to 10 for each unlabeled compounds and labeled compounds for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for unlabeled compounds and
less than or equal to 30.0% for labeled compounds. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0% for labeled and less than or equal to 30.0% for unlabeled compounds. The ion abundance ratios for all PCDDs and PCDFs were within validation criteria. The minimum S/N ratio was greater than or equal to 10 for each unlabeled compounds and labeled compounds for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. ## V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Laboratory
Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |------------------------|--------------------|---|--|--------------------------------| | 160321-MB | 03/21/16 | 1,2,3,4,6,7,8-HpCDD
OCDF
Total HpCDD
Total HxCDF | 0.55 ng/Kg
0.36 ng/Kg
0.55 ng/Kg
0.054 ng/Kg | All soil samples in SDG 78998 | | 160318-MB | 03/18/16 | 2,3,4,6,7,8-HxCDF OCDD Total HpCDD Total HpCDF Total HxCDF Total PeCDF Total TCDD Total TCDD Total TCDD | 4.2 pg/L
43 pg/L
2.1 pg/L
9.5 pg/L
20 pg/L
1.4 pg/L
1.1 pg/L
2.5 pg/L | All water samples in SDG 78998 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------|---------------------|---------------------------|---------------------------------| | KCH067-032** | 1,2,3,4,6,7,8-HpCDD | 51 ng/Kg | 51J ng/Kg | | | OCDF | 4.5 ng/Kg | 4.5J ng/Kg | | | Total HpCDD | 51 ng/Kg | 51J ng/Kg | | | Total HxCDF | 6.7 ng/Kg | 6.7J ng/Kg | | KCH067-033 | 1,2,3,4,6,7,8-HpCDD | 3.3 ng/Kg | 3.3J ng/Kg | | | Total HpCDD | 3.3 ng/Kg | 3.3J ng/Kg | | | Total HxCDF | 0.43 ng/Kg | 0.43J ng/Kg | | KCH067-041 | Total TCDD | 0.87 pg/L | 0.87U pg/L | | | Total TCDF | 12 pg/L | 12U pg/L | | KCH067-042 | 2,3,4,6,7,8-HxCDF | 2.4 pg/L | 2.4U pg/L | | | OCDD | 25 pg/L | 25U pg/L | | | Total HpCDF | 2.8 pg/L | 2.8U pg/L | | | Total HxCDF | 2.4 pg/L | 2.4U pg/L | #### VI. Field Blanks Sample KCH067-041 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|--------------------------|----------------------|----------------------------------| | KCH067-041 | 03/15/16 | Total TCDD
Total TCDF | 0.87 pg/L
12 pg/L | All soil samples in SDG
78998 | Sample KCH067-042 was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|--|---|-----------------------| | KCH067-042 | 03/15/16 | 2,3,4,6,7,8-HxCDF
OCDD
Total HpCDF
Total HxCDF
Total HxCDD | 2.4 ng/L
25 ng/L
2.8 ng/L
2.4 ng/L
1.9 ng/L | KCH067-041 | Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------|--------------------------|---------------------------|---------------------------------| | KCH067-032** | Total TCDD
Total TCDF | 0.095 ng/Kg
2.5 ng/Kg | 0.095U ng/Kg
2.5U ng/Kg | | KCH067-033 | Total TCDF | 0.51 ng/Kg | 0.51U ng/Kg | #### VII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. ## VIII. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### IX. Field Duplicates No field duplicates were identified in this SDG. #### X. Internal Standards All internal standard recoveries (%R) were within QC limits. #### XI. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected or estimated in four samples. Due to equipment blank contamination, data were qualified as not detected in two samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. #### China Lake CTO 067 # Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 78998 # No Sample Data Qualified in this SDG # China Lake CTO 067 Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 78998 | Sample | Compound | Modified Final
Concentration | A or P | Code | |--------------|---|--|--------|------| | KCH067-032** | 1,2,3,4,6,7,8-HpCDD
OCDF
Total HpCDD
Total HxCDF | 51J ng/Kg
4.5J ng/Kg
51J ng/Kg
6.7J ng/Kg | А | 7 | | KCH067-033 | 1,2,3,4,6,7,8-HpCDD
Total HpCDD
Total HxCDF | 3.3J ng/Kg
3.3J ng/Kg
0.43J ng/Kg | А | 7 | | KCH067-041 | Total TCDD
Total TCDF | 0.87U pg/L
12U pg/L | Α | 7 | | KCH067-042 | 2,3,4,6,7,8-HxCDF
OCDD
Total HpCDF
Total HxCDF | 2.4U pg/L
25U pg/L
2.8U pg/L
2.4U pg/L | A | 7 | # China Lake CTO 067 Polychlorinated Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG 78998 | Sample | Compound | Modified Final
Concentration | A or P | Code | |--------------|-----------------------|---------------------------------|--------|------| | KCH067-032** | Total TCDD Total TCDF | 0.095U ng/Kg
2.5U ng/Kg | Α | 6 | | KCH067-033 | Total TCDF | 0.51U ng/Kg | Α | 6 | Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-032 Sample Collection Date: 03/15/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78998 APPL ID: AZ30748 QCG: \$829ACTO6-160321-2062 | EPA 8290A 1,2,3,4,6,7,8-HPCDD | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date An | alysis Date | |--|-----------|---------------------------------------|--------|------------------|-----------------|-------|-------------|-------------| | EPA 8290A 1,2,3,4,6,7,8-HPCDF | EPA 8290A |
1,2,3,4,6,7,8-HPCDD | 51 | J(7)12.5 | 51PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,4,7,8+HXCDD | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 1.5 U | 12.5 | 1.5PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,4,7,8-HXCDF | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.27 U | 12.5 | 0.27 D L | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,6,7,8-HXCDD 1.6 J 12.5 | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.29 J | 12.5 | 0.29PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,6,7,8-HXCDF | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.24 J | 12.5 | 0.24PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,7,8,9+HXCDF | EPA 8290A | 1,2,3,6,7,8-HXCDD | 1.6 J | 12.5 | 1.6PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,7,8,9+HXCDF | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.15 U | 12.5 | 0.15PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,7,8-PECDD | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.72 U | 12.5 | 0.72PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 1,2,3,7,8-PECDF | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.70 U | 12.5 | 0.70PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 2,3,4,6,7,8-HXCDF | EPA 8290A | 1,2,3,7,8-PECDD | 0.14 U | 12.5 | 0.14DL | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 2,3,4,7,8-PECDF 0.34 U 12.5 0.34 PC ng/Kg 03/21/16 04/07/16 EPA 8290A 2,3,7,8-TCDD 0.20 U 5.0 0.20 PC, ng/Kg 03/21/16 04/07/16 EPA 8290A 2,3,7,8-TCDF 0.70 U 5.0 0.70 PC ng/Kg 03/21/16 04/07/16 EPA 8290A 0CDD 437 25.0 4.5 PC ng/Kg 03/21/16 04/07/16 EPA 8290A 0CDF 4.5 J √ 25.0 4.5 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL HPCDD 51 12.5 53 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL HPCDF 3.6 U 12.5 3.6 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL HXCDD 12 J 12.5 13 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL HXCDD 12 J 12.5 13 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL PECDD 12 J 12.5 13 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL PECDD 0.38 J 12.5 2.6 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL PECDF 1.7 U 12.5 1.7 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDD 0.95 J J √ 5.0 0.73 PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDD 0.95 J J √ 5.0 0.73 PC ng/Kg 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (\$ 76.9 40-135 | EPA 8290A | 1,2,3,7,8-PECDF | 0.28 U | 12.5 | 0.28PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 2,3,7,8-TCDD | EPA 8290A | 2,3,4,6,7,8-HXCDF | 3.5 U | 12.5 | 3.5PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A 2,3,7,8-TCDF | EPA 8290A | 2,3,4,7,8-PECDF | 0.34 U | 12.5 | 0.34PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A OCDD 437 | EPA 8290A | 2,3,7,8-TCDD | 0.20 U | 5.0 | 0.20PC, | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A OCDF | EPA 8290A | 2,3,7,8-TCDF | 0.70 U | 5.0 | 0.70PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A TOTAL HPCDD 51 | EPA 8290A | OCDD | 437 | 25.0 | | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A TOTAL HPCDD 51 | EPA 8290A | OCDF | 4.5 J | J(フ) 25.0 | | ng/Kg | | 04/07/16 | | EPA 8290A TOTAL HXCDD 12 J 12.5 13PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL HXCDF EPA 8290A TOTAL PECDD 0.38 J 12.5 2.6PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL PECDD 1.7 U 12.5 1.7PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDD 1.7 U 12.5 1.7PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDD 1.7 U 12.5 1.7PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDD 1.7 U 12.5 1.7PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDF 2.5 J 5.0 5.1PC ng/Kg 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 90.0 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 76.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 79.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 88.3 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 83.4 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 73.2 40-135 % 03/21/16 04/07/16 | | | 51 | 12.5 | | | | | | EPA 8290A TOTAL HXCDF EPA 8290A TOTAL PECDD 0.38 J 12.5 2.6PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL PECDD 1.7 U 12.5 1.7PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDD 0.095 J U(b) 5.0 0.73PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDF 2.5 J 5.0 0.73PC ng/Kg 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S PA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S PA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S PA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HXCDF (S) PA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) PA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) PA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) PA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) PA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) PA 8290A SURROGATE: 13C-2,3,7,8-TCDD 13C-2 | | | | | | | | 04/07/16 | | EPA 8290A TOTAL PECDD 0.38 J 12.5 2.6PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL PECDF 1.7 U 12.5 1.7PC ng/Kg 03/21/16 04/07/16 EPA 8290A TOTAL TCDD 0.095 J 0.096 0.0 | EPA 8290A | TOTAL HXCDD | | | | ng/Kg | | 04/07/16 | | EPA 8290A TOTAL PECDF EPA 8290A TOTAL TCDD EPA 8290A TOTAL TCDD EPA 8290A TOTAL TCDF EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HXCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) EPA 8290A SURROGATE: 13C-2,3,7,8-PECDF (S) EPA 8290A SURROGATE: 13C-2,3,7,8-PECDF (S) EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-TCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-TCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-TCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-TCDD (S) | EPA 8290A | TOTAL HXCDF | | J(7) 12.5 | | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A TOTAL TCDD EPA 8290A TOTAL TCDF EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) EPA 8290A SURROGATE: 13C-2,3,7,8-PECDF (S) EPA 8290A SURROGATE: 13C-2,3,7,8-PECDF (S) EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) FOR | EPA 8290A | TOTAL PECDD | | 12.5 | | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A TOTAL TCDF EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 90.0 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 76.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 79.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 88.3 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 83.4 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | TOTAL PECDF | | 12.5 | | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S 90.0 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 76.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 79.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 88.3 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 83.4 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | TOTAL TCDD | | | 0.73PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S 76.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 79.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 88.3 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 83.4 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | TOTAL TCDF | 2.5 J | √ 5.0 | 5.1PC | ng/Kg | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) 79.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 88.3 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 83.4 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 90.0 | 40-135 | | % | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) 88.3 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 83.4 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 76.9 | 40-135 | | % | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDD (S) 83.4
