Groundwater Sample Results, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG TK1739
Naval Station Newport
Newport, Rhode Island
August 2019

"LCSWKL15IMW1","6020A","RES","LCSWKL15IMW1","KAS","7440-38-
2","ARSENIC","101","ug/L","","2.3","MDL","","SPK","101.2","","5.0","PQL","YES","100","LCSWKL15IMW1",""," ","4.0",""
"LCSWKL15IMW1","6020A","RES","LCSWKL15IMW1","KAS","7440-43-
9","CADMIUM","265","ug/L","","0.030","MDL","","SPK","105.9","","1.0","PQL","YES","250","LCSWKL15IMW1" ,"","","0.20",""
"LCSWKL15IMW1","6020A","RES","LCSWKL15IMW1","KAS","7439-92-
1","LEAD","102","ug/L","","0.074","MDL","","SPK","102.4","","1.0","PQL","YES","100","LCSWKL15IMW1","","", "0.50",""
"LCSWKL15IMW1","6020A","RES","LCSWKL15IMW1","KAS","7439-96-
5","MANGANESE","500","ug/L","","0.35","MDL","","SPK","100.0","","2.0","PQL","YES","500","LCSWKL15IMW 1","","","1.0",""
"PBWKL15IMW1","6020A","RES","PBWKL15IMW1","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","PBWKL15IMW1","","","4.0", ""
"PBWKL15IMW1","6020A","RES","PBWKL15IMW1","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.030","MDL","","TRG","","","1.0","PQL","YES","0","PBWKL15IMW1","",""," 0.20",""
"PBWKL15IMW1","6020A","RES","PBWKL15IMW1","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.074","MDL","","TRG","","","1.0","PQL","YES","0","PBWKL15IMW1","","","0.50", ""
"PBWKL15IMW1","6020A","RES","PBWKL15IMW1","KAS","7439-96-
5","MANGANESE","1.0","ug/L","U","0.35","MDL","","TRG","","","2.0","PQL","YES","0","PBWKL15IMW1","","", "1.0",""
"G32-MW303B-121217","6020A","RES","TK1739-002","KAS","7440-38-
2","ARSENIC","14","ug/L","","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW303B-
121217","","","4.0",""
"G32-MW303B-121217","6020A","RES","TK1739-002","KAS","7440-43-
9","CADMIUM","0.24","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW303B-
121217","","","0.20",""
"G32-MW303B-121217","6020A","RES","TK1739-002","KAS","7439-92-
1","LEAD","1.10","ug/L","","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW303B121217","","","0.50",""
"G32-MW303B-121217","6020A","RES","TK1739-002","KAS","7439-96-
5","MANGANESE","1120","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW303B-
121217","","","1.0",""
"G32-MW303B-121217","6020A","RES","TK1739-003","KAS","7440-38-
2","ARSENIC","6.5","ug/L","","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW303B-
121217","","","4.0",""
"G32-MW303B-121217","6020A","RES","TK1739-003","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW303B-
121217","","","0.20",""
"G32-MW303B-121217","6020A","RES","TK1739-003","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW303B121217","","","0.50",""
"G32-MW303B-121217","6020A","RES","TK1739-003","KAS","7439-96-
5","MANGANESE","1080","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW303B-
121217","","","1.0",""
"GI-MW402-121217","6020A","RES","TK1739-004","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW402-
121217","","","4.0",""
"GI-MW402-121217","6020A","RES","TK1739-004","KAS","7440-43-
9","CADMIUM","0.092","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402-

121217","","","0.20",""
"GI-MW402-121217","6020A","RES","TK1739-004","KAS","7439-92-
1","LEAD","0.51","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402-
121217","","","0.50",""
"GI-MW402-121217","6020A","RES","TK1739-004","KAS","7439-96-
5","MANGANESE","133","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW402-
121217","","","1.0",""
"GI-MW402-121217","6020A","RES","TK1739-005","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW402-
121217","","","4.0",""
"GI-MW402-121217","6020A","RES","TK1739-005","KAS","7440-43-
9","CADMIUM","0.072","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402-
121217","","","0.20",""
"GI-MW402-121217","6020A","RES","TK1739-005","KAS","7439-92-
1","LEAD","0.16","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402-
121217","","","0.50",""
"GI-MW402-121217","6020A","RES","TK1739-005","KAS","7439-96-
5","MANGANESE","129","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW402121217","","","1.0",""
"G32-MW306SR-121217","6020A","RES","TK1739-006","KAS","7440-38-
2","ARSENIC","3.8","ug/L","J","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306SR121217","","","4.0",""
"G32-MW306SR-121217","6020A","RES","TK1739-006","KAS","7440-43-
9","CADMIUM","0.030","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306SR121217","","","0.20",""
"G32-MW306SR-121217","6020A","RES","TK1739-006","KAS","7439-92-
1","LEAD","0.14","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306SR-
121217","","","0.50",""
"G32-MW306SR-121217","6020A","RES","TK1739-006","KAS","7439-96-
5","MANGANESE","1040","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW306SR-
121217","","","1.0",""
"G32-MW306SR-121217","6020A","RES","TK1739-007","KAS","7440-38-
2","ARSENIC","5.6","ug/L","","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306SR-
121217","","","4.0",""
"G32-MW306SR-121217","6020A","RES","TK1739-007","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306SR-
121217","","","0.20",""
"G32-MW306SR-121217","6020A","RES","TK1739-007","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306SR-
121217","","","0.50",""
"G32-MW306SR-121217","6020A","RES","TK1739-007","KAS","7439-96-
5","MANGANESE","1020","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW306SR121217","","","1.0",""
"G44S-MW207-121217","6020A","RES","TK1739-008","KAS","7440-38-
2","ARSENIC","4.6","ug/L","J","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G44S-MW207121217","","","4.0",""
"G44S-MW207-121217","6020A","RES","TK1739-008","KAS","7440-43-
9","CADMIUM","0.534","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207-
121217","","","0.20",""
"G44S-MW207-121217","6020A","RES","TK1739-008","KAS","7439-92-
1","LEAD","2.73","ug/L","","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207-
121217","","","0.50",""
"G44S-MW207-121217","6020A","RES","TK1739-008","KAS","7439-96-
5","MANGANESE","264","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G44S-MW207-

121217","","","1.0",""
"G44S-MW207-121217","6020A","RES","TK1739-009","KAS","7440-38-
2","ARSENIC","4.3","ug/L","J","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G44S-MW207121217","","","4.0",""
"G44S-MW207-121217","6020A","RES","TK1739-009","KAS","7440-43-
9","CADMIUM","0.466","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207-
121217","","","0.20",""
"G44S-MW207-121217","6020A","RES","TK1739-009","KAS","7439-92-
1","LEAD","1.41","ug/L","","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207-
121217","","","0.50",""
"G44S-MW207-121217","6020A","RES","TK1739-009","KAS","7439-96-
5","MANGANESE","202","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G44S-MW207-
121217","","","1.0",""
"GI-MW403-121217","6020A","RES","TK1739-010","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW403121217","","","4.0",""
"GI-MW403-121217","6020A","RES","TK1739-010","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-
121217","","","0.20",""
"GI-MW403-121217","6020A","RES","TK1739-010","KAS","7439-92-
1","LEAD","0.17","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-
121217","","","0.50",""
"GI-MW403-121217","6020A","RES","TK1739-010","KAS","7439-96-
5","MANGANESE","146","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW403-
121217","","","1.0",""
"GI-MW403-121217","6020A","RES","TK1739-011","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW403121217","","","4.0",""
"GI-MW403-121217","6020A","RES","TK1739-011","KAS","7440-43-
9","CADMIUM","0.078","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-
121217","","","0.20",""
"GI-MW403-121217","6020A","RES","TK1739-011","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-
121217","","","0.50",""
"GI-MW403-121217","6020A","RES","TK1739-011","KAS","7439-96-
5","MANGANESE","142","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW403-
121217","","","1.0",""
"GI-MW401-121217","6020A","RES","TK1739-012","KAS","7440-38-
2","ARSENIC","4.4","ug/L","J","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW401121217","","","4.0",""
"GI-MW401-121217","6020A","RES","TK1739-012","KAS","7440-43-
9","CADMIUM","0.079","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401121217","","","0.20",""
"GI-MW401-121217","6020A","RES","TK1739-012","KAS","7439-92-
1","LEAD","0.40","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401121217","","","0.50",""
"GI-MW401-121217","6020A","RES","TK1739-012","KAS","7439-96-
5","MANGANESE","55.4","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW401121217","","","1.0",""
"GI-MW401-121217","6020A","RES","TK1739-013","KAS","7440-38-
2","ARSENIC","3.5","ug/L","J","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW401121217","","","4.0",""
"GI-MW401-121217","6020A","RES","TK1739-013","KAS","7440-43-
9","CADMIUM","0.031","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401-

121217","","","0.20",""
"GI-MW401-121217","6020A","RES","TK1739-013","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401-
121217","","","0.50",""
"GI-MW401-121217","6020A","RES","TK1739-013","KAS","7439-96-
5","MANGANESE","44.3","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW401-
121217","","","1.0",""
"TB-121217","8260C","RES","TK1739-1","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","TB-121217","","","0",""
"TB-121217","8260C","RES","TK1739-1","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","TB-
121217","","","2.0",""
"TB-121217","8260C","RES","TK1739-1","KAS","460-00-4","4-
BROMOFLUOROBENZENE","95.6","\%","","0","MDL","","SURR","95.6","","0","PQL","YES","50.0","TB-
121217","","","0",""
"TB-121217","8260C","RES","TK1739-1","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","TB-121217","","","0.50",""
"TB-121217","8260C","RES","TK1739-1","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","TB-
121217","","","1.0",""
"TB-121217","8260C","RES","TK1739-1","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","104.","\%","","0","MDL","","SURR","104.","","0","PQL","YES","50.0","TB121217","","","0",""
"TB-121217","8260C","RES","TK1739-1","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","TB-
121217","","","0.50",""
"TB-121217","8260C","RES","TK1739-1","KAS","2037-26-5","TOLUENE-
D8","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","TB-121217","","","0",""
"TB-121217","8260C","RES","TK1739-1","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","TB-
121217","","","1.0",""
"TB-121217","8260C","RES","TK1739-1","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","TB121217","","","0.50",""
"TB-121217","8260C","RES","TK1739-1","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","TB-121217","","","2.0",""
"GI-MW403-121217","2320B","RES","TK1739-10","KAS","11-43-8","ALKALINITY AS
CACO3","61.","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW403-121217","","","4.0",""
"GI-MW403-121217","300.0","RES","TK1739-10","KAS","14797-55-8","NITRATE AS
N","3.6","mg/L","",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","GI-MW403-
121217","","","0.025",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","68.5","\%","","0","MDL","","SURR","68.5","","0","PQL","YES","0.952","GI-MW403-121217","","","0",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","12674-11-2","AROCLOR
1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24","" "GI-MW403-121217","8082A","RES","TK1739-10","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.088","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24","" "GI-MW403-121217","8082A","RES","TK1739-10","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24","" "GI-MW403-121217","8082A","RES","TK1739-10","KAS","11097-69-1","AROCLOR

1254","0.24","ug/L","U","0.081","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","11096-82-5","AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.071","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW403-121217","","","0.24",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","2051-24-
3","DECACHLOROBIPHENYL","50.0","\%","","0","MDL","","SURR","50.0","","0","PQL","YES","0.952","GI-MW403-121217","","","0",""
"GI-MW403-121217","8082A","RES","TK1739-10","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.063","MDL","","TRG","","","4.3","PQL","YES","0","GI-MW403-121217","","","2.1",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","104.","\%","","0","MDL","","SURR","104.","","0","PQL","YES","50.0","GI-MW403-121217","","","0",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-
121217","","","2.0",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","460-00-4","4-
BROMOFLUOROBENZENE","97.4","\%","","0","MDL","","SURR","97.4","","0","PQL","YES","50.0","GI-MW403121217","","","0",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-
121217","","","0.50",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW403121217","","","1.0",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","GI-MW403-121217","","","0",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","GI-
MW403-121217","","","0.50",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","2037-26-5","TOLUENE-
D8","100.","\%","","0","MDL","","SURR","100.","","0","PQL","YES","50.0","GI-MW403-121217","","","0",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW403-
121217","","","1.0",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403121217","","","0.50",""
"GI-MW403-121217","8260C","RES","TK1739-10","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-
121217","","","2.0",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","615-58-7","2,4-Dibromophenol
","82.3","\%","","0","MDL","","SURR","82.3","","0","PQL","YES","4.00","GI-MW403-121217","","","0",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.10","ug/L","U","0.077","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403-121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","7297-45-2","2-Methylnaphthalene-
d10","88.7","\%","","0","MDL","","SURR","88.7","","0","PQL","YES","2.00","GI-MW403-121217","","","0",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.10","ug/L","U","0.046","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403-121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","50-32-

8","BENZO(A)PYRENE","0.10","ug/L","U","0.066","MDL","","TRG","",","0.20","PQL","YES","0","GI-MW403121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.10","ug/L","U","0.089","MDL","","TRG","",","0.20","PQL","YES","0","GI-MW403-121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.10","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403-121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.10","ug/L","U","0.049","MDL","","TRG","",","0.20","PQL","YES","0","GI-MW403-121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","218-01-
9","CHRYSENE","0.10","ug/L","U","0.036","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403-
121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.10","ug/L","U","0.070","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403-121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","206-44-
0","FLUORANTHENE","0.10","ug/L","U","0.073","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403-
121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","81103-79-9","Fluorene-
d10","82.6","\%","","0","MDL",",",SURR","82.6","","0","PQL","YES","2.00","GI-MW403-121217","","","0",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.10","ug/L","U","0.052","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","91-20-
3","NAPHTHALENE","0.10","ug/L","U","0.064","MDL","","TRG","",","0.20","PQL","YES","0","GI-MW403121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","87-86-
5","PENTACHLOROPHENOL","0.50","ug/L","U","0.33","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW403-121217","","","0.50",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","85-01-
8","PHENANTHRENE","0.10","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","GI-MW403121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","129-00-
0","PYRENE","0.10","ug/L","U","0.059","MDL","","TRG","",","0.20","PQL","YES","0","GI-MW403-
121217","","","0.10",""
"GI-MW403-121217","8270D-SIM","RES","TK1739-10","KAS","1718-52-1","Pyrene-
d10","99.0","\%",","0","MDL",",",SURR","99.0","","0","PQL","YES","2.00","GI-MW403-121217","","","0",""
"GI-MW403-121217","300.0","RES","TK1739-10RA","KAS","16887-00-
6","CHLORIDE","15","mg/L","","0.20","MDL","","TRG","","","4.0","PQL","YES","3.75","GI-MW403-
121217","","","2.0",""
"GI-MW403-121217","300.0","RES","TK1739-10RAB","KAS","14808-79-
8","SULFATE","44","mg/L","","0.32","MDL","","TRG","","","5.0","PQL","YES","3.75","GI-MW403-
121217","","","2.5",""
"GI-MW401-121217","2320B","RES","TK1739-12","KAS","11-43-8","ALKALINITY AS
CACO3","92.","mg/L","","0.23","MDL","","TRG","",","5.0","PQL","YES","0","GI-MW401-121217","","","4.0",""
"GI-MW401-121217","300.0","RES","TK1739-12","KAS","14797-55-8","NITRATE AS
N","0.32","mg/L","",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","GI-MW401-
121217","","","0.025",""
"GI-MW401-121217","8082A","RES","TK1739-12","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","60.6","\%","*","0","MDL","","SURR","60.6","","0","PQL","YES","0.943","GI-MW401-121217","","","0",""
"GI-MW401-121217","8082A","RES","TK1739-12","KAS","12674-11-2","AROCLOR
1016","0.24","ug/L","U","0.15","MDL","","TRG","",","0.47","PQL","YES","0","GI-MW401-121217","",","0.24",""
"GI-MW401-121217","8082A","RES","TK1739-12","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24","" "GI-MW401-121217","8082A","RES","TK1739-12","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.089","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24","" "GI-MW401-121217","8082A","RES","TK1739-12","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24","" "GI-MW401-121217","8082A","RES","TK1739-12","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24","" "GI-MW401-121217","8082A","RES","TK1739-12","KAS","11097-69-1","AROCLOR 1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24","" "GI-MW401-121217","8082A","RES","TK1739-12","KAS","11096-82-5","AROCLOR 1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24","" "GI-MW401-121217","8082A","RES","TK1739-12","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24",""
"GI-MW401-121217","8082A","RES","TK1739-12","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW401-121217","","","0.24",""
"GI-MW401-121217","8082A","RES","TK1739-12","KAS","2051-24-
3","DECACHLOROBIPHENYL","67.4","\%","","0","MDL","","SURR","67.4","","0","PQL","YES","0.943","GI-MW401-121217","","","0",""
"GI-MW401-121217","8082A","RES","TK1739-12","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.062","MDL","","TRG","","","4.2","PQL","YES","0","GI-MW401-121217","","","2.1",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","17060-07-0","1,2-DICHLOROETHANE-D4","103.","\%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","GI-MW401-121217","","","0",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","540-59-0","1,2-
DICHLOROETHYLENE","0.60","ug/L","J","0.21","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401121217","","","2.0",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","460-00-4","4-
BROMOFLUOROBENZENE","98.3","\%","","0","MDL","","SURR","98.3","","0","PQL","YES","50.0","GI-MW401121217","","","0",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401-
121217","","","0.50",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","0.60","ug/L","","0.21","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW401-
121217","","","1.0",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","GI-MW401-121217","","","0",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","GI-
MW401-121217","","","0.50",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","2037-26-5","TOLUENE-
D8","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","GI-MW401-121217","","","0",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW401-
121217","","","1.0",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","79-01-
6","TRICHLOROETHENE","1.7","ug/L","","0.28","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401-
121217","","","0.50",""
"GI-MW401-121217","8260C","RES","TK1739-12","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW401-
121217","","","2.0",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","615-58-7","2,4-Dibromophenol ","82.4","\%","","0","MDL","","SURR","82.4","","0","PQL","YES","4.00","GI-MW401-121217","","","0",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.094","ug/L","U","0.073","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","7297-45-2","2-Methylnaphthalene-
d10","84.7","\%","","0","MDL","","SURR","84.7","","0","PQL","YES","2.00","GI-MW401-121217","","","0",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.094","ug/L","U","0.043","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","50-32-
8","BENZO(A)PYRENE","0.094","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.094","ug/L","U","0.084","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.094","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.094","ug/L","U","0.046","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","218-01-
9","CHRYSENE","0.094","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-
121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.094","ug/L","U","0.066","MDL","","TRG","","","0.19","PQL","YES","0","G I-MW401-121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","206-44-
0","FLUORANTHENE","0.094","ug/L","U","0.069","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-
121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","81103-79-9","Fluorene-
d10","79.4","\%","","0","MDL","","SURR","79.4","","0","PQL","YES","2.00","GI-MW401-121217","","","0",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.094","ug/L","U","0.049","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-

121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","91-20-
3","NAPHTHALENE","0.094","ug/L","U","0.060","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-
121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","87-86-
5","PENTACHLOROPHENOL","0.47","ug/L","U","0.31","MDL","","TRG","","","0.94","PQL","YES","0","GI-MW401-121217","","","0.47",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","85-01-
8","PHENANTHRENE","0.065","ug/L","J","0.048","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401-
121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","129-00-
0","PYRENE","0.094","ug/L","U","0.056","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW401121217","","","0.094",""
"GI-MW401-121217","8270D-SIM","RES","TK1739-12","KAS","1718-52-1","Pyrene-
d10","75.7","\%","","0","MDL","","SURR","75.7","","0","PQL","YES","2.00","GI-MW401-121217","","","0",""
"GI-MW401-121217","300.0","RES","TK1739-12RA","KAS","16887-00-
6","CHLORIDE","31","mg/L","","0.50","MDL","","TRG","","","10.","PQL","YES","3.75","GI-MW401121217","","","5.0",""
"GI-MW401-121217","300.0","RES","TK1739-12RA","KAS","14808-79-
8","SULFATE","34","mg/L","","0.32","MDL","","TRG","","","5.0","PQL","YES","3.75","GI-MW401-
121217","","","2.5",""
"G32-MW303B-121217","2320B","RES","TK1739-2","KAS","11-43-8","ALKALINITY AS CACO3","4.0","mg/L","U","0.23","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW303B121217","","","4.0",""
"G32-MW303B-121217","300.0","RES","TK1739-2","KAS","14797-55-8","NITRATE AS N","0.025","mg/L","U",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","G32-MW303B121217","","","0.025",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","73.5","\%","","0","MDL","","SURR","73.5","","0","PQL","YES","0.952","G32-MW303B121217","","","0",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","12674-11-2","AROCLOR 1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B121217","","","0.24",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B121217","","","0.24",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.088","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B121217","","","0.24",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B121217","","","0.24",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B121217","","","0.24",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","11097-69-1","AROCLOR 1254","0.24","ug/L","U","0.081","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B121217","","","0.24",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","11096-82-5","AROCLOR 1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B121217","","","0.24",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","37324-23-5","Aroclor-1262 ","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B-121217","","","0.24","" "G32-MW303B-121217","8082A","RES","TK1739-2","KAS","11100-14-4","Aroclor-1268 ","0.24","ug/L","U","0.071","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW303B-121217","","","0.24","" "G32-MW303B-121217","8082A","RES","TK1739-2","KAS","2051-24-
3","DECACHLOROBIPHENYL","37.9","\%","*","0","MDL","","SURR","37.9","","0","PQL","YES","0.952","G32-MW303B-121217","","","0",""
"G32-MW303B-121217","8082A","RES","TK1739-2","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.063","MDL","","TRG","","","4.3","PQL","YES","0","G32-MW303B-121217","","","2.1",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","G32-MW303B-121217","","","0",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW303B121217","","","2.0",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","460-00-4","4-
BROMOFLUOROBENZENE","93.2","\%","","0","MDL","","SURR","93.2","","0","PQL","YES","50.0","G32-
MW303B-121217","","","0",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW303B-
121217","","","0.50",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW303B121217","","","1.0",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","1868-53-

7","DIBROMOFLUOROMETHANE","104.","\%","","0","MDL","","SURR","104.","","0","PQL","YES","50.0","G32-
MW303B-121217","","","0",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW303B-121217","","","0.50",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","2037-26-5","TOLUENE-
D8","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","G32-MW303B-121217","","","0",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW303B121217","","","1.0",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW303B-121217","","","0.50",""
"G32-MW303B-121217","8260C","RES","TK1739-2","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW303B-
121217","","","2.0",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","615-58-7","2,4-Dibromophenol
","64.4","\%","","0","MDL","","SURR","64.4","","0","PQL","YES","4.00","G32-MW303B-121217","","","0",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.098","ug/L","U","0.075","MDL","","TRG","","","0.20","PQL","YES","0","G32-
MW303B-121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","7297-45-2","2-Methylnaphthalene-d10","70.2","\%","","0","MDL","","SURR","70.2","","0","PQL","YES","2.00","G32-MW303B-121217","","","0","" "G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.098","ug/L","U","0.045","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW303B-121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","50-32-
8","BENZO(A)PYRENE","0.098","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","G32-
MW303B-121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.098","ug/L","U","0.087","MDL","","TRG","","","0.20","PQL","YES","0","G32 -MW303B-121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.098","ug/L","U","0.064","MDL","","TRG","","","0.20","PQL","YES","0","G32-
MW303B-121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.098","ug/L","U","0.048","MDL","","TRG","","","0.20","PQL","YES","0","G32 -MW303B-121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","218-01-
9","CHRYSENE","0.098","ug/L","U","0.035","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW303B-
121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.098","ug/L","U","0.069","MDL","","TRG","","","0.20","PQL","YES","0","G 32-MW303B-121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","206-44-
0","FLUORANTHENE","0.098","ug/L","U","0.072","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW303B121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","81103-79-9","Fluorene-
d10","67.8","\%","","0","MDL","","SURR","67.8","","0","PQL","YES","2.00","G32-MW303B-121217","","","0",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.098","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW303B-

121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","91-20-
3","NAPHTHALENE","0.098","ug/L","U","0.063","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW303B-

121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","87-86-
5","PENTACHLOROPHENOL","0.49","ug/L","U","0.32","MDL","","TRG","","","0.98","PQL","YES","0","G32-
MW303B-121217","","","0.49",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","85-01-
8","PHENANTHRENE","0.098","ug/L","U","0.050","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW303B-
121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","129-00-
0","PYRENE","0.098","ug/L","U","0.058","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW303B121217","","","0.098",""
"G32-MW303B-121217","8270D-SIM","RES","TK1739-2","KAS","1718-52-1","Pyrene-
d10","93.8","\%","","0","MDL","","SURR","93.8","","0","PQL","YES","2.00","G32-MW303B-121217","","","0",""
"G32-MW303B-121217","300.0","RES","TK1739-2RA","KAS","14808-79-
8","SULFATE","26","mg/L","","0.13","MDL","","TRG","","","2.0","PQL","YES","3.75","G32-MW303B-
121217","","","1.0",""
"G32-MW303B-121217","300.0","RES","TK1739-2RAB","KAS","16887-00-
6","CHLORIDE","120","mg/L","","2.0","MDL","","TRG","","","40.","PQL","YES","3.75","G32-MW303B-
121217","","","20.",""
"GI-MW402-121217","2320B","RES","TK1739-4","KAS","11-43-8","ALKALINITY AS
CACO3","50.","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW402-121217","","","4.0",""
"GI-MW402-121217","300.0","RES","TK1739-4","KAS","14797-55-8","NITRATE AS
N","0.21","mg/L","",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","GI-MW402-
121217","","","0.025",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","GI-MW402-121217","","","0",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402-
121217","","","2.0",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","460-00-4","4-
BROMOFLUOROBENZENE","93.6","\%","","0","MDL","","SURR","93.6","","0","PQL","YES","50.0","GI-MW402121217","","","0",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402-
121217","","","0.50",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW402-
121217","","","1.0",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","109.","\%","","0","MDL","","SURR","109.","","0","PQL","YES","50.0","GI-MW402-121217","","","0",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","GI-
MW402-121217","","","0.50",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","2037-26-5","TOLUENE-
D8","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","GI-MW402-121217","","","0",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW402-
121217","","","1.0",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402121217","","","0.50",""
"GI-MW402-121217","8260C","RES","TK1739-4","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW402-
121217","","","2.0",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","615-58-7","2,4-Dibromophenol
","72.5","\%","","0","MDL","","SURR","72.5","","0","PQL","YES","4.00","GI-MW402-121217","","","0",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.094","ug/L","U","0.073","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","7297-45-2","2-Methylnaphthalene-
d10","74.6","\%","","0","MDL","","SURR","74.6","","0","PQL","YES","2.00","GI-MW402-121217","","","0",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.094","ug/L","U","0.043","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","50-32-
8","BENZO(A)PYRENE","0.094","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.094","ug/L","U","0.084","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.094","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.094","ug/L","U","0.046","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","218-01-
9","CHRYSENE","0.094","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-
121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.094","ug/L","U","0.066","MDL","","TRG","","","0.19","PQL","YES","0","G I-MW402-121217","","","0.094","'
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","206-44-
0","FLUORANTHENE","0.094","ug/L","U","0.069","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-
121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","81103-79-9","Fluorene-
d10","72.8","\%","","0","MDL","","SURR","72.8","","0","PQL","YES","2.00","GI-MW402-121217","","","0",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.094","ug/L","U","0.049","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-

121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","91-20-
3","NAPHTHALENE","0.094","ug/L","U","0.060","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","87-86-
5","PENTACHLOROPHENOL","0.47","ug/L","U","0.31","MDL","","TRG","","","0.94","PQL","YES","0","GI-MW402-121217","","","0.47",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","85-01-
8","PHENANTHRENE","0.094","ug/L","U","0.048","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","129-00-
0","PYRENE","0.094","ug/L","U","0.056","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW402-
121217","","","0.094",""
"GI-MW402-121217","8270D-SIM","RES","TK1739-4","KAS","1718-52-1","Pyrene-
d10","91.5","\%","","0","MDL","","SURR","91.5","","0","PQL","YES","2.00","GI-MW402-121217","","","0",""
"GI-MW402-121217","300.0","RES","TK1739-4RA","KAS","16887-00-
6","CHLORIDE","15","mg/L","","0.20","MDL","","TRG","","","4.0","PQL","YES","3.75","GI-MW402-
121217","","","2.0",""
"GI-MW402-121217","300.0","RES","TK1739-4RAB","KAS","14808-79-

