Groundwater Sample Results,
Combined Level 2 and Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1700845
Naval Air Warfare Center Trenton
Trenton, New Jersey
August 2019

$$
\text { N62376.SF. } 001172
$$ NAWC TRENTON

5090.3c

LABORATORY DATA PACKAGE, 1700792, NAWC TRENTON, NJ 07/22/2017 VISTA ANALYTICAL LABORATORY

July 22, 2017

Vista Work Order No. 1700792

Ms. Mary Mang
Tetra Tech
661 Andersen Drive, Foster Plaza 7

Pittsburgh, PA 15220
Dear Ms. Mang,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on June 29, 2017. This sample set was analyzed on a standard turn-around time, under your Project Name 'NAWC Trenton'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

for

Martha Maier
Laboratory Director

Vista Work Order No. 1700792

Case Narrative

Sample Condition on Receipt:

Eleven aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. A sample ID for "FRB-20170628" was resolved by following the Chain-of-Custody format, as requested.

Analytical Notes:

Modified EPA Method 537

The aqueous samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Samples "West Ditch In-20170627", "MH388.9-20170628" and "RB01-20170628" were re-extracted due to very low recoveries of 13C2-PFDoA and 13C2-PFTeDA in the original extractions. The PFDoA, PFTrDA and PFTeDA results are reported from prep batch B7G0033 for those samples.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with each preparation batch. No analytes were detected in the Method Blanks above $1 / 2$ the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	\%Rec
1700792-01	West Ditch In-20170627	Modified EPA Method 537	13C2-PFDoA	H	32.5
1700792-01	West Ditch In-20170627	Modified EPA Method 537	13C2-PFTeDA	H	27.8
1700792-03	Interceptor-20170628	Modified EPA Method 537	d5-EtFOSAA	H	46.8
1700792-03	Interceptor-20170628	Modified EPA Method 537	13C2-PFDoA	H	21.4
1700792-03	Interceptor-20170628	Modified EPA Method 537	13C2-PFTeDA	H	20.1
1700792-04	Roof Drain-20170628	Modified EPA Method 537	13C2-PFDoA	H	29.8
1700792-04	Roof Drain-20170628	Modified EPA Method 537	13C2-PFTeDA	H	40.5
1700792-05	Spring-20170628	Modified EPA Method 537	13C2-PFDoA	H	34.9
1700792-05	Spring-20170628	Modified EPA Method 537	13C2-PFTeDA	H	46.6
1700792-06	FRB-20170628	Modified EPA Method 537	13C2-PFDoA	H	32.9
1700792-06	FRB-20170628	Modified EPA Method 537	13C2-PFTeDA	H	34.8
1700792-07	MH318.9-20170628	Modified EPA Method 537	13C2-PFDoA	H	31.8
1700792-07	MH318.9-20170628	Modified EPA Method 537	13C2-PFTeDA	H	24.8
1700792-08	MH388.9-20170628	Modified EPA Method 537	13C2-PFTeDA	H	43.3
1700792-09	Dup03-20170628	Modified EPA Method 537	d5-EtFOSAA	H	48.3
1700792-09	Dup03-20170628	Modified EPA Method 537	13C2-PFDoA	H	27.3
1700792-09	Dup03-20170628	Modified EPA Method 537	13C2-PFTeDA	H	34.5
1700792-10	Dup01-20170627	Modified EPA Method 537	13C2-PFTeDA	H	34.0
1700792-11	RB01-20170628	Modified EPA Method 537	13C2-PFDoA	H	28.5
1700792-11	RB01-20170628	Modified EPA Method 537	13C2-PFTeDA	H	36.9
B7F0137-BS1	B7F0137-BS1	Modified EPA Method 537	13C2-PFDoA	H	44.1
B7F0137-BS1	B7F0137-BS1	Modified EPA Method 537	13C2-PFTeDA	H	37.9
B7G0033-BLK1	B7G0033-BLK1	Modified EPA Method 537	13C2-PFDoA	H	33.9
B7G0033-BLK1	B7G0033-BLK1	Modified EPA Method 537	13C2-PFTeDA	H	29.1
B7G0033-BS1	B7G0033-BS1	Modified EPA Method 537	13C2-PFTeDA	H	23.8

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

In addition, the laboratory QC officer must read and sign a copy of the Quality Assurance Review Form displayed on the next page of this Attachment. Electronic deliverables are not considered to be complete without the accompanying Quality Assurance Review Form.

\qquad , as the designated Quality Assurance Officer, hereby attest that all electronic deliverables have been thoroughly reviewed and are in agreement with the associated hardcopy data. The enclosed electronic files have been reviewed for accuracy (including significant figures), completeness and format. The laboratory will be responsible for any labor time necessary to correct enclosed electronic deliverables that have been found to be in error. I can be reached at (916)673-152dy there are any questions or problems with the enclosed electronic deliverables.

Revision
ISG
08/18/16

TABLE OF CONTENTS

Case Narrative 1
Signed Attestation Statement 4
Table of Contents 5
Sample Inventory 6
Analytical Results 7
Qualifiers 23
Certifications 24
Sample Receipt 27
Correspondence. 30
Extraction Information. 33
Balance Calibration Check 40
Sample Data - Modified EPA Method 537 42
Continuing Calibration 165
Initial Calibration 218
PFAS Standards 484

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1700792-01	West Ditch In-20170627	27-Jun-17 14:35	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-02	MH-140-20170628	28-Jun-17 08:35	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-03	Interceptor-20170628	28-Jun-17 08:50	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-04	Roof Drain-20170628	28-Jun-17 09:30	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-05	Spring-20170628	28-Jun-17 10:05	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-06	FRB-20170628	28-Jun-17 12:15	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-07	MH318.9-20170628	28-Jun-17 10:30	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-08	MH388.9-20170628	28-Jun-17 10:40	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-09	Dup03-20170628	28-Jun-17 08:50	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-10	Dup01-20170627	27-Jun-17 16:00	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700792-11	RB01-20170628	28-Jun-17 12:15	29-Jun-17 10:09	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

ANALYTICAL RESULTS

Sample II	Method Blank							Modified EPA Method 537		
Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.125 \mathrm{~L} \end{aligned}$	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7F0137 } \\ & 30-J u n-2017 \end{aligned}$			Lab Sample: B7F0137-BLK1 Date Analyzed: $07-J u l-1713: 56$ Column: BEH C18				
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	ND	1.79	5.00	8.00		IS	S 13C3-PFBS	120	50-150	
PFHxA	ND	2.18	5.00	8.00		IS	S 13C2-PFHxA	110	50-150	
PFHpA	ND	0.591	5.00	8.00		IS	S 13C4-PFHpA	99.1	50-150	
PFHxS	ND	0.947	5.00	8.00		IS	S 18O2-PFHxS	104	50-150	
PFOA	ND	0.651	5.00	8.00		IS	13C2-PFOA	106	50-150	
PFOS	ND	0.807	5.00	8.00		IS	S 13C8-PFOS	114	50-150	
PFNA	ND	0.810	5.00	8.00		IS	13C5-PFNA	90.4	50-150	
PFDA	ND	1.49	5.00	8.00		IS	S 13C2-PFDA	76.9	50-150	
MeFOSAA	ND	1.65	5.00	8.00		IS	S d3-MeFOSAA	116	50-150	
PFUnA	ND	1.05	5.00	8.00		IS	S 13C2-PFUnA	77.3	50-150	
EtFOSAA	ND	1.37	5.00	8.00		IS	S d5-EtFOSAA	81.3	50-150	
PFDoA	ND	0.792	5.00	8.00		IS	S 13C2-PFDoA	64.6	50-150	
PFTrDA	ND	0.494	5.00	8.00		IS 13C2-PFTeDA		53.8	50-150	
PFTeDA	ND	0.755	5.00	8.00						
DL - Detection limit RL - Reporting limit						LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.				

Vista
Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.125 \mathrm{~L} \end{aligned}$	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7F0137 } \\ & \text { 30-Jun-2017 } \end{aligned}$	$8: 38$		Lab Sample: Date Analyzed:	B7F0137-BS1 07-Jul-17 14:18 Column: BEH C18		
Analyte		Amt Found (ng/L)	Spike Amt	\%R	Limits		Labeled Standard	\%R	LCL-UCL
PFBS		80.7	80.0	101	70-130	IS	13C3-PFBS	118	50-150
PFHxA		81.7	80.0	102	70-130	IS	13C2-PFHxA	107	50-150
PFHpA		86.1	80.0	108	70-130	IS	13C4-PFHpA	92.3	50-150
PFHxS		73.3	80.0	91.7	70-130	IS	1802-PFHxS	102	50-150
PFOA		81.7	80.0	102	70-130	IS	13C2-PFOA	93.4	50-150
PFOS		87.7	80.0	110	70-130	IS	13C8-PFOS	91.0	50-150
PFNA		83.0	80.0	104	70-130	IS	13C5-PFNA	92.5	50-150
PFDA		88.3	80.0	110	70-130	IS	13C2-PFDA	78.1	50-150
MeFOSAA		95.0	80.0	119	70-130	IS	d3-MeFOSAA	84.7	50-150
PFUnA		71.6	80.0	89.5	70-130	IS	13C2-PFUnA	80.5	50-150
EtFOSAA		70.5	80.0	88.1	70-130	IS	d5-EtFOSAA	87.0	50-150
PFDoA		77.3	80.0	96.7	70-130	IS	13C2-PFDoA	44.1	50-150
PFTrDA		54.1	80.0	67.6	60-130	IS	13C2-PFTeDA	37.9	50-150
PFTeDA		73.5	80.0	91.8	70-130				

LCL-UCL - Lower control limit - upper control limit

Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

Matrix: Sample Size:	Aqueous 0.125 L	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7G0033 } \\ & \text { 10-Jul-2017 } \end{aligned}$			Lab Sample: B7G0033-BS1 Date Analyzed: 11-Jul-17 18:15 Column: BEH C18			
Analyte		Amt Found (ng/L)	Spike Amt	\%R	Limits		Labeled Standard	\%R	LCL-UCL
PFDoA		81.0	80.0	101	70-130	IS	13C2-PFDoA	50.3	50-150
PFTrDA		52.2	80.0	65.3	60-130	IS	13C2-PFTeDA	23.8	50-150
PFTeDA		69.4	80.0	86.8	70-130				

LCL-UCL - Lower control limit - upper control limit

Sample ID:	FRB-20170628							Modifie	EPA Met	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 28-Jun-2017 12:15		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.112 \mathrm{~L} \end{aligned}$	$\begin{array}{r} \hline \text { Labo } \\ \text { Lab } \\ \text { QC } \\ \mathrm{Da} \end{array}$	ator Samp Batch Ana	Data e: $1700792-06$ B7F0137 yzed: $07-J u l-17$ 16:26	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 29-Jun-2017 } \\ & \text { 30-Jun-2017 } \end{aligned}$	$\begin{gathered} 10: 09 \\ 8: 38 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	ND	2.00	5.58	8.92		IS	13C3-PFBS	127	50-150	
PFHxA	ND	2.43	5.58	8.92		IS	13C2-PFHxA	111	50-150	
PFHpA	ND	0.659	5.58	8.92			13C4-PFHpA	95.4	50-150	
PFHxS	ND	1.06	5.58	8.92		IS	1802-PFHxS	112	50-150	
PFOA	ND	0.726	5.58	8.92		IS	13C2-PFOA	112	50-150	
PFOS	ND	0.900	5.58	8.92		IS	13C8-PFOS	105	50-150	
PFNA	ND	0.903	5.58	8.92		IS	13C5-PFNA	89.8	50-150	
PFDA	ND	1.66	5.58	8.92		IS	13C2-PFDA	74.7	50-150	
MeFOSAA	ND	1.84	5.58	8.92		IS	d3-MeFOSAA	101	50-150	
PFUnA	ND	1.17	5.58	8.92		IS	13C2-PFUnA	70.2	50-150	
EtFOSAA	ND	1.53	5.58	8.92			d5-EtFOSAA	64.3	50-150	
PFDoA	ND	0.883	5.58	8.92		IS	13C2-PFDoA	32.9	50-150	H
PFTrDA	ND	0.551	5.58	8.92		IS	13C2-PFTeDA	34.8	50-150	H
PFTeDA	ND	0.842	5.58	8.92						
		DL - Detection limit RL - Reporting limit				L-UC sults r hen re only the	- Lower control limit - upper ported to DL. rted, PFBS, PFHxS, PFOA an near isomer is reported for all	control limit d PFOS include both linear and br other analytes.	anched isomers.	

Sample ID:	MH318.9-20170628							Modifie	EPA Met	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 28-Jun-2017 10:30		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.119 \mathrm{~L} \end{aligned}$	$\begin{array}{r} \hline \text { Labo } \\ \text { Lab } \\ \text { QC } \\ \mathrm{Da} \end{array}$	ator Samp Batch Ana	Data e: $1700792-07$ B7F0137 yzed: $07-J u l-17$ 16:37	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 29-Jun-2017 } \\ & \text { 30-Jun-2017 } \end{aligned}$	$\begin{gathered} 10: 09 \\ 8: 38 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	ND	1.88	5.25	8.42		IS	13C3-PFBS	119	50-150	
PFHxA	84.8	2.30	5.25	8.42		IS	13C2-PFHxA	102	50-150	
PFHpA	54.2	0.622	5.25	8.42			13C4-PFHpA	92.2	50-150	
PFHxS	3.38	0.997	5.25	8.42	J		18O2-PFHxS	105	50-150	
PFOA	63.4	0.685	5.25	8.42		IS	13C2-PFOA	100	50-150	
PFOS	6.63	0.850	5.25	8.42	J	IS	13C8-PFOS	106	50-150	
PFNA	9.93	0.853	5.25	8.42		IS	13C5-PFNA	91.5	50-150	
PFDA	3.10	1.57	5.25	8.42	J	IS	13C2-PFDA	95.5	50-150	
MeFOSAA	ND	1.74	5.25	8.42		IS	d3-MeFOSAA	102	50-150	
PFUnA	ND	1.11	5.25	8.42		IS	13C2-PFUnA	88.8	50-150	
EtFOSAA	ND	1.44	5.25	8.42			d5-EtFOSAA	66.3	50-150	
PFDoA	ND	0.834	5.25	8.42		IS	13C2-PFDoA	31.8	50-150	H
PFTrDA	ND	0.520	5.25	8.42		IS	13C2-PFTeDA	24.8	50-150	H
PFTeDA	ND	0.795	5.25	8.42						
		DL - Detection limit RL - Reporting limit				L-UC sults r hen re only the	- Lower control limit - upper ported to DL. rted, PFBS, PFHxS, PFOA an near isomer is reported for all	control limit d PFOS include both linear and br other analytes.	anched isomers.	

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Reporting Limit/LOQ.
M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration
NA Not applicable
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	$17-015-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA 23

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA $8290 / 8290 A$

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

Analytical Laboratory
CHAIN OF CUSTODY

TAT
(check one):

Project ID: NAWC Trenton PO\#: 1132341-WR3 Sampler. Charlcs Meyer
Invoice to: Name Company

Address

Vista Work Order \#: 1701792

TAT

Comments:

Chain of Custody Anomaly/Sample Acceptance Form

Client: Tetra Tech
Contact: Mary Mang
Email: mary.mang@tetratech.com
Phone: 610-382-1174

Workorder Number: 1700792
Date Received: 29-Jun-17 10:09
Documented by/date: MSparks/29-Jun-17

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,

Martha Maier

mmaier@vista-analytical.com
916-673-1520

The following information or item is needed to proceed with analysis:

\square	Complete Chain-of-Custody
\square	Test Method Requested
\square	Analyte List Requested
\square	Other:

Preservative
Sample Identification
Sample Collection Date and/or Time

Collector's Name
Sample Type
Sample Location

The following anomalies were noted. Authorization is needed to proceed with analysis.

Comments:

COC ID: FRB-20170628
Label ID: FRB01-20170628

Correspondence

Kerri L. Chapin

From:	Mang, Mary Mary.Mang@tetratech.com
Sent:	Friday, June 30, 2017 6:17 AM
To:	Karen Volpendesta; Ritchie, Megan
Cc:	Martha Maier
Subject:	RE: Vista Work Order \#1700792; NAWC Trenton

Good Morning Karen,
You are correct. Please use the sample ID shown on the COC.
Thank you,
Mary

From: Mang, Mary
Sent: Thursday, June 29, 2017 5:41 PM
To: 'Karen Volpendesta' kvol@vista-analytical.com; Ritchie, Megan Megan.Ritchie@tetratech.com
Cc: mmaier@vista-analytical.com
Subject: RE: Vista Work Order \#1700792; NAWC Trenton
Karen,
I will need to get back to you tomorrow morning on the sample ID.
Please notes, we ARE to analyze for the 14 PFAS analytes for both surface water and groundwater.. The confusion is that the change was made, but is not in the SAP.

Thanks,
Mary

From: Karen Volpendesta [mailto:kvol@vista-analytical.com]
Sent: Thursday, June 29, 2017 5:18 PM
To: Mang, Mary Mary.Mang@tetratech.com; Ritchie, Megan Megan.Ritchie@tetratech.com
Cc: mmaier@vista-analytical.com
Subject: Vista Work Order \#1700792; NAWC Trenton
Mary,
Please find attached the sample receiving acknowledgement for Vista Analytical Work Order: 1700792.
Please note the anomaly described on the last page of the attachment: The sample ID on the COC for "FRB-20170628" does not match the sample ID on the bottle label "FRB01-20170628". The sample is currently logged in using the sample ID on the COC. Please confirm the correct sample ID.

Please review the Sample Inventory Report found on page 3 to ensure that the samples were logged in correct.
These samples will be analyzed by Modified EPA Method 537 for PFOA, PFOS, and PFNA only.
If you have any questions, please contact me or Martha Maier at (916) 673-1520. We appreciate your business.

Best Regards,

Karen L. Volpendesta
(formerly Lopez)
Project Manager

Vista Analytical Laboratory
1104 Windfield Way
El Dorado Hills, CA 95762
Phone: (916) 673-1520
www.vista-analytical.com
*Hours: Monday, Tuesday, \& Thursday, 8am-4:30pm
A woman-owned, small business enterprise.

EXTRACTION INFORMATION

Prep Expiration: 2017-Jul-11
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mR) Matrix: Aqueous

Prep Batch: \qquad

Prep Data Entered:

Initial Sequence:
5760018

WO Comments: Attach balance check doc.
Vista PM:Martha Meier
Vial Box ID: Sarom-Mader

Batch: B7F0137

Matrix: Aqueous

$れ$
7311

PREPARATION BENCH SHEET

Matrix: Aqueous

-Method: 537M PFAS DOD (LOO as mRL)
B7F0137

chemist: G.Mendiola

Prep Date/Time: 30-Jun-17 08:38
Prepared using: LCMS - SPE Extraction-LCMS

c	$\underset{\text { Sample id }}{\text { vid }}$	${ }_{\substack{\text { pH } \\ \text { Before }}}$	${ }_{\text {dfer }}^{\substack{\text { phr } \\ \text { Afer }}}$	$\begin{gathered} \text { Chlorine } \\ (\mathrm{Cl}) \end{gathered}$		$\begin{aligned} & \text { Botle+ }+ \text { en } \\ & \text { Sample } \\ & (\xi) \end{aligned}$	$\begin{aligned} & \text { Botre } \\ & \text { only } \\ & \hline(8) \end{aligned}$	$\begin{gathered} \text { Sample } \\ \text { Ampt } \\ \text { (L) } \end{gathered}$	$\begin{gathered} \text { CNNS } \\ \text { CHENTM } \\ \text { DiATE } \end{gathered}$	SPE	
\square	B7F0013--8LK1	5	2	0	2	U	Nip	0.25	Jin ens पels	3856130117	Cm BSS 6/3019
\square	${ }^{\text {B770137--SII }}$	5	2	0	2			-	1		
\square	${ }^{1700792-01}$	6	2	0	3	143.54	26.71	0.11683			
\square	170	6	2	0	3	141.52	26.77	3.11475			
\square	${ }^{1700792-03}$	6	2	0	3	141.27	26.68	0.11459			
\square	${ }^{1700792-04}$	5	2	0	2	141.63	26.79	0.11484.			
\square	${ }^{1700072-05}$	5	2	0	2	124.37	26.86	0.097510			
\square	${ }^{1700072-06}$	4	2	0	2	138.93	26.83	0.11210			
\square	${ }^{1700792-01}$	5	2	0	2	145.57	26.84	0.11873	,		
\square	${ }^{1700792-08}$	5	2	0	2	144.00	26.87	0.11773			
\square	${ }^{1700792-09}$	6	2	0	3	145.05	26.81	0.11824			
\square	${ }^{1700792-10}$	5	2	0	2	140.25	6.88	3.11337.			
\square	${ }^{1700072-11}$	5	2	0	2	140.77	26.72	\%. 12005	Q	\downarrow	

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$

Prep Expiration: 2017-Jul-11
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mR) Matrix: Aqueous

Version: 537 (14 Analyte)

Workorder Due:21-Jul-17 00:00
TAT: 22
Prep Batch: $B 7 G \infty 033$
Prep Data Entered:
 Initial Sequence: \qquad

LabNumber	WetWeight (Initial)	\% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1700792-01RE1	$0.12136 \checkmark$	NA	NA	1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700792-08RE1	$0.12326 \checkmark$			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700792-11RE1	0.12273			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700820-01	$0.26911 \checkmark$			1000	10-Jul-17 09:18	BAP			Water	537M PFAS
1700836-01	0.1236			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS Static RL
1700836-02	$0.1224 \checkmark$			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS Static RL
1700836-03	$0.1219 \checkmark$			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS Static RL
1700836-04	0.12243 J			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS Static RL
1700836-05	$0.12319 \checkmark$			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS Static RL
1700844-01	0.277			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS
1700845-01	$0.12034 \checkmark$			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700845-02	0.12279			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700845-03	$0.11824 \checkmark$			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS Static RL
1700845-03	0.11824			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700845-03	$0.11824 \sqrt{ }$			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS
1700845-04	0.11933			1000	10-Jul-17 09:18	BAP			Aqueous	537M PFAS DOD (LOQ as
B7G0033-BLK1	$0.125 \checkmark$			1000	10-Jul-17 09:18	BAP				QC
B7G0033-BS1	0.125 /			1000	10-Jul-17 09:18	BAP	17D2705	$\checkmark 10 \mathrm{~J}$		QC
B7G0033-MS1	$0.12283 /$			1000	10-Jul-17 09:18	BAP	17D2705	$\checkmark 10 \checkmark$		QC
B7G0033-MSD1	$0.124 \checkmark$	$\sqrt{ } /$	\downarrow	1000	10-Jul-17 09:18	BAP	17D2705	$\checkmark 10 \checkmark$		QC