40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 79.9 | 40-135 | | % | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-1,2,3,7,8-PECDF (S) 73.9 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 88.3 | 40-135 | | % | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-2,3,7,8-TCDD (S) 72.5 40-135 % 03/21/16 04/07/16 EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 83.4 | 40-135 | | % | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-2,3,7,8-TCDF (S) 73.2 40-135 % 03/21/16 04/07/16 | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 73.9 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | | 40-135 | | % | 03/21/16 | 04/07/16 | | EPA 8290A SURROGATE: 13C-OCDD (S) 71.5 40-135 % 03/21/16 04/07/16 | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | | 40-135 | | | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 71.5 | 40-135 | | % | 03/21/16 | 04/07/16 | J = Estimated value. Y65116 Quant Method: 160302_8290 Run #: 160404_HR_45 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Printed: 04/08/16 5:21:04 PM Form 1 - APPL Standard GC - No MC Kleinfelder APPL Inc. 1039 Hyland Drive 908 North Temperance Avenue Evergreen, CO 80439 Clovis, CA 93611 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake ARF: 78998 Sample ID: KCH067-033 APPL ID: AZ30749 Sample Collection Date: 03/15/16 QCG: \$829ACTO6-160321-2062 | Sample C | GG. #029ACTOU-100321-2002 | | | | | | | | |-----------|---------------------------------------|-----------------|-----------|----------|-------|--------------|------------|--| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | lysis Date | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 3.3 J | (7) 12.5 | 3.3PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 3.0 J | 12.5 | 3.0PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.079 U | 12.5 | 0.079DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.20 U | 12.5 | 0.20PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.14 U | 12.5 | 0.14PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.065 U | 12.5 | 0.065DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.11 U | 12.5 | 0.11PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.062 U | 12.5 | 0.062DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.068 U | 12.5 | 0.068DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,7,8-PECDD | 0.061 U | 12.5 | 0.061DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 1,2,3,7,8-PECDF | 0.14 U | 12.5 | 0.14DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 0.43 U | 12.5 | 0.43PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 2,3,4,7,8-PECDF | 0.14 U | 12.5 | 0.14DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 2,3,7,8-TCDD | 0.038 U | 5.0 | 0.038DL | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | 2,3, 7,8- TCDF | 0.11 U | 5.0 | 0.11PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | OCDD | 27 | 25.0 | 27PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | OCDF | 1.6 U | 25.0 | 1.6PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL HPCDD | 3.3 J 🗸 | 7(7) 12.5 | 3.7PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL HPCDF | 3.0 J | 12.5 | 3.0PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL HXCDD | 0.60 U | 12.5 | 0.60PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL HXCDF | 0.43 J 🗢 | T(7)12.5 | 2.1PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL PECDD | 0.42 U | 12.5 | 0.42PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL PECDF | 0.39 J | 12.5 | 0.73PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL TCDD | 0.65 U | 5.0 | 0.65PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | TOTAL TCDF | 0.51 J <i>V</i> | 1(6) 5.0 | 1.2PC | ng/Kg | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 87.2 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 78.0 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 88.7 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 95.0 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 90.1 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 81.5 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 86.6 | 40-135 | | % | 03/21/16 | 04/07/16 | | | | SURROGATE: 13C-2,3,7,8-TCDF (S) | 86.3 | 40-135 | | % | 03/21/16 | 04/07/16 | | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 68.4 | 40-135 | | % | 03/21/16 | 04/07/16 | | | | | | | | | | | | J = Estimated value. 765M16 Quant Method: 160302_8290 Run #: 160404_HR_46 Instrument: Magneto Sequence: 160404 Dilution Factor: 1 Initials: RP Printed: 04/08/16 5:21:05 PM Form 1 - APPL Standard GC - No MC Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-041 Sample Collection Date: 03/15/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78998 APPL ID: AZ30750 QCG: \$829ACTO6-160318-2062 | Campic C | QCC. 4020/10/10/10/10/10/10/10/10/10/10/10/10/10 | | | | | | | | |-----------|--|----------|----------|----------|-------|--------------|-------------|--| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | alysis Date | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 5.2 U | 125.0 | 5.2PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDF | 0.52 U | 125.0 | 0.52DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.61 U | 125.0 | 0.61DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.71 U | 125.0 | 0.71DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.78 U | 125.0 | 0.78DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.73 U | 125.0 | 0.73DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.76 U | 125.0 | 0.76DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.69 U | 125.0 | 0.69DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.91 U | 125.0 | 0.91DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8-PECDD | 0.80 U | 125.0 | 0.80DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8-PECDF | 1.2 U | 125.0 | 1.2DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 1.9 U | 125.0 | 1.9PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,4,7,8-PECDF | 1.3 U | 125.0 | 1.3DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,7,8-TCDD | 0.94 U | 50.0 | 0.94PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,7,8-TCDF | 0.61 U | 50.0 | 0.61DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | OCDD | 24 U | 250.0 | 24PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | OCDF | 3.4 U | 250.0 | 3.4PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HPCDD | 14 U | 125.0 | 14PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HPCDF | 3.8 U | 125.0 | 3.8PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HXCDD | 1.6 U | 125.0 | 1.6PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HXCDF | 4.9 U | 125.0 | 4.9PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL PECDD | 2.0 U | 125.0 | 2.0PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL PECDF | 9.0 U | 125.0 | 9.0PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL TCDD | 0.87 J 니 | (フ) 50.0 | 7.1PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL TCDF | 12 J | 50.0 | 18PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 79.7 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 77.3 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 77.8 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 84.0 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 74.4 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDF (S) | 69.0 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDD (S) | 71.7 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 71.3 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 66.9 | 40-135 | | % | 03/18/16 | 04/03/16 | | | | | | | | | | | | J = Estimated value. EX51716 Quant Method: 160302_8290 Run #: 160403_HR_07 Instrument: Magneto Sequence: 160403 Dilution Factor: 1 Initials: RP Printed: 04/08/16 5:21:39 PM Form 1 - APPL Standard GC - No MC Kleinfelder 1039 Hyland Drive Evergreen, CO 80439 Attn: Karin Kaiser Project: 479811.67.07.09.AC CTO067 China Lake Sample ID: KCH067-042 Sample Collection Date: 03/15/16 APPL Inc. 908 North Temperance Avenue Clovis, CA 93611 ARF: 78998 **APPL ID: AZ30751** QCG: \$829ACTO6-160318-2062 | Sample Co | Sample Collection Date: 03/13/10 | | | | | | | | |-----------|---------------------------------------|--------|------------------|----------|-------|--------------|-------------|--| | Method | Analyte | Result | PQL | EDL/EMPC | Units | Ext Date Ana | alysis Date | | | EPA 8290A | 1,2,3,4,6,7,8-HPCDD | 1.2 U | 125.0 | 1.2DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A |
1,2,3,4,6,7,8-HPCDF | 1.1 U | 125.0 | 1,1PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,4,7,8,9-HPCDF | 0.53 U | 125.0 | 0.53DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDD | 0.60 U | 125.0 | 0.60DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,4,7,8-HXCDF | 0.59 U | 125.0 | 0.59DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDD | 0.61 U | 125.0 | 0.61DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,6,7,8-HXCDF | 0.58 U | 125.0 | 0.58DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDD | 0.58 U | 125.0 | 0.58DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8,9-HXCDF | 0.69 U | 125.0 | 0.69DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8-PECDD | 0.75 U | 125.0 | 0.75DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 1,2,3,7,8-PECDF | 0.72 U | 125.0 | 0.72DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,4,6,7,8-HXCDF | 2.4 J | U(7)125.0 | 2.4PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,4,7,8-PECDF | 0.76 U | 125.0 | 0.76DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,7,8-TCDD | 0.70 U | 50.0 | 0.70DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | 2,3,7,8-TCDF | 0.50 U | 50.0 | 0.50DL | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | OCDD | 25 J. | U(7)250.0 | 25PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | OCDF | 2.4 U | 250.0 | 2.4PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HPCDD | 0.87 U | 125.0 | 0.87PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HPCDF | 2.8 J | U(7)125.0 | 7.7PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HXCDD | 1.9 J | 125.0 | ·1.9PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL HXCDF | 2.4 J | $U(7)_{125.0}$ | 3.7PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL PECDD | 1.5 U | ^{125.0} | 1.5PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL PECDF | 9.2 U | 125.0 | 9.2PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL TCDD | 3.9 U | 50.0 | 3.9PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | TOTAL TCDF | 4.8 U | 50.0 | 4.8PC | pg/L | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDD (S | 75.0 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,6,7,8-HPCDF (S | 70.7 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,4,7,8-HXCDF (S) | 72.0 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,6,7,8-HXCDD (S) | 78.6 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-1,2,3,7,8-PECDD (S) | 67.2 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | | 61.7 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | | 65.0 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-2,3,7,8-TCDF (S) | 65.2 | 40-135 | | % | 03/18/16 | 04/03/16 | | | EPA 8290A | SURROGATE: 13C-OCDD (S) | 62.2 | 40-135 | | % | 03/18/16 | 04/03/16 | | | | | | | | | | | | J = Estimated value. E051716 Quant Method: 160302_8290 Run #: 160403_HR_08 Instrument: Magneto Sequence: 160403 Dilution Factor: 1 Initials: RP Printed: 04/09/16 10:07:05 AM Form 1 - APPL Standard GC - No MC | LDC #:_ | 36282E21 |