8","SULFATE","59","mg/L","","0.32","MDL","","TRG","","","5.0","PQL","YES","3.75","GI-MW402121217","","","2.5",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","85.8","\%","","0","MDL","","SURR","85.8","","0","PQL","YES","0.943","GI-MW402-121217","","","0",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","12674-11-2","AROCLOR
1016","0.24","ug/L","U","0.15","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","11104-28-2","AROCLOR
1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","11141-16-5","AROCLOR
1232","0.24","ug/L","U","0.089","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","53469-21-9","AROCLOR
1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","12672-29-6","AROCLOR
1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","11097-69-1","AROCLOR
1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","11096-82-5","AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.47","PQL","YES","0","GI-MW402-121217","","","0.24",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","2051-24-
3","DECACHLOROBIPHENYL","71.0","\%","","0","MDL","","SURR","71.0","","0","PQL","YES","0.943","GI-MW402-121217","","","0",""
"GI-MW402-121217","8082A","RES","TK1739-4RE","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.062","MDL","","TRG","","","4.2","PQL","YES","0","GI-MW402-121217","","","2.1",""
"G32-MW306SR-121217","2320B","RES","TK1739-6","KAS","11-43-8","ALKALINITY AS
CACO3","99.","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306SR-
121217","","","4.0",""
"G32-MW306SR-121217","300.0","RES","TK1739-6","KAS","14797-55-8","NITRATE AS N","0.50","mg/L","",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","G32-MW306SR121217","","","0.025",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","70.7","\%","","0","MDL","","SURR","70.7","","0","PQL","YES","0.943","G32-MW306SR121217","","","0",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","12674-11-2","AROCLOR 1016","0.24","ug/L","U","0.15","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.089","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","11097-69-1","AROCLOR 1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","11096-82-5","AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR-
121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR-121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306SR-121217","","","0.24",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","2051-24-
3","DECACHLOROBIPHENYL","74.9","\%","","0","MDL","","SURR","74.9","","0","PQL","YES","0.943","G32-
MW306SR-121217","","","0",""
"G32-MW306SR-121217","8082A","RES","TK1739-6","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.062","MDL","","TRG","","","4.2","PQL","YES","0","G32-MW306SR-
121217","","","2.1",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","106.","\%","","0","MDL","","SURR","106.","","0","PQL","YES","50.0","G32-MW306SR-121217","","","0",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306SR-
121217","","","2.0",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","460-00-4","4-
BROMOFLUOROBENZENE","97.5","\%","","0","MDL","","SURR","97.5","","0","PQL","YES","50.0","G32-
MW306SR-121217","","","0",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306SR-
121217","","","0.50",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW306SR-
121217","","","1.0",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","G32-
MW306SR-121217","","","0",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW306SR-121217","","","0.50",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","2037-26-5","TOLUENE-
D8","99.7","\%","","0","MDL","","SURR","99.7","","0","PQL","YES","50.0","G32-MW306SR-121217","","","0",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW306SR-
121217","","","1.0",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW306SR-121217","","","0.50",""
"G32-MW306SR-121217","8260C","RES","TK1739-6","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306SR-
121217","","","2.0",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","615-58-7","2,4-Dibromophenol
","68.6","\%","","0","MDL","","SURR","68.6","","0","PQL","YES","4.00","G32-MW306SR-121217","","","0","" "G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.41","ug/L","","0.076","MDL","","TRG","","","0.20","PQL","YES","0","G32-
MW306SR-121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","7297-45-2","2-Methylnaphthalene-
d10","72.8","\%","","0","MDL","","SURR","72.8","","0","PQL","YES","2.00","G32-MW306SR-121217","","","0","" "G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.099","ug/L","U","0.046","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW306SR-121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","50-32-
8","BENZO(A)PYRENE","0.099","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","G32-
MW306SR-121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.099","ug/L","U","0.088","MDL","","TRG","","","0.20","PQL","YES","0","G32 -MW306SR-121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.099","ug/L","U","0.064","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW306SR-121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.099","ug/L","U","0.048","MDL","","TRG","","","0.20","PQL","YES","0","G32 -MW306SR-121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","218-01-
9","CHRYSENE","0.099","ug/L","U","0.036","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW306SR121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.099","ug/L","U","0.069","MDL","","TRG","","","0.20","PQL","YES","0","G 32-MW306SR-121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","206-44-
0","FLUORANTHENE","0.099","ug/L","U","0.072","MDL","","TRG","","","0.20","PQL","YES","0","G32-
MW306SR-121217","","","0.099","'
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","81103-79-9","Fluorene-
d10","70.8","\%","","0","MDL","","SURR","70.8","","0","PQL","YES","2.00","G32-MW306SR-121217","","","0",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.099","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW306SR121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","91-20-
3","NAPHTHALENE","0.099","ug/L","U","0.063","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW306SR121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","87-86-
5","PENTACHLOROPHENOL","0.50","ug/L","U","0.33","MDL","","TRG","","","0.99","PQL","YES","0","G32-
MW306SR-121217","","","0.50",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","85-01-
8","PHENANTHRENE","0.28","ug/L","","0.050","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW306SR121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","129-00-
0","PYRENE","0.099","ug/L","U","0.058","MDL","","TRG","","","0.20","PQL","YES","0","G32-MW306SR-
121217","","","0.099",""
"G32-MW306SR-121217","8270D-SIM","RES","TK1739-6","KAS","1718-52-1","Pyrene-
d10","90.6","\%","","0","MDL","","SURR","90.6","","0","PQL","YES","2.00","G32-MW306SR-121217","","","0",""
"G32-MW306SR-121217","300.0","RES","TK1739-6RA","KAS","14808-79-
8","SULFATE","1600","mg/L","","6.4","MDL","","TRG","","","100","PQL","YES","3.75","G32-MW306SR-
121217","","","50.",""
"G32-MW306SR-121217","300.0","RES","TK1739-6RAU","KAS","16887-00-
6","CHLORIDE","12000","mg/L","","200","MDL","","TRG","","","4000","PQL","YES","3.75","G32-MW306SR-
121217","","","2000",""
"G44S-MW207-121217","2320B","RES","TK1739-8","KAS","11-43-8","ALKALINITY AS
CACO3","210","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","G44S-MW207-
121217","","","4.0",""
"G44S-MW207-121217","300.0","RES","TK1739-8","KAS","14797-55-8","NITRATE AS
N","12","mg/L","","0.087","MDL","","TRG","","","0.25","PQL","YES","0.845","G44S-MW207-
121217","","","0.12",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","67.0","\%","","0","MDL","","SURR","67.0","","0","PQL","YES","0.962","G44S-MW207-121217","","","0",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","12674-11-2","AROCLOR 1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.09","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207-
121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207-
121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","11097-69-1","AROCLOR 1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","11096-82-5","AROCLOR 1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207-121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW207-121217","","","0.24",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","2051-24-
3","DECACHLOROBIPHENYL","66.3","\%","","0","MDL","","SURR","66.3","","0","PQL","YES","0.962","G44S-
MW207-121217","","","0",""
"G44S-MW207-121217","8082A","RES","TK1739-8","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.063","MDL","","TRG","","","4.3","PQL","YES","0","G44S-MW207-121217","","","2.2",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","103.","\%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G44S-MW207-121217","","","0",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207121217","","","2.0",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","460-00-4","4-
BROMOFLUOROBENZENE","98.1","\%","","0","MDL","","SURR","98.1","","0","PQL","YES","50.0","G44S-
MW207-121217","","","0",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207-
121217","","","0.50",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","G44S-MW207-
121217","","","1.0",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","103.","\%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G44S -MW207-121217","","","0",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G44S-
MW207-121217","","","0.50",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","2037-26-5","TOLUENE-
D8","100.","\%","","0","MDL","","SURR","100.","","0","PQL","YES","50.0","G44S-MW207-121217","","","0",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","G44S-MW207-

121217","","","1.0",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207121217","","","0.50",""
"G44S-MW207-121217","8260C","RES","TK1739-8","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW207-
121217","","","2.0",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","615-58-7","2,4-Dibromophenol
","61.8","\%","","0","MDL","","SURR","61.8","","0","PQL","YES","4.00","G44S-MW207-121217","","","0",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.096","ug/L","U","0.074","MDL","","TRG","","","0.19","PQL","YES","0","G44S-
MW207-121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","7297-45-2","2-Methylnaphthalene-
d10","61.5","\%","","0","MDL","","SURR","61.5","","0","PQL","YES","2.00","G44S-MW207-121217","","","0",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.086","ug/L","J","0.044","MDL","","TRG","","","0.19","PQL","YES","0","G44S-
MW207-121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","50-32-
8","BENZO(A)PYRENE","0.092","ug/L","J","0.063","MDL","","TRG","","","0.19","PQL","YES","0","G44S-
MW207-121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.14","ug/L","J","0.086","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207-121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.096","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207-121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.076","ug/L","J","0.047","MDL","","TRG","","","0.19","PQL","YES","0","G44
S-MW207-121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","218-01-
9","CHRYSENE","0.096","ug/L","U","0.035","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.096","ug/L","U","0.067","MDL","","TRG","","","0.19","PQL","YES","0","G 44S-MW207-121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","206-44-
0","FLUORANTHENE","0.17","ug/L","J","0.070","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","81103-79-9","Fluorene-
d10","67.2","\%","","0","MDL","","SURR","67.2","","0","PQL","YES","2.00","G44S-MW207-121217","","","0",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.096","ug/L","U","0.050","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207-

121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","91-20-
3","NAPHTHALENE","0.096","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","87-86-
5","PENTACHLOROPHENOL","0.48","ug/L","U","0.32","MDL","","TRG","","","0.96","PQL","YES","0","G44S-
MW207-121217","","","0.48",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","85-01-
8","PHENANTHRENE","0.094","ug/L","J","0.049","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207-
121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","129-00-
0","PYRENE","0.17","ug/L","J","0.057","MDL","","TRG","","","0.19","PQL","YES","0","G44S-MW207-

121217","","","0.096",""
"G44S-MW207-121217","8270D-SIM","RES","TK1739-8","KAS","1718-52-1","Pyrene-d10","91.5","\%","","0","MDL","","SURR","91.5","","0","PQL","YES","2.00","G44S-MW207-121217","","","0","" "G44S-MW207-121217","300.0","RES","TK1739-8RA","KAS","14808-79-
8","SULFATE","200","mg/L","","1.3","MDL","","TRG","","","20.","PQL","YES","3.75","G44S-MW207-
121217","","","10.",""
"G44S-MW207-121217","300.0","RES","TK1739-8RAB","KAS","16887-00-
6","CHLORIDE","1800","mg/L","","20.","MDL","","TRG","","","400","PQL","YES","3.75","G44S-MW207-
121217","","","200",""
"WG220255-1","8082A","RES","WG220255-1","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","71.2","\%","","0","MDL","","SURR","71.2","","0","PQL","YES","1.00","WG220255-1","","","0",""
"WG220255-1","8082A","RES","WG220255-1","KAS","12674-11-2","AROCLOR
1016","0.25","ug/L","U","0.15","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","11104-28-2","AROCLOR
1221","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","11141-16-5","AROCLOR
1232","0.25","ug/L","U","0.089","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","53469-21-9","AROCLOR
1242","0.25","ug/L","U","0.18","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","12672-29-6","AROCLOR
1248","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","11097-69-1","AROCLOR
1254","0.25","ug/L","U","0.082","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","11096-82-5","AROCLOR
1260","0.25","ug/L","U","0.17","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","37324-23-5","Aroclor-1262
","0.25","ug/L","U","0.066","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","11100-14-4","Aroclor-1268
","0.25","ug/L","U","0.072","MDL","","TRG","","","0.50","PQL","YES","0","WG220255-1","","","0.25",""
"WG220255-1","8082A","RES","WG220255-1","KAS","2051-24-
3","DECACHLOROBIPHENYL","72.5","\%","","0","MDL","","SURR","72.5","","0","PQL","YES","1.00","WG22025 5-1","","","0",""
"WG220255-1","8082A","RES","WG220255-1","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.066","MDL","","TRG","","","4.5","PQL","YES","0","WG220255-1","","","2.2",""
"WG220255-2","8082A","RES","WG220255-2","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","70.2","\%","","0","MDL","","SURR","70.2","","0","PQL","YES","1.00","WG220255-2","","","0",""
"WG220255-2","8082A","RES","WG220255-2","KAS","12674-11-2","AROCLOR
1016","3.81","ug/L","","0.15","MDL","","SPK","76.2","","0.50","PQL","YES","5.00","WG220255-2","","","0.25",""
"WG220255-2","8082A","RES","WG220255-2","KAS","11104-28-2","AROCLOR
1221","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-2","","","0.25","" "WG220255-2","8082A","RES","WG220255-2","KAS","11141-16-5","AROCLOR 1232","0.00","ug/L","","0.089","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-2","","","0.25",""
"WG220255-2","8082A","RES","WG220255-2","KAS","53469-21-9","AROCLOR
1242","0.00","ug/L","","0.18","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-2","","","0.25",""
"WG220255-2","8082A","RES","WG220255-2","KAS","12672-29-6","AROCLOR
1248","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-2","","","0.25","" "WG220255-2","8082A","RES","WG220255-2","KAS","11096-82-5","AROCLOR 1260","3.80","ug/L","","0.17","MDL","","SPK","76.0","","0.50","PQL","YES","5.00","WG220255-2","","","0.25","" "WG220255-2","8082A","RES","WG220255-2","KAS","37324-23-5","Aroclor-1262
","0.00","ug/L","","0.066","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-2","","","0.25",""
"WG220255-2","8082A","RES","WG220255-2","KAS","11100-14-4","Aroclor-1268
","0.00","ug/L","","0.072","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-2","","","0.25","" "WG220255-2","8082A","RES","WG220255-2","KAS","2051-24-
3","DECACHLOROBIPHENYL","60.2","\%","","0","MDL","","SURR","60.2","","0","PQL","YES","1.00","WG22025

5-2","","","0",""
"WG220255-2","8082A","RES","WG220255-2","KAS","1336-36-3","TOTAL
PCB","0.00","ug/L","","0.066","MDL","","SPK","0.00","","4.5","PQL","YES","-1.00","WG220255-2","","","2.2","" "WG220255-3","8082A","RES","WG220255-3","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","63.8","\%","","0","MDL","","SURR","63.8","","0","PQL","YES","1.00","WG220255-3","","","0",""
"WG220255-3","8082A","RES","WG220255-3","KAS","11104-28-2","AROCLOR
1221","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-3","","","0.25",""
"WG220255-3","8082A","RES","WG220255-3","KAS","11141-16-5","AROCLOR
1232","0.00","ug/L","","0.089","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-3","","","0.25",""
"WG220255-3","8082A","RES","WG220255-3","KAS","53469-21-9","AROCLOR 1242","0.00","ug/L","","0.18","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-3","","","0.25","" "WG220255-3","8082A","RES","WG220255-3","KAS","12672-29-6","AROCLOR 1248","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-3","","","0.25","" "WG220255-3","8082A","RES","WG220255-3","KAS","11097-69-1","AROCLOR
1254","3.43","ug/L","","0.082","MDL","","SPK","68.6","","0.50","PQL","YES","5.00","WG220255-3","","","0.25","" "WG220255-3","8082A","RES","WG220255-3","KAS","37324-23-5","Aroclor-1262 ","0.00","ug/L","","0.066","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-3","","","0.25","" "WG220255-3","8082A","RES","WG220255-3","KAS","11100-14-4","Aroclor-1268 ","0.00","ug/L","","0.072","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220255-3","","","0.25","" "WG220255-3","8082A","RES","WG220255-3","KAS","2051-24-
3","DECACHLOROBIPHENYL","73.4","\%","","0","MDL","","SURR","73.4","","0","PQL","YES","1.00","WG22025 5-3","","","0",""
"WG220255-3","8082A","RES","WG220255-3","KAS","1336-36-3","TOTAL
PCB","0.00","ug/L","","0.066","MDL","","SPK","0.00","","4.5","PQL","YES","-1.00","WG220255-3","","","2.2",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","615-58-7","2,4-Dibromophenol
","66.6","\%","","0","MDL","","SURR","66.6","","0","PQL","YES","4.00","WG220256-1","","","0",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.10","ug/L","U","0.077","MDL","","TRG","","","0.20","PQL","YES","0","WG2202561","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","7297-45-2","2-Methylnaphthalene-
d10","73.4","\%","","0","MDL","","SURR","73.4","","0","PQL","YES","2.00","WG220256-1","","","0",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.10","ug/L","U","0.046","MDL","","TRG","","","0.20","PQL","YES","0","WG220 256-1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","50-32-
8","BENZO(A)PYRENE","0.10","ug/L","U","0.066","MDL","","TRG","","","0.20","PQL","YES","0","WG2202561","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.10","ug/L","U","0.089","MDL","","TRG","","","0.20","PQL","YES","0","WG2 20256-1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.10","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","WG220 256-1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.10","ug/L","U","0.049","MDL","","TRG","","","0.20","PQL","YES","0","WG2 20256-1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","218-01-
9","CHRYSENE","0.10","ug/L","U","0.036","MDL","","TRG","","","0.20","PQL","YES","0","WG220256-
1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.10","ug/L","U","0.070","MDL","","TRG","","","0.20","PQL","YES","0","W G220256-1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","206-44-
0","FLUORANTHENE","0.10","ug/L","U","0.073","MDL","","TRG","","","0.20","PQL","YES","0","WG220256-

1","","","0.10","'
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","81103-79-9","Fluorene-
d10","67.8","\%","","0","MDL","","SURR","67.8","","0","PQL","YES","2.00","WG220256-1","","","0",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.10","ug/L","U","0.052","MDL","","TRG","","","0.20","PQL","YES","0","WG2202561","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","91-20-
3","NAPHTHALENE","0.10","ug/L","U","0.064","MDL","","TRG","","","0.20","PQL","YES","0","WG220256-
1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","87-86-
5","PENTACHLOROPHENOL","0.50","ug/L","U","0.33","MDL","","TRG","","","1.0","PQL","YES","0","WG220256 -1","","","0.50",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","85-01-
8","PHENANTHRENE","0.10","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","WG220256-
1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","129-00-
0","PYRENE","0.10","ug/L","U","0.059","MDL","","TRG","","","0.20","PQL","YES","0","WG220256-
1","","","0.10",""
"WG220256-1","8270D-SIM","RES","WG220256-1","KAS","1718-52-1","Pyrene-
d10","84.1","\%","","0","MDL","","SURR","84.1","","0","PQL","YES","2.00","WG220256-1","","","0",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","615-58-7","2,4-Dibromophenol
","62.0","\%","","0","MDL","","SURR","62.0","","0","PQL","YES","4.00","WG220256-2","","","0",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","91-57-6","2-
METHYLNAPHTHALENE","1.27","ug/L","","0.077","MDL","","SPK","63.5","","0.20","PQL","YES","2.00","WG22
0256-2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","7297-45-2","2-Methylnaphthalene-
d10","70.3","\%","","0","MDL","","SURR","70.3","","0","PQL","YES","2.00","WG220256-2","","","0",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","56-55-
3","BENZO(A)ANTHRACENE","1.81","ug/L","","0.046","MDL","","SPK","90.5","","0.20","PQL","YES","2.00","W G220256-2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","50-32-
8","BENZO(A)PYRENE","1.48","ug/L","","0.066","MDL","","SPK","74.0","","0.20","PQL","YES","2.00","WG22025 6-2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","205-99-
2","BENZO(B)FLUORANTHENE","1.61","ug/L","","0.089","MDL","","SPK","80.5","","0.20","PQL","YES","2.00"," WG220256-2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","1.53","ug/L","","0.065","MDL","","SPK","76.5","","0.20","PQL","YES","2.00","W G220256-2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","207-08-
9","BENZO(K)FLUORANTHENE","1.51","ug/L","","0.049","MDL","","SPK","75.5","","0.20","PQL","YES","2.00"," WG220256-2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","218-01-
9","CHRYSENE","1.73","ug/L","","0.036","MDL","","SPK","86.5","","0.20","PQL","YES","2.00","WG220256-
2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","1.50","ug/L","","0.070","MDL","","SPK","75.0","","0.20","PQL","YES","2.00 ","WG220256-2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","206-44-
0","FLUORANTHENE","1.53","ug/L","","0.073","MDL","","SPK","76.5","","0.20","PQL","YES","2.00","WG220256 -2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","81103-79-9","Fluorene-d10","62.1","\%","","0","MDL","","SURR","62.1","","0","PQL","YES","2.00","WG220256-2","","","0","" "WG220256-2","8270D-SIM","RES","WG220256-2","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","1.84","ug/L","","0.052","MDL","","SPK","92.0","","0.20","PQL","YES","2.00","WG2202562","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","91-20-
3","NAPHTHALENE","1.34","ug/L","","0.064","MDL","","SPK","67.0","","0.20","PQL","YES","2.00","WG2202562","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","87-86-
5","PENTACHLOROPHENOL","1.94","ug/L","","0.33","MDL","","SPK","48.5","","1.0","PQL","YES","4.00","WG2 20256-2","","","0.50",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","85-01-
8","PHENANTHRENE","1.48","ug/L","","0.051","MDL","","SPK","74.0","","0.20","PQL","YES","2.00","WG220256 -2","","","0.10",""
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","129-00-
0","PYRENE","1.52","ug/L","","0.059","MDL","","SPK","76.0","","0.20","PQL","YES","2.00","WG220256-
2","","","0.10","'
"WG220256-2","8270D-SIM","RES","WG220256-2","KAS","1718-52-1","Pyrene-
d10","74.1","\%","","0","MDL","","SURR","74.1","","0","PQL","YES","2.00","WG220256-2","","","0",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","615-58-7","2,4-Dibromophenol
","66.5","\%","","0","MDL","","SURR","66.5","","0","PQL","YES","4.00","WG220256-3","","","0",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","91-57-6","2-
METHYLNAPHTHALENE","1.39","ug/L","","0.077","MDL","","SPK","69.5","9","0.20","PQL","YES","2.00","WG2 20256-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","7297-45-2","2-Methylnaphthalene-
d10","78.7","\%","","0","MDL","","SURR","78.7","","0","PQL","YES","2.00","WG220256-3","","","0",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","56-55-
3","BENZO(A)ANTHRACENE","1.71","ug/L","","0.046","MDL","","SPK","85.5","6","0.20","PQL","YES","2.00"," WG220256-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","50-32-
8","BENZO(A)PYRENE","1.37","ug/L","","0.066","MDL","","SPK","68.5","8","0.20","PQL","YES","2.00","WG2202 56-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","205-99-
2","BENZO(B)FLUORANTHENE","1.56","ug/L","","0.089","MDL","","SPK","78.0","3","0.20","PQL","YES","2.00", "WG220256-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","1.44","ug/L","","0.065","MDL","","SPK","72.0","6","0.20","PQL","YES","2.00","W G220256-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","207-08-
9","BENZO(K)FLUORANTHENE","1.43","ug/L","","0.049","MDL","","SPK","71.5","5","0.20","PQL","YES","2.00", "WG220256-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","218-01-
9","CHRYSENE","1.56","ug/L","","0.036","MDL","","SPK","78.0","10","0.20","PQL","YES","2.00","WG220256-
3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","1.43","ug/L","","0.070","MDL","","SPK","71.5","5","0.20","PQL","YES","2.0 0","WG220256-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","206-44-
0","FLUORANTHENE","1.50","ug/L","","0.073","MDL","","SPK","75.0","2","0.20","PQL","YES","2.00","WG22025 6-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","81103-79-9","Fluorene-
d10","65.9","\%","","0","MDL","","SURR","65.9","","0","PQL","YES","2.00","WG220256-3","","","0",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","1.52","ug/L","","0.052","MDL","","SPK","76.0","19","0.20","PQL","YES","2.00","WG220256-

3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","91-20-
3","NAPHTHALENE","1.43","ug/L","","0.064","MDL","","SPK","71.5","6","0.20","PQL","YES","2.00","WG220256-

3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","87-86-
5","PENTACHLOROPHENOL","2.33","ug/L","","0.33","MDL","","SPK","58.2","18","1.0","PQL","YES","4.00","W G220256-3","","","0.50",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","85-01-
8","PHENANTHRENE","1.42","ug/L","","0.051","MDL","","SPK","71.0","4","0.20","PQL","YES","2.00","WG22025 6-3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","129-00-
0","PYRENE","1.56","ug/L","","0.059","MDL","","SPK","78.0","2","0.20","PQL","YES","2.00","WG220256-
3","","","0.10",""
"WG220256-3","8270D-SIM","RES","WG220256-3","KAS","1718-52-1","Pyrene-
d10","76.5","\%","","0","MDL","","SURR","76.5","","0","PQL","YES","2.00","WG220256-3","","","0",""
"WG220291-1","300.0","RES","WG220291-1","KAS","16887-00-
6","CHLORIDE","1.0","mg/L","U",".0993","MDL","","TRG","","","2.0","PQL","YES","3.75","WG220291-
1","","","1.0",""
"WG220291-1","300.0","RES","WG220291-1","KAS","14797-55-8","NITRATE AS
N","0.025","mg/L","U",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","WG220291-1","","","0.025",""
"WG220291-1","300.0","RES","WG220291-1","KAS","14797-65-0","NITRITE AS
N","0.025","mg/L","U",".00922","MDL","","TRG","","","0.050","PQL","YES","1.14","WG220291-1","","","0.025",""
"WG220291-1","300.0","RES","WG220291-1","KAS","14808-79-
8","SULFATE","0.50","mg/L","U","0.064","MDL","","TRG","","","1.0","PQL","YES","3.75","WG220291-
1","","","0.50",""
"WG220291-2","300.0","RES","WG220291-2","KAS","16887-00-
6","CHLORIDE","3.74","mg/L","",".0993","MDL","","SPK","99.7","","2.0","PQL","YES","3.75","WG2202912","","","1.0",""
"WG220291-2","300.0","RES","WG220291-2","KAS","14797-55-8","NITRATE AS
N","0.841","mg/L","",".0174","MDL","","SPK","99.5","","0.050","PQL","YES","0.845","WG220291-
2","","","0.025",""
"WG220291-2","300.0","RES","WG220291-2","KAS","14797-65-0","NITRITE AS
N","1.20","mg/L","",".00922","MDL","","SPK","105.","","0.050","PQL","YES","1.14","WG220291-
2","","","0.025",""
"WG220291-2","300.0","RES","WG220291-2","KAS","14808-79-
8","SULFATE","3.65","mg/L","","0.064","MDL","","SPK","97.3","","1.0","PQL","YES","3.75","WG2202912","","","0.50",""
"WG220302-1","300.0","RES","WG220302-1","KAS","16887-00-
6","CHLORIDE","1.0","mg/L","U",".0993","MDL","","TRG","","","2.0","PQL","YES","3.75","WG2203021","","","1.0",""
"WG220302-1","300.0","RES","WG220302-1","KAS","14797-55-8","NITRATE AS
N","0.025","mg/L","U",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","WG220302-1","","","0.025",""
"WG220302-1","300.0","RES","WG220302-1","KAS","14797-65-0","NITRITE AS
N","0.025","mg/L","U",".00922","MDL","","TRG","","","0.050","PQL","YES","1.14","WG220302-1","","","0.025","" "WG220302-1","300.0","RES","WG220302-1","KAS","14808-79-
8","SULFATE","0.50","mg/L","U","0.064","MDL","","TRG","","","1.0","PQL","YES","3.75","WG220302-
1","","","0.50",""
"WG220302-2","300.0","RES","WG220302-2","KAS","16887-00-
6","CHLORIDE","3.97","mg/L","",".0993","MDL","","SPK","106.","","2.0","PQL","YES","3.75","WG220302-
2","","","1.0",""
"WG220302-2","300.0","RES","WG220302-2","KAS","14797-55-8","NITRATE AS
N","0.810","mg/L","",".0174","MDL","","SPK","95.8","","0.050","PQL","YES","0.845","WG220302-
2","","","0.025",""
"WG220302-2","300.0","RES","WG220302-2","KAS","14797-65-0","NITRITE AS
N","1.19","mg/L","",".00922","MDL","","SPK","104.","","0.050","PQL","YES","1.14","WG220302-
2","","","0.025",""
"WG220302-2","300.0","RES","WG220302-2","KAS","14808-79-

8","SULFATE","3.70","mg/L","","0.064","MDL","","SPK","98.7","","1.0","PQL","YES","3.75","WG220302-
2","","","0.50",""
"G32-MW303B-121217MS","300.0","RES","WG220302-3","KAS","16887-00-
6","CHLORIDE","200","mg/L","","2.0","MDL","","SPK","107.","","40.","PQL","YES","75","TK1739-
2","","","20.",""
"WG220317-8","8260C","RES","WG220317-8","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","WG220317-8","","","0",""
"WG220317-8","8260C","RES","WG220317-8","KAS","540-59-0","1,2-
DICHLOROETHYLENE","102.","ug/L","","0.21","MDL","","SPK","102.","","1.0","PQL","YES","100.","WG2203178","","","2.0",""
"WG220317-8","8260C","RES","WG220317-8","KAS","460-00-4","4-
BROMOFLUOROBENZENE","99.4","\%","","0","MDL","","SURR","99.4","","0","PQL","YES","50.0","WG220317-
8","","","0",""
"WG220317-8","8260C","RES","WG220317-8","KAS","71-43-
2","BENZENE","49.6","ug/L","","0.26","MDL","","SPK","99.2","","1.0","PQL","YES","50.0","WG2203178","","","0.50",""
"WG220317-8","8260C","RES","WG220317-8","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","51.3","ug/L","","0.21","MDL","","SPK","103.","","0.50","PQL","YES","50.0","WG2203178","","","1.0",""
"WG220317-8","8260C","RES","WG220317-8","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","104.","\%","","0","MDL","","SURR","104.","","0","PQL","YES","50.0","WG2 20317-8","","","0",""
"WG220317-8","8260C","RES","WG220317-8","KAS","127-18-
4","TETRACHLOROETHENE","50.6","ug/L","","0.40","MDL","","SPK","101.","","1.0","PQL","YES","50.0","WG2 20317-8","","","0.50",""
"WG220317-8","8260C","RES","WG220317-8","KAS","2037-26-5","TOLUENE-
D8","98.6","\%","","0","MDL","","SURR","98.6","","0","PQL","YES","50.0","WG220317-8","","","0",""
"WG220317-8","8260C","RES","WG220317-8","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","50.3","ug/L","","0.25","MDL","","SPK","101.","","0.50","PQL","YES","50.0","WG2203178","","","1.0",""
"WG220317-8","8260C","RES","WG220317-8","KAS","79-01-
6","TRICHLOROETHENE","47.9","ug/L","","0.28","MDL","","SPK","95.8","","1.0","PQL","YES","50.0","WG22031 7-8","","","0.50",""
"WG220317-8","8260C","RES","WG220317-8","KAS","75-01-4","VINYL
CHLORIDE","53.7","ug/L","","0.25","MDL","","SPK","107.","","1.0","PQL","YES","50.0","WG220317-
8","","","2.0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","104.","\%","","0","MDL","","SURR","104.","","0","PQL","YES","50.0","WG220317-9","","","0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","WG220317-
9","","","2.0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","460-00-4","4-
BROMOFLUOROBENZENE","98.2","\%","","0","MDL","","SURR","98.2","","0","PQL","YES","50.0","WG2203179","","","0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","WG220317-
9","","","0.50",""
"WG220317-9","8260C","RES","WG220317-9","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","WG220317-
9","","","1.0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","105.","\%","","0","MDL","","SURR","105.","","0","PQL","YES","50.0","WG2 20317-9","","","0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","127-18-