PREPARATION BENCH SHEET

Prepared using: LCMS - SPE Extraction-LCMS

c	$\begin{array}{\|c} \text { visTA } \\ \text { Sample } \end{array}$	${ }_{\text {Pforore }}^{\text {pH }}$	${ }_{\text {dfer }}^{\substack{\text { PH } \\ \text { Afer }}}$	$\begin{aligned} & \text { Chlorine } \\ & (\mathrm{Cl}) \end{aligned}$	$\begin{gathered} \text { Props } \\ \text { Add } \\ \text { dide } \end{gathered}$	$\begin{aligned} & \text { Botle+ } \\ & \text { Sanple } \\ & \text { (g) } \end{aligned}$	$\begin{gathered} \text { Botre } \\ \text { Only } \\ \text { (g) } \end{gathered}$	$\begin{aligned} & \text { Sample } \\ & \text { ant } \\ & \text { (L) } \end{aligned}$	$\begin{gathered} \text { IS/NS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$	SPE	$\begin{gathered} \text { CHS } \\ \text { CHMTIT } \\ \text { DANIT } \end{gathered}$
\square	B7G003-BLK1	5	2	0	2	NA	NA	(0.125)	ELT:0	BP 7.10 .17	BP 2\% 71117
\square	B7c003-3SI	5	2	0	2	\downarrow	\downarrow	\downarrow	T	T	,
\square	${ }^{1700792-011 R E I}$	7	2	0	2	148.12	26.76	0.12136			
\square	${ }^{1700792-088 E 1}$	7	2	0	2	150.10	26.84	0.12326			
\square	${ }^{\text {1700792-11REI }}$	6	2	0	2	149.56	26.83	0.12273			
\square	170082001	6	2	0	5	303.41	34.30	0.26911	\downarrow	\checkmark	\checkmark

IS Name $\frac{17 E 2617,10 c}{(a)}$	NS Name $\frac{1702705,10}{\sqrt{2}}$	RS Name $\frac{17 F 3038,10 x}{(\omega)}$	SPE Chem: Strata X-AW $35 \mathrm{am} 200 \mathrm{ng} / 6 \mathrm{~mL}$ Ele SOLV: 0.5% NHuOA in MeOH lheat Final Volume(s) 1 ml	Check Out: Chemist/Date: \qquad Check In: Chemist/Date: \qquad empty Balance ID: \qquad HRM5 8 pH Adjusted: H18 7101017 \qquad

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$

HRMS - 8

Analytica! Laboratory
BALANCE CALIBRATION CHECK

Weights \# 22370 and 7718

Date		$\begin{gathered} \text { Weight 1 } \\ (0.9900-1.0100) \end{gathered}$	$\left.\begin{array}{\|c} \text { Weight } 2 \\ \text { W9.000 } \\ \text { (101.00) } \end{array} \right\rvert\,$	$\begin{gathered} \text { Weight } 3 \\ 2000 \mathrm{~g} \\ (1980-2020) \end{gathered}$	Initials	$\underset{\substack{\text { Accepababo? } \\(Y N)}}{ }$
62017		1.00	100.00	2000.00	OBF	4
6.2117	\checkmark	1.01	1100.01	2000.03	HB	y
6/22/17	\checkmark	1.00	99.99	2000.01	${ }_{16}{ }^{\text {c }}$	y
612517	\checkmark	0.99	100.00	2000.00	$H B$	y
6126117	\checkmark	1.00	100.00	2000.00	HB	y
6127117	\checkmark	1.01	100.00)	2000.04	HB	y
6.28117	\checkmark	1.00	14.00\%	2000.01	tib	y
blealit	\checkmark	1.00	104.01	1997.98	\#C	7
6130117	\checkmark	1.00	99.99	1999.98	HB	y
7/3/12	\checkmark	1.01	100.00	1999.99	KGF	y
		,				
Comments:						

HRMS - 8

BALANCE CALIBRATION CHECK

Weights \# _22370 and 7718

$$
\text { SAMPLE DATA - MODIFIED EPA METHOD } 537
$$

Dataset:
U:IQ4.PRO\results\170707M21170707M2-3.qId
Last Altered: Thursday, July 20, 2017 12:22:20 Pacific Daylight Time Printed: \quad Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:11:00 Calibration: U:|Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$		5.91 e 3	0.1250		2.92				
2	2 PFHxA	313.2 > 268.9		1.99 e 4	0.1250		3.16				
3	3 PFHpA	$363>318.9$		4.57 e 4	0.1250		3.43				
4	4 PFHxS	$398.9>79.6$	4.37 e 1	3.95 e3	0.1250		3.55	3.49	0.138	0.621	
5	5 PFOA	$413>368.7$		5.53 e 4	0.1250		3.63				
6	6 PFNA	$462.9>418.8$		$2.96 \mathrm{e}^{4}$	0.1250		3.82				
7	7 PFOS	$499>79.9$		3.29 e 3	0.1250		3.86				
8	8 PFDA	$513>468.8$		9.66 e 3	0.1250		4.00				
9	9 PFUnA	$562.9>518.9$		4.38 e 3	0.1250		4.13				
10	$10 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		1.46 e 3	0.1250		4.00				
11	$11 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		1.05 e 3	0.1250		4.07				
12	12 PFDoA	$612.9>318.8$		4.28 e 2	0.1250		4.31				
13	13 PFTrDA	$662.9>618.9$		4.28 e 2	0.1250		4.50				
14	14 PFTeDA	$712.9>668.8$		2.48 e 3	0.1250		4.65				
15	15 13C3-PFBS	$302>98.8$	5.91 e 3	6.12 e 4	0.1250	0.032	2.92	2.93	0.483	120	120.3
16	16 13C2-PFHxA	$315>269.8$	1.99 e 4	6.12 e 4	0.1250	0.296	3.15	3.16	1.63	43.9	109.7
17	17 13C4-PFHpA	$367.2>321.8$	4.57 e 4	6.12 e 4	0.1250	0.302	3.43	3.43	3.73	99.1	99.1
18	18 1802-PFHxS	$403>102.6$	3.95 e3	8.73 e 3	0.1250	0.434	3.49	3.49	5.65	104	104.1
19	19 13C2-PFOA	$414.9>369.7$	5.53e4	4.58 e 4	0.1250	1.140	3.62	3.62	15.1	106	105.9
20	20 13C5-PFNA	$468.2>422.9$	2.96 e 4	3.41 e 4	0.1250	0.958	3.80	3.80	10.8	90.4	90.4
21	21 13C8-PFOS	$507>79.9$	3.29 e 3	2.72 e3	0.1250	1.061	3.85	3.86	15.1	114	113.8
22	22 13C2-PFDA	$515.1>469.9$	9.66 e 3	1.33 e 4	0.1250	0.942	3.97	3.97	9.06	76.9	76.9
23	23 13C2-PFUnA	$565>519.8$	4.38 e 3	$5.22 e 3$	0.1250	1.084	4.13	4.14	10.5	77.3	77.3
24	$24 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.46 e 3	$5.22 e 3$	0.1250	0.240	4.00	4.00	3.49	116	116.1
25	25 d5-N-EtFOSAA	$589.3>419$	1.05 e 3	$5.22 e 3$	0.1250	0.247	4.07	4.07	2.51	81.3	81.3
26	26 13C2-PFDoA	$615>569.7$	4.28 e 2	$5.22 e 3$	0.1250	0.127	4.32	4.29	1.03	64.6	64.6
27	27 13C2-PFTeDA	$714.8>669.6$	2.48 e 3	$5.22 e 3$	0.1250	0.883	4.64	4.63	5.94	53.8	53.8
28	28 13C5-PFHxA	$318>272.9$	6.12 e 4	6.12 e 4	0.1250	1.000	3.15	3.16	5.00	40.0	100.0
29	29 13C3-PFHxS	$401.9>79.9$	8.73 e 3	8.73 e 3	0.1250	1.000	3.49	3.49	12.5	100	100.0
30	30 13C8-PFOA	$421.3>376$	4.58 e 4	4.58 e 4	0.1250	1.000	3.62	3.62	12.5	100	100.0
31	31 13C9-PFNA	$472.2>426.9$	3.41 e 4	3.41 e 4	0.1250	1.000	3.82	3.80	12.5	100	100.0
32	32 13C4-PFOS	$503>79.9$	2.72 e 3	2.72 e 3	0.1250	1.000	3.85	3.86	12.5	100	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-3.qld
Last Altered:	Thursday, July 20, 2017 12:22:20 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	1.33 e 4	1.33 e 4	0.1250	1.000	3.97	3.97	12.5	100	100.0
34	34 13C7-PFUnA	$570.1>524.8$	5.22 e 3	5.22e3	0.1250	1.000	4.13	4.13	12.5	100	100.0
35	35 Total PFBS	$299>79.7$	0.00 e 0	5.91 e 3	0.1250		2.91		0.000		
36	36 Total PFHxS	$398.9>79.6$	4.37 e 1	3.95 e 3	0.1250		3.48		0.138	0.621	
37	37 Total PFOA	$413>368.7$	0.00 e 0	5.53 e 4	0.1250		3.61		0.000		
38	38 Total PFOS	$499>79.9$	0.00 e 0	3.29 e 3	0.1250		3.84		0.000		
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1250		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.1250		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-3.qld
Last Altered:	Thursday, July 20, 2017 12:22:20 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 12:11:00
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1							

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 PFHxS | $398.9>79.6$ | 3.49 | 43.693 | 3947.771 | 0.138 | bb | 0.6 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	5 PFOA	$413>368.7$		55304.258	Conc.		

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-3.qld
Last Altered:	Thursday, July 20, 2017 12:22:20 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 12:11:00

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

1802-PFHxS

Dataset: U:\Q4.PRO\results\170707M2\170707M2-3.qld
Last Altered: Thursday, July 20, 2017 12:22:20 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank

\section*{Total PFOA
 F19:MRM of 2 channels,ES- | $413>368.7$ |
| ---: |
| $1.012 \mathrm{e}+004$ |}

13C2-PFOA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$ $1.000 \mathrm{e}-003$

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-3.qld
Last Altered: Thursday, July 20, 2017 12:22:20 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-3.qld
Last Altered: Thursday, July 20, 2017 12:22:20 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170707M2\170707M2-3.qld

Last Altered: Thursday, July 20, 2017 12:22:20 Pacific Daylight Time Printed: \quad Thursday, July 20, 2017 12:23:26 Pacific Daylight Time

Name: 170707M2_3, Date: 07-Jul-2017, Time: 13:56:23, ID: B7F0137-BLK1 Method Blank 0.125, Description: Method Blank

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Dataset:	U:IQ4.PRO\results\170707M21170707M2-5.qld
Last Altered:	Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:11:00 Calibration: U:|Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	5.47e3	3.60e3	0.1250		2.92	2.93	19.0	80.7	100.9
2	2 PFHxA	313.2 > 268.9	3.48 e 4	1.21 e 4	0.1250		3.16	3.17	14.4	81.7	102.1
3	3 PFHpA	$363>318.9$	2.75 e 4	2.65 e 4	0.1250		3.43	3.43	13.0	86.1	107.6
4	4 PFHxS	$398.9>79.6$	3.51 e 3	2.58 e 3	0.1250		3.55	3.50	17.0	73.3	91.7
5	5 PFOA	$413>368.7$	2.95 e 4	3.78 e 4	0.1250		3.63	3.63	9.73	81.7	102.1
6	6 PFNA	$462.9>418.8$	2.52 e 4	2.72 e 4	0.1250		3.82	3.80	11.6	83.0	103.7
7	7 PFOS	$499>79.9$	4.21 e 3	4.54 e 3	0.1250		3.86	3.86	11.6	87.7	109.6
8	8 PFDA	$513>468.8$	1.57 e 4	1.53 e 4	0.1250		4.00	3.97	12.8	88.3	110.3
9	9 PFUnA	$562.9>518.9$	4.61 e3	7.05 e 3	0.1250		4.13	4.14	8.17	71.6	89.5
10	10 N-MeFOSAA	$570.1>419$	2.50 e 3	1.65 e 3	0.1250		4.00	4.01	19.0	95.0	118.8
11	11 N-EtFOSAA	$584.2>419$	1.41 e 3	1.74 e 3	0.1250		4.07	4.07	10.1	70.5	88.1
12	12 PFDoA	$612.9>318.8$	2.92 e 2	4.53 e 2	0.1250		4.31	4.30	8.07	77.3	96.7
13	13 PFTrDA	662.9 > 618.9	2.75 e 3	4.53 e 2	0.1250		4.50	4.46	75.9	54.1	67.6
14	14 PFTeDA	$712.9>668.8$	2.37 e 3	2.71 e3	0.1250		4.65	4.63	11.0	73.5	91.8
15	15 13C3-PFBS	$302>98.8$	3.60 e 3	3.81 e 4	0.1250	0.032	2.92	2.93	0.472	118	117.5
16	16 13C2-PFHxA	$315>269.8$	1.21 e 4	3.81 e 4	0.1250	0.296	3.15	3.17	1.59	42.8	107.0
17	17 13C4-PFHpA	$367.2>321.8$	2.65 e 4	3.81 e 4	0.1250	0.302	3.43	3.43	3.48	92.3	92.3
18	18 1802-PFHxS	$403>102.6$	2.58 e 3	5.85 e 3	0.1250	0.434	3.49	3.50	5.52	102	101.7
19	19 13C2-PFOA	414.9 > 369.7	3.78 e 4	3.55 e 4	0.1250	1.140	3.62	3.63	13.3	93.4	93.4
20	20 13C5-PFNA	468.2 > 422.9	2.72 e 4	3.07e4	0.1250	0.958	3.80	3.80	11.1	92.5	92.5
21	21 13C8-PFOS	$507>79.9$	4.54 e 3	4.70 e 3	0.1250	1.061	3.85	3.86	12.1	91.0	91.0
22	22 13C2-PFDA	$515.1>469.9$	1.53 e 4	2.08 e 4	0.1250	0.942	3.97	3.97	9.20	78.1	78.1
23	23 13C2-PFUnA	$565>519.8$	7.05 e 3	8.09 e 3	0.1250	1.084	4.13	4.13	10.9	80.5	80.5
24	24 d3-N-MeFOSAA	$573.3>419$	1.65 e 3	8.09 e 3	0.1250	0.240	4.00	4.01	2.55	84.7	84.7
25	$25 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	1.74 e 3	8.09е3	0.1250	0.247	4.07	4.07	2.69	87.0	87.0
26	26 13C2-PFDoA	$615>569.7$	4.53 e 2	8.09 e 3	0.1250	0.127	4.32	4.29	0.700	44.1	44.1
27	27 13C2-PFTeDA	714.8 > 669.6	2.71 e 3	8.09 e 3	0.1250	0.883	4.64	4.63	4.19	37.9	37.9
28	28 13C5-PFHxA	$318>272.9$	3.81e4	3.81 e 4	0.1250	1.000	3.15	3.17	5.00	40.0	100.0
29	29 13C3-PFHxS	$401.9>79.9$	5.85 e 3	5.85 e 3	0.1250	1.000	3.49	3.50	12.5	100	100.0
30	$3013 C 8-P F O A$	$421.3>376$	3.55 e 4	3.55 e 4	0.1250	1.000	3.62	3.63	12.5	100	100.0
31	31 13C9-PFNA	$472.2>426.9$	3.07 e 4	3.07 e 4	0.1250	1.000	3.82	3.80	12.5	100	100.0
32	32 13C4-PFOS	$503>79.9$	4.70 e 3	4.70 e 3	0.1250	1.000	3.85	3.86	12.5	100	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170707M2\170707M2-5.qld

Last Altered: Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	2.08 e 4	2.08 e 4	0.1250	1.000	3.97	3.97	12.5	100	100.0
34	34 13C7-PFUnA	$570.1>524.8$	8.09 e 3	8.09 e 3	0.1250	1.000	4.13	4.14	12.5	100	100.0
35	35 Total PFBS	$299>79.7$	5.47 e 3	3.60 e3	0.1250		2.91		19.0	80.7	
36	36 Total PFHxS	$398.9>79.6$	3.51 e 3	2.58 e 3	0.1250		3.48		17.0	73.3	
37	37 Total PFOA	$413>368.7$	2.95 e 4	3.78 e 4	0.1250		3.61		9.73	81.7	
38	38 Total PFOS	$499>79.9$	4.21 e 3	4.54 e 3	0.1250		3.84		11.6	87.7	
39	39 Total N-Me-FOSAA	$570.1>419$	2.50 e 3		0.1250		3.98		19.0	95.0	
40	40 Total N -EtFOSAA	$584.2>419$	1.41 e 3		0.1250		4.06		10.1	70.5	

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-5.qld
Last Altered:	Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 12:11:00
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR
Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 PFBS | $299>79.7$ | 2.93 | 5467.112 | 3597.409 | 18.997 | bb | 80.7 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	$398.9>79.6$	3.50	3505.774	2583.801	16.960	MM	73.3

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5 PFOA | $413>368.7$ | 3.63 | 29462.191 | 37846.414 | 9.731 | bb | 81.7 |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	$499>79.9$	3.86	4210.312	4539.052	11.595	MM	87.7

Total N-Me-FOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc.

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	11 N-EtFOSAA	$584.2>419$	4.07	1405.219	1740.058	10.095	bb	70.5

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-5.qld
Last Altered:	Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 12:11:00

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

1802-PFHxS

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-5.qld
Last Altered:	Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- |
| ---: |
| $413>368.7$ |
| $6.923 \mathrm{e}+005$ |
| 100 |}

13C2-PFOA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-5.qld
Last Altered: Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR

PFUnA

PFUnA
100
F43:MRM of 2 channels,ES-
$562.9>518.9$

F43:MRM of 2 channels,ES-
$562.9>269$
$2.768 \mathrm{e}+004$
100

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-5.qld
Last Altered:	Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR

 13C2-PFTeDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170707M2\170707M2-5.qld

Last Altered: Thursday, July 20, 2017 12:28:16 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:30:00 Pacific Daylight Time

Name: 170707M2_5, Date: 07-Jul-2017, Time: 14:18:24, ID: B7F0137-BS1 OPR 0.125, Description: OPR

13C4-PFOS

13C6-PFDA

F38:MRM of | F channel,ES- |
| :---: |
| $519.1>473.7$ |
| 4 |

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170711M1\170711M1-47.qld
Last Altered: Thursday, July 20, 2017 15:49:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 15:50:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L16_7-10-17.mdb 13 Jul 2017 08:53:22

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46
Name: 170711M1_47, Date: 11-Jul-2017, Time: 18:47:43, ID: B7G0033-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	14 PFDoA	612.9 > 318.8		1.28 e 3	0.1250		4.32				
2	15 PFTrDA	662.9 > 618.9		1.28 e 3	0.1250		4.38				
3	16 PFTeDA	712.9 > 668.8		8.63 e 3	0.1250		4.55				
4	29 13C2-PFDoA	$615>569.7$	1.28 e 3	2.91 e4	0.1250	0.130	4.32	4.24	0.551	33.9	33.9
5	$3013 \mathrm{C} 2-\mathrm{PFTeDA}$	714.8 > 669.6	8.63 e3	2.91 e4	0.1250	1.018	4.55	4.57	3.70	29.1	29.1
6	38 13C7-PFUnA	$570.1>524.8$	2.91 e 4	2.91 e 4	0.1250	1.000	4.16	4.08	12.5	100	100.0

Dataset:
U:\Q4.PRO\results\170711M1\170711M1-47.qld

Last Altered: Thursday, July 20, 2017 15:49:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 15:50:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L16_7-10-17.mdb 13 Jul 2017 08:53:22

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

Name: 170711M1_47, Date: 11-Jul-2017, Time: 18:47:43, ID: B7G0033-BLK1 Method Blank 0.125, Description: Method Blank

PFDoA

170711M1_47 Smooth(Mn, 1x2)
F51:MRM of 2 channels
Method Blank B7G0033-BLK1 Method Blank 0.125
2 channels,ES-
$612.9>318.8$ $4.58{ }^{1.696 e+003}$

F51:MRM of 2 channels,ESMethod Blank B7G0033-BLK1 Method Blank 0.125 612.9 > 569

13C2-PFDoA

170711M1_47 Smooth(Mn,1x2) F52:MRM of 1 channel,ESMethod Blank B7G0033-BLK1 Method Blank $0.125 \quad 615>569.7$

PFTrDA
F57:MRM of 2 channels,ES-
170711M1_47 Smooth(Mn,1x2)
Method Blank B7G0033-BLK1 Method Blank 0.125
$662.9>618.9$
170711M1_47 Smooth(Mn,1x2 F57:MRM of 2 channels,ES 662.9 > 319

13C2-PFTeDA

170711M1_47 Smooth(Mn,1x2)
F59:MRM of 2 channels,ES Method Blank B7G0033-BLK1 Method Blank $0.125 \quad 714.8$ > 669.6

PFTeDA

170711M1_47 Smooth(Mn,1x2) F58:MRM of 4 channels,ESMethod Blank B7G0033-BLK1 Method Blank $0.125 \quad 712.9>668.8$

170711M1_47 Smooth(Mn,1x2)

13C2-PFTeDA

170711M1 47 Smooth(Mn, 1x2)
F59:MRM of 2 channels,ESMethod Blank B7G0033-BLK1 Method Blank $0.125 \quad 714.8>669.6$

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945

Last Altered: Thursday, July 20, 2017 15:49:02 Pacific Daylight Time
Printed: Thursday, July 20, 2017 15:50:16 Pacific Daylight Time

13C7-PFUnA

170711M1 47 Smooth(Mn,1x2) F46:MRM of 1 channel,ESF46:MRM of 1 channel,ES-
Method Blank B7G0033-BLK1 Method Blank 0.125 $570.1>524.8$

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170711M1\170711M1-44.qld
Last Altered:	Thursday, July 20, 2017 15:43:42 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 15:47:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L16_7-10-17.mdb 13 Jul 2017 08:53:22 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

Name: 170711M1_44, Date: 11-Jul-2017, Time: 18:15:31, ID: B7G0033-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	14 PFDoA	612.9 > 318.8	1.85 e 3	2.78 e 3	0.1250		4.32	4.23	8.32	81.0	101.3
2	15 PFTrDA	662.9 > 618.9	1.92 e 4	2.78 e 3	0.1250		4.38	4.40	86.5	52.2	65.3
3	16 PFTeDA	712.9 > 668.8	9.05 e 3	1.03 e 4	0.1250		4.55	4.56	11.0	69.4	86.8
4	29 13C2-PFDoA	$615>569.7$	2.78 e 3	4.26 e 4	0.1250	0.130	4.32	4.23	0.816	50.3	50.3
5	3013 C 2 -PFTeDA	714.8 > 669.6	1.03 e 4	4.26 e 4	0.1250	1.018	4.55	4.56	3.03	23.8	23.8
6	38 13C7-PFUnA	$570.1>524.8$	$4.26 e 4$	4.26 e4	0.1250	1.000	4.16	4.08	12.5	100	100.0