VAL | |---------|----------|---------| | SDG #: | 78998 | | Laboratory: APPL, Inc. # LIDATION COMPLETENESS WORKSHEET Standard/Full | | -/./. | |---------------|---------| | Date: | 3/11/16 | | Page: | 1 of 1' | | Reviewer: | 7 | | 2nd Reviewer: | 1 | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW846 Method 8290A) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|------|---| | l. | Sample receipt/Technical holding times | A /A | | | II. | HRGC/HRMS Instrument performance check | A | | | 111. | Initial calibration/ICV | AA | % PSD = 20 10N = 20/30 unlabelio 1 1 belo cov = 20/30 b | | IV. | Continuing calibration | | ccv = 20/20 b | | V. | Laboratory Blanks | SW | / | | VI. | Field blanks | SW | EB=3 SB=4 | | VII. | Matrix spike/Matrix spike duplicates | 2 | 05 | | VIII. | Laboratory control samples | A | Les | | IX. | Field duplicates | N | | | X. | Internal standards | Δ | | | XI. | Compound quantitation RL/LOQ/LODs | Δ | Not reviewed for Standard validation. | | XII. | Target compound identification | Δ | Not reviewed for Standard validation. | | XIII. | System performance | Δ | Not reviewed for Standard validation. | | XIV. | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Full validation Lab ID Matrix Date Client ID 12 KCH067-032** AZ30748** Soil 03/15/16 KCH067-033 AZ30749 Soil 03/15/16 AZ30750 KCH067-041 Water 03/15/16 KCH067-042 AZ30751 03/15/16 Water 6 8 10 | Notes: | | | |----------------|--|--| | +1 160318-MB | | | | +2 160321 - MB | | | | | | | LDC#: 36282 E2 # VALIDATION FINDINGS CHECKLIST | Page: <u>/</u> of_ | 2 | |-------------------------|---| | Reviewer:/ | 5 | | 2ndReviewer: / r | Ĺ | Method: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) | Validation Area | Yes | No | NA | Findings/Comments | |--|-----|----------|------|-------------------| | I. Technical holding times | | | | | | All technical holding times were met. | | | | | | Cooler temperature criteria was met. | | | | | | II. GC/MS Instrument performance check | | = | | | | Was PFK exact mass 380.9760 verified? | | | | | | Were the retention time windows established for all homologues? | | _ | | - | | Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ? | / | | | | | Is the static resolving power at least 10,000 (10% valley definition)? | | | | | | Was the mass resolution adequately check with PFK? | | | | | | Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified? | / | | | | | Illa:Initial calibration | | | · | | | Was the initial calibration performed at 5 concentration levels? | | | | | | Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and labeled compounds ? | / | | | | | Did all calibration standards meet the Ion Abundance Ratio criteria? | / | - | | | | Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10? | | | | | | IIIb. Initial Calibration Verification | | | | | | Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | / | | | | | Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ? | / | | | | | IV. Continuing calibration | | | | | | Was a contiuning calibration performed at the beginning and end of each 12 hour period? | / | | | | | Were all percent differences (%D) \leq 20% for unlabeled compounds and \leq 30% for labeled compounds ? | / | | | | | Did all routine calibration standards meet the Ion Abundance Ratio criteria? | _ | | | | | Was the signal to noise ratio for each target compound and for each recovery and internal standard ≥ 10? | / | | | | | V. Laboratory Blanks | | | *** | | | Was a method blank associated with every sample in this SDG? | | | | | | Was a method blank performed for each matrix and whenever a sample extraction was performed? | / | | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet? | / | | | | | VI. Field blanks | | <u> </u> | 1.13 | | | Field blanks were identified in this SDG. | / | | | | | Target compounds were detected in the field blanks. | / | | | | | VII. Matrix spike/Matrix spike duplicates | | | | | LDC#: 36282 E2 #### **VALIDATION FINDINGS CHECKLIST** | Page:_ 2 o | | |-------------------|-----| | Reviewer: | F7 | | 2nd Reviewer: | T A | | Validation Area | Yes | No | NA | Findings/Comments | |---|-------------------|----------|------|-------------------| | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | <u> </u> | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | | | | | VIII. Laboratory control samples | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | IX. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | / | - | | | Target compounds were detected in the field duplicates. | | | _ | | | X Internal standards | 5 W 1 V | | | | | Were internal standard recoveries within the 40-135% criteria? | / | | | | | Was the minimum S/N ratio of all internal standard peaks ≥ 10? | | 1 | | | | XI. Compound quantitation | langu d
Asarta | | 14/3 | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | | | | | | Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | _ | | | | | XII. Target compound identification | | | | | | For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard? | / | | | | | For 2,3,7,8 substituted congeners without associated labeled
standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration? | / | | | | | For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution? | | | | | | Did compound spectra contain all characteristic ions listed in the table attached? | / | | | | | Was the Ion Abundance Ratio for the two quantitation ions within criteria? | / | | | | | Was the signal to noise ratio for each target compound and labeled standard > 2.5? | / | | | | | Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)? | / | | | | | For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel? | / | | | | | Was an acceptable lock mass recorded and monitored? | / | | | | | XIII. System performance | | | | | | System performance was found to be acceptable. | / | | | | | XIV. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | ## **VALIDATION FINDINGS WORKSHEET** METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) | A. 2,3,7,8-TCDD | F. 1,2,3,4,6,7,8-HpCDD | K. 1,2,3,4,7,8-HxCDF | P. 1,2,3,4,7,8,9-HpCDF | U. Total HpCDD | |----------------------|------------------------|------------------------|------------------------|----------------| | B. 1,2,3,7,8-PeCDD | G. OCDD | L. 1,2,3,6,7,8-HxCDF | Q. OCDF | V. Total TCDF | | C. 1,2,3,4,7,8-HxCDD | H. 2,3,7,8-TCDF | M. 2,3,4,6,7,8-HxCDF | R. Total TCDD | W. Total PeCDF | | D. 1,2,3,6,7,8-HxCDD | I. 1,2,3,7,8-PeCDF | N. 1,2,3,7,8,9-HxCDF | S. Total PeCDD | X. Total HxCDF | | E. 1,2,3,7,8,9-HxCDD | J. 2,3,4,7,8-PeCDF | O. 1,2,3,4,6,7,8-HpCDF | T. Total HxCDD | Y. Total HpCDF | | Notes: | | | | |--------|--|--|--| | | | | | | LDC#: 36282EZ | DC #: | 362 | 802 | E | 2 | , | |---------------|-------|-----|-----|---|---|---| |---------------|-------|-----|-----|---|---|---| ## **VALIDATION FINDINGS WORKSHEET Blanks** | Page:_ | _/ _{of_} | _/ | |---------------|-------------------|----| | Reviewer:_ | | 7 | | 2nd Reviewer: | 5 | | | | _ | _ | | METHOD: HRGC/HRMS Dioxins/Dibenzofurans | (EPA SW 846 Method 8290) | |--|--------------------------| |--|--------------------------| Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A Were all samples associated with a method blank? Was a method blank performed for each matrix and whenever a sample extraction was performed? N N/A Was the method blank contaminated? Blank extraction date: 3 21 Blank analysis Blank analysis date: 4/4/16 Associated samples: | Compound | Blank ID | | Sample Identification | | | | | | | | |----------|----------|----|-----------------------|---|-------|--|--|--|--|---| | | 16032 | иB | 1 | | 2 | | | | | | | P | 0.55 | | 517 | | 3.31 | | | | | | | Q | 0-36 | | 4.5] | | | | | | | | | Ч | 0.55 | | 517 | | 3.37 | | | | | | | Х | 0.054 | | 6.7) | | 0.43) | | | | | | | , | | | | + | İ | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". LDC #: 36282 E2) ### **VALIDATION FINDINGS WORKSHEET** Blanks | Page:_ | / _{of_} / | |---------------|--------------------| | Reviewer: | 7 | | 2nd Reviewer: | M | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were all samples associated with a method blank? Y N N/A Was a method blank performed for each matrix and whenever a sample extraction was performed? Y N N/A Was the method blank contaminated? Blank extraction date: つりが Blank analysis Conc. units: Blank analysis date: 4 3 16 evol = 7 al war Associated samples: | г | sone. units. pa | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | |---|-----------------|----------|----|---------------------------------------|------|--|---------------------------------------|--|--|---|--| | | Compound | Blank ID | | Sample Identification | | | | | | | | | | 47.7 | 160318- | MB | か | 4 | | | | | | | | = | <u> </u> | 4-2 | | | 2.44 | | | | | | | | : | 4 | 43 | | | 25 U | | | | | | | | 4 | ų | 2.1 | | | | | | | | | | | 4 | Υ | 9.5 | | | 2.84 | | · · · · · · · · · · · · · · · · · · · | | | | | | 4 | Х | 20 | | | 2.44 | | | | | | | | 4 | W | 1.4 | | | | | | | | 4 | | | - | R | 1.] | | 0.874 | | | | | | | | | 4 | V | 2.5 | | 12 1 | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U". | LDC#: 36282E | 2 1 | |--------------|-----| |--------------|-----| # VALIDATION FINDINGS WORKSHEET Field Blanks | Page:_ | <u>/</u> _of_ | _ | |---------------|---------------|---| | Reviewer:_ | P | 7 | | 2nd Reviewer: | 7 | | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) | N/A Were field blanks
units: アタート Asso
ling date: つりりし
blank type: (circle one | ciated sample un
P Field Blank / Rins | its:ng_ kg