4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","",","1.0","PQL","YES","0","WG220317 -9","","","0.50",""
"WG220317-9","8260C","RES","WG220317-9","KAS","2037-26-5","TOLUENE-
D8","102.","\%",","0","MDL","","SURR","102.","","0","PQL","YES","50.0","WG220317-9","",","0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","WG220317-
9","","","1.0",""
"WG220317-9","8260C","RES","WG220317-9","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","WG2203179","","","0.50",""
"WG220317-9","8260C","RES","WG220317-9","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","WG220317-9","","","2.0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","96.1","\%","","0","MDL","","SURR","96.1","","0","PQL","YES","50.0","WG220390-8","",","0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","540-59-0","1,2-
DICHLOROETHYLENE","98.4","ug/L","","0.21","MDL","","SPK","98.4","","1.0","PQL","YES","100.","WG2203908","",","2.0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","460-00-4","4-
BROMOFLUOROBENZENE","99.7","\%","","0","MDL","","SURR","99.7","","0","PQL","YES","50.0","WG2203908","","","0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","71-43-
2","BENZENE","49.0","ug/L","","0.26","MDL","","SPK","98.0","","1.0","PQL","YES","50.0","WG220390-
8","","","0.50",""
"WG220390-8","8260C","RES","WG220390-8","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","49.3","ug/L","","0.21","MDL","","SPK","98.6","","0.50","PQL","YES","50.0","WG2203908","","","1.0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","99.9","\%","","0","MDL","","SURR","99.9","","0","PQL","YES","50.0","WG2 20390-8","","","0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","127-18-
4","TETRACHLOROETHENE","50.8","ug/L","","0.40","MDL","","SPK","102.","","1.0","PQL","YES","50.0","WG2 20390-8","","","0.50",""
"WG220390-8","8260C","RES","WG220390-8","KAS","2037-26-5","TOLUENE-
D8","101.","\%","","0","MDL",",",SURR","101.","","0","PQL","YES","50.0","WG220390-8","","","0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","49.1","ug/L","","0.25","MDL","","SPK","98.2","","0.50","PQL","YES","50.0","WG2203908","","","1.0",""
"WG220390-8","8260C","RES","WG220390-8","KAS","79-01-
6","TRICHLOROETHENE","49.8","ug/L","","0.28","MDL","","SPK","99.6","","1.0","PQL","YES","50.0","WG22039 0-8","","","0.50",""
"WG220390-8","8260C","RES","WG220390-8","KAS","75-01-4","VINYL
CHLORIDE","53.0","ug/L","","0.25","MDL","","SPK","106.","","1.0","PQL","YES","50.0","WG220390-
8","","","2.0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","104.","\%","","0","MDL",",",SURR","104.","","0","PQL","YES","50.0","WG220390-9","",","0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","WG2203909","","","2.0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","460-00-4","4-
BROMOFLUOROBENZENE","98.3","\%","","0","MDL","","SURR","98.3","","0","PQL","YES","50.0","WG2203909","","","0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","",","1.0","PQL","YES","0","WG220390-
9","","","0.50",""
"WG220390-9","8260C","RES","WG220390-9","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","WG2203909","","","1.0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","WG2 20390-9","","","0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","WG220390 -9","","","0.50",""
"WG220390-9","8260C","RES","WG220390-9","KAS","2037-26-5","TOLUENE-
D8","100.","\%","","0","MDL","","SURR","100.","","0","PQL","YES","50.0","WG220390-9","","","0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","WG2203909","","","1.0",""
"WG220390-9","8260C","RES","WG220390-9","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","WG2203909","","","0.50",""
"WG220390-9","8260C","RES","WG220390-9","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","WG220390-9","","","2.0",""
"WG220411-1","8082A","RES","WG220411-1","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","74.9","\%","","0","MDL","","SURR","74.9","","0","PQL","YES","1.00","WG220411-1","","","0",""
"WG220411-1","8082A","RES","WG220411-1","KAS","12674-11-2","AROCLOR 1016","0.25","ug/L","U","0.15","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11104-28-2","AROCLOR 1221","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11141-16-5","AROCLOR 1232","0.25","ug/L","U","0.089","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1","8082A","RES","WG220411-1","KAS","53469-21-9","AROCLOR 1242","0.25","ug/L","U","0.18","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","12672-29-6","AROCLOR 1248","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11097-69-1","AROCLOR 1254","0.25","ug/L","U","0.082","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11096-82-5","AROCLOR 1260","0.25","ug/L","U","0.17","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","37324-23-5","Aroclor-1262 ","0.25","ug/L","U","0.066","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1","8082A","RES","WG220411-1","KAS","11100-14-4","Aroclor-1268
","0.25","ug/L","U","0.072","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25",""
"WG220411-1","8082A","RES","WG220411-1","KAS","2051-24-
3","DECACHLOROBIPHENYL","70.4","\%","","0","MDL","","SURR","70.4","","0","PQL","YES","1.00","WG22041 1-1","","","0",""
"WG220411-1","8082A","RES","WG220411-1","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.066","MDL","","TRG","","","4.5","PQL","YES","0","WG220411-1","","","2.2",""
"WG220411-2","8082A","RES","WG220411-2","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","98.7","\%","","0","MDL","","SURR","98.7","","0","PQL","YES","1.00","WG220411-2","","","0",""
"WG220411-2","8082A","RES","WG220411-2","KAS","12674-11-2","AROCLOR 1016","4.90","ug/L","","0.15","MDL","","SPK","98.0","","0.50","PQL","YES","5.00","WG220411-2","","","0.25","" "WG220411-2","8082A","RES","WG220411-2","KAS","11104-28-2","AROCLOR 1221","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-2","","","0.25","" "WG220411-2","8082A","RES","WG220411-2","KAS","11141-16-5","AROCLOR 1232","0.00","ug/L","","0.089","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-2","","","0.25","" "WG220411-2","8082A","RES","WG220411-2","KAS","53469-21-9","AROCLOR 1242","0.00","ug/L","","0.18","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-2","","","0.25",""
"WG220411-2","8082A","RES","WG220411-2","KAS","12672-29-6","AROCLOR
1248","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-2","","","0.25",""
"WG220411-2","8082A","RES","WG220411-2","KAS","11096-82-5","AROCLOR 1260","5.13","ug/L","","0.17","MDL","","SPK","103.","","0.50","PQL","YES","5.00","WG220411-2","","","0.25","" "WG220411-2","8082A","RES","WG220411-2","KAS","37324-23-5","Aroclor-1262 ","0.00","ug/L","","0.066","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-2","","","0.25",""
"WG220411-2","8082A","RES","WG220411-2","KAS","11100-14-4","Aroclor-1268
","0.00","ug/L","","0.072","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-2","","","0.25",""
"WG220411-2","8082A","RES","WG220411-2","KAS","2051-24-
3","DECACHLOROBIPHENYL","83.2","\%","","0","MDL","","SURR","83.2","","0","PQL","YES","1.00","WG22041 1-2","","","0",""
"WG220411-2","8082A","RES","WG220411-2","KAS","1336-36-3","TOTAL
PCB","0.00","ug/L","","0.066","MDL","","SPK","0.00","","4.5","PQL","YES","-1.00","WG220411-2","","","2.2","" "WG220411-3","8082A","RES","WG220411-3","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","92.8","\%","","0","MDL","","SURR","92.8","","0","PQL","YES","1.00","WG220411-3","","","0",""
"WG220411-3","8082A","RES","WG220411-3","KAS","11104-28-2","AROCLOR
1221","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","11141-16-5","AROCLOR
1232","0.00","ug/L","","0.089","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","53469-21-9","AROCLOR
1242","0.00","ug/L","","0.18","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","12672-29-6","AROCLOR
1248","0.00","ug/L","","0.20","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","11097-69-1","AROCLOR
1254","4.34","ug/L","","0.082","MDL","","SPK","86.8","","0.50","PQL","YES","5.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","37324-23-5","Aroclor-1262
","0.00","ug/L","","0.066","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","11100-14-4","Aroclor-1268
","0.00","ug/L","","0.072","MDL","","SPK","0.00","","0.50","PQL","YES","-1.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","2051-24-
3","DECACHLOROBIPHENYL","86.6","\%","","0","MDL","","SURR","86.6","","0","PQL","YES","1.00","WG22041 1-3","","","0",""
"WG220411-3","8082A","RES","WG220411-3","KAS","1336-36-3","TOTAL
PCB","0.00","ug/L","","0.066","MDL","","SPK","0.00","","4.5","PQL","YES","-1.00","WG220411-3","","","2.2","" "WG220743-1","2320B","RES","WG220743-1","KAS","11-43-8","ALKALINITY AS
CACO3","0.49","mg/L","J","0.23","MDL","","TRG","","","5.0","PQL","YES","0","WG220743-1","","","4.0",""
"WG220743-2","2320B","RES","WG220743-2","KAS","11-43-8","ALKALINITY AS
CACO3","120","mg/L","","0.23","MDL","","SPK","104","","5.0","PQL","YES","120","WG220743-2","","","4.0",""
"WG220781-1","300.0","RES","WG220781-1","KAS","16887-00-
6","CHLORIDE","1.0","mg/L","U",".0993","MDL","","TRG","","","2.0","PQL","YES","3.75","WG220781-
1","","","1.0",""
"WG220781-1","300.0","RES","WG220781-1","KAS","14797-55-8","NITRATE AS
N","0.025","mg/L","U",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","WG220781-1","","","0.025",""
"WG220781-1","300.0","RES","WG220781-1","KAS","14808-79-
8","SULFATE","0.50","mg/L","U","0.064","MDL","","TRG","","","1.0","PQL","YES","3.75","WG220781-
1","","","0.50",""
"WG220781-2","300.0","RES","WG220781-2","KAS","16887-00-
6","CHLORIDE","3.78","mg/L","",".0993","MDL","","SPK","101.","","2.0","PQL","YES","3.75","WG2207812","","","1.0",""
"WG220781-2","300.0","RES","WG220781-2","KAS","14797-55-8","NITRATE AS
N","0.853","mg/L","",".0174","MDL","","SPK","101.","","0.050","PQL","YES","0.845","WG220781-
2","","","0.025",""
"WG220781-2","300.0","RES","WG220781-2","KAS","14808-79-
8","SULFATE","3.65","mg/L","","0.064","MDL","","SPK","97.3","","1.0","PQL","YES","3.75","WG220781-

2","","","0.50",""
"112G08005-WE22","NEWPORT, GOULD
ISLAND","LCSWKL15IMW1","","AQ","LCSWKL15IMW1","LCS","","2.2","6020A","3010A","RES","12/15/2017
08:01","12/21/2017
19:24","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/15/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD
ISLAND","PBWKL15IMW1","","AQ","PBWKL15IMW1","MB","","2.2","6020A","3010A","RES","12/15/2017 08:02","12/21/2017
19:20","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/15/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK1739002","NM","","2.2","6020A","3010A","RES","12/15/2017 08:07","12/21/2017
20:37","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK1739003","NM","","2.2","6020A","3010A","RES","12/15/2017 08:08","12/21/2017
20:41","KAS","COA","WET","DIS","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK1739004","NM","","2.2","6020A","3010A","RES","12/15/2017 08:09","12/21/2017
20:45","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK1739-
005","NM","","2.2","6020A","3010A","RES","12/15/2017 08:10","12/21/2017
20:49","KAS","COA","WET","DIS","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK1739006","NM","","2.2","6020A","3010A","RES","12/15/2017 08:11","12/21/2017
20:53","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK1739007","NM","","2.2","6020A","3010A","RES","12/15/2017 08:12","12/21/2017
20:57","KAS","COA","WET","DIS","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK1739-
008","NM","","2.2","6020A","3010A","RES","12/15/2017 08:13","12/21/2017
21:14","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK1739009","NM","","2.2","6020A","3010A","RES","12/15/2017 08:14","12/21/2017
21:18","KAS","COA","WET","DIS","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK1739010","NM","","2.2","6020A","3010A","RES","12/15/2017 08:03","12/21/2017
21:22","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK1739-
011","NM","","2.2","6020A","3010A","RES","12/15/2017 08:04","12/21/2017
21:26","KAS","COA","WET","DIS","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1"," TK1739","12/13/2017 00:00","01/29/2018 11:19","'
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK1739012","NM","","2.2","6020A","3010A","RES","12/15/2017 08:05","12/21/2017
21:30","KAS","COA","WET","TOT","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1","

TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK1739013","NM","","2.2","6020A","3010A","RES","12/15/2017 08:06","12/21/2017
21:34","KAS","COA","WET","DIS","5","","","","100.0","KL15IMW1","KL15IMW1","KL15IMW1","KL15IMW1","
TK1739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","TB-121217","12/12/2017 00:00","AQ","TK1739-
1","NM","","2.2","8260C","5030","RES","12/19/2017 18:33","12/19/2017
18:33","KAS","COA","WET","","1","","","","100.0","WG220317","WG220317","WG220317","WG220317","TK1739
","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK1739-
10","NM","","2.2","2320B","GENPREP","RES","12/22/2017 10:01","12/22/2017
17:24","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739
","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK1739-
10","NM","","2.2","300.0","GENPREP","RES","12/14/2017 08:01","12/14/2017
10:23","KAS","COA","WET","","1","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK173910","NM","","2.2","8082A","3510C","RES","12/18/2017 12:01","12/19/2017
04:28","KAS","COA","WET","","1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK173910","NM","","2.2","8260C","5030","RES","12/20/2017 18:20","12/20/2017
18:20","KAS","COA","WET","","1","","","","100.0","WG220390","WG220390","WG220390","WG220390","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK1739-10","NM","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:01","12/21/2017
22:11","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK173910RA","NM","","2.2","300.0","GENPREP","RES","12/15/2017 05:06","12/15/2017
05:06","KAS","COA","WET","","2","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW403-121217","12/12/2017 10:21","AQ","TK173910RAB","NM","","2.2","300.0","GENPREP","RES","12/15/2017 05:22","12/15/2017
05:22","KAS","COA","WET","","5","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK173912","NM","","2.2","2320B","GENPREP","RES","12/22/2017 10:02","12/22/2017
17:26","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK173912","NM","","2.2","300.0","GENPREP","RES","12/14/2017 08:02","12/14/2017
13:00","KAS","COA","WET","","1","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK173912","NM","","2.2","8082A","3510C","RES","12/18/2017 12:02","12/19/2017
04:56","KAS","COA","WET","","1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK173912","NM","","2.2","8260C","5030","RES","12/20/2017 18:56","12/20/2017
18:56","KAS","COA","WET","","1","","","","100.0","WG220390","WG220390","WG220390","WG220390","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK1739-

12","NM","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:02","12/21/2017
22:44","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW401-121217","12/12/2017 13:53","AQ","TK173912RA","NM","","2.2","300.0","GENPREP","RES","12/15/2017 05:37","12/15/2017
05:37","KAS","COA","WET","","5","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK17392","NM","","2.2","2320B","GENPREP","RES","12/22/2017 10:03","12/22/2017
17:07","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK17392","NM","","2.2","300.0","GENPREP","RES","12/14/2017 08:03","12/14/2017
12:45","KAS","COA","WET","","1","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK17392","NM","","2.2","8082A","3510C","RES","12/18/2017 12:03","12/19/2017
01:39","KAS","COA","WET","","1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK17392","NM","","2.2","8260C","5030","RES","12/19/2017 20:21","12/19/2017
20:21","KAS","COA","WET","","1","","","","100.0","WG220317","WG220317","WG220317","WG220317","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK1739-2","NM","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:03","12/21/2017
20:01","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK1739-
2RA","NM","","2.2","300.0","GENPREP","RES","12/15/2017 02:13","12/15/2017
02:13","KAS","COA","WET","","2","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217","12/12/2017 13:30","AQ","TK17392RAB","NM","","2.2","300.0","GENPREP","RES","12/15/2017 02:29","12/15/2017
02:29","KAS","COA","WET","","20","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK173 9","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK17394","NM","","2.2","2320B","GENPREP","RES","12/22/2017 10:04","12/22/2017
17:09","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK17394","NM","","2.2","300.0","GENPREP","RES","12/14/2017 08:04","12/14/2017
10:39","KAS","COA","WET","","1","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK17394","NM","","2.2","8260C","5030","RES","12/19/2017 20:56","12/19/2017
20:56","KAS","COA","WET","","1","","","","100.0","WG220317","WG220317","WG220317","WG220317","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK1739-4","NM","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:04","12/21/2017
20:33","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK1739-
4RA","NM","","2.2","300.0","GENPREP","RES","12/15/2017 03:00","12/15/2017
03:00","KAS","COA","WET","","2","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739
","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK17394RAB","NM","","2.2","300.0","GENPREP","RES","12/15/2017 03:16","12/15/2017
03:16","KAS","COA","WET","","5","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW402-121217","12/12/2017 10:30","AQ","TK17394RE","NM","","2.2","8082A","3510C","RES","12/20/2017 08:01","12/25/2017
02:25","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1739
","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK17396","NM","","2.2","2320B","GENPREP","RES","12/22/2017 10:05","12/22/2017
17:11","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK17396","NM","","2.2","300.0","GENPREP","RES","12/14/2017 08:05","12/14/2017
09:52","KAS","COA","WET","","1","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK17396","NM","","2.2","8082A","3510C","RES","12/18/2017 12:04","12/19/2017
03:31","KAS","COA","WET","","1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739
","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK17396","NM","","2.2","8260C","5030","RES","12/20/2017 17:08","12/20/2017
17:08","KAS","COA","WET","","1","","","","100.0","WG220390","WG220390","WG220390","WG220390","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK1739-6","NM","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:05","12/21/2017
21:05","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK17396RA","NM","","2.2","300.0","GENPREP","RES","12/19/2017 04:20","12/19/2017
04:20","KAS","COA","WET","","100","","","","100.0","WG220781","WG220781","WG220781","WG220781","TK17 39","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306SR-121217","12/12/2017 10:10","AQ","TK17396RAU","NM","","2.2","300.0","GENPREP","RES","12/15/2017 04:19","12/15/2017
04:19","KAS","COA","WET","","2000","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1 739","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK17398","NM","","2.2","2320B","GENPREP","RES","12/22/2017 10:06","12/22/2017
17:14","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK17398","NM","","2.2","300.0","GENPREP","RES","12/14/2017 08:06","12/14/2017
12:13","KAS","COA","WET","","5","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK17398","NM","","2.2","8082A","3510C","RES","12/18/2017 12:05","12/19/2017
03:59","KAS","COA","WET","","1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK17398","NM","","2.2","8260C","5030","RES","12/20/2017 17:44","12/20/2017
17:44","KAS","COA","WET","","1","","","","100.0","WG220390","WG220390","WG220390","WG220390","TK1739 ","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK1739-

8","NM","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:06","12/21/2017
21:38","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/13/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK17398RA","NM","","2.2","300.0","GENPREP","RES","12/15/2017 04:34","12/15/2017
04:34","KAS","COA","WET","',"20","","',"","100.0","WG220302","WG220302","WG220302","WG220302","TK173 9","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW207-121217","12/12/2017 07:55","AQ","TK1739-
8RAB","NM","","2.2","300.0","GENPREP","RES","12/15/2017 04:50","12/15/2017
04:50","KAS","COA","WET","","200","',"',"',"100.0","WG220302","WG220302",'WG220302","WG220302",'TK17 39","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220255-1","","AQ","WG220255-
1","MB","","2.2","8082A","3510C","RES","12/18/2017 12:06","12/18/2017
20:02","KAS","COA","WET","","1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739 ","12/18/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220255-2","","AQ","WG220255-
2","LCS","","2.2","8082A","3510C","RES","12/18/2017 12:07","12/18/2017
20:30","KAS","COA","WET","","1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739 ","12/18/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220255-3","","AQ","WG220255-
3","LCS","","2.2","8082A","3510C","RES","12/18/2017 12:08","12/18/2017
20:58","KAS","COA","WET","',"1","","","","100.0","WG220255","WG220255","WG220255","WG220255","TK1739
","12/18/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220256-1","","AQ","WG220256-
1","MB","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:07","12/21/2017
18:24","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/18/2017 00:00","01/29/2018 11:19","'
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220256-2","","AQ","WG220256-
2","LCS","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:08","12/21/2017
18:56","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/18/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220256-3","","AQ","WG220256-
3","LCSD","","2.2","8270D-SIM","3510C","RES","12/18/2017 13:09","12/21/2017
19:28","KAS","COA","WET","","1","","","","100.0","WG220256","WG220256","WG220256","WG220256","TK1739 ","12/18/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220291-1","","AQ","WG220291-
1","MB","","2.2","300.0","GENPREP","RES","12/13/2017 08:07","12/13/2017
18:09","KAS","COA","WET","","1","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220291-2","","AQ","WG220291-
2","LCS","',"2.2","300.0","GENPREP","RES","12/13/2017 08:08","12/13/2017
18:25","KAS","COA","WET","","1","","","","100.0","WG220291","WG220291","WG220291","WG220291","TK1739 ","12/13/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220302-1","","AQ","WG220302-
1","MB","","2.2","300.0","GENPREP","RES","12/15/2017 09:07","12/15/2017
14:00","KAS","COA","WET","","1","',"","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739 ","12/15/2017 00:00","01/29/2018 11:19","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220302-2","","AQ","WG220302-
2","LCS","","2.2","300.0","GENPREP","RES","12/14/2017 09:08","12/14/2017
21:46","KAS","COA","WET","","1","","","","100.0","WG220302","WG220302","WG220302","WG220302","TK1739
","12/14/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW303B-121217MS","12/12/2017
13:30","AQ","WG220302-3","MS","","2.2","300.0","GENPREP","RES","12/15/2017 02:44","12/15/2017
02:44","KAS","COA","WET","',"20","',"',"","100.0","WG220302","WG220302","WG220302","WG220302","TK173

9","12/13/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220317-8","","AQ","WG220317-
8","LCS","","2.2","8260C","5030","RES","12/19/2017 14:53","12/19/2017
14:53","KAS","COA","WET","","1","","","","100.0","WG220317","WG220317","WG220317","WG220317","TK1739 ","12/19/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220317-9","","AQ","WG220317-
9","MB","","2.2","8260C","5030","RES","12/19/2017 16:10","12/19/2017
16:10","KAS","COA","WET","","1","","","","100.0","WG220317","WG220317","WG220317","WG220317","TK1739
","12/19/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220390-8","","AQ","WG220390-
8","LCS","","2.2","8260C","5030","RES","12/20/2017 15:21","12/20/2017
15:21","KAS","COA","WET","","1","","","","100.0","WG220390","WG220390","WG220390","WG220390","TK1739
","12/20/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220390-9","","AQ","WG220390-
9","MB","","2.2","8260C","5030","RES","12/20/2017 16:32","12/20/2017
16:32","KAS","COA","WET","","1","","","","100.0","WG220390","WG220390","WG220390","WG220390","TK1739 ","12/20/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-1","","AQ","WG220411-
1","MB","","2.2","8082A","3510C","RES","12/20/2017 08:02","12/25/2017
04:26","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1739
","12/20/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-2","","AQ","WG220411-
2","LCS","","2.2","8082A","3510C","RES","12/20/2017 08:03","12/25/2017
04:46","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1739
","12/20/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-3","","AQ","WG220411-
3","LCS","","2.2","8082A","3510C","RES","12/20/2017 08:04","12/25/2017
05:06","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1739
","12/20/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-3","","AQ","WG220411-
3","LCS","","2.2","8082A","3510C","RES","12/20/2017 08:04","12/25/2017
05:07","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1739
","12/20/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220743-1","","AQ","WG220743-
1","MB","","2.2","2320B","GENPREP","RES","12/22/2017 09:21","12/22/2017
09:21","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739 ","12/22/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220743-2","","AQ","WG220743-
2","LCS","","2.2","2320B","GENPREP","RES","12/22/2017 09:24","12/22/2017
09:24","KAS","COA","WET","","1","","","","100.0","WG220743","WG220743","WG220743","WG220743","TK1739
","12/22/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220781-1","","AQ","WG220781-
1","MB","","2.2","300.0","GENPREP","RES","12/18/2017 08:02","12/18/2017
18:07","KAS","COA","WET","","1","","","","100.0","WG220781","WG220781","WG220781","WG220781","TK1739
","12/18/2017 00:00","01/29/2018 11:19",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220781-2","","AQ","WG220781-
2","LCS","","2.2","300.0","GENPREP","RES","12/18/2017 08:03","12/18/2017
18:22","KAS","COA","WET","","1","","","","100.0","WG220781","WG220781","WG220781","WG220781","TK1739 ","12/18/2017 00:00","01/29/2018 11:19",""

```
TO: S.PARKER DATE: FEBRUARY 14, 2018
FROM: TERRI L.SOLOMON COPIES: DV FILE
SUBJECT: ORGANIC & INORGANIC DATA VALIDATION - SELECTED VOCs/ PAHs/ PCBs/ PFAS/
    SELECT TOTAL AND DISSOLVED METALS/ MISCELLANEOUS
    NAVAL STATION (NAVSTA) NEWPORT, PORTSMOUTH, RHODE ISLAND
    WE22 GOULD ISLAND SITE 17
    SAMPLE DELIVERY GROUP (SDG) TK1739
SAMPLES: 6/Aqueous/
    VOC, PAH, Pesticide, PFAS, Metals,Miscellaneous
    G32-MW303B-121217 G32-MW306SR-121217
    G44S-MW207-121217 GI-MW401-121217
    GI-MW401-121217 GI-MW403-121217
    4/Aqueous/
    PFAS
    G32-MW303B-121217 Gl-MW401-121217
    GI-MW401-121217 GI-MW403-121217
    1/Field Reagent Blank (FRB)
    PFAS
    FRB121217
    1/Trip Blank
    VOCs
    TB-121217
```


Overview

The sample set for NAVSTA Newport, SDG TK1739 consisted of six (6) aqueous environmental samples, one (1) trip blank and one (1) FRB sample. Six (6) aqueous environmental samples were analyzed for select volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), select total and dissolved target analyte list (TAL) metals and miscellaneous parameters (alkalinity, chloride, sulfate and nitrate). Four (4) aqueous environmental samples were analyzed for perfluorinated alkyl acids (PFAS). The trip blank was analyzed for VOCs only. The FRB sample was analyzed for PFAS only. No field duplicate sample pairs were included in this SDG.

The samples were collected by Tetra Tech, Inc. on December 12, 2017 and analyzed by Katahdin Analytical Services and Shealy Environmental Services (analyzed PFAS samples). All analyses were conducted in accordance with SW846 methods 8260C, 8270D SIM, 8082A, 6020A, EPA methods 537 version 1.1 Mod., 300.0 and Standard Method 2320B analytical and reporting protocols.

An EPA level 2 A validation was performed. The data was evaluated with regard to the following parameters:

	D \quad Data Completeness
* \quad Holding Times/Sample Preservation	
* \quad Laboratory Method/Preparation Blank Results	
	ICP Interference Recoveries

- Surrogate Recoveries
- Laboratory Control Sample Results
* - Matrix Spike Results
* - Internal Standard Areas
* - Detection Limits

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A, results as reported by the laboratory are presented in Appendix B, and documentation supporting these findings is presented in Appendix C. The text of this report has been formulated to address only those areas affecting data quality.

DATA COMPLETENESS

The original data package did not include the compounds 1,2-dichloroethene and vinyl chloride for the VOC analyses as listed in the sampling and analysis plan. The laboratory was contacted and the data package was resubmitted with the correct VOC compound list.

HOLD TIME

The nitrate 48 hour hold time was exceeded by four hours for sample G44S-MW207-121217. The detected result reported in the affected sample was qualified as estimated (J).

The PFAS 14 day extraction hold time was exceeded by three days for the re-extraction of samples Gl-MW401-121217, GI-MW402-121217, GI-MW403-121217 and FRB121217 for perfluorooctane sulfonic acid (PFOS) because the laboratory control sample recovery for PFOS was 192% which indicated probable contamination. The LCS recovery in the re-extraction batch 60775 was within acceptance limits. The detected and nondetected results reported for PFOS in the re-extracted samples were qualified as estimated (J) and (UJ), respectively.

SURROGATE RECOVERIES

In the PCB fraction, the percent recoveries (\%Rs) for surrogate tetrachloro-m-xylene, column 1 and 2, were below the quality control limit for sample GI-MW-401-121217. The non-detected results reported in the affected sample were qualified as estimated (UJ).

In the PCB fraction, the \%Rs for surrogate decacglorobiphenyl, column 1 and 2, were below the quality control limit for sample G32-MW303B-121217. The non-detected results reported in the affected sample were qualified as estimated (UJ).

LABORATORY CONTROL SAMPLE RECOVERIES

In the PFAS fraction, the \%R for PFOS was above the quality control limit affecting all samples. Samples Gl-MW401-121217, GI-MW402-121217, GI-MW403-121217 and FRB121217 were re-extracted because all of these samples contained a detection of PFOS in the initial extraction. The re-extration were performed three days past hold time. The re-extracted results for PFOS were used for validation and were qualified as a result of hold time.

NOTES

All samples were analyzed at a 5 X dilution for the total and dissolved metals analyses. All samples were analyzed at a dilution for the sulfate and chloride analyses. Sample G44S-MW207-121217 was analyzed at a dilution for the nitrate analyses. Detection limits of the non-detected results were elevated.

Detected results reported below the LOQ but above the Method Detection Limit (MDL) were qualified as estimated, (J). Non-detected results are reported to the Limit of Detection (LOD).

EXECUTIVE SUMMARY

Laboratory Performance: Several hold times were exceeded. Several PCB surrogates were outside the quality control limits.

Other Factors Affecting Data Quality: Results below the LOQ were estimated.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Superfund Methods Data Review" (January 2017), the "National Functional Guidelines for Inorganic Superfund Methods Data Review" (January 2017), the EPA New England Environmental Data Review Supplement (April 2013), and Environmental Protection Agency document EPA/600/R-08/092, Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", (September 2009). The text of this report has been formulated to address only those areas affecting data quality.

