Groundwater Sample Results, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG TK1925
Naval Station Newport
Newport, Rhode Island
August 2019

"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7440-38-
2","ARSENIC","99.4","ug/L","","2.3","MDL","","SPK","99.4","","5.0","PQL","YES","100","LCSWKL20IMW1",""," ","4.0",""
"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7440-43-
9","CADMIUM","248","ug/L","","0.030","MDL","","SPK","99.2","","1.0","PQL","YES","250","LCSWKL20IMW1"," ","","0.20",""
"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7439-92-
1","LEAD","98.6","ug/L","","0.074","MDL","","SPK","98.6","","1.0","PQL","YES","100","LCSWKL20IMW1","","", "0.50",""
"LCSWKL20IMW1","6020A","RES","LCSWKL20IMW1","KAS","7439-96-
5","MANGANESE","500","ug/L","","0.35","MDL","","SPK","100.0","","2.0","PQL","YES","500","LCSWKL20IMW 1","","","1.0",""
"PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","PBWKL20IMW1","","","4.0", ""
"PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.030","MDL","","TRG","","","1.0","PQL","YES","0","PBWKL20IMW1","",""," 0.20",""
"PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.074","MDL","","TRG","","","1.0","PQL","YES","0","PBWKL20IMW1","","","0.50", ""
"PBWKL20IMW1","6020A","RES","PBWKL20IMW1","KAS","7439-96-
5","MANGANESE","1.0","ug/L","U","0.35","MDL","","TRG","","","2.0","PQL","YES","0","PBWKL20IMW1","","", "1.0",""
"G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306BR-
121817","","","4.0",""
"G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306BR-
121817","","","0.20",""
"G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7439-92-
1","LEAD","0.61","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306BR-
121817","","","0.50",""
"G32-MW306BR-121817","6020A","RES","TK1925-001","KAS","7439-96-
5","MANGANESE","140","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW306BR-
121817","","","1.0",""
"G32-MW306BR-121817","6020A","RES","TK1925-002","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306BR121817","","","4.0",""
"G32-MW306BR-121817","6020A","RES","TK1925-002","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306BR-
121817","","","0.20",""
"G32-MW306BR-121817","6020A","RES","TK1925-002","KAS","7439-92-
1","LEAD","0.12","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306BR121817","","","0.50",""
"G32-MW306BR-121817","6020A","RES","TK1925-002","KAS","7439-96-
5","MANGANESE","37.8","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW306BR-
121817","","","1.0",""
"DUP-121817","6020A","RES","TK1925-003","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","DUP-121817","","","4.0","" "DUP-121817","6020A","RES","TK1925-003","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","DUP-
121817","","","0.20",""
"DUP-121817","6020A","RES","TK1925-003","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","DUP-121817","","","0.50","" "DUP-121817","6020A","RES","TK1925-003","KAS","7439-96-
5","MANGANESE","235","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","DUP-
121817","","","1.0",""
"DUP-121817","6020A","RES","TK1925-004","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","DUP-121817","","","4.0",""
"DUP-121817","6020A","RES","TK1925-004","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","DUP-
121817","","","0.20",""
"DUP-121817","6020A","RES","TK1925-004","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","DUP-121817","","","0.50",""
"DUP-121817","6020A","RES","TK1925-004","KAS","7439-96-
5","MANGANESE","235","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","DUP121817","","","1.0",""
"GI-MW400-121817","6020A","RES","TK1925-006","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW400-
121817","","","4.0",""
"GI-MW400-121817","6020A","RES","TK1925-006","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.20",""
"GI-MW400-121817","6020A","RES","TK1925-006","KAS","7439-92-
1","LEAD","0.089","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.50",""
"GI-MW400-121817","6020A","RES","TK1925-006","KAS","7439-96-
5","MANGANESE","229","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW400-
121817","","","1.0",""
"GI-MW400-121817","6020A","RES","TK1925-007","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW400121817","","","4.0",""
"GI-MW400-121817","6020A","RES","TK1925-007","KAS","7440-43-
9","CADMIUM","0.031","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.20",""
"GI-MW400-121817","6020A","RES","TK1925-007","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.50",""
"GI-MW400-121817","6020A","RES","TK1925-007","KAS","7439-96-
5","MANGANESE","235","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","GI-MW400121817","","","1.0",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7440-38-
2","ARSENIC","4.9","ug/L","J","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G44S-MW202RR-
121817","","","4.0",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR-
121817","","","0.20",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7439-92-
1","LEAD","1.53","ug/L","","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR-
121817","","","0.50",""
"G44S-MW202RR-121817","6020A","RES","TK1925-008","KAS","7439-96-
5","MANGANESE","2910","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G44S-MW202RR121817","","","1.0",""
"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7440-38-
2","ARSENIC","6.6","ug/L","","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G44S-MW202RR-
121817","","","4.0",""
"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7440-43-
9","CADMIUM","0.20","ug/L","U","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR121817","","","0.20",""
"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7439-92-
1","LEAD","0.50","ug/L","U","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR121817","","","0.50",""
"G44S-MW202RR-121817","6020A","RES","TK1925-009","KAS","7439-96-
5","MANGANESE","2960","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G44S-MW202RR121817","","","1.0",""
"G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW304SR-
121817","","","4.0",""
"G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7440-43-
9","CADMIUM","0.079","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR121817","","","0.20",""
"G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7439-92-
1","LEAD","0.084","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR121817","","","0.50",""
"G32-MW304SR-121817","6020A","RES","TK1925-010","KAS","7439-96-
5","MANGANESE","1950","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW304SR121817","","","1.0",""
"G32-MW304SR-121817","6020A","RES","TK1925-011","KAS","7440-38-
2","ARSENIC","4.0","ug/L","U","2.3","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW304SR-
121817","","","4.0",""
"G32-MW304SR-121817","6020A","RES","TK1925-011","KAS","7440-43-
9","CADMIUM","0.053","ug/L","J","0.029","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR121817","","","0.20",""
"G32-MW304SR-121817","6020A","RES","TK1925-011","KAS","7439-92-
1","LEAD","0.28","ug/L","J","0.075","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR-
121817","","","0.50",""
"G32-MW304SR-121817","6020A","RES","TK1925-011","KAS","7439-96-
5","MANGANESE","1720","ug/L","","0.35","MDL","","TRG","","","2.0","PQL","YES","0","G32-MW304SR121817","","","1.0",""
"G32-MW306BR-121817","2320B","RES","TK1925-1","KAS","11-43-8","ALKALINITY AS
CACO3","75.","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW306BR-
121817","","","4.0",""
"G32-MW306BR-121817","300.0","RES","TK1925-1","KAS","14797-55-8","NITRATE AS
N","0.042","mg/L","J",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","G32-MW306BR121817","","","0.025",""
"G32-MW306BR-121817","300.0","RES","TK1925-1","KAS","14808-79-
8","SULFATE","16","mg/L","","0.064","MDL","","TRG","","","1.0","PQL","YES","3.75","G32-MW306BR-
121817","","","0.50",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","97.2","\%","","0","MDL","","SURR","97.2","","0","PQL","YES","0.943","G32-MW306BR121817","","","0",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","12674-11-2","AROCLOR 1016","0.24","ug/L","U","0.15","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","11104-28-2","AROCLOR
1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.089","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","12672-29-6","AROCLOR
1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","11097-69-1","AROCLOR
1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","11096-82-5","AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-
121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.47","PQL","YES","0","G32-MW306BR-121817","","","0.24",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","2051-24-
3","DECACHLOROBIPHENYL","74.5","\%","","0","MDL","","SURR","74.5","","0","PQL","YES","0.943","G32-
MW306BR-121817","","","0",""
"G32-MW306BR-121817","8082A","RES","TK1925-1","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.062","MDL","","TRG","","","4.2","PQL","YES","0","G32-MW306BR-
121817","","","2.1",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","108.","\%","","0","MDL","","SURR","108.","","0","PQL","YES","50.0","G32-MW306BR-121817","","","0",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306BR-
121817","","","2.0",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","460-00-4","4-
BROMOFLUOROBENZENE","99.9","\%","","0","MDL","","SURR","99.9","","0","PQL","YES","50.0","G32-
MW306BR-121817","","","0",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306BR-
121817","","","0.50",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW306BR-
121817","","","1.0",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","G32-
MW306BR-121817","","","0",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW306BR-121817","","","0.50",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","2037-26-5","TOLUENE-
D8","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","G32-MW306BR-121817","","","0",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW306BR121817","","","1.0",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","G32-
MW306BR-121817","","","0.50",""
"G32-MW306BR-121817","8260C","RES","TK1925-1","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW306BR-
121817","","","2.0",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","615-58-7","2,4-Dibromophenol
","26.5","\%","","0","MDL","","SURR","26.5","","0","PQL","YES","4.00","G32-MW306BR-121817","","","0","" "G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.094","ug/L","U","0.073","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","7297-45-2","2-Methylnaphthalene-d10","77.2","\%","","0","MDL","","SURR","77.2","","0","PQL","YES","2.00","G32-MW306BR-121817","","","0","" "G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.12","ug/L","J","0.043","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","50-32-
8","BENZO(A)PYRENE","0.084","ug/L","J","0.062","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.11","ug/L","J","0.084","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.094","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.094","ug/L","U","0.046","MDL","","TRG","","","0.19","PQL","YES","0","G32 -MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","218-01-
9","CHRYSENE","0.094","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-
121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.094","ug/L","U","0.066","MDL","","TRG","","","0.19","PQL","YES","0","G
32-MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","206-44-
0","FLUORANTHENE","0.094","ug/L","U","0.069","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","81103-79-9","Fluorene-
d10","82.2","\%","","0","MDL","","SURR","82.2","","0","PQL","YES","2.00","G32-MW306BR-121817","","","0","" "G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.094","ug/L","U","0.049","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-

121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","91-20-
3","NAPHTHALENE","0.094","ug/L","U","0.060","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","87-86-
5","PENTACHLOROPHENOL","0.47","ug/L","U","0.31","MDL","","TRG","","","0.94","PQL","YES","0","G32-
MW306BR-121817","","","0.47",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","85-01-
8","PHENANTHRENE","0.094","ug/L","U","0.048","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW306BR-121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","129-00-
0","PYRENE","0.094","ug/L","U","0.056","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW306BR-
121817","","","0.094",""
"G32-MW306BR-121817","8270D-SIM","RES","TK1925-1","KAS","1718-52-1","Pyrene-
d10","109.","\%","","0","MDL","","SURR","109.","","0","PQL","YES","2.00","G32-MW306BR-121817","","","0",""
"G32-MW304SR-121817","2320B","RES","TK1925-10","KAS","11-43-8","ALKALINITY AS
CACO3","160","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","G32-MW304SR-
121817","","","4.0",""
"G32-MW304SR-121817","300.0","RES","TK1925-10","KAS","14797-55-8","NITRATE AS
N","1.3","mg/L","",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","G32-MW304SR-

121817","","","0.025",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","73.8","\%","","0","MDL","","SURR","73.8","","0","PQL","YES","0.952","G32-MW304SR121817","","","0",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","12674-11-2","AROCLOR 1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.088","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","11097-69-1","AROCLOR 1254","0.24","ug/L","U","0.081","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","11096-82-5","AROCLOR 1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.071","MDL","","TRG","","","0.48","PQL","YES","0","G32-MW304SR-121817","","","0.24",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","2051-24-
3","DECACHLOROBIPHENYL","80.6","\%","","0","MDL","","SURR","80.6","","0","PQL","YES","0.952","G32-
MW304SR-121817","","","0",""
"G32-MW304SR-121817","8082A","RES","TK1925-10","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.063","MDL","","TRG","","","4.3","PQL","YES","0","G32-MW304SR-
121817","","","2.1",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","110.","\%","","0","MDL","","SURR","110.","","0","PQL","YES","50.0","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.2","ug/L","","0.21","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR-
121817","","","2.0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","460-00-4","4-
BROMOFLUOROBENZENE","106.","\%","","0","MDL","","SURR","106.","","0","PQL","YES","50.0","G32-
MW304SR-121817","","","0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR-
121817","","","0.50",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","2.2","ug/L","","0.21","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW304SR-
121817","","","1.0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","103.","\%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G32-

MW304SR-121817","","","0.50",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","2037-26-5","TOLUENE-
D8","99.2","\%","","0","MDL","","SURR","99.2","","0","PQL","YES","50.0","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","G32-MW304SR-
121817","","","1.0",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","79-01-
6","TRICHLOROETHENE","1.8","ug/L","","0.28","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR-
121817","","","0.50",""
"G32-MW304SR-121817","8260C","RES","TK1925-10","KAS","75-01-4","VINYL
CHLORIDE","0.66","ug/L","J","0.25","MDL","","TRG","","","1.0","PQL","YES","0","G32-MW304SR-
121817","","","2.0",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","615-58-7","2,4-Dibromophenol
","23.9","\%","","0","MDL","","SURR","23.9","","0","PQL","YES","4.00","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.095","ug/L","U","0.073","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","7297-45-2","2-Methylnaphthalene-
d10","64.3","\%","","0","MDL","","SURR","64.3","","0","PQL","YES","2.00","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.058","ug/L","J","0.044","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","50-32-
8","BENZO(A)PYRENE","0.095","ug/L","U","0.063","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.095","ug/L","U","0.085","MDL","","TRG","","","0.19","PQL","YES","0","G32 -MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.095","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.095","ug/L","U","0.047","MDL","","TRG","","","0.19","PQL","YES","0","G32 -MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","218-01-
9","CHRYSENE","0.095","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-
121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.095","ug/L","U","0.067","MDL","","TRG","","","0.19","PQL","YES","0","G 32-MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","206-44-
0","FLUORANTHENE","0.095","ug/L","U","0.070","MDL","","TRG","","","0.19","PQL","YES","0","G32-
MW304SR-121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","81103-79-9","Fluorene-
d10","63.8","\%","","0","MDL","","SURR","63.8","","0","PQL","YES","2.00","G32-MW304SR-121817","","","0",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.095","ug/L","U","0.050","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR-

121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","91-20-
3","NAPHTHALENE","0.095","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","G32-MW304SR121817","","","0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","87-86-
5","PENTACHLOROPHENOL","0.48","ug/L","U","0.31","MDL","","TRG","","","0.95","PQL","YES","0","G32-
MW304SR-121817","","","0.48",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","85-01-
8","PHENANTHRENE","0.095","ug/L","U","0.048","MDL","","TRG","',"',"0.19","PQL","YES","0","G32-MW304SR-121817","","',"0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","129-00-
0","PYRENE","0.095","ug/L","U","0.056","MDL","',"TRG","","","0.19","PQL","YES","0","G32-MW304SR-
121817","","',"0.095",""
"G32-MW304SR-121817","8270D-SIM","RES","TK1925-10","KAS","1718-52-1","Pyrene-
d10","93.8","\%","',"0","MDL","',"SURR","93.8","',"0","PQL","YES","2.00","G32-MW304SR-121817","',"',"0","'"
"G32-MW304SR-121817","300.0","RES","TK1925-10DL","KAS","14808-79-
8","SULFATE","26","mg/L","',"0.13","MDL","',"TRG","","","2.0","PQL","YES","3.75","G32-MW304SR-
121817","","","1.0",""
"G32-MW304SR-121817","300.0","RES","TK1925-10DLB","KAS","16887-00-
6","CHLORIDE","58","mg/L","',"0.99","MDL","","TRG","","","20.","PQL","YES","3.75","G32-MW304SR121817","',"","10.","'
"G32-MW306BR-121817","300.0","RES","TK1925-1DL","KAS","16887-00-
6","CHLORIDE","190","mg/L","',"2.0","MDL","","TRG","","',"40.","PQL","YES","3.75","G32-MW306BR-
121817","',"","20.","'"
"DUP-121817","2320B","RES","TK1925-3","KAS","11-43-8","ALKALINITY AS
CACO3","360","mg/L","","0.23","MDL","',"TRG","',"',"5.0","PQL","YES","0","DUP-121817","',"',"4.0","'"
"DUP-121817","8082A","RES","TK1925-3","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","98.8","\%","","0","MDL","","SURR","98.8",","0","PQL","YES","0.962","DUP-121817","","',"0","" "DUP-121817","8082A","RES","TK1925-3","KAS","12674-11-2","AROCLOR 1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24","" "DUP-121817","8082A","RES","TK1925-3","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","',"","0.48","PQL","YES","0","DUP-121817","',"',"0.24","" "DUP-121817","8082A","RES","TK1925-3","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.09","MDL","',"TRG","","","0.48","PQL","YES","0","DUP-121817","',"',"0.24","'" "DUP-121817","8082A","RES","TK1925-3","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24","" "DUP-121817","8082A","RES","TK1925-3","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","',"',"0.24","'" "DUP-121817","8082A","RES","TK1925-3","KAS","11097-69-1","AROCLOR 1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.48","PQL","YES","0',"DUP-121817","',"","0.24","" "DUP-121817","8082A","RES","TK1925-3","KAS","11096-82-5","AROCLOR 1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","DUP-121817","","","0.24","" "DUP-121817","8082A","RES","TK1925-3","KAS","37324-23-5","Aroclor-1262 ","0.24","ug/L","U","0.066","MDL","","TRG","',"',"0.48","PQL","YES","0","DUP-121817","',"',"0.24","'"
"DUP-121817","8082A","RES","TK1925-3","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","',"","0.48","PQL","YES","0","DUP-121817","',"',"0.24",""
"DUP-121817","8082A","RES","TK1925-3","KAS","2051-24-
3","DECACHLOROBIPHENYL","105.","\%","","0","MDL","","SURR","105.","","0","PQL","YES","0.962","DUP-
121817","","","0","'
"DUP-121817","8082A","RES","TK1925-3","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.063","MDL","","TRG","',"","4.3","PQL","YES","0","DUP-121817","","","2.2","'"
"DUP-121817","8260C","RES","TK1925-3","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","109.","\%","","0","MDL","","SURR","109.","","0","PQL","YES","50.0","DUP-121817","',"","0","'"
"DUP-121817","8260C","RES","TK1925-3","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","',"TRG","',"","1.0","PQL","YES","0","DUP-
121817","","","2.0",""
"DUP-121817","8260C","RES","TK1925-3","KAS","460-00-4","4-
BROMOFLUOROBENZENE","99.9","\%","","0","MDL","","SURR","99.9","","0","PQL","YES","50.0","DUP121817", "', "',"0","'
"DUP-121817","8260C","RES","TK1925-3","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","','","1.0","PQL","YES",'0","DUP-

121817","","","0.50",""
"DUP-121817","8260C","RES","TK1925-3","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","DUP-
121817","","","1.0",""
"DUP-121817","8260C","RES","TK1925-3","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","100.","\%","","0","MDL","","SURR","100.","","0","PQL","YES","50.0","DUP-
121817","","","0",""
"DUP-121817","8260C","RES","TK1925-3","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","DUP121817","","","0.50",""
"DUP-121817","8260C","RES","TK1925-3","KAS","2037-26-5","TOLUENE-
D8","103.","\%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","DUP-121817","","","0",""
"DUP-121817","8260C","RES","TK1925-3","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","DUP-
121817","","","1.0",""
"DUP-121817","8260C","RES","TK1925-3","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","DUP-
121817","","","0.50",""
"DUP-121817","8260C","RES","TK1925-3","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","DUP-121817","","","2.0",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","615-58-7","2,4-Dibromophenol
","24.5","\%","","0","MDL","","SURR","24.5","","0","PQL","YES","4.00","DUP-121817","","","0",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.096","ug/L","U","0.074","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","7297-45-2","2-Methylnaphthalene-
d10","65.7","\%","","0","MDL","","SURR","65.7","","0","PQL","YES","2.00","DUP-121817","","","0",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.054","ug/L","J","0.044","MDL","","TRG","","","0.19","PQL","YES","0","DUP121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","50-32-
8","BENZO(A)PYRENE","0.096","ug/L","U","0.063","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.096","ug/L","U","0.086","MDL","","TRG","","","0.19","PQL","YES","0","DU P-121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.096","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","DUP121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.096","ug/L","U","0.047","MDL","","TRG","","","0.19","PQL","YES","0","DU P-121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","218-01-
9","CHRYSENE","0.096","ug/L","U","0.035","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.096","ug/L","U","0.067","MDL","","TRG","","","0.19","PQL","YES","0","D UP-121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","206-44-
0","FLUORANTHENE","0.096","ug/L","U","0.070","MDL","","TRG","","","0.19","PQL","YES","0","DUP121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","81103-79-9","Fluorene-
d10","69.5","\%","","0","MDL","","SURR","69.5","","0","PQL","YES","2.00","DUP-121817","","","0",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.096","ug/L","U","0.050","MDL","","TRG","","","0.19","PQL","YES","0","DUP121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","91-20-
3","NAPHTHALENE","0.096","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","87-86-
5","PENTACHLOROPHENOL","0.48","ug/L","U","0.32","MDL","","TRG","","","0.96","PQL","YES","0","DUP121817","","","0.48",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","85-01-
8","PHENANTHRENE","0.096","ug/L","U","0.049","MDL","","TRG","","","0.19","PQL","YES","0","DUP-
121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","129-00-
0","PYRENE","0.096","ug/L","U","0.057","MDL","","TRG","","","0.19","PQL","YES","0","DUP121817","","","0.096",""
"DUP-121817","8270D-SIM","RES","TK1925-3","KAS","1718-52-1","Pyrene-
d10","99.7","\%","","0","MDL","","SURR","99.7","","0","PQL","YES","2.00","DUP-121817","","","0",""
"DUP-121817","300.0","RES","TK1925-3DL","KAS","16887-00-
6","CHLORIDE","19","mg/L","","0.20","MDL","","TRG","","","4.0","PQL","YES","3.75","DUP-
121817","","","2.0",""
"DUP-121817","300.0","RES","TK1925-3DL","KAS","14808-79-
8","SULFATE","28","mg/L","","0.13","MDL","","TRG","","","2.0","PQL","YES","3.75","DUP-121817","","","1.0",""
"DUP-121817","300.0","RES","TK1925-3DLB","KAS","14797-55-8","NITRATE AS
N","9.9","mg/L","","0.087","MDL","","TRG","","","0.25","PQL","YES","0.845","DUP-121817","","","0.12",""
"GI-MW400-121817","2320B","RES","TK1925-6","KAS","11-43-8","ALKALINITY AS
CACO3","350","mg/L","","0.23","MDL","","TRG","","","5.0","PQL","YES","0","GI-MW400-121817","","","4.0",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","83.8","\%","","0","MDL","","SURR","83.8","","0","PQL","YES","0.952","GI-MW400-121817","","","0",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","12674-11-2","AROCLOR
1016","0.24","ug/L","U","0.14","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","11104-28-2","AROCLOR
1221","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","11141-16-5","AROCLOR
1232","0.24","ug/L","U","0.088","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","53469-21-9","AROCLOR
1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","12672-29-6","AROCLOR
1248","0.24","ug/L","U","0.2","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","11097-69-1","AROCLOR
1254","0.24","ug/L","U","0.081","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","11096-82-5","AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.071","MDL","","TRG","","","0.48","PQL","YES","0","GI-MW400-121817","","","0.24",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","2051-24-
3","DECACHLOROBIPHENYL","91.8","\%","","0","MDL","","SURR","91.8","","0","PQL","YES","0.952","GI-MW400-121817","","","0",""
"GI-MW400-121817","8082A","RES","TK1925-6","KAS","1336-36-3","TOTAL
PCB","2.1","ug/L","U","0.063","MDL","","TRG","","","4.3","PQL","YES","0","GI-MW400-121817","","","2.1",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","111.","\%","","0","MDL","","SURR","111.","","0","PQL","YES","50.0","GI-MW400-121817","","","0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-