sate/Other:EBA | Associated Samples: | All | whe = (| <i>D</i> | |---|--|------------------------------|---------------------|--------------|---------|----------| | Compound | Blank ID | | Sample Ide | entification | | | | 30 22 23 | 3 | | 2 | | | | | R | 7٪.0 | 0.095 U | | | | | | 4 | 12 | a.5 U | 0.51 U | Blank units: wg | Associated sample units: wg | Sampling date: 3 | 5 | V | Field blank type: (circle one) Field Blank / Rinsate / Other: 58 | Associated Samples: 3 (ND) | | Compound | Blank ID | | Sample Identific | ation | <i></i> | | |----|----------|----------|--|------------------|-------|---------|---| | | | 4 | | | | | | | | Μ | 2.4 | | | | | ŕ | | | G | 25 | | | | | | | | Y | 2.8 | | | | | | | | × | 7.4 | | | | | | | 1 | T | 1.9 | | | | | | | | | | | | | | | | CF | RQL | | | | | | : | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". LDC#: 36282 F2/ # **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | | Page:_ | <u></u> | 1 | |-----|-----------|---------|---| | | Reviewer: | F | | | 2nd | Reviewer: | 7 | | | | | | | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 8290) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) $\begin{array}{ll} A_x = \text{Area of compound,} & A_{is} = \text{Area of associated internal standard} \\ C_x = \text{Concentration of compound,} & C_{is} = \text{Concentration of internal standard} \\ S = \text{Standard deviation of the RRFs,} & X = \text{Mean of the RRFs} \end{array}$ | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|---|--------------------------|--------------------------|------------------------------|---------------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal
Standard) | Average RRF
(initial) | Average
RRF (initial) | RRF
(とい-3 ^{std)} | RRF
(< 5-3 std) | %RSD | %RSD | | 1 | IGA L | 3/2/16 | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | 0.951858 | 0.951858 | 0.91456 | 0.91456 | 3.29222 | 3.2922 | | | , - | ' ' | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | 1.07768 | 1.07768 | 1.09162 | 1.09162 | 5.022 | 5.022 | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | 1.05456 | 1.05456 | 1.02/52 | 1-02/52 | 2.30779 | 2.3077 | | | · | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | 0.990196 | | 0.96245 | 0.96245 | 3-63217 | 3.63217 | | | | | OCDF (13C-OCDD) | 1.21618 | 1.21618 | 1.18811 | 1.18811 | 5.75034 | 5.75034 | | 2 | | | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | | | | | | | | | | | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | | | | | | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | | | | | | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | | | | | | | | | | | OCDF (13C-OCDD) | | | | | | | | 3 | | | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | | | | | | | | | | | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | | | | | | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | | | | | | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | | | | | | | | | | | OCDF (13C-OCDD) | | | | | | | | Comments: | Refer to Initial | Calibration finding | <u>gs worksheet fo</u> | or list of | <u>qualifications</u> | and a | <u>issociated</u> | samples w | hen rep | orted r | esults do | <u>not ac</u> |
<u>gree within</u> | <u>10.0% of the</u> | |--------------|------------------|---------------------|------------------------|------------|-----------------------|-------|-------------------|-----------|---------|---------|-----------|---------------|--------------------|---------------------| | recalculated | results. | | | | | | | · | | | | | , | | | | | | | | | | | | | | | | | | LDC #: 36282 E2/ # **VALIDATION FINDINGS WORKSHEET** Routine Calibration Results Verification | | / | 1 | |---------------|-----|---| | Page:_ | of_ | _ | | Reviewer: | T | 2 | | 2nd Reviewer: | 'A | | | | • | | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF $A_x =$ Area of compound, A_{is} = Area of associated internal standard C, = Concentration of compound, C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |---|-------------|---------------------|---|--------------------------|-------------|--------------|----------|--------------| | # | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | 160404_HR | 4/4/16 | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | 0.95/858 | 0.826 | 0.826 | 13.2 | 13.2 | | | 02 ce/ | | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | 1.07768 | 1.02 | 1.025 | 4-9 | 4.9, | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | 1.05456 | 0.990 | 0.990 | 6-/ | 6./ | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | 0.990196 | 6.775 | 0.975 | 1.5 | /-5 | | | | | OCDF (13C-OCDD) | 1.21618 | 1.175 | 1.175 | 3-4 | 3.4 | | 2 | 160404_HR | 4/6/16 | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | | 0.825 | 0.825 | 13.4 | 13.4 | | | _ 41 cal | • | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | 1.028 | 1.028 | 4.7 | 4.7 | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | 1.053 | 1.053 | 0.7 | 0.2 | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | | 0.976 | 0.976 | 1-4 | 1-4 | | | | | OCDF (13C-OCDD) | | 1.190 | 1-190 | 2-2 | 2.2 | | 3 | | | 2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF) | | | | | | | | | | 2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD) | | | | | | | | | | 1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD) | | | | | | | | | | 1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD) | | | | | | | | | | OCDF (¹³ C-OCDD) | | | | | | Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 3628ZEZ/ # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | Page: | 1 | _of_ | 1 | |---------------|----|--------|---| | Reviewer | | F | ラ | | 2nd Reviewer: | _, | M | | | | | \neg | | METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCS - LCSD | * 2/(LCS + LCSD) LCS = Laboraotry control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCS ID: 160321 - 10010 | Compound | Ac | pike
Ided | Conce | I Sample
entration | | CS
Recovery | | CSD
Recovery | | LCSD
PD | |---------------------|------|--------------|-------|-----------------------|----------|----------------|----------|-----------------|----------|------------| | | LCS | LCSD | LCS |) CSD | Reported | Recalc | Reported | Recalc | Reported | Recalc | | 2,3,7,8-TCDD | 49.8 | NA | 43.8 | NA | 8K ' () | 88.0 | | | | | | 1,2,3,7,8-PeCDD | 124 | | 105 | | 84.7 | 84.7 | | | | | | 1,2,3,4,7,8-HxCDD | 124 | | 99.6 | | 80.3 | 80.3 | | | | | | 1,2,3,4,7,8,9-HpCDF | 124 | | 89.5 | | 72.2 | 72.2 | | | | | | OCDF | 249 | | 187 | | 75.1 | 75.1 | NA | <u> </u> | | | | - | _ | Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC#: 36282E2/ ### **VALIDATION FINDINGS WORKSHEET** ### Sample Calculation Verification | Page: | _1_of_1_ | |----------------|----------| | Reviewer:_ | F-7 | | 2nd reviewer:_ | _'/ | METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290) Y N N/A Y N N/A Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results? Example: Concentration = $(A_s)(I_s)(DF)$ $(A_{is})(RRF)(V_o)(\%S)$ Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) Volume or weight of sample extract in milliliters (ml) or V_o grams (g). **RRF** Relative Response Factor (average) from the initial calibration Df Dilution Factor. %S Percent solids, applicable to soil and solid matrices Sample I.D. $\frac{4}{1}$, ocpo: Conc. = $\frac{(1.325662 \times 10^{5})}{(1.494042 \times 10^{5})}$ (200) (0.06) (1100) = $\frac{(2.43681 \times 10^{5})}{(1.07099)}$ (13.00) = $\frac{(3.436840 \times 10^{5})}{(1.07099)}$ (13.00) | # | Sample ID | Compound | Reported
Concentration
() | Calculated
Concentration
() | Qualification | |----------|-----------|----------|----------------------------------|------------------------------------|---------------| · | | | | | | | | | | | | | | | | \ | | | | | | | | | | | www. | 1 | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | Marie Control | | - | | | | | | | | | | | | | | | | <u> </u> | | | | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 13, 2016 Parameters: Perfluorinated Alkyl Acids Validation Level: Level III & IV **Laboratory:** EMAX Laboratories, Inc. Sample Delivery Group (SDG): K1602494 | | Laboratory Sample | | Collection | |-----------------------|-------------------|--------|------------| | Sample Identification | Identification | Matrix | Date | | KCH067-009 | K1602494-001 | Soil | 03/08/16 | | KCH067-010 | K1602494-002 | Soil | 03/08/16 | | KCH067-011 | K1602494-003 | Soil | 03/08/16 | | KCH067-012 | K1602494-004 | Soil | 03/08/16 | | KCH067-013 | K1602494-005 | Soil | 03/08/16 | | KCH067-014 | K1602494-006 | Soil | 03/08/16 | | KCH067-015 | K1602494-007 | Soil | 03/08/16 | | KCH067-016** | K1602494-008** | Soil | 03/08/16 | | KCH067-019 | K1602494-009 | Water | 03/08/16 | | KCH067-016MS | K1602494-008MS | Soil | 03/08/16 | | KCH067-016MSD | K1602494-008MSD | Soil | 03/08/16 | ^{**}Indicates sample underwent Level IV validation #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Level IV data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in
the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ### I. Sample Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 25.0%. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 25.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 25.0%. The percent differences (%D) of the ending CCVs were less than or equal to 25.0%. ### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |--------------|--------------------|------------------------|---------------|-----------------------------------| | KQ1602477-03 | 03/17/16 | Perfluorooctanoic acid | 0.48 ng/L | All water samples in SDG K1602494 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |------------|------------------------|---------------------------|---------------------------------| | KCH067-019 | Perfluorooctanoic acid | 0.47 ng/L | 0.80U ng/L | #### VI. Field Blanks Sample KCH067-019 was identified as an equipment blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|------------------------|---------------|-------------------------------------| | KCH067-019 | 03/08/16 | Perfluorooctanoic acid | 0.47 ng/L⋅ | All soil samples in SDG
K1602494 | Sample KCH067-042 (from SDG K1602709) was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|------------------------|---------------|-----------------------| | KCH067-042 | 03/15/16 | Perfluorooctanoic acid | 0.39 ng/L | KCH067-019 | Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |--------------|------------------------|---------------------------|---------------------------------| | KCH067-019 | Perfluorooctanoic acid | 0.47 ng/g | 0.80U ng/g | | KCH067-009 | Perfluorooctanoic acid | 0.35 ng/g | 0.35U ng/g | | KCH067-011 | Perfluorooctanoic acid | 0.29 ng/g | 0.29U ng/g | | KCH067-012 | Perfluorooctanoic acid | 0.27 ng/g | 0.27U ng/g | | KCH067-014 | Perfluorooctanoic acid | 0.21 ng/g | 0.21U ng/g | | KCH067-015 | Perfluorooctanoic acid | 0.27 ng/g | 0.27U ng/g | | KCH067-016** | Perfluorooctanoic acid | 0.24 ng/g | 0.24U ng/g | #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions: | Sample | Surrogate | %R (Limits) | Affected
Compound | Flag | A or P | |------------|--|-------------|----------------------------|---|--------| | KCH067-009 | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 65 (70-130) | Perfluorinated alkyl acids | J (all detects)
UJ (all non-detects) | Р | | KCH067-011 | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 65 (70-130) | Perfluorinated alkyl acids | J (all detects)