Vleni \mathcal{L} Sulcmen
Tetra Tech, Inc.
Terri L. Solomon
Environmental Chemist

Detra Tech, Inc.
Joseph A. Samchuck
Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results
Appendix B - Results as reported by the Laboratory
Appendix C - Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
\mathbf{J}	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.
$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
$\mathbf{U J}$	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
\mathbf{R}	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
$\mathbf{U R}$	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Appendix A
Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 $=$ GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
G = Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
J = ICP PDS Recovery Noncompliance; MSA's r < 0.995
K = ICP Interference - includes ICS \% R Noncompliance
L = Instrument Calibration Range Exceedance
M = Sample Preservation Noncompliance
N = Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
P = Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$\mathrm{U}=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$V=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
W = EMPC result
$\mathrm{X}=$ Signal to noise response drop
Y = Percent solids $<30 \%$
Z = Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE22	NSAMPLE	G32-MW303B	-1212		G32-MW306SR	R-121		G44S-MW207	12121		GI-MW401-12	1217	
SDG: TK1739	LAB_ID	TK1739-2			TK1739-6			TK1739-8			TK1739-12		
FRACTION: OV	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
BENZENE		0.5	U										
CIS-1,2-DICHLOROETHE		1	U		1	U		1	U		0.6		
TETRACHLOROETHENE		0.5	U										
TOTAL 1,2-DICHLOROET	ENE	2	U		2	U		2	U		0.6	J	P
TRANS-1,2-DICHLOROET	IENE	1	U		1	U		1	U			U	
TRICHLOROETHENE		0.5	U		0.5	U		0.5	U		1.7		
VINYL CHLORIDE			U			U			U			U	

PROJ_NO: 08005-WE22 SDG: TK1739 FRACTION: OV MEDIA: WATER	NSAMPLE	GI-MW402-121217			GI-MW403-121217			TB-121217		
	LAB_ID	TK1739-4			TK1739-10			TK1739-1		
	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017		
	QC_TYPE	NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0		
	DUP_OF									
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
BENZENE		0.5	U		0.5	U		0.5	U	
CIS-1,2-DICHLOROETHENE		1	U		1	U		1	U	
TETRACHLOROETHENE		0.5	U		0.5	U		0.5	U	
TOTAL 1,2-DICHLOROETHENE		2	U		2	U		2	U	
TRANS-1,2-DICHLOROETHENE		1	U		1	U		1	U	
TRICHLOROETHENE		0.5	U		0.5	U		0.5	U	
VINYL CHLORIDE		2	U			U			U	

PROJ_NO: 08005-WE22	NSAMPLE	G32-MW303B-	12121		G32-MW306S	R-121		G44S-MW207-	12121		Gl-MW401-121	1217	
SDG: TK1739	LAB_ID	TK1739-2			TK1739-6			TK1739-8			TK1739-12		
FRACTION: PAH	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
2-METHYLNAPHTHALEN		0.098	U		0.41			0.096	U		0.094	U	
BENZO(A)ANTHRACENE		0.098	U		0.099	U		0.086	J	P	0.094	U	
BENZO(A)PYRENE		0.098	U		0.099	U		0.092	J	P	0.094	U	
BENZO(B)FLUORANTHEN		0.098	U		0.099	U		0.14	J	P	0.094	U	
BENZO(G,H,I)PERYLENE		0.098	U		0.099	U		0.096	U		0.094	U	
BENZO(K)FLUORANTHEN		0.098	U		0.099	U		0.076	J	P	0.094	U	
CHRYSENE		0.098	U		0.099	U		0.096	U		0.094	U	
DIBENZO(A,H)ANTHRACE		0.098	U		0.099	U		0.096	U		0.094	U	
FLUORANTHENE		0.098	U		0.099	U		0.17	J	P	0.094	U	
INDENO(1,2,3-CD)PYREN		0.098	U		0.099	U		0.096	U		0.094	U	
NAPHTHALENE		0.098	U		0.099	U		0.096	U		0.094	U	
PENTACHLOROPHENOL		0.49	U		0.5	U		0.48	U		0.47	U	
PHENANTHRENE		0.098	U		0.28			0.094	J	P	0.065	J	P
PYRENE		0.098	U		0.099	U		0.17	J	P	0.094	U	

PROJ_NO: 08005-WE22	NSAMPLE	Gl-MW402-12	1217		Gl-MW403-12	217	
SDG: TK1739	LAB_ID	TK1739-4			TK1739-10		
FRACTION: PAH	SAMP_DATE	12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM		
	UNITS	UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
2-METHYLNAPHTHALENE		0.094	U		0.1	U	
BENZO(A)ANTHRACENE		0.094	U		0.1	U	
BENZO(A)PYRENE		0.094	U		0.1	U	
BENZO(B)FLUORANTHEN		0.094	U		0.1	U	
BENZO(G,H,I)PERYLENE		0.094	U		0.1	U	
BENZO(K)FLUORANTHEN		0.094	U		0.1	U	
CHRYSENE		0.094	U		0.1	U	
DIBENZO(A,H)ANTHRAC		0.094	U		0.1	U	
FLUORANTHENE		0.094	U		0.1	U	
INDENO(1,2,3-CD)PYREN		0.094	U		0.1	U	
NAPHTHALENE		0.094	U		0.1	U	
PENTACHLOROPHENOL		0.47	U		0.5	U	
PHENANTHRENE		0.094	U		0.1	U	
PYRENE		0.094	U		0.1	U	

PROJ_NO: 08005-WE22	NSAMPLE	G32-MW303B	12121		G32-MW306S	R-121		G44S-MW207	12121		Gl-MW401-12	217	
SDG: TK1739	LAB_ID	TK1739-2			TK1739-6			TK1739-8			TK1739-12		
FRACTION: PCB	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
AROCLOR-1016		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1221		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1232		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1242		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1248		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1254		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1260		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1262		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
AROCLOR-1268		0.24	UJ	R	0.24	U		0.24	U		0.24	UJ	R
TOTAL AROCLOR		2.1	UJ	R	2.1	U		2.2	U		2.1	UJ	R

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW402-12	1217		GI-MW403-12	217	
SDG: TK1739	LAB_ID	TK1739-4RE			TK1739-10		
FRACTION: PCB	SAMP_DATE	12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM		
	UNITS	UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
AROCLOR-1016		0.24	U		0.24	U	
AROCLOR-1221		0.24	U		0.24	U	
AROCLOR-1232		0.24	U		0.24	U	
AROCLOR-1242		0.24	U		0.24	U	
AROCLOR-1248		0.24	U		0.24	U	
AROCLOR-1254		0.24	U		0.24	U	
AROCLOR-1260		0.24	U		0.24	U	
AROCLOR-1262		0.24	U		0.24	U	
AROCLOR-1268		0.24	U		0.24	U	
TOTAL AROCLOR		2.1	U		2.1	U	

PROJ_NO: 08005-WE22	NSAMPLE	G32-MW303B	-12121		G32-MW306SR	R-121		G44S-MW207-1	1212		Gl-MW401-121	217	
SDG: TK1739	LAB_ID	TK1739-002			TK1739-006			TK1739-008			TK1739-012		
FRACTION: M	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
ARSENIC		14			3.8	J	P	4.6	J	P	4.4	J	P
CADMIUM		0.24	J	P	0.03	J	P	0.534	J	P	0.079	J	P
LEAD		1.1			0.14	J	P	2.73			0.4	J	P
MANGANESE		1120			1040			264			55.4		

PROJ_NO: 08005-WE22 SDG: TK1739 FRACTION: M MEDIA: WATER	NSAMPLE	GI-MW402-121217			GI-MW403-121217		
	LAB_ID	TK1739-004			TK1739-010		
	SAMP_DATE	12/12/2017			12/12/2017		
	QC_TYPE	NM			NM		
	UNITS	UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
ARSENIC		4	U		4	U	
CADMIUM		0.092	J	P	0.2	U	
LEAD		0.51	J	P	0.17	J	P
MANGANESE		133			146		

PROJ_NO: 08005-WE22	NSAMPLE	G32-MW303B-121217			G32-MW306SR-121217			G44S-MW207-121217			GI-MW401-121217		
SDG: TK1739	LAB_ID	TK1739-003			TK1739-007			TK1739-009			TK1739-013		
FRACTION: MF	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
ARSENIC		6.5			5.6			4.3	J	P	3.5	J	P
CADMIUM		0.2	U		0.2	U		0.466	J	P	0.031	J	P
LEAD		0.5	U		0.5	U		1.41			0.5	U	
MANGANESE		1080			1020			202			44.3		

PROJ_NO: 08005-WE22	NSAMPLE	G32-MW303B-	-12121		G32-MW306SR	R-121		G44S-MW207-1	1212		Gl-MW401-121	217	
SDG: TK1739	LAB_ID	TK1739-2			TK1739-6			TK1739-8			TK1739-12		
FRACTION: MISC	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/L			MG/L			MG/L			MG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
ALKALINITY		4	U		99			210			92		
CHLORIDE		120			12000			1800			31		
NITRATE-N		0.025	U		0.5			12	J	H	0.32		
SULFATE		26			1600			200			34		

PROJ_NO: 08005-WE22	NSAMPLE	Gl-MW402-12	217		Gl-MW403-12	217	
SDG: TK1739	LAB_ID	TK1739-4			TK1739-10		
FRACTION: MISC	SAMP_DATE	12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM		
	UNITS	MG/L			MG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
ALKALINITY		50			61		
CHLORIDE		15			15		
NITRATE-N		0.21			3.6		
SULFATE		59			44		

PROJ_NO: 08005-WE22	NSAMPLE	FRB121217			FRB121217-R			G32-MW303B-	1212		Gl-MW401-121	1217	
SDG: TK1739	LAB_ID	SL15079-005			SL15079-005			SL15079-001			SL15079-004		
FRACTION: PFAS	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	ANE	0.83	U					0.86	U		0.84	U	
N-METHYL PERFLUOROO	CTANE	0.83	U					0.86	U		0.84	U	
PERFLUOROBUTANESUL	FONIC ACID	0.41	U					0.43	U		0.43		
PERFLUORODECANOIC	CID	0.41	U					0.43	U		0.54	J	P
PERFLUORODODECANO	C ACID	0.41	U					0.43	U		0.42	U	
PERFLUOROHEPTANOIC	ACID	0.41	U					0.43	U		0.84	J	P
PERFLUOROHEXANESUL	FONIC ACID	0.41	U					0.43	U		0.42	U	
PERFLUOROHEXANOIC A	CID	0.41	U					0.44	J	P	1.9		
PERFLUORONONANOIC	ACID	0.41	U					0.43	U		0.47	J	P
PERFLUOROOCTANE SUL	FONIC ACID				0.43	UJ	H	0.43	U				
PERFLUOROTETRADECA	NOIC ACID	0.83	U					0.86	U		0.84	U	
PERFLUOROTRIDECANO	C ACID	0.41	U					0.43	U		0.42	U	
PERFLUOROUNDECANOI	C ACID	0.41	U					0.43	U		0.42	U	

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW401-121	1217-R		GI-MW402-121	217		Gl-MW402-12	217-P		GI-MW403-121	1217	
SDG: TK1739	LAB_ID	SL15079-004			SL15079-002			SL15079-002			SL15079-003		
FRACTION: PFAS	SAMP_DATE	12/12/2017			12/12/2017			12/12/2017			12/12/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	TANE				0.91	U					0.84	U	
N-METHYL PERFLUOROO	CTANE				0.91	U					0.84	U	
PENTADECAFLUOROOCT	ANOIC ACID				6.7						4.2		
PERFLUOROBUTANESUL	FONIC ACID				1.1	J	P				0.7	J	P
PERFLUORODECANOIC A	ACID				0.45	U					0.42	U	
PERFLUORODODECANO	C ACID				0.45	U					0.42	U	
PERFLUOROHEPTANOIC	ACID				1.2	J	P				2.1		
PERFLUOROHEXANESUL	FONIC ACID				21						1.1	J	P
PERFLUOROHEXANOIC A	CID				6.3						3.5		
PERFLUORONONANOIC	ACID				0.45	U					0.74	J	P
PERFLUOROOCTANE SUL	FONIC ACID	1	J	HP				0.49	J	HP			
PERFLUOROTETRADECA	NOIC ACID				0.91	U					0.84	U	
PERFLUOROTRIDECANO	C ACID				0.45	U					0.42	U	
PERFLUOROUNDECANOI	C ACID				0.45	U					0.42	U	

PROJ_NO: 08005-WE22	NSAMPLE	Gl-MW403-12	217-	
SDG: TK1739	LAB_ID	SL15079-003		
FRACTION: PFAS	SAMP_DATE	12/12/2017		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	NG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
N-ETHYL PERFLUOROOC SULFONAMIDOACETIC A	TANE CID			
N-METHYL PERFLUORO SULFONAMIDOACETIC A	CTANE ID			
PENTADECAFLUOROOC	ANOIC ACID			
PERFLUOROBUTANESUL	FONIC ACID			
PERFLUORODECANOIC	CID			
PERFLUORODODECANO	C ACID			
PERFLUOROHEPTANOIC	ACID			
PERFLUOROHEXANESUL	FONIC ACID			
PERFLUOROHEXANOIC	CID			
PERFLUORONONANOIC	ACID			
PERFLUOROOCTANE SUL	FONIC ACID	9.1	J	H
PERFLUOROTETRADECA	NOIC ACID			
PERFLUOROTRIDECANO	C ACID			
PERFLUOROUNDECANO	C ACID			

Appendix B

Results as Reported by the Laboratory

Report of Analytical Results

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		95.6	$\%$					
Toluene-d8	102.	$\%$						
1,2-Dichloroethane-d4	102.	$\%$						
Dibromofluoromethane		104.	$\%$					

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-1
Client ID: TB-121217
Sample Date: 12-DEC-17
Received Date: 13-DEC-17
Extract Date: 19-DEC-17
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JSS/HC
SDG: TK1739
Lab File ID: T3682.D

Benzene
Trichloroethene
Tetrachloroethene
P-Bromofluorobenzene
Toluene-d8
1,2-Dichloroethane-d4
Dibromofluoromethane

Extraction Method: SW846 5030
Lab Prep Batch: WG220317

Analysis Date: 19-DEC-17
Analyst: JSS/HG
Analysis Method: SW846 8260C
Matrix: AQ
\% Solids: NA
Report Date: 25-JAN-18

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-2
Client ID: G32-MW303B-121217
Sample Date: 12-DEC-17
Received Date: 13-DEC-17
Extract Date: 19-DEC-17
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JSS/HC
SDG: TK1739
Lab File ID: T3685.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		93.2	$\%$					
Toluene-d8	102.	$\%$						
1,2-Dichloroethane-d4		102.	$\%$					
Dibromofluoromethane	104.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-4
Client ID: GI-MW402-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JSS/HC
SDG: TK1739
Lab File ID: T3686.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		93.6	$\%$					
Toluene-d8	101.	$\%$						
1,2-Dichloroethane-d4	102.	$\%$						
Dibromofluoromethane	109.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-6
Client ID: G32-MW306SR-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JSS/HC
SDG: TK1739
Lab File ID: T3703.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		97.5	$\%$					
Toluene-d8	99.7	$\%$						
1,2-Dichloroethane-d4	106.	$\%$						
Dibromofluoromethane	101.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-8
Client ID: G44S-MW207-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JSS/HC
SDG: TK1739
Lab File ID: T3704.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.1	$\%$					
Toluene-d8	100.	$\%$						
1,2-Dichloroethane-d4	103.	$\%$						
Dibromofluoromethane	103.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-10
Client ID: GI-MW403-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JSS/HC
SDG: TK1739
Lab File ID: T3705.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		97.4	$\%$					
Toluene-d8	100.	$\%$						
1,2-Dichloroethane-d4	104.	$\%$						
Dibromofluoromethane		102.	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID: TK1739-12
Client ID: GI-MW401-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JSS/HC
SDG: TK1739
Lab File ID: T3706.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene		0.60	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	J	0.60	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene		1.7	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene	98.3	$\%$						
Toluene-d8	101.	$\%$						
1,2-Dichloroethane-d4	103.	$\%$						
Dibromofluoromethane	101.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-2
Client ID: G32-MW303B-121217
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1739
Lab File ID: N7098.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.49	ug / L	1	1	0.98	0.32	0.49
Naphthalene	U	0.098	ug / L	1	.2	0.20	0.063	0.098
2-Methylnaphthalene	U	0.098	ug / L	1	.2	0.20	0.075	0.098
Phenanthrene	U	0.098	ug / L	1	.2	0.20	0.050	0.098
Fluoranthene	U	0.098	ug / L	1	.2	0.20	0.072	0.098
Pyrene	U	0.098	ug / L	1	.2	0.20	0.058	0.098
Benzo(a)anthracene	U	0.098	ug / L	1	.2	0.20	0.045	0.098
Chrysene	U	0.098	ug / L	1	.2	0.20	0.035	0.098
Benzo(b)Fluoranthene	U	0.098	ug / L	1	.2	0.20	0.087	0.098
Benzo(k)fluoranthene	U	0.098	ug / L	1	.2	0.20	0.048	0.098
Benzo(a)pyrene	U	0.098	ug / L	1	.2	0.20	0.065	0.098
Indeno(1,2,3-cd)pyrene	U	0.098	ug / L	1	.2	0.20	0.051	0.098
Dibenzo(a,h)anthracene	U	0.098	ug / L	1	.2	0.20	0.069	0.098
Benzo(g,h,i)perylene	U	0.098	ug / L	1	.2	0.20	0.064	0.098
2-Methylnaphthalene-D10		70.2	$\%$					
2,4-Dibromophenol		64.4	$\%$					
Fluorene-D10		67.8	$\%$					
Pyrene-D10		$\% 3.8$	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-4
Client ID: GI-MW402-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:WAS
SDG: TK1739
Lab File ID: N7099.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.47	ug / L	1	1	0.94	0.31	0.47
Naphthalene	U	0.094	ug / L	1	.2	0.19	0.060	0.094
2-Methylnaphthalene	U	0.094	ug / L	1	.2	0.19	0.073	0.094
Phenanthrene	U	0.094	ug / L	1	.2	0.19	0.048	0.094
Fluoranthene	U	0.094	ug / L	1	.2	0.19	0.069	0.094
Pyrene	U	0.094	ug / L	1	.2	0.19	0.056	0.094
Benzo(a)anthracene	U	0.094	ug / L	1	.2	0.19	0.043	0.094
Chrysene	U	0.094	ug / L	1	.2	0.19	0.034	0.094
Benzo(b)Fluoranthene	U	0.094	ug / L	1	.2	0.19	0.084	0.094
Benzo(k)fluoranthene	U	0.094	ug / L	1	.2	0.19	0.046	0.094
Benzo(a)pyrene	U	0.094	ug / L	1	.2	0.19	0.062	0.094
Indeno(1,2,3-cd)pyrene	U	0.094	ug / L	1	.2	0.19	0.049	0.094
Dibenzo(a,h)anthracene	U	0.094	ug / L	1	.2	0.19	0.066	0.094
Benzo(g,h,i)perylene	U	0.094	ug / L	1	.2	0.19	0.061	0.094
2-Methylnaphthalene-D10		74.6	$\%$					
2,4-Dibromophenol		72.5	$\%$					
Fluorene-D10		72.8	$\%$					
Pyrene-D10		91.5	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-6
Client ID: G32-MW306SR-121217
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1739
Lab File ID: N7100.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Pentachlorophenol	U	0.50	ug / L	1	1	0.99	0.33	0.50
Naphthalene	U	0.099	ug / L	1	.2	0.20	0.063	0.099
2-Methylnaphthalene		0.41	ug / L	1	.2	0.20	0.076	0.099
Phenanthrene		0.28	ug / L	1	.2	0.20	0.050	0.099
Fluoranthene	U	0.099	ug / L	1	.2	0.20	0.072	0.099
Pyrene	U	0.099	ug / L	1	.2	0.20	0.058	0.099
Benzo(a)anthracene	U	0.099	ug / L	1	.2	0.20	0.046	
Chrysene	U	0.099	ug / L	1	.2	0.20	0.036	
Benzo(b)Fluoranthene	U	0.099	ug / L	1	.2	0.20	0.088	
Benzo(k)fluoranthene	U	0.099	ug / L	1	.2	0.20	0.099	
Benzo(a)pyrene	U	0.099	ug / L	1	.2	0.20	0.065	
Indeno(1,2,3-cd)pyrene	U	0.099	ug / L	1	.2	0.20	0.051	
Dibenzo(a,h)anthracene	U	0.099	ug / L	1	.2	0.20	0.069	
Benzo(g,h,i)perylene	U	0.099	ug / L	1	.2	0.20	0.0969	
2-Methylnaphthalene-D10	72.8	$\%$			0.099			
2,4-Dibromophenol		68.6	$\%$			0.099		
Fluorene-D10	70.8	$\%$			0.099			
Pyrene-D10	90.6	$\%$			0.099			

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-8
Client ID: G44S-MW207-121217
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1739
Lab File ID: N7101.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.48	ug/L	1	1	0.96	0.32	0.48
Naphthalene	U	0.096	ug/L	1	. 2	0.19	0.062	0.096
2-Methylnaphthalene	U	0.096	ug/L	1	. 2	0.19	0.074	0.096
Phenanthrene	J	0.094	ug/L	1	. 2	0.19	0.049	0.096
Fluoranthene	J	0.17	ug/L	1	. 2	0.19	0.070	0.096
Pyrene	J	0.17	ug/L	1	. 2	0.19	0.057	0.096
Benzo(a)anthracene	J	0.086	ug/L	1	. 2	0.19	0.044	0.096
Chrysene	U	0.096	ug/L	1	. 2	0.19	0.035	0.096
Benzo(b)Fluoranthene	J	0.14	ug/L	1	. 2	0.19	0.086	0.096
Benzo(k)fluoranthene	J	0.076	ug/L	1	. 2	0.19	0.047	0.096
Benzo(a)pyrene	J	0.092	ug/L	1	. 2	0.19	0.063	0.096
Indeno(1,2,3-cd)pyrene	U	0.096	ug/L	1	. 2	0.19	0.050	0.096
Dibenzo(a,h)anthracene	U	0.096	ug/L	1	. 2	0.19	0.067	0.096
Benzo(g,h,i)perylene	U	0.096	ug/L	1	. 2	0.19	0.062	0.096
2-Methylnaphthalene-D10		61.5	\%					
2,4-Dibromophenol		61.8	\%					
Fluorene-D10		67.2	\%					
Pyrene-D10		91.5	\%					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-10
Client ID: GI-MW403-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:WAS
SDG: TK1739
Lab File ID: N7102.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.50	ug / L	1	1	1.0	0.33	0.50
Naphthalene	U	0.10	ug / L	1	.2	0.20	0.064	0.10
2-Methylnaphthalene	U	0.10	ug / L	1	.2	0.20	0.077	0.10
Phenanthrene	U	0.10	ug / L	1	.2	0.20	0.051	0.10
Fluoranthene	U	0.10	ug / L	1	.2	0.20	0.073	0.10
Pyrene	U	0.10	ug / L	1	.2	0.20	0.059	0.10
Benzo(a)anthracene	U	0.10	ug / L	1	.2	0.20	0.046	0.10
Chrysene	U	0.10	ug / L	1	.2	0.20	0.036	0.10
Benzo(b)Fluoranthene	U	0.10	ug / L	1	.2	0.20	0.089	0.10
Benzo(k)fluoranthene	U	0.10	ug / L	1	.2	0.20	0.049	0.10
Benzo(a)pyrene	U	0.10	ug / L	1	.2	0.20	0.066	0.10
Indeno(1,2,3-cd)pyrene	U	0.10	ug / L	1	.2	0.20	0.052	0.10
Dibenzo(a,h)anthracene	U	0.10	ug / L	1	.2	0.20	0.070	0.10
Benzo(g,h,i)perylene	U	0.10	ug / L	1	.2	0.20	0.065	0.10
2-Methylnaphthalene-D10		88.7	$\%$					
2,4-Dibromophenol		82.3	$\%$					
Fluorene-D10		82.6	$\%$					
Pyrene-D10			$\% 9$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-12
Client ID: GI-MW401-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:WAS
SDG: TK1739
Lab File ID: N7103.D
Compound Qualifier

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.47	ug / L	1	1	0.94	0.31	0.47
Naphthalene	U	0.094	ug / L	1	.2	0.19	0.060	0.094
2-Methylnaphthalene	U	0.094	ug / L	1	.2	0.19	0.073	0.094
Phenanthrene	J	0.065	ug / L	1	.2	0.19	0.048	0.094
Fluoranthene	U	0.094	ug / L	1	.2	0.19	0.069	0.094
Pyrene	U	0.094	ug / L	1	.2	0.19	0.056	0.094
Benzo(a)anthracene	U	0.094	ug / L	1	.2	0.19	0.043	0.094
Chrysene	U	0.094	ug / L	1	.2	0.19	0.034	0.094
Benzo(b)Fluoranthene	U	0.094	ug / L	1	.2	0.19	0.084	0.094
Benzo(k)fluoranthene	U	0.094	ug / L	1	.2	0.19	0.046	0.094
Benzo(a)pyrene	U	0.094	ug / L	1	.2	0.19	0.062	0.094
Indeno(1,2,3-cd)pyrene	U	0.094	ug / L	1	.2	0.19	0.049	0.094
Dibenzo(a,h)anthracene	U	0.094	ug / L	1	.2	0.19	0.066	0.094
Benzo(g,h,i)perylene	U	0.094	ug / L	1	.2	0.19	0.061	0.094
2-Methylnaphthalene-D10		84.7	$\%$					
2,4-Dibromophenol		82.4	$\%$					
Fluorene-D10	79.4	$\%$						
Pyrene-D10		75.7	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-2
Client ID: G32-MW303B-121217
Sample Date: 12-DEC-17
Received Date: 13-DEC-17
Extract Date: 18-DEC-17
Project: NAVSTA Newport, Gould Island CTO- Extracted By:WAS
SDG: TK1739
Lab File ID: 7KL608.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug / L	1	.5	0.48	0.14	
Aroclor-1221	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.48	0.085	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.48	0.078	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.48	0.068	
Total PCBs	U	2.1	ug / L	1	4.5	4.3	0.063	
Tetrachloro-M-Xylene		73.5	$\%$			0.24		
Decachlorobiphenyl	$*$	37.9	$\%$			2.1		

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-4RE
Client ID: GI-MW402-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:KF
SDG: TK1739
Lab File ID: 8KL00539.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug / L	1	.5	0.47	0.14	0.24
Aroclor-1221	U	0.24	ug / L	1	.5	0.47	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.47	0.084	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.47	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.47	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.47	0.077	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.47	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.47	0.062	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.47	0.068	0.24
Total PCBs	U	2.1	ug / L	1	4.5	4.2	0.062	2.1
Tetrachloro-M-Xylene		85.8	$\%$					
Decachlorobiphenyl		71.0	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-6
Client ID: G32-MW306SR-121217
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1739
Lab File ID: 7KL612.D

Compound	Qua
Aroclor-1016	
Aroclor-1221	
Aroclor-1232	
Aroclor-1242	
Aroclor-1248	
Aroclor-1254	
Aroclor-1260	
Aroclor-1262	
Aroclor-1268	
Total PCBs	
Tetrachloro-M-Xylene	
Decachlorobiphenyl	

Sample Date: 12-DEC-17
Received Date: 13-DEC-17
Extract Date: 18-DEC-17
Extracted By: WAS
Extraction Method: SW846 3510C
Lab Prep Batch: WG220255

Analysis Date: 19-DEC-17
Analyst: BF
Analysis Method: SW846 8082A
Matrix: AQ
\% Solids: NA
Report Date: 02-JAN-18

Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
U	0.24	ug / L	1	.5	0.47	0.14	0.24
U	0.24	ug / L	1	.5	0.47	0.19	0.24
U	0.24	ug / L	1	.5	0.47	0.084	0.24
U	0.24	ug / L	1	.5	0.47	0.17	0.24
U	0.24	ug / L	1	.5	0.47	0.19	0.24
U	0.24	ug / L	1	.5	0.47	0.077	0.24
U	0.24	ug / L	1	.5	0.47	0.16	0.24
U	0.24	ug / L	1	.5	0.47	0.062	0.24
U	0.24	ug / L	1	.5	0.47	0.068	0.24
U	2.1	ug / L	1	4.5	4.2	0.062	2.1
	70.7	$\%$					
	74.9	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-8
Client ID: G44S-MW207-121217
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1739
Lab File ID: 7KL613.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Aroclor-1016	U	0.24	ug / L	1	.5	0.48	0.14	
Aroclor-1221	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.48	0.086	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.48	0.079	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.48	0.16	
Aroclor-1262	U	0.24	ug / L	1	.5	0.48	0.063	
Aroclor-1268	U	0.24	ug / L	1	.5	0.48	0.069	
Total PCBs	U	2.2	ug / L	1	4.5	4.3	0.063	
Tetrachloro-M-Xylene		67.0	$\%$			0.24		
Decachlorobiphenyl		66.3	$\%$			2.2		

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-10
Client ID: GI-MW403-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:WAS
SDG: TK1739
Lab File ID: 7KL614.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug / L	1	.5	0.48	0.14	0.24
Aroclor-1221	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.48	0.085	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.48	0.078	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.48	0.068	0.24
Total PCBs	U	2.1	ug / L	1	4.5	4.3	0.063	2.1
Tetrachloro-M-Xylene		68.5	$\%$					
Decachlorobiphenyl		50.0	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1739-12
Client ID: GI-MW401-121217
Project: NAVSTA Newport, Gould Island CTO- Extracted By:WAS
SDG: TK1739
Lab File ID: 7KL615.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Aroclor-1016	U	0.24	ug / L	1	.5	0.47	0.14	
Aroclor-1221	U	0.24	ug / L	1	.5	0.47	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.47	0.084	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.47	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.47	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.47	0.077	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.47	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.47	0.062	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.47	0.068	
Total PCBs	U	2.1	ug / L	1	4.5	4.2	0.062	
Tetrachloro-M-Xylene	$*$	60.6	$\%$			0.24		
Decachlorobiphenyl		67.4	$\%$			2.1		

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW303B-121217
SDG Name: TK1739
Lab Sample ID: TK1739-002

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	ADJUSTED		
							LOQ	MDL	LOD
7440-38-2	ARSENIC, TOTAL	14			MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, TOTAL	0.24	J		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, TOTAL	1.10			MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, TOTAL	1120			MS	5	2.0	0.35	1.0

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW303B-121217
SDG Name: TK1739
Lab Sample ID: TK1739-003

Concentration Units: ug/L

				ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW402-121217
SDG Name: TK1739
Lab Sample ID: TK1739-004

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.092	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	0.51	J		MS	5	1.0	0.075	0.50
$7439-96-5 ~$	MANGANESE, TOTAL	133		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW402-121217
SDG Name: TK1739
Lab Sample ID: TK1739-005

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9$	CADMIUM, DISSOLVED	0.072	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	0.16	J		MS	5	1.0	0.075	0.50
$7439-96-5 ~$	MANGANESE, DISSOLVED	129		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW306SR-121217
SDG Name: TK1739
Lab Sample ID: TK1739-006

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	3.8	J	MS	5	5.0	2.3	4.0	
$7440-43-9 ~$	CADMIUM, TOTAL	0.030	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	0.14	J	MS	5	1.0	0.075	0.50	
$7439-96-5 ~$	MANGANESE, TOTAL	1040		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW306SR-121217
SDG Name: TK1739
Lab Sample ID: TK1739-007

Concentration Units: ug/L

				ADJUSTED				
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G44S-MW207-121217
SDG Name: TK1739
Lab Sample ID: TK1739-008

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.6	J		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.534	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	2.73		MS	5	1.0	0.075	0.50	
$7439-96-5 ~$	MANGANESE, TOTAL	264		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G44S-MW207-121217
SDG Name: TK1739
Lab Sample ID: TK1739-009

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	4.3	J		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, DISSOLVED	0.466	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	1.41		MS	5	1.0	0.075	0.50	
$7439-96-5 ~$	MANGANESE, DISSOLVED	202		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW403-121217
SDG Name: TK1739
Lab Sample ID: TK1739-010

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	0.17	J		MS	5	1.0	0.075	0.50
$7439-96-5$	MANGANESE, TOTAL	146		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW403-121217
SDG Name: TK1739
Lab Sample ID: TK1739-011

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9$	CADMIUM, DISSOLVED	0.078	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
$7439-96-5$	MANGANESE, DISSOLVED	142		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW401-121217
SDG Name: TK1739
Lab Sample ID: TK1739-012

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.4	J		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.079	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	0.40	J		MS	5	1.0	0.075	0.50
$7439-96-5 ~$	MANGANESE, TOTAL	55.4		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW401-121217
SDG Name: TK1739
Lab Sample ID: TK1739-013

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	3.5	J		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, DISSOLVED	0.031	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
$7439-96-5 ~$	MANGANESE, DISSOLVED	44.3		MS	5	2.0	0.35	1.0	

Comments:

ANALYTICAL SERVICES

Report of Analytical Results

ANALYTICAL SERVICES

Report of Analytical Results

ANALYTICAL SERVICES
Cert No E87604

Report of Analytical Results

Client: Michael Horton Tetra Tech Inc. 5 Industrial Way Salem, NH 03079		```Lab Sample ID: TK1739-6 Report Date: 04-JAN-18 Client PO: PO:1132379, PN:112G0 Project: NAVSTA Newport, Goul SDG: TK1739```								
Sample Description		Adj LOQ	Adj MDL	Adj LOD	Anal. Method	$\begin{gathered} \text { Matrix } \\ \text { AQ } \\ \text { QC.Batch } \end{gathered}$	Date Sample 12-DEC-17 10:10 Anal. Date	Date Received		
G32-MW306SR	21217							:00 13-DE	-17	
Parameter	Result							Prep. Method	Prep. Date	Footnotes
Alkalinity	99. mg/L	5.0	0.23	4.0	STDM 2320B	WG220743	22-DEC-17 17:11:49	N/A	N/A	
Chloride	$12000 \mathrm{mg} / \mathrm{L}$	4000	200	2000	EPA 300.0	WG220302	15-DEC-17 04:19:00	E300.0	N/A	
Nitrate as N	$0.50 \mathrm{mg} / \mathrm{L}$	0.050	. 0174	0.025	EPA 300.0	WG220291	14-DEC-17 09:52:00	E300.0	N/A	
Sulfate	$1600 \mathrm{mg} / \mathrm{L}$	100	6.4	50.	EPA 300.0	WG220781	19-DEC-17 04:20:00	E300.0	N/A	

ANALYTICAL SERVICES

Report of Analytical Results

Client: Michael Horton Tetra Tech Inc. 5 Industrial Way Salem,NH 03079

Sample Description	Matrix	Date Sampled	Date Received
G44S-MW207-121217	AQ	12-DEC-1707:55:00	13-DEC-17