Dataset:
 U:\Q4.PRO\results\170711M1\170711M1-44.qld

Last Altered: Thursday, July 20, 2017 15:43:42 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 15:47:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L16 7-10-17.mdb 13 Jul 2017 08:53:22

Calibration: U:|Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

Name: 170711M1_44, Date: 11-Jul-2017, Time: 18:15:31, ID: B7G0033-BS1 OPR 0.125, Description: OPR

PFDoA

170711M1_44 Smooth(Mn, 1x2) OPR B7G00033-BS1 OPR 0.125

OPR B7G0033-BS1 OPR 0.125	$612.9>318.8$	
100	PFDoA	$4.252 e+004$
	4.23	
$\%$	1.8523	
	41623	
	bb	

170711M1_44 Smooth(Mn,1x2) OPR B7G0033-BS1 OPR 0.125		F51:MRM of 2 channels,ES-
		$612.9>569$
100	PFDoA	$5.858 \mathrm{e}+004$
	$\begin{gathered} 4.23 \\ 2.69 \mathrm{e} 3 \end{gathered}$	
\%-	56579	

13C2-PFDoA

170711M1_44 Smooth(Mn,1x2) F52:MRM of 1 channel,ESOPR B7G0033-BS1 OPR $0.125 \quad 615>569.7$

PFTrDA

13C2-PFTeDA

170711M1_44 Smooth(Mn,1x2) F59:MRM of 2 channels,ESOPR B7G0033-BS1 OPR $0.125 \quad 714.8>669.6$ $\begin{array}{lr}\text { OPR B7G0033-BS1 OPR } 0.125 & 714.8>669.6 \\ 100-13 C 2-P F T e D A & 2.263 \mathrm{e}+005\end{array}$

PFTeDA

13C2-PFTeDA
170711M1_44 Smooth(Mn,1x2) F59:MRM of 2 channels,ESOPR B7G0̄033-BS1 OPR $0.125 \quad 714.8>669.6$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Last Altered: Thursday, July 20, 2017 15:43:42 Pacific Daylight Time
Printed: Thursday, July 20, 2017 15:47:28 Pacific Daylight Time

Dataset:	U:IQ4.PRO\results 1170707M21170707M2-12.qld
Last Altered:	Thursday, July 20, 2017 13:59:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:15:24 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	1.12 e 2	3.87e3	0.1168		2.92	2.94	0.361	0.843	
2	2 PFHxA	313.2 > 268.9	3.27 e 4	1.40 e 4	0.1168		3.16	3.17	11.7	70.8	
3	3 PFHpA	$363>318.9$	1.75 e 4	2.90 e 4	0.1168		3.43	3.43	7.56	52.7	
4	4 PFHxS	$398.9>79.6$	1.75 e 2	2.60 e3	0.1168		3.55	3.50	0.840	3.87	
5	5 PFOA	$413>368.7$	1.14 e 4	3.13 e 4	0.1168		3.63	3.63	4.54	39.8	
6	6 PFNA	$462.9>418.8$	1.22 e 3	1.42 e 4	0.1168		3.82	3.81	1.08	7.76	
7	7 PFOS	$499>79.9$	1.23 e 2	1.21 e 3	0.1168		3.86	3.80	1.26	9.80	
8	8 PFDA	$513>468.8$		3.23 e3	0.1168		4.00				
9	9 PFUnA	$562.9>518.9$		1.44 e 3	0.1168		4.13				
10	10 N-MeFOSAA	$570.1>419$		3.47 e 2	0.1168		4.00				
11	11 N-EtFOSAA	$584.2>419$		1.90 e 2	0.1168		4.07				
12	12 PFDoA	$612.9>318.8$		2.39 e 1	0.1168		4.31				
13	13 PFTrDA	$662.9>618.9$		2.39 e 1	0.1168		4.50				
14	14 PFTeDA	712.9 > 668.8		2.21 e 2	0.1168		4.65				
15	15 13C3-PFBS	$302>98.8$	3.87 e 3	4.53 e 4	0.1168	0.032	2.92	2.93	0.428	114	106.6
16	16 13C2-PFHxA	$315>269.8$	1.40 e 4	4.53 e 4	0.1168	0.296	3.15	3.17	1.54	44.5	104.0
17	17 13C4-PFHpA	367.2 > 321.8	2.90 e4	4.53 e 4	0.1168	0.302	3.43	3.43	3.20	90.8	84.9
18	18 1802-PFHxS	$403>102.6$	2.60 e3	6.14 e 3	0.1168	0.434	3.49	3.50	5.29	104	97.5
19	19 13C2-PFOA	414.9 > 369.7	3.13 e 4	2.83 e4	0.1168	1.140	3.62	3.63	13.8	104	96.8
20	20 13C5-PFNA	468.2 > 422.9	1.42 e 4	1.61 e 4	0.1168	0.958	3.80	3.81	11.0	98.6	92.1
21	21 13C8-PFOS	$507>79.9$	1.21 e 3	1.06 e 3	0.1168	1.061	3.85	3.86	14.3	115	107.9
22	22 13C2-PFDA	$515.1>469.9$	3.23 e 3	3.94e3	0.1168	0.942	3.97	3.97	10.2	93.0	86.9
23	23 13C2-PFUnA	$565>519.8$	1.44 e 3	1.27 e 3	0.1168	1.084	4.13	4.14	14.1	111	104.0
24	24 d3-N-MeFOSAA	$573.3>419$	3.47 e 2	1.27 e 3	0.1168	0.240	4.00	4.00	3.41	121	113.4
25	25 d5-N-EtFOSAA	$589.3>419$	1.90e2	1.27 e 3	0.1168	0.247	4.07	4.07	1.87	64.7	60.4
26	26 13C2-PFDoA	$615>569.7$	2.39 e 1	1.27 e 3	0.1168	0.127	4.32	4.29	0.235	15.8	14.8
27	27 13C2-PFTeDA	714.8 > 669.6	2.21 e 2	1.27 e 3	0.1168	0.883	4.64	4.63	2.17	21.0	19.7
28	28 13C5-PFHxA	$318>272.9$	4.53 e 4	4.53 e 4	0.1168	1.000	3.15	3.17	5.00	42.8	100.0
29	29 13C3-PFHxS	$401.9>79.9$	6.14 e 3	6.14 e 3	0.1168	1.000	3.49	3.50	12.5	107	100.0
30	$3013 C 8$-PFOA	$421.3>376$	2.83 e 4	2.83 e 4	0.1168	1.000	3.62	3.63	12.5	107	100.0
31	31 13C9-PFNA	$472.2>426.9$	1.61 e 4	1.61 e 4	0.1168	1.000	3.82	3.81	12.5	107	100.0
32	32 13C4-PFOS	$503>79.9$	1.06 e 3	1.06 e 3	0.1168	1.000	3.85	3.86	12.5	107	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-12.qld
Last Altered:	Thursday, July 20, 2017 13:59:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:15:24 Pacific Daylight Time

Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	3.94e3	3.94e3	0.1168	1.000	3.97	3.97	12.5	107	100.0
34	34 13C7-PFUnA	$570.1>524.8$	1.27 e 3	1.27 e 3	0.1168	1.000	4.13	4.14	12.5	107	100.0
35	35 Total PFBS	$299>79.7$	1.12 e 2	3.87e3	0.1168		2.91		0.361	0.843	
36	36 Total PFHxS	$398.9>79.6$	1.75 e 2	2.60 e 3	0.1168		3.48		0.840	3.87	
37	37 Total PFOA	$413>368.7$	1.14 e 4	3.13 e 4	0.1168		3.61		4.54	39.8	
38	38 Total PFOS	$499>79.9$	1.23 e 2	1.21 e 3	0.1168		3.84		1.26	9.80	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00e0		0.1168		3.98		0.000		
40	40 Total N-EtFOSAA	$584.2>419$	0.00e0		0.1168		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-12.qld
Last Altered:	Thursday, July 20, 2017 13:59:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:15:24 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627
Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 PFBS | $299>79.7$ | 2.94 | 111.82ε | 3872.630 | 0.361 | bb | 0.8 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 PFHxS | $398.9>79.6$ | 3.50 | 174.580 | 2597.991 | 0.840 | bb | 3.9 |

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5 PFOA | $413>368.7$ | 3.63 | 11350.090 | 31263.918 | 4.538 | bb | 39.8 |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	$499>79.9$	3.80	122.526	1210.732	1.265	MM	9.8

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset: U:\Q4.PRO\results\170707M2\170707M2-12.qld
Last Altered: Thursday, July 20, 2017 13:59:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:15:24 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

PFHpA

Total PFHxS

F16:MRM of 2 channels, ES-
$398.9>79.6$
$3.896 e+003$

1802-PFHxS

Dataset: U:\Q4.PRO\results\170707M2\170707M2-12.qld
Last Altered: Thursday, July 20, 2017 13:59:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:15:24 Pacific Daylight Time

Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627

\section*{Total PFOA

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-12.qId
Last Altered: Thursday, July 20, 2017 13:59:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:15:24 Pacific Daylight Time

Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627

PFUnA

F43:MRM of 2 channels,ES$562.9>269$
 13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-12.qld
Last Altered: Thursday, July 20, 2017 13:59:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:15:24 Pacific Daylight Time

Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627

PFTeDA

F58:MRM of 4 channels,ES-
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 20, } 2017 \text { 13:59:44 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 20, } 2017 \text { 14:15:24 Pacific Daylight Time }\end{array}$

Name: 170707M2_12, Date: 07-Jul-2017, Time: 15:33:17, ID: 1700792-01 West Ditch In-20170627 0.11683, Description: West Ditch In-20170627 13C4-PFOS

13C7-PFUnA

Quantify Sample Summary Report

 Vista Analytical LaboratoryMassLynx MassLynx V4.1 SCN 945

Last Altered:	Thursday, July 20, 2017 15:52:58 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 15:54:02 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L16_7-10-17.mdb 13 Jul 2017 08:53:22

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46Name: 170711M1_50, Date: 11-Jul-2017, Time: 19:19:46, ID: 1700792-01RE1 West Ditch In-20170627 0.12136, Description: West Ditch In-20170627

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	14 PFDoA	612.9 > 318.8		9.23 e 2	0.1214		4.32				
2	15 PFTrDA	$662.9>618.9$		9.23 e 2	0.1214		4.38				
3	16 PFTeDA	$712.9>668.8$		6.21 e 3	0.1214		4.55				
4	29 13C2-PFDoA	$615>569.7$	9.23 e 2	2.19 e 4	0.1214	0.130	4.32	4.23	0.527	33.4	32.5
5	$3013 \mathrm{C} 2-\mathrm{PFTeDA}$	714.8 > 669.6	6.21 e 3	2.19 e 4	0.1214	1.018	4.55	4.57	3.54	28.7	27.8
6	38 13C7-PFUnA	$570.1>524.8$	2.19 e 4	2.19 e 4	0.1214	1.000	4.16	4.09	12.5	103	100.0

Dataset:
U:\Q4.PRO\results\170711M1\170711M1-50.qld
Last Altered: Thursday, July 20, 2017 15:52:58 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 15:54:02 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L16 7-10-17.mdb 13 Jul 2017 08:53:22

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

Name: 170711M1_50, Date: 11-Jul-2017, Time: 19:19:46, ID: 1700792-01RE1 West Ditch In-20170627 0.12136, Description: West Ditch In-20170627

13C2-PFDoA

170711M1_50 Smooth(Mn,1x2) F52:MRM of 1 channel,ES-

13C2-PFTeDA

170711M1_50 Smooth(Mn,1x2) F59:MRM of 2 channels,ES-

PFTeDA

13C2-PFTeDA
170711M1_50 Smooth(Mn,1x2) F59:MRM of 2 channels,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945
$\begin{array}{ll} & \\ \text { Last Altered: } & \text { Thursday, July 20, } 2017 \text { 15:52:58 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 20, } 2017 \text { 15:54:02 Pacific Daylight Time }\end{array}$

Name: 170711M1_50, Date: 11-Jul-2017, Time: 19:19:46, ID: 1700792-01RE1 West Ditch In-20170627 0.12136, Description: West Ditch In-20170627

13C7-PFUnA

Dataset:	U:IQ4.PRO\results\170707M21170707M2-13.qld
Last Altered:	Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	1.28 e 2	4.07 e 3	0.1148		2.92	2.94	0.392	1.01	
2	2 PFHxA	313.2 > 268.9	2.90 e 4	1.26 e4	0.1148		3.16	3.17	11.5	70.5	
3	3 PFHpA	$363>318.9$	1.39 e 4	2.92 e 4	0.1148		3.43	3.43	5.95	41.8	
4	4 PFHxS	$398.9>79.6$	2.18 e 2	2.72 e 3	0.1148		3.55	3.50	1.00	4.70	
5	5 PFOA	$413>368.7$	1.33 e 4	4.01 e 4	0.1148		3.63	3.63	4.16	37.0	
6	6 PFNA	$462.9>418.8$	1.53 e 3	2.75 e 4	0.1148		3.82	3.81	0.693	4.90	
7	7 PFOS	$499>79.9$	2.17 e 2	4.31 e 3	0.1148		3.86	3.88	0.628	4.73	
8	8 PFDA	$513>468.8$	9.55 e 1	1.41 e 4	0.1148		4.00	3.99	0.0847		
9	9 PFUnA	$562.9>518.9$		5.09 e 3	0.1148		4.13				
10	10 N-MeFOSAA	$570.1>419$		1.47 e 3	0.1148		4.00				
11	11 N -EtFOSAA	$584.2>419$		9.66 e 2	0.1148		4.07				
12	12 PFDoA	$612.9>318.8$		4.37 e 2	0.1148		4.31				
13	13 PFTrDA	$662.9>618.9$		4.37 e 2	0.1148		4.50				
14	14 PFTeDA	$712.9>668.8$		3.24 e 3	0.1148		4.65				
15	15 13C3-PFBS	$302>98.8$	4.07 e 3	3.94 e 4	0.1148	0.032	2.92	2.93	0.516	140	128.7
16	16 13C2-PFHxA	$315>269.8$	1.26 e 4	3.94 e 4	0.1148	0.296	3.15	3.17	1.60	47.1	108.1
17	17 13C4-PFHpA	$367.2>321.8$	2.92 e 4	3.94 e 4	0.1148	0.302	3.43	3.43	3.70	107	98.2
18	18 1802-PFHxS	$403>102.6$	2.72 e 3	6.45 e 3	0.1148	0.434	3.49	3.50	5.28	106	97.3
19	19 13C2-PFOA	$414.9>369.7$	4.01 e 4	3.42 e 4	0.1148	1.140	3.62	3.63	14.7	112	102.8
20	20 13C5-PFNA	$468.2>422.9$	2.75 e 4	3.26 e4	0.1148	0.958	3.80	3.81	10.6	96.0	88.1
21	21 13C8-PFOS	$507>79.9$	4.31 e 3	4.31 e 3	0.1148	1.061	3.85	3.87	12.5	103	94.2
22	22 13C2-PFDA	$515.1>469.9$	1.41 e 4	2.05e4	0.1148	0.942	3.97	3.98	8.57	79.3	72.8
23	23 13C2-PFUnA	$565>519.8$	5.09 e 3	6.61 e 3	0.1148	1.084	4.13	4.14	9.63	77.4	71.1
24	24 d3-N-MeFOSAA	$573.3>419$	1.47 e 3	6.61 e 3	0.1148	0.240	4.00	4.01	2.79	101	92.8
25	25 d5-N-EtFOSAA	$589.3>419$	9.66 e 2	6.61 e 3	0.1148	0.247	4.07	4.08	1.83	64.3	59.1
26	26 13C2-PFDoA	$615>569.7$	4.37 e 2	6.61 e 3	0.1148	0.127	4.32	4.29	0.827	56.8	52.1
27	27 13C2-PFTeDA	714.8 > 669.6	3.24 e 3	6.61 e 3	0.1148	0.883	4.64	4.64	6.14	60.6	55.6
28	28 13C5-PFHxA	$318>272.9$	3.94 e 4	3.94 e 4	0.1148	1.000	3.15	3.17	5.00	43.6	100.0
29	29 13C3-PFHxS	$401.9>79.9$	6.45 e 3	6.45 e 3	0.1148	1.000	3.49	3.50	12.5	109	100.0
30	30 13C8-PFOA	$421.3>376$	3.42 e 4	3.42 e 4	0.1148	1.000	3.62	3.63	12.5	109	100.0
31	31 13C9-PFNA	$472.2>426.9$	3.26 e4	3.26 e4	0.1148	1.000	3.82	3.81	12.5	109	100.0
32	32 13C4-PFOS	$503>79.9$	4.31 e 3	4.31 e 3	0.1148	1.000	3.85	3.87	12.5	109	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-13.qld
Last Altered:	Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	2.05e4	2.05 e 4	0.1148	1.000	3.97	3.98	12.5	109	100.0
34	34 13C7-PFUnA	$570.1>524.8$	6.61 e 3	6.61 e 3	0.1148	1.000	4.13	4.14	12.5	109	100.0
35	35 Total PFBS	$299>79.7$	1.28 e 2	4.07 e 3	0.1148		2.91		0.392	1.01	
36	36 Total PFHxS	$398.9>79.6$	2.18 e 2	2.72 e 3	0.1148		3.48		1.00	4.70	
37	37 Total PFOA	$413>368.7$	1.33 e 4	4.01 e 4	0.1148		3.61		4.16	37.0	
38	38 Total PFOS	$499>79.9$	2.17 e 2	4.31 e 3	0.1148		3.84		0.628	4.73	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1148		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00e0		0.1148		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-13.qld
Last Altered:	Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628
Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	$299>79.7$	2.94	127.746	4070.100	0.392	MM	1.0

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	$398.9>79.6$	3.50	218.434	2724.256	1.002	MM	4.7

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	$413>368.7$	3.63	13334.102	40105.465	4.156	bb	37.0

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset: U:\Q4.PRO\results\170707M2\170707M2-13.qld
Last Altered: Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628

Total PFBS

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES-

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-13.qId
Last Altered: Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- |
| ---: |
| $413>368.7$ |
| |
| 100 |}

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-13.qld
Last Altered: Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

F51:MRM of 2 channels,ES-

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-13.qId
Last Altered: Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628

F58:MRM of 4 channels,ES$72.9>369$
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-13.qld
Last Altered:	Thursday, July 20, 2017 14:18:27 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:19:18 Pacific Daylight Time

Name: 170707M2_13, Date: 07-Jul-2017, Time: 15:43:56, ID: 1700792-02 MH-140-20170628 0.11475, Description: MH-140-20170628

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Dataset:	U:IQ4.PRO\results\170707M21170707M2-14.qld
Last Altered:	Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$		5.67 e 3	0.1146		2.92				
2	2 PFHxA	313.2 > 268.9	2.12 e 4	1.76 e 4	0.1146		3.16	3.18	6.03	35.9	
3	3 PFHpA	$363>318.9$	1.17 e 4	4.08 e 4	0.1146		3.43	3.43	3.57	24.2	
4	4 PFHxS	$398.9>79.6$	3.36 e 2	4.04 e 3	0.1146		3.55	3.50	1.04	4.88	
5	5 PFOA	$413>368.7$	1.37 e 4	5.05 e 4	0.1146		3.63	3.63	3.39	29.8	
6	6 PFNA	$462.9>418.8$	2.02 e 3	3.63 e4	0.1146		3.82	3.81	0.695	4.92	
7	7 PFOS	$499>79.9$	5.06 e 2	8.25 e 3	0.1146		3.86	3.86	0.767	5.89	
8	8 PFDA	$513>468.8$	3.98 e 2	3.24 e 4	0.1146		4.00	3.97	0.154		
9	9 PFUnA	$562.9>518.9$		1.64 e 4	0.1146		4.13				
10	10 N-MeFOSAA	$570.1>419$		2.91 e3	0.1146		4.00				
11	11 N -EtFOSAA	$584.2>419$		2.09 e 3	0.1146		4.07				
12	12 PFDoA	$612.9>318.8$		4.91 e 2	0.1146		4.31				
13	13 PFTrDA	662.9 > 618.9		4.91 e 2	0.1146		4.50				
14	14 PFTeDA	$712.9>668.8$		3.20 e 3	0.1146		4.65				
15	15 13C3-PFBS	$302>98.8$	5.67 e 3	5.49 e 4	0.1146	0.032	2.92	2.93	0.517	141	128.9
16	16 13C2-PFHxA	$315>269.8$	1.76 e 4	5.49 e 4	0.1146	0.296	3.15	3.18	1.60	47.2	108.3
17	17 13C4-PFHpA	$367.2>321.8$	4.08 e 4	5.49 e 4	0.1146	0.302	3.43	3.43	3.71	107	98.5
18	18 1802-PFHxS	$403>102.6$	4.04 e 3	8.73 e 3	0.1146	0.434	3.49	3.50	5.78	116	106.5
19	19 13C2-PFOA	414.9 > 369.7	5.05 e 4	4.37 e 4	0.1146	1.140	3.62	3.63	14.4	111	101.3
20	20 13C5-PFNA	$468.2>422.9$	3.63 e4	4.24 e 4	0.1146	0.958	3.80	3.81	10.7	97.5	89.4
21	21 13C8-PFOS	$507>79.9$	8.25 e 3	7.43 e 3	0.1146	1.061	3.85	3.86	13.9	114	104.5
22	22 13C2-PFDA	$515.1>469.9$	3.24 e 4	3.43 e 4	0.1146	0.942	3.97	3.98	11.8	109	100.1
23	23 13C2-PFUnA	$565>519.8$	1.64 e 4	1.80 e 4	0.1146	1.084	4.13	4.14	11.3	91.3	83.7
24	24 d3-N-MeFOSAA	$573.3>419$	2.91 e 3	1.80 e 4	0.1146	0.240	4.00	4.01	2.02	73.2	67.1
25	25 d5-N-EtFOSAA	$589.3>419$	2.09 e 3	1.80 e 4	0.1146	0.247	4.07	4.07	1.45	51.1	46.8
26	26 13C2-PFDoA	$615>569.7$	4.91 e 2	1.80 e 4	0.1146	0.127	4.32	4.30	0.340	23.4	21.4
27	27 13C2-PFTeDA	714.8 > 669.6	3.20 e 3	1.80 e 4	0.1146	0.883	4.64	4.64	2.21	21.9	20.1
28	28 13C5-PFHxA	$318>272.9$	5.49 e 4	5.49 e 4	0.1146	1.000	3.15	3.18	5.00	43.6	100.0
29	29 13C3-PFHxS	$401.9>79.9$	8.73 e 3	8.73 e 3	0.1146	1.000	3.49	3.50	12.5	109	100.0
30	30 13C8-PFOA	$421.3>376$	4.37 e 4	4.37 e 4	0.1146	1.000	3.62	3.63	12.5	109	100.0
31	31 13C9-PFNA	$472.2>426.9$	4.24 e 4	4.24 e 4	0.1146	1.000	3.82	3.81	12.5	109	100.0
32	32 13C4-PFOS	$503>79.9$	7.43e3	7.43 e 3	0.1146	1.000	3.85	3.86	12.5	109	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-14.qld
Last Altered:	Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	3.43 e 4	3.43e4	0.1146	1.000	3.97	3.98	12.5	109	100.0
34	34 13C7-PFUnA	$570.1>524.8$	1.80 e 4	1.80 e 4	0.1146	1.000	4.13	4.14	12.5	109	100.0
35	35 Total PFBS	$299>79.7$	0.00 e 0	5.67 e 3	0.1146		2.91		0.000		
36	36 Total PFHxS	$398.9>79.6$	3.36 e 2	4.04 e 3	0.1146		3.48		1.04	4.88	
37	37 Total PFOA	$413>368.7$	1.37 e 4	5.05 e 4	0.1146		3.61		3.39	29.8	
38	38 Total PFOS	$499>79.9$	5.06 e 2	8.25 e3	0.1146		3.84		0.767	5.89	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1146		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00e0		0.1146		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-14.qld
Last Altered:	Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628
Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1						Conc.	