UJ (all non-detects) | Р | Additionally, surrogate recoveries (%R) were not within QC limits for sample KCH067-013. No data were qualified for samples analyzed at greater than or equal to 5X dilution. ### VIII. Matrix Spike/Matrix Spike Duplicates Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. ### IX. Laboratory Control Samples Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation All compound quantitations met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIII. Target Compound Identifications All target compound identifications met validation criteria for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XIV. System Performance The system performance was acceptable for samples which underwent Level IV validation. Raw data were not reviewed for Level III validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to surrogate %R, data were qualified as estimated in two samples. Due to laboratory blank contamination, data were qualified as not detected in one sample. Due to equipment blank and source blank contamination, data were qualified as not detected in seven samples. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes. # China Lake CTO 067 Perfluorinated Alkyl Acids - Data Qualification Summary - SDG K1602494 | Sample | Compound | Flag | A or P | Reason (Code) | |--------------------------|----------------------------|---|--------|----------------------------| | KCH067-009
KCH067-011 | Perfluorinated alkyl acids | J (all detects)
UJ (all non-detects) | Р | Surrogate spikes (%R) (13) | # China Lake CTO 067 Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG K1602494 | Sample | Compound | Modified Final
Concentration | A or P | Code | |------------|------------------------|---------------------------------|--------|------| | KCH067-019 | Perfluorooctanoic acid | 0.80U ng/L | Α | 7 | # China Lake CTO 067 Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG K1602494 | Sample | Compound | Modified Final
Concentration | A or P | Code | |--------------|------------------------|---------------------------------|--------|------| | KCH067-019 | Perfluorooctanoic acid | 0.80U ng/g | Α | 6 | | KCH067-009 | Perfluorooctanoic acid | 0.35U ng/g | Α | 6 | | KCH067-011 | Perfluorooctanoic acid | 0.29U ng/g | А | 6 | | KCH067-012 | Perfluorooctanoic acid | 0.27U ng/g | Α | 6 | | KCH067-014 | Perfluorooctanoic acid | 0.21U ng/g | Α | 6 | | KCH067-015 | Perfluorooctanoic acid | 0.27U ng/g | Α | 6 | | KCH067-016** | Perfluorooctanoic acid | 0.24U ng/g | Α | 6 | Analytical Report Client: Kleinfelder Project: CCTO-067 - China Lake **Date Collected:** 03/08/16 14:00 Sample Matrix: Soil **Date Received:** 03/10/16 10:00 Service Request: K1602494 Sample Name: Lab Code: KCH067-009 K1602494-001 Units: ng/g Basis: Dry Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS Analysis Method: PFC/537M Prep Method: EPA 3550B | | | | | | | Date | | |---------------------------|----------|---------------|-------
------|----------------|-----------|---| | Analyte Name | Result | LOQ, LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | EN U DN | 1.0 (13) 0.20 | 0.092 | 1 | 04/19/16 00:02 | 3/16/16 | | | Perfluorooctanoic Acid | 0.35 JU丁 | 1.0 0.21 6 | 0.21 | 1 | 04/19/16 00:02 | 3/16/16 | | | Perfluorooctane Sulfonate | 0.41 J J | 1.0 1 0.20 | 0.061 | 1 | 04/19/16 00:02 | 3/16/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | | |---|-------|-----------------------|----------------|---|--| | Sodium perfluoro-1-hexane[18O2]sulfonate | 74 | 70 - 130 | 04/19/16 00:02 | | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 65 | 70 - 130 | 04/19/16 00:02 | * | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 80 | 70 - 130 | 04/19/16 00:02 | | | RUSHO REVISED 9:19 am, Apr 29, 2016 Analytical Report Client: Kleinfelder Service Request: K1602494 Project: CCTO-067 - China Lake Date Collected: 03/08/16 14:05 **Date Received:** 03/10/16 10:00 **Sample Matrix:** Soil Sample Name: KCH067-010 Units: ng/g Lab Code: K1602494-002 Basis: Dry #### Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS **Analysis Method:** PFC/537M Prep Method: **EPA 3550B** | | | | | | | | Date | | |---------------------------|--------|------|------|-------|------|----------------|-----------|---| | Analyte Name | Result | LOQ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | ND U | 0.95 | 0.20 | 0.090 | 1 | 04/19/16 00:12 | 3/16/16 | | | Perfluorooctanoic Acid | ND U | 0.95 | 0.20 | 0.20 | 1 | 04/19/16 00:12 | 3/16/16 | | | Perfluorooctane Sulfonate | ND U | 0.95 | 0.20 | 0.060 | 1 | 04/19/16 00:12 | 3/16/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|-----------------------|----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 83 | 70 - 130 | 04/19/16 00:12 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 73 | 70 - 130 | 04/19/16 00:12 | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 88 | 70 - 130 | 04/19/16 00:12 | | X851716 REVISED 9:19 am, Apr 29, 2016 Analytical Report Client: Kleinfelder Project: CCTO-067 - China Lake **Service Request:** K1602494 **Date Collected:** 03/08/16 14:10 Sample Matrix: Soil **Date Received:** 03/10/16 10:00 Sample Name: Lab Code: KCH067-011 K1602494-003 Units: ng/g Basis: Dry Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS **Analysis Method:** PFC/537M Prep Method: EPA 3550B | | | | | | | Date | | |---------------------------|----------|----------------------|-------|------|----------------|-----------|---| | Analyte Name | Result | LOQ LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | ND UK | 0.92 (3) 0.20 | 0.090 | 1 | 04/19/16 00:22 | 3/16/16 | | | Perfluorooctanoic Acid | 0.29 J U | 0.92 \ 0.20 (| 0.20 | 1 | 04/19/16 00:22 | 3/16/16 | | | Perfluorooctane Sulfonate | 0.44 J J | 0.92 🗸 0.20 ` | 0.060 | 1 | 04/19/16 00:22 | 3/16/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|-----------------------|----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 75 | 70 - 130 | 04/19/16 00:22 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 65 | 70 - 130 | 04/19/16 00:22 | * | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 82 | 70 - 130 | 04/19/16 00:22 | | Cas 1716 9:19 am, Apr 29, 2016 Analytical Report Client: Kleinfelder Project: CCTO-067 - China Lake **Service Request:** K1602494 **Date Collected:** 03/08/16 14:20 Sample Matrix: Soil Date Received: 03/10/16 10:00 Sample Name: KCH067-012 Units: ng/g Lab Code: K1602494-004 Basis: Dry #### Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS **Analysis Method:** PFC/537M Prep Method: EPA 3550B | | | | | | | | Date | | |---------------------------|----------|-----------------|------|-------|------|----------------|-----------|---| | Analyte Name | Result | LOQ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | ND U | 0.95 | 0.20 | 0.090 | 1 | 04/19/16 00:33 | 3/16/16 | | | Perfluorooctanoic Acid | 0.27 J U | (6) 0.95 | 0.20 | 0.20 | 1 | 04/19/16 00:33 | 3/16/16 | | | Perfluorooctane Sulfonate | 0.24 ј | 0.95 | 0.20 | 0.060 | 1 | 04/19/16 00:33 | 3/16/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|----------------|----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 86 | 70 - 130 | 04/19/16 00:33 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 77 | 70 - 130 | 04/19/16 00:33 | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 87 | 70 - 130 | 04/19/16 00:33 | | COMB REVISED 9:19 am, Apr 29, 2016 Analytical Report Client: Kleinfelder Project: CCTO-067 - China Lake Date Collected: 03/08/16 14:25 Sample Matrix: Soil Date Received: 03/10/16 10:00 Sample Name: KCH067-013 Units: ng/g Lab Code: K1602494-005 Basis: Dry #### Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS **Analysis Method:** PFC/537M **Prep Method:** EPA 3550B | | | | | | | | Date | | | | |---------------------------|--------|-----|-----|------|------|----------------|-----------|---|--|--| | Analyte Name | Result | LOQ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | | | Perfluorobutane Sulfonate | ND U | 9.8 | 2.0 | 0.90 | 10 | 04/19/16 14:10 | 3/16/16 | | | | | Perfluorooctanoic Acid | ND U | 9.8 | 2.0 | 2.0 | 10 | 04/19/16 14:10 | 3/16/16 | | | | | Perfluorooctane Sulfonate | ND U | 9.8 | 2.0 | 0.60 | 10 | 04/19/16 14:10 | 3/16/16 | | | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | | |---|-------|-----------------------|----------------|---|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 142 | 70 - 130 | 04/19/16 14:10 | * | _ | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 147 | 70 - 130 | 04/19/16 14:10 | * | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 153 | 70 - 130 | 04/19/16 14:10 | * | | 1651716 Service Request: K1602494 Analytical Report Client: Kleinfelder Project: CCTO-067 - China Lake Date Collected: 03/08/16 14:30 Sample Matrix: Soil Date Received: 03/10/16 10:00 Sample Name: KCH067-014 Units: ng/g Lab Code: K1602494-006 Basis: Dry Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS **Analysis Method:** PFC/537M **Prep Method:** EPA 3550B | | | | | | | Date | | | | |---------------------------|----------|------------------|------|-------|------|----------------|-----------|---|--| | Analyte Name | Result | LOQ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | | Perfluorobutane Sulfonate | ND U | 0.97 | 0.20 | 0.090 | 1 | 04/19/16 00:53 | 3/16/16 | | | | Perfluorooctanoic Acid | 0.21 J U | (6) 0.97 | 0.20 | 0.20 | 1 | 04/19/16 00:53 | 3/16/16 | | | | Perfluorooctane Sulfonate | 0.10 ј | 0.97 | 0.20 | 0.060 | 1 | 04/19/16 00:53 | 3/16/16 | | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|-----------------------|----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 82 | 70 - 130 | 04/19/16 00:53 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 85 | 70 - 130 | 04/19/16 00:53 | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 91 | 70 - 130 | 04/19/16 00:53 | | 8051716 Service Request: K1602494 Analytical Report Client: Kleinfelder Project: CCTO-067 - China Lake **Service Request:** K1602494 **Date Collected:** 03/08/16 14:50 Sample Matrix: Soil **Date Received:** 03/10/16 10:00 Sample Name: Lab Code: KCH067-015 K1602494-007 Units: ng/g Basis: Dry #### Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS Analysis Method: PFC/537M Prep Method: EPA 3550B | | | | | | | | Date | | |---------------------------|------------|----------------|------|-------|------|----------------|-----------|---| | Analyte Name | Result | LOQ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | ND U | 1.0 | 0.20 | 0.093 | 1 | 04/19/16 14:41 | 3/16/16 | | | Perfluorooctanoic Acid | 0.27 J U (| (6) 1.0 | 0.21 | 0.21 | 1 | 04/19/16 14:41 | 3/16/16 | | | Perfluorooctane Sulfonate | 1.6 | 1.0 | 0.20 | 0.062 | 1 | 04/19/16 14:41 | 3/16/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|-----------------------|----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 81 | 70 - 130 | 04/19/16 14:41 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 90 | 70 - 130 | 04/19/16 14:41 | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 81 | 70 - 130 | 04/19/16 14:41 | | X651716 Analytical Report Client: Kleinfelder Service Request: K1602494 Project: CCTO-067 - China Lake **Date Collected:** 03/08/16 15:00 Sample Matrix: Soil Date Received: 03/10/16 10:00 Sample Name: KCH067-016 **Lab Code:** K1602494-008 Units: ng/g Basis: Dry Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS Analysis Method: PFC/537M Prep Method: EPA 3550B | | | | | | | | Date | | |---------------------------|----------|----------------|------|-------|------|----------------|-----------|---| | Analyte Name | Result | LOQ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | 0.10 ј | 0.95 | 0.20 | 0.090 | 1 | 04/19/16 01:33 | 3/16/16 | | | Perfluorooctanoic Acid | 0.24 J W | し)0.95 | 0.20 | 0.20 | 1 | 04/19/16 01:33 | 3/16/16 | | | Perfluorooctane Sulfonate | 0.37 ј | 0.95 | 0.20 | 0.060 | 1 | 04/19/16 01:33 | 3/16/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|-----------------------