Lab Sample ID: TK1739-8
Report Date: 04-JAN-18
Client PO: PO:1132379, PN:112G0
Project: NAVSTA Newport, Goul SDG: TK1739

Parameter	Result	Adj LOQ	Adj MDL	Adj LOD	Anal. Method	QC.Batch	Anal. Date	Prep. Method	Prep. Date	Footnotes
Alkalinity	$210 \mathrm{mg} / \mathrm{L}$	5.0	0.23	4.0	STDM 2320B	WG220743	22-DEC-17 17:14:37	N/A	N/A	
Chloride	$1800 \mathrm{mg} / \mathrm{L}$	400	20.	200	EPA 300.0	WG220302	15-DEC-17 04:50:00	E300.0	N/A	
Nitrate as N	$12 \mathrm{mg} / \mathrm{L}$	0.25	0.087	0.12	EPA 300.0	WG220291	14-DEC-17 12:13:00	E300.0	N/A	
Sulfate	$200 \mathrm{mg} / \mathrm{L}$	20.	1.3	10.	EPA 300.0	WG220302	15-DEC-17 04:34:00	E300.0	N/A	

Cert No E87604
Report of Analytical Results
ANALYTICAL SERVICES
Report of Analytical Results

ANALYTICAL SERVICES
Report of Analytical Results

Client: | Michael Horton |
| :--- |
| Tetra Tech Inc. |
| 5 Industrial Way |
| Salem,NH 03079 |

Sample Description
GI-MW401-121217

Lab Sample ID: TK1739-12
Report Date: 04-JAN-18
Client PO: PO:1132379, PN:112G0 Project: NAVSTA Newport, Goul SDG: TK1739

Matrix Date Sampled Date Received

AQ 12-DEC-17 13:53:00 13-DEC-17

| Parameter | Result | Adj LOQ | Adj MDL | Adj LOD | Anal. Method | QC.Batch | Anal. Date | Prep. Method | Prep. Date | Footnotes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkalinity | $92 . \mathrm{mg} / \mathrm{L}$ | 5.0 | 0.23 | 4.0 | STDM 2320 B | WG220743 | 22 -DEC-17 17:26:42 | N/A | N/A | |
| Chloride | $31 \mathrm{mg} / \mathrm{L}$ | 10. | 0.50 | 5.0 | EPA 300.0 | WG220302 | 15-DEC-17 05:37:00 | E300.0 | N/A | |
| Nitrate as N | $0.32 \mathrm{mg} / \mathrm{L}$ | 0.050 | .0174 | 0.025 | EPA 300.0 | WG220291 | 14-DEC-17 13:00:00 | E300.0 | N/A | |
| Sulfate | $34 \mathrm{mg} / \mathrm{L}$ | 5.0 | 0.32 | 2.5 | EPA 300.0 | WG220302 | 15-DEC-17 05:37:00 | E300.0 | N/A | |

Client:Katahdin Analytical Services									
Description: G32-MW303B-121217						Aque			
Date Sampled:12/12/2017 1330									
Date Received: 12/15/2017									
Run Prep Method Analytical Method 1 537 MOD 537.1 Modified-ID	$\begin{array}{cc} \text { Dilution } & \text { An } \\ 1 & 12 / 2 \end{array}$	ysis Date Analyst 20171613 SES	$\begin{aligned} & \text { Prep I } \\ & 12 / 22 / 2 \end{aligned}$	$\begin{aligned} & \text { Date } \\ & 0170923 \end{aligned}$	Batch 60410				
Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.7	U	3.4	1.7	0.86	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.7	U	3.4	1.7	0.86	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	$537.1 \mathrm{Mod}$.	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-heptanoic acid (PFHPA)	375-85-9	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	0.44	J	1.7	0.85	0.43	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.7	U	3.4	1.7	0.86	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1

Surrogate	Run 1Acceptance \% Recovery	
Limits		
13C2_PFDoA	105	$50-150$
13C3_PFFBS	81	$50-150$
13C3_PFHxS	109	$50-150$
13C4_PFHpA	111	$50-150$
13C5_PFHxA	115	$50-150$
13C6_PFDA	111	$50-150$
13C7_PFUdA	112	$50-150$
13C8_PFOA	112	$50-150$
13C8_PFOS	116	$50-150$
13C9_PFNA	105	$50-150$
d5-EtFOSAA	111	$50-150$
d3-MeFOSAA	106	$50-150$

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q $=$ Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

	Run 1			Acceptance	Run 2 Acceptance Surrogate	
Q Recovery	Limits	Q	\% Recovery	Limits		
13C2_PFDoA	106	$50-150$	H	102	$50-150$	
13C2_PFTeDA	106	$50-150$	H	105	$50-150$	
13C3_PFBS	110	$50-150$	H	102	$50-150$	
13C3_PFHxS	109	$50-150$	H	106	$50-150$	
13C4_PFHpA	122	$50-150$	H	102	$50-150$	
13C5_PFHxA	117	$50-150$	H	108	$50-150$	
13C6_PFDA	110	$50-150$	H	105	$50-150$	
13C7_PFUdA	112	$50-150$	H	106	$50-150$	
13C8_PFOA	115	$50-150$	H	104	$50-150$	
13C8_PFOS	108	$50-150$	H	98	$50-150$	
13C9_PFNA	111	$50-150$	H	106	$50-150$	
d5-EtFOSAA	111	$50-150$	H	109	$50-150$	
d3-MeFOSAA	109	$50-150$	H	115	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q $=$ Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

	Run 1			Acceptance	Run 2 Acceptance Surrogate	
Q Recovery	Limits	Q	\% Recovery	Limits		
13C2_PFDoA	106	$50-150$	H	102	$50-150$	
13C2_PFTeDA	106	$50-150$	H	105	$50-150$	
13C3_PFBS	110	$50-150$	H	102	$50-150$	
13C3_PFHxS	109	$50-150$	H	106	$50-150$	
13C4_PFHpA	122	$50-150$	H	102	$50-150$	
13C5_PFHxA	117	$50-150$	H	108	$50-150$	
13C6_PFDA	110	$50-150$	H	105	$50-150$	
13C7_PFUdA	112	$50-150$	H	106	$50-150$	
13C8_PFOA	115	$50-150$	H	104	$50-150$	
13C8_PFOS	108	$50-150$	H	98	$50-150$	
13C9_PFNA	111	$50-150$	H	106	$50-150$	
d5-EtFOSAA	111	$50-150$	H	109	$50-150$	
d3-MeFOSAA	109	$50-150$	H	115	$50-150$	

$L O Q=$ Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	$D L=$ Detection Limit	$Q=S u r r o g a t e ~ f a i l u r e ~$
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result < LOQ and \geq DL	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	$L O D=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	537 MOD	537.1 Modified-ID	1	$12 / 22 / 20171640$	SES	$12 / 22 / 2017092360410$	
2	537 MOD	537.1 Modified-ID	1	$12 / 29 / 20172032$	SES	$12 / 29 / 2017102960775$	

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.7	U	3.4	1.7	0.84	ng/L	1
N -methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.7	U	3.4	1.7	0.84	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	0.70	J	1.7	0.85	0.42	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	1.1	J	1.7	0.85	0.42	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.85	U	1.7	0.85	0.42	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.42	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	2.1		1.7	0.85	0.42	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	3.5		1.7	0.85	0.42	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.74	J	1.7	0.85	0.42	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	4.2		1.7	0.85	0.42	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.7	U	3.4	1.7	0.84	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.42	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.42	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	0.82	J	1.7	0.85	0.42	ng/L	1

	Run 1			Acceptance	Run 2 Acceptance Surrogate	
Q Recovery	Limits	Q	\% Recovery	Limits		
13C2_PFDoA	104	$50-150$	H	116	$50-150$	
13C2_PFTeDA	102	$50-150$	H	111	$50-150$	
13C3_PFBS	109	$50-150$	H	117	$50-150$	
13C3_PFHxS	108	$50-150$	H	112	$50-150$	
13C4_PFHpA	112	$50-150$	H	112	$50-150$	
13C5_PFHxA	114	$50-150$	H	118	$50-150$	
13C6_PFDA	110	$50-150$	H	118	$50-150$	
13C7_PFUdA	109	$50-150$	H	123	$50-150$	
13C8_PFOA	113	$50-150$	H	116	$50-150$	
13C8_PFOS	105	$50-150$	H	113	$50-150$	
13C9_PFNA	114	$50-150$	H	119	$50-150$	
d5-EtFOSAA	110	$50-150$	H	120	$50-150$	
d3-MeFOSAA	108	$50-150$	H	127	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40\%	$\mathrm{J}=$ Estimated result $<$ LOQ and \geq DL
$H=$ Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection	$L=L C S / L C S D$ failure

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Run	Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	537 MOD	537.1 Modified-ID	1	$12 / 22 / 20171640$	SES	$12 / 22 / 2017092360410$	
2	537 MOD	537.1 Modified-ID	1	$12 / 29 / 20172032$	SES	$12 / 29 / 2017102960775$	

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N -ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.7	UH	3.4	1.7	0.84	ng/L	2
N -methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.7	UH	3.4	1.7	0.84	ng/L	2
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	0.65	HJ	1.7	0.85	0.42	ng/L	2
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	1.9	H	1.7	0.85	0.42	ng/L	2
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.85	UH	1.7	0.85	0.42	ng/L	2
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.85	UH	1.7	0.85	0.42	ng/L	2
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	2.1	H	1.7	0.85	0.42	ng/L	2
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	3.3	H	1.7	0.85	0.42	ng/L	2
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.78	HJ	1.7	0.85	0.42	ng/L	2
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	4.6	H	1.7	0.85	0.42	ng/L	2
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.7	UH	3.4	1.7	0.84	ng/L	2
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.85	UH	1.7	0.85	0.42	ng/L	2
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.85	UH	1.7	0.85	0.42	ng/L	2
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	9.1	H	1.7	0.85	0.42	ng/L	2

	Run 1			Acceptance	Run 2 Acceptance Surrogate	
Q Recovery	Limits	Q	\% Recovery	Limits		
13C2_PFDoA	104	$50-150$	H	116	$50-150$	
13C2_PFTeDA	102	$50-150$	H	111	$50-150$	
13C3_PFBS	109	$50-150$	H	117	$50-150$	
13C3_PFHxS	108	$50-150$	H	112	$50-150$	
13C4_PFHpA	112	$50-150$	H	112	$50-150$	
13C5_PFHxA	114	$50-150$	H	118	$50-150$	
13C6_PFDA	110	$50-150$	H	118	$50-150$	
13C7_PFUdA	109	$50-150$	H	123	$50-150$	
13C8_PFOA	113	$50-150$	H	116	$50-150$	
13C8_PFOS	105	$50-150$	H	113	$50-150$	
13C9_PFNA	114	$50-150$	H	119	$50-150$	
d5-EtFOSAA	110	$50-150$	H	120	$50-150$	
d3-MeFOSAA	108	$50-150$	H	127	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q $=$ Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

	Run 1			Acceptance	Run 2 Acceptance Surrogate	
Q Recovery	Limits	Q	\% Recovery	Limits		
13C2_PFDoA	105	$50-150$	H	98	$50-150$	
13C2_PFTeDA	93	$50-150$	H	89	$50-150$	
13C3_PFBS	104	$50-150$	H	104	$50-150$	
13C3_PFHxS	106	$50-150$	H	104	$50-150$	
13C4_PFHpA	112	$50-150$	H	106	$50-150$	
13C5_PFHxA	111	$50-150$	H	107	$50-150$	
13C6_PFDA	108	$50-150$	H	104	$50-150$	
13C7_PFUdA	105	$50-150$	H	104	$50-150$	
13C8_PFOA	112	$50-150$	H	105	$50-150$	
13C8_PFOS	102	$50-150$	H	100	$50-150$	
13C9_PFNA	109	$50-150$	H	104	$50-150$	
d5-EtFOSAA	112	$50-150$	H	107	$50-150$	
d3-MeFOSAA	112	$50-150$	H	109	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q $=$ Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

	Run 1			Acceptance	Run 2 Acceptance Surrogate	
Q Recovery	Limits	Q	\% Recovery	Limits		
13C2_PFDoA	105	$50-150$	H	98	$50-150$	
13C2_PFTeDA	93	$50-150$	H	89	$50-150$	
13C3_PFBS	104	$50-150$	H	104	$50-150$	
13C3_PFHxS	106	$50-150$	H	104	$50-150$	
13C4_PFHpA	112	$50-150$	H	106	$50-150$	
13C5_PFHxA	111	$50-150$	H	107	$50-150$	
13C6_PFDA	108	$50-150$	H	104	$50-150$	
13C7_PFUdA	105	$50-150$	H	104	$50-150$	
13C8_PFOA	112	$50-150$	H	105	$50-150$	
13C8_PFOS	102	$50-150$	H	100	$50-150$	
13C9_PFNA	109	$50-150$	H	104	$50-150$	
d5-EtFOSAA	112	$50-150$	H	107	$50-150$	
d3-MeFOSAA	112	$50-150$	H	109	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q $=$ Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Surrogate	Q	Run 1 \% Recovery	Acceptance Limits	Q	Run 2 \% Recovery	Acceptance Limits
13C2_PFDoA		106	50-150	H	106	50-150
13C2_PFTeDA		100	50-150	H	103	50-150
13C3_PFBS		108	50-150	H	107	50-150
13C3_PFHxS		109	50-150	H	110	50-150
13C4_PFHpA		115	50-150	H	108	50-150
13C5_PFHxA		114	50-150	H	110	50-150
13C6_PFDA		112	50-150	H	108	50-150
13C7_PFUdA		115	50-150	H	109	50-150
13C8_PFOA		113	50-150	H	105	50-150
13C8_PFOS		110	50-150	H	107	50-150
13C9_PFNA		116	50-150	H	110	50-150
d5-EtFOSAA		109	50-150	H	114	50-150
d3-MeFOSAA		109	50-150	H	118	50-150

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q $=$ Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Surrogate	Q	Run 1 \% Recovery	Acceptance Limits	Q	Run 2 \% Recovery	Acceptance Limits
13C2_PFDoA		106	50-150	H	106	50-150
13C2_PFTeDA		100	50-150	H	103	50-150
13C3_PFBS		108	50-150	H	107	50-150
13C3_PFHxS		109	50-150	H	110	50-150
13C4_PFHpA		115	50-150	H	108	50-150
13C5_PFHxA		114	50-150	H	110	50-150
13C6_PFDA		112	50-150	H	108	50-150
13C7_PFUdA		115	50-150	H	109	50-150
13C8_PFOA		113	50-150	H	105	50-150
13C8_PFOS		110	50-150	H	107	50-150
13C9_PFNA		116	50-150	H	110	50-150
d5-EtFOSAA		109	50-150	H	114	50-150
d3-MeFOSAA		109	50-150	H	118	50-150

$L O Q=$ Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	$D L=$ Detection Limit	$Q=S u r r o g a t e ~ f a i l u r e ~$
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result < LOQ and \geq DL	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	$L O D=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Appendix C

Support Documentation

SDG NARRATIVE

KATAHDIN ANALYTICAL SERVICES
 TETRA TECH NUS, INC. NAVSTA NEWPORT, GOULD ISLAND CTO-WE22 TK1739

Sample Receipt

The following samples were received on December 13, 2017 and were logged in under Katahdin Analytical Services work order number TK1739 for a hardcopy due date of December 29, 2017.

KATAHDIN Sample No.	TTNUS Sample Identification
TK1739-1	TB-121217
TK1739-2	G32-MW303B-121217
TK1739-3	G32-MW303B-121217
TK1739-4	GI-MW402-121217
TK1739-5	GI-MW402-121217
TK1739-6	G32-MW306SR-121217
TK1739-7	G32-MW306SR-121217
TK1739-8	G44S-MW207-121217
TK1739-9	G44S-MW207-121217
TK1739-10	GI-MW403-121217
TK1739-11	GI-MW403-121217
TK1739-12	GI-MW401-121217
TK1739-13	GI-MW401-121217
TK1739-14	FRB121217

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.
Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Heather Manz. This narrative is an integral part of the Report of Analysis.

Reissue 01/29/2018

This report is being reissued to include additional analytes in the "Volatiles Data" section.

Organics Analysis

The samples of work order TK1739 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 \& 2004, Office of Solid Waste and Emergency Response, U.S. EPA, and/or for the specific methods listed below or on the Report of Analysis.

8260B Analysis

Note: The Form VII has a column for \%D that is set to 20%. The DoD QSM 5.0 criterion for an opening CV is $20 \% \mathrm{D}$ and a closing CV is $50 \% \mathrm{D}$. All of the compounds in the CV's were evaluated to either 20% criteria for opening CVs or 50% criteria for closing CVs.

8082A Analysis

Sample TK1739-2 had low recoveries for the extraction surrogate DCB on both channels. Sample TK 1739-12 had low recoveries for the extraction surrogate TCX on both channels. These deviations were outside of the laboratory established and DoD QSM acceptance limits, respectively. The client was contacted on 12/19/17 and the laboratory was advised to proceed with narration.

The LCS WG220255-3 had a low recovery for the extraction surrogate TCX on channel A that was outside of the DoD QSM acceptance limits. Since the surrogate recovery was acceptable on channel B, and the spike recoveries were acceptable, no further action was taken.

The closing calibration verification standard (file 8 KL 00558) had a high response for the target analyte Aroclor- 1260 on channel B that resulted in a \%D that was outside of the DoD QSM acceptance criteria of $\pm 20 \%$. Since the response was acceptable on channel A, no further action was taken.

8270D SIM Analysis

Samples TK 1739-2 and 8 were manually integrated for the analytes benzo(b)fluoranthene and/or benzo(k)fluoranthene. The specific reason for the manual integration is indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of Katahdin Work Order TK1739 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA and IIIB 1996, 1998 \& 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

Inductively-Coupled Plasma Mass Spectrometric Analysis (ICP-MS)

Aqueous-matrix Katahdin Sample Numbers TK1739-(2-13) were digested for ICP-MS analysis on 12/15/17 (QC Batch KK15IMW1) in accordance with USEPA Method 3010A.

ICP-MS analyses of Katahdin Work Order TK1739 sample digestates was performed using an Agilent 7500 ICP-MS spectrometer in accordance with USEPA Method 6020A. Results for all standards and samples are reported using the mean of 3 replicate measurements. All sample digestates were diluted by a factor of 5 during analysis to reduce mass interferences from chlorine, which is present in the digestates from the hydrochloric acid used in digesting the samples. All samples were analyzed within holding times and all analytical run QC criteria were met.

Internal standard recoveries for ICP-MS analyses can be found in the raw data section of the accompanying data package. The following table indicates which analytes are associated with each internal standard element.

Internal Standard Element	Associated Analytes
Lithium	Beryllium, Boron
Scandium	Sodium, Magnesium, Aluminum, Potassium, Calcium
Germanium	or
Yttrium	Vanadium, Chromium, Manganese, Iron, Cobalt,
Terbium	Cadmium, Sin, Arsenic, Selenium, Silver,
Bismuth	Antimony, Barium, Molybdenum
Lead, Thallium, Thorium, Uranium	

Instrument tuning information can also be found in the raw data section in the report labeled "6020 QC Tune Report". The relative standard deviation was determined from 4 replicate measurements. The peak width was measured at 10% of the peak height.

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the LOQ are flagged with " J " in the C -qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with " U " in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the Cqualifier column, and the measured concentration is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).
DLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of Work Order TK1739 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for chloride, nitrate, and sulfate were performed according to "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, 1979, Revised 1983, U.S. EPA.

Analyses for alkalinity were performed according to "Standard Methods for the Examination of Water and Wastewater", 15th, 16th, 17th, 18th, 19 ${ }^{\text {th }}$, and 20th editions, 1980, 1985, 1989, 1992, 1995, 1999. APHA-AWWA-WPCF.

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Limit of Quantitation (LOQ) are flagged " J ". Measured concentrations that are below the MDL are flagged " U " and reported as "U LOD", where "LOD" is the numerical value of the Limit of Detection.

All analyses were performed within analytical holding times, and all quality control criteria were met with the following exceptions:

Due to instrument failure the nitrate results for Katahdin sample numbers TK1739-4, TK1739-8, and TK 1739-10 were not acquired within the 48 hour analytical hold time. At client request the samples were run outside hold time.

TK1739-4	TK1739-8	TK1739-10
9 minutes out of hold	248 minutes out of hold	2 minutes out of hold

Subcontracted Data

Analyses for PFA's by Method 537 were performed by subcontract laboratories. Please refer to the sections of the data package titled Subcontracted Data.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Quality Assurance Officer, or their designee, as verified by the following signature.

VOLATILES DATA

Form 2

System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services
Lab Code: KAS

Project: NAVSTA Newport, Gould Island CTO-WE22
SDG: TK1739

Matrix: AQ

Client Sample ID	Lab Sample ID	Col. ID BFB	\# DBF	\# DCA	\# TOL	\#
TB-121217	TK1739-1	95.6	104.	102.	102.	
GI-MW403-121217	TK1739-10	97.4	102.	104.	100.	
GI-MW401-121217	TK1739-12	98.3	101.	103.	101.	
G32-MW303B-121217	TK1739-2	93.2	104.	102.	102.	
GI-MW402-121217	TK1739-4	93.6	109.	102.	101.	
G32-MW306SR-121217	TK1739-6	97.5	101.	106.	99.7	
G44S-MW207-121217	TK1739-8	98.1	103.	103.	100.	
Laboratory Control S	WG220317-8	99.4	104.	102.	98.6	
Method Blank Sample	WG220317-9	98.2	105.	104.	102.	
Laboratory Control S	WG220390-8	99.7	99.9	96.1	101.	
Method Blank Sample	WG220390-9	98.3	101.	104.	100.	

QC Limits

DCA
1,2-DICHLOROETHANE-D4
81-118
89-112
80-119
85-114
\# = Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.
$\mathrm{D}=$ System Monitoring Compound diluted out.

Form 4
 Method Blank Summary - VOA

Lab Name : Katahdin Analytical Services
SDG: TK1739
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220317-9
Lab File ID : T3678.D Date Analyzed : 19-DEC-17
Instrument ID : GCMS-T
Heated Purge : No
Time Analyzed : 16:10

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID		Date Analyzed Time Analyzed	
Laboratory Control S	WG220317-8	T3676.D	$12 / 19 / 17$	$14: 53$	
TB-121217	TK1739-1	T3682.D	$12 / 19 / 17$	$18: 33$	
G32-MW303B-121217	TK1739-2	T3685.D	$12 / 19 / 17$	$20: 21$	
GI-MW402-121217	TK1739-4	T3686.D	$12 / 19 / 17$	$20: 56$	

Report of Analytical Results

Client:

Lab ID:WG220317-9
Client ID: Method Blank Sample
Project:
SDG: TK1739
Lab File ID: T3678.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.2	$\%$					
Toluene-d8	102.	$\%$						
1,2-Dichloroethane-d4	104.	$\%$						
Dibromofluoromethane	105.	$\%$						

Form 4
 Method Blank Summary - VOA

Lab Name : Katahdin Analytical Services
SDG: TK1739
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220390-9
Lab File ID : T3702.D Date Analyzed : 20-DEC-17
Instrument ID : GCMS-T
Heated Purge : No
Time Analyzed : 16:32

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed	
Laboratory Control S	WG220390-8	T3700.D	12/20/17	15:21
G32-MW306SR-121217	TK1739-6	T3703.D	12/20/17	17:08
G44S-MW207-121217	TK1739-8	T3704.D	12/20/17	17:44
GI-MW403-121217	TK1739-10	T3705.D	12/20/17	18:20
GI-MW401-121217	TK1739-12	T3706.D	12/20/17	18:56

Report of Analytical Results

Client:

Lab ID: WG220390-9
Client ID: Method Blank Sample
Project:
SDG: TK1739
Lab File ID: T3702.D

Sample Date:
Received Date:
Extract Date: 20-DEC-17
Extracted By:JSS/HC
Extraction Method: SW846 5030
Lab Prep Batch: WG220390

Analysis Date: 20-DEC-17
Analyst: JSS/HC
Analysis Method: SW846 8260C
Matrix: AQ
\% Solids: NA
Report Date: 25-JAN-18

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.3	$\%$					
Toluene-d8	100.	$\%$						
1,2-Dichloroethane-d4		104.	$\%$					
Dibromofluoromethane	101.	$\%$						

Form 8

Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220390-4
Lab File ID :T3694.D

SDG: TK1739
Analytical Date: 12/20/17 11:45
Instrument ID: GCMS-T

	Std .	PENTAFLUOROBENZENE		1,4-DIFLUOROBENZENE		CHLOROBENZENE-D5	
		Area \#	RT \#	Area \#	RT \#	Area \#	RT \#
		520740	6.12	839790	6.90	739731	10.91
	Upper Limit	1041480	6.62	1679580	7.40	1479462	11.41
	Lower Limit	260370	5.62	419895	6.40	369865.5	10.41
Client Sample ID	Lab Sample ID						
Laboratory Control S	WG220390-8	516636	6.12	817639	6.90	727049	10.91
Method Blank Sample	WG220390-9	493755	6.12	806258	6.90	721781	10.91
G32-MW306SR-12121	TK1739-6	488202	6.12	806586	6.90	717693	10.91
G44S-MW207-121217	TK1739-8	481847	6.12	796719	6.90	713471	10.91
GI-MW403-121217	TK1739-10	485029	6.11	787209	6.89	705974	10.91
GI-MW401-121217	TK1739-12	484254	6.12	779187	6.90	700507	10.91
Continuing Calibrati	WG220390-11	469795	6.12	761261	6.90	666491	10.91

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Form 8
 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services

Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220390-4
Lab File ID :T3694.D

SDG: TK1739
Analytical Date: 12/20/17 11:45
Instrument ID: GCMS-T

[^0]Form 8
Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220317-4
Lab File ID :T3670.D

SDG: TK1739
Analytical Date: 12/19/17 11:03
Instrument ID: GCMS-T

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Form 8
 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services

Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220317-4
Lab File ID :T3670.D

SDG: TK1739
Analytical Date: 12/19/17 11:03
Instrument ID: GCMS-T

	Std	1,4-DICHLOROBENZENE-D4	
		Area \#	RT \#
		287294	13.98
	Upper Limit	574588	14.48
	Lower Limit	143647	13.48
Client Sample ID	Lab Sample ID		
Laboratory Control S	WG220317-8	279636	13.98
Method Blank Sample	WG220317-9	240642	13.98
TB-121217	TK1739-1	215374	13.98
G32-MW303B-121217	TK1739-2	208233	13.98
GI-MW402-121217	TK1739-4	204893	13.98
Continuing Calibrati	WG220317-11	232784	13.98

[^1]

SIM SEMIVOLATILES DATA

Form 2

System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Lab Code: KAS

Project: NAVSTA Newport, Gould Island CTO-WE22
SDG: TK1739

Matrix: AQ

DBP	2,4-DIBROMOPHENOL	$10-130$
2MN	2-METHYLNAPHTHALENE-D10	$43-92$
FLO	FLUORENE-D10	$29-101$
PYR	PYRENE-D10	$53-166$

\# = Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.
$\mathrm{D}=$ System Monitoring Compound diluted out.