121817","","","2.0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","460-00-4","4-
BROMOFLUOROBENZENE","98.7","\%","","0","MDL","","SURR","98.7","","0","PQL","YES","50.0","GI-MW400121817","","","0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.50",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW400121817","","","1.0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","GI-
MW400-121817","","","0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","GI-
MW400-121817","","","0.50",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","2037-26-5","TOLUENE-
D8","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","GI-MW400-121817","","","0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","GI-MW400-
121817","","","1.0",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
121817","","","0.50",""
"GI-MW400-121817","8260C","RES","TK1925-6","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","GI-MW400-
121817","","","2.0",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","615-58-7","2,4-Dibromophenol
","27.2","\%","","0","MDL","","SURR","27.2","","0","PQL","YES","4.00","GI-MW400-121817","","","0",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.094","ug/L","U","0.073","MDL","","TRG","","","0.19","PQL","YES","0","GI-
MW400-121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","7297-45-2","2-Methylnaphthalene-
d10","67.4","\%","","0","MDL","","SURR","67.4","","0","PQL","YES","2.00","GI-MW400-121817","","","0",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.057","ug/L","J","0.043","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","50-32-
8","BENZO(A)PYRENE","0.094","ug/L","U","0.062","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.094","ug/L","U","0.084","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.094","ug/L","U","0.061","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.094","ug/L","U","0.046","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","218-01-
9","CHRYSENE","0.094","ug/L","U","0.034","MDL","","TRG","","","0.19","PQL","YES","0","GI-MW400-
121817","","","0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.094","ug/L","U","0.066","MDL","","TRG","","","0.19","PQL","YES","0","G

I-MW400-121817","',"'","0.094","'
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","206-44-
0","FLUORANTHENE","0.094","ug/L","U","0.069","MDL","',"TRG","","","0.19","PQL","YES","0","GI-MW400-
121817","',"","0.094","'"
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","81103-79-9","Fluorene-
d10","68.5","\%","","0","MDL","","SURR","68.5","","0","PQL","YES","2.00","GI-MW400-121817","","","0",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.094","ug/L","U","0.049","MDL","","TRG","',"","0.19","PQL","YES","0","GI-MW400-

121817","',"',"0.094","'
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","91-20-
3","NAPHTHALENE","0.094","ug/L","U","0.060","MDL","',"TRG","',"',"0.19","PQL","YES","0","GI-MW400-
121817","","',"0.094",""
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","87-86-
5","PENTACHLOROPHENOL","0.47","ug/L","U","0.31","MDL","',"TRG","',"',"0.94","PQL","YES","0","GI-MW400-121817","',"',"0.47","'
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","85-01-
8","PHENANTHRENE","0.094","ug/L","U","0.048","MDL","',"TRG","',"","0.19","PQL","YES","0","GI-MW400-
121817","","","0.094","'
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","129-00-
0","PYRENE","0.094","ug/L","U","0.056","MDL","","TRG","',"',"0.19","PQL","YES","0","GI-MW400-
121817","',"',"0.094","'
"GI-MW400-121817","8270D-SIM","RES","TK1925-6","KAS","1718-52-1","Pyrene-
d10","87.5","\%","","0","MDL","","SURR","87.5","',"0","PQL","YES","2.00","GI-MW400-121817","',"',"0","'"
"GI-MW400-121817","300.0","RES","TK1925-6DL","KAS","16887-00-
6","CHLORIDE","19","mg/L","',"0.20","MDL","","TRG","","","4.0","PQL","YES","3.75","GI-MW400-
121817","","","2.0","'
"GI-MW400-121817","300.0","RES","TK1925-6DL","KAS","14808-79-
8","SULFATE","28","mg/L","',"0.13","MDL","',"TRG","',"","2.0","PQL","YES","3.75","GI-MW400-
121817","","","1.0",""
"GI-MW400-121817","300.0","RES","TK1925-6DLB","KAS","14797-55-8","NITRATE AS
N","9.7","mg/L","',"0.087","MDL","","TRG","","',"0.25","PQL","YES","0.845","GI-MW400-121817","","',"0.12","'"
"G44S-MW202RR-121817","2320B","RES","TK1925-8","KAS","11-43-8","ALKALINITY AS
CACO3","94.","mg/L",'","0.23","MDL","',"TRG","',"","5.0","PQL","YES","0","G44S-MW202RR-
121817","',"","4.0",""
"G44S-MW202RR-121817","300.0","RES","TK1925-8","KAS","14797-55-8","NITRATE AS
N","0.025","mg/L","U",".0174","MDL","',"TRG","',"',"0.050","PQL","YES","0.845","G44S-MW202RR-
121817","","',"0.025",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","82.4","\%","',"0","MDL","","SURR","82.4","',"0","PQL","YES","0.962","G44S-MW202RR121817","',"',"0","'
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","12674-11-2","AROCLOR 1016","0.24","ug/L","U","0.14","MDL","","TRG","',"',"0.48","PQL","YES","0","G44S-MW202RR121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11104-28-2","AROCLOR 1221","0.24","ug/L","U","0.2","MDL","","TRG","',"',"0.48","PQL","YES","0","G44S-MW202RR121817","',"',"0.24","'
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11141-16-5","AROCLOR 1232","0.24","ug/L","U","0.09","MDL","',"TRG","","","0.48","PQL","YES","0","G44S-MW202RR121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","53469-21-9","AROCLOR 1242","0.24","ug/L","U","0.18","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR121817","',"',"0.24","'
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","12672-29-6","AROCLOR 1248","0.24","ug/L",'U","0.2","MDL","","TRG",'","',"0.48","PQL","YES","0","G44S-MW202RR-

121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11097-69-1","AROCLOR
1254","0.24","ug/L","U","0.082","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11096-82-5","AROCLOR
1260","0.24","ug/L","U","0.17","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","37324-23-5","Aroclor-1262
","0.24","ug/L","U","0.066","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","11100-14-4","Aroclor-1268
","0.24","ug/L","U","0.072","MDL","","TRG","","","0.48","PQL","YES","0","G44S-MW202RR-
121817","","","0.24",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","2051-24-
3","DECACHLOROBIPHENYL","75.9","\%","","0","MDL","","SURR","75.9","","0","PQL","YES","0.962","G44S-
MW202RR-121817","","","0",""
"G44S-MW202RR-121817","8082A","RES","TK1925-8","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.063","MDL","","TRG","","","4.3","PQL","YES","0","G44S-MW202RR-
121817","","","2.2",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","17060-07-0","1,2-DICHLOROETHANE-D4","114.","\%","","0","MDL","","SURR","114.","","0","PQL","YES","50.0","G44S-MW202RR-121817","","","0","" "G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR121817","","","2.0",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","460-00-4","4-
BROMOFLUOROBENZENE","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","G44S-
MW202RR-121817","","',"0",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR-
121817","","","0.50",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","G44S-MW202RR-
121817","","","1.0",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","103.","\%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G44S -MW202RR-121817","","","0",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","G44S-
MW202RR-121817","","","0.50",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","2037-26-5","TOLUENE-
D8","103.","\%","","0","MDL","","SURR","103.","","0","PQL","YES","50.0","G44S-MW202RR-121817","","","0",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","G44S-MW202RR121817","","","1.0",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","G44S-
MW202RR-121817","","","0.50",""
"G44S-MW202RR-121817","8260C","RES","TK1925-8","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","G44S-MW202RR-
121817","","","2.0",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","615-58-7","2,4-Dibromophenol
","28.1","\%","","0","MDL","","SURR","28.1","","0","PQL","YES","4.00","G44S-MW202RR-121817","","","0",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.099","ug/L","U","0.076","MDL","","TRG","","","0.20","PQL","YES","0","G44S-

MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","7297-45-2","2-Methylnaphthalene-d10","59.8","\%","","0","MDL","","SURR","59.8","","0","PQL","YES","2.00","G44S-MW202RR-121817","","","0","" "G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.058","ug/L","J","0.046","MDL","","TRG","","","0.20","PQL","YES","0","G44S-MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","50-32-
8","BENZO(A)PYRENE","0.099","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.099","ug/L","U","0.088","MDL","","TRG","","","0.20","PQL","YES","0","G44 S-MW202RR-121817","","","0.099","'
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.099","ug/L","U","0.064","MDL","","TRG","","","0.20","PQL","YES","0","G44S-MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.099","ug/L","U","0.048","MDL","","TRG","","","0.20","PQL","YES","0","G44 S-MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","218-01-
9","CHRYSENE","0.099","ug/L","U","0.036","MDL","","TRG","","","0.20","PQL","YES","0","G44S-MW202RR121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.099","ug/L","U","0.069","MDL","","TRG","","","0.20","PQL","YES","0","G 44S-MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","206-44-
0","FLUORANTHENE","0.099","ug/L","U","0.072","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","81103-79-9","Fluorene-d10","71.4","\%","","0","MDL","","SURR","71.4","","0","PQL","YES","2.00","G44S-MW202RR-121817","","","0","" "G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.099","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","G44S-MW202RR121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","91-20-
3","NAPHTHALENE","0.099","ug/L","U","0.063","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","87-86-
5","PENTACHLOROPHENOL","0.50","ug/L","U","0.33","MDL","","TRG","","","0.99","PQL","YES","0","G44S-MW202RR-121817","","","0.50",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","85-01-
8","PHENANTHRENE","0.099","ug/L","U","0.050","MDL","","TRG","","","0.20","PQL","YES","0","G44S-
MW202RR-121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","129-00-
0","PYRENE","0.099","ug/L","U","0.058","MDL","","TRG","","","0.20","PQL","YES","0","G44S-MW202RR121817","","","0.099",""
"G44S-MW202RR-121817","8270D-SIM","RES","TK1925-8","KAS","1718-52-1","Pyrene-
d10","94.9","\%","","0","MDL","","SURR","94.9","","0","PQL","YES","2.00","G44S-MW202RR-121817","","","0",""
"G44S-MW202RR-121817","300.0","RES","TK1925-8DL","KAS","14808-79-
8","SULFATE","1600","mg/L","","6.4","MDL","","TRG","","","100","PQL","YES","3.75","G44S-MW202RR-
121817","","","50.",""
"G44S-MW202RR-121817","300.0","RES","TK1925-8DLB","KAS","16887-00-
6","CHLORIDE","11000","mg/L","","200","MDL","","TRG","","","4000","PQL","YES","3.75","G44S-MW202RR121817","","","2000",""
"WG220411-1","8082A","RES","WG220411-1","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-xylene","74.9","\%","","0","MDL","","SURR","74.9","","0","PQL","YES","1.00","WG220411-1","","","0",""
"WG220411-1","8082A","RES","WG220411-1","KAS","12674-11-2","AROCLOR 1016","0.25","ug/L","U","0.15","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11104-28-2","AROCLOR 1221","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11141-16-5","AROCLOR 1232","0.25","ug/L","U","0.089","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","53469-21-9","AROCLOR 1242","0.25","ug/L","U","0.18","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","12672-29-6","AROCLOR 1248","0.25","ug/L","U","0.20","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11097-69-1","AROCLOR 1254","0.25","ug/L","U","0.082","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11096-82-5","AROCLOR 1260","0.25","ug/L","U","0.17","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","37324-23-5","Aroclor-1262 ","0.25","ug/L","U","0.066","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","11100-14-4","Aroclor-1268 ","0.25","ug/L","U","0.072","MDL","","TRG","","","0.50","PQL","YES","0","WG220411-1","","","0.25","" "WG220411-1","8082A","RES","WG220411-1","KAS","2051-24-
3","DECACHLOROBIPHENYL","70.4","\%","","0","MDL","","SURR","70.4","","0","PQL","YES","1.00","WG22041 1-1","","","0",""
"WG220411-1","8082A","RES","WG220411-1","KAS","1336-36-3","TOTAL
PCB","2.2","ug/L","U","0.066","MDL","","TRG","","","4.5","PQL","YES","0","WG220411-1","","","2.2","" "WG220411-2","8082A","RES","WG220411-2","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","98.7","\%","","0","MDL","","SURR","98.7","","0","PQL","YES","1.00","WG220411-2","","","0",""
"WG220411-2","8082A","RES","WG220411-2","KAS","12674-11-2","AROCLOR
1016","4.90","ug/L","","0.15","MDL","","SPK","98.0","","0.50","PQL","YES","5.00","WG220411-2","","","0.25",""
"WG220411-2","8082A","RES","WG220411-2","KAS","11096-82-5","AROCLOR
1260","5.13","ug/L","","0.17","MDL","","SPK","103.","","0.50","PQL","YES","5.00","WG220411-2","","","0.25","" "WG220411-2","8082A","RES","WG220411-2","KAS","2051-24-
3","DECACHLOROBIPHENYL","83.2","\%","","0","MDL","","SURR","83.2","","0","PQL","YES","1.00","WG22041 1-2","","","0",""
"WG220411-3","8082A","RES","WG220411-3","KAS","877-09-8","2,4,5,6-Tetrachloro-meta-
xylene","92.8","\%","","0","MDL","","SURR","92.8","","0","PQL","YES","1.00","WG220411-3","","","0",""
"WG220411-3","8082A","RES","WG220411-3","KAS","11097-69-1","AROCLOR
1254","4.34","ug/L","","0.082","MDL","","SPK","86.8","","0.50","PQL","YES","5.00","WG220411-3","","","0.25",""
"WG220411-3","8082A","RES","WG220411-3","KAS","2051-24-
3","DECACHLOROBIPHENYL","86.6","\%","","0","MDL","","SURR","86.6","","0","PQL","YES","1.00","WG22041 1-3","","","0",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","615-58-7","2,4-Dibromophenol
","26.4","\%","","0","MDL","","SURR","26.4","","0","PQL","YES","4.00","WG220582-1","","","0",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","91-57-6","2-
METHYLNAPHTHALENE","0.10","ug/L","U","0.077","MDL","","TRG","","","0.20","PQL","YES","0","WG2205821","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","7297-45-2","2-Methylnaphthalene-
d10","89.0","\%","","0","MDL","","SURR","89.0","","0","PQL","YES","2.00","WG220582-1","","","0",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","56-55-
3","BENZO(A)ANTHRACENE","0.078","ug/L","J","0.046","MDL","","TRG","","","0.20","PQL","YES","0","WG220 582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","50-32-
8","BENZO(A)PYRENE","0.10","ug/L","U","0.066","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","205-99-
2","BENZO(B)FLUORANTHENE","0.10","ug/L","U","0.089","MDL","","TRG","","","0.20","PQL","YES","0","WG2

20582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","0.10","ug/L","U","0.065","MDL","","TRG","","","0.20","PQL","YES","0","WG220 582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","207-08-
9","BENZO(K)FLUORANTHENE","0.10","ug/L","U","0.049","MDL","","TRG","","","0.20","PQL","YES","0","WG2 20582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","218-01-
9","CHRYSENE","0.10","ug/L","U","0.036","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","0.10","ug/L","U","0.070","MDL","","TRG","","","0.20","PQL","YES","0","W G220582-1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","206-44-
0","FLUORANTHENE","0.10","ug/L","U","0.073","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","81103-79-9","Fluorene-
d10","85.6","\%","","0","MDL","","SURR","85.6","","0","PQL","YES","2.00","WG220582-1","","","0",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","0.10","ug/L","U","0.052","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-

1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","91-20-
3","NAPHTHALENE","0.10","ug/L","U","0.064","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","87-86-
5","PENTACHLOROPHENOL","0.50","ug/L","U","0.33","MDL","","TRG","","","1.0","PQL","YES","0","WG220582 -1","","","0.50",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","85-01-
8","PHENANTHRENE","0.10","ug/L","U","0.051","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","129-00-
0","PYRENE","0.10","ug/L","U","0.059","MDL","","TRG","","","0.20","PQL","YES","0","WG220582-
1","","","0.10",""
"WG220582-1","8270D-SIM","RES","WG220582-1","KAS","1718-52-1","Pyrene-
d10","114.","\%","","0","MDL","","SURR","114.","","0","PQL","YES","2.00","WG220582-1","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","615-58-7","2,4-Dibromophenol
","26.7","\%","","0","MDL","","SURR","26.7","","0","PQL","YES","4.00","WG220582-2","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","91-57-6","2-
METHYLNAPHTHALENE","1.25","ug/L","","0.077","MDL","","SPK","62.5","","0.20","PQL","YES","2.00","WG22 0582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","7297-45-2","2-Methylnaphthalene-
d10","63.6","\%","","0","MDL","","SURR","63.6","","0","PQL","YES","2.00","WG220582-2","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","56-55-
3","BENZO(A)ANTHRACENE","1.52","ug/L","","0.046","MDL","","SPK","76.0","","0.20","PQL","YES","2.00","W G220582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","50-32-
8","BENZO(A)PYRENE","1.33","ug/L","","0.066","MDL","","SPK","66.5","","0.20","PQL","YES","2.00","WG22058 2-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","205-99-
2","BENZO(B)FLUORANTHENE","1.34","ug/L","","0.089","MDL","","SPK","67.0","","0.20","PQL","YES","2.00"," WG220582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","191-24-
2","BENZO(G,H,I)PERYLENE","1.42","ug/L","","0.065","MDL","","SPK","71.0","","0.20","PQL","YES","2.00","W G220582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","207-08-
9","BENZO(K)FLUORANTHENE","1.59","ug/L","","0.049","MDL","","SPK","79.5","","0.20","PQL","YES","2.00"," WG220582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","218-01-
9","CHRYSENE","1.62","ug/L","","0.036","MDL","","SPK","81.0","","0.20","PQL","YES","2.00","WG220582-
2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","53-70-
3","DIBENZO(A,H)ANTHRACENE","1.42","ug/L","","0.070","MDL","","SPK","71.0","","0.20","PQL","YES","2.00 ","WG220582-2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","206-44-
0","FLUORANTHENE","1.80","ug/L","","0.073","MDL","","SPK","90.0","","0.20","PQL","YES","2.00","WG220582 -2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","81103-79-9","Fluorene-
d10","66.4","\%","","0","MDL","","SURR","66.4","","0","PQL","YES","2.00","WG220582-2","","","0",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","193-39-5","INDENO(1,2,3-
CD)PYRENE","1.80","ug/L","","0.052","MDL","","SPK","90.0","","0.20","PQL","YES","2.00","WG220582-

2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","91-20-
3","NAPHTHALENE","1.19","ug/L","","0.064","MDL","","SPK","59.5","","0.20","PQL","YES","2.00","WG2205822","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","87-86-
5","PENTACHLOROPHENOL","2.97","ug/L","","0.33","MDL","","SPK","74.2","","1.0","PQL","YES","4.00","WG2 20582-2","","","0.50",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","85-01-
8","PHENANTHRENE","1.53","ug/L","","0.051","MDL","","SPK","76.5","","0.20","PQL","YES","2.00","WG220582 -2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","129-00-
0","PYRENE","1.55","ug/L","","0.059","MDL","","SPK","77.5","","0.20","PQL","YES","2.00","WG220582-
2","","","0.10",""
"WG220582-2","8270D-SIM","RES","WG220582-2","KAS","1718-52-1","Pyrene-
d10","77.3","\%","","0","MDL","","SURR","77.3","","0","PQL","YES","2.00","WG220582-2","","","0",""
"WG220806-1","300.0","RES","WG220806-1","KAS","16887-00-
6","CHLORIDE","1.0","mg/L","U",".0993","MDL","","TRG","","","2.0","PQL","YES","3.75","WG220806-
1","","","1.0",""
"WG220806-1","300.0","RES","WG220806-1","KAS","14797-55-8","NITRATE AS
N","0.025","mg/L","U",".0174","MDL","","TRG","","","0.050","PQL","YES","0.845","WG220806-1","","","0.025","" "WG220806-1","300.0","RES","WG220806-1","KAS","14808-79-
8","SULFATE","0.50","mg/L","U","0.064","MDL","","TRG","","","1.0","PQL","YES","3.75","WG220806-
1","","","0.50",""
"WG220806-2","300.0","RES","WG220806-2","KAS","16887-00-
6","CHLORIDE","3.71","mg/L","",".0993","MDL","","SPK","98.9","","2.0","PQL","YES","3.75","WG220806-
2","","","1.0",""
"WG220806-2","300.0","RES","WG220806-2","KAS","14797-55-8","NITRATE AS
N","0.835","mg/L","",".0174","MDL","","SPK","98.8","","0.050","PQL","YES","0.845","WG220806-
2","","","0.025",""
"WG220806-2","300.0","RES","WG220806-2","KAS","14808-79-
8","SULFATE","3.69","mg/L","","0.064","MDL","","SPK","98.4","","1.0","PQL","YES","3.75","WG220806-
2","","","0.50",""
"G32-MW304SR-121817MS","300.0","RES","WG220806-3","KAS","14797-55-8","NITRATE AS
N","2.1","mg/L","",".0174","MDL","","SPK","94.8","","0.050","PQL","YES","0.845","TK1925-10","","","0.025",""
"WG220969-1","2320B","RES","WG220969-1","KAS","11-43-8","ALKALINITY AS
CACO3","0.51","mg/L","J","0.23","MDL","","TRG","","","5.0","PQL","YES","0","WG220969-1","","","4.0",""
"WG220969-2","2320B","RES","WG220969-2","KAS","11-43-8","ALKALINITY AS
CACO3","120","mg/L","","0.23","MDL","","SPK","104","","5.0","PQL","YES","120","WG220969-2","","","4.0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","94.0","\%","","0","MDL","","SURR","94.0","","0","PQL","YES","50.0","WG220989-1","","","0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","540-59-0","1,2-
DICHLOROETHYLENE","100.","ug/L","","0.21","MDL","","SPK","100.","","1.0","PQL","YES","100.","WG2209891","","","2.0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","460-00-4","4-
BROMOFLUOROBENZENE","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","WG220989-
1","","","0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","71-43-
2","BENZENE","50.5","ug/L","","0.26","MDL","","SPK","101.","","1.0","PQL","YES","50.0","WG220989-
1","","","0.50",""
"WG220989-1","8260C","RES","WG220989-1","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","50.8","ug/L","","0.21","MDL","","SPK","102.","","0.50","PQL","YES","50.0","WG220989-
1","","","1.0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","98.6","\%","","0","MDL","","SURR","98.6","","0","PQL","YES","50.0","WG2 20989-1","","","0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","127-18-
4","TETRACHLOROETHENE","47.6","ug/L","","0.40","MDL","","SPK","95.2","","1.0","PQL","YES","50.0","WG2 20989-1","","","0.50",""
"WG220989-1","8260C","RES","WG220989-1","KAS","2037-26-5","TOLUENE-
D8","99.7","\%","","0","MDL","","SURR","99.7","","0","PQL","YES","50.0","WG220989-1","","","0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","156-60-5","TRANS-1,2-
DICHLOROETHENE","49.4","ug/L","","0.25","MDL","","SPK","98.8","","0.50","PQL","YES","50.0","WG2209891","","","1.0",""
"WG220989-1","8260C","RES","WG220989-1","KAS","79-01-
6","TRICHLOROETHENE","49.8","ug/L","","0.28","MDL","","SPK","99.6","","1.0","PQL","YES","50.0","WG22098 9-1","","","0.50",""
"WG220989-1","8260C","RES","WG220989-1","KAS","75-01-4","VINYL
CHLORIDE","48.8","ug/L","","0.25","MDL","","SPK","97.6","","1.0","PQL","YES","50.0","WG220989-
1","","","2.0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","17060-07-0","1,2-DICHLOROETHANE-
D4","102.","\%","","0","MDL","","SURR","102.","","0","PQL","YES","50.0","WG220989-2","","","0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","540-59-0","1,2-
DICHLOROETHYLENE","2.0","ug/L","U","0.21","MDL","","TRG","","","1.0","PQL","YES","0","WG220989-
2","","","2.0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","460-00-4","4-
BROMOFLUOROBENZENE","98.8","\%","","0","MDL","","SURR","98.8","","0","PQL","YES","50.0","WG220989-
2","","","0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","71-43-
2","BENZENE","0.50","ug/L","U","0.26","MDL","","TRG","","","1.0","PQL","YES","0","WG220989-
2","","","0.50",""
"WG220989-2","8260C","RES","WG220989-2","KAS","156-59-2","CIS-1,2-
DICHLOROETHENE","1.0","ug/L","U","0.21","MDL","","TRG","","","0.50","PQL","YES","0","WG220989-
2","","","1.0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","1868-53-
7","DIBROMOFLUOROMETHANE","100.","\%","","0","MDL","","SURR","100.","","0","PQL","YES","50.0","WG2 20989-2","","","0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","127-18-
4","TETRACHLOROETHENE","0.50","ug/L","U","0.40","MDL","","TRG","","","1.0","PQL","YES","0","WG220989 -2","","","0.50",""
"WG220989-2","8260C","RES","WG220989-2","KAS","2037-26-5","TOLUENE-
D8","101.","\%","","0","MDL","","SURR","101.","","0","PQL","YES","50.0","WG220989-2","","","0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","156-60-5","TRANS-1,2-