----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 76 | 70 - 130 | 04/19/16 01:33 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 77 | 70 - 130 | 04/19/16 01:33 | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 80 | 70 - 130 | 04/19/16 01:33 | | E051716 Superset Reference **REVISED**9:19 am, Apr 29, 2016 Analytical Report Client: Kleinfelder Kleinfelder Service Request: K1602494 CCTO-067 - China Lake Date Collected: 03/08/16 17:35 Sample Matrix: Water **Project:** Lab Code: **Date Received:** 03/10/16 10:00 Sample Name: KCH067-019 Units: ng/L K1602494-009 Basis: NA #### Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS **Analysis Method:** PFC/537M **Prep Method:** EPA 3535A | | | | | | | | Date | | |---------------------------|-----------|------------|-----------------|------|------|----------------|-----------|---| | Analyte Name | Result | LOQ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | ND U | 4.3 | 1.2 | 0.41 | 1 | 03/17/16 23:52 | 3/17/16 | | | Perfluorooctanoic Acid | 0.47 ј 0, | 80U 4.3 (6 | .7) 0.80 | 0.27 | 1 | 03/17/16 23:52 | 3/17/16 | | | Perfluorooctane Sulfonate | ND U | 4.3 | 1.2 | 0.60 | 1 | 03/17/16 23:52 | 3/17/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|-----------------------|----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 82 | 20 - 128 | 03/17/16 23:52 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 83 | 13 - 142 | 03/17/16 23:52 | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 82 | 11 - 131 | 03/17/16 23:52 | | 8057716 # LDC #: 36282F96 VALIDATION COMPLETENESS WORKSHEET SDG #: K1602494 Standard/Full Pa Laboratory: ALS Environmental Revie | Date: | 5/10/16 | |---------------|--------------| | Page:_ | <u>/</u> of/ | | Reviewer: | F-7 | | 2nd Reviewer: | K | METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. | | Validation Area | | Comments | |-------|--|-----|---------------------------------------| | l. | Sample receipt/Technical holding times | A A | | | II. | GC/MS Instrument performance check | Δ | | | III. | Initial calibration/ICV | AA | % PSD 500 101 = 25 | | IV. | Continuing calibration / closing cw | | cu = x | | V. | Laboratory Blanks | SW | | | VI. | Field blanks | SW | EB=9 SB= KCH067-042 (K1602709) | | VII. | Surrogate spikes | SW | (K1602709) | | VIII. | Matrix spike/Matrix spike duplicates | A | | | IX. | Laboratory control samples | A | LC>/D | | X. | Field duplicates | N | | | XI. | Internal standards | _ | | | XII. | Compound quantitation RL/LOQ/LODs | _ | Not reviewed for Standard validation. | | XIII. | Target compound identification | Δ | Not reviewed for Standard validation. | | XIV. | System performance | Δ | Not reviewed for Standard validation. | | XV. | Overall assessment of data | A | | Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER: ** Indicates sample underwent Full validation | <u> </u> | rates sample underwent Full Validation | | 1 | ···· | |----------|--|-----------------|--------|----------| | | Client ID | Lab ID | Matrix | Date | | 1 1 | KCH067-009 | K1602494-001 | Soil | 03/08/16 | | 21 | KCH067-010 | K1602494-002 | Soil | 03/08/16 | | 3 | KCH067-011 | K1602494-003 | Soil | 03/08/16 | | 4 1 | KCH067-012 | K1602494-004 | Soil | 03/08/16 | | 5 | KCH067-013 | K1602494-005 | Soil | 03/08/16 | | 61 | KCH067-014 | K1602494-006 | Soil | 03/08/16 | | 7 1 | KCH067-015 | K1602494-007 | Soil | 03/08/16 | | 8 1 | KCH067-016** | K1602494-008** | Soil | 03/08/16 | | 9 | KCH067-019 | K1602494-009 | Water | 03/08/16 | | 10 | KCH067-016MS | K1602494-008MS | Soil | 03/08/16 | | 11 | KCH067-016MSD | K1602494-008MSD | Soil | 03/08/16 | | 12 | | | | | | 131 | KQ1602426-04 | | _ | | | 142 | KQ1602426-04
KQ1602477-03 | | _ | | | Page: <u>/</u> c | of | |------------------|----| | Reviewer: | PD | | 2nd Reviewer: | 7 | Method: LC/MS/MS Perfluorinated Alkyl Acids(EPA Method 537) | Validation Area | Yes | No | NA | Findings/Comments | |--|---------------|----------|------|-------------------| | I. Technical holding times | | | | | | All technical holding times were met. | | | | | | Cooler temperature criteria was met. | | | | | | II. LC/MS Instrument performance check | | | | | | Were the instrument performance reviewed and found to be within the specified criteria? | / | | | | | Were all samples analyzed within the 12 hour clock criteria? | > < | | / | | | III. Initial calibration | | | | | | Did the laboratory perform a 5 point calibration prior to sample analysis? | | | | | | Were all percent relative standard (%RSD)≤ 25%? | | | | | | Was a curve fit used for evaluation? | | | | | | Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990? | | | _ | | | Were all percent differences (%D) <u>≤</u> 25? | | | | | | Were the RT windows properly established? | / | | | | | IV. Continuing calibration | | | | | | Was a continuing calibration analyzed daily? | | | | | | Were all percent differences (%D) < 25%? | | | | | | Were all the retention times within the acceptance windows? | | | | | | V. Blanks | | | : Ne | | | Was a method blank associated with every sample in this SDG? | | | | | | Was a method blank analyzed for each matrix and concentration? | <u> </u> | <u> </u> | | | | Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet. | _ | | | | | VI. Matrix spike/Matrix spike duplicates | | | | | | Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. | | | | | | Was a MS/MSD analyzed every 20 samples of each matrix? | | | | | | Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? | | <u> </u> | | | | VII. Laboratory control samples | | | | | | Was an LCS analyzed for this SDG? | | | | | | Was an LCS analyzed per extraction batch? | | | | | | Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits? | | | | | | VIII. Internal standards | | | | | | Were internal standard area counts within50-150% from the average areas measured during initial calbration? | | <u> </u> | | | LDC#: 36282F96 ### VALIDATION FINDINGS CHECKLIST Page: Vof V Reviewer: 7 2nd Reviewer: 1 | Validation Area | Yes | No | NA | Findings/Comments | |---|-----|------|----|--| | Were retention times within <u>+</u> 30 seconds from the associated calibration standard? | / | , | | | | IX. Target compound identification | | | | 가게 가는 불자를 맞았다. 그런 바람들이 다른다.
경우 기가 하기 하는 것을 받는 그리고 | | Were relative retention times (RRT's) within ± 0.06 RRT units of the standard? | | | | | | Did compound spectra meet specified EPA "Functional Guidelines" criteria? | | | | | | Were chromatogram peaks verified and accounted for? | / | | | | | X. Compound quantitation/CRQLs | | | | | | Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound? | / | | | | | Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | / | | | | | XI. System performance | | Yali | | | | System performance was found to be acceptable. | | | | | | XII. Overall assessment of data | | | | | | Overall assessment of data was found to be acceptable. | | | | | | XIII. Field duplicates | | | | | | Field duplicate pairs were identified in this SDG. | | _ | | | | Target compounds were detected in the field duplicates. | | | _ | | | XIV. Field blanks | | | | | | Field blanks were identified in this SDG. | | - | | | | Target compounds were detected in the field blanks. | / | | | | LDC #: 36 282 F96 ### **VALIDATION FINDINGS WORKSHEET Blanks** | Page:_ | / _{of_} / | |----------------|--------------------| | Reviewer:_ | FT | | 2nd Reviewer:_ | × | | | | METHOD: HPLC/MS (EPA Method 537) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". MN N/A Was a method blank analyzed for each matrix? Y N N/A Was a method blank analyzed for each concentration preparation level? Y/N N/A Was a method blank associated with every sample? Y/ N N/A Code = 7 Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 3 17 16 Conc. units: 2011 Associated Samples: | Conc. units: nall | | | Associated | d Samples: | all u | Jacon | | | | |----------------------------|----------|-------|-----------------------|------------|-------|-------|---|--|--| | Compound | Blank ID | | Sample Identification | | | | | | | | | KQ1602 | 77-03 | 9 | | | | | | | | Renfluoro octanoic
Acid | 0.48 | | 0.47/0.8 | ou | | | | | | | Acid | | | / | | | | · | CIRCLED
RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U". | LDC #: | 36 | 282 | F | 96 | |--------|----|----------|---|----| | LDO " | | <u> </u> | , | | # **VALIDATION FINDINGS WORKSHEET** | Page:_ | of | | |---------------|----|--| | Reviewer:_ | FT | | | 2nd Reviewer: | X | | | | | | | <u>Field Blanks</u> | | |---------------------|------------| |
5B = | KC4067-042 | METHOD: HPLC/MS (EPA Method 537) Were field blanks identified in this SDG? N/A N N/A Were target compounds detected in the field blanks? code = 6 Blank units: na L Associated sample units: vol L Sampling date: 3 15 16 Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples: | Compound | Blank ID | | | | S | ample Identifica | ition |
 | | |-------------------|----------|---|----------|----|---|------------------|-------|------|--| | | SB | | 9 | | | | | | | | Perfluorooctanoic | 0.39 | o | .47 /0.8 | OU | | | | | | | Acial | | | 7 | ., | | | | | | | | | | | | | | | | | | Blank units: ng L Associated sample units: ng g Sampling date: 3 8 16 coll = 6 801L5 NA Field blank type: (circle one) Field Blank / Rinsate / Other: FB Associated Samples: Blank ID Compound Sample Identification | 1 | | <u> </u> | | <u> </u> | | | | | | |-------------------|------|----------|--------|----------|--------|-------|-------|--|----| | Perfluorooctanoic | 0.47 | 0.35 U | 0.29 U | 0.27 U | 0.2121 | D.27U | 0.244 | | | | Acid | | | | | F1 | į | | | : | | | | | | | | | | | | | | ,, | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U". | LDC #: | 3628: | 2196 | |--------|-------|------| |--------|-------|------| ### **VALIDATION FINDINGS WORKSHEET Surrogate Recovery** | Page:_ | of | / | |---------------|---------------|---| | Reviewer: | FT | | | 2nd Reviewer: | M | | | _ | $\overline{}$ | | METHOD: LCMS (EPA Method 537) Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A". YN/A Were percent recoveries (%R) for surrogates within QC limits? YN/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R? | # Sample ID Surrogate %R (Limits) Qual 1 | lifications
ND + Det | |---|-------------------------| | | ND + Det | | () | | | 3 * 65 () \
() | | | 3 * 65 () () | | | | | | | | | | | | | | | 5 all surrogales outside limit) no qual | DXPL | | | | | () | | | () | | | () | 7 | | | | | () | | | () | | | () | | | | | | | | | | | | * Perfluoro-n-[1,2,3,4-13C4] octanoic acid () | -4 | | | | | () | *** | | () | | | () | | | () | | | | | LDC#: 36282F96 ## **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification** | Page:_ | _/_of | _/ | |----------------|-------|----| | Reviewer:_ | FT | | | 2nd Reviewer:_ | N | | | | | | METHOD: HP/LC/MS Perfluorinated Alkyl Acids(EPA Method 537) The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations: $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of compound, A_{is} = Area of associated internal standard $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard X = Mean of the RRFs | | | | | Reported | Recalculated | Reported | Recalculated | Reported | Recalculated | |----|-------------|---------------------|--|---|-----------------------------|--------------------------|--------------------------|----------|--------------| | #_ | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | RRF