Method Blank Summary

Lab Name : Katahdin Analytical Services
SDG : TK1739
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220256-1
Lab File ID : N7095.D
Instrument ID : GCMS-N
Date Extracted : 18-DEC-17
Date Analyzed : 21-DEC-17
Matrix : AQ
Time Analyzed : 18:24

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID		Lab Sample ID	Lab File ID		Date Analyzed Time Analyzed	
Laboratory Control S WG220256-2 N7096.D $12 / 21 / 17$ $18: 56$ Laboratory Control S WG220256-3 N7097.D $12 / 21 / 17$ $19: 28$ G32-MW303B-121217 TK1739-2 N7098.D $12 / 21 / 17$ $20: 01$ GI-MW402-121217 TK1739-4 N7099.D $12 / 21 / 17$ $20: 33$ G32-MW306SR-121217 TK1739-6 N7100.D $12 / 21 / 17$ $21: 05$ G44S-MW207-121217 TK1739-8 N7101.D $12 / 21 / 17$ $21: 38$ GI-MW403-121217 TK1739-10 N7102.D $12 / 21 / 17$ $22: 11$ GI-MW401-121217 TK1739-12 N7103.D $12 / 21 / 17$ $22: 44$						

Report of Analytical Results

Client:

Lab ID: WG220256-1
Client ID: Method Blank Sample
Project:
SDG: TK1739
Lab File ID: N7095.D

Sample Date:
Received Date:
Extract Date: 18-DEC-17
Extracted By:WAS
Extraction Method: SW846 3510C
Lab Prep Batch: WG220256

Analysis Date: 21-DEC-17
Analyst: JCG
Analysis Method: SW846 M8270D SIM
Matrix: AQ
\% Solids: NA
Report Date: 02-JAN-18

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Pentachlorophenol	U	0.50	ug / L	1	1	1.0	0.33	0.50
Naphthalene	U	0.10	ug / L	1	.2	0.20	0.064	0.10
2-Methylnaphthalene	U	0.10	ug / L	1	.2	0.20	0.077	0.10
Phenanthrene	U	0.10	ug / L	1	.2	0.20	0.051	0.10
Fluoranthene	U	0.10	ug / L	1	.2	0.20	0.073	0.10
Pyrene	U	0.10	ug / L	1	.2	0.20	0.059	0.10
Benzo(a)anthracene	U	0.10	ug / L	1	.2	0.20	0.046	0.10
Chrysene	U	0.10	ug / L	1	.2	0.20	0.036	
Benzo(b)Fluoranthene	U	0.10	ug / L	1	.2	0.20	0.089	0.10
Benzo(k)fluoranthene	U	0.10	ug / L	1	.2	0.20	0.049	
Benzo(a)pyrene	U	0.10	ug / L	1	.2	0.20	0.066	
Indeno(1,2,3-cd)pyrene	U	0.10	ug / L	1	.2	0.20	0.052	
Dibenzo(a,h)anthracene	U	0.10	ug / L	1	.2	0.20	0.070	
Benzo(g,h,i)perylene	U	0.10	ug / L	1	.2	0.20	0.065	
2-Methylnaphthalene-D10	73.4	$\%$			0.10			
2,4-Dibromophenol		66.6	$\%$			0.10		
Fluorene-D10	67.8	$\%$			0.10			
Pyrene-D10	84.1	$\%$			0			

Form 8

Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220497-4
Lab File ID :N7083.D

SDG: TK1739
Analytical Date: 12/21/17 11:59
Instrument ID: GCMS-N

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Form 8

Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220497-4
Lab File ID :N7083.D

SDG: TK1739
Analytical Date: 12/21/17 11:59
Instrument ID: GCMS-N

	Std .	PHENANTHRENE-D10		CHRYSENE-D12		PERYLENE-D12		
		Area \#	RT \#	Area \#	RT \#	Area	\# RT	\#
		68668	13.25	27009	17.01	13727	20.04	
	Upper Limit	137336	13.75	54018	17.51	27454	20.54	
	Lower Limit	34334	12.75	13504.5	16.51	6863.5	19.54	
Client Sample ID	Lab Sample ID							
Method Blank Sample	WG220256-1	72876	13.26	22562	17.05	13900	20.04	
Laboratory Control S	WG220256-2	61099	13.25	22509	17.02	16412	20.03	
Laboratory Control S	WG220256-3	80082	13.25	27331	17.01	17160	20.03	
G32-MW303B-121217	TK1739-2	56618	13.27	18022	17.05	12333	20.05	
GI-MW402-121217	TK1739-4	72521	13.26	22755	17.04	14724	20.04	
G32-MW306SR-12121	TK1739-6	75923	13.25	27789	17.02	16670	20.03	
G44S-MW207-121217	TK1739-8	73499	13.25	23426	17.03	15274	20.03	
GI-MW403-121217	TK1739-10	78866	13.26	25935	17.04	15907	20.04	
GI-MW401-121217	TK1739-12	64955	13.26	27230	17.03	15716	20.03	
Continuing Calibrati	WG220497-9	70979	13.25	29414	17.01	16610	20.04	

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.
Gim
sep
KATAHDIN ANALYTICAL SERVICES, LLC.
ORGANIC EXTRACTIONS LOG - AQUEOUS SEMI-VOLATILES

${ }_{\text {dete }}^{\text {Date }}$	Ext	Sample id	linitiol	Sur.				Final				
			mL	vol.	Vol.	sv	stm	$\mathrm{m}_{\text {Vol. }}^{\substack{\text { viL }}}$	Dote Conc.		Intilat	Comments
12-18-7	who	W $6.220256-1$	1000	ImL	NL		\checkmark	$\operatorname{lm} C$				
1		[-2			Iml		\checkmark		$8.2+143$	D1	KL	12453982
		-3			Inl					12		
									,	3		
\downarrow	\checkmark	$-\sqrt{-4}$	1060									
		, -5	1060	\checkmark	γ		\checkmark	J	J	\cdots	J	W6 Tki797-to
												msd \sim - m
									\bigcirc			,
										S		

$\begin{gathered} \text { Dxtereded } \\ \text { Dxtract } \end{gathered}$	Ext	Sample ID	$\begin{aligned} & \text { Intitial } \\ & \text { Vol } \\ & \text { mol } \end{aligned}$	Sur.	SpikeVo.	Fraction			pateConc.		Intidals	Comments
						sv	sim					
12-18-17	wAs	TK. $7339.2 h$	1020	$\operatorname{lm} L$	NT		\checkmark	$\operatorname{lm} C$	12.8817	06	k4	
		- i $_{\text {i }}$	1060							17		
		-6f	1010							8		
		-8f	1040							9		
		-109	1000							$\sqrt{10}$		
		$\sqrt{-12 f}$	1060							E1		
		T51740-12	1010							2		
		-14ph	1010							3		
		-161	1000							4		,
		-181	1060							5		.
		-200	1060							6		
		$\sqrt{-22 l}$	1030							7		
		TK冂777-1M	1060							4		
		$1-30$	1060							9		
		TKin98-5	1060							${ }^{1}$		
		-6 1	1060							50218 A1		
		-78	1060							2		
		-8m	1060							3		
		TK1794-20	10.0							4		
\checkmark	\checkmark	$\sqrt{-4 m}$	1000		\checkmark		\checkmark		,	15	\checkmark	

JOB	SAMPLE	DATAFILE	DF	ALS \#	METHOD	ULINS	CHEMIST	COMMENTS
Wh220497-1	sune pfrep	ND454	1	1	Dforpesiy	210	lCS_{5}	UK
-4	Ssm2, N(22)	N7083	1	2	NSPSM72	1		\checkmark
-2	0.2	189		3	+			\checkmark
- 3	0.5	85		4				\checkmark
-5	7.0	86		5				\checkmark
-6	10.	87		6				\checkmark
-7	1515	88		7				$\stackrel{L}{2}$
-8	(100)	89		8				ac
	$106220366-1$	90		9				OR
	- -2	91		10				lomeves
	-3	92		11				low Recs
	$1-4$	53		12				Lowners
	TK1557-1	94		13				ok
	$6 x 2202581$	95		14				\cdots
	$1 \quad-2$	96		15				
	$1--3$	97		16				ok
	$t \in 1739-2$	98		17				比
	-4	$\times 99$		18				de
	-6	$N 7150$		19				or
	-8	101		20				al
	-10	02		4				a
	$1-12$	03		22				a
-9	SSTb2CONIZ2	04		23				$0 k$
-6	1	65		1				-
- 4	V	106	1	\pm	V	,	1	\cdots
STANDARD	CODE		REVIEWED AND APPROVED BY:DATE:					
DFTPP	$\frac{53014}{5301853021}$							
CAL. STD.								

PCB DATA

Form 2

System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services
Lab Code: KAS

Project: NAVSTA Newport, Gould Island CTO-WE22
SDG: TK1739

Matrix: AQ

Lab has protected the document , Can not mark-uo.

Client Sample ID	Lab Sample ID	Col. ID DCB		\#	TCX	\#
GI-MW403-121217	TK1739-10	A	48.9		64.2	
GI-MW403-121217	TK1739-10	B	50.0		68.5	
GI-MW401-121217	TK1739-12	A	67.4		59.7	*
GI-MW401-121217	TK1739-12	B	66.9		60.6	*
G32-MW303B-121217	TK1739-2	A	37.7	*	69.2	
G32-MW303B-121217	TK1739-2	B	37.9	*	73.5	
GI-MW402-121217	TK1739-4RE	A	61.3		80.0	
GI-MW402-121217	TK1739-4RE	B	71.0		85.8	
G32-MW306SR-121217	TK1739-6	A	70.2		66.7	
G32-MW306SR-121217	TK1739-6	B	74.9		70.7	
G44S-MW207-121217	TK1739-8	A	64.6		64.6	
G44S-MW207-121217	TK1739-8	B	66.3		67.0	
Method Blank Sample	WG220255-1	A	71.1		61.8	
Method Blank Sample	WG220255-1	B	72.5		71.2	
Laboratory Control S	WG220255-2	A	59.3		64.7	
Laboratory Control S	WG220255-2	B	60.2		70.2	
Laboratory Control S	WG220255-3	A	73.4		59.0	*
Laboratory Control S	WG220255-3	B	73.4		63.8	
Method Blank Sample	WG220411-1	A	49.1		69.1	
Method Blank Sample	WG220411-1	B	70.4		74.9	
Laboratory Control S	WG220411-2	A	76.8		90.0	
Laboratory Control S	WG220411-2	B	83.2		98.7	
Laboratory Control S	WG220411-3	A	80.2		86.5	
Laboratory Control S	WG220411-3	B	86.6		92.8	

QC Limits

\# = Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.
$\mathrm{D}=$ System Monitoring Compound diluted out.

Form 4

Method Blank Summary
Lab Name : Katahdin Analytical Services
SDG: TK1739
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220255-1

Lab File ID: 7KL596.D
Matrix : AQ
Column A
Instrument ID : GC07
Date Analyzed : 18-DEC-17
Time Analyzed : 20:02

Date Extracted : 18-DEC-17
Extraction Method : SW846 3510C
Column B
Instrument ID : GC07
Date Analyzed : 18-DEC-17
Time Analyzed : 20:02

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID
Lab Sample ID Lab File ID Date Analyzed Time Analyzed Laboratory Control S WG220255-2 7KL597.D $12 / 18 / 17$ $20: 30$ Laboratory Control S WG220255-3 7KL598.D $12 / 18 / 17$ $20: 58$ G32-MW303B-121217 TK1739-2 7KL608.D $12 / 19 / 17$ $01: 39$ G32-MW306SR-121217 TK1739-6 7KL612.D $12 / 19 / 17$ $03: 31$ G44S-MW207-121217 TK1739-8 7KL613.D $12 / 19 / 17$ $03: 59$ GI-MW403-121217 TK1739-10 7KL614.D $12 / 19 / 17$ $04: 28$ GI-MW401-121217 TK1739-12 7KL615.D $12 / 19 / 17$ $04: 56$

Report of Analytical Results

Client:

Lab ID: WG220255-1
Client ID: Method Blank Sample
Project:
SDG: TK1739
Lab File ID: 7KL596.D

Sample Date:
Received Date:
Extract Date: 18-DEC-17
Extracted By:WAS
Extraction Method: SW846 3510C
Lab Prep Batch: WG220255

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.25	ug / L	1	.5	0.50	0.15	0.25
Aroclor-1221	U	0.25	ug / L	1	.5	0.50	0.20	0.25
Aroclor-1232	U	0.25	ug / L	1	.5	0.50	0.089	0.25
Aroclor-1242	U	0.25	ug / L	1	.5	0.50	0.18	0.25
Aroclor-1248	U	0.25	ug / L	1	.5	0.50	0.20	0.25
Aroclor-1254	U	0.25	ug / L	1	.5	0.50	0.082	0.25
Aroclor-1260	U	0.25	ug / L	1	.5	0.50	0.17	0.25
Aroclor-1262	U	0.25	ug / L	1	.5	0.50	0.066	0.25
Aroclor-1268	U	0.25	ug / L	1	.5	0.50	0.072	0.25
Total PCBs	U	2.2	ug / L	1	4.5	4.5	0.066	
Tetrachloro-M-Xylene		71.2	$\%$			2.2		
Decachlorobiphenyl		72.5	$\%$					

Form 4
 Method Blank Summary

Lab Name : Katahdin Analytical Services
SDG: TK1739
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220411-1

Lab File ID : 8KL00545.D
Matrix : AQ
Column A
Instrument ID : GC08
Date Analyzed : 25-DEC-17
Time Analyzed : 04:26

Date Extracted : 20-DEC-17
Extraction Method : SW846 3510C
Column B
Instrument ID : GC08
Date Analyzed : 25-DEC-17
Time Analyzed : 04:26

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed	
GI-MW402-121217	TK1739-4RE	8KL00539.	12/25/17	02:25
Laboratory Control S	WG220411-2	8KL00546.	12/25/17	04:46
Laboratory Control S	WG220411-3	8KL00547.	12/25/17	05:06

Report of Analytical Results

Client:

Lab ID: WG220411-1
Client ID: Method Blank Sample
Project:
SDG: TK1739
Lab File ID: 8KL00545.D

Sample Date:
Received Date:
Extract Date: 20-DEC-17
Extracted By: KF
Extraction Method: SW846 3510C
Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17
Analyst: BF
Analysis Method: SW846 8082A
Matrix: AQ
\% Solids: NA
Report Date: 04-JAN-18

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Aroclor-1016	U	0.25	ug / L	1	.5	0.50	0.15	0.25
Aroclor-1221	U	0.25	ug / L	1	.5	0.50	0.20	0.25
Aroclor-1232	U	0.25	ug / L	1	.5	0.50	0.089	0.25
Aroclor-1242	U	0.25	ug / L	1	.5	0.50	0.18	0.25
Aroclor-1248	U	0.25	ug / L	1	.5	0.50	0.20	0.25
Aroclor-1254	U	0.25	ug / L	1	.5	0.50	0.082	0.25
Aroclor-1260	U	0.25	ug / L	1	.5	0.50	0.17	0.25
Aroclor-1262	U	0.25	ug / L	1	.5	0.50	0.066	0.25
Aroclor-1268	U	0.25	ug / L	1	.5	0.50	0.072	0.25
Total PCBs	U	2.2	ug / L	1	4.5	4.5	0.066	
Tetrachloro-M-Xylene		74.9	$\%$			2.2		
Decachlorobiphenyl	70.4	$\%$						

Form 8
 GC Analytical Sequence

Lab Name : Katahdin Analytical Services
Project : NAVSTA Newport, Gould Island CTO-WE2
Instrument ID : GC07

SDG: TK1739
Column ID : A

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	
Initial Calibration	WG219936-1	12/13/17	13:14	8.291	21.43	
Initial Calibration	WG219936-2	12/13/17	13:42	8.29	21.44	
Initial Calibration	WG219936-3	12/13/17	14:10	8.287	21.44	
Initial Calibration	WG219936-4	12/13/17	14:39	8.291	21.44	
Initial Calibration	WG219936-5	12/13/17	15:07	8.29	21.44	
Initial Calibration	WG219936-6	12/13/17	15:35	8.286	21.44	
Independent Source	WG219936-7	12/13/17	16:03			
Independent Source	WG219936-8	12/13/17	16:31			
Initial Calibration	WG219936-9	12/13/17	16:59			
Initial Calibration	WG219936-10	12/13/17	17:27			
Initial Calibration	WG219936-11	12/13/17	17:55			
Initial Calibration	WG219936-12	12/13/17	18:23			
Initial Calibration	WG219936-13	12/13/17	18:51			
Initial Calibration	WG219936-14	12/13/17	19:19			
Independent Source	WG219936-15	12/13/17	19:47			
Initial Calibration	WG219936-16	12/13/17	20:16			
Initial Calibration	WG219936-23	12/13/17	23:32			
Initial Calibration	WG219936-24	12/14/17	00:00			
Initial Calibration	WG219936-25	12/14/17	00:29			
Initial Calibration	WG219936-26	12/14/17	00:57			
Initial Calibration	WG219936-27	12/14/17	01:25			
Continuing Calibrati	WG220310-1	12/18/17	16:06	8.272	21.40	
Continuing Calibrati	WG220310-2	12/18/17	16:34			
Method Blank Sample	WG220255-1	12/18/17	20:02	8.274	21.40	
Laboratory Control S	WG220255-2	12/18/17	20:30	8.273	21.4	
Laboratory Control S	WG220255-3	12/18/17	20:58	8.276	21.40	
G32-MW303B-121217	TK1739-2	12/19/17	01:39	8.296	21.42	
Continuing Calibrati	WG220310-3	12/19/17	02:07	8.297	21.42	
Continuing Calibrati	WG220310-4	12/19/17	02:35			
G32-MW306SR-121217	TK1739-6	12/19/17	03:31	8.3	21.43	
G44S-MW207-121217	TK1739-8	12/19/17	03:59	8.303	21.43	
GI-MW403-121217	TK1739-10	12/19/17	04:28	8.303	21.43	
GI-MW401-121217	TK1739-12	12/19/17	04:56	8.304	21.43	
Continuing Calibrati	WG220310-5	12/19/17	08:12	8.305	21.43	

Form 8
 GC Analytical Sequence

Lab Name : Katahdin Analytical Services
Project : NAVSTA Newport, Gould Island CTO-WE2
Instrument ID : GC07

SDG: TK1739
Column ID : B

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	
Initial Calibration	WG219936-1	12/13/17	13:14	8.213	21.52	
Initial Calibration	WG219936-2	12/13/17	13:42	8.222	21.52	
Initial Calibration	WG219936-3	12/13/17	14:10	8.219	21.52	
Initial Calibration	WG219936-4	12/13/17	14:39	8.222	21.52	
Initial Calibration	WG219936-5	12/13/17	15:07	8.221	21.52	
Initial Calibration	WG219936-6	12/13/17	15:35	8.22	21.52	
Independent Source	WG219936-7	12/13/17	16:03			
Independent Source	WG219936-8	12/13/17	16:31			
Initial Calibration	WG219936-9	12/13/17	16:59			
Initial Calibration	WG219936-10	12/13/17	17:27			
Initial Calibration	WG219936-11	12/13/17	17:55			
Initial Calibration	WG219936-12	12/13/17	18:23			
Initial Calibration	WG219936-13	12/13/17	18:51			
Initial Calibration	WG219936-14	12/13/17	19:19			
Independent Source	WG219936-15	12/13/17	19:47			
Initial Calibration	WG219936-16	12/13/17	20:16			
Initial Calibration	WG219936-23	12/13/17	23:32			
Initial Calibration	WG219936-24	12/14/17	00:00			
Initial Calibration	WG219936-25	12/14/17	00:29			
Initial Calibration	WG219936-26	12/14/17	00:57			
Initial Calibration	WG219936-27	12/14/17	01:25			
Continuing Calibrati	WG220310-1	12/18/17	16:06	8.201	21.47	
Continuing Calibrati	WG220310-2	12/18/17	16:34			
Method Blank Sample	WG220255-1	12/18/17	20:02	8.173	21.46	
Laboratory Control S	WG220255-2	12/18/17	20:30	8.197	21.47	
Laboratory Control S	WG220255-3	12/18/17	20:58	8.203	21.47	
G32-MW303B-121217	TK1739-2	12/19/17	01:39	8.222	21.49	
Continuing Calibrati	WG220310-3	12/19/17	02:07	8.223	21.49	
Continuing Calibrati	WG220310-4	12/19/17	02:35			
G32-MW306SR-121217	TK1739-6	12/19/17	03:31	8.226	21.50	
G44S-MW207-121217	TK1739-8	12/19/17	03:59	8.229	21.50	
GI-MW403-121217	TK1739-10	12/19/17	04:28	8.229	21.50	
GI-MW401-121217	TK1739-12	12/19/17	04:56	8.23	21.50	
Continuing Calibrati	WG220310-5	12/19/17	08:12	8.229	21.50	

Form 8
 GC Analytical Sequence

Lab Name : Katahdin Analytical Services
Project : NAVSTA Newport, Gould Island CTO-WE2
Instrument ID : GC08

SDG: TK1739
Column ID : A

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	
Initial Calibration	WG217283-1	11/07/17	23:50	3.416	10.97	
Initial Calibration	WG217283-2	11/08/17	00:10	3.42	10.98	
Initial Calibration	WG217283-3	11/08/17	00:30	3.418	10.97	
Initial Calibration	WG217283-4	11/08/17	00:51	3.421	10.97	
Initial Calibration	WG217283-5	11/08/17	01:11	3.418	10.97	
Initial Calibration	WG217283-6	11/08/17	01:31	3.419	10.97	
Independent Source	WG217283-7	11/08/17	01:52			
Independent Source	WG217283-8	11/08/17	02:12			
Initial Calibration	WG217283-9	11/08/17	02:32			
Initial Calibration	WG217283-10	11/08/17	02:52			
Initial Calibration	WG217283-11	11/08/17	03:13			
Initial Calibration	WG217283-12	11/08/17	03:33			
Initial Calibration	WG217283-13	11/08/17	03:53			
Initial Calibration	WG217283-14	11/08/17	04:14			
Independent Source	WG217283-15	11/08/17	04:34			
Initial Calibration	WG217283-16	11/08/17	04:54			
Initial Calibration	WG217283-23	11/08/17	07:16			
Initial Calibration	WG217283-24	11/08/17	07:36			
Initial Calibration	WG217283-25	11/08/17	07:57			
Initial Calibration	WG217283-26	11/08/17	08:17			
Initial Calibration	WG217283-27	11/08/17	08:37			
Continuing Calibrati	WG220715-1	12/24/17	20:58	3.3	10.82	
GI-MW402-121217	TK1739-4RE	12/25/17	02:25	3.302	10.82	
Continuing Calibrati	WG220715-5	12/25/17	03:05	3.302	10.83	
Continuing Calibrati	WG220715-6	12/25/17	03:25			
Method Blank Sample	WG220411-1	12/25/17	04:26	3.308	10.83	
Laboratory Control S	WG220411-2	12/25/17	04:46	3.306	10.82	
Laboratory Control S	WG220411-3	12/25/17	05:07	3.309	10.83	
Continuing Calibrati	WG220715-9	12/25/17	08:48	3.294	10.82	
Continuing Calibrati	WG220715-10	12/25/17	09:09			

Form 8
 GC Analytical Sequence

Lab Name : Katahdin Analytical Services
Project : NAVSTA Newport, Gould Island CTO-WE2
Instrument ID : GC08

SDG: TK1739
Column ID : B

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	
Initial Calibration	WG217283-1	11/07/17	23:50	4.048	12.91	
Initial Calibration	WG217283-2	11/08/17	00:10	4.05	12.91	
Initial Calibration	WG217283-3	11/08/17	00:30	4.049	12.91	
Initial Calibration	WG217283-4	11/08/17	00:51	4.051	12.91	
Initial Calibration	WG217283-5	11/08/17	01:11	4.049	12.91	
Initial Calibration	WG217283-6	11/08/17	01:31	4.048	12.91	
Independent Source	WG217283-7	11/08/17	01:52			
Independent Source	WG217283-8	11/08/17	02:12			
Initial Calibration	WG217283-9	11/08/17	02:32			
Initial Calibration	WG217283-10	11/08/17	02:52			
Initial Calibration	WG217283-11	11/08/17	03:13			
Initial Calibration	WG217283-12	11/08/17	03:33			
Initial Calibration	WG217283-13	11/08/17	03:53			
Initial Calibration	WG217283-14	11/08/17	04:14			
Independent Source	WG217283-15	11/08/17	04:34			
Initial Calibration	WG217283-16	11/08/17	04:54			
Initial Calibration	WG217283-23	11/08/17	07:16			
Initial Calibration	WG217283-24	11/08/17	07:36			
Initial Calibration	WG217283-25	11/08/17	07:57			
Initial Calibration	WG217283-26	11/08/17	08:17			
Initial Calibration	WG217283-27	11/08/17	08:37			
Continuing Calibrati	WG220715-1	12/24/17	20:58	3.929	12.74	
GI-MW402-121217	TK1739-4RE	12/25/17	02:25	3.933	12.74	
Continuing Calibrati	WG220715-5	12/25/17	03:05	3.931	12.74	
Continuing Calibrati	WG220715-6	12/25/17	03:25			
Method Blank Sample	WG220411-1	12/25/17	04:26	3.935	12.75	
Laboratory Control S	WG220411-2	12/25/17	04:46	3.935	12.75	
Laboratory Control S	WG220411-3	12/25/17	05:06	3.937	12.75	
Continuing Calibrati	WG220715-9	12/25/17	08:48	3.923	12.74	
Continuing Calibrati	WG220715-10	12/25/17	09:09			

METALS DATA

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Katahdin Analytical Services

SDG Name: TK1739
Client Field ID
G32-MW303B-121217
G32-MW303B-121217
G32-MW306SR-121217
G32-MW306SR-121217
G44S-MW207-121217
G44S-MW207-121217
GI-MW401-121217
GI-MW401-121217
GI-MW402-121217
GI-MW402-121217
GI-MW403-121217
GI-MW403-121217

SOW No. SW846

Lab Sample ID
TK1739-002
TK1739-003
TK1739-006
TK1739-007
TK1739-008
TK1739-009
TK1739-012
TK1739-013
TK1739-004
TK1739-005
TK1739-010
TK1739-011

Were ICP interelement corrections applied ?	Yes
Were ICP background corrections applied ?	Yes
If yes - were raw data generated before application of background corrections?	No

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted has been authorized by the Laboratory Manager or the Manager's designed, as verified by the following signature.

Signature

Name: \qquad
Title:

Lab Name: Katahdin Analytical Services
Matrix: WATER

Sample ID: PBWKL15IMW1
SDG Name: TK1739

QC Batch ID: KL15IMW1

Concentration Units: ug/L

Analyte	RESULT	C
ARSENIC	4.0	U
CADMIUM	0.20	U
LEAD	0.50	U
MANGANESE	1.0	U

ICP INTERFERENCE CHECK SAMPLE
Lab Name: Katahdin Analytical Services SDG Name: TK1739
Concentration Units: ug/L

SAMPLE:				SAMPLE:	SAB		
File: JKL21A		21, 2017	16:43	File: JKL21A		21, 2017	16:47
Analyte	TRUE	FOUND	\% R	Analyte	TRUE	FOUND	\% R
ALUMINUM	100000	102600	102.6	ALUMINUM	100000	101200	101.2
ARSENIC	0	0		ARSENIC	20	22	110.0
CADMIUM	0	0		CADMIUM	20	20	100.0
CALCIUM	100000	104600	104.6	CALCIUM	100000	101300	101.3
IRON	100000	101700	101.7	IRON	100000	100400	100.4
LEAD	0	0		LEAD	20	22	110.0
MAGNESIUM	100000	104700	104.7	MAGNESIUM	100000	102000	102.0
MANGANESE	0	0		MANGANESE	20	21	105.0
MOLYBDENUM	2000	2054	102.7	MOLYBDENUM	2000	2069	103.5
POTASSIUM	100000	105500	105.5	POTASSIUM	100000	102600	102.6
SODIUM	100000	107900	107.9	SODIUM	100000	104400	104.4

Lab Name: Katahdin Analytical Services
Matrix: WATER

Sample ID: LCSWKL15IMW1
SDG Name: TK1739

QC Batch ID: KL15IMW1

Concentration Units: ug/L

Analyte	TRUE	FOUND	\% R	LIMITS (\%)	
ARSENIC	100	101	101.2	84	116
CADMIUM	250	265	105.9	87	115
LEAD	100	102	102.4	88	115
MANGANESE	500	500	100.0	87	115

Lab Name: Katahdin Analytical Services
Instrument Name: AGILENT 7500 ICP-MS
Concentration Units: ug/L

Analyte	PQL/LOQ	IDL	M
ALUMINUM	20	3.0	MS
ARSENIC	1.0	0.11	MS
CADMIUM	0.20	0.011	MS
CALCIUM	20	8.7	MS
IRON	20	3.1	MS
LEAD	0.20	0.034	MS
MAGNESIUM	20	3.4	MS
MANGANESE	0.40	0.13	MS
MOLYBDENUM	1.0	0.041	MS
POTASSIUM	200	6.6	MS
SODIUM	200	5.5	MS

Lab Name: Katahdin Analytical Services
Instrument Name: AGILENT 7500 ICP-MS

Instrument Code: J
Date: 1/25/2011

Analyte	LOD	Units	M	EPA Prep./Anal. Method
ARSENIC	0.80	ug / L	MS	SW846 3010A / SW846 6020A
CADMIUM	0.040	ug / L	MS	SW846 3010A / SW846 6020A
LEAD	0.10	ug/L	MS	SW846 3010A / SW846 6020A
MANGANESE	0.20	ug/L	MS	SW846 3010A / SW846 6020A

METHOD DETECTION LIMITS

Lab Name: Katahdin Analytical Services
Instrument Name: AGILENT 7500 ICP-MS

Instrument Code: J
Date: 1/25/2011

Analyte	MDL	Units	M	EPA Prep./Anal. Method
ARSENIC	0.45	ug / L	MS	SW846 3010A / SW846 6020A
CADMIUM	0.0059	ug / L	MS	SW846 3010A / SW846 6020A
LEAD	0.015	ug / L	MS	SW846 3010A / SW846 6020A
MANGANESE	0.070	ug/L	MS	SW846 3010A / SW846 6020A

PREPARATION LOG

Lab Name: Katahdin Analytical Services		QC Batch ID: KL15IMW1		
Matrix: WATER		SDG Name: TK1739		
Method: MS		Prep Date:	12/15/2017	
Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID
LCSWKL15IMW1	LCSWKL15IMW1	0.05	0.05	
PBWKL15IMW1	PBWKL15IMW1	0.05	0.05	
G32-MW303B-121217	TK1739-002	0.05	0.05	D
G32-MW303B-121217	TK1739-003	0.05	0.05	A
GI-MW402-121217	TK1739-004	0.05	0.05	D
GI-MW402-121217	TK1739-005	0.05	0.05	A
G32-MW306SR-121217	TK1739-006	0.05	0.05	D
G32-MW306SR-121217	TK1739-007	0.05	0.05	A
G44S-MW207-121217	TK1739-008	0.05	0.05	D
G44S-MW207-121217	TK1739-009	0.05	0.05	A
GI-MW403-121217	TK1739-010	0.05	0.05	D
GI-MW403-121217	TK1739-011	0.05	0.05	A
GI-MW401-121217	TK1739-012	0.05	0.05	D
GI-MW401-121217	TK1739-013	0.05	0.05	A

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services
Instrument ID: AGILENT 7500 ICP-MS
Date: 12/21/2017

SDG Name: TK1739
File Name: JKL21A
Method: MS

Lab Sample ID 6020 TUNE	Client ID	$\frac{\text { D.F. }}{1}$	$\begin{gathered} \text { Time } \\ \hline 15: 28 \end{gathered}$	Elements							
200.8 TUNE		1	15:31								
Cal Blank		1	16:21	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
Cal Std 6		1	16:25	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ICV		1	16:28	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
ICB		1	16:32	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
PQL		1	16:35	Al	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		1	16:39								
ICSA		1	16:43	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ICSAB		1	16:47	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		1	16:50								
ZZZZZZ		1	16:54								
ZZZZZZ		1	16:57								
ZZZZZZ		1	17:01								
ZZZZZZ		1	17:05								
CCV		1	17:09	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	17:13	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		1	17:16								
ZZZZZZ		1	17:20								
ZZZZZZ		1	17:24								
ZZZZZZ		1	17:27								
ZZZZZZ		1	17:31								
ZZZZZZ		5	17:35								
ZZZZZZ		5	17:39								
ZZZZZZ		5	17:43								
ZZZZZZ		5	17:46								
ZZZZZZ		5	17:50								

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services
Instrument ID: AGILENT 7500 ICP-MS
Date: $12 / 21 / 2017$

SDG Name: TK1739
File Name: JKL21A
Method: MS

Lab Sample ID	Client ID	D.F.	Time					Elemen			
CCV		1	17:54	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	17:58	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		5	18:02								
ZZZZZZ		1	18:06								
ZZZZZZ		5	18:10								
ZZZZZZ		1	18:13								
ZZZZZZ		1	18:17								
ZZZZZZ		1	18:21								
ZZZZZZ		1	18:25								
ZZZZZZ		1	18:29								
ZZZZZZ		1	18:33								
ZZZZZZ		1	18:37								
CCV		1	18:41	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	18:45	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		1	18:49								
ZZZZZZ		1	18:53								
ZZZZZZ		1	18:57								
ZZZZZZ		1	19:01								
ZZZZZZ		1	19:05								
ZZZZZZ		1	19:09								
ZZZZZZ		1	19:13								
ZZZZZZ		5	19:17								
PBWKL15IMW1		5	19:20		As	Cd	Pb	Mn			
LCSWKL15IMW1		5	19:24		As	Cd	Pb	Mn			
CCV		1	19:28	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	19:32	Al	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		5	19:36								

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services
Instrument ID: AGILENT 7500 ICP-MS
Date: $\quad 12 / 21 / 2017$

SDG Name: TK1739
File Name: JKL21A
Method: MS

Lab Sample ID	Client ID	D.F.	Time	Elements							
ZZZZZZ		25	19:40								
ZZZZZZ		5	19:44								
ZZZZZZ		5	19:48								
ZZZZZZ		5	19:52								
ZZZZZZ		5	19:56								
ZZZZZZ		5	20:00								
ZZZZZZ		5	20:04								
ZZZZZZ		5	20:09								
ZZZZZZ		1	20:13								
CCV		1	20:17	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	20:21	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		5	20:25								
ZZZZZZ		5	20:29								
ZZZZZZ		5	20:33								
TK1739-002	G32-MW303B-121217	5	20:37		As	Cd	Pb	Mn			
TK1739-003	G32-MW303B-121217	5	20:41		As	Cd	Pb	Mn			
TK1739-004	GI-MW402-121217	5	20:45		As	Cd	Pb	Mn			
TK1739-005	GI-MW402-121217	5	20:49		As	Cd	Pb	Mn			
TK1739-006	G32-MW306SR-121217	5	20:53		As	Cd	Pb	Mn			
TK1739-007	G32-MW306SR-121217	5	20:57		As	Cd	Pb	Mn			
ZZZZZZ		1	21:01								
CCV		1	21:05	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	21:09	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
TK1739-008	G44S-MW207-121217	5	21:14		As	Cd	Pb	Mn			
TK1739-009	G44S-MW207-121217	5	21:18		As	Cd	Pb	Mn			
TK1739-010	GI-MW403-121217	5	21:22		As	Cd	Pb	Mn			
TK1739-011	GI-MW403-121217	5	21:26		As	Cd	Pb	Mn			