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 PFHxS | $398.9>79.6$ | 3.50 | 336.152 | 4039.271 | 1.040 | MM | 4.9 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	$413>368.7$	3.63	13682.144	50517.902	3.385	bb	29.8

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	$499>79.9$	3.86	506.292	8246.910	0.767	MM	5.9

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-14.qld
Last Altered: Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-14.qId
Last Altered: Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-14.qId
Last Altered: Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628

PFUnA

F43:MRM of 2 channels,ES-
$562.9>269$ $1.872 \mathrm{e}+002$

13C2-PFUnA

N-MeFOSAA

N-EtFOSAA

d3-N-MeFOSAA

PFDoA

13C2-PFDoA
F52:MRM of 1 channel,ES

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-14.qId
Last Altered: Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628

13C2-PFTeDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-14.qld
Last Altered:	Thursday, July 20, 2017 14:21:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:22:06 Pacific Daylight Time

Name: 170707M2_14, Date: 07-Jul-2017, Time: 15:54:34, ID: 1700792-03 Interceptor-20170628 0.11459, Description: Interceptor-20170628

13C4-PFOS

13C6-PFDA

13C6-PFDA
F38:MRM of $\begin{array}{c}1 \text { channel,ES- } \\ 519.1>473.7\end{array}$

13C7-PFUnA

Dataset:	U:IQ4.PRO\results 1170707M21170707M2-15.qld
Last Altered:	Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	1.50 e 2	4.64 e 3	0.1148		2.92	2.93	0.405	1.06	
2	2 PFHxA	$313.2>268.9$	4.03 e 4	1.44 e 4	0.1148		3.16	3.17	14.0	86.4	
3	3 PFHpA	$363>318.9$	2.34 e 4	3.24 e 4	0.1148		3.43	3.43	9.04	64.6	
4	4 PFHxS	$398.9>79.6$	1.68 e 2	3.07e3	0.1148		3.55	3.50	0.684	3.22	
5	5 PFOA	$413>368.7$	1.43 e 4	4.43 e 4	0.1148		3.63	3.64	4.03	35.8	
6	6 PFNA	$462.9>418.8$	2.03 e 3	3.64 e 4	0.1148		3.82	3.81	0.699	4.94	
7	7 PFOS	$499>79.9$	2.65 e 2	6.38 e 3	0.1148		3.86	3.88	0.518	3.82	
8	8 PFDA	$513>468.8$		3.26 e 4	0.1148		4.00				
9	9 PFUnA	$562.9>518.9$		1.69 e 4	0.1148		4.13				
10	10 N-MeFOSAA	$570.1>419$		3.62e3	0.1148		4.00				
11	11 N -EtFOSAA	$584.2>419$		2.53 e 3	0.1148		4.07				
12	12 PFDoA	$612.9>318.8$		6.29 e 2	0.1148		4.31				
13	13 PFTrDA	662.9 > 618.9		6.29 e 2	0.1148		4.50				
14	14 PFTeDA	$712.9>668.8$		5.94 e 3	0.1148		4.65				
15	15 13C3-PFBS	$302>98.8$	4.64 e 3	4.51 e 4	0.1148	0.032	2.92	2.94	0.514	139	128.1
16	16 13C2-PFHxA	$315>269.8$	1.44 e 4	4.51 e 4	0.1148	0.296	3.15	3.17	1.59	46.8	107.6
17	17 13C4-PFHpA	$367.2>321.8$	3.24 e 4	4.51 e 4	0.1148	0.302	3.43	3.43	3.58	103	95.1
18	18 18O2-PFHxS	$403>102.6$	3.07 e 3	7.30 e 3	0.1148	0.434	3.49	3.50	5.26	105	96.8
19	19 13C2-PFOA	414.9 > 369.7	4.43 e 4	3.46e4	0.1148	1.140	3.62	3.64	16.0	122	112.5
20	20 13C5-PFNA	468.2 > 422.9	3.64 e 4	3.88 e 4	0.1148	0.958	3.80	3.81	11.7	107	97.9
21	21 13C8-PFOS	$507>79.9$	6.38 e 3	5.82e3	0.1148	1.061	3.85	3.86	13.7	113	103.4
22	22 13C2-PFDA	$515.1>469.9$	3.26 e 4	3.37 e 4	0.1148	0.942	3.97	3.98	12.1	112	102.6
23	23 13C2-PFUnA	$565>519.8$	1.69 e 4	1.66 e 4	0.1148	1.084	4.13	4.14	12.7	102	93.6
24	24 d3-N-MeFOSAA	$573.3>419$	3.62 e3	1.66 e 4	0.1148	0.240	4.00	4.01	2.72	98.5	90.5
25	$25 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	2.53 e 3	1.66 e 4	0.1148	0.247	4.07	4.08	1.90	66.9	61.5
26	26 13C2-PFDoA	$615>569.7$	6.29 e 2	1.66 e 4	0.1148	0.127	4.32	4.30	0.473	32.5	29.8
27	27 13C2-PFTeDA	714.8 > 669.6	5.94 e 3	1.66 e 4	0.1148	0.883	4.64	4.64	4.47	44.1	40.5
28	28 13C5-PFHxA	$318>272.9$	4.51e4	4.51 e 4	0.1148	1.000	3.15	3.17	5.00	43.5	100.0
29	29 13C3-PFHxS	$401.9>79.9$	7.30 e 3	7.30 e 3	0.1148	1.000	3.49	3.50	12.5	109	100.0
30	$3013 C 8-P F O A$	$421.3>376$	3.46 e 4	3.46 e 4	0.1148	1.000	3.62	3.63	12.5	109	100.0
31	31 13C9-PFNA	$472.2>426.9$	3.88 e 4	3.88 e 4	0.1148	1.000	3.82	3.81	12.5	109	100.0
32	32 13C4-PFOS	$503>79.9$	5.82 e 3	5.82e3	0.1148	1.000	3.85	3.87	12.5	109	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-15.qld
Last Altered:	Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	3.37 e 4	3.37e4	0.1148	1.000	3.97	3.97	12.5	109	100.0
34	34 13C7-PFUnA	$570.1>524.8$	1.66 e 4	1.66 e 4	0.1148	1.000	4.13	4.14	12.5	109	100.0
35	35 Total PFBS	$299>79.7$	1.50 e 2	4.64 e 3	0.1148		2.91		0.405	1.06	
36	36 Total PFHxS	$398.9>79.6$	1.68 e 2	3.07e3	0.1148		3.48		0.684	3.22	
37	37 Total PFOA	$413>368.7$	1.43 e 4	4.43 e 4	0.1148		3.61		4.03	35.8	
38	38 Total PFOS	$499>79.9$	2.65 e 2	6.38 e 3	0.1148		3.84		0.518	3.82	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1148		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.1148		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-15.qld
Last Altered:	Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628 Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 PFBS | $299>79.7$ | 2.93 | 150.259 | 4641.348 | 0.405 | bb | 1.1 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	$398.9>79.6$	3.50	168.031	3068.982	0.684	MM	3.2

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5 PFOA | $413>368.7$ | 3.64 | 14306.709 | 44325.941 | 4.035 | bb | 35.8 |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	499 > 79.9	3.88	264.594	6382.458	0.518	MM	3.8

Total N-Me-FOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-15.qld
Last Altered:	Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-15.qId
Last Altered: Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>79.9$
$2.863 \mathrm{e}+003$
F30:MRM of 2 channels,ES-
$499>99$
$327 e+003$

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-15.qld
Last Altered:	Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628

PFUnA

PFUnA | F43:MRM of 2 channels,ES- |
| ---: |
| $562.9>518.9$ |
| $3.307 \mathrm{e}+003$ |

$$
\text { F43:MRM of } 2 \text { channels,ES- } \begin{array}{r}
562.9>269 \\
1.000 \mathrm{e}-003
\end{array}
$$

13C2-PFUnA

N-MeFOSAA $\begin{aligned} & \text { F45:MRM of } 2 \text { channels,ES- } \\ & 570.1>419 \\ & 2.588 \mathrm{e}+002\end{aligned}$
F45:MRM of 2 channels,ES-

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-15.qld
Last Altered:	Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628

PFTeDA

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-15.qld
Last Altered:	Thursday, July 20, 2017 14:24:54 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:25:30 Pacific Daylight Time

Name: 170707M2_15, Date: 07-Jul-2017, Time: 16:05:13, ID: 1700792-04 Roof Drain-20170628 0.11484, Description: Roof Drain-20170628

13C4-PFOS

13C6-PFDA

| F38:MRM of $\begin{array}{r}\text { F channel,ES- } \\ 519.1>473.7\end{array}$ |
| :---: | :---: |

13C7-PFUnA

Dataset: U:\Q4.PRO|results1170707M21170707M2-16.qld
Last Altered: Friday, July 21, 2017 15:26:53 Pacific Daylight Time
Printed:
Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	1.30 e 2	4.68 e 3	0.0975		2.92	2.93	0.347	0.934	
2	2 PFHxA	313.2 > 268.9	3.79 e 4	1.57 e 4	0.0975		3.16	3.17	12.1	87.5	
3	3 PFHpA	$363>318.9$	1.93 e 4	3.20 e 4	0.0975		3.43	3.43	7.53	62.9	
4	4 PFHxS	$398.9>79.6$	1.40 e 2	3.27 e 3	0.0975		3.55	3.51	0.534	2.96	
5	5 PFOA	$413>368.7$	1.20 e 4	3.95 e 4	0.0975		3.63	3.64	3.79	39.6	
6	6 PFNA	$462.9>418.8$	2.46 e 3	3.22 e 4	0.0975		3.82	3.81	0.956	8.19	
7	7 PFOS	$499>79.9$	2.69 e 2	6.80e3	0.0975		3.86	3.86	0.495	4.28	
8	8 PFDA	$513>468.8$	4.13 e 2	2.92 e 4	0.0975		4.00	3.99	0.177		
9	9 PFUnA	$562.9>518.9$		1.06 e4	0.0975		4.13				
10	10 N-MeFOSAA	$570.1>419$		3.11 e 3	0.0975		4.00				
11	11 N-EtFOSAA	$584.2>419$		1.94 e 3	0.0975		4.07				
12	12 PFDoA	$612.9>318.8$		5.07 e 2	0.0975		4.31				
13	13 PFTrDA	$662.9>618.9$		5.07e2	0.0975		4.50				
14	14 PFTeDA	$712.9>668.8$		4.70 e3	0.0975		4.65				
15	15 13C3-PFBS	$302>98.8$	4.68 e 3	4.76 e 4	0.0975	0.032	2.92	2.93	0.492	157	122.6
16	16 13C2-PFHxA	$315>269.8$	1.57 e 4	4.76 e 4	0.0975	0.296	3.15	3.17	1.65	57.0	111.2
17	17 13C4-PFHpA	$367.2>321.8$	3.20 e 4	4.76 e 4	0.0975	0.302	3.43	3.43	3.37	115	89.3
18	18 1802-PFHxS	$403>102.6$	3.27 e 3	7.71 e 3	0.0975	0.434	3.49	3.50	5.31	125	97.8
19	19 13C2-PFOA	$414.9>369.7$	3.95 e 4	3.70 e4	0.0975	1.140	3.62	3.63	13.4	120	93.7
20	20 13C5-PFNA	468.2 > 422.9	$3.22 e 4$	3.45e4	0.0975	0.958	3.80	3.81	11.6	125	97.2
21	21 13C8-PFOS	$507>79.9$	6.80 e 3	6.37 e 3	0.0975	1.061	3.85	3.86	13.3	129	100.6
22	22 13C2-PFDA	$515.1>469.9$	2.92 e 4	3.37 e 4	0.0975	0.942	3.97	3.98	10.8	118	92.0
23	23 13C2-PFUnA	$565>519.8$	1.06 e 4	1.14 e 4	0.0975	1.084	4.13	4.15	11.6	110	85.5
24	24 d3-N-MeFOSAA	$573.3>419$	3.11 e 3	1.14 e 4	0.0975	0.240	4.00	4.01	3.41	145	113.3
25	25 d5-N-EtFOSAA	$589.3>419$	1.94 e 3	1.14 e 4	0.0975	0.247	4.07	4.08	2.12	87.9	68.5
26	26 13C2-PFDoA	$615>569.7$	5.07e2	1.14 e 4	0.0975	0.127	4.32	4.30	0.555	44.8	34.9
27	27 13C2-PFTeDA	$714.8>669.6$	4.70 e 3	1.14 e 4	0.0975	0.883	4.64	4.64	5.14	59.7	46.6
28	28 13C5-PFHxA	$318>272.9$	4.76 e 4	4.76 e 4	0.0975	1.000	3.15	3.17	5.00	51.3	100.0
29	29 13C3-PFHxS	$401.9>79.9$	7.71 e 3	7.71 e 3	0.0975	1.000	3.49	3.50	12.5	128	100.0
30	$3013 C 8-P F O A$	$421.3>376$	3.70 e 4	3.70 e 4	0.0975	1.000	3.62	3.64	12.5	128	100.0
31	31 13C9-PFNA	472.2 > 426.9	3.45 e 4	3.45 e 4	0.0975	1.000	3.82	3.81	12.5	128	100.0
32	32 13C4-PFOS	$503>79.9$	6.37 e 3	6.37 e 3	0.0975	1.000	3.85	3.87	12.5	128	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Last Altered:	Friday, July 21, 2017 15:26:53 Pacific Daylight Time
Printed:	Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	3.37 e 4	3.37 e 4	0.0975	1.000	3.97	3.98	12.5	128	100.0
34	34 13C7-PFUnA	$570.1>524.8$	1.14 e 4	1.14 e 4	0.0975	1.000	4.13	4.14	12.5	128	100.0
35	35 Total PFBS	$299>79.7$	1.30 e 2	4.68 e 3	0.0975		2.91		0.347	0.934	
36	36 Total PFHxS	$398.9>79.6$	1.40 e 2	3.27 e 3	0.0975		3.48		0.534	2.96	
37	37 Total PFOA	$413>368.7$	1.20 e 4	3.95 e 4	0.0975		3.61		3.79	39.6	
38	38 Total PFOS	$499>79.9$	2.69 e 2	6.80e3	0.0975		3.84		0.495	4.28	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.0975		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.0975		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-16.qld
Last Altered:	Friday, July 21, 2017 15:26:53 Pacific Daylight Time
Printed:	Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628
Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	$299>79.7$	2.93	129.984	4681.648	0.347	MM	0.9

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	4 PFHxS	$398.9>79.6$	3.51	139.795	3274.857	0.534	bb	3.0

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	$413>368.7$	3.64	12005.399	39544.430	3.795	bb	39.6

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
7	7 PFOS	$499>79.9$	3.86	269.321	6802.029	0.495	MM	4.3

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset: U:\Q4.PRO\results\170707M2\170707M2-16.qld
Last Altered: Friday, July 21, 2017 15:26:53 Pacific Daylight Time
Printed: Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628

Total PFBS

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES-

13C2-PFHxA

13C4-PFHpA

Total PFHxS

F16:MRM of 2 channels, ES-
$398.9>79.6$
$2.147 \mathrm{e}+003$

F16:MRM of 2 channels,ES- | $398.9>99$ |
| ---: |
| $2.643 \mathrm{e}+003$ |

Dataset: U:\Q4.PRO\results\170707M2\170707M2-16.qld

Last Altered: Friday, July 21, 2017 15:26:53 Pacific Daylight Time
Printed: Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- |
| ---: |
| $413>368.7$ |
| $2.703 \mathrm{e}+005$ |
| 100 |}

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

13C2-PFUnA

Dataset:
 U:\Q4.PRO\results\170707M2\170707M2-16.qId

Last Altered: Friday, July 21, 2017 15:26:53 Pacific Daylight Time Printed: Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628

PFUnA

F43:MRM of 2 channels,ES$562.9>269$

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA
F52:MRM of 1 channel,ES-

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-16.qId
Last Altered: Friday, July 21, 2017 15:26:53 Pacific Daylight Time Printed: Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628

F58:MRM of 4 channels,ES$712.9>369$
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170707M2\170707M2-16.qld

Last Altered: Friday, July 21, 2017 15:26:53 Pacific Daylight Time Printed: Friday, July 21, 2017 15:27:26 Pacific Daylight Time

Name: 170707M2_16, Date: 07-Jul-2017, Time: 16:15:51, ID: 1700792-05 Spring-20170628 0.09751, Description: Spring-20170628

13C4-PFOS

13C7-PFUnA

Dataset:	U:IQ4.PRO\results\170707M21170707M2-17.qld
Last Altered:	Thursday, July 20, 2017 14:34:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:35:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$		3.31 e 3	0.1121		2.92				
2	2 PFHxA	313.2 > 268.9		1.08 e 4	0.1121		3.16				
3	3 PFHpA	$363>318.9$		2.35 e 4	0.1121		3.43				
4	4 PFHxS	$398.9>79.6$		2.41 e 3	0.1121		3.55				
5	5 PFOA	$413>368.7$		3.24 e 4	0.1121		3.63				
6	6 PFNA	$462.9>418.8$		2.23 e4	0.1121		3.82				
7	7 PFOS	$499>79.9$		3.89e3	0.1121		3.86				
8	8 PFDA	$513>468.8$		1.30 e 4	0.1121		4.00				
9	9 PFUnA	$562.9>518.9$		4.85 e 3	0.1121		4.13				
10	10 N-MeFOSAA	$570.1>419$		1.55 e 3	0.1121		4.00				
11	$11 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		1.01 e 3	0.1121		4.07				
12	12 PFDoA	$612.9>318.8$		2.66 e 2	0.1121		4.31				
13	13 PFTrDA	$662.9>618.9$		2.66 e 2	0.1121		4.50				
14	14 PFTeDA	$712.9>668.8$		1.95 e 3	0.1121		4.65				
15	15 13C3-PFBS	$302>98.8$	3.31 e 3	3.26 e 4	0.1121	0.032	2.92	2.93	0.508	141	126.5
16	16 13C2-PFHxA	$315>269.8$	1.08 e 4	3.26 e 4	0.1121	0.296	3.15	3.18	1.65	49.6	111.2
17	17 13C4-PFHpA	$367.2>321.8$	2.35 e 4	3.26 e 4	0.1121	0.302	3.43	3.43	3.60	106	95.4
18	18 1802-PFHxS	$403>102.6$	2.41 e 3	4.97 e 3	0.1121	0.434	3.49	3.50	6.06	124	111.6
19	19 13C2-PFOA	414.9 > 369.7	3.24 e 4	2.54 e 4	0.1121	1.140	3.62	3.63	15.9	125	111.5
20	20 13C5-PFNA	$468.2>422.9$	2.23 e 4	2.59 e 4	0.1121	0.958	3.80	3.81	10.8	100	89.8
21	21 13C8-PFOS	$507>79.9$	3.89 e 3	3.50 e 3	0.1121	1.061	3.85	3.86	13.9	117	104.7
22	22 13C2-PFDA	$515.1>469.9$	1.30 e 4	1.85 e 4	0.1121	0.942	3.97	3.98	8.80	83.3	74.7
23	23 13C2-PFUnA	$565>519.8$	4.85 e 3	6.37 e 3	0.1121	1.084	4.13	4.14	9.52	78.3	70.2
24	24 d3-N-MeFOSAA	$573.3>419$	1.55 e 3	6.37 e 3	0.1121	0.240	4.00	4.01	3.04	113	101.2
25	25 d5-N-EtFOSAA	$589.3>419$	1.01e3	6.37 e 3	0.1121	0.247	4.07	4.07	1.99	71.7	64.3
26	26 13C2-PFDoA	$615>569.7$	2.66 e 2	6.37 e 3	0.1121	0.127	4.32	4.30	0.522	36.7	32.9 H
27	27 13C2-PFTeDA	714.8 > 669.6	1.95 e 3	6.37 e 3	0.1121	0.883	4.64	4.64	3.84	38.8	$34.8{ }^{\text {H }}$
28	28 13C5-PFHxA	$318>272.9$	3.26 e 4	3.26 e 4	0.1121	1.000	3.15	3.18	5.00	44.6	100.0
29	29 13C3-PFHxS	$401.9>79.9$	4.97 e 3	4.97 e 3	0.1121	1.000	3.49	3.50	12.5	112	100.0
30	$3013 C 8-P F O A$	$421.3>376$	2.54 e 4	2.54 e 4	0.1121	1.000	3.62	3.63	12.5	112	100.0
31	31 13C9-PFNA	$472.2>426.9$	2.59 e 4	2.59 e 4	0.1121	1.000	3.82	3.81	12.5	112	100.0
32	$32.13 C 4-P F O S$	$503>79.9$	3.50 e 3	3.50 e 3	0.1121	1.000	3.85	3.86	12.5	112	100.0

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-17.qld
Last Altered:	Thursday, July 20, 2017 14:34:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:35:30 Pacific Daylight Time

Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	1.85 e 4	1.85e4	0.1121	1.000	3.97	3.98	12.5	112	100.0
34	34 13C7-PFUnA	$570.1>524.8$	6.37 e 3	6.37 e 3	0.1121	1.000	4.13	4.14	12.5	112	100.0
35	35 Total PFBS	$299>79.7$	0.00 e 0	3.31 e 3	0.1121		2.91		0.000		
36	36 Total PFHxS	$398.9>79.6$	0.00 e 0	2.41 e 3	0.1121		3.48		0.000		
37	37 Total PFOA	$413>368.7$	0.00 e 0	3.24 e 4	0.1121		3.61		0.000		
38	38 Total PFOS	$499>79.9$	0.00 e 0	3.89 e 3	0.1121		3.84		0.000		
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1121		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.1121		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-17.qld
Last Altered:	Thursday, July 20, 2017 14:34:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:35:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1							

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	4 PFHxS	$398.9>79.6$		2411.290	Conc.		