(\$. (\$td) | RRF
(5 . () std) | Average
RRF (initial) | Average RRF
(initial) | %RSD | %RSD | | 1 | ICAL | 4/18/16 | Pershiorobutane Sulfonali | 2.707 | 2-707 | 2.782 | 2-782 | 11-31 | 11.3 | | | | | Perfluoro octanoic Acid | 0.5171 | 0.5171 | 0.539 | 0.539 | 16.12 | 16.12 | | | | | Perfluorooctane Sulfonati | 0.9702 | 0.9702 | 0.990 | 0.990 | 10.70 | 10.70 | | 2 | | | , | 3 | 111111111111111111111111111111111111111 | | | | | | | 4 | Comments: | Refer to Initial | Calibration findings | worksheet for list of | qualifications an | <u>d associated sam</u> | ples when reported | results do not agree withir | 10.0% of the | |--------------|------------------|----------------------|-----------------------|-------------------|-------------------------|--------------------|-----------------------------|--------------| | recalculated | results. | LDC#: 36282F96 ## **VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification** | Page:_ | of | |---------------|----| | Reviewer: | _9 | | 2nd Reviewer: | 1 | | | (| **METHOD:**HP/LC/MS Perfluorinated Alkyl Acids (EPA Method 537) The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation: % Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_{is} = Area of associated internal standard A, = Area of compound, C_v = Concentration of compound, C_{is} = Concentration of internal standard | | | | | | Reported | Recalculated | Reported | Recalculated | |----|-------------|---------------------|---|--------------------------|-------------|--------------|----------|--------------| | #_ | Standard ID | Calibration
Date | Compound (Reference Internal Standard) | Average RRF
(initial) | RRF
(CC) | RRF
(CC) | %D | %D | | 1 | 041816/2020 | 4/18/16 | Perfluorobutane Sulfonati | 20.0 FT | 2.824 | 2.824 | 1.5 | 1-2 | | | cer | ę r | 1 | 2.782 | | | | | | | | | Perfluoropetanoic Acid | 0.539 | 0.584 | 0.584 | 8.2 | 8.2 | | | | | Perfluoropetanoic Acid
Perfluoropetane Sulponati | 0.990 | 1.007 | 1.007 | 1.7 | 1.7 | | | | | , , | | | | | | | 2 | 041816 203 | 2 4/19/16 | l l | 2.782 | 2.760 | 2.760 | 0.8 | 0.8 | | | cev' | • | | | 0.495 | 0.495 | 8.2 | 8.2 | | | | | <u> </u> | \downarrow | 0.971 | 0.971 | 1.9 | 1.9 | 3 | Comments: | Refer to Routine | Calibration findings | worksheet for | list of qu | ualifications and | associated | samples | when i | reported | results do | not agree | within | 10.0% of | the | |---------------------|------------------|----------------------|---------------|------------|-------------------|------------|---------|--------|----------|------------|-----------|--------|----------|-----| | <u>recalculated</u> | results. | | | | | | | | | | | | | | LDC#: 36282 F96 # **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification** | Page: | 1_ | _of_ | 1_ | |---------------|----|------|----| | Reviewer:_ | | FT | | | 2nd reviewer: | | A | | METHOD: HPLC/MS Perfluorinated Alkyl Acids (EPA Method 537) The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation: % Recovery: SF/SS * 100 8 Where: SF = Surrogate Found SS = Surrogate Spiked Sample ID: | | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | Sodium - sulforale | 20.0 | 15.200 | 76 | 76 | 0 | | Pershuoro - octanoic | | 15.3390 | TI | 77 | | | Sodium - octanesult | nati d | 16.0810 | K) | જા | ال | | | | | | | | Sample ID: | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | | | | | | | | | | | | Sample ID: | Surrogate
Spiked | Surrogate
Found | Percent
Recovery
Reported | Percent
Recovery
Recalculated | Percent
Difference | |---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------| | | | | | | | | | | | | LDC#: 36282F96 ## **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification | | | / | | | |-----|-----------|------------|---------------|----------| | | Page:_ | <u>_</u> _ | of_ | _ | | | Reviewer: | | F | <u>ځ</u> | | 2nd | Reviewer: | | 1 | | | | | | $\overline{}$ | | METHOD: HPLC/MS Perfluorinated Alkyl Acids(EPA Method 537)
The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation: % Recovery = 100 * (SSR - SR)/SA Where: SSR = Spiked sample result, SR = Sample result SA = Spike added RPD = I MSR - MSDR I * 2/(MSR + MSDR) MS/MSD samples: | | Ad | ike
ded | Sample
Concentration | Spiked
Concer | | Matrix Spike | | Matrix Spike Duplicate | | Reported | Recalculat
ed | |-------------------------------|------|------------|-------------------------|------------------|------|------------------|----|------------------------|--------|----------|------------------| | Compound | | 0 1 | 010 | | 7,0 | Percent Recovery | | Percent Recovery | | RPD | RPD | | | MS | MSD | | MS | MSD | Reported Recalc | | Reported | Recalc | | | | Perfluorobutane
Stalfonale | 37.5 | 39.2 | 0.10 | 85 | | 93 | 85 | 93 | 93 | 9 | ٩ | | Salfonati | | | | 31.9 | 36.4 | 85 | Comments: | Refer to Matrix Sp | oike/Matrix | Spike Dur | <u>olicate finding</u> | <u>ıs worksl</u> | neet for | <u>r list of c</u> | <u>qualificati</u> | ons and a | <u>associated</u> | samples | <u>when rep</u> | <u>ported re</u> | <u>sults do </u> | not agr | <u>ee within</u> | |--------------|---------------------|-------------|-----------|------------------------|------------------|----------|--------------------|--------------------|-----------|-------------------|---------|-----------------|------------------|------------------|---------|------------------| | 10.0% of the | e recalculated resu | ults. % | RPD | based | en " | od R | | | | | | | | | _ | | | | | , | , | | | , , | • | | | | | | | | • | LDC#: 36282 F96 # **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification** | | Page:_ | of | / | |-----|-----------|-----|---------------| | | Reviewer: | F | 7 | | 2nd | Reviewer: | ~ A | · · | | | | | $\overline{}$ | METHOD: HPLC/MS Perfluorinated Alkyl Acids (EPA Method 537) | The percent recoveries (%R) and Relative Percent Difference (R | .PD) of the laboratoy control san | mple and laboratory control sa | ample duplicate (if applicable) were | |---|-----------------------------------|--------------------------------|--------------------------------------| | recalculated for the compounds identified below using the following | ng calculation: | | | % Recovery = 100 * SSC/SA Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCS - LCSD I * 2/(LCS + LCSD) LCS = Laboraotry control sample percent recovery LCSD = Laboratory control sample duplicate percent recovery LCSID: __ KQ1602426-03 | | ed
9() | Spiked Sample
Concentration
(NA (4) | | I CS Percent Recovery | | I CSD Percent Recovery | | LCS/I CSD
RPD | | |------|-----------|---|-----|-----------------------|--------|------------------------|--------|------------------|--------------| | LCSD | , O | LCS | CSD | Reported | Recalc | Reported | Recalc | Reported | Recalculated | | 40.0 | 24 | 33.9 | NA | 85 | 85 | Comments. Refer to Laboratory Control Sample finding | gs worksheet for list of qualifications and associated sain | riples when reported results do not agree within 10.0 % | |--|---|---| | of the recalculated results. | | | | | | | | | | | LDC#: 36282F96 %S **METHOD:** LC/MS/MS Perfluorinated Alkyl Acids(EPA Method 537) Percent solids, applicable to soils and solid matrices # VALIDATION FINDINGS WORKSHEET Sample Calculation Verification | Page:_ | <u>1</u> _of_1_ | |----------------|-----------------| | Reviewer: | FT | | 2nd reviewer:_ | M/ | Were all reported results recalculated and verified for all level IV samples? N N/A N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results? 2/1.0800 Concentration = Example: $(A_r)(I_s)(DF)$ (A_{is})(RRF)(V_o)(%S) Perfluordoutane Sulfonatu Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) V_o 0.100 ng/g or grams (g). Df Dilution factor. | | only. | | | 2 | | |----------|--------------|----------|---------------------------|-----------------------------|---------------| | | | | Reported
Concentration | Calculated
Concentration | | | # | Sample ID | Compound | () | () | Qualification | | | | | | | | | | ### Local Co | | | | - | · · | | | | | | | | | | | | | | - | \vdash | | | | | | | <u> </u> | # Laboratory Data Consultants, Inc. Data Validation Report Project/Site Name: China Lake CTO 067 LDC Report Date: May 18, 2016 Parameters: Perfluorinated Alkyl Acids Validation Level: Level III Laboratory: EMAX Laboratories, Inc. Sample Delivery Group (SDG): K1602709 | Sample Identification | Laboratory Sample Identification | Matrix | Collection
Date | |-----------------------|----------------------------------|--------|--------------------| | KCH067-042 | K1602709-001 | Water | 03/15/16 | #### Introduction This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan) Groundwater and Soil Investigation at Installation Restoration Program Sites 22, 23, 31, 32, 43, and PLOU and Soil Investigation at Areas of Concern 166, 230, and 235, Naval Air Weapons Station China Lake, California (February 2016), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The analyses were performed by the following method: Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 All sample results were subjected to Level III data validation, which comprises an evaluation of quality control (QC) summary results. The following are definitions of the data qualifiers utilized during data validation: - J+ (Estimated, High Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation. - J- (Estimated, Low Bias): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation. - J (Estimated, Bias Indeterminate): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate. - U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s). - UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation. - R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable. - NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data. A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature. #### **Qualification Codes** - 1 Holding Times - 2 Sample Preservation (Cooler Temp) - 3 Sample Custody - 4 Missing Deliverables - 5 Calibration - 6 Field Blanks - 7 Laboratory Blanks - 8 Matrix Spike (%) - 9 Matrix Spike Duplicate (RPD or Duplicate Sample Analysis) - 10 Laboratory Control Sample - 11 ICP Interference Check - 12 RPD Between Two Columns - 13 Surrogates - 14 Field Duplicates - 15 Furnace QC - 16 Serial Dilution - 17 Chemical Recoveries - 18 Trip Blanks - 19 Internal Standards - 20 Linear Range Exceeded - 21 Potential False Positives - 22 Do not use, other result more technically sound - 23 Other ### I. Sample
Receipt and Technical Holding Times All samples were received in good condition and cooler temperatures upon receipt met validation criteria. All technical holding time requirements were met. #### II. LC/MS Instrument Performance Check Instrument performance was checked as applicable. All ion abundance requirements were met. #### III. Initial Calibration and Initial Calibration Verification An initial calibration was performed as required by the method. The percent relative standard deviations (%RSD) were less than or equal to 25.0%. The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 25.0%. #### IV. Continuing Calibration Continuing calibration was performed at the required frequencies. The percent differences (%D) were less than or equal to 25.0%. The percent differences (%D) of the ending CCVs were less than or equal to 25.0%. #### V. Laboratory Blanks Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions: | Blank ID | Extraction