DICHLOROETHENE","1.0","ug/L","U","0.25","MDL","","TRG","","","0.50","PQL","YES","0","WG2209892","","","1.0",""
"WG220989-2","8260C","RES","WG220989-2","KAS","79-01-
6","TRICHLOROETHENE","0.50","ug/L","U","0.28","MDL","","TRG","","","1.0","PQL","YES","0","WG2209892","","","0.50",""
"WG220989-2","8260C","RES","WG220989-2","KAS","75-01-4","VINYL
CHLORIDE","2.0","ug/L","U","0.25","MDL","","TRG","","","1.0","PQL","YES","0","WG220989-2","","","2.0",""
"112G08005-WE22","NEWPORT, GOULD
ISLAND","LCSWKL20IMW1","","AQ","LCSWKL20IMW1","LCS","","4.8","6020A","3010A","RES","12/20/2017
08:01","12/26/2017
20:57","KAS","COA","WET","TOT","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/20/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD
ISLAND","PBWKL20IMW1","","AQ","PBWKL20IMW1","MB","","4.8","6020A","3010A","RES","12/20/2017
08:02","12/26/2017
20:53","KAS","COA","WET","TOT","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/20/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ","TK1925-001","NM","","4.8","6020A","3010A","RES","12/20/2017 08:03","12/26/2017
21:58","KAS","COA","WET","TOT","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ","TK1925-002","NM","","4.8","6020A","3010A","RES","12/20/2017 08:06","12/26/2017
22:02","KAS","COA","WET","DIS","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1","
TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
003","NM","","4.8","6020A","3010A","RES","12/20/2017 08:07","12/26/2017
22:06","KAS","COA","WET","TOT","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
004","NM","","4.8","6020A","3010A","RES","12/20/2017 08:08","12/26/2017
22:10","KAS","COA","WET","DIS","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925006","NM","","4.8","6020A","3010A","RES","12/20/2017 08:09","12/26/2017
22:14","KAS","COA","WET","TOT","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925007","NM","","4.8","6020A","3010A","RES","12/20/2017 08:10","12/26/2017
22:18","KAS","COA","WET","DIS","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-008","NM","","4.8","6020A","3010A","RES","12/20/2017 08:11","12/26/2017
22:31","KAS","COA","WET","TOT","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06","'
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-009","NM","","4.8","6020A","3010A","RES","12/20/2017 08:12","12/26/2017
22:35","KAS","COA","WET","DIS","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925010","NM","","4.8","6020A","3010A","RES","12/20/2017 08:04","12/26/2017
22:39","KAS","COA","WET","TOT","5","","","","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1"," TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-

011","NM","","4.8","6020A","3010A","RES","12/20/2017 08:05","12/26/2017
22:43","KAS","COA","WET","DIS","5","',"',"","100.0","KL20IMW1","KL20IMW1","KL20IMW1","KL20IMW1","
TK1925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ","TK1925-1","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:01","12/28/2017
16:08","KAS","COA","WET","","1","","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ",'TK1925-1","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:01","12/19/2017
16:56","KAS","COA","WET","","1","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ","TK1925-1","NM","","4.8","8082A","3510C","RES","12/20/2017 08:01","12/25/2017
11:30","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ","TK1925-1","NM","","4.8","8260C","5030","RES","12/29/2017 14:21","12/29/2017
14:21","KAS","COA","WET","","1","","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ","TK1925-1","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:01","12/26/2017
21:12","KAS","COA","WET","","1","',"","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK192510","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:02","12/28/2017
16:29","KAS","COA","WET","","1","","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/19/2017 00:00","01/29/2018 14:06","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK192510","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:02","12/19/2017
17:59","KAS","COA","WET","","1","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK192510","NM","","4.8","8082A","3510C","RES","12/20/2017 08:02","12/25/2017
12:51","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK192510","NM","","4.8","8260C","5030","RES","12/29/2017 16:41","12/29/2017
16:41","KAS","COA","WET","',"1","","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/19/2017 00:00","01/29/2018 14:06","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK1925-10","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:02","12/26/2017
23:15","KAS","COA","WET","","1","',"',"","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/19/2017 00:00","01/29/2018 14:06","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK192510DL","NM","',"4.8","300.0","GENPREP","RES","12/19/2017 13:02","12/19/2017
23:39","KAS","COA","WET","","2","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817","12/18/2017 12:50","AQ","TK192510DLB","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:02","12/19/2017
23:55","KAS","COA","WET","","10","","',"","100.0","WG220806","WG220806","WG220806","WG220806","TK192 5","12/19/2017 00:00","01/29/2018 14:06","'"
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW306BR-121817","12/18/2017
10:50","AQ","TK1925-1DL","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:01","12/19/2017
21:49","KAS","COA","WET","","20","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK192

5","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK19253","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:03","12/28/2017
16:11","KAS","COA","WET","","1","","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK19253","NM","","4.8","8082A","3510C","RES","12/20/2017 08:03","12/25/2017
11:50","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK19253","NM","","4.8","8260C","5030","RES","12/29/2017 14:56","12/29/2017
14:56","KAS","COA","WET","","1","","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
3","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:03","12/26/2017
21:43","KAS","COA","WET","","1","","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
3DL","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:03","12/19/2017
22:05","KAS","COA","WET","","2","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","DUP-121817","12/18/2017 00:00","AQ","TK1925-
3DLB","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:03","12/19/2017
22:21","KAS","COA","WET","","5","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK19256","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:04","12/28/2017
16:16","KAS","COA","WET","","1","","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK19256","NM","","4.8","8082A","3510C","RES","12/20/2017 08:04","12/25/2017
12:10","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK19256","NM","","4.8","8260C","5030","RES","12/29/2017 15:31","12/29/2017
15:31","KAS","COA","WET","","1","","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-6","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:04","12/26/2017
22:13","KAS","COA","WET","","1","","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""'
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-
6DL","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:04","12/19/2017
22:37","KAS","COA","WET","","2","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","GI-MW400-121817","12/18/2017 10:30","AQ","TK1925-
6DLB","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:04","12/19/2017
22:52","KAS","COA","WET","","5","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-8","NM","","4.8","2320B","GENPREP","RES","12/28/2017 16:05","12/28/2017
16:21","KAS","COA","WET","","1","","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017

14:20","AQ","TK1925-8","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:05","12/19/2017
17:43","KAS","COA","WET","","1","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-8","NM","","4.8","8082A","3510C","RES","12/20/2017 08:05","12/25/2017
12:31","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-8","NM","","4.8","8260C","5030","RES","12/29/2017 16:06","12/29/2017
16:06","KAS","COA","WET","","1","","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-8","NM","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:05","12/26/2017
22:44","KAS","COA","WET","","1","","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-8DL","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:05","12/19/2017
23:08","KAS","COA","WET","","100","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK19 25","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G44S-MW202RR-121817","12/18/2017
14:20","AQ","TK1925-8DLB","NM","","4.8","300.0","GENPREP","RES","12/19/2017 13:05","12/19/2017
23:24","KAS","COA","WET","","2000","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1 925","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-1","","AQ","WG220411-
1","MB","","4.8","8082A","3510C","RES","12/20/2017 08:06","12/25/2017
04:26","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925
","12/20/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-2","","AQ","WG220411-
2","LCS","","4.8","8082A","3510C","RES","12/20/2017 08:07","12/25/2017
04:46","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925
","12/20/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220411-3","","AQ","WG220411-
3","LCS","","4.8","8082A","3510C","RES","12/20/2017 08:08","12/25/2017
05:07","KAS","COA","WET","","1","","","","100.0","WG220411","WG220411","WG220411","WG220411","TK1925
","12/20/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220582-1","","AQ","WG220582-
1","MB","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:06","12/26/2017
20:11","KAS","COA","WET","","1","","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/22/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220582-2","","AQ","WG220582-
2","LCS","","4.8","8270D-SIM","3510C","RES","12/22/2017 09:07","12/26/2017
20:42","KAS","COA","WET","","1","","","","100.0","WG220582","WG220582","WG220582","WG220582","TK1925 ","12/22/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220806-1","","AQ","WG220806-
1","MB","","4.8","300.0","GENPREP","RES","12/19/2017 10:53","12/19/2017
10:53","KAS","COA","WET","","1","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220806-2","","AQ","WG220806-
2","LCS","","4.8","300.0","GENPREP","RES","12/19/2017 11:40","12/19/2017
11:40","KAS","COA","WET","","1","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925 ","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","G32-MW304SR-121817MS","12/18/2017
12:50","AQ","WG220806-3","MS","","4.8","300.0","GENPREP","RES","12/19/2017 13:08","12/19/2017
18:15","KAS","COA","WET","","1","","","","100.0","WG220806","WG220806","WG220806","WG220806","TK1925

```
","12/19/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220969-1","","AQ","WG220969-
1","MB","","4.8","2320B","GENPREP","RES","12/28/2017 15:45","12/28/2017
15:45","KAS","COA","WET","","1","","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925
","12/28/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220969-2","","AQ","WG220969-
2","LCS","","4.8","2320B","GENPREP","RES","12/28/2017 15:47","12/28/2017
15:47","KAS","COA","WET","","1","","","","100.0","WG220969","WG220969","WG220969","WG220969","TK1925
","12/28/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220989-1","","AQ","WG220989-
1","LCS","","4.8","8260C","5030","RES","12/29/2017 09:37","12/29/2017
09:37","KAS","COA","WET","","1","","",","100.0","WG220989","WG220989","WG220989","WG220989","TK1925
","12/29/2017 00:00","01/29/2018 14:06",""
"112G08005-WE22","NEWPORT, GOULD ISLAND","WG220989-2","","AQ","WG220989-
2","MB","","4.8","8260C","5030","RES","12/29/2017 10:48","12/29/2017
10:48","KAS","COA","WET","","1","","","","100.0","WG220989","WG220989","WG220989","WG220989","TK1925
","12/29/2017 00:00","01/29/2018 14:06",""
```


Overview

The sample set for NAVSTA Newport, SDG TK1925 consisted of five (5) aqueous environmental samples, and one (1) FRB sample. Five (5) aqueous environmental samples were analyzed for select volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), perfluorinated alkyl acids (PFAS), select total and dissolved target analyte list (TAL) metals and miscellaneous parameters (alkalinity, chloride, sulfate and nitrate). The FRB sample was analyzed for PFAS only. One (1) field duplicate sample pair, GI-MW400-121817 / DUP-121817, was included in this SDG.

The samples were collected by Tetra Tech, Inc. on December 18, 2017 and analyzed by Katahdin Analytical Services and Shealy Environmental Services (analyzed PFAS samples). All analyses were conducted in accordance with SW846 methods 8260C, 8270D SIM, 8082A, 6020A, EPA methods 537 version 1.1 Mod., 300.0 and Standard Method 2320B analytical and reporting protocols.

An EPA level 2A validation was performed. The data was evaluated with regard to the following parameters:

	-	Data Completeness
*	Holding Times/Sample Preservation	
*	Laboratory Method/Preparation Blank Results	
*	ICP Interference Recoveries	
*	Surrogate Recoveries	
*	Laboratory Control Sample/Laboratory Control Sample Duplicate Results	
*	Matrix Spike Results	
$*$	Internal Standard Areas	
	Detection Limits	

The asterisk (*) indicates that all quality control criteria were met for this parameter. Qualified (if applicable) analytical results are summarized in Appendix A, results as reported by the laboratory are presented in

TO: S. PARKER
PAGE 2
SDG: TK1925

Appendix B, and documentation supporting these findings is presented in Appendix C. The text of this report has been formulated to address only those areas affecting data quality.

DATA COMPLETENESS

The original data package did not include the compounds 1,2-dichloroethene and vinyl chloride for the VOC analyses as listed in the sampling and analysis plan. The laboratory was contacted and the data package was resubmitted with the correct VOC compound list.

LABORATORY METHOD/PREPARATION BLANKS

The following compound was detected in a PAH method blank at the maximum concentration indicated below:
$\frac{\text { Compound }}{\text { Benzo(a)anthracene }} \quad \frac{\text { Concentration }}{0.078 \mathrm{ug} / \mathrm{L}} \quad \frac{\text { Action Level }}{0.39 \mathrm{ug} / \mathrm{L}}$

An action level of 5X the maximum concentration was established to evaluate for blank contamination. Detected results less than the action level for benzo(a) anthracene were qualified as (U).

The following compounds were detected in a PAH method/field reagent blanks at the maximum concentration indicated below:

Compound	Concentration	Action Level
Pentadecafluorooctanioc acid (PFOA) ${ }^{(1)}$	$0.80 \mathrm{ng} / \mathrm{L}$	$4.0 \mathrm{ng} / \mathrm{L}$
Perfluorohexanesulfonic acid (PFHxS) ${ }^{(2)}$	$1.1 \mathrm{ng} / \mathrm{L}$	$5.5 \mathrm{ng} / \mathrm{L}$
Perfluorooctane sulfonic acid (PFOS) ${ }^{(2)}$	5.6 ng/L	$28 \mathrm{ng} / \mathrm{L}$

(1) Maximum concentration present in a laboratory method blank.
(2) Maximum concentration present in a FRB.

An action level of 5X the maximum concentration was established to evaluate for blank contamination. Detected results less than the action levels for the aforementioned compounds were qualified as (U).

The above PFAS compounds detected as contaminants in the FRB and in the method blank exceed onethird of the method reporting limit. For this occurrence, the project Sampling and Analysis Plan (SAP) indicated that because the samples were non-drinking water samples, the affected analytes could be qualified. The qualifications were brought to the attention of the project manager and all affected analyte concentrations were well below the $70 \mathrm{ng} / \mathrm{L}$ action level in the SAP.

NOTES

All samples were analyzed at a 5X dilution for the total and dissolved metals analyses. Detection limits of the non-detected results were elevated.

The following analyte was detected in the preparation blanks at the following maximum concentration:

Analyte	Maximum Concentration	Reporting Limit $(R L)>$ or $<$
Alkalinity	$\frac{0.51 \mathrm{mg} / \mathrm{L}}{}$	$<\mathrm{RL}$

No validation actions were required as all sample results were greater than the reporting limit.

Detected results reported below the LOQ but above the Method Detection Limit (MDL) were qualified as estimated, (J). Non-detected results are reported to the Limit of Detection (LOD).

EXECUTIVE SUMMARY

Laboratory Performance: Contaminants were detected in the laboratory preparation and field reagent blanks.

Other Factors Affecting Data Quality: Results below the LOQ were estimated.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Superfund Methods Data Review" (January 2017), the "National Functional Guidelines for Inorganic Superfund Methods Data Review" (January 2017) and Environmental Protection Agency document EPA/600/R-08/092, Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", (September 2009). The text of this report has been formulated to address only those areas affecting data quality.

$$
\text { Vain } \mathcal{L} \text { Solcmen }
$$

Tetra Tech, Inc.
Terri L. Solomon
Environmental Chemist

Tetra Tech, Inc.
Joseph A. Samchuck Data Validation Manager

Attachments:
Appendix A-Qualified Analytical Results
Appendix B - Results as reported by the Laboratory
Appendix C-Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
\mathbf{J}	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.
$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
$\mathbf{U J}$	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
\mathbf{R}	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
$\mathbf{U R}$	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Appendix A
Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 $=$ GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
G = Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
J = ICP PDS Recovery Noncompliance; MSA's r < 0.995
K = ICP Interference - includes ICS \% R Noncompliance
L = Instrument Calibration Range Exceedance
M = Sample Preservation Noncompliance
N = Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
P = Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$U=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$V=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
W = EMPC result
$\mathrm{X}=$ Signal to noise response drop
Y = Percent solids $<30 \%$
Z = Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304SR	R-121		G32-MW306BR	R-121		G44S-MW202	RR-12	
SDG: TK1925	LAB_ID	TK1925-3			TK1925-10			TK1925-1			TK1925-8		
FRACTION: OV	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF	GI-MW400-12	1817										
PARAMETER		RESULT	VQL	QLCD									
BENZENE		0.5	U										
CIS-1,2-DICHLOROETHE		1	U		2.2			1	U		1	U	
TETRACHLOROETHENE		0.5	U										
TOTAL 1,2-DICHLOROET	ENE	2	U		2.2			2	U			U	
TRANS-1,2-DICHLOROET	IENE	1	U		1	U		1	U			U	
TRICHLOROETHENE		0.5	U		1.8			0.5	U		0.5	U	
VINYL CHLORIDE		2	U		0.66	J	P		U			U	

PROJ_NO: 08005-WE22 SDG: TK1925 FRACTION: OV MEDIA: WATER	NSAMPLE	GI-MW400-121817		
	LAB_ID	TK1925-6		
	SAMP_DATE	12/18/2017		
	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
BENZENE		0.5	U	
CIS-1,2-DICHLOROETHENE		1	U	
TETRACHLOROETHENE		0.5	U	
TOTAL 1,2-DICHLOROETHENE		2	U	
TRANS-1,2-DICHLOROETHENE		1	U	
TRICHLOROETHENE		0.5	U	
VINYL CHLORIDE			U	

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304SR	R-121		G32-MW306BR	R-121		G44S-MW202R	RR-12	
SDG: TK1925	LAB_ID	TK1925-3			TK1925-10			TK1925-1			TK1925-8		
FRACTION: PAH	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF	GI-MW400-121	1817										
PARAMETER		RESULT	VQL	QLCD									
2-METHYLNAPHTHALENE		0.096	U		0.095	U		0.094	U		0.099	U	
BENZO(A)ANTHRACENE		0.054	U	A	0.058	U	A	0.12	U	A	0.058	U	A
BENZO(A)PYRENE		0.096	U		0.095	U		0.084	J	P	0.099	U	
BENZO(B)FLUORANTHEN		0.096	U		0.095	U		0.11	J	P	0.099	U	
BENZO(G,H,I)PERYLENE		0.096	U		0.095	U		0.094	U		0.099	U	
BENZO(K)FLUORANTHEN		0.096	U		0.095	U		0.094	U		0.099	U	
CHRYSENE		0.096	U		0.095	U		0.094	U		0.099	U	
DIBENZO(A,H)ANTHRACE		0.096	U		0.095	U		0.094	U		0.099	U	
FLUORANTHENE		0.096	U		0.095	U		0.094	U		0.099	U	
INDENO(1,2,3-CD)PYREN		0.096	U		0.095	U		0.094	U		0.099	U	
NAPHTHALENE		0.096	U		0.095	U		0.094	U		0.099	U	
PENTACHLOROPHENOL		0.48	U		0.48	U		0.47	U		0.5	U	
PHENANTHRENE		0.096	U		0.095	U		0.094	U		0.099	U	
PYRENE		0.096	U		0.095	U		0.094	U		0.099	U	

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-12	817	
SDG: TK1925	LAB_ID	TK1925-6		
FRACTION: PAH	SAMP_DATE	12/18/2017		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
2-METHYLNAPHTHALEN		0.094	U	
BENZO(A)ANTHRACENE		0.057	U	A
BENZO(A)PYRENE		0.094	U	
BENZO(B)FLUORANTHE		0.094	U	
BENZO(G,H,I)PERYLENE		0.094	U	
BENZO(K)FLUORANTHE		0.094	U	
CHRYSENE		0.094	U	
DIBENZO(A,H)ANTHRAC		0.094	U	
FLUORANTHENE		0.094	U	
INDENO(1,2,3-CD)PYREN		0.094	U	
NAPHTHALENE		0.094	U	
PENTACHLOROPHENOL		0.47	U	
PHENANTHRENE		0.094	U	
PYRENE		0.094	U	

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304S	R-121		G32-MW306B	R-121		G44S-MW202	RR-12	
SDG: TK1925	LAB_ID	TK1925-3			TK1925-10			TK1925-1			TK1925-8		
FRACTION: PCB	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF	Gl-MW400-12	1817										
PARAMETER		RESULT	VQL	QLCD									
AROCLOR-1016		0.24	U										
AROCLOR-1221		0.24	U										
AROCLOR-1232		0.24	U										
AROCLOR-1242		0.24	U										
AROCLOR-1248		0.24	U										
AROCLOR-1254		0.24	U										
AROCLOR-1260		0.24	U										
AROCLOR-1262		0.24	U										
AROCLOR-1268		0.24	U										
TOTAL AROCLOR		2.2	U		2.1	U		2.1	U		2.2	U	

PROJ_NO: 08005-WE22	NSAMPLE	Gl-MW400-12	817	
SDG: TK1925	LAB_ID	TK1925-6		
FRACTION: PCB	SAMP_DATE	12/18/2017		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
AROCLOR-1016		0.24	U	
AROCLOR-1221		0.24	U	
AROCLOR-1232		0.24	U	
AROCLOR-1242		0.24	U	
AROCLOR-1248		0.24	U	
AROCLOR-1254		0.24	U	
AROCLOR-1260		0.24	U	
AROCLOR-1262		0.24	U	
AROCLOR-1268		0.24	U	
TOTAL AROCLOR		2.1	U	

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304S	R-1218		G32-MW306B	R-1218		G44S-MW202R	R-12	
SDG: TK1925	LAB_ID	TK1925-003			TK1925-010			TK1925-001			TK1925-008		
FRACTION: M	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF	Gl-MW400-12	1817										
PARAMETER		RESULT	VQL	QLCD									
ARSENIC		4	U		4	U		4	U		4.9	J	P
CADMIUM		0.2	U		0.079	J	P	0.2	U		0.2	U	
LEAD		0.5	U		0.084	J	P	0.61	J	P	1.53		
MANGANESE		235			1950			140			2910		

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-121	817	
SDG: TK1925	LAB_ID	TK1925-006		
FRACTION: M	SAMP_DATE	12/18/2017		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
ARSENIC		4	U	
CADMIUM		0.2	U	
LEAD		0.089	J	P
MANGANESE		229		

PROJ_NO: 08005-WE22	NSAMPLE	DUP-121817			G32-MW304SR	R-121		G32-MW306BR	R-121		G44S-MW202	RR-12	
SDG: TK1925	LAB_ID	TK1925-004			TK1925-011			TK1925-002			TK1925-009		
FRACTION: MF	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	UG/L			UG/L			UG/L			UG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF	Gl-MW400-12	1817										
PARAMETER		RESULT	VQL	QLCD									
ARSENIC		4	U		4	U		4	U		6.6		
CADMIUM		0.2	U		0.053	J	P	0.2	U		0.2	U	
LEAD		0.5	U		0.28	J	P	0.12	J	P	0.5	U	
MANGANESE		235			1720			37.8			2960		

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-12	1817	
SDG: TK1925	LAB_ID	TK1925-007		
FRACTION: MF	SAMP_DATE	12/18/2017		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	UG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
ARSENIC		4	U	
CADMIUM		0.031	J	P
LEAD		0.5	U	
MANGANESE		235		

PROJ_NO: 08005-WE22 SDG: TK1925 FRACTION: MISC MEDIA: WATER	NSAMPLE	DUP-121817			G32-MW304SR-121817			G32-MW306BR-121817			G44S-MW202RR-121817		
	LAB_ID	TK1925-3			TK1925-10			TK1925-1			TK1925-8		
	SAMP_DATE	12/18/2017			12/18/2017			12/18/2017			12/18/2017		
	QC_TYPE	NM			NM			NM			NM		
	UNITS	MG/L			MG/L			MG/L			MG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
ALKALINITY		360			160			75			94		
CHLORIDE		19			58			190			11000		
NITRATE-N		9.9			1.3			0.042	J	P	0.025	U	
SULFATE		28			26			16			1600		