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\084SMPL.D $\backslash 084$ SMPL.D\#
Dec 212017 08:37 pm
1PTCAL16.M
MD
TK1739-002
2408
C: \ICPCHEM $\backslash 1$ \METHODS $\backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.1597	0.0319	ppb	18.30	100.	
11 B	9.04	1.808	ppb	12.93	1000.	
23 Na	30,410.	6,082.	ppb	2.98	200000.	
25 Mg	6,885.	1,377.	ppb	3.01	200000.	
27 Al	565.	113.	ppb	2.28	200000.	
28 Si	6,635.	1,327.	ppb	3.31	\#VALUE!	
29 Si	7,545.	1,509.	ppb	2.96	10000.	
39 K	2,325.5	465.1	ppb	2.32	200000.	
43 Ca	32,000.	6,400.	ppb	2.57	\#VALUE!	
44 Ca	32,365.	6,473.	ppb	3.33	200000.	
51 V	0.4322	0.0864	ppb	47.91	1000.	
52 Cr	1.6055	0.3211	ppb	10.20	2000.	
53 Cr	25.965	5.193	ppb	8.94	\#VALUE!	
55 Mn	1,126.	225.2	ppb	1.28	2000.	
56 Fe	28,795.	5,759.	ppb	2.32	\#VALUE!	
57 Fe	29,165.	5,833.	ppb	2.93	100000.	
59 Co	50.1	10.02	ppb	3.86	1000.	
60 Ni	69.3	13.86	ppb	3.13	1000.	
63 Cu	1.4295	0.2859	ppb	14.09	\#VALUE!	
65 Cu	3.36	0.672	ppb	4.40	2000.	
66 Zn	97.2	19.44	ppb	1.75	2000.	
68 Zn	93.8	18.76	ppb	2.97	\#VALUE!	
75 As	14.155	2.831	ppb	7.57	1000.	
82 Se	1.9375	0.3875	ppb	42.04	1000.	
88 Sr	156.3	31.26	ppb	2.56	2000.	
98 Mo	0.646	0.1292	ppb	2.23	1000.	
107 Ag	0.2028	0.0406	ppb	11.52	100.	
109 Ag	0.2178	0.0436	ppb	11.32	\#VALUE!	
111 Cd	0.2384	0.0477	ppb	24.69	\#VALUE!	
114 Cd	0.2434	0.0487	ppb	9.28	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	0.9165	0.1833	ppb	9.37	1000.	
120 Sn	1.056	0.2112	ppb	6.33	\#VALUE!	
121 Sb	0.1084	0.0217	ppb	28.45	\#VALUE!	
123 Sb	0.1088	0.0218	ppb	8.08	1000.	
135 Ba	60.85	12.17	ppb	1.45	2000.	
137 Ba	60.5	12.1	ppb	2.19	\#VALUE!	
182 W	8.89	1.778	ppb	3.16	1000.	
203 Tl	0.0139	0.0028	ppb	164.68	1000.	
205 Tl	0.0237	0.0047	ppb	8.07	\#VALUE!	
208 Pb	1.1015	0.2203	ppb	7.41	2000.	
232 Th	0.2653	0.0531	ppb	7.66	1000.	
238 U	0.0633	0.0127	ppb	32.46	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 1952665.60 | 4.38 | 2100054.30 | 93.0 | $69.5-120$ | |
| 45 | Sc | 2131331.50 | 1.24 | 2287457.00 | 93.2 | $69.5-120$ |
| 89 Y | 3459535.30 | 2.14 | 3522152.00 | 98.2 | $69.5-120$ | |
| 159 Tb | 4757124.50 | 1.64 | 4597738.00 | 103.5 | $69.5-120$ | |
| 209 Bi | 2689845.30 | 1.46 | 2622714.30 | 102.6 | $69.5-120$ | |

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes: ISTD:

```
Pass
```

Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\085SMPL.D $\backslash 085$ SMPL.D\#
Dec 212017 08:41 pm
1PTCAL16.M
MD
TK1739-003
2409
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00 Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0674	0.0135	ppb	72.94	100.	
11 B	9.22	1.844	ppb	12.69	1000.	
23 Na	28,545.	5,709.	ppb	1.12	200000.	
25 Mg	6,305.	1,261.	ppb	1.26	200000.	
27 Al	20.14	4.028	ppb	10.40	200000.	
28 Si	7,500.	1,500.	ppb	1.41	\#VALUE!	
29 Si	7,105.	1,421.	ppb	4.59	10000.	
39 K	2,226.	445.2	ppb	1.78	200000.	
43 Ca	31,210.	6,242.	ppb	0.93	\#VALUE!	
44 Ca	32,045.	6,409.	ppb	0.79	200000.	
51 V	0.0096	0.0019	ppb	6716.80	1000.	
52 Cr	0.3869	0.0774	ppb	65.34	2000.	
53 Cr	13.515	2.703	ppb	15.05	\#VALUE!	
55 Mn	1,080.	216.	ppb	0.79	2000.	
56 Fe	22,140.	4,428.	ppb	0.93	\#VALUE!	
57 Fe	21,840.	4,368.	ppb	1.13	100000.	
59 Co	43.145	8.629	ppb	1.53	1000.	
60 Ni	56.8	11.36	ppb	0.75	1000.	
63 Cu	-0.8155	-0.1631	ppb	12.21	\#VALUE!	
65 Cu	0.726	0.1452	ppb	8.00	2000.	
66 Zn	54.05	10.81	ppb	1.93	2000.	
68 Zn	52.1	10.42	ppb	5.88	\#VALUE!	
75 As	6.535	1.307	ppb	11.63	1000.	
82 Se	0.84	0.168	ppb	28.65	1000.	
88 Sr	154.65	30.93	ppb	0.46	2000.	
98 Mo	0.3868	0.0774	ppb	4.60	1000.	
107 Ag	0.041	0.0082	ppb	107.39	100.	
109 Ag	0.0063	0.0013	ppb	359.57	\#VALUE!	
111 Cd	-0.2633	-0.0527	ppb	50.68	\#VALUE!	
114 Cd	0.0113	0.0023	ppb	301.99	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	0.9895	0.1979	ppb	7.11	1000.	
120 Sn	1.084	0.2168	ppb	11.08	\#VALUE!	
121 Sb	0.0829	0.0166	ppb	32.15	\#VALUE!	
123 Sb	0.1015	0.0203	ppb	33.21	1000.	
135 Ba	55.95	11.19	ppb	2.96	2000.	
137 Ba	55.15	11.03	ppb	1.40	\#VALUE!	
182 W	0.6205	0.1241	ppb	8.56	1000.	
203 Tl	0.0181	0.0036	ppb	18.03	1000.	
205 Tl	0.0273	0.0055	ppb	28.28	\#VALUE!	
208 Pb	0.0256	0.0051	ppb	130.14	2000.	
232 Th	0.0216	0.0043	ppb	17.11	1000.	
238 U	0.0077	0.0015	ppb	32.20	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	1648847.00	1.11	2100054.30	78.5	$69.5-120$	
45	Sc	1894940.00	1.49	2287457.00	82.8	$69.5-120$	
89 Y	3215179.80	1.50	3522152.00	91.3	$69.5-120$		
159 Tb	4608221.00	1.12	4597738.00	100.2	$69.5-120$		
209 Bi	2653032.80	1.63	2622714.30	101.2	$69.5-120$		

ISTD Ref File :

0 :Element Failures
0 :ISTD Failures
Data Results:
Analytes: ISTD:

0 :Max. Number of Failures Allowed
0 :Max. Number of ISTD Failures Allowed
ISTD: Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\086SMPL.D $\backslash 086$ SMPL.D\#
Dec 212017 08:45 pm
1PTCAL16.M
MD
TK1739-004
2410
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0392	0.0078	ppb	66.09	100.	
11 B	38.165	7.633	ppb	8.28	1000.	
23 Na	37,420.	7,484.	ppb	2.25	200000.	
25 Mg	2,736.	547.2	ppb	2.24	200000.	
27 Al	474.4	94.88	ppb	1.44	200000.	
28 Si	7,890.	1,578.	ppb	15.64	\#VALUE!	
29 Si	8,520.	1,704.	ppb	12.31	10000.	
39 K	15,800.	3,160.	ppb	2.55	200000.	
43 Ca	10,775.	2,155.	ppb	5.25	\#VALUE!	
44 Ca	10,645.	2,129.	ppb	1.74	200000.	
51 V	1.1035	0.2207	ppb	63.89	1000.	
52 Cr	6.105	1.221	ppb	4.11	2000.	
53 Cr	28.36	5.672	ppb	6.62	\#VALUE!	
55 Mn	132.65	26.53	ppb	1.26	2000.	
56 Fe	668.	133.6	ppb	5.61	\#VALUE!	
57 Fe	689.5	137.9	ppb	3.25	100000.	
59 Co	0.996	0.1992	ppb	5.78	1000.	
60 Ni	2.241	0.4482	ppb	10.81	1000.	
63 Cu	1.51	0.302	ppb	4.49	\#VALUE!	
65 Cu	2.924	0.5848	ppb	7.84	2000.	
66 Zn	2.7245	0.5449	ppb	6.11	2000.	
68 Zn	0.1435	0.0287	ppb	937.96	\#VALUE!	
75 As	0.8835	0.1767	ppb	98.42	1000.	
82 Se	0.3631	0.0726	ppb	104.23	1000.	
88 Sr	94.95	18.99	ppb	1.53	2000.	
98 Mo	3.918	0.7836	ppb	3.51	1000.	
107 Ag	0.0248	0.005	ppb	69.84	100.	
109 Ag	0.0045	0.0009	ppb	697.17	\#VALUE!	
111 Cd	-0.0414	-0.0083	ppb	349.38	\#VALUE!	
114 Cd	0.0917	0.0183	ppb	13.67	1000.	
115 In					\#VALUE!	
118 Sn	1.024	0.2048	ppb	10.85	1000.	
120 Sn	1.2425	0.2485	ppb	6.19	\#VALUE!	
121 Sb	0.2121	0.0424	ppb	33.29	\#VALUE!	
123 Sb	0.2379	0.0476	ppb	27.13	1000.	
135 Ba	22.29	4.458	ppb	1.80	2000.	
137 Ba	22.445	4.489	ppb	3.30	\#VALUE!	
182 W	0.6215	0.1243	ppb	4.50	1000.	
203 Tl	0.0207	0.0041	ppb	62.11	1000.	
205 Tl	0.06	0.012	ppb	18.63	\#VALUE!	
208 Pb	0.508	0.1016	ppb	7.86	2000.	
232 Th	0.4394	0.0879	ppb	6.33	1000.	
238 U	0.2479	0.0496	ppb	10.92	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	1828852.60	7.71	2100054.30	87.1	$69.5-120$	
45	Sc	2017054.40	5.80	2287457.00	88.2	$69.5-120$	
89 Y	3329401.80	3.79	3522152.00	94.5	$69.5-120$		
159 Tb	4572000.50	2.12	4597738.00	99.4	$69.5-120$		
209 Bi	2623551.00	1.37	2622714.30	100.0	$69.5-120$		

ISTD Ref File :

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes:
ISTD:

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\087SMPL.D $\backslash 087$ SMPL.D\#
Dec 212017 08:49 pm
1PTCAL16.M
MD
TK1739-005
2411
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0107	0.0021	ppb	214.55	100.	
11 B	40.87	8.174	ppb	5.05	1000.	
23 Na	36,065.	7,213.	ppb	1.67	200000.	
25 Mg	2,646.5	529.3	ppb	1.76	200000.	
27 Al	52.9	10.58	ppb	4.16	200000.	
28 Si	8,630.	1,726.	ppb	5.85	\#VALUE!	
29 Si	8,650.	1,730.	ppb	6.12	10000.	
39 K	15,340.	3,068.	ppb	1.51	200000.	
43 Ca	10,810.	2,162.	ppb	2.71	\#VALUE!	
44 Ca	10,780.	2,156.	ppb	1.90	200000.	
51 V	0.9975	0.1995	ppb	15.05	1000.	
52 Cr	4.814	0.9628	ppb	4.53	2000.	
53 Cr	25.795	5.159	ppb	6.89	\#VALUE!	
55 Mn	129.1	25.82	ppb	1.32	2000.	
56 Fe	72.	14.4	ppb	14.79	\#VALUE!	
57 Fe	76.35	15.27	ppb	17.58	100000.	
59 Co	0.7495	0.1499	ppb	3.10	1000.	
60 Ni	1.564	0.3128	ppb	6.22	1000.	
63 Cu	0.5685	0.1137	ppb	23.32	\#VALUE!	
65 Cu	2.3785	0.4757	ppb	8.97	2000.	
66 Zn	1.786	0.3572	ppb	8.47	2000.	
68 Zn	-0.868	-0.1736	ppb	92.68	\#VALUE!	
75 As	1.8205	0.3641	ppb	84.02	1000.	
82 Se	1.841	0.3682	ppb	47.77	1000.	
88 Sr	95.6	19.12	ppb	0.86	2000.	
98 Mo	3.9255	0.7851	ppb	0.40	1000.	
107 Ag	-0.0132	-0.0026	ppb	338.21	100.	
109 Ag	0.0351	0.007	ppb	68.85	\#VALUE!	
111 Cd	-0.1428	-0.0286	ppb	112.75	\#VALUE!	
114 Cd	0.0721	0.0144	ppb	13.93	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.4025	0.2805	ppb	12.90	1000.	
120 Sn	1.338	0.2676	ppb	14.11	\#VALUE!	
121 Sb	0.1781	0.0356	ppb	5.25	\#VALUE!	
123 Sb	0.1754	0.0351	ppb	20.36	1000.	
135 Ba	19.745	3.949	ppb	3.95	2000.	
137 Ba	20.395	4.079	ppb	1.59	\#VALUE!	
182 W	0.585	0.117	ppb	6.02	1000.	
203 Tl	0.0144	0.0029	ppb	67.72	1000.	
205 Tl	0.0362	0.0072	ppb	44.11	\#VALUE!	
208 Pb	0.1613	0.0323	ppb	14.98	2000.	
232 Th	0.0389	0.0078	ppb	49.64	1000.	
238 U	0.1654	0.0331	ppb	15.22	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	1650925.30	4.80	2100054.30	78.6	$69.5-120$	
45	SC	1879915.60	3.16	2287457.00	82.2	$69.5-120$	
89 Y	3179905.30	1.94	3522152.00	90.3	$69.5-120$		
159 Tb	4509338.50	2.42	4597738.00	98.1	$69.5-120$		
209 Bi	2617419.30	1.65	2622714.30	99.8	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes: ISTD: Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\088SMPL.D $\backslash 088$ SMPL.D\#
Dec 212017 08:53 pm
1PTCAL16.M
MD
TK1739-006
2412
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0213	0.0043	ppb	79.17	100.	
11 B	1,775.5	355.1	ppb	2.88	1000.	
23 Na			ppb		200000.	>LDR
25 Mg	507,000.	101,400.	ppb	1.03	200000.	
27 Al	89.8	17.96	ppb	3.21	200000.	
28 Si	4,707.	941.4	ppb	6.81	\#VALUE!	
29 Si	4,295.5	859.1	ppb	2.21	10000.	
39 K	205,000.	41,000.	ppb	0.35	200000.	
43 Ca	434,250.	86,850.	ppb	0.83	\#VALUE!	
44 Ca	408,750.	81,750.	ppb	0.62	200000.	
51 V	0.0906	0.0181	ppb	150.41	1000.	
52 Cr	1.3475	0.2695	ppb	8.56	2000.	
53 Cr	41.865	8.373	ppb	3.15	\#VALUE!	
55 Mn	1,043.5	208.7	ppb	0.55	2000.	
56 Fe	844.5	168.9	ppb	2.13	\#VALUE!	
57 Fe	1,212.	242.4	ppb	3.86	100000.	
59 Co	2.763	0.5526	ppb	6.16	1000.	
60 Ni	2.5255	0.5051	ppb	11.41	1000.	
63 Cu	180.	36.	ppb	0.84	\#VALUE!	
65 Cu	3.0285	0.6057	ppb	7.39	2000.	
66 Zn	8.065	1.613	ppb	1.85	2000.	
68 Zn	11.165	2.233	ppb	19.09	\#VALUE!	
75 As	3.7665	0.7533	ppb	6.93	1000.	
82 Se	-0.7515	-0.1503	ppb	83.63	1000.	
88 Sr	4,446.	889.2	ppb	0.20	2000.	
98 Mo	16.54	3.308	ppb	1.13	1000.	
107 Ag	0.0003	0.0001	ppb	4319.80	100.	
109 Ag	-0.033	-0.0066	ppb	95.12	\#VALUE!	
111 Cd	0.2201	0.044	ppb	80.83	\#VALUE!	
114 Cd	0.0304	0.0061	ppb	167.93	1000.	
115 In	-	--------	---		\#VALUE!	
118 Sn	1.2895	0.2579	ppb	4.54	1000.	
120 Sn	1.3195	0.2639	ppb	4.08	\#VALUE!	
121 Sb	0.4809	0.0962	ppb	17.01	\#VALUE!	
123 Sb	0.5165	0.1033	ppb	9.05	1000.	
135 Ba	165.65	33.13	ppb	1.12	2000.	
137 Ba	161.65	32.33	ppb	0.21	\#VALUE!	
182 W	0.974	0.1948	ppb	4.66	1000.	
203 Tl	0.0079	0.0016	ppb	422.83	1000.	
205 Tl	0.0192	0.0038	ppb	57.55	\#VALUE!	
208 Pb	0.1387	0.0277	ppb	41.72	2000.	
232 Th	0.0524	0.0105	ppb	8.77	1000.	
238 U	1.366	0.2732	ppb	3.33	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	1785513.30	1.54	2100054.30	85.0	$69.5-120$	
45	SC	2251509.80	1.55	2287457.00	98.4	$69.5-120$	
89 Y	3404973.00	1.42	3522152.00	96.7	$69.5-120$		
159 Tb	4425493.00	0.80	4597738.00	96.3	$69.5-120$		
209 Bi	2157517.80	0.61	2622714.30	82.3	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

1 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes: ISTD:

```
Fail
```

Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\089SMPL.D $\backslash 089$ SMPL.D\#
Dec 212017 08:57 pm
1PTCAL16.M
MD
TK1739-007
2501
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0407	0.0081	ppb	38.82	100.	
11 B	1,868.	373.6	ppb	3.44	1000.	
23 Na	----		ppb		200000.	>LDR
25 Mg	514,500.	102,900.	ppb	1.27	200000.	
27 Al	75.05	15.01	ppb	0.74	200000.	
28 Si	6,040.	1,208.	ppb	4.03	\#VALUE!	
29 Si	4,656.	931.2	ppb	5.37	10000.	
39 K	208,800.	41,760.	ppb	1.03	200000.	
43 Ca	441,300.	88,260.	ppb	0.89	\#VALUE!	
44 Ca	415,450.	83,090.	ppb	1.19	200000.	
51 V	0.2658	0.0532	ppb	269.05	1000.	
52 Cr	1.421	0.2842	ppb	14.42	2000.	
53 Cr	39.395	7.879	ppb	2.09	\#VALUE!	
55 Mn	1,021.	204.2	ppb	1.83	2000.	
56 Fe	867.5	173.5	ppb	2.37	\#VALUE!	
57 Fe	1,156.5	231.3	ppb	5.94	100000.	
59 Co	2.7805	0.5561	ppb	3.03	1000.	
60 Ni	2.7245	0.5449	ppb	16.82	1000.	
63 Cu	180.3	36.06	ppb	1.04	\#VALUE!	
65 Cu	2.7085	0.5417	ppb	6.42	2000.	
66 Zn	7.81	1.562	ppb	6.09	2000.	
68 Zn	12.69	2.538	ppb	5.55	\#VALUE!	
75 As	5.63	1.126	ppb	39.34	1000.	
82 Se	3.053	0.6106	ppb	14.63	1000.	
88 Sr	4,532.5	906.5	ppb	1.03	2000.	
98 Mo	16.96	3.392	ppb	1.78	1000.	
107 Ag	-0.0065	-0.0013	ppb	725.92	100.	
109 Ag	-0.0047	-0.0009	ppb	296.99	\#VALUE!	
111 Cd	-0.0574	-0.0115	ppb	238.07	\#VALUE!	
114 Cd	-0.0168	-0.0034	ppb	103.63	1000.	
115 In	----	--------			\#VALUE!	
118 Sn	1.5245	0.3049	ppb	11.03	1000.	
120 Sn	1.486	0.2972	ppb	14.87	\#VALUE!	
121 Sb	0.5205	0.1041	ppb	13.53	\#VALUE!	
123 Sb	0.527	0.1054	ppb	4.24	1000.	
135 Ba	166.85	33.37	ppb	1.22	2000.	
137 Ba	165.2	33.04	ppb	0.92	\#VALUE!	
182 W	0.872	0.1744	ppb	9.15	1000.	
203 Tl	0.0045	0.0009	ppb	339.27	1000.	
205 Tl	0.0283	0.0057	ppb	11.39	\#VALUE!	
208 Pb	0.0424	0.0085	ppb	42.54	2000.	
232 Th	0.0463	0.0093	ppb	6.03	1000.	
238 U	1.4205	0.2841	ppb	3.67	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 1745660.50 | 4.79 | 2100054.30 | 83.1 | $69.5-120$ | |
| 45 | Sc | 2245446.50 | 4.63 | 2287457.00 | 98.2 | $69.5-120$ |
| 89 Y | 3417148.30 | 2.88 | 3522152.00 | 97.0 | $69.5-120$ | |
| 159 Tb | 4406614.50 | 1.85 | 4597738.00 | 95.8 | $69.5-120$ | |
| 209 Bi | 2149528.30 | 1.35 | 2622714.30 | 82.0 | $69.5-120$ | |

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

1 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes: ISTD:

```
Fail
```

Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\093SMPL.D $\backslash 093$ SMPL.D\#
Dec 212017 09:14 pm
1PTCAL16.M
MD
TK1739-008
2503
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00 Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0146	0.0029	ppb	131.39	100.	
11 B	389.7	77.94	ppb	6.13	1000.	
23 Na	984,000.	196,800.	ppb	0.82	200000.	
25 Mg	79,900.	15,980.	ppb	1.25	200000.	
27 Al	216.6	43.32	ppb	1.65	200000.	
28 Si	5,610.	1,122.	ppb	3.10	\#VALUE!	
29 Si	5,340.	1,068.	ppb	1.83	10000.	
39 K	47,480.	9,496.	ppb	1.19	200000.	
43 Ca	132,850.	26,570.	ppb	0.95	\#VALUE!	
44 Ca	132,400.	26,480.	ppb	1.33	200000.	
51 V	1.9235	0.3847	ppb	33.72	1000.	
52 Cr	1.5595	0.3119	ppb	18.40	2000.	
53 Cr	41.19	8.238	ppb	22.59	\#VALUE!	
55 Mn	264.3	52.86	ppb	1.56	2000.	
56 Fe	382.	76.4	ppb	2.53	\#VALUE!	
57 Fe	494.3	98.86	ppb	2.04	100000.	
59 Co	0.757	0.1514	ppb	6.92	1000.	
60 Ni	3.871	0.7742	ppb	7.26	1000.	
63 Cu	56.45	11.29	ppb	0.72	\#VALUE!	
65 Cu	29.29	5.858	ppb	2.75	2000.	
66 Zn	12.835	2.567	ppb	6.25	2000.	
68 Zn	13.645	2.729	ppb	2.61	\#VALUE!	
75 As	4.6165	0.9233	ppb	18.40	1000.	
82 Se	4.2975	0.8595	ppb	23.42	1000.	
88 Sr	1,058.	211.6	ppb	1.03	2000.	
98 Mo	3.0955	0.6191	ppb	1.76	1000.	
107 Ag	0.0328	0.0066	ppb	51.52	100.	
109 Ag	0.0268	0.0054	ppb	113.73	\#VALUE!	
111 Cd	0.68	0.136	ppb	15.53	\#VALUE!	
114 Cd	0.534	0.1068	ppb	14.61	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.16	0.232	ppb	3.53	1000.	
120 Sn	1.16	0.232	ppb	2.90	\#VALUE!	
121 Sb	6.47	1.294	ppb	2.65	\#VALUE!	
123 Sb	6.37	1.274	ppb	0.84	1000.	
135 Ba	88.15	17.63	ppb	1.88	2000.	
137 Ba	87.5	17.5	ppb	1.08	\#VALUE!	
182 W	0.1705	0.0341	ppb	27.48	1000.	
203 Tl	0.0591	0.0118	ppb	50.92	1000.	
205 Tl	0.0951	0.019	ppb	10.05	\#VALUE!	
208 Pb	2.7285	0.5457	ppb	1.45	2000.	
232 Th	0.231	0.0462	ppb	4.03	1000.	
238 U	1.373	0.2746	ppb	0.91	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 1916195.60 | 2.79 | 2100054.30 | 91.2 | $69.5-120$ | |
| 45 | Sc | 2283239.30 | 2.46 | 2287457.00 | 99.8 | $69.5-120$ |
| 89 Y | 3509334.00 | 2.05 | 3522152.00 | 99.6 | $69.5-120$ | |
| 159 Tb | 4592198.00 | 1.60 | 4597738.00 | 99.9 | $69.5-120$ | |
| 209 Bi | 2404843.50 | 0.88 | 2622714.30 | 91.7 | $69.5-120$ | |

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:

Analytes:	Pass
ISTD:	Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\094SMPL.D $\backslash 094$ SMPL.D\#
Dec 212017 09:18 pm
1PTCAL16.M
MD
TK1739-009
2504
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.036	0.0072	ppb	23.35	100.	
11 B	384.5	76.9	ppb	4.82	1000.	
23 Na	944,500.	188,900.	ppb	1.28	200000.	
25 Mg	76,950.	15,390.	ppb	0.71	200000.	
27 Al	65.55	13.11	ppb	0.64	200000.	
28 Si	4,981.5	996.3	ppb	10.79	\#VALUE!	
29 Si	4,516.	903.2	ppb	7.52	10000.	
39 K	45,475.	9,095.	ppb	0.95	200000.	
43 Ca	126,850.	25,370.	ppb	1.51	\#VALUE!	
44 Ca	125,150.	25,030.	ppb	1.54	200000.	
51 V	1.611	0.3222	ppb	28.44	1000.	
52 Cr	1.0405	0.2081	ppb	12.74	2000.	
53 Cr	51.95	10.39	ppb	8.96	\#VALUE!	
55 Mn	201.7	40.34	ppb	0.25	2000.	
56 Fe	129.55	25.91	ppb	7.24	\#VALUE!	
57 Fe	247.5	49.5	ppb	9.36	100000.	
59 Co	0.6505	0.1301	ppb	8.03	1000.	
60 Ni	3.6595	0.7319	ppb	9.10	1000.	
63 Cu	52.1	10.42	ppb	0.74	\#VALUE!	
65 Cu	27.5	5.5	ppb	1.69	2000.	
66 zn	11.655	2.331	ppb	2.25	2000.	
68 Zn	12.07	2.414	ppb	10.03	\#VALUE!	
75 As	4.32	0.864	ppb	24.20	1000.	
82 Se	3.8515	0.7703	ppb	13.71	1000.	
88 Sr	987.	197.4	ppb	0.85	2000.	
98 Mo	2.951	0.5902	ppb	5.22	1000.	
107 Ag	0.0151	0.003	ppb	204.86	100.	
109 Ag	-0.0106	-0.0021	ppb	269.60	\#VALUE!	
111 Cd	0.261	0.0522	ppb	27.21	\#VALUE!	
114 Cd	0.466	0.0932	ppb	8.50	1000.	
115 In					\#VALUE!	
118 Sn	1.0535	0.2107	ppb	8.97	1000.	
120 Sn	1.0855	0.2171	ppb	8.00	\#VALUE!	
121 Sb	5.99	1.198	ppb	3.54	\#VALUE!	
123 Sb	5.995	1.199	ppb	1.96	1000.	
135 Ba	80.9	16.18	ppb	0.67	2000.	
137 Ba	82.55	16.51	ppb	0.55	\#VALUE!	
182 W	0.1188	0.0238	ppb	26.06	1000.	
203 Tl	0.041	0.0082	ppb	83.99	1000.	
205 Tl	0.0688	0.0138	ppb	14.83	\#VALUE!	
208 Pb	1.4095	0.2819	ppb	3.33	2000.	
232 Th	0.0706	0.0141	ppb	16.92	1000.	
238 U	1.2465	0.2493	ppb	3.83	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	1954568.10	1.87	2100054.30	93.1	$69.5-120$	
45	Sc	2337040.30	1.89	2287457.00	102.2	$69.5-120$	
89 Y	3639843.80	0.35	3522152.00	103.3	$69.5-120$		
159 Tb	4802261.50	1.11	4597738.00	104.4	$69.5-120$		
209 Bi	2506036.80	0.89	2622714.30	95.6	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:

Analytes:	Pass
ISTD:	Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\095SMPL.D $\backslash 095$ SMPL.D\#
Dec 212017 09:22 pm
1PTCAL16.M
MD
TK1739-010
2505
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00 Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0463	0.0093	ppb	84.55	100.	
11 B	42.68	8.536	ppb	3.75	1000.	
23 Na	20,365.	4,073.	ppb	0.90	200000.	
25 Mg	7,420.	1,484.	ppb	1.48	200000.	
27 Al	355.65	71.13	ppb	4.14	200000.	
28 Si	6,660.	1,332.	ppb	12.21	\#VALUE!	
29 Si	6,245.	1,249.	ppb	8.68	10000.	
39 K	15,440.	3,088.	ppb	1.81	200000.	
43 Ca	20,665.	4,133.	ppb	2.82	\#VALUE!	
44 Ca	20,385.	4,077.	ppb	1.85	200000.	
51 V	1.124	0.2248	ppb	53.34	1000.	
52 Cr	1.598	0.3196	ppb	10.00	2000.	
53 Cr	68.35	13.67	ppb	3.89	\#VALUE!	
55 Mn	145.7	29.14	ppb	1.43	2000.	
56 Fe	482.4	96.48	ppb	4.46	\#VALUE!	
57 Fe	454.	90.8	ppb	5.46	100000.	
59 Co	1.498	0.2996	ppb	7.52	1000.	
60 Ni	3.3755	0.6751	ppb	9.08	1000.	
63 Cu	-1.6225	-0.3245	ppb	5.82	\#VALUE!	
65 Cu	1.3705	0.2741	ppb	19.63	2000.	
66 Zn	1.944	0.3888	ppb	5.21	2000.	
68 Zn	0.3372	0.0674	ppb	219.90	\#VALUE!	
75 As	0.3052	0.061	ppb	497.71	1000.	
82 Se	1.427	0.2854	ppb	65.77	1000.	
88 Sr	122.85	24.57	ppb	1.80	2000.	
98 Mo	2.6945	0.5389	ppb	7.75	1000.	
107 Ag	0.0266	0.0053	ppb	69.37	100.	
109 Ag	0.0091	0.0018	ppb	243.07	\#VALUE!	
111 Cd	-0.1533	-0.0307	ppb	148.27	\#VALUE!	
114 Cd	0.0228	0.0046	ppb	89.87	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.105	0.221	ppb	5.76	1000.	
120 Sn	1.286	0.2572	ppb	11.76	\#VALUE!	
121 Sb	0.1506	0.0301	ppb	18.51	\#VALUE!	
123 Sb	0.1591	0.0318	ppb	24.78	1000.	
135 Ba	54.4	10.88	ppb	2.58	2000.	
137 Ba	53.8	10.76	ppb	0.82	\#VALUE!	
182 W	0.2216	0.0443	ppb	12.67	1000.	
203 Tl	0.0665	0.0133	ppb	65.68	1000.	
205 Tl	0.0637	0.0127	ppb	30.27	\#VALUE!	
208 Pb	0.1714	0.0343	ppb	23.36	2000.	
232 Th	0.1592	0.0318	ppb	4.87	1000.	
238 U	0.0726	0.0145	ppb	11.21	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 1858358.90 | 3.31 | 2100054.30 | 88.5 | $69.5-120$ | |
| 45 | Sc | 2131537.50 | 4.03 | 2287457.00 | 93.2 | $69.5-120$ |
| 89 Y | 3415638.50 | 2.77 | 3522152.00 | 97.0 | $69.5-120$ | |
| 159 Tb | 4618862.50 | 1.38 | 4597738.00 | 100.5 | $69.5-120$ | |
| 209 Bi | 2616206.50 | 1.16 | 2622714.30 | 99.8 | $69.5-120$ | |