Date | Compound | Concentration | Associated
Samples | |--------------|--------------------|------------------------|---------------|-----------------------| | KQ1602838-04 | 03/28/16 | Perfluorooctanoic acid | 0.35 ng/L | KCH067-042 | Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions: | Sample | Compound | Reported
Concentration | Modified Final
Concentration | |------------|------------------------|---------------------------|---------------------------------| | KCH067-042 | Perfluorooctanoic acid | 0.39 ng/L | 0.80U ng/L | #### VI. Field Blanks Sample KCH067-042 was identified as a source blank. No contaminants were found with the following exceptions: | Blank ID | Collection
Date | Compound | Concentration | Associated
Samples | |------------|--------------------|------------------------|---------------|-----------------------------------| | KCH067-042 | 03/15/16 | Perfluorooctanoic acid | 0.39 ng/L | No associated samples in this SDG | #### VII. Surrogates Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits. #### VIII. Matrix Spike/Matrix Spike Duplicates The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG. #### IX. Laboratory Control Samples Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. #### X. Field Duplicates No field duplicates were identified in this SDG. #### XI. Internal Standards All internal standard areas and retention times were within QC limits. #### XII. Compound Quantitation Raw data were not reviewed for Level III validation. #### XIII. Target Compound Identifications Raw data were not reviewed for Level III validation. #### XIV. System Performance Raw data were not reviewed for Level III validation. #### XV. Overall Assessment of Data The analysis was conducted within all specifications of the method. No results were rejected in this SDG. Due to laboratory blank contamination, data were qualified as not detected in one sample. The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes. # China Lake CTO 067 Perfluorinated Alkyl Acids - Data Qualification Summary - SDG K1602709 ## No Sample Data Qualified in this SDG # China Lake CTO 067 Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG K1602709 | Sample | Compound | Modified Final
Concentration | A or P | Code | |------------|------------------------|---------------------------------|--------|------| | KCH067-042 | Perfluorooctanoic acid | 0.80U ng/L | Α | 7 | China Lake CTO 067 Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG K1602709 No Sample Data Qualified in this SDG #### ALS Group USA, Corp. dba ALS Environmental Analytical Report Client: Kleinfelder CCTO-067 - China Lake Service Request: K1602709 **Date Collected:** 03/15/16 14:40 Project: Sample Matrix: Water **Date Received:** 03/17/16 10:20 Sample Name: KCH067-042 Units: ng/L Lab Code: K1602709-001 Basis: NA #### Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS Analysis Method: PFC/537M Prep Method: EPA 3535A | | | | | | | | Date | | |---------------------------|------------|-----------|----------------|------|------|----------------|-----------|---| | Analyte Name | Result | LOQ_ | LOD | MDL | Dil. | Date Analyzed | Extracted | Q | | Perfluorobutane Sulfonate | ND U | 4.3 | 1.2 | 0.41 | 1 | 03/30/16 16:11 | 3/28/16 | | | Perfluorooctanoic Acid | 0.39 J Ø.& | OU 4.3 (7 | 7) 0.80 | 0.27 | 1 | 03/30/16 16:11 | 3/28/16 | | | Perfluorooctane Sulfonate | ND U | 4.3 | 1.2 | 0.60 | 1 | 03/30/16 16:11 | 3/28/16 | | | Surrogate Name | % Rec | Control Limits | Date Analyzed | Q | |---|-------|-----------------------|----------------|---| | Sodium perfluoro-1-hexane[18O2]sulfonate | 84 | 20 - 128 | 03/30/16 16:11 | | | Perfluoro-n-[1,2,3,4-13C4] octanoic acid | 88 | 13 - 142 | 03/30/16 16:11 | | | Sodium perfluoro-1-[1,2,3,4-13C4] octanesulfonate | 87 | 11 - 131 | 03/30/16 16:11 | | N 051716 | DC 4 | * 20002000 VALIDATIO | | N ETENEOG | , MODKEHEE. | r | Date: | |-------------------|---|-------------------------------------|-----------------|--|---------------------------------------|--| | | #: <u>36282G96</u> VALIDATIO
#: K1602709 | | standard | WORKSHEE | 1 | Page: | | | atory: ALS Environmental | 3 | nanuaru | | F | Reviewer: # | | | | | | | 2nd R | Reviewer: 70 | | METH | IOD: LC/MS Perfluorinated Alkyl Acids (E | EPA Method | d 537) | | | | | fhe sa
/alidat | amples listed below were reviewed for ea
tion findings worksheets. | ich of the fo | ollowing valida | tion areas. Validat | ion findings are | noted in attache | | | Validation Area | | | Com | ments | | | I. | Sample receipt/Technical holding times | A / A | | | | This is the same of o | | 11. | GC/MS Instrument performance check | <u> </u> | | | | | | III. | Initial calibration/ICV | Δ/Δ | % PSD | = 25 | 101 = 75 | | | IV. | Continuing calibration closing cw | Δ | | | 101 = 75
cor = 25 | 1111 | | V. | Laboratory Blanks | سي | | | | | | VI. | Field blanks | SW | SB = | 3 | | | | VII. | Surrogate spikes | A | | | | | | VIII. | Matrix spike/Matrix spike duplicates | 7 | QC S | sample | | | | IX. | Laboratory control samples | A | LCS | | | | | Χ. | Field duplicates | N | | | · · · · · · · · · · · · · · · · · · · | | | XI. | Internal standards | A | | | - W-14. | | | XII. | Compound quantitation RL/LOQ/LODs | N | | | | | | XIII. | Target compound identification | N | | · · · · · · · · · · · · · · · · · · · | - | | | XIV. | System performance | N | | | | | | XV. | Overall assessment of data | 4. | | | | | | Note: | N = Not provided/applicable R = Rir | lo compounds
nsate
ield blank | s detected | D = Duplicate
TB = Trip blank
EB = Equipment bla | SB=Sour
OTHER:
ank | ce blank | | | Client ID | | | Lab ID | Matrix | Date | | 1 | KCH067-042 | | | K1602709-001 | Water | 03/15/16 | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | Notes: | · T · T | =
| | · | | | | | kq1602838-04 | | | | | | LDC#: 36282 996 ### **VALIDATION FINDINGS WORKSHEET Blanks** | Page:_ | <u>/</u> of_/ | |---------------|---------------| | Reviewer: | FT | | 2nd Reviewer: | 1 | | - | $\overline{}$ | | METHOD: HPLC/MS (EPA Method 537) | |----------------------------------| |----------------------------------| Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". MN N/A Was a method blank analyzed for each matrix? Y N N/A Was a method blank analyzed for each concentration preparation level? Y N N/A Was a method blank associated with every sample? Y/N N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 32016Blank analysis date: 330/16 | Conc. units: Na L | | | Associated | l Samples: | | \ | | | | |-------------------------|----------|-------|-----------------------|------------|-------------|-------------|------|---|--| | Compound | Blank ID | | Sample Identification | | | | | | | | | KQ16028 | 38-04 | | | | | **** | | | | Perfluoro octanoic Acid | 0.35 | | | 0.39 0.80 | 24 | | | | | | | | | | 1 | - | | | | | | | | | | | | ,, ,, , | | | | _ | : | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U". | LDC #: | 36 | 282 | 9 | 9 | حا | |--------|----|-----|---|---|----| |--------|----|-----|---|---|----| # VALIDATION FINDINGS WORKSHEET Field Blanks | Page:_ | _/ _{of_} / | |---------------|---------------------| | Reviewer:_ | FT | | nd Reviewer:_ | ٨ | | | | | METHOD: HPLC/MS (EPA I | Method 537) | | | | | | | 2nd Revie | ewer: | |--|-------------------------------------|--|----------------|-----------|--------------|-----------------|------|-----------|-------| | Y N N/A Were field b | planks identifie | ed in this SDG
detected in the
ble units: り | field blanks? | | | | | | | | Field blank type: (circle one | صا
e) Field Blank | / Rinsate / Oth | ner: <u>SB</u> | Associat | ed Samples:_ | | none | | | | Compound | Blank ID | | | | Sa | mple Identifica | tion | | | | | | | . ,,,,, | | | | | | | | Perfluorooctanoic | 0.39 | | | | | | | | | | Aud | | | | | | | | | | | , | | | | | | | | | | | | | | | | | | |
. "" | *** | | | | | | | | | | | • | | | | | | | | | | | | | Blank units: Asso
Sampling date:
Field blank type: (circle one | ociated samp
_
e) Field Blank | |
ner: | Associate | ed Samples:_ | | | | | | Compound | Blank ID | Sample Identification | CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U". LDC #: 76282 ## **EDD POPULATION COMPLETENESS WORKSHEET** | Date: 5.25. | 16 | |------------------------------|----| | Page: 1 of 1 | | | 2 nd Reviewer: 39 | | The LDC job number listed above was entered by | | EDD Process | | Comments/Action | |-------|---|-------------|-----------------| | 1. | EDD Completeness | _ | | | la. | - All methods present? | 1 | | | lb. | - All samples present/match report? | / | | | lc. | - All reported analytes present? | / | | | ld. | -10% or 100% verification of EDD? | | | | 1 1 | | | | | 11 | EDD Preparation/Entry | | | | lla. | - Carryover U/J? | 1 | | | IIb. | - Reason Codes used? If so, note which codes | | LDC. | | IIc. | -Additional Information (QC Level, Validator, Date, Validated Y/N, etc.) | ✓
 | | | | | | | | 111. | Reasonableness Checks | - | | | Illa. | - Do all qualified ND results have ND qualifier (i.e. UJ)? | V | | | IIIb. | - Do all qualified detect results have detect qualifier (i.e. 1)? | V | | | IIIc. | - If reason codes used, do all qualified results have reason code field populated? | / | | | IIId. | -Does the detect flag require changing for blank qualifiers? If so, are all U results marked ND? | 1,5 | | | IIIe. | - Do blank concentrations in report match EDD, where data was qualified due to blank? | | | | IIIf. | - Were any results rejected for overall assessment? If so, were results changed to nonreportable? | <i>(, (</i> | | | IIIg. | - Is the readme complete? If applicable, were edits or discrepancies listed in the readme? | | | | Notes: | | |
 | | |--------|---------|--------------|----------------|---| | | | ······ |
· <u> </u> | | | | | * <u>***</u> |
 | | | | | |
 | | | | | |
 | | | | | |
 | | | | | | | | | | | | | _ | | | <u></u> | | | | | | | |
 | - | The attached zipped file contains eight files: | <u>File</u> | <u>Format</u> | Description | | |--------------------------------------|---------------|----------------------------------|------------------| | 1) Readme_ChinaLake_052516.doc | MS Word 2003 | A "Readme" file (this document). | | | | | | | | | MS Excel 2007 | A spreadsheet for the fo | ollowing SDG(s): | | 2) EFW2LabRES.xlsx | | 16C070 | 36282A | | 3) 16C074 EFW2LabRESvalidated.xlsx | | 16C074 | 36282B | | 4) 16C129_EFW2LabRESvalidated.xlsx | | 16C129 | 36282C | | 5) 78915.EFW2LabRESvalidated.xlsx | | 78915 | 36282D | | 6) 78998.EFW2LabRESvalidated.xlsx | | 78998 | 36282E | | 7) K1602494_EFW2LabRESvalidated.xlsx | | K1602494 | 36282F | | 8) K1602709_EFW2LabRESvalidated.xlsx | | K1602709 | 36282G | No discrepancies were observed between the hardcopy data packages and the electronic data deliverables during EDD population of validation qualifiers. A 100% verification of the EDD was not performed. Please contact Pei Geng at (760) 827-1100 if you have any questions regarding this electronic data submittal.