PROJ_NO: 08005-WE22	NSAMPLE	GI-MW400-12	817	
SDG: TK1925	LAB_ID	TK1925-6		
FRACTION: MISC	SAMP_DATE	12/18/2017		
MEDIA: WATER	QC_TYPE	NM		
	UNITS	MG/L		
	PCT_SOLIDS	0.0		
	DUP_OF			
PARAMETER		RESULT	VQL	QLCD
ALKALINITY		350		
CHLORIDE		19		
NITRATE-N		9.7		
SULFATE		28		

Appendix B

Results as Reported by the Laboratory

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-1
Client ID: G32-MW306BR-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:TTC/H
SDG: TK1925
Lab File ID: T3892.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
tranl-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		99.9	$\%$					
Toluene-d8	101.	$\%$						
1,2-Dichloroethane-d4	108.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-3
Client ID: DUP-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:TTC/H
SDG: TK1925
Lab File ID: T3893.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		99.9	$\%$					
Toluene-d8	103.	$\%$						
1,2-Dichloroethane-d4	109.	$\%$						
Dibromofluoromethane	100.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-6
Client ID: GI-MW400-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:TTC/H
SDG: TK1925
Lab File ID: T3894.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD		
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	
P-Bromofluorobenzene		98.7	$\%$			0.50		
Toluene-d8	101.	$\%$						
1,2-Dichloroethane-d4	111.	$\%$						
Dibromofluoromethane	101.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-8
Client ID: G44S-MW202RR-121817
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1925
Lab File ID: T3895.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		102.	$\%$					
Toluene-d8	103.	$\%$						
1,2-Dichloroethane-d4	114.	$\%$						
Dibromofluoromethane	103.	$\%$						

Report of Analytical Results

Client: Tetra Tech NUS, Inc.
Lab ID:TK1925-10
Client ID: G32-MW304SR-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:TTC/H
SDG: TK1925
Lab File ID: T3896.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Vinyl Chloride	J	0.66	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene		2.2	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)		2.2	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene		1.8	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene	106.	$\%$						
Toluene-d8	99.2	$\%$						
1,2-Dichloroethane-d4	110.	$\%$						
Dibromofluoromethane	103.	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-1
Client ID: G32-MW306BR-121817
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1925
Lab File ID: U0131.D
Compound Qualifier

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.47	ug / L	1	1	0.94	0.31	0.47
Naphthalene	U	0.094	ug / L	1	.2	0.19	0.060	0.094
2-Methylnaphthalene	U	0.094	ug / L	1	.2	0.19	0.073	0.094
Phenanthrene	U	0.094	ug / L	1	.2	0.19	0.048	0.094
Fluoranthene	U	0.094	ug / L	1	.2	0.19	0.069	0.094
Pyrene	U	0.094	ug / L	1	.2	0.19	0.056	0.094
Benzo(a)anthracene	J	0.12	ug / L	1	.2	0.19	0.043	0.094
Chrysene	U	0.094	ug / L	1	.2	0.19	0.034	0.094
Benzo(b)Fluoranthene	J	0.11	ug / L	1	.2	0.19	0.084	0.094
Benzo(k)fluoranthene	U	0.094	ug / L	1	.2	0.19	0.046	0.094
Benzo(a)pyrene	J	0.084	ug / L	1	.2	0.19	0.062	0.094
Indeno(1,2,3-cd)pyrene	U	0.094	ug / L	1	.2	0.19	0.049	0.094
Dibenzo(a,h)anthracene	U	0.094	ug / L	1	.2	0.19	0.066	0.094
Benzo(g,h,i)perylene	U	0.094	ug / L	1	.2	0.19	0.061	0.094
2-Methylnaphthalene-D10		77.2	$\%$					
2,4-Dibromophenol		26.5	$\%$					
Fluorene-D10	82.2	$\%$						
Pyrene-D10		$\% 09$	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-3
Client ID: DUP-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JMS
SDG: TK1925
Lab File ID: U0132.D
Compound Qualifier

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.48	ug / L	1	1	0.96	0.32	0.48
Naphthalene	U	0.096	ug / L	1	.2	0.19	0.062	0.096
2-Methylnaphthalene	U	0.096	ug / L	1	.2	0.19	0.074	0.096
Phenanthrene	U	0.096	ug / L	1	.2	0.19	0.049	0.096
Fluoranthene	U	0.096	ug / L	1	.2	0.19	0.070	0.096
Pyrene	U	0.096	ug / L	1	.2	0.19	0.057	0.096
Benzo(a)anthracene	J	0.054	ug / L	1	.2	0.19	0.044	0.096
Chrysene	U	0.096	ug / L	1	.2	0.19	0.035	0.096
Benzo(b)Fluoranthene	U	0.096	ug / L	1	.2	0.19	0.086	0.096
Benzo(k)fluoranthene	U	0.096	ug / L	1	.2	0.19	0.047	0.096
Benzo(a)pyrene	U	0.096	ug / L	1	.2	0.19	0.063	0.096
Indeno(1,2,3-cd)pyrene	U	0.096	ug / L	1	.2	0.19	0.050	0.096
Dibenzo(a,h)anthracene	U	0.096	ug / L	1	.2	0.19	0.067	0.096
Benzo(g,h,i)perylene	U	0.096	ug / L	1	.2	0.19	0.062	0.096
2-Methylnaphthalene-D10		65.7	$\%$					
2,4-Dibromophenol		24.5	$\%$					
Fluorene-D10		69.5	$\%$					
Pyrene-D10			$\% 9.7$	$\%$				

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-6
Client ID: GI-MW400-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JMS
SDG: TK1925
Lab File ID: U0133.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.47	ug / L	1	1	0.94	0.31	0.47
Naphthalene	U	0.094	ug / L	1	.2	0.19	0.060	0.094
2-Methylnaphthalene	U	0.094	ug / L	1	.2	0.19	0.073	0.094
Phenanthrene	U	0.094	ug / L	1	.2	0.19	0.048	0.094
Fluoranthene	U	0.094	ug / L	1	.2	0.19	0.069	0.094
Pyrene	U	0.094	ug / L	1	.2	0.19	0.056	0.094
Benzo(a)anthracene	J	0.057	ug / L	1	.2	0.19	0.043	0.094
Chrysene	U	0.094	ug / L	1	.2	0.19	0.034	0.094
Benzo(b)Fluoranthene	U	0.094	ug / L	1	.2	0.19	0.084	0.094
Benzo(k)fluoranthene	U	0.094	ug / L	1	.2	0.19	0.046	0.094
Benzo(a)pyrene	U	0.094	ug / L	1	.2	0.19	0.062	0.094
Indeno(1,2,3-cd)pyrene	U	0.094	ug / L	1	.2	0.19	0.049	0.094
Dibenzo(a,h)anthracene	U	0.094	ug / L	1	.2	0.19	0.066	0.094
Benzo(g,h,i)perylene	U	0.094	ug / L	1	.2	0.19	0.061	0.094
2-Methylnaphthalene-D10		67.4	$\%$					
2,4-Dibromophenol		27.2	$\%$					
Fluorene-D10		68.5	$\%$					
Pyrene-D10	87.5	$\%$						

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-8
Client ID: G44S-MW202RR-121817
Project: NAVSTA Newport, Gould Island CTO-
SDG: TK1925
Lab File ID: U0134.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.50	ug / L	1	1	0.99	0.33	0.50
Naphthalene	U	0.099	ug / L	1	.2	0.20	0.063	0.099
2-Methylnaphthalene	U	0.099	ug / L	1	.2	0.20	0.076	0.099
Phenanthrene	U	0.099	ug / L	1	.2	0.20	0.050	0.099
Fluoranthene	U	0.099	ug / L	1	.2	0.20	0.072	0.099
Pyrene	U	0.099	ug / L	1	.2	0.20	0.058	0.099
Benzo(a)anthracene	J	0.058	ug / L	1	.2	0.20	0.046	0.099
Chrysene	U	0.099	ug / L	1	.2	0.20	0.036	0.099
Benzo(b)Fluoranthene	U	0.099	ug / L	1	.2	0.20	0.088	0.099
Benzo(k)fluoranthene	U	0.099	ug / L	1	.2	0.20	0.048	0.099
Benzo(a)pyrene	U	0.099	ug / L	1	.2	0.20	0.065	0.099
Indeno(1,2,3-cd)pyrene	U	0.099	ug / L	1	.2	0.20	0.051	0.099
Dibenzo(a,h)anthracene	U	0.099	ug / L	1	.2	0.20	0.069	0.099
Benzo(g,h,i)perylene	U	0.099	ug / L	1	.2	0.20	0.064	0.099
2-Methylnaphthalene-D10		59.8	$\%$					
2,4-Dibromophenol		28.1	$\%$					
Fluorene-D10		71.4	$\%$					
Pyrene-D10		94.9	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-10
Client ID: G32-MW304SR-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:JMS
SDG: TK1925
Lab File ID: U0135.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Pentachlorophenol	U	0.48	ug / L	1	1	0.95	0.31	0.48
Naphthalene	U	0.095	ug / L	1	.2	0.19	0.061	0.095
2-Methylnaphthalene	U	0.095	ug / L	1	.2	0.19	0.073	0.095
Phenanthrene	U	0.095	ug / L	1	.2	0.19	0.048	0.095
Fluoranthene	U	0.095	ug / L	1	.2	0.19	0.070	0.095
Pyrene	U	0.095	ug / L	1	.2	0.19	0.056	0.095
Benzo(a)anthracene	J	0.058	ug / L	1	.2	0.19	0.044	0.095
Chrysene	U	0.095	ug / L	1	.2	0.19	0.034	0.095
Benzo(b)Fluoranthene	U	0.095	ug / L	1	.2	0.19	0.085	0.095
Benzo(k)fluoranthene	U	0.095	ug / L	1	.2	0.19	0.047	0.095
Benzo(a)pyrene	U	0.095	ug / L	1	.2	0.19	0.063	0.095
Indeno(1,2,3-cd)pyrene	U	0.095	ug / L	1	.2	0.19	0.050	0.095
Dibenzo(a,h)anthracene	U	0.095	ug / L	1	.2	0.19	0.067	0.095
Benzo(g,h,i)perylene	U	0.095	ug / L	1	.2	0.19	0.062	0.095
2-Methylnaphthalene-D10		64.3	$\%$					
2,4-Dibromophenol		23.9	$\%$					
Fluorene-D10		63.8	$\%$					
Pyrene-D10		$\% 3.8$	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-1
Client ID: G32-MW306BR-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By:KF
SDG: TK1925
Lab File ID: 8KL00566.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug / L	1	.5	0.47	0.14	0.24
Aroclor-1221	U	0.24	ug / L	1	.5	0.47	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.47	0.084	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.47	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.47	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.47	0.077	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.47	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.47	0.062	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.47	0.068	0.24
Total PCBs	U	2.1	ug / L	1	4.5	4.2	0.062	2.1
Tetrachloro-M-Xylene		97.2	$\%$					
Decachlorobiphenyl		74.5	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID: TK1925-3
Client ID: DUP-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF
SDG: TK1925
Lab File ID: 8KL00567.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Aroclor-1016	U	0.24	ug / L	1	.5	0.48	0.14	0.24
Aroclor-1221	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.48	0.086	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.48	0.079	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.48	0.069	0.24
Total PCBs	U	2.2	ug / L	1	4.5	4.3	0.063	
Tetrachloro-M-Xylene		98.8	$\%$			2.2		
Decachlorobiphenyl		105.	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-6
Client ID: GI-MW400-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF
SDG: TK1925
Lab File ID: 8KL00568.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Aroclor-1016	U	0.24	ug / L	1	.5	0.48	0.14	
Aroclor-1221	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.48	0.085	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.48	0.078	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.48	0.16	
Aroclor-1262	U	0.24	ug / L	1	.5	0.48	0.063	
Aroclor-1268	U	0.24	ug / L	1	.5	0.48	0.068	
Total PCBs	U	2.1	ug / L	1	4.5	4.3	0.063	
Tetrachloro-M-Xylene		83.8	$\%$			0.24		
Decachlorobiphenyl	91.8	$\%$			2.1			

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-8
Client ID: G44S-MW202RR-121817
Project: NAVSTA Newport, Gould Island CTO-

SDG: TK1925
Lab File ID: 8KL00569.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug / L	1	.5	0.48	0.14	0.24
Aroclor-1221	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.48	0.086	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.48	0.079	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.48	0.069	0.24
Total PCBs	U	2.2	ug / L	1	4.5	4.3	0.063	2.2
Tetrachloro-M-Xylene		82.4	$\%$					
Decachlorobiphenyl		75.9	$\%$					

Report of Analytical Results

Client:Tetra Tech NUS, Inc.
Lab ID:TK1925-10
Client ID: G32-MW304SR-121817
Project: NAVSTA Newport, Gould Island CTO- Extracted By: KF
SDG: TK1925
Lab File ID: 8KL00570.D

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug / L	1	.5	0.48	0.14	
Aroclor-1221	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1232	U	0.24	ug / L	1	.5	0.48	0.085	0.24
Aroclor-1242	U	0.24	ug / L	1	.5	0.48	0.17	0.24
Aroclor-1248	U	0.24	ug / L	1	.5	0.48	0.19	0.24
Aroclor-1254	U	0.24	ug / L	1	.5	0.48	0.078	0.24
Aroclor-1260	U	0.24	ug / L	1	.5	0.48	0.16	0.24
Aroclor-1262	U	0.24	ug / L	1	.5	0.48	0.063	0.24
Aroclor-1268	U	0.24	ug / L	1	.5	0.48	0.068	
Total PCBs	U	2.1	ug / L	1	4.5	4.3	0.063	
Tetrachloro-M-Xylene		73.8	$\%$			0.24		
Decachlorobiphenyl		80.6	$\%$			2.1		

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW306BR-121817
SDG Name: TK1925
Lab Sample ID: TK1925-001

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	0.61	J		MS	5	1.0	0.075	0.50
$7439-96-5 ~$	MANGANESE, TOTAL	140		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW306BR-121817
SDG Name: TK1925
Lab Sample ID: TK1925-002

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, DISSOLVED	0.20	U		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	0.12	J	MS	5	1.0	0.075	0.50	
$7439-96-5 ~$	MANGANESE, DISSOLVED	37.8			MS	5	2.0	0.35	1.0

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: DUP-121817
SDG Name: TK1925
Lab Sample ID: TK1925-003

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	0.50	U		MS	5	1.0	0.075	0.50
$7439-96-5 ~$	MANGANESE, TOTAL	235		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: DUP-121817
SDG Name: TK1925
Lab Sample ID: TK1925-004

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9$	CADMIUM, DISSOLVED	0.20	U		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
$7439-96-5$	MANGANESE, DISSOLVED	235		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW400-121817
SDG Name: TK1925
Lab Sample ID: TK1925-006

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	0.089	J		MS	5	1.0	0.075	0.50
$7439-96-5$	MANGANESE, TOTAL	229		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: GI-MW400-121817
SDG Name: TK1925
Lab Sample ID: TK1925-007

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	4.0	U	MS	5	5.0	2.3	4.0	
$7440-43-9 ~$	CADMIUM, DISSOLVED	0.031	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
$7439-96-5$	MANGANESE, DISSOLVED	235		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G44S-MW202RR-121817
SDG Name: TK1925
Lab Sample ID: TK1925-008

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.9	J		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.20	U		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, TOTAL	1.53		MS	5	1.0	0.075	0.50	
$7439-96-5 ~$	MANGANESE, TOTAL	2910		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G44S-MW202RR-121817
SDG Name: TK1925
Lab Sample ID: TK1925-009

Concentration Units: ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	ADJUSTED		
							LOQ	MDL	LOD
7440-38-2	ARSENIC, DISSOLVED	6.6			MS	5	5.0	2.3	4.0
7440-43-9	CADMIUM, DISSOLVED	0.20	U		MS	5	1.0	0.029	0.20
7439-92-1	LEAD, DISSOLVED	0.50	U		MS	5	1.0	0.075	0.50
7439-96-5	MANGANESE, DISSOLVED	2960			MS	5	2.0	0.35	1.0

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW304SR-121817
SDG Name: TK1925
Lab Sample ID: TK1925-010

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, TOTAL	4.0	U		MS	5	5.0	2.3	4.0
$7440-43-9 ~$	CADMIUM, TOTAL	0.079	J	MS	5	1.0	0.029	0.20	
$7439-92-1 ~$	LEAD, TOTAL	0.084	J	MS	5	1.0	0.075	0.50	
$7439-96-5 ~$	MANGANESE, TOTAL	1950		MS	5	2.0	0.35	1.0	

Comments:

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services
Matrix: WATER
Percent Solids: 0.00

Client Field ID: G32-MW304SR-121817
SDG Name: TK1925
Lab Sample ID: TK1925-011

Concentration Units: ug/L

				ADJUSTED					
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
$7440-38-2$	ARSENIC, DISSOLVED	4.0	U	MS	5	5.0	2.3	4.0	
$7440-43-9 ~$	CADMIUM, DISSOLVED	0.053	J		MS	5	1.0	0.029	0.20
$7439-92-1 ~$	LEAD, DISSOLVED	0.28	J	MS	5	1.0	0.075	0.50	
$7439-96-5 ~$	MANGANESE, DISSOLVED	1720			MS	5	2.0	0.35	1.0

Comments:

Report of Analytical Results

Report of Anty

Client: Michael Horton
Tetra Tech Inc.
5 Industrial Way
Salem, NH 03079

Lab Sample ID: TK1925-1
Report Date: 29-DEC-17 Client PO: PO:1132379, PN:112G0

Project: NAVSTA Newport, Goul SDG: TK1925

Sample Description
G32-MW306BR-121817

Matrix Date Sampled Date Received
AQ 18-DEC-17 10:50:00 19-DEC-17

Parameter	Result	Adj LOQ	Adj MDL	Adj LOD	Anal. Method	QC.Batch	Anal. Date	Prep. Method	Prep. Date	Footnotes
Alkalinity	75. mg/	5.0	0.23	4.0	STDM 2320B	WG220969	28-DEC-17 16:08:30	N/A	N/A	
Chloride	$190 \mathrm{mg} / \mathrm{L}$	40.	2.0	20.	EPA 300.0	WG220806	19-DEC-17 21:49:00	E300.0	N/A	
Nitrate as N	J0.042 mg/L	0.050	. 0174	0.025	EPA 300.0	WG220806	19-DEC-17 16:56:00	E300.0	N/A	
Sulfate	$16 \mathrm{mg} / \mathrm{L}$	1.0	0.064	0.50	EPA 300.0	WG220806	19-DEC-17 16:56:00	E300.0	N/A	

ANALYTICAL SERVICES
Cert No E87604

Report of Analytical Results

ANALYTICAL SERVICES
Cert No E87604

Report of Analytical Results

Client: Michael Horton
Tetra Tech Inc.
5 Industrial Way
Salem, NH 03079

Lab Sample ID: TK1925-6
Report Date: 29-DEC-17 Client PO: PO:1132379, PN:112G0

Project: NAVSTA Newport, Goul SDG: TK1925

Sample Description
GI-MW400-121817

Matrix	Date Sampled AQ	Date Received 18-DEC-17 10:30:00
19-DEC-17		

| Parameter | Result | Adj LOQ | Adj MDL | Adj LOD | Anal. Method | QC.Batch | Anal. Date | Prep. Method | Prep. Date | Footnotes |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alkalinity | $350 \mathrm{mg} / \mathrm{L}$ | 5.0 | 0.23 | 4.0 | STDM 2320B | WG220969 | 28-DEC-17 16:16:15 | N/A | N/A | |
| Chloride | $19 \mathrm{mg} / \mathrm{L}$ | 4.0 | 0.20 | 2.0 | EPA 300.0 | WG220806 | 19-DEC-17 22:37:00 | E300.0 | N/A | |
| Nitrate as N | $9.7 \mathrm{mg} / \mathrm{L}$ | 0.25 | 0.087 | 0.12 | EPA 300.0 | WG220806 | 19-DEC-17 22:52:00 | E300.0 | N/A | |
| Sulfate | $28 \mathrm{mg} / \mathrm{L}$ | 2.0 | 0.13 | 1.0 | EPA 300.0 | WG220806 | 19-DEC-17 22:37:00 | E300.0 | N/A | |

Cert No E87604

Report of Analytical Results

A.NALYTICAL SERVICES

Cert No E87604

Report of Analytical Results

Client:Katahdin Analytical Services									
Description: G32-MW306BR-121817						Aque			
Date Sampled:12/18/2017 1050									
Date Received: 12/22/2017									
Run Prep Method Analytical Method 1 537 MOD 537.1 Modified-ID	$\begin{array}{cc} \text { Dilution } & \text { An } \\ 1 & 12 / 2 \end{array}$	ysis Date Analyst 20172329 SES	$\begin{array}{r} \text { Prep } \\ 12 / 28 / 2 \end{array}$	$\begin{aligned} & \text { Date } \\ & 0170930 \end{aligned}$	Batch 60687				
Parameter	CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.7	U	3.4	1.7	0.85	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.7	U	3.4	1.7	0.85	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	$537.1 \mathrm{Mod}$.	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-heptanoic acid (PFHPA)	375-85-9	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	$537.1 \mathrm{Mod}$.	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	1.0	J	1.7	0.85	0.43	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.7	U	3.4	1.7	0.85	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.43	ng/L	1

$\left.\begin{array}{lcc}\text { Surrogate } & \text { Q } & \begin{array}{c}\text { Run 1 } \\ \text { Recovery }\end{array} \\ \hline \text { Acceptance } \\ \text { 13C2_PFDimits }\end{array}\right]$

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Run 1 Acceptance

Surrogate	Q	\% Recovery	Limits
13C2_PFDoA	94	$50-150$	
13C2_PFTeDA	94	$50-150$	
13C3_PFBS	101	$50-150$	
13C3_PFHxS	96	$50-150$	
13C4_PFHpA	99	$50-150$	
13C5_PFHxA	101	$50-150$	
13C6_PFDA	101	$50-150$	
13C7_PFUdA	96	$50-150$	
13C8_PFOA	100	$50-150$	
13C8_PFOS	98	$50-150$	
13C9_PFNA	97	$50-150$	
d5-EtFOSAA	98	$50-150$	
d3-MeFOSAA	95	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Client:Katahdin Analytical Services Description: FRB-121817 Date Sampled:12/18/2017 Date Received: 12/22/2017			Laboratory ID: SL22036-003						
						Aqueo			
Run Prep Method Analytical Method 1 537 MOD 537.1 Modified-ID	$\begin{array}{cc} \text { Dilution } & A_{l} \\ 1 & 12 \end{array}$	Analysis Date Analyst 2/28/2017 2357 SES	$\begin{aligned} & \text { Prep Date } \\ & 12 / 28 / 20170930 \end{aligned}$		Batch 60687		DL	Units	Run
Parameter	CAS Number Number	Analytical Method	Result	Q	LOQ	LOD			
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	537.1 Mod. ID	1.8	U	3.5	1.8	0.87	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	537.1 Mod. ID	1.8	U	3.5	1.8	0.87	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)	375-73-5	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluorohexanesulfonate (PFHxS)	355-46-4	537.1 Mod. ID	1.1	J	1.7	0.85	0.44	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	537.1 Mod. ID	0.59	J	1.7	0.85	0.44	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	537.1 Mod. ID	1.8	U	3.5	1.8	0.87	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	$537.1 \mathrm{Mod}$.	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	537.1 Mod. ID	0.85	U	1.7	0.85	0.44	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763-23-1	537.1 Mod. ID	5.6		1.7	0.85	0.44	ng/L	1

$\left.\begin{array}{lcc}\text { Surrogate } & \text { Q } & \text { \% Recovery } \\ \text { Receptance } \\ \text { Limits }\end{array}\right]$