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	5 PFOA	$413>368.7$		32406.875	Conc.		

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-17.qld
Last Altered:	Thursday, July 20, 2017 14:34:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:35:30 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628

Total PFBS

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES-

13C2-PFHxA

13C4-PFHpA

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-17.qld
Last Altered: Thursday, July 20, 2017 14:34:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:35:30 Pacific Daylight Time

Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628

Total PFOA

Total PFOA
F19:MRM of 2 channels,ES-
$413>368.7$

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$

13C8-PFOS

PFDA
13C2-PFUnA

Dataset:
 U:\Q4.PRO\results\170707M2\170707M2-17.qld

Last Altered: Thursday, July 20, 2017 14:34:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:35:30 Pacific Daylight Time

Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

PFDoA

F51:MRM of 2 channels,ES-
$612.9>318.8$
$1.250 \mathrm{e}+003$

F51:MRM of 2 channels,ES-

13C2-PFDoA
F52:MRM of 1 channel,ES $615>569.7$

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-17.qld
Last Altered: Thursday, July 20, 2017 14:34:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:35:30 Pacific Daylight Time

Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628

PFTeDA

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 20, } 2017 \text { 14:34:44 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 20, } 2017 \text { 14:35:30 Pacific Daylight Time }\end{array}$

Name: 170707M2_17, Date: 07-Jul-2017, Time: 16:26:52, ID: 1700792-06 FRB-20170628 0.1121, Description: FRB-20170628

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Dataset:
U:IQ4.PRO|results1170707M21170707M2-18.qld
Last Altered: Thursday, July 20, 2017 14:38:27 Pacific Daylight Time Printed: Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	7.95e1	4.13 e 3	0.1187		2.92	2.93	0.241	0.288	
2	2 PFHxA	$313.2>268.9$	3.70 e 4	1.30 e 4	0.1187		3.16	3.18	14.2	84.8	
3	3 PFHpA	$363>318.9$	1.89 e 4	3.00 e 4	0.1187		3.43	3.43	7.88	54.2	
4	4 PFHxS	$398.9>79.6$	1.73 e 2	2.90 e 3	0.1187		3.55	3.50	0.745	3.38	
5	5 PFOA	$413>368.7$	$2.27 e 4$	3.93 e 4	0.1187		3.63	3.63	7.22	63.4	
6	6 PFNA	$462.9>418.8$	3.17 e 3	2.88 e 4	0.1187		3.82	3.81	1.38	9.93	
7	7 PFOS	$499>79.9$	3.91 e 2	5.51 e 3	0.1187		3.86	3.87	0.887	6.63	
8	8 PFDA	$513>468.8$	1.11 e 3	2.16 e 4	0.1187		4.00	3.98	0.643	3.10	
9	9 PFUnA	$562.9>518.9$		9.89 e 3	0.1187		4.13				
10	$10 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		2.51 e 3	0.1187		4.00				
11	11 N -EtFOSAA	$584.2>419$		1.68 e 3	0.1187		4.07				
12	12 PFDoA	$612.9>318.8$		4.14 e 2	0.1187		4.31				
13	13 PFTrDA	662.9 > 618.9		4.14 e 2	0.1187		4.50				
14	14 PFTeDA	$712.9>668.8$		2.24 e 3	0.1187		4.65				
15	15 13C3-PFBS	$302>98.8$	4.13 e 3	4.32 e 4	0.1187	0.032	2.92	2.94	0.478	125	119.1
16	16 13C2-PFHxA	$315>269.8$	1.30 e 4	4.32 e 4	0.1187	0.296	3.15	3.18	1.51	42.9	101.8
17	17 13C4-PFHpA	$367.2>321.8$	3.00 e 4	4.32 e 4	0.1187	0.302	3.43	3.43	3.47	97.0	92.2
18	18 18O2-PFHxS	$403>102.6$	2.90 e 3	6.37 e 3	0.1187	0.434	3.49	3.50	5.70	111	105.0
19	19 13C2-PFOA	414.9 > 369.7	3.93 e 4	3.44 e 4	0.1187	1.140	3.62	3.63	14.3	105	100.1
20	20 13C5-PFNA	468.2 > 422.9	2.88 e 4	3.28 e 4	0.1187	0.958	3.80	3.81	11.0	96.3	91.5
21	21 13C8-PFOS	$507>79.9$	5.51 e 3	4.89 e 3	0.1187	1.061	3.85	3.87	14.1	112	106.1
22	22 13C2-PFDA	$515.1>469.9$	2.16 e 4	2.40 e 4	0.1187	0.942	3.97	3.99	11.2	101	95.5
23	23 13C2-PFUnA	$565>519.8$	9.89e3	1.03 e 4	0.1187	1.084	4.13	4.15	12.0	93.5	88.8
24	24 d3-N-MeFOSAA	$573.3>419$	2.51 e 3	1.03 e 4	0.1187	0.240	4.00	4.01	3.05	107	101.6
25	25 d5-N-EtFOSAA	$589.3>419$	1.68 e 3	1.03 e 4	0.1187	0.247	4.07	4.08	2.05	69.8	66.3
26	26 13C2-PFDoA	$615>569.7$	4.14 e 2	1.03 e 4	0.1187	0.127	4.32	4.30	0.504	33.5	31.8
27	27 13C2-PFTeDA	714.8 > 669.6	2.24 e 3	1.03 e 4	0.1187	0.883	4.64	4.64	2.73	26.1	24.8
28	28 13C5-PFHxA	$318>272.9$	4.32e4	4.32e4	0.1187	1.000	3.15	3.18	5.00	42.1	100.0
29	29 13C3-PFHxS	$401.9>79.9$	6.37 e 3	6.37 e 3	0.1187	1.000	3.49	3.50	12.5	105	100.0
30	3013 C -PFOA	$421.3>376$	3.44 e 4	3.44 e 4	0.1187	1.000	3.62	3.63	12.5	105	100.0
31	31 13C9-PFNA	$472.2>426.9$	3.28 e 4	3.28 e 4	0.1187	1.000	3.82	3.81	12.5	105	100.0
32	32 13C4-PFOS	$503>79.9$	4.89 e 3	4.89 e 3	0.1187	1.000	3.85	3.87	12.5	105	100.0

GM 7/20/17

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-18.qld
Last Altered:	Thursday, July 20, 2017 14:38:27 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	2.40 e 4	2.40 e 4	0.1187	1.000	3.97	3.98	12.5	105	100.0
34	34 13C7-PFUnA	$570.1>524.8$	1.03 e 4	1.03 e 4	0.1187	1.000	4.13	4.15	12.5	105	100.0
35	35 Total PFBS	$299>79.7$	7.95e1	4.13 e 3	0.1187		2.91		0.241	0.288	
36	36 Total PFHxS	$398.9>79.6$	1.73 e 2	2.90 e 3	0.1187		3.48		0.745	3.38	
37	37 Total PFOA	$413>368.7$	2.27 e 4	3.93 e 4	0.1187		3.61		7.22	63.4	
38	38 Total PFOS	$499>79.9$	3.91 e 2	5.51e3	0.1187		3.84		0.887	6.63	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1187		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00e0		0.1187		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-18.qld
Last Altered:	Thursday, July 20, 2017 14:38:27 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628
Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	$299>79.7$	2.93	79.550	4125.791	0.241	bb	0.3

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 PFHxS | $398.9>79.6$ | 3.50 | 172.960 | 2902.790 | 0.745 | MM | 3.4 |

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5 PFOA | $413>368.7$ | 3.63 | 22685.859 | 39270.219 | 7.221 | bb | 63.4 |

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-18.qld
Last Altered:	Thursday, July 20, 2017 14:38:27 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-18.qId
Last Altered: Thursday, July 20, 2017 14:38:27 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628

Total PFOA | F19:MRM of 2 channels,ES- |
| :---: |
| |
| |
| 100 |

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-18.qId
Last Altered: Thursday, July 20, 2017 14:38:27 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628

PFUnA

13C2-PFUnA
F44:MRM of 1 channel,ES-

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

F51:MRM of 2 channels,ES$612.9>569$
$2.708 \mathrm{e}+003$

13C2-PFDoA
F52:MRM of 1 channel,ES$615>569.7$ $1.048 \mathrm{e}+004$

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-18.qId
Last Altered: Thursday, July 20, 2017 14:38:27 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628

F58:MRM of 4 channels,ES-
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945
Dataset: U:\Q4.PRO\results\170707M2\170707M2-18.qld
Last Altered: Thursday, July 20, 2017 14:38:27 Pacific Daylight Time Printed: Thursday, July 20, 2017 14:38:55 Pacific Daylight Time

Name: 170707M2_18, Date: 07-Jul-2017, Time: 16:37:41, ID: 1700792-07 MH318.9-20170628 0.11873, Description: MH318.9-20170628

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Dataset:
U:IQ4.PROIresults1170707M21170707M2-22.qld
Last Altered: Thursday, July 20, 2017 14:42:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:42:26 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2 22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	1.05 e 2	4.88 e 3	0.1171		2.92	2.93	0.269	0.422	
2	2 PFHxA	313.2 > 268.9	4.29 e 4	1.54 e 4	0.1171		3.16	3.18	14.0	84.6	
3	3 PFHpA	$363>318.9$	2.06 e 4	3.44 e 4	0.1171		3.43	3.44	7.50	52.2	
4	4 PFHxS	$398.9>79.6$	1.56 e 2	3.17 e 3	0.1171		3.55	3.51	0.616	2.84	
5	5 PFOA	$413>368.7$	2.24 e 4	4.50 e 4	0.1171		3.63	3.64	6.23	55.2	
6	6 PFNA	$462.9>418.8$	1.77 e 3	2.82 e 4	0.1171		3.82	3.81	0.784	5.49	
7	7 PFOS	$499>79.9$	1.23 e 2	3.91 e 3	0.1171		3.86	3.81	0.394	2.75	
8	8 PFDA	$513>468.8$	1.45 e 2	1.07 e 4	0.1171		4.00	3.98	0.170		
9	9 PFUnA	$562.9>518.9$		2.57 e 3	0.1171		4.13				
10	10 N-MeFOSAA	$570.1>419$		7.07e2	0.1171		4.00				
11	11 N-EtFOSAA	$584.2>419$		4.32 e 2	0.1171		4.07				
12	12 PFDoA	$612.9>318.8$		4.43 e 1	0.1171		4.31				
13	13 PFTrDA	$662.9>618.9$		4.43 e 1	0.1171		4.50				
14	14 PFTeDA	$712.9>668.8$		1.79 e 2	0.1171		4.65				
15	15 13C3-PFBS	$302>98.8$	4.88 e 3	5.14 e 4	0.1171	0.032	2.92	2.94	0.475	126	118.3
16	16 13C2-PFHxA	$315>269.8$	1.54 e 4	5.14 e 4	0.1171	0.296	3.15	3.18	1.49	43.1	100.9
17	17 13C4-PFHpA	$367.2>321.8$	3.44 e 4	5.14 e 4	0.1171	0.302	3.43	3.44	3.35	94.7	88.8
18	18 1802-PFHxS	$403>102.6$	3.17 e 3	7.29e3	0.1171	0.434	3.49	3.51	5.44	107	100.2
19	19 13C2-PFOA	$414.9>369.7$	4.50 e 4	3.77e4	0.1171	1.140	3.62	3.64	14.9	112	104.6
20	20 13C5-PFNA	468.2 > 422.9	2.82 e 4	3.42 e 4	0.1171	0.958	3.80	3.81	10.3	92.0	86.2
21	21 13C8-PFOS	$507>79.9$	3.91 e 3	3.34 e 3	0.1171	1.061	3.85	3.87	14.7	118	110.5
22	22 13C2-PFDA	$515.1>469.9$	1.07e4	1.52 e 4	0.1171	0.942	3.97	3.99	8.78	79.6	74.5
23	23 13C2-PFUnA	$565>519.8$	2.57 e 3	2.72 e 3	0.1171	1.084	4.13	4.15	11.8	92.7	86.9
24	24 d3-N-MeFOSAA	$573.3>419$	7.07e2	2.72 e 3	0.1171	0.240	4.00	4.02	3.24	115	108.0
25	25 d5-N-EtFOSAA	$589.3>419$	4.32 e 2	2.72 e 3	0.1171	0.247	4.07	4.08	1.98	68.5	64.2
26	26 13C2-PFDoA	$615>569.7$	4.43 e 1	2.72 e 3	0.1171	0.127	4.32	4.30	0.203	13.7	12.8 H
27	27 13C2-PFTeDA	$714.8>669.6$	1.79 e 2	2.72 e 3	0.1171	0.883	4.64	4.65	0.820	7.93	$7.4{ }^{\text {H}}$
28	28 13C5-PFHxA	$318>272.9$	5.14e4	5.14 e 4	0.1171	1.000	3.15	3.18	5.00	42.7	100.0
29	29 13C3-PFHxS	$401.9>79.9$	7.29 e 3	7.29e3	0.1171	1.000	3.49	3.51	12.5	107	100.0
30	$3013 C 8-P F O A$	$421.3>376$	3.77 e 4	3.77 e 4	0.1171	1.000	3.62	3.64	12.5	107	100.0
31	31 13C9-PFNA	472.2 > 426.9	3.42e4	3.42 e 4	0.1171	1.000	3.82	3.81	12.5	107	100.0
32	32 13C4-PFOS	$503>79.9$	3.34 e 3	3.34 e 3	0.1171	1.000	3.85	3.87	12.5	107	100.0

GM 7/20/17

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Last Altered: Thursday, July 20, 2017 14:42:02 Pacific Daylight Time
Printed: Thursday, July 20, 2017 14:42:26 Pacific Daylight Time

Name: 170707M2_22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	1.52 e 4	1.52 e 4	0.1171	1.000	3.97	3.99	12.5	107	100.0
34	34 13C7-PFUnA	$570.1>524.8$	2.72 e 3	2.72 e 3	0.1171	1.000	4.13	4.15	12.5	107	100.0
35	35 Total PFBS	$299>79.7$	1.05 e 2	4.88 e 3	0.1171		2.91		0.269	0.422	
36	36 Total PFHxS	$398.9>79.6$	1.56 e 2	3.17 e 3	0.1171		3.48		0.616	2.84	
37	37 Total PFOA	$413>368.7$	2.24 e 4	4.50 e 4	0.1171		3.61		6.23	55.2	
38	38 Total PFOS	$499>79.9$	1.23 e 2	3.91 e 3	0.1171		3.84		0.394	2.75	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1171		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.1171		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-22.qld
Last Altered:	Thursday, July 20, 2017 14:42:02 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:42:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628
Total PFBS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	$299>79.7$	2.93	105.081	4877.053	0.269	bb

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 PFHxS | $398.9>79.6$ | 3.51 | 156.331 | 3174.461 | 0.616 | MM | 2.8 |

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 5 PFOA | $413>368.7$ | 3.64 | 22414.463 | 44978.750 | 6.229 | bb | 55.2 |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	7 PFOS	$499>79.9$	3.81	123.355	3913.737	0.394	MM	2.7

Total N-Me-FOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset: U:\Q4.PRO\results\170707M2\170707M2-22.qld
Last Altered: Thursday, July 20, 2017 14:42:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:42:26 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628

Total PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

1802-PFHxS

Dataset: U:\Q4.PRO\results\170707M2\170707M2-22.qld
Last Altered: Thursday, July 20, 2017 14:42:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:42:26 Pacific Daylight Time

Name: 170707M2_22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628

Total PFOA

	F19:MRM of 2 channels,ES-	
1007	F19:MRM o	channels,ES- $413>368.7$
	PFOA	$5.058 \mathrm{e}+005$
	3.64	
	2.24 e 4	
\%-	501100	

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS
F30:MRM of 2 channels,ES-
$499>79.9$
$1.525 \mathrm{e}+003$
F30:MRM of 2 channels,ES-

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-22.qld
Last Altered: Thursday, July 20, 2017 14:42:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:42:26 Pacific Daylight Time

Name: 170707M2_22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628

PFUnA

F43:MRM of 2 channels,ES$562.9>269$
 13C2-PFUnA

N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

F51:MRM of 2 channels,ES$612.9>569$
$8.064 \mathrm{e}+002$

13C2-PFDoA
F52:MRM of 1 channel,ES

Dataset: U:\Q4.PRO\results\170707M2\170707M2-22.qld
Last Altered: Thursday, July 20, 2017 14:42:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:42:26 Pacific Daylight Time

Name: 170707M2_22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628

PFTeDA

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 20, } 2017 \text { 14:42:02 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 20, } 2017 \text { 14:42:26 Pacific Daylight Time }\end{array}$

Name: 170707M2_22, Date: 07-Jul-2017, Time: 17:20:31, ID: 1700792-08 MH388.9-20170628 0.11713, Description: MH388.9-20170628

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

 Vista Analytical LaboratoryMassLynx MassLynx V4.1 SCN 945

Last Altered:	Thursday, July 20, 2017 16:24:02 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 16:25:40 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170711M1_49, Date: 11-Jul-2017, Time: 19:09:07, ID: 1700792-08RE1 MH388.9-20170628 0.12326, Description: MH388.9-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	12 PFDoA	612.9 > 318.8		5.43 e 3	0.1230		4.32				
2	13 PFTrDA	$662.9>618.9$		5.43 e 3	0.1230		4.50				
3	14 PFTeDA	$712.9>668.8$		2.37 e 4	0.1230		4.66				
4	28 13C2-PFDoA	$615>569.7$	5.43e3	5.37 e 4	0.1230	0.130	4.32	4.23	1.27	79.3	78.0
5	29 13C2-PFTeDA	$714.8>669.6$	2.37 e 4	5.37 e 4	0.1230	1.018	4.66	4.57	5.51	44.0	43.3
6	37 13C7-PFUnA	$570.1>524.8$	5.37 e 4	5.37 e 4	0.1230	1.000	4.16	4.08	12.5	102	100.0

Dataset:
U:\Q4.PRO\results\170711M1\170711M1-49.qld

Last Altered: Thursday, July 20, 2017 16:24:02 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 16:25:40 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170711M1_49, Date: 11-Jul-2017, Time: 19:09:07, ID: 1700792-08RE1 MH388.9-20170628 0.12326, Description: MH388.9-20170628

170711M1_49 Smooth(Mn,1x2)

(Mn,1x2) | 2 |
| ---: |
| $612.9>318.8$ |
| $1.431 \mathrm{e}+003$ |

13C2-PFDoA

170711M1_49 Smooth(Mn,1x2) F52:MRM of 1 channel,ES-

PFTrDA

13C2-PFTeDA

170711M1_49 Smooth(Mn,1x2) F59:MRM of 2 channels,ES

PFTeDA

13C2-PFTeDA

170711M1_49 Smooth(Mn,1x2) F59:MRM of 2 channels,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Last Altered: Thursday, July 20, 2017 16:24:02 Pacific Daylight Time

Printed: Thursday, July 20, 2017 16:25:40 Pacific Daylight Time

Name: 170711M1_49, Date: 11-Jul-2017, Time: 19:09:07, ID: 1700792-08RE1 MH388.9-20170628 0.12326, Description: MH388.9-20170628

13C7-PFUnA

Dataset:
U:IQ4.PROIresults1170707M21170707M2-23.qld
Last Altered: Thursday, July 20, 2017 14:45:47 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:46:07 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$	1.57 e 2	5.21 e 3	0.1182		2.92	2.94	0.377	0.907	
2	2 PFHxA	313.2 > 268.9	1.97 e 4	1.62 e 4	0.1182		3.16	3.18	6.10	35.2	
3	3 PFHpA	$363>318.9$	1.13 e 4	3.60 e 4	0.1182		3.43	3.43	3.93	26.1	
4	4 PFHxS	$398.9>79.6$	2.65 e 2	3.68 e 3	0.1182		3.55	3.51	0.900	4.10	
5	5 PFOA	$413>368.7$	1.35 e 4	4.71 e 4	0.1182		3.63	3.63	3.57	30.6	
6	6 PFNA	$462.9>418.8$	1.63 e 3	3.68e4	0.1182		3.82	3.81	0.554	3.69	
7	7 PFOS	$499>79.9$	5.21 e 2	7.37 e 3	0.1182		3.86	3.86	0.883	6.62	
8	8 PFDA	$513>468.8$	2.61 e 2	2.76 e 4	0.1182		4.00	3.98	0.118		
9	9 PFUnA	$562.9>518.9$		1.56 e 4	0.1182		4.13				
10	10 N-MeFOSAA	$570.1>419$		3.20 e 3	0.1182		4.00				
11	11 N -EtFOSAA	$584.2>419$		2.11 e 3	0.1182		4.07				
12	12 PFDoA	$612.9>318.8$		6.10 e 2	0.1182		4.31				
13	13 PFTrDA	$662.9>618.9$		6.10 e 2	0.1182		4.50				
14	14 PFTeDA	$712.9>668.8$		5.37 e 3	0.1182		4.65				
15	15 13C3-PFBS	$302>98.8$	5.21 e 3	4.85 e 4	0.1182	0.032	2.92	2.94	0.537	141	133.8
16	16 13C2-PFHxA	$315>269.8$	1.62 e 4	4.85 e 4	0.1182	0.296	3.15	3.18	1.67	47.6	112.5
17	17 13C4-PFHpA	$367.2>321.8$	3.60 e 4	4.85 e 4	0.1182	0.302	3.43	3.43	3.71	104	98.4
18	18 1802-PFHxS	$403>102.6$	3.68 e 3	8.07 e 3	0.1182	0.434	3.49	3.50	5.69	111	104.8
19	19 13C2-PFOA	$414.9>369.7$	4.71 e 4	4.21 e 4	0.1182	1.140	3.62	3.63	14.0	104	98.1
20	20 13C5-PFNA	468.2 > 422.9	3.68 e 4	4.47e4	0.1182	0.958	3.80	3.81	10.3	91.0	86.0
21	21 13C8-PFOS	$507>79.9$	7.37e3	6.81 e 3	0.1182	1.061	3.85	3.87	13.5	108	102.0
22	22 13C2-PFDA	$515.1>469.9$	2.76 e 4	3.54 e 4	0.1182	0.942	3.97	3.98	9.76	87.6	82.8
23	23 13C2-PFUnA	$565>519.8$	1.56 e 4	1.76 e 4	0.1182	1.084	4.13	4.15	11.1	86.5	81.8
24	24 d3-N-MeFOSAA	$573.3>419$	3.20 e 3	1.76 e 4	0.1182	0.240	4.00	4.01	2.27	79.8	75.5
25	25 d5-N-EtFOSAA	$589.3>419$	2.11 e 3	1.76 e 4	0.1182	0.247	4.07	4.08	1.49	51.1	48.3
26	26 13C2-PFDoA	$615>569.7$	6.10 e 2	1.76 e 4	0.1182	0.127	4.32	4.30	0.433	28.8	27.3
27	27 13C2-PFTeDA	714.8 > 669.6	5.37 e 3	1.76 e 4	0.1182	0.883	4.64	4.64	3.81	36.5	$34.5{ }^{\text {H }}$
28	28 13C5-PFHxA	$318>272.9$	4.85 e 4	4.85 e 4	0.1182	1.000	3.15	3.18	5.00	42.3	100.0
29	29 13C3-PFHxS	$401.9>79.9$	8.07e3	8.07 e 3	0.1182	1.000	3.49	3.50	12.5	106	100.0
30	30 13C8-PFOA	$421.3>376$	4.21 e 4	4.21 e 4	0.1182	1.000	3.62	3.63	12.5	106	100.0
31	31 13C9-PFNA	$472.2>426.9$	4.47 e 4	4.47 e 4	0.1182	1.000	3.82	3.81	12.5	106	100.0
32	$32.13 C 4-P F O S$	$503>79.9$	6.81e3	6.81 e 3	0.1182	1.000	3.85	3.87	12.5	106	100.0