> ISTD Ref File :
> 0 :Element Failures

0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes: ISTD: Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\096SMPL.D $\backslash 096$ SMPL.D\#
Dec 212017 09:26 pm
1PTCAL16.M
MD
TK1739-011
2506
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00 Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0405	0.0081	ppb	14.19	100.	
11 B	36.15	7.23	ppb	3.73	1000.	
23 Na	21,740.	4,348.	ppb	0.32	200000.	
25 Mg	7,115.	1,423.	ppb	1.12	200000.	
27 Al	48.02	9.604	ppb	3.81	200000.	
28 Si	7,030.	1,406.	ppb	1.53	\#VALUE!	
29 Si	6,340.	1,268.	ppb	2.36	10000.	
39 K	15,285.	3,057.	ppb	0.43	200000.	
43 Ca	20,340.	4,068.	ppb	1.22	\#VALUE!	
44 Ca	20,130.	4,026.	ppb	0.52	200000.	
51 V	0.6535	0.1307	ppb	91.51	1000.	
52 Cr	1.108	0.2216	ppb	16.07	2000.	
53 Cr	60.5	12.1	ppb	2.05	\#VALUE!	
55 Mn	141.6	28.32	ppb	0.61	2000.	
56 Fe	92.7	18.54	ppb	9.57	\#VALUE!	
57 Fe	72.4	14.48	ppb	12.02	100000.	
59 Co	1.4815	0.2963	ppb	8.27	1000.	
60 Ni	3.4085	0.6817	ppb	3.26	1000.	
63 Cu	-1.4345	-0.2869	ppb	2.13	\#VALUE!	
65 Cu	1.26	0.252	ppb	10.43	2000.	
66 Zn	3.077	0.6154	ppb	20.70	2000.	
68 Zn	1.6935	0.3387	ppb	24.02	\#VALUE!	
75 As	1.0965	0.2193	ppb	52.08	1000.	
82 Se	1.271	0.2542	ppb	72.90	1000.	
88 Sr	121.6	24.32	ppb	0.60	2000.	
98 Mo	2.618	0.5236	ppb	4.38	1000.	
107 Ag	0.0256	0.0051	ppb	100.29	100.	
109 Ag	-0.006	-0.0012	ppb	360.79	\#VALUE!	
111 Cd	-0.0446	-0.0089	ppb	320.84	\#VALUE!	
114 Cd	0.0779	0.0156	ppb	21.41	1000.	
115 In	----	--------			\#VALUE!	
118 Sn	1.0225	0.2045	ppb	10.13	1000.	
120 Sn	1.201	0.2402	ppb	2.94	\#VALUE!	
121 Sb	0.1312	0.0262	ppb	5.92	\#VALUE!	
123 Sb	0.1811	0.0362	ppb	24.07	1000.	
135 Ba	52.1	10.42	ppb	1.26	2000.	
137 Ba	51.1	10.22	ppb	1.44	\#VALUE!	
182 W	0.1985	0.0397	ppb	12.33	1000.	
203 Tl	0.0393	0.0079	ppb	26.70	1000.	
205 Tl	0.0731	0.0146	ppb	16.90	\#VALUE!	
208 Pb	0.0082	0.0016	ppb	473.10	2000.	
232 Th	0.0357	0.0071	ppb	34.54	1000.	
238 U	0.0479	0.0096	ppb	17.44	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| 6 | Li | 1744954.00 | 3.28 | 2100054.30 | 83.1 | $69.5-120$ |
| 45 | Sc | 2000901.40 | 0.85 | 2287457.00 | 87.5 | $69.5-120$ |
| 89 Y | 3230537.30 | 0.19 | 3522152.00 | 91.7 | $69.5-120$ | |
| 159 Tb | 4485626.00 | 0.57 | 4597738.00 | 97.6 | $69.5-120$ | |
| 209 Bi | 2551224.00 | 0.85 | 2622714.30 | 97.3 | $69.5-120$ | | ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes:
ISTD:

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\097SMPL.D $\backslash 097$ SMPL.D\#
Dec 212017 09:30 pm
1PTCAL16.M
MD
TK1739-012
2507
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	-0.0028	-0.0006	ppb	258.60	100.	
11 B	34.79	6.958	ppb	2.40	1000.	
23 Na	33,505.	6,701.	ppb	1.68	200000.	
25 Mg	1,959.	391.8	ppb	1.70	200000.	
27 Al	553.5	110.7	ppb	6.60	200000.	
28 Si	7,375.	1,475.	ppb	4.95	\#VALUE!	
29 Si	8,410.	1,682.	ppb	2.53	10000.	
39 K	4,388.5	877.7	ppb	0.53	200000.	
43 Ca	33,925.	6,785.	ppb	3.34	\#VALUE!	
44 Ca	34,480.	6,896.	ppb	1.47	200000.	
51 V	7.315	1.463	ppb	10.51	1000.	
52 Cr	9.865	1.973	ppb	3.43	2000.	
53 Cr	75.	15.	ppb	0.72	\#VALUE!	
55 Mn	55.4	11.08	ppb	1.80	2000.	
56 Fe	480.8	96.16	ppb	6.31	\#VALUE!	
57 Fe	528.5	105.7	ppb	12.61	100000.	
59 Co	0.638	0.1276	ppb	6.49	1000.	
60 Ni	1.2355	0.2471	ppb	2.37	1000.	
63 Cu	8.515	1.703	ppb	5.66	\#VALUE!	
65 Cu	10.845	2.169	ppb	7.22	2000.	
66 Zn	1.764	0.3528	ppb	3.42	2000.	
68 Zn	-1.384	-0.2768	ppb	66.04	\#VALUE!	
75 As	4.4595	0.8919	ppb	30.89	1000.	
82 Se	1.884	0.3768	ppb	15.93	1000.	
88 Sr	101.65	20.33	ppb	2.67	2000.	
98 Mo	4.7945	0.9589	ppb	2.42	1000.	
107 Ag	0.0431	0.0086	ppb	28.53	100.	
109 Ag	0.0181	0.0036	ppb	112.47	\#VALUE!	
111 Cd	0.1752	0.035	ppb	82.25	\#VALUE!	
114 Cd	0.0788	0.0158	ppb	30.44	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.2725	0.2545	ppb	6.21	1000.	
120 Sn	1.283	0.2566	ppb	3.86	\#VALUE!	
121 Sb	1.1535	0.2307	ppb	1.69	\#VALUE!	
123 Sb	1.2715	0.2543	ppb	11.59	1000.	
135 Ba	9.405	1.881	ppb	3.11	2000.	
137 Ba	9.47	1.894	ppb	5.69	\#VALUE!	
182 W	0.8915	0.1783	ppb	4.12	1000.	
203 Tl	0.0328	0.0066	ppb	93.83	1000.	
205 Tl	0.0165	0.0033	ppb	97.05	\#VALUE!	
208 Pb	0.397	0.0794	ppb	6.36	2000.	
232 Th	0.1416	0.0283	ppb	14.80	1000.	
238 U	0.7975	0.1595	ppb	9.25	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 2064639.50 | 4.75 | 2100054.30 | 98.3 | $69.5-120$ | |
| 45 | Sc | 2245460.50 | 2.42 | 2287457.00 | 98.2 | $69.5-120$ |
| 89 Y | 3493822.50 | 1.70 | 3522152.00 | 99.2 | $69.5-120$ | |
| 159 Tb | 4599098.00 | 1.08 | 4597738.00 | 100.0 | $69.5-120$ | |
| 209 Bi | 2596661.30 | 0.96 | 2622714.30 | 99.0 | $69.5-120$ | |

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL21A.B\018CALB.D\018CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes:
ISTD:

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL21A.B\098SMPL.D $\backslash 098$ SMPL.D\#
Dec 212017 09:34 pm
1PTCAL16.M
MD
TK1739-013
2508
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 212017 04:27 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0012	0.0002	ppb	1068.00	100.	
11 B	32.555	6.511	ppb	5.19	1000.	
23 Na	31,295.	6,259.	ppb	0.99	200000.	
25 Mg	1,757.	351.4	ppb	2.02	200000.	
27 Al	212.1	42.42	ppb	2.08	200000.	
28 Si	8,650.	1,730.	ppb	0.73	\#VALUE!	
29 Si	8,400.	1,680.	ppb	0.48	10000.	
39 K	4,184.	836.8	ppb	0.59	200000.	
43 Ca	32,835.	6,567.	ppb	1.88	\#VALUE!	
44 Ca	34,090.	6,818.	ppb	1.65	200000.	
51 V	7.005	1.401	ppb	6.15	1000.	
52 Cr	8.91	1.782	ppb	0.81	2000.	
53 Cr	58.6	11.72	ppb	4.09	\#VALUE!	
55 Mn	44.34	8.868	ppb	0.33	2000.	
56 Fe	62.6	12.52	ppb	13.19	\#VALUE!	
57 Fe	83.2	16.64	ppb	10.11	100000.	
59 Co	0.377	0.0754	ppb	16.74	1000.	
60 Ni	0.6945	0.1389	ppb	15.19	1000.	
63 Cu	7.425	1.485	ppb	1.83	\#VALUE!	
65 Cu	10.135	2.027	ppb	5.03	2000.	
66 Zn	1.22	0.244	ppb	12.18	2000.	
68 Zn	-2.2595	-0.4519	ppb	37.88	\#VALUE!	
75 As	3.509	0.7018	ppb	20.88	1000.	
82 Se	1.4	0.28	ppb	87.79	1000.	
88 Sr	100.7	20.14	ppb	1.20	2000.	
98 Mo	4.8875	0.9775	ppb	3.94	1000.	
107 Ag	0.0479	0.0096	ppb	20.61	100.	
109 Ag	-0.0016	-0.0003	ppb	1990.20	\#VALUE!	
111 Cd	-0.0469	-0.0094	ppb	198.14	\#VALUE!	
114 Cd	0.031	0.0062	ppb	17.86	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.12	0.224	ppb	8.11	1000.	
120 Sn	1.165	0.233	ppb	12.09	\#VALUE!	
121 Sb	1.166	0.2332	ppb	4.61	\#VALUE!	
123 Sb	1.236	0.2472	ppb	6.94	1000.	
135 Ba	7.365	1.473	ppb	2.29	2000.	
137 Ba	7.71	1.542	ppb	7.28	\#VALUE!	
182 W	0.9555	0.1911	ppb	9.61	1000.	
203 Tl	0.0212	0.0042	ppb	210.44	1000.	
205 Tl	0.0355	0.0071	ppb	23.34	\#VALUE!	
208 Pb	0.0125	0.0025	ppb	83.42	2000.	
232 Th	0.0201	0.004	ppb	22.84	1000.	
238 U	0.717	0.1434	ppb	1.14	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 1759460.10 | 1.83 | 2100054.30 | 83.8 | $69.5-120$ | |
| 45 | Sc | 1993793.90 | 0.45 | 2287457.00 | 87.2 | $69.5-120$ |
| 89 Y | 3249267.80 | 0.65 | 3522152.00 | 92.3 | $69.5-120$ | |
| 159 Tb | 4463346.00 | 1.85 | 4597738.00 | 97.1 | $69.5-120$ | |
| 209 Bi | 2549806.80 | 1.51 | 2622714.30 | 97.2 | $69.5-120$ | |

ISTD Ref File :

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes: ISTD:

```
Pass
```

Pass

CONVENTIONAL AND PHYSICAL ANALYTICAL DATA

ANALYTICALSERVICES

Quality Control Report
Blank Sample Summary Report

Alkalinity

Samp Type	OC Batch	Anal. Method	Anal. Date	Prep. Date	Result	PQL	$\underline{\text { LOD }}$
MBLANK	WG220743	SM2320B	22-DEC-17	N/A	J $0.49 \mathrm{mg} / \mathrm{L}$	$5.0 \mathrm{mg} / \mathrm{L}$	4.0
Chloride							
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	PQL	LOD
MBLANK	WG220302	EPA 300.0	15-DEC-17	N/A	U $1.0 \mathrm{mg} / \mathrm{L}$	$2.0 \mathrm{mg} / \mathrm{L}$	1.0
Nitrate As N							
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	PQL	LOD
MBLANK	WG220291	EPA 300.0	13-DEC-17	N/A	$\mathrm{U} 0.025 \mathrm{mg} / \mathrm{L}$	$0.050 \mathrm{mg} / \mathrm{L}$	0.025
Sulfate							
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	PQL	LOD
MBLANK	WG220302	EPA 300.0	15-DEC-17	N/A	U $0.50 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	0.50
MBLANK	WG220781	EPA 300.0	18-DEC-17	N/A	U $0.50 \mathrm{mg} / \mathrm{L}$	$1.0 \mathrm{mg} / \mathrm{L}$	0.50

Analytical services
Quality Control Report

Laboratory Control Sample Summary Report

Alkalinity

Chloride

Nitrate as N

Lab Sample ld	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptanc Range	RPD
WG220291-2	LCS	WG220291	13-DEC-17	N/A	mg/L	0.845	0.841	99.5	0-110	

Sulfate

Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220302-2	LCS	WG220302	14-DEC-17	N/A	mg / L	3.75	3.70	98.7	90-110	
WG220781-2	LCS	WG220781	18-DEC-17	N/A	mg / L	3.75	3.65	97.3	90-110	

Matrix Spike Sample Summary Report

Chloride

Matrix Spike Sample ID	Sample Type	Original Sample ID	QC Batch	Analysis	Result Date	Spike Amount	Sample Result	MS Result	Recovery (\%)	Recovery Limit
WG220302-3	MS	TK1739-2	WG220302	I5-DEC-17	mg/L	75	120	200	107.	$90-110$

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: $32010001 \quad$ NELAC No: E87653 NC DENR No: $329 \quad$ NC Field Parameters No: 5639

Case Narrative
 Katahdin Analytical Services

Lot Number: SL15079

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.
Sample receipt, sample analysis, and data review have been performed in accordance with the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), applicable Shealy standard operating procedures (SOPs), the 2003 NELAC standard, and Shealy policies. Additionally, the DoD QSM version 5.1 has been followed for these samples. Any exceptions to the QAMP, SOPs, NELAC standards, the DoD QSM, or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

PFAS
Samples SL15079-002 through SL15079-005 required re-extraction outside the holding time for Perfluorooctanesulfonate (PFOS) due to LCS recovery above control limits at 192\%. Both extraction results are reported.

Sample ID: SQ60410-001
Matrix: Aqueous
Batch: 60410
Prep Method: 537 MOD
Prep Date: 12/22/2017 923

Parameter	Result		Q	Dil	LOQ	LOD	DL	Units	Analysis Date
EtFOSAA	2.0		U	1	4.0	2.0	1.0	ng/L	12/22/2017 1546
MeFOSAA	2.0		U	1	4.0	2.0	1.0	ng/L	12/22/2017 1546
PFBS	1.0		U	1	2.0	1.0	0.50	ng / L	12/22/2017 1546
PFHxS	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFDA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFDoA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFHpA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFHxA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFNA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFOA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFTeDA	2.0		U	1	4.0	2.0	1.0	ng/L	12/22/2017 1546
PFTrDA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFUdA	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
PFOS	1.0		U	1	2.0	1.0	0.50	ng/L	12/22/2017 1546
Surrogate	Q	\% Rec		Acce					
13C2_PFDoA		104							
13C2_PFTeDA		97							
13C3_PFBS		110							
13C3_PFHxS		107							
13C4_PFHpA		115							
13C5_PFHxA		120							
13C6_PFDA		108							
13C7_PFUdA		102							
13C8_PFOA		112							
13C8_PFOS		104							
13C9_PFNA		111							
d5-EtFOSAA		111							
d3-MeFOSAA		103							

$L O Q=$ Limit of Quantitation	$P=$ The RPD between two GC columns exceeds 40%
$D L=$ Detection Limit	$J=$ Estimated result $<L O Q$ and $\geq D L$
$L O D=$ Limit of Detection	$U=$ Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: SQ60410-002 Batch: 60410 Analytical Method: 537.1 Modified-ID	Matrix: AqueousPrep Method: 537 MODPrep Date: $12 / 22 / 2017923$						
Parameter	Spike Amount (ng/L)	$\begin{aligned} & \text { Result } \\ & \text { (ng/L) } \end{aligned}$	Q	Dil	\% Rec	\% Rec Limit	Analysis Date
EtFOSAA	20	19		1	94	70-130	12/22/2017 1559
MeFOSAA	20	20		1	102	70-130	12/22/2017 1559
PFBS	18	17		1	98	70-130	12/22/2017 1559
PFHxS	18	18		1	102	70-130	12/22/2017 1559
PFDA	20	20		1	101	70-130	12/22/2017 1559
PFDoA	20	21		1	106	70-130	12/22/2017 1559
PFHpA	20	20		1	101	70-130	12/22/2017 1559
PFHxA	20	22		1	110	70-130	12/22/2017 1559
PFNA	20	20		1	98	70-130	12/22/2017 1559
PFOA	20	21		1	105	70-130	12/22/2017 1559
PFTeDA	20	19		1	96	70-130	12/22/2017 1559
PFTrDA	20	20		1	101	70-130	12/22/2017 1559
PFUdA	20	18		1	91	70-130	12/22/2017 1559
PFOS	19	36	N	1	192	70-130	12/22/2017 1559
Surrogate	Q \% Rec						
13C2_PFDoA	101						
13C2_PFTeDA	71						
13C3_PFBS	107						
13C3_PFHxS	107						
13C4_PFHpA	110						
13C5_PFHxA	111						
13C6_PFDA	105						
13C7_PFUdA	106						
13C8_PFOA	109						
13C8_PFOS	102						
13C9_PFNA	111						
d5-EtFOSAA	103						
d3-MeFOSAA	100						

$L O Q=$ Limit of Quantitation	$P=$ The RPD between two GC columns exceeds 40%
$D L=$ Detection Limit	$J=$ Estimated result $<L O Q$ and $\geq D L$
$L O D=$ Limit of Detection	$U=$ Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: SQ60775-001
Matrix: Aqueous
Batch: 60775
Analytical Method: 537.1 Modified-ID

Prep Method: 537 MOD
Prep Date: 12/29/2017 1029

Parameter	Result		Q	Dil	LOQ	LOD	DL	Units	Analysis Date
EtFOSAA	2.0		U	1	4.0	2.0	1.0	ng/L	12/29/2017 1857
MeFOSAA	2.0		U	1	4.0	2.0	1.0	ng/L	12/29/2017 1857
PFBS	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFHxS	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFDA	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFDoA	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFHpA	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFHxA	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFNA	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFOA	1.0		U	1	2.0	1.0	0.50	ng / L	12/29/2017 1857
PFTeDA	2.0		U	1	4.0	2.0	1.0	ng/L	12/29/2017 1857
PFTrDA	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFUdA	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
PFOS	1.0		U	1	2.0	1.0	0.50	ng/L	12/29/2017 1857
Surrogate	Q \%	\% Rec							
13C2_PFDoA		109							
13C2_PFTeDA		113							
13C3_PFBS		109							
13C3_PFHxS		111							
13C4_PFHpA		114							
13C5_PFHxA		107							
13C6_PFDA		114							
13C7_PFUdA		110							
13C8_PFOA		110							
13C8_PFOS		107							
13C9_PFNA		107							
d5-EtFOSAA		112							
d3-MeFOSAA		115							

$L O Q=$ Limit of Quantitation	$P=$ The RPD between two GC columns exceeds 40%
$D L=$ Detection Limit	$J=$ Estimated result $<L O Q$ and $\geq D L$
$L O D=$ Limit of Detection	$U=$ Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: SQ60775-002 Batch: 60775 Analytical Method: 537.1 Modified-ID	```Matrix: Aqueous Prep Method: 537 MOD Prep Date: 12/29/2017 1029```						
Parameter	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	\% Rec	\% Rec Limit	Analysis Date
EtFOSAA	20	21		1	104	70-130	12/29/2017 1911
MeFOSAA	20	20		1	100	70-130	12/29/2017 1911
PFBS	18	19		1	107	70-130	12/29/2017 1911
PFHxS	18	19		1	102	70-130	12/29/2017 1911
PFDA	20	20		1	102	70-130	12/29/2017 1911
PFDoA	20	24		1	118	70-130	12/29/2017 1911
PFHpA	20	20		1	102	70-130	12/29/2017 1911
PFHxA	20	21		1	105	70-130	12/29/2017 1911
PFNA	20	21		1	106	70-130	12/29/2017 1911
PFOA	20	22		1	108	70-130	12/29/2017 1911
PFTeDA	20	20		1	102	70-130	12/29/2017 1911
PFTrDA	20	24		1	119	70-130	12/29/2017 1911
PFUdA	20	21		1	104	70-130	12/29/2017 1911
PFOS	19	20		1	106	70-130	12/29/2017 1911
Surrogate	Q \% Rec						
13C2_PFDoA	95						
13C2_PFTeDA	77						
13C3_PFBS	102						
13C3_PFHxS	96						
13C4_PFHpA	105						
13C5_PFHxA	105						
13C6_PFDA	106						
13C7_PFUdA	100						
13C8_PFOA	103						
13C8_PFOS	100						
13C9_PFNA	102						
d5-EtFOSAA	102						
d3-MeFOSAA	110						

LOQ = Limit of Quantitation	$P=$ The RPD between two GC columns exceeds 40%
$D L=$ Detection Limit	$J=$ Estimated result $<$ LOQ and $\geq D L$
LOD $=$ Limit of Detection	$U=$ Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

FORM 2
ISOTOPE DILUTION STANDARD RECOVERY
Lab Name: Shealy Environmental Services, Inc.
Lot No.: SL15079
Project No.: TK1739
AnalyticalMethod: 537.1 Modified-ID
Matrix: Water

$\begin{gathered} \text { CLIENT } \\ \text { SAMPLE ID } \end{gathered}$	IDS1	IDS2	IDS3	IDS4	IDS5	IDS6	IDS7	IDS8	IDS9
G32-MW303B-1212	705	81	109	111	115	111	112	112	116
GI-MW402-121217	106	106	110	109	122	117	110	112	115
GI - MW402-121217	RE02	105	102	106	102	108	105	106	104
GI - MW403-121217	104	102	109	108	112	114	110	109	113
GI - MW403-121217	RF16	111	117	112	112	118	118	123	116
GI - MW401-121217	105	93	104	106	112	111	108	105	112
GI-MW401-121217	RE88	89	104	104	106	107	104	104	105
FRB121217	106	100	108	109	115	114	112	115	113
FRB121217RE	106	103	107	110	108	110	108	109	105
SQ60410-001	104	97	110	107	115	120	108	102	112
SQ60410-002	101	71	107	107	110	111	105	106	109
SQ60775-001	109	113	109	111	114	107	114	110	110
SQ60775-002	95	77	102	96	105	105	106	100	103

```
IDS1 = 13C2_PFDoA
IDS2 = 13C2_PFTeDA
IDS3 = 13C3_PFBS
IDS4 = 13C3_PFHxS
IDS5 = 13C4_PFHpA
IDS6 = 13C5_PFHXA
IDS7 = 13C6_PFDA
IDS8 = 13C7_PFUdA
IDS9 = 13C8_PFOA
```

[^2]QC LIMITS
50-150
50-150
50-150
50-150
50-150
50-150
50-150
50-150
50-150

FORM 2

Lab Name: Shealy Environmental Services, Inc.
Lot No.: SL15079
Project No.: TK1739
AnalyticalMethod: 537.1 Modified-ID
Matrix: Water

CLIENT SAMPLE ID	IDS10	IDS11	IDS12	IDS13	IDS14	IDS15	IDS16	IDS17
TOT								
OUT								

QC LIMITS

```
IDS10 = 13C8_PFOS
IDS11 = 13C9_PFNA
IDS12 = d5-EtFOSAA
IDS13 = d3-MeFOSAA
```

 50-150
 50-150
 50-150
 50-150
 [^3]Lab Name: Shealy Environmental Services, Inc.
Project No.: TK1739
Analytical Method: $\underline{537.1 \text { Modified-ID }}$
Instrument ID: _Sceix 4500_LSMSMS\#1
Extraction Type: $\underline{537 \text { MOD }}$

Lot No.: SL15079
Lab Sample ID: SQ60410-001
Matrix: Water
Lab File ID:
Date Extracted:12/22/2017
Date Analyzed: 12/22/2017
Time Analyzed: 15:46

CLIENT SAMPLE ID	LAB SAMPLE ID	$\begin{aligned} & \text { LAB } \\ & \text { FILE ID } \end{aligned}$	DATE/TIME ANALYZED
G32-MW303B-121217	SL15079-001		16:13
GI - MW402-121217	SL15079-002		16:27
GI - MW403-121217	SL15079-003		16:40
GI - MW401-121217	SL15079-004		16:54
FRB121217	SL15079-005		17:07
SQ60410-002	SQ60410-002		15:59

Lab Name: Shealy Environmental Services, Inc.
Project No.: TK1739
Analytical Method: $\frac{537.1 \text { Modified-ID }}{\text { Instrument ID: _Sceix } 4500 \text { LSMSMS\#1 }}$
Extraction Type: $\frac{537 \text { MOD }}{}$

Lot No.: SL15079
Lab Sample ID: SQ60775-001
Matrix: Water
Lab File ID:
Date Extracted:12/29/2017
Date Analyzed: 12/29/2017
Time Analyzed: 18:57

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	ANTE/TIME ANALYZED
GI-MW402-121217RE	SL15079-002		$20: 19$
GI-MW403-121217RE	SL15079-003		$20: 32$
GI-MW401-121217RE	SL15079-004		$20: 46$
FRB121217RE	SL15079-005		$20: 59$
SQ60775-002	SQ60775-002		$19: 11$

DODCMD_ID	Installation_I	SDG	SITE_NAME	NAME	AME	ATION_TYPE_DESC	COORD_X	OORD	RACT_ID	_CTO_NUMBER	CONTR_NAME	MPLE_NAME	SAMPLE_MATRIX_DESC	MPLE_TYPE_DESC	ATE	YTICAL_METHOD	METHOD_GRP_DESC
MID_ATLANTIC	NEWPORT_NS	TK1739	SITE 00017	SITE 00017	G1-MW403	Monitoring well	370649.98	165116.84	8005	WE22	TETRA TECH, INC.	G1-MW403-121217	Ground water	Normal (Regular)	12-Dec-17	537	Perfluoroalky Compounds
MID ATLANTIC	NEWPORT NS	TK1739	SITE 00017	SITE 00017	G1-MW402	Monitoring well	370826.67	164872.34	N624701609008	WE22	TETRA TECH, INC.	GI-MW402-121217	Ground water	Normal (Reegular)	12-Dec-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	NEWPORT_NS	K1739	SITE 00017	SITE 00017	G1-MW403	Monitoring well	370649.98	165116.84	N624701609008	WE22	TETRA TECH, INC.	S-MW403-121217	Ground water	Normal (Regular)	12-Dec-17	537	Perfluoroakl\| Compounds
MID_ATLANTIC	NEWPORT_NS	TK1739	SITE 00017	SITE 00017	G1-MW401	Monitoring well	370729.54	164895.43	8005	WE22	ETRA TECH	I-MW401-1212	Ground water	Normal (Regular)	12-Dec-17	537	Perfluoraalky Compounds
_atlantic	NEWPORT_NS	1739							N624701609008	22	TETRA TECH, INC.	RB121217	Water for ac samples	Field Reagent Blank	12	537	Perfluoroalky Compounds
MID_ATLANTIC	NEWPORT_NS	TK1739	SITE 00017	SITE 00017	G32-MW30	Monitoring well	370851.5242	165079.0793	N624701609008	WE22	TETRA TECH, INC.	632-MW303	Ground water	Normal (Regular)	12-Dec-17	537	erfluoraikyl Compounds
D_ATLANTIC	NEWPORT_NS	TK1739	SITE 00017	SITE 00017	G-MW401	Monitoring well	370729.54	64895.43	N624701609008	WE22	Tetra tech, IN	G1-MW401-1	Ground water	Normal (Regular)	12-Dec-17	537	Perfluoroakl 1 Compounds
MID_ATLANTIC	NEWPORT_NS	TK1739							8005	WE22	TETRA TECH, INC.	FRB121217	Water for QC samples	Field Reagent Blank	12-Dec-17	537	Perfluoraalky Compounds
MID_ATLANTIC	NEWPORT_NS	TK1739	STE 00017	STE 00017	632-MW303B	Monitoring well	377851.5242	165079.0793	8005	WE22	TETRA TECH, INC.	G32-MW3038-121217	Ground water	Normal (Regular)	12-Dec-17	537	Perfluoroalky Compounds
MID ATLANTIC	NEWPORT NS		001	E001	W402	Monitoring w	370826.67	164872.3	8005	WE22		G-MW402-12121	round water	(Regu			Perfluoraalky Compounds

[^0]: Area Upper Limit $=+100 \%$ of internal standard area
 Area Lower Limit $=-50 \%$ of internal standard area
 RT Upper Limit $=+0.50$ minutes of internal standard RT
 RT Lower Limit $=-0.50$ minutes of internal standard RT
 \# Column used to flag values outside QC limits with an asterisk.

 * Values outside of QC limits.

[^1]: Area Upper Limit $=+100 \%$ of internal standard area
 Area Lower Limit $=-50 \%$ of internal standard area
 RT Upper Limit $=+0.50$ minutes of internal standard RT
 RT Lower Limit $=-0.50$ minutes of internal standard RT
 \# Column used to flag values outside QC limits with an asterisk.

 * Values outside of QC limits.

[^2]: * Recoveries outside QC limits

 D IDS Diluted Out

[^3]: * Recoveries outside QC limits

 D IDS Diluted Out