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit	Q = Surrogate failure
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40%	$J=$ Estimated result $<L O Q$ and $\geq D L$	$L=L C S / L C S D$ failure
$H=$ Out of holding time	$W=$ Reported on wet weight basis	LOD $=$ Limit of Detection	$S=M S / M S D$ failure	

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Client:Katahdin Analytical Services				Laboratory ID: SL22036-004						
Description: GI-MW400-121817				Matrix: Aqueous						
Date Sampled:12/18/2017 1030										
Date Received: 12/22/2017										
Run Prep Method Analytical Method	Dilution		sis Date Analyst	Prep	Date	Batch				
1537 MOD 537.1 Modified-ID	1	12/2	20170010 SES	12/28/2	0170930	60687				
Parameter		CAS mber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991	-50-6	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355	-31-9	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
Perfluoro-1-butanesulfonate (PFBS)		-73-5	537.1 Mod. ID	1.1	J	1.9	0.95	0.47	ng/L	1
Perfluorohexanesulfonate (PFHxS)		-46-4	537.1 Mod. ID	2.1		1.9	0.95	0.47	ng/L	1
Perfluoro-n-decanoic acid (PFDA)		-76-2	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)		-55-1	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)		-85-9	537.1 Mod. ID	3.7		1.9	0.95	0.47	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)		-24-4	537.1 Mod. ID	2.4		1.9	0.95	0.47	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)		-95-1	537.1 Mod. ID	0.76	J	1.9	0.95	0.47	ng/L	1
Perfluoro-n-octanoic acid (PFOA)		-67-1	537.1 Mod. ID	14		1.9	0.95	0.47	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)		-06-7	537.1 Mod. ID	1.9	U	3.7	1.9	0.93	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629	-94-8	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058	-94-8	537.1 Mod. ID	0.95	U	1.9	0.95	0.47	ng/L	1
Perfluorooctanesulfonate (PFOS)	1763	-23-1	537.1 Mod. ID	2.2		1.9	0.95	0.47	ng/L	1

Run 1 Acceptance

Surrogate	Q	\% Recovery	Limits
13C2_PFDoA	94	$50-150$	
13C2_PFTeDA	92	$50-150$	
13C3_PFBS	103	$50-150$	
13C3_PFHxS	100	$50-150$	
13C4_PFHpA	101	$50-150$	
13C5_PFHxA	101	$50-150$	
13C6_PFDA	98	$50-150$	
13C7_PFUdA	96	$50-150$	
13C8_PFOA	100	$50-150$	
13C8_PFOS	95	$50-150$	
13C9_PFNA	101	$50-150$	
d5-EtFOSAA	101	$50-150$	
d3-MeFOSAA	98	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40\%	$\mathrm{J}=$ Estimated result $<$ LOQ and \geq DL
$H=$ Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection	$L=L C S / L C S D$ failure

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Run 1 Acceptance

Surrogate	Q	\% Recovery	Limits
13C2_PFDoA	87	$50-150$	
13C2_PFTeDA	87	$50-150$	
13C3_PFBS	94	$50-150$	
13C3_PFHxS	92	$50-150$	
13C4_PFHpA	95	$50-150$	
13C5_PFHxA	96	$50-150$	
13C6_PFDA	90	$50-150$	
13C7_PFUdA	91	$50-150$	
13C8_PFOA	93	$50-150$	
13C8_PFOS	93	$50-150$	
13C9_PFNA	92	$50-150$	
d5-EtFOSAA	90	$50-150$	
d3-MeFOSAA	83	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40\%	$\mathrm{J}=$ Estimated result $<$ LOQ and \geq DL
$H=$ Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection	$L=L C S / L C S D$ failure

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Run 1 Acceptance

Surrogate	Q	\% Recovery	Limits
13C2_PFDoA	81	$50-150$	
13C2_PFTeDA	82	$50-150$	
13C3_PFBS	86	$50-150$	
13C3_PFHxS	86	$50-150$	
13C4_PFHpA	90	$50-150$	
13C5_PFHxA	85	$50-150$	
13C6_PFDA	87	$50-150$	
13C7_PFUdA	89	$50-150$	
13C8_PFOA	94	$50-150$	
13C8_PFOS	89	$50-150$	
13C9_PFNA	93	$50-150$	
d5-EtFOSAA	87	$50-150$	
d3-MeFOSAA	89	$50-150$	

LOQ = Limit of Quantitation	$B=$ Detected in the method blank	$E=$ Quantitation of compound exceeded the calibration range	DL = Detection Limit
$U=$ Not detected at or above the LOQ	$N=$ Recovery is out of criteria	$P=$ The RPD between two GC columns exceeds 40\%	$\mathrm{J}=$ Estimated result $<$ LOQ and \geq DL
$H=$ Out of holding time	W = Reported on wet weight basis	LOD = Limit of Detection	$L=L C S / L C S D$ failure

Shealy Environmental Services, Inc.
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Appendix C

Support Documentation

ANALYTE	ORIGINAL MW-400 TOTAL	DUPLICATE DUP-121817				ORIGINAL SAMPLE CONC >5xRL	DUPLICATE SAMPLE CONC >5xRL	DIFFERENCE >2XRL
		TOTAL	RL	RPD	RPD > 30\%			
LEAD	0.089	0.5	1	139.5585739	TRUE	FALSE	FALSE	FALSE
MANGANESE	229	235	2	2.586206897	FALSE	TRUE	TRUE	TRUE

ANALYTE	ORIGINAL	DUPLICATE						
	MW-400	DUP-121817				ORIGINAL SAMPLE	DUPLICATE SA	
	FILTERED	FILTERED	RL	RPD	RPD > 30\%	CONC >5xRL	CONC >5xRL	DIFFERENCE >2XRL
CADMIUM	0.031	0.5	1	176.6478343	TRUE	FALSE	FALSE	FALSE
MANGANESE	235	235	2	0	FALSE	TRUE	TRUE	FALSE

ANALYTE	ORIGINAL MW-400	DUPLICATE DUP-121817	RL	RPD	RPD > 30\%	ORIGINAL SAMPLE CONC >5xRL	DUPLICATE SAMPLE CONC >5xRL	DIFFERENCE >2XRL
ALKALINITY	350	360	5	2.816901408	FALSE	TRUE	TRUE	FALSE
CHLORIDE	19	19	4	0	FALSE	FALSE	FALSE	FALSE
NITRATE-N	9.7	9.9	0.25	2.040816327	FALSE	TRUE	TRUE	FALSE
SULFATE	28	28	2	0	FALSE	TRUE	TRUE	FALSE

ANALYTE	ORIGINAL GI-MW400-121817	DUPLICATE DUP- 121817		RL	RPD	RPD > 50\%	ORIGINAL SAMPLE CONC >2xRL	DUPLICATE SAMPLE CONC >2xRL	DIFFERENCE >2XRL
Perfluoro-n-octanoic acid (PFOA)			14	1.9	0.000	FALSE	true	true	FALSE
Perfluoro-1-butanesulfonate (PFBS)			1.2	1.9	8.696	FALSE	FALSE	FALSE	FALSE
Perfluoro-n-heptanoic acid (PFHPA)			3.3	1.9	11.429	FALSE	FALSE	FALSE	FALSE
Perfluorohexanesulfonate (PFHxS)			2.4	1.9	13.333	FALSE	FALSE	FALSE	FALSE
Perfluoro-n-hexanoic acid (PFHxA)			2.2	1.9	8.696	FALSE	FALSE	FALSE	FALSE
Perfluoro-n-nonanoic acid (PFNA)			0.8	1.9	5.128	FALSE	FALSE	FALSE	false
Perfluorooctanesulfonate (PFOS)			2.1	1.9	4.651	FALSE	FALSE	FALSE	FALSE

\square Rush TAT - Date Needed: \qquad
All TATs subject to laboratory approval
Min. 24-hrr notification needed for rushes
Samples disposed after 30 days unless otherwise instructed.

SDG NARRATIVE

KATAHDIN ANALYTICAL SERVICES

TETRA TECH NUS, INC. NAVSTA NEWPORT, GOULD ISLAND CTO-WE22 TK1925

Sample Receipt

The following samples were received on December 19, 2017 and were logged in under Katahdin Analytical Services work order number TK1925 for a hardcopy due date of December 31, 2017.

KATAHDIN
Sample No.
TK1925-1
TK1925-2
TK 1925-3
TK1925-4
TK1925-5
TK1925-6 GI-MW400-121817
TK1925-7 GI-MW400-121817
TK1925-8 G44S-MW202RR-121817
TK1925-9 G44S-MW202RR-121817
TK1925-10 G32-MW304SR-121817
TK1925-11 G32-MW304SR-121817

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.
Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Heather Manz. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of work order TK 1925 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, $1998 \& 2004$, Office of Solid Waste and Emergency Response, U.S. EPA, and/or for the specific methods listed below or on the Report of Analysis.

8260 C Analysis

There were no protocol deviations or observations noted by the organics laboratory staff for this analysis.

8082A Analysis

The calibration verification standard (CV) (file 8KL00558) had a high response for Aroclor 1260 on channel B. The CV (file 8KL00571) had high responses for the surrogate DCB as well as the Aroclor 1016 and Aroclor 1260 on channel B. These responses resulted in \%D's that were greater than the DoD QSM acceptance limit of 20%. Since a high response would indicate a high bias and there were no target analytes were detected above the MDL in the associated samples, no further action was taken.

8270D SIM Analysis

The independent check standard (file U0128) associated with the initial calibration on the U instrument on 12/26/2017 had a low concentration for the target analyte indeno($1,2,3-\mathrm{cd})$ pyrene, which exceeded the DoD QSM acceptance limit of $\pm 20 \%$ of the expected value from the ICAL. The Independent Check Report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated.

Note: The Form VII has a column for \%D that is set to 20%. The DoD QSM 5.0 criterion for an opening CV is $20 \% \mathrm{D}$ and a closing CV is $50 \% \mathrm{D}$. All of the compounds in the CV's were evaluated to either 20% criteria for opening CVs or 50% criteria for closing CVs.

The target analyte benzo(a)anthracene was detected below $1 / 2$ of the LOQ in the method blank WG220582-1. According to the DoD QSM section D.1.1.1, a method blank is considered to be contaminated if the concentration of any target analyte in the blank exceeds $1 / 2$ the reporting limit and is greater than $1 / 10$ the amount measured in any sample or $1 / 10$ the regulatory limit (whichever is greater). Since the method blank was acceptable, no further action was taken

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of Katahdin Work Order TK1925 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods" SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 \& 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

Inductively-Coupled Plasma Mass Spectrometric Analysis (ICP-MS)
Aqueous-matrix Katahdin Sample Numbers TK 1925-(1-4, 6-11) were digested for ICP-MS analysis on 12/20/17 (QC Batch KL20IMW1) in accordance with USEPA Method 3010A.

ICP-MS analyses of Katahdin Work Order TK1925 sample digestates were performed using an Agilent 7500 ICP-MS spectrometer in accordance with USEPA Method 6020A. Results for all standards and samples are reported using the mean of 3 replicate measurements. All sample digestates were diluted by a factor of 5 during analysis to reduce mass interferences from chlorine, which is present in the digestates from the hydrochloric acid used in digesting the samples. All samples were analyzed within holding times and all-analytical run QC criteria were met.

Internal standard recoveries for ICP-MS analyses can be found in the raw data section of the accompanying data package. The following table indicates which analytes are associated with each internal standard element.

Internal Standard Element	Associated Analytes
Lithium	Beryllium, Boron
Scandium	Sodium, Magnesium, Aluminum, Potassium, Calcium
Germanium or Yttrium	Vanadium, Chromium, Manganese, Iron, Cobalt, Nickel, Copper, Zinc, Arsenic, Selenium, Strontium, Molybdenum, Silver, Cadmium
Terbium	Tin, Antimony, Barium, Tungsten
Bismuth	Lead, Thallium, Thorium, Uranium

Instrument tuning information can also be found in the raw data section in the report labeled " 6020 QC Tune Report". The relative standard deviation was determined from 4 replicate measurements. The peak width was measured at 10% of the peak height.

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the LOQ are flagged with " J " in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with " U " in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs, and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the Cqualifier column, and the measured concentration is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of Work Order TK 1925 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for chloride, nitrate, and sulfate were performed according to "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, 1979, Revised 1983, U.S. EPA.

Analyses for alkalinity were performed according to "Standard Methods for the Examination of Water and Wastewater", 15th, 16th, 17th, 18th, 19 th, and 20th editions, 1980, 1985, 1989, 1992, 1995, 1999. APHA-AWWA-WPCF.

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Limit of Quantitation (LOQ) are flagged " J ". Measured concentrations that are below the MDL are flagged " U " and reported as "U LOD", where "LOD" is the numerical value of the Limit of Detection.

All analyses were performed within analytical holding times, and all quality control criteria were met.

Subcontracted Data

Analyses for PFA's by Method 537 were performed by subcontract laboratories. Please refer to the sections of the data package titled Subcontracted Data.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Quality Assurance Officer, or their designee, as verified by the following signature.

VOLATILES DATA

Form 2

System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Lab Code: KAS

Project: NAVSTA Newport, Gould Island CTO-WE22
SDG: TK1925

Matrix: AQ

DCA
TOL
DBF
BFB

1,2-DICHLOROETHANE-D4
TOLUENE-D8
DIBROMOFLUOROMETHANE
P-BROMOFLUOROBENZENE

QC Limits

89-112
80-119
85-114
\# = Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.
$\mathrm{D}=$ System Monitoring Compound diluted out.

Form 4
 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services
SDG: TK1925
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220989-2
Lab File ID : T3886.D Date Analyzed : 29-DEC-17
Instrument ID : GCMS-T
Heated Purge : No
Time Analyzed : 10:48

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID
Lab Sample ID Lab File ID Date Analyzed Time Analyzed Laboratory Control S WG220989-1 T3884.D $12 / 29 / 17$ $09: 37$ G32-MW306BR-121817 TK1925-1 T3892.D $12 / 29 / 17$ $14: 21$ DUP-121817 TK1925-3 T3893.D $12 / 29 / 17$ $14: 56$ GI-MW400-121817 TK1925-6 T3894.D $12 / 29 / 17$ $15: 31$ G44S-MW202RR-121817 TK1925-8 T3895.D $12 / 29 / 17$ $16: 06$ G32-MW304SR-121817 TK1925-10 T3896.D $12 / 29 / 17$ $16: 41$

Report of Analytical Results

Client:

Lab ID:WG220989-2
Client ID: Method Blank Sample
Project:
SDG: TK1925
Lab File ID: T3886.D

Sample Date:
Received Date:
Extract Date: 29-DEC-17
Extracted By:TTC/H
Extraction Method: SW846 5030
Lab Prep Batch: WG220989

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Vinyl Chloride	U	2.0	ug / L	1	1	1.0	0.25	2.0
trans-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.25	1.0
cis-1,2-Dichloroethene	U	1.0	ug / L	1	.5	0.50	0.21	1.0
1,2-Dichloroethylene (Total)	U	2.0	ug / L	1	1	1.0	0.21	2.0
Benzene	U	0.50	ug / L	1	1	1.0	0.26	0.50
Trichloroethene	U	0.50	ug / L	1	1	1.0	0.28	0.50
Tetrachloroethene	U	0.50	ug / L	1	1	1.0	0.40	0.50
P-Bromofluorobenzene		98.8	$\%$					
Toluene-d8	101.	$\%$						
1,2-Dichloroethane-d4		102.	$\%$					
Dibromofluoromethane	100.	$\%$						

Form 8

Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220912-4
Lab File ID :T3867.D

SDG: TK1925
Analytical Date: 12/28/17 10:48
Instrument ID: GCMS-T

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Form 8
 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220912-4
SDG: TK1925
Analytical Date: 12/28/17 10:48
Lab File ID :T3867.D
Instrument ID: GCMS-T

	Std.	1,4-DICHLOROBENZENE-D4	
		Area \#	RT \#
		258925	13.98
	Upper Limit	517850	14.48
	Lower Limit	129462.5	13.48
Client Sample ID	Lab Sample ID		
Continuing Calibrati	WG220989-4	271463	13.98
Laboratory Control S	WG220989-1	278484	13.98
Method Blank Sample	WG220989-2	255442	13.98
G32-MW306BR-12181	TK1925-1	239604	13.98
DUP-121817	TK1925-3	231858	13.98
GI-MW400-121817	TK1925-6	226066	13.98
G44S-MW202RR-1218	TK1925-8	242261	13.98
G32-MW304SR-12181	TK1925-10	254013	13.98
Continuing Calibrati	WG220989-5	261825	13.98

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

SIM SEMIVOLATILES DATA

Form 2

System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Lab Code: KAS

Project: NAVSTA Newport, Gould Island CTO-WE22
SDG: TK1925

Matrix: AQ

Client Sample ID	Lab Sample ID	Col. ID 2MN	\# DBP	\# FLO	\# PYR	\#
G32-MW306BR-121817	TK1925-1	77.2	26.5	82.2	109.	
G32-MW304SR-121817	TK1925-10	64.3	23.9	63.8	93.8	
DUP-121817	TK1925-3	65.7	24.5	69.5	99.7	
GI-MW400-121817	TK1925-6	67.4	27.2	68.5	87.5	
G44S-MW202RR-121817	TK1925-8	59.8	28.1	71.4	94.9	
Method Blank Sample	WG220582-1	89.0	26.4	85.6	114.	
Laboratory Control S	WG220582-2	63.6	26.7	66.4	77.3	

DBP	2,4-DIBROMOPHENOL	$10-130$
2MN	2-METHYLNAPHTHALENE-D10	$43-92$
FLO	FLUORENE-D10	$29-101$
PYR	PYRENE-D10	$53-166$
\# = Column to be used to flag recovery limits.		
* = Values outside of contract required QC limits.		
D= System Monitoring Compound diluted out.		

LCS Recovery Report

Client:
Lab ID:WG220582-2
Client ID: LCS
Project:
SDG: TK1925
LCS File ID: U0130.D

Compound	Recovery (\%)	Conc Added Conc Recovered Conc Units	Limits		
Pentachlorophenol	74.2	4.00	2.97	ug / L	$36-141$
Naphthalene	59.5	2.00	1.19	ug / L	$43-114$
2-Methylnaphthalene	62.5	2.00	1.25	ug / L	$39-114$
Phenanthrene	76.5	2.00	1.53	ug / L	$53-115$
Fluoranthene	90.0	2.00	1.80	ug / L	$58-120$
Pyrene	77.5	2.00	1.55	ug / L	$53-121$
Benzo(a)anthracene	76.0	2.00	1.52	ug / L	$59-120$
Chrysene	81.0	2.00	1.62	ug / L	$57-120$
Benzo(b)Fluoranthene	67.0	2.00	1.34	ug / L	$53-126$
Benzo(k)fluoranthene	79.5	2.00	1.59	ug / L	$54-125$
Benzo(a)pyrene	66.5	2.00	1.33	ug / L	$53-120$
Indeno(1,2,3-cd)pyrene	90.0	2.00	1.80	ug / L	$48-130$
Dibenzo(a,h)anthracene	71.0	2.00	1.42	ug / L	$44-131$
Benzo(g,h,i)perylene	71.0	2.00	1.42	ug / L	$44-128$
2-Methylnaphthalene-D10	63.6		$43-92$		
2,4-Dibromophenol	26.7			$10-130$	

Method Blank Summary

Lab Name : Katahdin Analytical Services
SDG : TK1925
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220582-1
Lab File ID : U0129.D
Date Extracted : 22-DEC-17
Instrument ID : GCMS-U
Date Analyzed : 26-DEC-17
Matrix : AQ
Time Analyzed : 20:11

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed	
Laboratory Control S	WG220582-2	U0130.D	12/26/17	20:42
G32-MW306BR-121817	TK1925-1	U0131.D	12/26/17	21:12
DUP-121817	TK1925-3	U0132.D	12/26/17	21:43
GI-MW400-121817	TK1925-6	U0133.D	12/26/17	22:13
G44S-MW202RR-121817	TK1925-8	U0134.D	12/26/17	22:44
G32-MW304SR-121817	TK1925-10	U0135.D	12/26/17	23:15

Report of Analytical Results

Client:

Lab ID: WG220582-1
Client ID: Method Blank Sample
Project:
SDG: TK1925
Lab File ID: U0129.D

Sample Date:
Received Date:
Extract Date: 22-DEC-17
Extracted By:JMS
Extraction Method: SW846 3510C
Lab Prep Batch: WG220582

Analysis Date: 26-DEC-17
Analyst: JCG
Analysis Method: SW846 M8270D SIM
Matrix: AQ
\% Solids: NA
Report Date: 02-JAN-18

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Pentachlorophenol	U	0.50	ug / L	1	1	1.0	0.33	0.50
Naphthalene	U	0.10	ug / L	1	.2	0.20	0.064	0.10
2-Methylnaphthalene	U	0.10	ug / L	1	.2	0.20	0.077	0.10
Phenanthrene	U	0.10	ug / L	1	.2	0.20	0.051	0.10
Fluoranthene	U	0.10	ug / L	1	.2	0.20	0.073	0.10
Pyrene	U	0.10	ug / L	1	.2	0.20	0.059	0.10
Benzo(a)anthracene	J	0.078	ug / L	1	.2	0.20	0.046	0.10
Chrysene	U	0.10	ug / L	1	.2	0.20	0.036	
Benzo(b)Fluoranthene	U	0.10	ug / L	1	.2	0.20	0.089	0.10
Benzo(k)fluoranthene	U	0.10	ug / L	1	.2	0.20	0.049	
Benzo(a)pyrene	U	0.10	ug / L	1	.2	0.20	0.066	
Indeno(1,2,3-cd)pyrene	U	0.10	ug / L	1	.2	0.20	0.052	
Dibenzo(a,h)anthracene	U	0.10	ug / L	1	.2	0.20	0.070	
Benzo(g,h,i)perylene	U	0.10	ug / L	1	.2	0.20	0.065	
2-Methylnaphthalene-D10		89.0	$\%$			0.10		
2,4-Dibromophenol	26.4	$\%$			0.10			
Fluorene-D10		85.6	$\%$			0.10		
Pyrene-D10	114.	$\%$			0			

Form 8

Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220737-4
Lab File ID :U0122.D

SDG: TK1925
Analytical Date: 12/26/17 16:37
Instrument ID: GCMS-U

	Std.	1,4-DICHLOROBENZENE-D4		NAPHTHALENE-D8		ACENAPHTHENE-D10			
		Area \#	RT \#	Area	\# RT \#	Area	\#	RT	\#
		15504	6.19	52959	7.81	22914		10.13	
	Upper Limit	31008	6.69	105918	8.31	45828		10.63	
	Lower Limit	7752	5.69	26479.5	7.31	11457		9.63	
Client Sample ID Lab Sample ID									
Method Blank Sample	WG220582-1	20754	6.20	53855	7.81	22561		10.14	
Laboratory Control S	WG220582-2	15439	6.20	53873	7.81	23064		10.13	
G32-MW306BR-12181	TK1925-1	22705	6.20	61979	7.81	26640		10.14	
DUP-121817	TK1925-3	21490	6.20	59332	7.81	24939		10.14	
GI-MW400-121817	TK1925-6	18007	6.20	66185	7.81	27679		10.14	
G44S-MW202RR-1218	TK1925-8	15586	6.20	54082	7.81	22208		10.13	
G32-MW304SR-12181	TK1925-10	14739	6.20	48841	7.80	30201		10.13	
Continuing Calibrati	WG220737-9	19731	6.20	51662	7.81	21599		10.14	

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Form 8
 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services
Project :NAVSTA Newport, Gould Islanc
Lab ID :WG220737-4
Lab File ID :U0122.D

SDG: TK1925
Analytical Date: 12/26/17 16:37
Instrument ID: GCMS-U

Area Upper Limit $=+100 \%$ of internal standard area
Area Lower Limit $=-50 \%$ of internal standard area
RT Upper Limit $=+0.50$ minutes of internal standard RT
RT Lower Limit $=-0.50$ minutes of internal standard RT
\# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

PCB DATA

Form 2

System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services
Lab Code: KAS

Project: NAVSTA Newport, Gould Island CTO-WE22
SDG: TK1925

Matrix: AQ

TCX
DCB DECACHLOROBIPHENYL
\# = Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.
$\mathrm{D}=$ System Monitoring Compound diluted out.