GM 7/20/17

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-23.qld
Last Altered:	Thursday, July 20, 2017 14:45:47 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:46:07 Pacific Daylight Time

Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	3.54 e 4	3.54e4	0.1182	1.000	3.97	3.98	12.5	106	100.0
34	34 13C7-PFUnA	$570.1>524.8$	1.76 e 4	1.76 e4	0.1182	1.000	4.13	4.14	12.5	106	100.0
35	35 Total PFBS	$299>79.7$	1.57 e 2	5.21 e 3	0.1182		2.91		0.377	0.907	
36	36 Total PFHxS	$398.9>79.6$	2.65 e2	3.68 e 3	0.1182		3.48		0.900	4.10	
37	37 Total PFOA	$413>368.7$	1.35 e 4	4.71 e 4	0.1182		3.61		3.57	30.6	
38	38 Total PFOS	$499>79.9$	5.21 e 2	7.37e3	0.1182		3.84		0.883	6.62	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1182		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.1182		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-23.qld
Last Altered:	Thursday, July 20, 2017 14:45:47 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:46:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	1 PFBS	$299>79.7$	2.94	157.156	5207.358	0.377	MM	0.9

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 PFHxS | $398.9>79.6$ | 3.51 | 264.698 | 3675.908 | 0.900 | MM | 4.1 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	$413>368.7$	3.63	13457.411	47069.605	3.574	dd	30.6

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset: U:\Q4.PRO\results\170707M2\170707M2-23.qld
Last Altered: Thursday, July 20, 2017 14:45:47 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:46:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

PFHpA | F14:MRM of 2 channels,ES- |
| :---: |
| $363>318.9$ |
| $2.696 e+005$ |

1802-PFHxS

Dataset: U:\Q4.PRO\results\170707M2\170707M2-23.qld
Last Altered: Thursday, July 20, 2017 14:45:47 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:46:07 Pacific Daylight Time

Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628

Total PFOA		
	F19:MRM of 2 channels,ES-	
		$413>368.7$
${ }^{100} 7$	PFOA	$3.222 \mathrm{e}+005$
	3.63	
	1.35 e 4	
\%-	318979	

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS

13C2-PFUnA

Dataset: U:\Q4.PRO\results\170707M2\170707M2-23.qld
Last Altered: Thursday, July 20, 2017 14:45:47 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:46:07 Pacific Daylight Time

Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFDoA
F52:MRM of 1 channel,ES-

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-23.qld
Last Altered: Thursday, July 20, 2017 14:45:47 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:46:07 Pacific Daylight Time

Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 20, } 2017 \text { 14:45:47 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 20, } 2017 \text { 14:46:07 Pacific Daylight Time }\end{array}$

Name: 170707M2_23, Date: 07-Jul-2017, Time: 17:31:09, ID: 1700792-09 Dup03-20170628 0.11824, Description: Dup03-20170628

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Dataset:	U:IQ4.PRO\results 1170707M21170707M2-24.qld
Last Altered:	Thursday, July 20, 2017 14:55:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:55:44 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec	n
1	1 PFBS	$299>79.7$	8.12 e 3	3.74 e 3	0.1134		2.92	2.94	27.1	127		
2	2 PFHxA	313.2 > 268.9	2.36 e 5	1.24 e 4	0.1134		3.16	3.18	95.5	612		
3	3 PFHpA	$363>318.9$	5.43 e 4	2.65 e 4	0.1134		3.43	3.44	25.6	190		
4	4 PFHxS	$398.9>79.6$	2.99 e 4	2.50 e3	0.1134		3.55	3.51	149	799		
5	5 PFOA	$413>368.7$	3.42e4	3.43 e 4	0.1134		3.63	3.64	12.5	116		
6	6 PFNA	$462.9>418.8$	2.83 e 3	2.50 e 4	0.1134		3.82	3.81	1.42	10.7		
7	7 PFOS	$499>79.9$	9.48 e 4	4.03 e 3	0.1134		3.86	3.87	294	3010 E*		
8	8 PFDA	$513>468.8$	9.32 e 2	1.63 e 4	0.1134		4.00	3.99	0.713	3.79		
9	9 PFUnA	$562.9>518.9$		5.24 e 3	0.1134		4.13					
10	$10 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		1.57 e 3	0.1134		4.00					
11	$11 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		1.05 e 3	0.1134		4.07					
12	12 PFDoA	$612.9>318.8$		3.46 e 2	0.1134		4.31					
13	13 PFTrDA	$662.9>618.9$		3.46 e 2	0.1134		4.50					
14	14 PFTeDA	$712.9>668.8$		1.62 e 3	0.1134		4.65					
15	15 13C3-PFBS	$302>98.8$	3.74 e 3	3.55 e 4	0.1134	0.032	2.92	2.94	0.527	145	131.4	
16	16 13C2-PFHxA	$315>269.8$	1.24 e 4	3.55 e 4	0.1134	0.296	3.15	3.18	1.74	51.8	117.4	
17	17 13C4-PFHpA	$367.2>321.8$	2.65 e 4	3.55e4	0.1134	0.302	3.43	3.44	3.73	109	99.0	
18	18 1802-PFHxS	$403>102.6$	2.50 e 3	5.41e3	0.1134	0.434	3.49	3.51	5.77	117	106.4	
19	19 13C2-PFOA	$414.9>369.7$	3.43 e 4	2.97 e 4	0.1134	1.140	3.62	3.64	14.4	112	101.3	
20	20 13C5-PFNA	$468.2>422.9$	2.50 e 4	3.11 e 4	0.1134	0.958	3.80	3.82	10.1	92.7	84.1	
21	21 13C8-PFOS	$507>79.9$	4.03 e 3	3.48 e 3	0.1134	1.061	3.85	3.87	14.5	120	108.9	
22	22 13C2-PFDA	$515.1>469.9$	1.63 e 4	1.69 e 4	0.1134	0.942	3.97	3.99	12.1	113	102.6	
23	23 13C2-PFUnA	$565>519.8$	5.24 e 3	5.40 e 3	0.1134	1.084	4.13	4.15	12.1	98.8	89.6	
24	$24 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.57 e 3	5.40 e 3	0.1134	0.240	4.00	4.02	3.64	134	121.2	
25	25 d5-N-EtFOSAA	$589.3>419$	1.05 e 3	5.40 e 3	0.1134	0.247	4.07	4.08	2.43	86.7	78.7	
26	26 13C2-PFDoA	$615>569.7$	3.46 e 2	5.40 e 3	0.1134	0.127	4.32	4.31	0.802	55.7	50.5	
27	27 13C2-PFTeDA	$714.8>669.6$	1.62 e 3	5.40 e 3	0.1134	0.883	4.64	4.65	3.75	37.5	34.0 H	
28	28 13C5-PFHxA	$318>272.9$	3.55 e 4	3.55 e 4	0.1134	1.000	3.15	3.18	5.00	44.1	100.0	
29	29 13C3-PFHxS	$401.9>79.9$	5.41 e 3	5.41e3	0.1134	1.000	3.49	3.51	12.5	110	100.0	
30	30 13C8-PFOA	$421.3>376$	2.97 e 4	2.97 e 4	0.1134	1.000	3.62	3.64	12.5	110	100.0	
31	31 13C9-PFNA	$472.2>426.9$	3.11e4	3.11 e 4	0.1134	1.000	3.82	3.82	12.5	110	100.0	
32	32 13C4-PFOS	$503>79.9$	3.48 e 3	3.48 e 3	0.1134	1.000	3.85	3.87	12.5	110	100.0	GM 7/20/17

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-24.qld
Last Altered:	Thursday, July 20, 2017 14:55:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:55:44 Pacific Daylight Time

Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	1.69 e 4	1.69 e 4	0.1134	1.000	3.97	3.99	12.5	110	100.0
34	34 13C7-PFUnA	$570.1>524.8$	5.40 e3	5.40 e 3	0.1134	1.000	4.13	4.15	12.5	110	100.0
35	35 Total PFBS	$299>79.7$	8.12 e 3	3.74 e 3	0.1134		2.91		27.1	127	
36	36 Total PFHxS	$398.9>79.6$	2.99 e 4	2.50 e 3	0.1134		3.48		149	799	
37	37 Total PFOA	$413>368.7$	3.42 e 4	3.43 e 4	0.1134		3.61		12.5	116	
38	38 Total PFOS	$499>79.9$	9.48 e 4	4.03 e3	0.1134		3.84		294	3010	
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1134		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.1134		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-24.qld
Last Altered:	Thursday, July 20, 2017 14:55:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:55:44 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627 Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 PFBS | $299>79.7$ | 2.94 | 8117.774 | 3743.008 | 27.110 | bb | 127.4 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4 PFHxS | $398.9>79.6$ | 3.51 | 29910.230 | 2501.694 | 149.450 | MM | 799.5 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	5 PFOA	$413>368.7$	3.64	34204.453	34341.039	12.450	MM	115.8

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
7 7 PFOS	$499>79.9$	3.87	94813.836	4025.816	294.393	MM	3010.1	

Total N-Me-FOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-24.qld
Last Altered:	Thursday, July 20, 2017 14:55:33 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 14:55:44 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627

Total PFBS

	F6:MRM of	channels,ES $299>79.7$
1007	PFBS	$2.287 \mathrm{e}+005$
	8.12 e 3	
\%-	228010	

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Dataset: U:\Q4.PRO\results\170707M2\170707M2-24.qld
Last Altered: Thursday, July 20, 2017 14:55:33 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:55:44 Pacific Daylight Time

Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- |
| ---: |
| $413>368.7$ |
| $7.026 e+005$ |
| 100 |}

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$
$7.042 \mathrm{e}+005$

13C2-PFUnA

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-24.qId
Last Altered: Thursday, July 20, 2017 14:55:33 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:55:44 Pacific Daylight Time

Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627

PFUnA

13C2-PFUnA
F44:MRM of 1 channel,ES-

N-MeFOSAA

d3-N-MeFOSAA
F49:MRM of 1 channel,ES$\begin{array}{ll} & 573.3>419\end{array}$

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

F51:MRM of 2 channels,ES$612.9>569$

13C2-PFDoA

Dataset: U:\Q4.PRO\results\170707M2\170707M2-24.qld
Last Altered: Thursday, July 20, 2017 14:55:33 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 14:55:44 Pacific Daylight Time

Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627

F58:MRM of 4 channels,ES-
712.9 > 369 $1.233 \mathrm{e}+003$
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 20, } 2017 \text { 14:55:33 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 20, } 2017 \text { 14:55:44 Pacific Daylight Time }\end{array}$

Name: 170707M2_24, Date: 07-Jul-2017, Time: 17:41:47, ID: 1700792-10 Dup01-20170627 0.11337, Description: Dup01-20170627

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report	MassLynx 4.1 SCN815	
Vista Analytical Laboratory Q1	Page 1 of 1	
Dataset:	U:IG1.PRO\Resultsl2017/New folder1170721G6-4.qld	Rev'd: MM $7 / 22 / 17$
Last Altered:	Saturday, July 22, 2017 09:40:10 Pacific Daylight Time	
Printed:	Saturday, July 22, 2017 09:41:34 Pacific Daylight Time	

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: 1700792-10@10X Dup01-20170627 0.11337, Description: Dup01-20170627, Name: 170721G6_4, Date: 21-Jul-2017, Time: 16:16:32

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	9 PFOS	499.0 > 79.9	1.518 e 2	1.747e1		0.113	4.66	1600	
2	20 13C8-PFOS	$507.0>79.9$	1.747 e 1	1.332 e 1	1.026	0.113	4.66	141	128
3	26 13C4-PFOS	$503.0>79.9$	1.332 e 1	1.332 e 1	1.000	0.113	4.66	110	100
4	31 Total PFOS	$499.0>79.9$		1.747 e 1		0.113		1600	

Quantify Totals Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Resultsi20171New folder170721G6-4.qld
Last Altered: Saturday, July 22, 2017 09:40:10 Pacific Daylight Time
Printed: \quad Saturday, July 22, 2017 09:41:34 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.prolCurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: 1700792-10@10X Dup01-20170627 0.11337, Description: Dup01-20170627, Name: 170721G6_4, Date: 21-Jul-2017, Time: 16:16:32 Total PFBS

	\# Name	Trace	RT	Area	IS Area
Conc.					
1	3 PFBS	$299.0>79.7$	2.92	577.366	225.215

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	6	$398.9>79.6$	3.95	1569.144	159.874	517.7

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Conc.
1	7 PFOA	$413.0>368.7$	4.25	292.032	344.796	106.5
2	30 Total PFOA	$413.0>368.7$	4.15	87.834	344.796	31.5

Total PFOS

	\# Name	Trace	RT	Area	IS Area
Conc.					
1	9 PFOS	$499.0>79.9$	4.66	151.815	17.470

Dataset: U:IG1.PRO\Results|20171New folder170721G6-4.qld
Last Altered: Saturday, July 22, 2017 09:40:10 Pacific Daylight Time
Printed: \quad Saturday, July 22, 2017 09:41:34 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS 14or16 2trans 0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.prolCurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: 1700792-10@10X Dup01-20170627 0.11337, Description: Dup01-20170627, Name: 170721G6_4, Date: 21-Jul-2017, Time: 16:16:32, Instrument: , Lab: , User:

Total PFOA

Total PFOS

13C8-PFOA

170721G6_4

13C2-PFOA

13C8-PFOS

170721G6_4 F5:MRM of 12 channels,ES

13C4-PFOS

Dataset:
U:IQ4.PROIresults1170707M21170707M2-25.qld
Last Altered: Thursday, July 20, 2017 14:59:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 15:00:21 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	1 PFBS	$299>79.7$		3.89 e3	0.1201		2.92				
2	2 PFHxA	313.2 > 268.9		1.24 e 4	0.1201		3.16				
3	3 PFHpA	$363>318.9$		2.86 e4	0.1201		3.43				
4	4 PFHxS	$398.9>79.6$		2.57 e 3	0.1201		3.55				
5	5 PFOA	$413>368.7$		3.71 e 4	0.1201		3.63				
6	6 PFNA	$462.9>418.8$		3.00 e 4	0.1201		3.82				
7	7 PFOS	$499>79.9$		5.10 e3	0.1201		3.86				
8	8 PFDA	$513>468.8$		2.15 e 4	0.1201		4.00				
9	9 PFUnA	$562.9>518.9$		7.20 e 3	0.1201		4.13				
10	10 N-MeFOSAA	$570.1>419$		2.50 e 3	0.1201		4.00				
11	11 N -EtFOSAA	$584.2>419$		1.45 e 3	0.1201		4.07				
12	12 PFDoA	$612.9>318.8$		2.15 e 2	0.1201		4.31				
13	13 PFTrDA	$662.9>618.9$		2.15 e 2	0.1201		4.50				
14	14 PFTeDA	$712.9>668.8$		7.27e2	0.1201		4.65				
15	15 13C3-PFBS	$302>98.8$	3.89e3	3.76 e4	0.1201	0.032	2.92	2.94	0.517	134	128.7
16	16 13C2-PFHxA	$315>269.8$	1.24 e 4	3.76 e 4	0.1201	0.296	3.15	3.18	1.65	46.4	111.5
17	17 13C4-PFHpA	$367.2>321.8$	2.86 e 4	$3.76{ }^{\text {e }}$	0.1201	0.302	3.43	3.44	3.81	105	101.0
18	18 1802-PFHxS	$403>102.6$	2.57 e 3	6.32 e 3	0.1201	0.434	3.49	3.50	5.09	97.6	93.7
19	19 13C2-PFOA	$414.9>369.7$	3.71 e 4	3.40 e 4	0.1201	1.140	3.62	3.63	13.6	99.4	95.5
20	20 13C5-PFNA	$468.2>422.9$	3.00 e 4	3.38 e 4	0.1201	0.958	3.80	3.81	11.1	96.4	92.6
21	21 13C8-PFOS	$507>79.9$	5.10 e 3	4.59 e 3	0.1201	1.061	3.85	3.87	13.9	109	104.6
22	22 13C2-PFDA	$515.1>469.9$	2.15 e 4	$2.60{ }^{\text {e }}$	0.1201	0.942	3.97	3.98	10.3	91.5	87.8
23	23 13C2-PFUnA	$565>519.8$	7.20 e 3	1.07 e 4	0.1201	1.084	4.13	4.14	8.40	64.5	62.0
24	24 d3-N-MeFOSAA	$573.3>419$	2.50 e 3	1.07 e 4	0.1201	0.240	4.00	4.01	2.92	101	97.2
25	25 d5-N-EtFOSAA	$589.3>419$	1.45 e 3	1.07 e 4	0.1201	0.247	4.07	4.08	1.69	56.8	54.6
26	26 13C2-PFDoA	$615>569.7$	2.15 e 2	1.07 e 4	0.1201	0.127	4.32	4.30	0.251	16.5	15.8
27	27 13C2-PFTeDA	714.8 > 669.6	7.27 e 2	1.07 e 4	0.1201	0.883	4.64	4.64	0.848	8.00	7.7
28	28 13C5-PFHxA	$318>272.9$	3.76 e4	3.76 e4	0.1201	1.000	3.15	3.18	5.00	41.6	100.0
29	29 13C3-PFHxS	$401.9>79.9$	6.32 e 3	6.32 e 3	0.1201	1.000	3.49	3.50	12.5	104	100.0
30	30 13C8-PFOA	$421.3>376$	3.40 e 4	3.40 e 4	0.1201	1.000	3.62	3.63	12.5	104	100.0
31	31 13C9-PFNA	$472.2>426.9$	3.38 e4	3.38 e 4	0.1201	1.000	3.82	3.81	12.5	104	100.0
32	$32.13 C 4-P F O S$	$503>79.9$	4.59 e 3	4.59 e 3	0.1201	1.000	3.85	3.87	12.5	104	100.0

GM 7/20/17

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-25.qld
Last Altered:	Thursday, July 20, 2017 14:59:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 15:00:21 Pacific Daylight Time

Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	33 13C6-PFDA	$519.1>473.7$	2.60 e 4	2.60 e 4	0.1201	1.000	3.97	3.98	12.5	104	100.0
34	34 13C7-PFUnA	$570.1>524.8$	1.07 e 4	1.07 e 4	0.1201	1.000	4.13	4.14	12.5	104	100.0
35	35 Total PFBS	$299>79.7$	0.00 e 0	3.89e3	0.1201		2.91		0.000		
36	36 Total PFHxS	$398.9>79.6$	0.00 e 0	2.57 e 3	0.1201		3.48		0.000		
37	37 Total PFOA	$413>368.7$	0.00 e 0	3.71 e 4	0.1201		3.61		0.000		
38	38 Total PFOS	$499>79.9$	0.00 e 0	5.10 e 3	0.1201		3.84		0.000		
39	39 Total N-Me-FOSAA	$570.1>419$	0.00 e 0		0.1201		3.98		0.000		
40	40 Total N -EtFOSAA	$584.2>419$	0.00 e 0		0.1201		4.06		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-25.qld
Last Altered:	Thursday, July 20, 2017 14:59:44 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 15:00:21 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1							

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	4 PFHxS	$398.9>79.6$		2572.500	Conc.		

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	5 PFOA	$413>368.7$		37071.191	Conc.		