QC Limits
62-111
44-135

LCS Recovery Report

Client:

Lab ID: WG220411-2
Client ID: LCS
Project:
SDG: TK1925
LCS File ID: 8KL00546.D

Compound	Recovery (\%)	Conc Added Conc Recovered Conc Units	Limits		
Aroclor-1016	98.0	5.00	4.90	ug / L	$46-129$
Aroclor-1260	103.	5.00	5.13	ug / L	$45-134$
Tetrachloro-M-Xylene	98.7		$62-111$		
Decachlorobiphenyl	83.2		$44-135$		

LCS Recovery Report

Client:

Lab ID:WG220411-3
Client ID: LCS1
Project:
SDG: TK1925
LCS File ID: 8KL00547.D

Compound	Recovery (\%)	Conc Added Conc Recovered Conc Units	Limits		
Aroclor-1254	86.8	5.00	4.34	ug/L	$34-127$
Tetrachloro-M-Xylene	92.8		$62-111$		
Decachlorobiphenyl	86.6		$44-135$		

Cert No E87604

Form 4

Method Blank Summary

Lab Name : Katahdin Analytical Services
Project : NAVSTA Newport, Gould Island CTO-WE2 Lab Sample ID : WG220411-1
Lab File ID : 8KL00545.D
Matrix : AQ
Column A
Instrument ID : GC08
Date Analyzed : 25-DEC-17
Time Analyzed : 04:26

SDG: TK1925

Date Extracted : 20-DEC-17
Extraction Method : SW846 3510C

Column B

Instrument ID : GC08
Date Analyzed : 25-DEC-17
Time Analyzed : 04:26

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed	
Laboratory Control S	WG220411-2	8KL00546.	12/25/17	04:46
Laboratory Control S	WG220411-3	8KL00547.	12/25/17	05:07
G32-MW306BR-121817	TK1925-1	8KL00566.	12/25/17	11:30
DUP-121817	TK1925-3	8KL00567.	12/25/17	11:50
GI-MW400-121817	TK1925-6	8KL00568.	12/25/17	12:10
G44S-MW202RR-121817	TK1925-8	8KL00569.	12/25/17	12:31
G32-MW304SR-121817	TK1925-10	8KL00570.	12/25/17	12:51

Report of Analytical Results

Client:

Lab ID: WG220411-1
Client ID: Method Blank Sample
Project:
SDG: TK1925
Lab File ID: 8KL00545.D

Sample Date:
Received Date:
Extract Date: 20-DEC-17
Extracted By: KF
Extraction Method: SW846 3510C
Lab Prep Batch: WG220411

Analysis Date: 25-DEC-17
Analyst: BF
Analysis Method: SW846 8082A
Matrix: AQ
\% Solids: NA
Report Date: 29-DEC-17

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL ADJ LOD	
Aroclor-1016	U	0.25	ug / L	1	.5	0.50	0.15	0.25
Aroclor-1221	U	0.25	ug / L	1	.5	0.50	0.20	0.25
Aroclor-1232	U	0.25	ug / L	1	.5	0.50	0.089	0.25
Aroclor-1242	U	0.25	ug / L	1	.5	0.50	0.18	0.25
Aroclor-1248	U	0.25	ug / L	1	.5	0.50	0.20	0.25
Aroclor-1254	U	0.25	ug / L	1	.5	0.50	0.082	0.25
Aroclor-1260	U	0.25	ug / L	1	.5	0.50	0.17	0.25
Aroclor-1262	U	0.25	ug / L	1	.5	0.50	0.066	0.25
Aroclor-1268	U	0.25	ug / L	1	.5	0.50	0.072	0.25
Total PCBs	U	2.2	ug / L	1	4.5	4.5	0.066	
Tetrachloro-M-Xylene		74.9	$\%$			2.2		
Decachlorobiphenyl	70.4	$\%$						

Form 8
 GC Analytical Sequence

Lab Name : Katahdin Analytical Services
Project : NAVSTA Newport, Gould Island CTO-WE2 Instrument ID : GC08

SDG: TK1925
Column ID : A

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	
Initial Calibration	WG217283-1	11/07/17	23:50	3.416	10.97	
Initial Calibration	WG217283-2	11/08/17	00:10	3.42	10.98	
Initial Calibration	WG217283-3	11/08/17	00:30	3.418	10.97	
Initial Calibration	WG217283-4	11/08/17	00:51	3.421	10.97	
Initial Calibration	WG217283-5	11/08/17	01:11	3.418	10.97	
Initial Calibration	WG217283-6	11/08/17	01:31	3.419	10.97	
Independent Source	WG217283-7	11/08/17	01:52			
Independent Source	WG217283-8	11/08/17	02:12			
Initial Calibration	WG217283-9	11/08/17	02:32			
Initial Calibration	WG217283-10	11/08/17	02:52			
Initial Calibration	WG217283-11	11/08/17	03:13			
Initial Calibration	WG217283-12	11/08/17	03:33			
Initial Calibration	WG217283-13	11/08/17	03:53			
Initial Calibration	WG217283-14	11/08/17	04:14			
Independent Source	WG217283-15	11/08/17	04:34			
Initial Calibration	WG217283-16	11/08/17	04:54			
Initial Calibration	WG217283-23	11/08/17	07:16			
Initial Calibration	WG217283-24	11/08/17	07:36			
Initial Calibration	WG217283-25	11/08/17	07:57			
Initial Calibration	WG217283-26	11/08/17	08:17			
Initial Calibration	WG217283-27	11/08/17	08:37			
Continuing Calibrati	WG220715-5	12/25/17	03:05	3.302	10.83	
Continuing Calibrati	WG220715-6	12/25/17	03:25			
Method Blank Sample	WG220411-1	12/25/17	04:26	3.308	10.83	
Laboratory Control S	WG220411-2	12/25/17	04:46	3.306	10.82	
Laboratory Control S	WG220411-3	12/25/17	05:07	3.309	10.83	
Continuing Calibrati	WG220715-9	12/25/17	08:48	3.294	10.82	
Continuing Calibrati	WG220715-10	12/25/17	09:09			
G32-MW306BR-121817	TK1925-1	12/25/17	11:30	3.3	10.82	
DUP-121817	TK1925-3	12/25/17	11:50	3.299	10.82	
GI-MW400-121817	TK1925-6	12/25/17	12:10	3.302	10.82	
G44S-MW202RR-121817	TK1925-8	12/25/17	12:31	3.304	10.82	
G32-MW304SR-121817	TK1925-10	12/25/17	12:51	3.299	10.82	
Continuing Calibrati	WG220715-12	12/25/17	13:11	3.299	10.82	

Form 8
 GC Analytical Sequence

Lab Name : Katahdin Analytical Services
Project : NAVSTA Newport, Gould Island CTO-WE2 Instrument ID : GC08

SDG: TK1925
Column ID : B

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	
Initial Calibration	WG217283-1	11/07/17	23:50	4.048	12.91	
Initial Calibration	WG217283-2	11/08/17	00:10	4.05	12.91	
Initial Calibration	WG217283-3	11/08/17	00:30	4.049	12.91	
Initial Calibration	WG217283-4	11/08/17	00:51	4.051	12.91	
Initial Calibration	WG217283-5	11/08/17	01:11	4.049	12.91	
Initial Calibration	WG217283-6	11/08/17	01:31	4.048	12.91	
Independent Source	WG217283-7	11/08/17	01:52			
Independent Source	WG217283-8	11/08/17	02:12			
Initial Calibration	WG217283-9	11/08/17	02:32			
Initial Calibration	WG217283-10	11/08/17	02:52			
Initial Calibration	WG217283-11	11/08/17	03:13			
Initial Calibration	WG217283-12	11/08/17	03:33			
Initial Calibration	WG217283-13	11/08/17	03:53			
Initial Calibration	WG217283-14	11/08/17	04:14			
Independent Source	WG217283-15	11/08/17	04:34			
Initial Calibration	WG217283-16	11/08/17	04:54			
Initial Calibration	WG217283-23	11/08/17	07:16			
Initial Calibration	WG217283-24	11/08/17	07:36			
Initial Calibration	WG217283-25	11/08/17	07:57			
Initial Calibration	WG217283-26	11/08/17	08:17			
Initial Calibration	WG217283-27	11/08/17	08:37			
Continuing Calibrati	WG220715-5	12/25/17	03:05	3.931	12.74	
Continuing Calibrati	WG220715-6	12/25/17	03:25			
Method Blank Sample	WG220411-1	12/25/17	04:26	3.935	12.75	
Laboratory Control S	WG220411-2	12/25/17	04:46	3.935	12.75	
Laboratory Control S	WG220411-3	12/25/17	05:06	3.937	12.75	
Continuing Calibrati	WG220715-9	12/25/17	08:48	3.923	12.74	
Continuing Calibrati	WG220715-10	12/25/17	09:09			
G32-MW306BR-121817	TK1925-1	12/25/17	11:30	3.927	12.74	
DUP-121817	TK1925-3	12/25/17	11:50	3.928	12.74	
GI-MW400-121817	TK1925-6	12/25/17	12:10	3.93	12.74	
G44S-MW202RR-121817	TK1925-8	12/25/17	12:31	3.932	12.74	
G32-MW304SR-121817	TK1925-10	12/25/17	12:51	3.928	12.74	
Continuing Calibrati	WG220715-12	12/25/17	13:11	3.926	12.74	

METALS DATA

Lab Name: Katahdin Analytical Services
Matrix: WATER
QC Batch ID: KL20IMW1

Sample ID: PBWKL20IMW1
SDG Name: TK1925

Concentration Units: ug/L

Analyte	RESULT	C
ARSENIC	4.0	U
CADMIUM	0.20	U
LEAD	0.50	U
MANGANESE	1.0	U

ICP INTERFERENCE CHECK SAMPLE
Lab Name: Katahdin Analytical Services SDG Name: TK1925
Concentration Units: ug/L

SAMPLE: ICS				SAMPLE: ICSAB			
File: JKL26A	Dec 26, 2017		$\begin{array}{r} 17: 11 \\ \hline \% \mathbf{R} \end{array}$	File: JKL26A Analyte	Dec 26, 2017		$\begin{array}{r} 17: 15 \\ \hline \% \mathbf{R} \end{array}$
Analyte	TRUE	FOUND			TRUE	FOUND	
ALUMINUM	100000	94780	94.8	ALUMINUM	100000	90920	90.9
ARSENIC	0	0		ARSENIC	20	20	100.0
CADMIUM	0	0		CADMIUM	20	18	90.0
CALCIUM	100000	96380	96.4	CALCIUM	100000	93600	93.6
IRON	100000	93740	93.7	IRON	100000	91970	92.0
LEAD	0	0		LEAD	20	20	100.0
MAGNESIUM	100000	95270	95.3	MAGNESIUM	100000	92420	92.4
MANGANESE	0	0		MANGANESE	20	19	95.0
MOLYBDENUM	2000	1909	95.5	MOLYBDENUM	2000	1877	93.8
POTASSIUM	100000	97280	97.3	POTASSIUM	100000	94960	95.0
SODIUM	100000	97110	97.1	SODIUM	100000	95880	95.9

Lab Name: Katahdin Analytical Services
Matrix: WATER

Sample ID: LCSWKL20IMW1
SDG Name: TK1925

QC Batch ID: KL20IMW1

Concentration Units: ug/L

Analyte	TRUE	FOUND	\% R	LIMITS (\%)
ARSENIC	100	99.4	99.4	84
CADMIUM	250	248	99.2	87
LEAD	100	98.6	98.6	88
MANGANESE	500	500	100.0	87

Lab Name: Katahdin Analytical Services
Instrument Name: AGILENT 7500 ICP-MS
Concentration Units: ug/L

Analyte	PQL/LOQ	IDL	M
ALUMINUM	20	3.0	MS
ARSENIC	1.0	0.11	MS
CADMIUM	0.20	0.011	MS
CALCIUM	20	8.7	MS
IRON	20	3.1	MS
LEAD	0.20	0.034	MS
MAGNESIUM	20	3.4	MS
MANGANESE	0.40	0.13	MS
MOLYBDENUM	1.0	0.041	MS
POTASSIUM	200	6.6	MS
SODIUM	200	5.5	MS

Lab Name: Katahdin Analytical Services
Instrument Name: AGILENT 7500 ICP-MS

Instrument Code: J
Date: 1/25/2011

Analyte	LOD	Units	M	EPA Prep./Anal. Method
ARSENIC	0.80	ug/L	MS	SW846 3010A / SW846 6020A
CADMIUM	0.040	ug/L	MS	SW846 3010A / SW846 6020A
LEAD	0.10	ug/L	MS	SW846 3010A / SW846 6020A
MANGANESE	0.20	ug/L	MS	SW846 3010A / SW846 6020A

METHOD DETECTION LIMITS

Lab Name: Katahdin Analytical Services	Instrument Code: J
Instrument Name: AGLENT 7500 ICP-MS	Date: $1 / 25 / 2011$

Instrument Name: AGILENT 7500 ICP-MS Date: 1/25/2011

Analyte	MDL	Units	M	EPA Prep./Anal. Method
ARSENIC	0.45	ug/L	MS	SW846 3010A / SW846 6020A
CADMIUM	0.0059	ug/L	MS	SW846 3010A / SW846 6020A
LEAD	0.015	ug/L	MS	SW846 3010A / SW846 6020A
MANGANESE	0.070	ug/L	MS	SW846 3010A / SW846 6020A

Lab Name: Katahdin Analytical Services	Instrument Code: J
Instrument Name: AGILENT 7500 ICP-MS	Date: 8/4/2017

Concentration Units: ug/L			
Analyte	Integration Time (sec)	Linear Range	M
ALUMINUM	0.01	200000	MS
ARSENIC	0.30	1000	MS
CADMIUM	0.10	1000	MS
CALCIUM	0.03	200000	MS
IRON	0.03	100000	MS
LEAD	0.10	2000	MS
MAGNESIUM	0.05	200000	MS
MANGANESE	0.10	2000	MS
MOLYBDENUM	0.10	1000	MS
POTASSIUM	0.01	200000	MS
SODIUM	0.01	200000	MS

PREPARATION LOG

Lab Name: Katahdin Analytical Services	QC Batch ID: KL20IMW1				
Matrix: WATER		SDG Name: TK1925			
Method: MS		Prep Date:	12/20/2017		
Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID	
LCSWKL20IMW1	LCSWKL20IMW1	0.05	0.05		
PBWKL20IMW1	PBWKL20IMW1	0.05	0.05		
G32-MW306BR-121817	TK1925-001	0.05	0.05	D	
G32-MW306BR-121817	TK1925-002	0.05	0.05	A	
DUP-121817	TK1925-003	0.05	0.05	D	
DUP-121817	TK1925-004	0.05	0.05	A	
GI-MW400-121817	TK1925-006	0.05	0.05	D	
GI-MW400-121817	TK1925-007	0.05	0.05	A	
G44S-MW202RR-121817	TK1925-008	0.05	0.05	D	
G44S-MW202RR-121817	TK1925-009	0.05	0.05	A	
G32-MW304SR-121817	TK1925-010	0.05	0.05	D	
G32-MW304SR-121817	TK1925-011	0.05	0.05	A	

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services
Instrument ID: AGILENT 7500 ICP-MS
Date: $12 / 26 / 2017$

SDG Name: TK1925
File Name: JKL26A
Method: MS

Lab Sample ID 6020 TUNE	Client ID	$\frac{\text { D.F. }}{1}$	$\begin{gathered} \text { Time } \\ \hline 15: 57 \end{gathered}$	Elements							
200.8 TUNE		1	16:00								
Cal Blank		1	16:50	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
Cal Std 6		1	16:53	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ICV		1	16:57	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ICB		1	17:01	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
PQL		1	17:04	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		1	17:08								
ICSA		1	17:11	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ICSAB		1	17:15	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		1	17:19								
ZZZZZZ		1	17:23								
ZZZZZZ		1	17:26								
ZZZZZZ		1	17:30								
ZZZZZZ		1	17:33								
CCV		1	17:37	Al	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	17:41	Al	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		5	17:45								
ZZZZZZ		5	17:48								
ZZZZZZ		5	17:52								
ZZZZZZ		5	17:56								
ZZZZZZ		5	17:59								
ZZZZZZ		100	18:03								
ZZZZZZ		500	18:07								
ZZZZZZ		100	18:11								
ZZZZZZ		100	18:15								
ZZZZZZ		10	18:18								

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services	SDG Name: TK1925
Instrument ID: AGILENT 7500 ICP-MS	File Name: JKL26A

Date: 12/26/2017
Method: MS

Lab Sample ID CCV	Client ID	$\begin{gathered} \text { D.F. } \\ \hline 1 \end{gathered}$	$\begin{array}{r} \text { Time } \\ \hline 18: 22 \end{array}$	Elements							
				Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	18:26	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		100	18:30								
ZZZZZZ		100	18:34								
ZZZZZZ		500	18:38								
ZZZZZZ		100	18:42								
ZZZZZZ		1	18:46								
ZZZZZZ		100	18:50								
ZZZZZZ		100	18:54								
ZZZZZZ		100	18:57								
ZZZZZZ		100	19:01								
ZZZZZZ		1	19:05								
CCV		1	19:09	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	19:13	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		5	19:17								
ZZZZZZ		5	19:21								
ZZZZZZ		5	19:25								
ZZZZZZ		5	19:29								
ZZZZZZ		5	19:33								
ZZZZZZ		5	19:37								
ZZZZZZ		5	19:41								
ZZZZZZ		25	19:45								
ZZZZZZ		5	19:49								
ZZZZZZ		5	19:53								
CCV		1	19:57	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	20:01	Al	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		5	20:05								

Lab Name: Katahdin Analytical Services
 Instrument ID: AGILENT 7500 ICP-MS
 Date: $12 / 26 / 2017$
 SDG Name: TK1925
 File Name: JKL26A
 Method: MS

Lab Sample ID	Client ID	D.F.	Time					Element			
ZZZZZZ		5	20:09								
ZZZZZZ		5	20:13								
ZZZZZZ		5	20:17								
ZZZZZZ		5	20:21								
ZZZZZZ		5	20:25								
ZZZZZZ		5	20:29								
ZZZZZZ		5	20:33								
ZZZZZZ		5	20:37								
ZZZZZZ		5	20:41								
CCV		1	20:45	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	20:49	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
PBWKL20IMW1		5	20:53		As	Cd	Pb	Mn			
LCSWKL20IMW1		5	20:57		As	Cd	Pb	Mn			
ZZZZZZ		5	21:01								
ZZZZZZ		25	21:05								
ZZZZZZ		5	21:09								
ZZZZZZ		5	21:14								
ZZZZZZ		5	21:18								
ZZZZZZ		5	21:22								
ZZZZZZ		5	21:26								
ZZZZZZ		5	21:30								
CCV		1	21:34	AI	As	CdCa	Fe Pb	Mg Mn	Mo	K	Na
CCB		1	21:38	AI	As	Cd Ca	Fe Pb	Mg Mn	Mo	K	Na
ZZZZZZ		5	21:42								
ZZZZZZ		5	21:46								
ZZZZZZ		5	21:50								
ZZZZZZ		5	21:54								

ANALYSIS RUN LOG

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM\1\DATA \JKL26A.B\096SMPL.D\096SMPL.D\#
Dec 262017 09:58 pm
1PTCAL16.M
JS
TK1925-001
INTERNAL STANDARD RECOVERIES
2507
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1\CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.025	0.005	ppb	62.06	100.	
11 B	9.89	1.978	ppb	5.50	1000.	
23 Na	28,305.	5,661.	ppb	3.43	200000.	
25 Mg	4,869.	973.8	ppb	3.05	200000.	
27 Al	1,046.	209.2	ppb	2.92	200000.	
28 Si	6,245.	1,249.	ppb	11.69	\#VALUE!	
29 Si	6,345.	1,269.	ppb	8.42	10000.	
39 K	6,885.	1,377.	ppb	3.57	200000.	
43 Ca	121,450.	24,290.	ppb	2.16	\#VALUE!	
44 Ca	118,350.	23,670.	ppb	2.60	200000.	
51 V	5.08	1.016	ppb	11.85	1000.	
52 Cr	2.033	0.4066	ppb	1.08	2000.	
53 Cr	20.03	4.006	ppb	6.71	\#VALUE!	
55 Mn	140.05	28.01	ppb	1.69	2000.	
56 Fe	1,331.	266.2	ppb	3.42	\#VALUE!	
57 Fe	1,449.5	289.9	ppb	3.04	100000.	
59 Co	2.3375	0.4675	ppb	0.46	1000.	
60 Ni	3.681	0.7362	ppb	1.89	1000.	
63 Cu	4.392	0.8784	ppb	3.14	\#VALUE!	
65 Cu	2.545	0.509	ppb	8.38	2000.	
66 Zn	3.0635	0.6127	ppb	8.13	2000.	
68 Zn	3.891	0.7782	ppb	22.54	\#VALUE!	
75 As	0.5535	0.1107	ppb	43.31	1000.	
82 Se	2.1005	0.4201	ppb	27.97	1000.	
88 Sr	452.2	90.44	ppb	2.70	2000.	
98 Mo	5.45	1.09	ppb	4.88	1000.	
107 Ag	-0.0014	-0.0003	ppb	2876.00	100.	
109 Ag	-0.0344	-0.0069	ppb	81.34	\#VALUE!	
111 Cd	-0.1238	-0.0248	ppb	141.25	\#VALUE!	
114 Cd	0.0074	0.0015	ppb	328.84	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.2115	0.2423	ppb	11.30	1000.	
120 Sn	1.249	0.2498	ppb	6.59	\#VALUE!	
121 Sb	0.2921	0.0584	ppb	25.03	\#VALUE!	
123 Sb	0.314	0.0628	ppb	10.88	1000.	
135 Ba	34.325	6.865	ppb	2.40	2000.	
137 Ba	34.58	6.916	ppb	1.64	\#VALUE!	
182 W	1.53	0.306	ppb	8.54	1000.	
203 Tl	-0.026	-0.0052	ppb	54.74	1000.	
205 Tl	0.0049	0.001	ppb	83.40	\#VALUE!	
208 Pb	0.6065	0.1213	ppb	3.71	2000.	
232 Th	0.3643	0.0729	ppb	6.17	1000.	
238 U	0.1994	0.0399	ppb	2.85	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	2986144.30	0.78	2851854.00	104.7	$69.5-120$	
45	Sc	3100722.80	3.84	3051657.30	101.6	$69.5-120$	
89 Y	4686556.00	2.32	4650709.50	100.8	$69.5-120$		
159 Tb	5928096.50	0.98	5913626.00	100.2	$69.5-120$		
209 Bi	3168689.30	0.97	3217378.00	98.5	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes: ISTD: Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\097SMPL.D $\backslash 097$ SMPL.D\#
Dec 262017 10:02 pm
1PTCAL16.M
JS
TK1925-002
2508
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	-0.0011	-0.0002	ppb	118.87	100.	
11 B	8.725	1.745	ppb	7.16	1000.	
23 Na	30,525.	6,105.	ppb	0.35	200000.	
25 Mg	4,237.	847.4	ppb	0.59	200000.	
27 Al	315.4	63.08	ppb	0.31	200000.	
28 Si	5,115.	1,023.	ppb	1.81	\#VALUE!	
29 Si	5,710.	1,142.	ppb	0.78	10000.	
39 K	7,100.	1,420.	ppb	0.71	200000.	
43 Ca	128,450.	25,690.	ppb	0.59	\#VALUE!	
44 Ca	124,850.	24,970.	ppb	0.46	200000.	
51 V	3.5365	0.7073	ppb	1.96	1000.	
52 Cr	1.136	0.2272	ppb	15.69	2000.	
53 Cr	21.95	4.39	ppb	4.56	\#VALUE!	
55 Mn	37.785	7.557	ppb	1.42	2000.	
56 Fe	388.95	77.79	ppb	7.90	\#VALUE!	
57 Fe	553.5	110.7	ppb	0.67	100000.	
59 Co	0.749	0.1498	ppb	11.80	1000.	
60 Ni	1.329	0.2658	ppb	16.33	1000.	
63 Cu	2.9695	0.5939	ppb	2.48	\#VALUE!	
65 Cu	1.1135	0.2227	ppb	9.65	2000.	
66 Zn	1.814	0.3628	ppb	4.99	2000.	
68 Zn	2.1105	0.4221	ppb	51.67	\#VALUE!	
75 As	0.8275	0.1655	ppb	161.93	1000.	
82 Se	1.9785	0.3957	ppb	45.24	1000.	
88 Sr	472.55	94.51	ppb	0.87	2000.	
98 Mo	5.66	1.132	ppb	2.78	1000.	
107 Ag	0.0008	0.0002	ppb	3246.10	100.	
109 Ag	-0.0423	-0.0085	ppb	73.10	\#VALUE!	
111 Cd	0.1608	0.0322	ppb	110.26	\#VALUE!	
114 Cd	0.0148	0.003	ppb	117.93	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.056	0.2112	ppb	4.44	1000.	
120 Sn	1.0585	0.2117	ppb	6.75	\#VALUE!	
121 Sb	0.3122	0.0624	ppb	11.38	\#VALUE!	
123 Sb	0.3098	0.062	ppb	15.48	1000.	
135 Ba	33.415	6.683	ppb	3.84	2000.	
137 Ba	34.205	6.841	ppb	1.40	\#VALUE!	
182 W	1.593	0.3186	ppb	4.25	1000.	
203 Tl	-0.0144	-0.0029	ppb	146.75	1000.	
205 Tl	-0.0072	-0.0014	ppb	128.69	\#VALUE!	
208 Pb	0.1195	0.0239	ppb	9.67	2000.	
232 Th	0.0934	0.0187	ppb	7.52	1000.	
238 U	0.0548	0.011	ppb	4.66	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	3341025.30	1.93	2851854.00	117.2	$69.5-120$	
45	SC	3274099.50	0.49	3051657.30	107.3	$69.5-120$	
89 Y	4825377.00	1.72	4650709.50	103.8	$69.5-120$		
159 Tb	5990358.00	1.91	5913626.00	101.3	$69.5-120$		
209 Bi	3138390.30	1.50	3217378.00	97.5	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes:
ISTD:

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\098SMPL.D $\backslash 098$ SMPL.D\#
Dec 262017 10:06 pm
1PTCAL16.M
JS
TK1925-003
2509
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	-0.0121	-0.0024	ppb	56.50	100.	
11 B	75.35	15.07	ppb	3.12	1000.	
23 Na	34,720.	6,944.	ppb	1.81	200000.	
25 Mg	16,150.	3,230.	ppb	1.49	200000.	
27 Al	75.7	15.14	ppb	2.42	200000.	
28 Si	4,405.	881.	ppb	2.19	\#VALUE!	
29 Si	4,127.5	825.5	ppb	1.41	10000.	
39 K	17,180.	3,436.	ppb	0.57	200000.	
43 Ca	123,050.	24,610.	ppb	1.35	\#VALUE!	
44 Ca	119,250.	23,850.	ppb	2.07	200000.	
51 V	0.6425	0.1285	ppb	18.14	1000.	
52 Cr	0.814	0.1628	ppb	17.67	2000.	
53 Cr	18.745	3.749	ppb	3.65	\#VALUE!	
55 Mn	234.8	46.96	ppb	2.77	2000.	
56 Fe	160.55	32.11	ppb	14.93	\#VALUE!	
57 Fe	282.95	56.59	ppb	5.27	100000 .	
59 Co	0.9955	0.1991	ppb	2.12	1000.	
60 Ni	0.5065	0.1013	ppb	11.61	1000.	
63 Cu	2.658	0.5316	ppb	1.65	\#VALUE!	
65 Cu	0.843	0.1686	ppb	7.24	2000.	
66 Zn	0.6635	0.1327	ppb	38.12	2000.	
68 Zn	2.4515	0.4903	ppb	15.24	\#VALUE!	
75 As	1.0155	0.2031	ppb	14.64	1000.	
82 Se	1.77	0.354	ppb	33.28	1000.	
88 Sr	509.	101.8	ppb	2.55	2000.	
98 Mo	3.8735	0.7747	ppb	2.87	1000.	
107 Ag	0.0356	0.0071	ppb	87.54	100.	
109 Ag	-0.0143	-0.0029	ppb	292.47	\#VALUE!	
111 Cd	-0.2096	-0.0419	ppb	45.69	\#VALUE!	
114 Cd	-0.0006	-0.0001	ppb	5366.40	1000.	
115 In	----	--------		--	\#VALUE!	
118 Sn	1.569	0.3138	ppb	1.67	1000.	
120 Sn	1.638	0.3276	ppb	4.91	\#VALUE!	
121 Sb	0.1008	0.0202	ppb	23.29	\#VALUE!	
123 Sb	0.1785	0.0357	ppb	8.76	1000.	
135 Ba	70.55	14.11	ppb	2.33	2000.	
137 Ba	70.35	14.07	ppb	1.09	\#VALUE!	
182 W	0.2298	0.046	ppb	15.14	1000.	
203 Tl	0.0249	0.005	ppb	29.95	1000.	
205 Tl	0.023	0.0046	ppb	30.95	\#VALUE!	
208 Pb	0.0498	0.01	ppb	69.64	2000.	
232 Th	0.0325	0.0065	ppb	12.35	1000.	
238 U	0.8065	0.1613	ppb	5.36	1000.	
ISTD Elements						
Element	CPS Mean	RSD (\%)		Ref Value	$\operatorname{Rec}(\%)$	QC Range (\%)
6 Li	2852372.50	0.33		2851854.00	100.0	69.5-120
45 Sc	2962112.30	0.88		3051657.30	97.1	69.5-120
89 Y	4568542.00	2.30		4650709.50	98.2	$69.5-120$
159 Tb	5945687.50	1.09		5913626.00	100.5	69.5 - 120
209 Bi	3144314.50	1.41		3217378.00	97.7	69.5-120

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes: ISTD: Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method:
Calibration File:
Last Cal. Update:
Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\099SMPL.D $\backslash 099$ SMPL.D\#
Dec 262017 10:10 pm
1PTCAL16.M
JS
TK1925-004
2510
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	-0.0087	-0.0017	ppb	130.92	100.	
11 B	76.2	15.24	ppb	6.31	1000.	
23 Na	36,145.	7,229.	ppb	1.72	200000.	
25 Mg	16,385.	3,277.	ppb	2.42	200000.	
27 Al	7.735	1.547	ppb	5.77	200000.	
28 Si	3,143.5	628.7	ppb	7.42	\#VALUE!	
29 Si	3,693.	738.6	ppb	6.42	10000.	
39 K	17,475.	3,495.	ppb	3.37	200000.	
43 Ca	124,550.	24,910.	ppb	2.06	\#VALUE!	
44 Ca	120,550.	24,110.	ppb	2.15	200000.	
51 V	0.52	0.104	ppb	68.76	1000.	
52 Cr	0.776	0.1552	ppb	5.08	2000.	
53 Cr	25.77	5.154	ppb	9.72	\#VALUE!	
55 Mn	234.75	46.95	ppb	1.44	2000.	
56 Fe	18.77	3.754	ppb	81.75	\#VALUE!	
57 Fe	207.15	41.43	ppb	7.06	100000.	
59 Co	0.974	0.1948	ppb	4.79	1000.	
60 Ni	0.4964	0.0993	ppb	13.33	1000.	
63 Cu	2.6365	0.5273	ppb	2.62	\#VALUE!	
65 Cu	0.9695	0.1939	ppb	15.06	2000.	
66 Zn	0.833	0.1666	ppb	50.58	2000.	
68 Zn	3.071	0.6142	ppb	5.38	\#VALUE!	
75 As	0.3685	0.0737	ppb	198.13	1000.	
82 Se	1.4595	0.2919	ppb	27.71	1000.	
88 Sr	516.5	103.3	ppb	1.47	2000.	
98 Mo	3.7685	0.7537	ppb	1.97	1000.	
107 Ag	-0.0002	0.	ppb	6765.90	100.	
109 Ag	-0.018	-0.0036	ppb	105.41	\#VALUE!	
111 Cd	0.1096	0.0219	ppb	47.49	\#VALUE!	
114 Cd	-0.0053	-0.0011	ppb	422.96	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.185	0.237	ppb	15.90	1000.	
120 Sn	1.075	0.215	ppb	5.21	\#VALUE!	
121 Sb	0.101	0.0202	ppb	14.37	\#VALUE!	
123 Sb	0.1344	0.0269	ppb	20.73	1000.	
135 Ba	70.9	14.18	ppb	0.78	2000.	
137 Ba	71.5	14.3	ppb	1.11	\#VALUE!	
182 W	0.1643	0.0329	ppb	15.44	1000.	
203 Tl	0.0214	0.0043	ppb	103.13	1000.	
205 Tl	0.0367	0.0073	ppb	39.70	\#VALUE!	
208 Pb	-0.0457	-0.0091	ppb	24.23	2000.	
232 Th	0.0133	0.0027	ppb	24.10	1000.	
238 U	0.854	0.1708	ppb	2.27	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	3373122.00	1.75	2851854.00	118.3	$69.5-120$	
45	SC	3349054.00	0.78	3051657.30	109.7	$69.5-120$	
89 Y	4924827.00	1.34	4650709.50	105.9	$69.5-120$		
159 Tb	6120307.50	0.58	5913626.00	103.5	$69.5-120$		
209 Bi	3168161.50	0.51	3217378.00	98.5	$69.5-120$		

ISTD Ref File :

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes:
ISTD:

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method:
Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\100SMPL.D $\backslash 100$ SMPL.D\#
Dec 262017 10:14 pm
1PTCAL16.M
JS
TK1925-006
2511
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00 Undiluted 5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	-0.01	-0.002	ppb	35.14	100.	
11 B	73.45	14.69	ppb	2.72	1000.	
23 Na	34,185.	6,837.	ppb	1.44	200000.	
25 Mg	15,600.	3,120.	ppb	2.38	200000.	
27 Al	86.4	17.28	ppb	2.11	200000.	
28 Si	4,218.	843.6	ppb	6.20	\#VALUE!	
29 Si	4,100.	820.	ppb	4.38	10000.	
39 K	16,780.	3,356.	ppb	2.70	200000.	
43 Ca	118,500.	23,700.	ppb	2.39	\#VALUE!	
44 Ca	116,100.	23,220.	ppb	0.90	200000.	
51 V	0.3329	0.0666	ppb	88.77	1000.	
52 Cr	0.7355	0.1471	ppb	10.76	2000.	
53 Cr	19.665	3.933	ppb	3.11	\#VALUE!	
55 Mn	229.1	45.82	ppb	1.20	2000.	
56 Fe	193.15	38.63	ppb	4.18	\#VALUE!	
57 Fe	329.2	65.84	ppb	6.67	100000.	
59 Co	1.045	0.209	ppb	7.47	1000.	
60 Ni	0.416	0.0832	ppb	18.07	1000.	
63 Cu	2.599	0.5198	ppb	1.61	\#VALUE!	
65 Cu	0.861	0.1722	ppb	11.41	2000.	
66 Zn	0.6285	0.1257	ppb	7.91	2000.	
68 Zn	2.936	0.5872	ppb	22.11	\#VALUE!	
75 As	0.2901	0.058	ppb	285.12	1000.	
82 Se	0.749	0.1498	ppb	48.15	1000.	
88 Sr	497.45	99.49	ppb	0.57	2000.	
98 Mo	3.6735	0.7347	ppb	0.36	1000.	
107 Ag	0.0156	0.0031	ppb	64.88	100.	
109 Ag	0.0117	0.0023	ppb	114.11	\#VALUE!	
111 Cd	-0.2142	-0.0428	ppb	74.46	\#VALUE!	
114 Cd	0.0077	0.0015	ppb	102.73	1000.	
115 In	----	---	---		\#VALUE!	
118 Sn	1.126	0.2252	ppb	8.63	1000.	
120 Sn	1.066	0.2132	ppb	4.01	\#VALUE!	
121 Sb	0.1134	0.0227	ppb	34.26	\#VALUE!	
123 Sb	0.1401	0.028	ppb	8.93	1000.	
135 Ba	70.6	14.12	ppb	1.29	2000.	
137 Ba	70.9	14.18	ppb	1.68	\#VALUE!	
182 W	0.1809	0.0362	ppb	6.98	1000.	
203 Tl	0.0089	0.0018	ppb	55.13	1000.	
205 Tl	0.0403	0.0081	ppb	40.59	\#VALUE!	
208 Pb	0.0892	0.0178	ppb	32.27	2000.	
232 Th	0.0392	0.0078	ppb	12.38	1000.	
238 U	0.811	0.1622	ppb	2.20	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	2940015.30	4.46	2851854.00	103.1	$69.5-120$	
45	Sc	3021858.80	2.10	3051657.30	99.0	$69.5-120$	
89 Y	4609563.50	0.91	4650709.50	99.1	$69.5-120$		
159 Tb	5929454.50	1.54	5913626.00	100.3	$69.5-120$		
209 Bi	3130930.80	1.72	3217378.00	97.3	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes: ISTD: Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\101SMPL.D $\backslash 101$ SMPL.D\#
Dec 262017 10:18 pm
1PTCAL16.M
JS
TK1925-007
2512
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	-0.0065	-0.0013	ppb	182.89	100.	
11 B	76.05	15.21	ppb	6.60	1000.	
23 Na	36,315.	7,263.	ppb	2.11	200000.	
25 Mg	16,135.	3,227.	ppb	2.43	200000.	
27 Al	6.675	1.335	ppb	9.99	200000.	
28 Si	2,984.5	596.9	ppb	4.22	\#VALUE!	
29 Si	3,603.	720.6	ppb	3.16	10000.	
39 K	17,510.	3,502.	ppb	0.51	200000.	
43 Ca	122,800.	24,560.	ppb	1.43	\#VALUE!	
44 Ca	120,100.	24,020.	ppb	1.88	200000.	
51 V	0.598	0.1196	ppb	49.00	1000.	
52 Cr	1.1855	0.2371	ppb	9.27	2000.	
53 Cr	27.27	5.454	ppb	10.01	\#VALUE!	
55 Mn	234.9	46.98	ppb	1.22	2000.	
56 Fe	57.3	11.46	ppb	19.90	\#VALUE!	
57 Fe	248.75	49.75	ppb	6.55	100000.	
59 Co	1.041	0.2082	ppb	9.88	1000.	
60 Ni	0.623	0.1246	ppb	18.60	1000.	
63 Cu	2.827	0.5654	ppb	5.27	\#VALUE!	
65 Cu	1.093	0.2186	ppb	8.18	2000.	
66 Zn	0.6435	0.1287	ppb	38.70	2000.	
68 Zn	2.7665	0.5533	ppb	13.45	\#VALUE!	
75 As	-0.145	-0.029	ppb	499.14	1000.	
82 Se	1.4705	0.2941	ppb	27.65	1000.	
88 Sr	511.5	102.3	ppb	0.98	2000.	
98 Mo	3.943	0.7886	ppb	3.76	1000.	
107 Ag	-0.0198	-0.004	ppb	124.80	100.	
109 Ag	-0.0103	-0.0021	ppb	170.46	\#VALUE!	
111 Cd	0.2087	0.0417	ppb	27.00	\#VALUE!	
114 Cd	0.0308	0.0062	ppb	4.16	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.13	0.226	ppb	5.08	1000.	
120 Sn	1.1885	0.2377	ppb	14.28	\#VALUE!	
121 Sb	0.1049	0.021	ppb	8.78	\#VALUE!	
123 Sb	0.1535	0.0307	ppb	11.53	1000.	
135 Ba	71.25	14.25	ppb	1.46	2000.	
137 Ba	70.7	14.14	ppb	0.72	\#VALUE!	
182 W	0.1819	0.0364	ppb	8.24	1000.	
203 Tl	0.009	0.0018	ppb	138.97	1000.	
205 Tl	0.0217	0.0043	ppb	54.07	\#VALUE!	
208 Pb	-0.0049	-0.001	ppb	752.48	2000.	
232 Th	0.0047	0.0009	ppb	58.26	1000.	
238 U	0.8215	0.1643	ppb	3.95	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 3419091.00 | 1.22 | 2851854.00 | 119.9 | $69.5-120$ | |
| 45 | Sc | 3376134.30 | 0.69 | 3051657.30 | 110.6 | $69.5-120$ |
| 89 Y | 4956191.00 | 0.31 | 4650709.50 | 106.6 | $69.5-120$ | |
| 159 Tb | 6136671.00 | 0.65 | 5913626.00 | 103.8 | $69.5-120$ | |
| 209 Bi | 3177982.80 | 0.70 | 3217378.00 | 98.8 | $69.5-120$ | |

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes:
ISTD:

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\104SMPL.D\104SMPL.D\#
Dec 262017 10:31 pm
1PTCAL16.M
JS
TK1925-008
3101
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Cone	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0508	0.0102	ppb	46.94	100.	
11 B	1,767.5	353.5	ppb	4.15	1000.	
23 Na	-	-	ppb		200000.	>LDR
25 Mg	556,500.	111,300.	ppb	1.32	200000.	
27 Al	1,704.5	340.9	ppb	1.04	200000.	
28 Si	5,895.	1,179.	ppb	10.07	\#VALUE!	
29 Si	5,875.	1,175.	ppb	3.26	10000.	
39 K	212,850.	42,570.	ppb	0.88	200000.	
43 Ca	456,950.	91,390.	ppb	2.19	\#VALUE!	
44 Ca	422,850.	84,570.	ppb	1.72	200000.	
51 V	2.7805	0.5561	ppb	10.92	1000.	
52 Cr	4.022	0.8044	ppb	2.43	2000.	
53 Cr	40.425	8.085	ppb	0.76	\#VALUE!	
55 Mn	2,911.	582.2	ppb	0.26	2000.	
56 Fe	3,743.	748.6	ppb	0.81	\#VALUE!	
57 Fe	4,200.	840.	ppb	3.03	100000.	
59 Co	4.1625	0.8325	ppb	2.55	1000.	
60 Ni	4.8815	0.9763	ppb	10.09	1000.	
63 Cu	224.9	44.98	ppb	1.47	\#VALUE!	
65 Cu	6.67	1.334	ppb	3.87	2000.	
66 Zn	13.02	2.604	ppb	2.13	2000.	
68 Zn	12.685	2.537	ppb	0.04	\#VALUE!	
75 As	4.949	0.9898	ppb	6.87	1000.	
82 Se	1.4995	0.2999	ppb	66.92	1000.	
88 Sr	4,697.	939.4	ppb	0.80	2000.	
98 Mo	8.915	1.783	ppb	3.05	1000.	
107 Ag	-0.0139	-0.0028	ppb	66.77	100.	
109 Ag	-0.0422	-0.0084	ppb	46.72	\#VALUE!	
111 Cd	0.2034	0.0407	ppb	56.75	\#VALUE!	
114 Cd	0.0029	0.0006	ppb	664.48	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.5095	0.3019	ppb	4.75	1000.	
120 Sn	1.5535	0.3107	ppb	8.65	\#VALUE!	
121 Sb	0.2234	0.0447	ppb	8.60	\#VALUE!	
123 Sb	0.3151	0.063	ppb	29.59	1000.	
135 Ba	113.75	22.75	ppb	1.87	2000.	
137 Ba	114.3	22.86	ppb	0.81	\#VALUE!	
182 W	0.7355	0.1471	ppb	5.33	1000.	
203 Tl	0.0197	0.0039	ppb	72.65	1000.	
205 Tl	-0.0058	-0.0012	ppb	213.45	\#VALUE!	
208 Pb	1.5275	0.3055	ppb	2.34	2000.	
232 Th	0.9355	0.1871	ppb	3.31	1000.	
238 U	1.455	0.291	ppb	3.95	1000.	