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-25.qld
Last Altered: Thursday, July 20, 2017 14:59:44 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 15:00:21 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 20 Jul 2017 13:42:33

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

F14:MRM of 2 channels,ES-
$363>169$
$1.000 \mathrm{e}-003$

13C4-PFHpA

18O2-PFHxS

Dataset: U:\Q4.PRO\results\170707M2\170707M2-25.ald
Last Altered: Thursday, July 20, 2017 14:59:44 Pacific Daylight Time
Printed: Thursday, July 20, 2017 15:00:21 Pacific Daylight Time

Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628

Total PFOA

F19:MRM of 2 channels,ES-
3.70$413>368.7$ $6.551 \mathrm{e}+003$
100

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$
$000 \mathrm{e}-003$

13C8-PFOS

PFDA

13C2-PFUnA

Dataset: U:\Q4.PRO\results\170707M2\170707M2-25.qld
Last Altered: Thursday, July 20, 2017 14:59:44 Pacific Daylight Time
Printed: Thursday, July 20, 2017 15:00:21 Pacific Daylight Time

Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628

PFUnA

13C2-PFUnA

N-MeFOSAA

N-EtFOSAA

d3-N-MeFOSAA
F49:MRM of 1 channel,ES-- $573.3>419$

13C2-PFDoA
F52:MRM of 1 channel,ES-

Dataset:
U:\Q4.PRO\results\170707M2\170707M2-25.qld
Last Altered: Thursday, July 20, 2017 14:59:44 Pacific Daylight Time
Printed: Thursday, July 20, 2017 15:00:21 Pacific Daylight Time

Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628

PFTeDA

F58:MRM of 4 channels,ES712.9 > 369

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 20, } 2017 \text { 14:59:44 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 20, } 2017 \text { 15:00:21 Pacific Daylight Time }\end{array}$

Name: 170707M2_25, Date: 07-Jul-2017, Time: 17:52:26, ID: 1700792-11 RB01-20170628 0.12005, Description: RB01-20170628

13C4-PFOS

13C7-PFUnA

Quantify Sample Summary Report

 Vista Analytical LaboratoryMassLynx MassLynx V4.1 SCN 945

Last Altered:	Thursday, July 20, 2017 16:26:47 Pacific Daylight Time Printed:
Thursday, July 20, 2017 16:27:41 Pacific Daylight Time	

Method: U:IQ4.PRO\MethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46
Name: 170711M1_48, Date: 11-Jul-2017, Time: 18:58:21, ID: 1700792-11RE1 RB01-20170628 0.12273, Description: RB01-20170628

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	12 PFDoA	$612.9>318.8$		6.21 e2	0.1227		4.32				
2	13 PFTrDA	$662.9>618.9$		6.21 e 2	0.1227		4.50				
3	14 PFTeDA	$712.9>668.8$		6.30 e3	0.1227		4.66				
4	28 13C2-PFDoA	$615>569.7$	6.21 e 2	1.68 e 4	0.1227	0.130	4.32	4.23	0.463	29.1	28.5
5	29 13C2-PFTeDA	$714.8>669.6$	6.30 e3	1.68 e 4	0.1227	1.018	4.66	4.56	4.70	37.6	36.9
6	37 13C7-PFUnA	$570.1>524.8$	1.68 e 4	1.68 e 4	0.1227	1.000	4.16	4.07	12.5	102	100.0

Dataset:
U:\Q4.PRO\results\170711M1\170711M1-48.qld
Last Altered: Thursday, July 20, 2017 16:26:47 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 16:27:41 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-10-17-L14A.cdb 14 Jul 2017 08:57:46

Name: 170711M1_48, Date: 11-Jul-2017, Time: 18:58:21, ID: 1700792-11RE1 RB01-20170628 0.12273, Description: RB01-20170628

13C2-PFDoA

170711M1_48 Smooth(Mn,1x2) F52:MRM of 1 channel,ES-

PFTrDA

13C2-PFTeDA

170711M1_48 Smooth(Mn,1x2) F59:MRM of 2 channels,ES-

13C2-PFTeDA
170711M1_48 Smooth(Mn,1x2) F59:MRM of 2 channels,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Last Altered: Thursday, July 20, 2017 16:26:47 Pacific Daylight Time
Printed: Thursday, July 20, 2017 16:27:41 Pacific Daylight Time

Name: 170711M1_48, Date: 11-Jul-2017, Time: 18:58:21, ID: 1700792-11RE1 RB01-20170628 0.12273, Description: RB01-20170628

13C7-PFUnA

CONTINUING CALIBRATION

Dataset:
Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

	\# Name ${ }^{\text {a }}$ - +	Trace	Area	IS Area	Wt.Not.	RRF	Pred.RT	Star	y Axis Resp	Conc.	\%Rec	
$1-4$	1 PFBS	$299>79.7$	6.16 e 3	4.19 e 3	1.0000		2.92	2.92	18.4	9.76	97.6	70-13
$2-5$	$2 \mathrm{PFH} \times \mathrm{A}$	313.2 > 268.9	4.75 e 4	1.62 e 4	1.0000		3.16	3.16	14.7	10.4	104.0	
$3 \mathrm{C}=$	3 PFHpA	$363>318.9$	4.25 e 4	4.61 e 4	1.0000		3.43	3.42	11.5	9.54	95.4	
$4-5$	4 PFHxS	$398.9>79.6$	5.27 e3	4.08 e 3	1.0000		3.55	3.49	16.2	8.73	87.3	
5.4	5 PFOA	$413>368.7$	7.77 e 4	9.64 e4	1.0000		3.63	3.62	10.1	10.6	105.9	
6	6 PFNA	$462.9>418.8$	7.54 e 4	7.98 e 4	1.0000		3.82	3.80	11.8	10.6	105.7	
7	7 PFOS	$499>79.9$	1.27 e 4	1.58 e 4	1.0000		3.86	3.85	10.1	9.53	95.3	
8 -	8 PFDA	$513>468.8$	7.01 e 4	8.05 e 4	1.0000		4.00	3.96	10.9	9.39	93.9	
$9 \longrightarrow$	9 PFUnA	$562.9>518.9$	5.77 e 4	7.40 e 4	1.0000		4.13	4.13	9.74	10.7	107.0	
10 \%	10 N-MeFOSAA	$570.1>419$	2.12 e 4	1.80 e4	1.0000		4.00	4.00	14.7	9.22	92.2	
11.	11 N-EtFOSAA	$584.2>419$	1.75 e 4	1.85 e 4	1.0000		4.07	4.07	11.8	10.3	103.0	O
12.	12 PFDoA	$612.9>318.8$	6.02 e 3	1.01 e 4	1.0000		4.31	4.28	7.42	8.89	88.9	(1)
13	13 PFTrDA	$662.9>618.9$	8.91 e4	1.01 e 4	1.0000		4.50	4.45	110	9.90	99.0	M1011
14.	14 PFTeDA	$712.9>668.8$	6.53 e 4	7.45 e 4	1.0000		4.65	4.62	10.9	9.18	91.8	
15	15 13C3-PFBS	$302>98.8$	4.19e3	5.15 e 4	1.0000	0.032	2.92	2.92	0.407	12.7	101.4	0-150
16	16 13C2-PFHxA	$315>269.8$	1.62 e 4	5.15 e 4	1.0000	0.296	3.15	3.16	1.57	5.31	106.1	1
17.	17 13C4-PFHpA	367.2 > 321.8	4.61 e4	5.15 e 4	1.0000	0.302	3.43	3.42	4.48	14.9	118.9	,
18.	18 1802-PFHxS	$403>102.6$	4.08 e 3	1.03 e 4	1.0000	0.434	3.49	3.49	4.93	11.3	90.8	
19 ,	19 13C2-PFOA	$414.9>369.7$	9.64 e4	8.32 e 4	1.0000	1.140	3.62	3.62	14.5	12.7	101.6	
20 \%	20 13C5-PFNA	$468.2>422.9$	7.98 e 4	8.20 e 4	1.0000	0.958	3.80	3.80	12.2	12.7	101.6	
21	21 13C8-PFOS	$507>79.9$	1.58 e 4	1.53 e 4	1.0000	1.061	3.85	3.85	12.9	12.1	97.1	
$22 \times$	22 13C2-PFDA	$515.1>469.9$	8.05 e 4	8.59 e 4	1.0000	0.942	3.97	3.96	11.7	12.4	99.4	
23 -	23 13C2-PFUnA	$565>519.8$	7.40 e 4	8.94 e 4	1.0000	1.084	4.13	4.13	10.3	9.54	76.3	
24	24 d3-N-MeFOSAA	$573.3>419$	1.80 e 4	8.94 e 4	1.0000	0.240	4.00	4.00	2.52	10.5	83.7	
$25 \sim$	25 d5-N-EtFOSAA	$589.3>419$	1.85 e 4	8.94 e 4	1.0000	0.247	4.07	4.06	2.59	10.5	83.7	
26	26 13C2-PFDoA	$615>569.7$	1.01 e 4	8.94 e 4	1.0000	0.127	4.32	4.29	1.42	11.2	89.3	
27.1	27 13C2-PFTeDA	$714.8>669.6$	7.45 e 4	8.94 e 4	1.0000	0.883	4.64	4.62	10.4	11.8	94.5	\checkmark
28.	28 13C5-PFHxA	$318>272.9$	5.15 e 4	5.15 e4	1.0000	1.000	3.15	3.16	5.00	5.00	100.0	
29.	29 13C3-PFHxS	$401.9>79.9$	1.03 e 4	1.03 e 4	1.0000	1.000	3.49	3.49	12.5	12.5	100.0	
30	30 13C8-PFOA	$421.3>376$	8.32e4	8.32e4	1.0000	1.000	3.62	3.62	12.5	12.5	100.0	
31 Work		$472.2>426.9$	8.20 e 4	8.20 e 4	1.0000	1.000	3.82	3.80	12.5	12.5	P0,90	166 of 672

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults\170707M21170707M2-2.qld
Last Altered: Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

Dataset:	Untitled
Last Altered:	Thursday, July 20, 2017 16:34:18 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 16:38:16 Pacific Daylight Time

Compound name: PFHxA

Name	ID	Acq.Date	Acq Time
1.	ST170707M2-1 PFC CS3 17G0508	07-Jul-17	13:45:44
2 2ti ${ }^{\text {a }}$ 170707M2_3	B7F0137-BLK1 Method Blank 0.125	07-Jul-17	13:56:23
	IPA	07-Jul-17	14:07:44
4 4-	B7F0137-BS1 OPR 0.125	07-Jul-17	14:18:24
5 5x mel 170707M2_6	1700789-01@5X GR-OF-20170627 0.10782	07-Jul-17	14:29:12
	1700789-02@5X MH-117T-20170627 0.12311	07-Jul-17	14:39:57
7.4.	1700789-03@5X MH-117N-201706270.12348	07-Jul-17	14:50:35
8 ¢	B7F0136-MS1@5X Matrix Spike 0.12272	07-Jul-17	15:01:14
$9 . \longleftarrow 170707 \mathrm{M} 2 _10$	B7F0136-MSD1@5X Matrix Spike Dup 0.12124	07-Jul-17	15:11:54
10 Wr 170707 M 2 _11	1700789-05@10X MH-118.5N-20170627 0.12.	07-Jul-17	15:22:39
11 170707M2_12	1700792-01 West Ditch in-20170627 0.11683	07-Jul-17	15:33:17
12.4 . 170707 M 2 _13	1700792-02 MH-140-20170628 0.11475	07-Jul-17	15:43:56
13 : H - 170707M2_14	1700792-03 Interceptor-20170628 0.11459	07-Jul-17	15:54:34
14.4 : 470707 M 2 _15	1700792-04 Roof Drain-20170628 0.11484	07-Jul-17	16:05:13
15.	1700792-05 Spring-20170628 0.09751	07-Jul-17	16:15:51
16.	1700792-06 FRB-20170628 0.1121	07-Jul-17	16:26:52
17. \% 170707M2_18	1700792-07 MH318.9-20170628 0.11873	07-Jul-17	16:37:41
18.	IPA	07-Jul-17	16:48:19
19 : ${ }^{\text {a }}$, 170707M2_20	ST170707M2-2 PFC CS3 17G0508	07-Jul-17	16:58:58
20.	IPA	07-Jul-17	17:09:44
21.4170707 M 2 22	1700792-08 MH388.9-20170628 0.11713	07-Jul-17	17:20:31
22.4 : 170707 M 2 23	1700792-09 Dup03-20170628 0.11824	07-Jul-17	17:31:09
23-\% 170707M2_24	1700792-10 Dup01-20170627 0.11337	07-Jul-17	17:41:47
24.4	1700792-11 RB01-20170628 0.12005	07-Jul-17	17:52:26
25 - 170707 M 2 26	IPA	07-Jul-17	18:03:04
26.5 170707M2_27	ST170707M2-3 PFC CS3 17G0508	07-Jul-17	18:13:43

Run Log Present: $\square{ }^{\prime}$
\# of Samples per Sequence Checked: \square
Reviewed By: $\frac{\text { Initials/Date }}{\text { 7l2lli }}$
Dataset: U:IQ4.PRO\results\170707M21170707M2-2.qld

Last Altered: \quad Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34

Calibration: U:IQ4.PROICurveDBIC18 VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

Total PFBS

13C3-PFBS

13C2-PFHxA

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Vista Analytical Laboratory

Dataset:

U:\Q4.PRO\results\170707M2\170707M2-2.qld
Last Altered: Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

Total PFOA

	F19:MRM	channels,ES-
		$413>368.7$
	PFOA	$1.726 \mathrm{e}+006$
${ }^{100} 7$	3.62	
	7.77 e 4	
\%	1719310	
	Tr	T

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFUnA

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-2.qld
Last Altered:	Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

F51:MRM of 2 channels,ES-

13C2-PFDoA

Dataset: U:IQ4.PRO|results\170707M2\170707M2-2.qld
Last Altered: Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

Dataset:

U:\Q4.PRO\results\170707M21170707M2-2.qId
Last Altered: Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

13C7-PFUnA

Method: U:IQ4.PROIMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17G0508

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-20.qld
Last Altered:	Thursday, July 20, 2017 12:08:08 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:08:56 Pacific Daylight Time

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17G0508

-2mer	\# Name \quad Trace		Area	IS Area	Wt.Nol.	RRF	PrediRT	R. RT Y Axis Resp. \% Conc. \%Rec			
32	32 13C4-PFOS	$503>79.9$	1.44 e 4	1.44e4	1.0000	1.000	3.85	3.87	12.5	12.5	100.0
33 -	33 13C6-PFDA	$519.1>473.7$	9.06 e 4	9.06 e 4	1.0000	1.000	3.97	3.99	12.5	12.5	100.0
$34 \times$	34 13C7-PFUnA	$570.1>524.8$	1.01 e 5	1.01 e 5	1.0000	1.000	4.13	4.15	12.5	12.5	100.0

Dataset: Untitled

Last Altered: Thursday, July 20, 2017 16:34:18 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 16:38:16 Pacific Daylight Time

Compound name: PFHxA

		Acq. Date	AcqTime
Tithistry 170707M2_2	ST170707M2-1 PFC CS3 17G0508	07-Jul-17	13:45:44
W4ixts ${ }^{\text {a }}$ 170707M2_3	B7F0137-BLK1 Method Blank 0.125	07-Jul-17	13:56:23
	IPA	07-Jul-17	14:07:44
	B7F0137-BS1 OPR 0.125	07-Jul-17	14:18:24
	1700789-01@5X GR-OF-20170627 0.10782	07-Jul-17	14:29:12
	1700789-02@5X MH-117T-20170627 0.12311	07-Jul-17	14:39:57
Whtw	1700789-03@5X MH-117N-20170627 0.12348	07-Jul-17	14:50:35
8.fry wev 170707M2_9	B7F0136-MS1@5X Matrix Spike 0.12272	07-Jul-17	15:01:14
96twxtett ${ }^{\text {d }}$ 170707M2_10	B7F0136-MSD1@5X Matrix Spike Dup 0.12124	07-Jul-17	15:11:54
	1700789-05@10X MH-118.5N-20170627 0.12...	07-Jul-17	15:22:39
Hukukik 170707 M 2 _12	1700792-01 West Ditch in-20170627 0.11683	07-Jul-17	15:33:17
	1700792-02 MH-140-20170628 0.11475	07-Jul-17	15:43:56
13Wpt dux 170707M2_14	1700792-03 Interceptor-20170628 0.11459	07-Jul-17	15:54:34
	1700792-04 Roof Drain-20170628 0.11484	07-Jul-17	16:05:13
	1700792-05 Spring-20170628 0.09751	07-Jul-17	16:15:51
	1700792-06 FRB-20170628 0.1121	07-Jul-17	16:26:52
	1700792-07 MH318.9-20170628 0.11873	07-Jul-17	16:37:41
48whstuti 170707M2_19	IPA	07-Jul-17	16:48:19
OStw, fhix 170707M2_20	ST170707M2-2 PFC CS3 17G0508	07-Jul-17	16:58:58
170707M2_21	IPA	07-Jul-17	17:09:44
	1700792-08 MH388.9-20170628 0.11713	07-Jul-17	17:20:31
22dxatatuk 170707M2_23	1700792-09 Dup03-20170628 0.11824	07-Jul-17	17:31:09
$23=6 \operatorname{kin} 170707 \mathrm{M} 2 _24$	1700792-10 Dup01-20170627 0.11337	07-Jul-17	17:41:47
	1700792-11 RB01-201706280.12005	07-Jul-17	17:52:26
	IPA	07-Jul-17	18:03:04
26030	ST170707M2-3 PFC CS3 17G0508	07-Jul-17	18:13:43

Dataset:	U:\Q4.PRO\results\170707M2\170707M2-20.qld
Last Altered:	Thursday, July 20, 2017 12:08:08 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 12:08:56 Pacific Daylight Time

Method: U:IQ4.PROWMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17G0508

13C2-PFHxA

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170707M2\170707M2-20.qld

Last Altered: Thursday, July 20, 2017 12:08:08 Pacific Daylight Time
Printed:
Thursday, July 20, 2017 12:08:56 Pacific Daylight Time

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17 G0508

Total PFOA

100	F19:MRM of 2 channels,ES$413>368.7$	
	PFOA	$1.883 \mathrm{e}+006$
	3.64	
	8.29 e 4	
\% ${ }^{-}$	1876132	

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFUnA

Dataset: U:IQ4.PRO\results\170707M2\170707M2-20.qld
Last Altered: Thursday, July 20, 2017 12:08:08 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:08:56 Pacific Daylight Time

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17G0508

13C2-PFUnA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset: U:\Q4.PRO\results\170707M2\170707M2-20.qld
Last Altered: Thursday, July 20, 2017 12:08:08 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:08:56 Pacific Daylight Time

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 $17 \mathrm{G0508}$

PFTeDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

PFTrDA

13C2-PFTeDA

13C8-PFOA

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170707M2\170707M2-20.qld
Last Altered: Thursday, July 20, 2017 12:08:08 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:08:56 Pacific Daylight Time

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17G0508

13C7-PFUnA
F46:MRM of 1 channel,ES-

Dataset:
U:IQ4.PRO|results1170707M21170707M2-27_L14.qld
Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17G0508

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults\170707M21170707M2-27_L14.qld
Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17G0508

		\# Name	Trace	Area	Area	Wt Nol ,	RRF	Pred.RT	RT	Resp.	Conc	\%Rec
32		32 13C4-PFOS	$503>79.9$	1.46 e 4	1.46 e 4	1.0000	1.000	3.85	3.87	12.5	12.5	100.0
33	14	33 13C6-PFDA	$519.1>473.7$	1.02 e 5	1.02e5	1.0000	1.000	3.97	3.98	12.5	12.5	100.0
34	17	34 13C7-PFUnA	$570.1>524.8$	8.27e4	8.27e4	1.0000	1.000	4.13	4.15	12.5	12.5	100.0

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN 945

Dataset:	Untitled
Last Altered:	Thursday, July 20, 2017 16:34:18 Pacific Daylight Time
Printed:	Thursday, July 20, 2017 16:38:16 Pacific Daylight Time

Compound name: PFHxA

Name		Acq.Date	me
14twhete 170707 M 2 _2	ST170707M2-1 PFC CS3 17G0508	07-Jul-17	13:45:44
	B7F0137-BLK1 Method Blank 0.125	07-Jul-17	13:56:23
3. mivenk 170707M2_4	IPA	07-Jul-17	14:07:44
4 wayty	B7F0137-BS1 OPR 0.125	07-Jul-17	14:18:24
	1700789-01@5X GR-OF-20170627 0.10782	07-Jul-17	14:29:12
	1700789-02@5X MH-117T-20170627 0.12311	07-Jul-17	14:39:57
	1700789-03@5X MH-117N-20170627 0.12348	07-Jul-17	14:50:35
	B7F0136-MS1@5x Matrix Spike 0.12272	07-Jul-17	15:01:14
	B7F0136-MSD1@5X Matrix Spike Dup 0.12124	07-Jul-17	15:11:54
10. Skrtare 170707M2_11	1700789-05@10X MH-118.5N-20170627 0.12...	07-Jul-17	15:22:39
	1700792-01 West Ditch In-20170627 0.11683	07-Jul-17	15:33:17
	1700792-02 MH-140-20170628 0.11475	07-Jul-17	15:43:56
16	1700792-03 Interceptor-20170628 0.11459	07-Jul-17	15:54:34
	1700792-04 Roof Drain-20170628 0.11484	07-Jul-17	16:05:13
15xTw	1700792-05 Spring-20170628 0.09751	07-Jul-17	16:15:51
	1700792-06 FRB-20170628 0.1121	07-Jul-17	16:26:52
17\% Stw	1700792-07 MH318.9-20170628 0.11873	07-Jul-17	16:37:41
106the	IPA	07-Jul-17	16:48:19
19 Whatuk 170707 M 2 20	ST170707M2-2 PFC CS3 17G0508	07-Jul-17	16:58:58
265]w	IPA	07-Jul-17	17:09:44
24.6waxdex 170707M2_22	1700792-08 MH388.9-20170628 0.11713	07-Jul-17	17:20:31
	1700792-09 Dup03-20170628 0.11824	07-Jul-17	17:31:09
23 Wixatitex 170707M2_24	1700792-10 Dup01-20170627 0.11337	07-Jul-17	17:41:47
	1700792-11 RB01-20170628 0.12005	07-Jul-17	17:52:26
	IPA	07-Jul-17	18:03:04
26,	ST170707M2-3 PFC CS3 17G0508	07-Jul-17	18:13:43

Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed:
Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34

Calibration: U:\Q4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17G0508

13C3-PFBS

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset: U:IQ4.PROIresults\170707M21170707M2-27_L14.qld

Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed: \quad Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17G0508

Total PFOA

1007	F19:MRM of 2 channels,ES$413>368.7$	
	PFOA	$1.612 \mathrm{e}+006$
	7.59 e 4	
	$\begin{gathered} 1606588 \\ \text { bb } \end{gathered}$	

F19:MRM of 2 channels,ES

13C2-PFOA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

F35:MRM of 2 channeils,ES-
$513>219$

13C2-PFUnA
F44:MRM of 1 channel,ES-

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 $17 G 0508$

PFUnA

F43:MRM of 2 channels,ES-
100

13C2-PFUnA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFDoA
F51:MRM of 2 channels,ES $612.9>318.8$

F51:MRM of 2 channels,ES$612.9>569$

13C2-PFDoA

Dataset: U:IQ4.PRO|results1170707M21170707M2-27_L14.qld

Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17 G0508

13C2-PFTeDA
F59:MRM of 2 channels,ES-

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

13C9-PFNA

Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17G0508

13C7-PFUnA
F46:MRM of 1 channel,ES$570.1>524.8$

Quantify Sample Summary Report MassLynx MassLynx V4.1

Vista Analytical Laboratory
Dataset:

Last Altered:
Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed:

Method: U:IQ4.PROIMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22
Last Altered: Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed: Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17G1008