ISTD Elements

| Element | CPS Mean | RSD (\%) | Ref Value | Rec (\%) | QC Range (\%) Flag | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| $6 \quad \mathrm{Li}$ | 2756385.30 | 4.43 | 2851854.00 | 96.7 | $69.5-120$ | |
| 45 | Sc | 3219100.30 | 2.18 | 3051657.30 | 105.5 | $69.5-120$ |
| 89 Y | 4458090.00 | 0.92 | 4650709.50 | 95.9 | $69.5-120$ | |
| 159 Tb | 5224128.00 | 0.90 | 5913626.00 | 88.3 | $69.5-120$ | |
| 209 Bi | 2399839.00 | 0.86 | 3217378.00 | 74.6 | $69.5-120$ | |

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D\#

1 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes: ISTD:

0 :Max. Number of ISTD Failures Allowed

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\105SMPL.D $\backslash 105$ SMPL.D\#
Dec 262017 10:35 pm
1PTCAL16.M
JS
TK1925-009
3102
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0001	0.	ppb	11452.00	100.	
11 B	1,814.5	362.9	ppb	5.97	1000.	
23 Na	----		ppb	--------	200000.	>LDR
25 Mg	557,500.	111,500.	ppb	1.66	200000.	
27 Al	40.59	8.118	ppb	3.42	200000.	
28 Si	4,051.	810.2	ppb	5.91	\#VALUE!	
29 Si	4,226.	845.2	ppb	3.57	10000.	
39 K	214,100.	42,820.	ppb	1.57	200000.	
43 Ca	452,950.	90,590.	ppb	1.14	\#VALUE!	
44 Ca	424,150.	84,830.	ppb	0.81	200000.	
51 V	0.4316	0.0863	ppb	51.07	1000.	
52 Cr	1.9055	0.3811	ppb	21.37	2000.	
53 Cr	45.115	9.023	ppb	11.36	\#VALUE!	
55 Mn	2,965.5	593.1	ppb	3.20	2000.	
56 Fe	1,245.5	249.1	ppb	4.30	\#VALUE!	
57 Fe	1,861.5	372.3	ppb	6.93	100000.	
59 Co	3.513	0.7026	ppb	1.89	1000.	
60 Ni	3.872	0.7744	ppb	18.70	1000.	
63 Cu	220.7	44.14	ppb	1.93	\#VALUE!	
65 Cu	3.7835	0.7567	ppb	5.26	2000.	
66 Zn	10.15	2.03	ppb	9.42	2000.	
68 Zn	11.07	2.214	ppb	16.36	\#VALUE!	
75 As	6.605	1.321	ppb	17.26	1000.	
82 Se	1.5375	0.3075	ppb	27.10	1000.	
88 Sr	4,708.	941.6	ppb	1.16	2000.	
98 Mo	9.665	1.933	ppb	1.91	1000.	
107 Ag	-0.0103	-0.0021	ppb	158.96	100.	
109 Ag	-0.0459	-0.0092	ppb	119.42	\#VALUE!	
111 Cd	0.3457	0.0691	ppb	39.94	\#VALUE!	
114 Cd	-0.0251	-0.005	ppb	22.35	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.5925	0.3185	ppb	8.63	1000.	
120 Sn	1.516	0.3032	ppb	3.25	\#VALUE!	
121 Sb	0.2541	0.0508	ppb	24.68	\#VALUE!	
123 Sb	0.2625	0.0525	ppb	19.05	1000.	
135 Ba	110.8	22.16	ppb	1.26	2000.	
137 Ba	110.05	22.01	ppb	1.66	\#VALUE!	
182 W	0.677	0.1354	ppb	2.85	1000.	
203 Tl	0.0083	0.0017	ppb	132.45	1000.	
205 Tl	-0.0173	-0.0035	ppb	84.28	\#VALUE!	
208 Pb	0.0471	0.0094	ppb	44.18	2000.	
232 Th	0.0627	0.0125	ppb	11.51	1000.	
238 U	1.3535	0.2707	ppb	6.79	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	2942246.80	5.48	2851854.00	103.2	$69.5-120$	
45	SC	3381217.00	5.74	3051657.30	110.8	$69.5-120$	
89 Y	4480622.00	2.50	4650709.50	96.3	$69.5-120$		
159 Tb	5136701.00	1.01	5913626.00	86.9	$69.5-120$		
209 Bi	2364114.80	0.23	3217378.00	73.5	$69.5-120$		

1 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes:
ISTD: Pass

Sample QC Report

Data File:
Date Acquired:
Acq. Method: Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\106SMPL.D $\backslash 106$ SMPL.D\#
Dec 262017 10:39 pm
1PTCAL16.M
JS
TK1925-010
3103
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	-0.0011	-0.0002	ppb	642.23	100.	
11 B	79.65	15.93	ppb	5.17	1000.	
23 Na	63,250.	12,650.	ppb	2.61	200000.	
25 Mg	9,055.	1,811.	ppb	2.48	200000.	
27 Al	62.35	12.47	ppb	0.73	200000.	
28 Si	6,720.	1,344.	ppb	7.91	\#VALUE!	
29 Si	7,550.	1,510.	ppb	2.80	10000.	
39 K	8,895.	1,779.	ppb	0.52	200000.	
43 Ca	46,995.	9,399.	ppb	1.25	\#VALUE!	
44 Ca	46,315.	9,263.	ppb	2.00	200000.	
51 V	0.894	0.1788	ppb	50.26	1000.	
52 Cr	1.4425	0.2885	ppb	14.63	2000.	
53 Cr	37.275	7.455	ppb	21.92	\#VALUE!	
55 Mn	1,951.	390.2	ppb	1.60	2000.	
56 Fe	13,675.	2,735.	ppb	1.76	\#VALUE!	
57 Fe	13,450.	2,690.	ppb	1.88	100000.	
59 Co	3.1245	0.6249	ppb	2.99	1000.	
60 Ni	3.4935	0.6987	ppb	1.72	1000.	
63 Cu	4.314	0.8628	ppb	3.42	\#VALUE!	
65 Cu	2.155	0.431	ppb	3.93	2000.	
66 Zn	2.53	0.506	ppb	12.90	2000.	
68 Zn	8.11	1.622	ppb	6.08	\#VALUE!	
75 As	0.857	0.1714	ppb	124.33	1000.	
82 Se	1.784	0.3568	ppb	32.09	1000.	
88 Sr	259.25	51.85	ppb	1.01	2000.	
98 Mo	1.5685	0.3137	ppb	2.36	1000.	
107 Ag	-0.0049	-0.001	ppb	727.94	100.	
109 Ag	-0.0238	-0.0048	ppb	119.11	\#VALUE!	
111 Cd	0.3219	0.0644	ppb	69.99	\#VALUE!	
114 Cd	0.0787	0.0157	ppb	4.40	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.331	0.2662	ppb	12.80	1000.	
120 Sn	1.2585	0.2517	ppb	8.78	\#VALUE!	
121 Sb	0.2991	0.0598	ppb	16.24	\#VALUE!	
123 Sb	0.3793	0.0759	ppb	10.62	1000.	
135 Ba	78.1	15.62	ppb	2.12	2000.	
137 Ba	78.15	15.63	ppb	0.81	\#VALUE!	
182 W	0.0593	0.0119	ppb	20.84	1000.	
203 Tl	0.0281	0.0056	ppb	61.67	1000.	
205 Tl	0.0159	0.0032	ppb	56.98	\#VALUE!	
208 Pb	0.0838	0.0168	ppb	22.14	2000.	
232 Th	0.0496	0.0099	ppb	13.29	1000.	
238 U	0.2599	0.052	ppb	3.26	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	3419201.50	8.42	2851854.00	119.9	$69.5-120$	
45	Sc	3636079.50	5.40	3051657.30	119.2	$69.5-120$	
89 Y	5087923.00	2.17	4650709.50	109.4	$69.5-120$		
159 Tb	6005899.50	0.90	5913626.00	101.6	$69.5-120$		
209 Bi	3132378.00	0.83	3217378.00	97.4	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
0 :Max. Number of ISTD Failures Allowed
Data Results:
Analytes:
ISTD:

Sample QC Report

Data File:
Date Acquired:
Acq. Method:
Operator:
Sample Name:
Misc Info:
Vial Number: Current Method: Calibration File: Last Cal. Update: Sample Type:
Dilution Factor:
Autodil Factor:
Final Dil Factor:

C: \ICPCHEM \1 \DATA \JKL26A.B\107SMPL.D\107SMPL.D\#
Dec 262017 10:43 pm
1PTCAL16.M
JS
TK1925-011
3104
C: \ICPCHEM $\backslash 1 \backslash M E T H O D S \backslash 1 P T C A L 16 . M$
C: \ICPCHEM \1 \CALIB\1PTCAL16.C
Dec 262017 04:56 pm
Sample
5.00

Undiluted
5.00

QC Elements

Element	Corr Conc	Raw Conc	Units	RSD (\%)	High Limit	Flag
9 Be	0.0067	0.0013	ppb	112.54	100.	
11 B	56.	11.2	ppb	3.08	1000.	
23 Na	56,400.	11,280.	ppb	2.12	200000.	
25 Mg	8,125.	1,625.	ppb	2.27	200000.	
27 Al	46.625	9.325	ppb	1.87	200000.	
28 Si	6,930.	1,386.	ppb	3.02	\#VALUE!	
29 Si	6,945.	1,389.	ppb	2.23	10000.	
39 K	8,210.	1,642.	ppb	2.08	200000.	
43 Ca	43,600.	8,720.	ppb	1.23	\#VALUE!	
44 Ca	43,415.	8,683.	ppb	1.45	200000.	
51 V	0.751	0.1502	ppb	65.56	1000.	
52 Cr	0.9005	0.1801	ppb	8.37	2000.	
53 Cr	18.87	3.774	ppb	4.95	\#VALUE!	
55 Mn	1,725.5	345.1	ppb	0.39	2000.	
56 Fe	13,130.	2,626.	ppb	1.26	\#VALUE!	
57 Fe	12,895.	2,579.	ppb	1.14	100000.	
59 Co	2.5555	0.5111	ppb	2.76	1000.	
60 Ni	2.8815	0.5763	ppb	2.69	1000.	
63 Cu	3.7065	0.7413	ppb	0.70	\#VALUE!	
65 Cu	1.3825	0.2765	ppb	10.29	2000.	
66 Zn	2.499	0.4998	ppb	6.23	2000.	
68 Zn	6.02	1.204	ppb	12.67	\#VALUE!	
75 As	1.197	0.2394	ppb	35.80	1000.	
82 Se	0.996	0.1992	ppb	28.45	1000.	
88 Sr	244.35	48.87	ppb	0.96	2000.	
98 Mo	1.456	0.2912	ppb	2.77	1000.	
107 Ag	-0.0026	-0.0005	ppb	1642.80	100.	
109 Ag	-0.0347	-0.0069	ppb	62.98	\#VALUE!	
111 Cd	-0.0556	-0.0111	ppb	316.02	\#VALUE!	
114 Cd	0.0526	0.0105	ppb	19.83	1000.	
115 In	----	--------	---		\#VALUE!	
118 Sn	1.1425	0.2285	ppb	9.53	1000.	
120 Sn	1.1705	0.2341	ppb	4.73	\#VALUE!	
121 Sb	0.2721	0.0544	ppb	7.38	\#VALUE!	
123 Sb	0.3115	0.0623	ppb	9.58	1000.	
135 Ba	70.15	14.03	ppb	2.51	2000.	
137 Ba	69.6	13.92	ppb	0.11	\#VALUE!	
182 W	0.0521	0.0104	ppb	41.46	1000.	
203 Tl	0.014	0.0028	ppb	58.14	1000.	
205 Tl	0.0174	0.0035	ppb	85.43	\#VALUE!	
208 Pb	0.2799	0.056	ppb	11.00	2000.	
232 Th	0.0325	0.0065	ppb	22.87	1000.	
238 U	0.2428	0.0486	ppb	7.82	1000.	

ISTD Elements

Element	CPS Mean	RSD (\%)	Ref Value	Rec (\%)	QC Range (\%) Flag		
6	Li	2960931.30	0.66	2851854.00	103.8	$69.5-120$	
45 SC	3163634.50	1.24	3051657.30	103.7	$69.5-120$		
89 Y	4684917.00	1.23	4650709.50	100.7	$69.5-120$		
159 Tb	5916710.50	0.68	5913626.00	100.1	$69.5-120$		
209 Bi	3094504.30	1.15	3217378.00	96.2	$69.5-120$		

ISTD Ref File : C:\ICPCHEM\1\DATA\JKL26A.B\017CALB.D\017CALB.D\#

0 :Element Failures
0 :Max. Number of Failures Allowed
0 :ISTD Failures
Data Results:
Analytes: ISTD: Pass

CONVENTIONAL AND PHYSICAL ANALYTICAL DATA

Quality Control Report

Blank Sample Summary Report

Alkalinity

ANALYTICAL SERVICES

Quality Control Report

Laboratory Control Sample Summary Report

Alkalinity

Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.			Acceptan Range	PD
WG220969-2	LCS	WG220969	28-DEC-17	N/A	mg / L	120	120	104	80-120	

Chloride

Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220806-2	LCS	WG220806	19-DEC-17	N/A	mg / L	3.75	3.71	98.9	$90-110$	

Nitrate as N

Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220806-2	LCS	WG220806	19-DEC-17	N/A	mg / L	0.845	0.835	98.8	90-110	

Sulfate

Lab Sample ld	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG220806-2	LCS	WG220806	19-DEC-17	N/A	mg / L	3.75	3.69	98.4	90-110	

ANALYTICAL SERVICES
Quality Control Report
Cert No E87604
Matrix Spike Sample Summary Report

Report of Analysis

Katahdin Analytical Services

600 Technology Way
Scarborough, ME 04074
Attention: Heather Manz

Project Name: Gould Island
Project Number: TK11925
Lot Number:SL22036
Date Completed:01/03/2018

01/08/2018 4:06 PM
Approved and released by:
Project Manager: Nisreen Saikaly

Sample Summary

Katahdin Analytical Services

Lot Number: SL22036

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	G32-MW306BR-121817	Aqueous	$12 / 18 / 20171050$	$12 / 22 / 2017$
002	DUP-121817	Aqueous	$12 / 18 / 2017$	$12 / 22 / 2017$
003	FRB-121817	Aqueous	$12 / 18 / 2017$	$12 / 22 / 2017$
004	GI-MW400-121817	Aqueous	$12 / 18 / 20171030$	$12 / 22 / 2017$
005	G44S-MW202RR-121817	Aqueous	$12 / 18 / 20171420$	$12 / 22 / 2017$
006	G32-MW304SR-121817	Aqueous	$12 / 18 / 20171250$	$12 / 22 / 2017$

(6 samples)

Sample ID: SQ60687-001
Matrix: Aqueous
Batch: 60687
Prep Method: 537 MOD
Prep Date: 12/28/2017 930

Parameter	Result		Q	Dil	LOQ	LOD	DL	Units	Analysis Date
EtFOSAA	2.0		U	1	4.0	2.0	1.0	ng/L	12/28/2017 1844
MeFOSAA	2.0		U	1	4.0	2.0	1.0	ng/L	12/28/2017 1844
PFBS	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFHxS	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFDA	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFDoA	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFHpA	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFHxA	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFNA	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFOA	0.80		J			1.0	0.50	ng/L	12/28/2017 1844
PFTeDA	2.0		U	1	4.0	2.0	1.0	ng/L	12/28/2017 1844
PFTrDA	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFUdA	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
PFOS	1.0		U	1	2.0	1.0	0.50	ng/L	12/28/2017 1844
Surrogate	Q	\% Rec							
13C2_PFDoA		102							
13C2_PFTeDA		93							
13C3_PFBS		102							
13C3_PFHxS		106							
13C4_PFHpA		104							
13C5_PFHxA		103							
13C6_PFDA		103							
13C7_PFUdA		105							
13C8_PFOA		103							
13C8_PFOS		105							
13C9_PFNA		107							
d5-EtFOSAA		106							
d3-MeFOSAA		103							

$L O Q=$ Limit of Quantitation	$P=$ The RPD between two GC columns exceeds 40%
$D L=$ Detection Limit	$J=$ Estimated result $<L O Q$ and $\geq D L$
$L O D=$ Limit of Detection	$U=$ Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Sample ID: SQ60687-002 Batch: 60687 Analytical Method: 537.1 Modified-ID			Matrix: Aqueous Prep Method: 537 MOD Prep Date: 12/28/2017 930				
Parameter	Spike Amount (ng/L)	$\begin{gathered} \text { Result } \\ \text { (ng/L) } \end{gathered}$	Q	Dil	\% Rec	\% Rec Limit	Analysis Date
EtFOSAA	20	20		1	99	70-130	12/28/2017 1858
MeFOSAA	20	21		1	103	70-130	12/28/2017 1858
PFBS	18	18		1	104	70-130	12/28/2017 1858
PFHxS	18	19		1	103	70-130	12/28/2017 1858
PFDA	20	22		1	110	70-130	12/28/2017 1858
PFDoA	20	22		1	108	70-130	12/28/2017 1858
PFHpA	20	20		1	101	70-130	12/28/2017 1858
PFHxA	20	20		1	100	70-130	12/28/2017 1858
PFNA	20	19		1	96	70-130	12/28/2017 1858
PFOA	20	21		1	104	70-130	12/28/2017 1858
PFTeDA	20	21		1	105	70-130	12/28/2017 1858
PFTrDA	20	21		1	104	70-130	12/28/2017 1858
PFUdA	20	19		1	96	70-130	12/28/2017 1858
PFOS	19	20		1	108	70-130	12/28/2017 1858
Surrogate	Q \% Rec						
13C2_PFDoA	107						
13C2_PFTeDA	80						
13C3_PFBS	109						
13C3_PFHxS	105						
13C4_PFHpA	109						
13C5_PFHxA	111						
13C6_PFDA	108						
13C7_PFUdA	110						
13C8_PFOA	111						
13C8_PFOS	108						
13C9_PFNA	114						
d5-EtFOSAA	108						
d3-MeFOSAA	100						

LOQ = Limit of Quantitation	$P=$ The RPD between two GC columns exceeds 40%
$D L=$ Detection Limit	$J=$ Estimated result $<$ LOQ and $\geq D L$
LOD $=$ Limit of Detection	$U=$ Not detected at or above the LOQ

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

[^0]| Sample ID: SQ60687-003 Batch: 60687 Analytical Method: 537.1 Modified-ID | Matrix: Aqueous
 Prep Method: 537 MOD
 Prep Date: 12/28/2017 930 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Spike Amount (ng/L) | $\begin{aligned} & \text { Result } \\ & \text { (ng/L) } \end{aligned}$ | Q | Dil | \% Rec | \% RPD | \% Rec Limit | \% RPD Limit | Analysis Date |
| EtFOSAA | 20 | 18 | | 1 | 90 | 9.4 | 70-130 | 30 | 12/28/2017 1912 |
| MeFOSAA | 20 | 19 | | 1 | 96 | 6.7 | 70-130 | 30 | 12/28/2017 1912 |
| PFBS | 18 | 19 | | 1 | 105 | 0.70 | 70-130 | 30 | 12/28/2017 1912 |
| PFHxS | 18 | 18 | | 1 | 100 | 2.5 | 70-130 | 30 | 12/28/2017 1912 |
| PFDA | 20 | 21 | | 1 | 105 | 4.5 | 70-130 | 30 | 12/28/2017 1912 |
| PFDoA | 20 | 22 | | 1 | 112 | 3.6 | 70-130 | 30 | 12/28/2017 1912 |
| PFHpA | 20 | 21 | | 1 | 103 | 2.2 | 70-130 | 30 | 12/28/2017 1912 |
| PFHxA | 20 | 22 | | 1 | 109 | 8.5 | 70-130 | 30 | 12/28/2017 1912 |
| PFNA | 20 | 20 | | 1 | 100 | 4.4 | 70-130 | 30 | 12/28/2017 1912 |
| PFOA | 20 | 22 | | 1 | 112 | 7.4 | 70-130 | 30 | 12/28/2017 1912 |
| PFTeDA | 20 | 20 | | 1 | 98 | 6.7 | 70-130 | 30 | 12/28/2017 1912 |
| PFTrDA | 20 | 22 | | 1 | 111 | 6.1 | 70-130 | 30 | 12/28/2017 1912 |
| PFUdA | 20 | 20 | | 1 | 101 | 4.9 | 70-130 | 30 | 12/28/2017 1912 |
| PFOS | 19 | 18 | | 1 | 95 | 13 | 70-130 | 30 | 12/28/2017 1912 |
| Surrogate | Q \% Rec | | ptance mit | | | | | | |
| 13C2_PFDoA | 102 | | -150 | | | | | | |
| 13C2_PFTeDA | 79 | | -150 | | | | | | |
| 13C3_PFBS | 103 | | -150 | | | | | | |
| 13C3_PFHxS | 106 | | -150 | | | | | | |
| 13C4_PFHpA | 105 | | -150 | | | | | | |
| 13C5_PFHxA | 106 | | -150 | | | | | | |
| 13C6_PFDA | 105 | | -150 | | | | | | |
| 13C7_PFUdA | 104 | | -150 | | | | | | |
| 13C8_PFOA | 103 | | -150 | | | | | | |
| 13C8_PFOS | 106 | | -150 | | | | | | |
| 13C9_PFNA | 106 | | -150 | | | | | | |
| d5-EtFOSAA | 109 | | -150 | | | | | | |
| d3-MeFOSAA | 106 | | -150 | | | | | | |

LOQ = Limit of Quantitation	$\mathrm{P}=$ The RPD between two GC columns exceeds 40%	$\mathrm{N}=$ Recovery is out of criteria
DL = Detection Limit	$J=$ Estimated result < LOQ and \geq DL	+ = RPD is out of criteria
LOD = Limit of Detection	$U=$ Not detected at or above the LOQ	

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

[^1]FORM 2
ISOTOPE DILUTION STANDARD RECOVERY
Lab Name: Shealy Environmental Services, Inc.
Lot No.: SL22036
Project No.: TK11925
AnalyticalMethod: 537.1 Modified-ID
Matrix: Water

$\begin{array}{\|l} \hline \text { CLIENT } \\ \text { SAMPLE ID } \end{array}$	IDS1	IDS2	IDS3	IDS4	IDS5	IDS6	IDS7	IDS8	IDS9
G32-MW306BR-121	897	73	99	99	96	99	97	94	95
DUP-121817	94	94	101	96	99	101	101	96	100
FRB-121817	90	84	98	95	97	101	97	96	98
GI-MW400-121817	94	92	103	100	101	101	98	96	100
G44S-MW202RR-121817	87	87	94	92	95	96	90	91	93
G32-MW304SR-121	887	82	86	86	90	85	87	89	94
SQ60687-001	102	93	102	106	104	103	103	105	103
SQ60687-002	107	80	109	105	109	111	108	110	111
SQ60687-003	102	79	103	106	105	106	105	104	103

```
IDS1 = 13C2_PFDoA
IDS2 = 13C2_PFTeDA
IDS3 = 13C3_PFBS
IDS4 = 13C3_PFHxS
IDS5 = 13C4_PFHpA
IDS6 = 13C5_PFHXA
IDS7 = 13C6_PFDA
IDS8 = 13C7_PFUdA
IDS9 = 13C8_PFOA
* Recoveries outside QC limits
D IDS Diluted Out
```

QC LIMITS
50-150
50-150
50-150
50-150
50-150
50-150
50-150
50-150
50-150

FORM 2

Lab Name: Shealy Environmental Services, Inc.
Lot No.: SL22036
Project No.: TK11925
AnalyticalMethod: 537.1 Modified-ID
Matrix: Water

$\begin{gathered} \text { CLIENT } \\ \text { SAMPLE ID } \end{gathered}$	IDS10	IDS11	IDS12	IDS13	IDS14	IDS15	IDS16	IDS17	TOT OUT
G32-MW306BR-121817	94	96	93	94					\bigcirc
DUP-121817	98	97	98	95					0
FRB-121817	99	98	97	96					0
GI - MW400-121817	95	101	101	98					0
G44S-MW202RR-121817	93	92	90	83					0
G32-MW304SR-121817	89	93	87	89					0
SQ60687-001	105	107	106	103					0
SQ60687-002	108	114	108	100					0
SQ60687-003	106	106	109	106					0

$\left.\begin{array}{ll} & \\ \text { IDS10 } & =13 C 8 _ \text {PFOS } \\ \text { IDS11 } & =13 C 9 _P F N A \\ \text { IDS12 } & =\text { d5-EtFOSAA }\end{array}\right] 50-150$

[^2]| DODCMD_ID | Installation_ID | | Ite_NAME | NORM SITE NAME | LOCATION NAME | LOCATION_TYPE_DESC | | | CONTRACT_ID | DO_CTO_NUMBER | CONTR_NAME | SAMPLE_NAME | $\overline{\text { ATF }}$ | SAN | COLLECT_DATE | ANALYTICAL_METHOD | ALYTICAL_METHOD_GRP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | MW400 | Monitoring well | 73 | 165093.22 | N624 | WE22 | TETRA TECH, INC. | G-MW400-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | | | | | | | 8005 | WE | TETRA TECH, INC. | FRB-121817 | Water for ac samples | Field Reagent Blank | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | 45-MW-202RR | Monitoring well | 370497.6 | 165558.77 | 8005 | WE22 | Tetra tech, Inc. | G445-MW-202RR-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroakyl Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | G32-MW3045R | Monitoring well | 370372.19 | 165367.49 | N624701609008 | WE22 | TETRA TECH, INC. | 632-MW304S8-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | G32-MW306BR | Monitoring well | 370549.06 | 165571.11 | 8005 | WE22 | TETRA TECH, INC. | 632-MW306BR-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | 1925 | SITE 00017 | SITE 00017 | G1-MW400 | Monitoring well | 370373.73 | 165093.22 | 8005 | WE22 | TRA TECH, IIC | Gl-MW400-1218 | Ground water | Field duplicate | 18-Dec-17 | 537 | Perfluoroalkyl Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | | | | | | | N624701609008 | WE22 | TETRA TECH, INC. | FRB-121817 | Water for QC samples | Field Reagent Blank | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | G32-MW304SR | Monitoring well | 370372.19 | 165367.49 | 8005 | WE22 | TETRA TECH, INC. | G32-MW304SR-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | G32-MW3068R | Monitoring well | 370549.06 | 165571.11 | N624701 | WE22 | TETRA TECH, INC. | 632-MW306BR-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | G1-MW400 | Monitoring well | 370373.73 | 165093.22 | N624701609008 | WE22 | TETRA TECH, INC. | G-MW400-121817-D | Ground water | Field duplicate | 18-Dec-17 | 537 | Perfluoroalkyl Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | G1-MW400 | Monitoring well | 370373.73 | 165093.22 | 8005 | WE22 | TETRA TECH, INC. | G-MW400-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroalky Compounds |
| MID_ATLANTIC | NEWPORT_NS | TK1925 | SITE 00017 | SITE 00017 | G44s-MW-202RR | Monitoring well | 370497.6 | 165558.77 | N624701609008 | WE22 | TETRA TECH, INC. | G445-MW-202RR-121817 | Ground water | Normal (Regular) | 18-Dec-17 | 537 | Perfluoroalky Compounds |

[^0]: Shealy Environmental Services, Inc.
 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

[^1]: Shealy Environmental Services, Inc.
 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

[^2]: * Recoveries outside QC limits

 D IDS Diluted Out