Dataset:	U:IQ4.PROIresults1170711M11170711M1-41_L14.qld
Last Altered:	Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed:	Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17G1008

	\# Name	S	Area	IS Area	WtiNol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
32	32 13C3-PFHxS	$401.9>79.9$	6.46e3	6.46 e 3	1.000	1.000	3.55	3.44	12.5	12.5	100.0
33	33 13C8-PFOA	$421.3>376$	4.16 e 4	4.16 e 4	1.000	1.000	3.63	3.58	12.5	12.5	100.0
34	34 13C9-PFNA	$472.2>426.9$	6.25 e4	6.25 e 4	1.000	1.000	3.82	3.75	12.5	12.5	100.0
35	35 13C4-PFOS	$503>79.9$	1.09 e 4	1.09 e 4	1.000	1.000	3.86	3.80	12.5	12.5	100.0
36	36 13C6-PFDA	$519.1>473.7$	6.86 e 4	6.86e4	1.000	1.000	4.00	3.91	12.5	12.5	100.0
37	37 13C7-PFUnA	$570.1>524.8$	6.95 e 4	6.95 e 4	1.000	1.000	4.16	4.08	12.5	12.5	100.0

Dataset:	Untitled
Last Altered:	Friday, July 14, 2017 11:59:09 Pacific Daylight Time
Printed:	Friday, July 14, 2017 12:00:08 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22

Compound name: PFBS

Work Order 1700792
Quantify Compound Summary Report MassLynx MassLynx V4.1
Vista Analytical Laboratory

Dataset:	Untitled
Last Altered: Friday, July 14, 2017 11:59:09 Pacific Daylight Time Printed: Friday, July 14, 2017 12:00:08 Pacific Daylight Time	

Compound name: PFBS

Dataset:	Untitled
Last Altered:	Friday, July 14, 2017 11:59:09 Pacific Daylight Time
Printed:	Friday, July 14, 2017 12:00:08 Pacific Daylight Time

Compound name: PFBS

	Name	10 -	Aca Date	Acg Time
66	170711M1_66	1700836-01 DPH-MW11 0.1236	11-Jul-17	22:10:40
67	170711M1_67	1700836-02 DPH-B7 0.1224	11-Jul-17	22:21:19
68	170711M1_68	1700836-03 DPH-MW3-17 0.1219	11-Jul-17	22:31:57
69	170711M1_69	1700836-04 DPH-EX4 0.12243	11-Jul-17	22:42:36
70	170711M1_70	1700836-05 DPH-MW6-17 0.12319	11-Jul-17	22:53:14
71	170711M1_71	1700844-01 20410100010.277	11-Jul-17	23:03:52
72	170711M1_72	1700845-01 MW-29S-20170707 0.12034	11-Jul-17	23:14:31
73	170711M1_73	1700845-02 DUP04-20170707 0.12279	11-Jul-17	23:25:17
74	17071 1M1_74	1700845-03 MW-27S-20170707 0.11824	11-Jul-17	23:36:03
75	170711M1_75	B7G0033-MS1 Matrix Spike 0.12283	11-Jul-17	23:46:42
76	170711M1_76	B7G0033-MSD1 Matrix Spike Dup 0.124	11-Jul-17	23:57:29
77	170711M1_77	1700845-04 MW-30S-20170707 0.11933	12-Jul-17.	00:08:07
78	170711M1_78	IPA	12-Jul-17	00:18:45
79	170711M1_79	ST170711M1-6 PFC CS3 17G1008 $\sqrt{ }$	12-Jul-17	00:29:24
80	170711M1_80	IPA	12-Jul-17	00:40:11

LC Calibration Standards Review Checklist Q4

Run Log Present:
Full Mass Cal. Date: $6 \mid 21 / 10$

Dataset:	U:\Q4.PROVresults\170711M1\170711M1-41_L14.qld
Last Altered:	Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed:	Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22

Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17G1008

Total PFBS

	F6:MRM of 2 channels,ES-$299>79.7$	
	PFBS	$1.299 \mathrm{e}+005$
1007	2.87	
	5.18 e 3	
\%-	129640	
	bb	
	129640.00	

PFHxA

13C2-PFHxA

PFHpA

13C4-PFHpA

1802-PFHxS

Dataset:	U:IQ4.PROVresults\170711M11170711M1-41_L14.qld
Last Altered:	Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed:	Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17 G1008

Total PFOA		
	F19:MRM of 2 channels,ES-	
		$413>368.7$
1007	PFOA	$1.164 \mathrm{e}+006$
	3.57	
	5.19 e 4	
\%-	1160741	
	bb	
	7787.88 =	

13C2-PFOA

PFNA

13C5-PFNA

F30:MRM of 2 channels,ES-
$499>99$
$1.127 e+005$

13C8-PFOS

PFDA
F35:MRM of 2 channels,ES.
$513>468.8$ $1.637 \mathrm{e}+006$

F35:MRM of 2 channels,ES-
$513>219$
$1.988 \mathrm{e}+005$

13C2-PFUnA

Dataset: U:IQ4.PROIresults1170711M11170711M1-41_L14.qld

Last Altered:

(
Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed:
Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17G1008

PFUnA

13C2-PFUnA

N-MeFOSAA

F45:MRM of 2 channels,ES-

F45:MRM of 2 channels,ES-

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:	U:IQ4.PROIresults1170711M11170711M1-41_L14.qld
Last Altered:	Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed:	Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17G1008

PFTeDA

F58:MRM of 4 channels,ES-

13C2-PFTeDA

PFTrDA

F57:MRM of 2 channels,ES-

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

13C9-PFNA

Dataset:	U:IQ4.PRO\|results1170711M11170711M1-41_L14.qld
Last Altered:	Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed:	Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Dataset:

U:IQ4.PRO|results|170711M11170711M1-63_L14.qld
Last Altered: Thursday, July 13, 2017 10:54:41 Pacific Daylight Time
Printed: Thursday, July 13, 2017 10:55:26 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

Dataset: U:IQ4.PROIresults\170711M11170711M1-63_L14.qld

Last Altered: Thursday, July 13, 2017 10:54:41 Pacific Daylight Time
Printed: Thursday, July 13, 2017 10:55:26 Pacific Daylight Time

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960
Vista Analytical Laboratory
Dataset: \quad Untitled
Last Altered: Friday, July 14, 2017 11:59:09 Pacific Daylight Time Printed: Friday, July 14, 2017 12:00:08 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22
Compound name: PFBS

Quantify Compound Summary Report \quad MassLynx MassLynx V4	
Vista Analytical Laboratory	
Dataset:	Untitled
Last Altered:	Friday, July 14, 2017 11:59:09 Pacific Daylight Time
Printed:	Friday, July 14, 2017 12:00:08 Pacific Daylight Time

Compound name: PFBS

Name	D		
32	1700842-13 Market Basket/Concord 0.005	11-Jul-17	16:06:13
33 S	1700842-14 Cumberland Farms/Meredith 0.005	11-Jul-17	16:17:42
34 \%hemex 170711M1_34	1700842-15 EM-Heath/Center Harbor 0.005	11-Jul-17	16:28:34
	1700842-16 Shaws/North Conway 0.005	11-Jul-17	16:39:13
	1700842-17 Milk 10.005	11-Jul-17	16:49:59
	1700842-18 Milk 20.005	11-Jul-17	17:00:38
386	170711_929	11-Jul-17	17:11:16
39.3ty	170711_972	11-Jul-17	17:21:55
40_Wemudul $170711 \mathrm{M} 1 _40$	IPA	11-Jul-17	17:32:33
	ST170711M1-4 PFC CS3 17G1008	11-Jul-17	17:43:19
	IPA	11-Jul-17	17:54:06
	B7G0014-BS1 OPR 0.125	11-Jui-17	18:04:47
	B7G0033-BS1 OPR 0.125	11-Jul-17	18:15:31
	IPA	11-Jul-17	18:26:18
46,	B7G0014-BLK1 Method Blank 0.125	11-Jul-17	18:37:02
	B7G0033-BLK1 Method Blank 0.125	11-Jul-17	18:47:43
48, ${ }^{2}$	1700792-11RE1 RB01-20170628 0.12273	11-Jul-17	18:58:21
	1700792-08RE1 MH388.9-20170628 0.12326	11-Jul-17	19:09:07
50,	1700792-01RE1 West Ditch In-20170627 0.12..	11-Jul-17	19:19:46
	1700803-01 SB01 0.12033	11-Jul-17	19:30:24
523xtw	1700803-03 IRPSite7-GW-46GW205-201706...	11-Jul-17	19:41:03
	1700803-04 IRPSite7-GW-FD01-20170628 0....	11-Jul-17	19:51:41
544ㄴNatisi 170711M1_54	1700803-05 IRPSite7-GW-07GW202-201706...	11-Jul-17	20:02:19
55skdevidion11M1_55	1700803-06 IRPSite7-GW-FRB01-20170628 ...	11-Jul-17	20:12:58
	1700803-07 IRPSite5-GW-FRB01-20170628 ...	11-Jul-17	20:23:36
	1700803-08 IRPSite5-GW-04GW81S-201706...	11-Jul-17	20:34:15
	1700803-09 IRPSite5-GW-04GW80-2017062...	11-Jul-17	20:44:53
	B7G0014-MS1 Matrix Spike 0.12163	11-Jul-17	20:55:31
60.	B7G0014-MSD1 Matrix Spike Dup 0.1181	11-Jul-17	21:06:22
170711M1_61	1700803-10 EB02 0.10956	11-Jul-17	21:17:12
62 =6, 紋s=170711M1_62	IPA	11-Jul-17	21:27:59
636:	ST170711M1-5 PFC CS3 17G1008 V	11-Jul-17	21:38:37
6493約	IPA	11-Jul-17	21:49:23
	1700820-01 MTBE_5527 0.26911	11-Jul-17	22:00:02

Work Order 1700792

| Quantify Compound Summary Report | MassLynx MassLynx V4.1 SCN945 SCN960 |
| :--- | :--- | :--- |
| Vista Analytical Laboratory | |
| Dataset: | Untitled |
| | |
| Last Altered: | Friday, July 14, 2017 11:59:09 Pacific Daylight Time |
| Printed: | Friday, July 14, 2017 12:00:08 Pacific Daylight Time |

Compound name: PFBS

66:	1700836-01 DPH-MW11 0.1236	11-Jul-17	22:10:40
67futuk	1700836-02 DPH-B7 0.1224	11-Jul-17	22:21:19
	1700836-03 DPH-MW3-17 0.1219	11-Jul-17	22:31:57
170711M1_69	1700836-04 DPH-EX4 0.12243	11-Jul-17	22:42:36
70	1700836-05 DPH-MW6-17 0.12319	11-Jul-17	22:53:14
	1700844-01 20410100010.277	11-Jul-17	23:03:52
	1700845-01 MW-29S-20170707 0.12034	11-Jul-17	23:14:31
	1700845-02 DUP04-20170707 0.12279	11-Jul-17	23:25:17
	1700845-03 MW-27S-20170707 0.11824	11-Jul-17	23:36:03
	B7G0033-MS1 Matrix Spike 0.12283	11-Jul-17	23:46:42
	B7G0033-MSD1 Matrix Spike Dup 0.124	11-Jul-17	23:57:29
	1700845-04 MW-30S-20170707 0.11933	12-Jul-17,	00:08:07
	IPA	12-Jul-17	00:18:45
	ST170711M1-6 PFC CS3 17G1008	12-Jul-17	00:29:24
	IPA	12-Jul-17	00:40:11

Method: U:IQ4.PROIMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

Total PFBS

 13C3-PFBS

PFHXA

13C2-PFHxA

PFHpA

13C4-PFHpA

F15:MRM of 1 channel,ES-
$367.2>321.8$
$7.333 e+005$
$13 \mathrm{C} 4-\mathrm{PFHpA}$
3.37
3.35 e 4
731601
bb
731601.00

Total PFHxS

1802-PFHxS

Quantify Sample Report \quad MassLynx MassLynx V4.1 SCN945 SCN960	
Vista Analytical Laboratory	
Dataset:	U:lQ4.PRO\results\170711M11170711M1-63_L14.qld
Last Altered:	Thursday, July 13, 2017 10:54:41 Pacific Daylight Time
Printed:	Thursday, July 13, 2017 10:55:26 Pacific Daylight Time

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES$499>99$
$1.171 e+005$

13C8-PFOS

PFDA
F35:MRM of 2 channels,ES $513>468.8$ $1.585 e+006$

13C2-PFUnA

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

PFUnA

13C2-PFUnA

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Printed: \quad Thursday, July 13, 2017 10:55:26 Pacific Daylight Time

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

13C2-PFTeDA
F59:MRM of 2 channels,ES-
$714.8>669.6$
13C2-PFTeDA 1.233e+006

PFTrDA

F57:MRM of 2 channels,ES$662.9>319$

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

13C9-PFNA

Quantify Sample Report
Vista Analytical Laboratory

Dataset:	U:IQ4.PROVresults\170711M1\170711M1-63_L14.qld
Last Altered:	Thursday, July 13, 2017
Printed:	Thursday, July 13, 2017 10:54:41 Pacific Daylight Time

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17 G1008

13C6-PFDA

13C7-PFUnA

F46:MRM of 1 channel,ES570.1 > 524.8

Quantify Sample Summary Report \quad MassLynx 4.1 SCN815		
Vista Analytical Laboratory Q1	Page 1 of 1	
Dataset:	U:IG1.PRO\Resultsl20171New folder1170721G6-2.qld	
Last Altered:	Saturday, July 22, 2017 09:47:35 Pacific Daylight Time	
Printed:	Saturday, July 22, 2017 09:49:15	Pacific Daylight Time

Last Altered: \quad Saturday, July 22, 2017 09:47:35 Pacific Daylight Time Pinted. Saturday, July 22, 2017 09:49:15 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: ST170721G6-1 PFC CS-1 17G2117, Description: PFC CS-1 17G2117, Name: 170721G6_2, Date: 21-Jul-2017, Time: 15:51:03

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wtvol	RT	Conc.	\%Rec	$\begin{aligned} & 70-130 \\ & 50-150 \end{aligned}$
1	9 PFOS	$499.0>79.9$	1.322 e 2	7.861e3		1.00	4.66	0.489	97.8	
2	20 13C8-PFOS	507.0 > 79.9	7.861 e 3	8.139e3	1.026	1.00	4.65	11.8	94.1	
3	26 13C4-PFOS	$503.0>79.9$	8.139 e 3	8.139e3	1.000	1.00	4.65	12.5	100	

Quantify Compound Summary Report \quad MassLynx 4.1 SCN815	
Vista Analytical Laboratory VG-9	
Dataset:	Untitled
Last Altered:	Saturday, July 22, 2017 09:52:13 Pacific Daylight Time
Printed:	Saturday, July 22, 2017 09:52:59 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42

Compound name: PFBA

	Name	ID	Acq.Date	Acq.Time
1	170721G6_1	IPA	21-Jul-17	15:38:33
2	170721G6_2	ST170721G6-1 PFC CS-1 17G2117	21-Jul-17	15:51:03
3	170721G6_3	IPA	21-Jul-17	$16: 03: 33$
4	170721 G6_4	1700792-10@10X Dup01-20170627 0.11337	21-Jul-17	$16: 16: 32$
5	$170721 G 6 _5$	IPA	21-Jul-17	$16: 29: 14$
6	$170721 G 6 _6$	ST170721G6-2 PFC CS3 17G1927	21-Jul-17	$16: 41: 30$
7	$170721 G 6 _7$	IPA	21-Jul-17	$16: 54: 01$

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\New folder\170721G6-2.qld
Last Altered: Saturday, July 22, 2017 09:47:35 Pacific Daylight Time
Printed: \quad Saturday, July 22, 2017 09:49:15 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16 2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: ST170721G6-1 PFC CS-1 17G2117, Description: PFC CS-1 17G2117, Name: 170721G6_2, Date: 21-Jul-2017, Time: 15:51:03, Instrument: , Lab: , User:

Total PFOS

13C8-PFOA

13C2-PFOA

170721G6_2 F5:MRM of 12 channels,ES-

13C8-PFOS

13C4-PFOS

Printed: \quad Saturday, July 22, 2017 10:06:51 Pacific Daylight Time

```

\section*{Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17}

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: ST170721G6-2 PFC CS3 17G1927, Description: PFC CS3 17G1927, Name: 170721G6_6, Date: 21-Jul-2017, Time: 16:41:30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Peak Area & IS Resp & RRF Mean & wt/vol & RT & Conc. & \%Rec & \multirow{4}{*}{\[
\begin{aligned}
& 70-130 \\
& 50-150
\end{aligned}
\]} \\
\hline 1 & 9 PFOS & \(499.0>79.9\) & 3.472 e 3 & 7.858 e 3 & & 1.00 & 4.66 & 9.37 & 93.7 & \\
\hline 2 & 20 13C8-PFOS & \(507.0>79.9\) & 7.858 e 3 & 7.400 e 3 & 1.026 & 1.00 & 4.65 & 12.9 & 104 & \\
\hline 3 & 26 13C4-PFOS & \(503.0>79.9\) & 7.400 e 3 & 7.400 e 3 & 1.000 & 1.00 & 4.65 & 12.5 & 100 & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Quantify Compound Summary Report \(\quad\) MassLynx 4.1 SCN815 \\
Vista Analytical Laboratory VG-9 \\
Dataset: & Untitled \\
& \\
Last Altered: & Saturday, July 22, 2017 09:52:13 Pacific Daylight Time \\
Printed: & Saturday, July 22, 2017 09:56:24 Pacific Daylight Time
\end{tabular}

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42

\section*{Compound name: PFBA}
\begin{tabular}{|lllll|}
\hline & Name & ID & Acq.Date & Acq.Time \\
1 & 170721G6_1 & IPA & 21-Jul-17 & 15:38:33 \\
2 & 170721G6_2 & ST170721G6-1 PFC CS-1 17G2117 & 21-Jul-17 & \(15: 51: 03\) \\
3 & 170721G6_3 & IPA & 21-Jul-17 & \(16: 03: 33\) \\
4 & 170721 G6_4 & 1700792-10@10X Dup01-20170627 0.11337 & 21-Jul-17 & \(16: 16: 32\) \\
5 & \(170721 G 6 \_5\) & IPA & 21-Jul-17 & \(16: 29: 14\) \\
6 & \(170721 G 6 \_6\) & ST170721G6-2 PFC CS3 17G1927 & 21-Jul-17 & \(16: 41: 30\) \\
7 & \(170721 G 6 \_7\) & IPA & 21-Jul-17 & \(16: 54: 01\) \\
\hline
\end{tabular}

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\New folder\170721G6-6.qld
Last Altered: Saturday, July 22, 2017 10:06:10 Pacific Daylight Time
Printed: \(\quad\) Saturday, July 22, 2017 10:06:51 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16 2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: ST170721G6-2 PFC CS3 17G1927, Description: PFC CS3 17G1927, Name: 170721G6_6, Date: 21-Jul-2017, Time: 16:41:30, Instrument: , Lab: , User:

\section*{Total PFOA}


\section*{Total PFOS}


\section*{13C8-PFOA}


13C2-PFOA
170721G6_6 F5:MRM of 12 channels,ES-


13C8-PFOS
170721G6_6


13C4-PFOS


\section*{INITIAL CALIBRATION}

Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB\PFAS_L14-6-7-17B.mdb 19 Jul 2017 13:17:05
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

\section*{Compound name: PFBS}

Correlation coefficient: \(\mathrm{r}=0.999311, \mathrm{r} \wedge 2=0.998622\)
Calibration curve: 1.8654 * \(x+0.177147\)
Response type: Internal Std (Ref 15 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFHxA}

Correlation coefficient: \(\mathrm{r}=0.999586, \mathrm{r}^{\wedge} 2=0.999173\)
Calibration curve: \(1.37106{ }^{*} \mathrm{x}+0.396864\)
Response type: Internal Std (Ref 16 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None



Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.998862, \mathrm{r}^{\wedge} 2=0.997726\)
Calibration curve: 1.17677 * \(x+0.307824\)
Response type: Internal Std (Ref 17 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type matar & Std, Cone & RT & Area & IS Area & Response & Primar... & Cone, & \%Dev \\
\hline 1 & 1 170705M2_2 & Standard & 0.250 & 3.42 & 865.095 & 28174.320 & 0.384 & bbX & 0.1 & -74.2 \\
\hline \(2=\) & 2 170705M2_3 & Standard & 0.500 & 3.42 & 1636.894 & 26635.770 & 0.768 & bb & 0.4 & -21.8 \\
\hline 3 3 + 4 & 3 170705M2_4 & Standard & 1.000 & 3.42 & 3446.113 & 27885.830 & 1.545 & bb & 1.1 & 5.1 \\
\hline 4.4 & 4 170705M2_5 & Standard & 2.000 & 3.42 & 6837.425 & 29611.441 & 2.886 & bb & 2.2 & 9.6 \\
\hline 5 5 \({ }^{\text {a }}\) & 5 170705M2_6 & Standard & 5.000 & 3.42 & 15523.172 & 28877.217 & 6.719 & bb & 5.4 & 9.0 \\
\hline & 6 170705M2_7 & Standard & 10.000 & 3.41 & 25794.193 & 27952.889 & 11.535 & bb & 9.5 & -4.6 \\
\hline 7 - & 7 170705M2_8 & Standard & 50.000 & 3.41 & 140524.750 & 28110.525 & 62.488 & bb & 52.8 & 5.7 \\
\hline 8 - & 8170705 M 2 _9 & Standard & 100.000 & 3.41 & 250847.719 & 27385.096 & 114.500 & bb & 97.0 & -3.0 \\
\hline
\end{tabular}

\section*{Compound name: PFHxS}

Coefficient of Determination: \(R^{\wedge} 2=0.999590\)
Calibration curve: -0.00247497 * \(x^{\wedge} 2+1.87329\) * \(x+-0.00705947\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name} & \multirow[t]{2}{*}{4} & Std. Conc & RT & Area & IS Area & Response & , & , & Dev \\
\hline 1 & 1 170705M2_2 & Standard & & 0.250 & 3.49 & 93.769 & 2594.732 & 0.452 & MM & 0.2 & -2.0 \\
\hline \[
2
\] & 2 170705M2_3 & Standard & & 0.500 & 3.50 & 195.692 & 2589.928 & 0.944 & MM & 0.5 & 1.7 \\
\hline \[
3
\] & 3 170705M2_4 & Standard & & 1.000 & 3.49 & 464.071 & 2913.508 & 1.991 & MM & 1.1 & 6.8 \\
\hline \[
4
\] & 4 170705M2_5 & Standard & & 2.000 & 3.50 & 894.373 & 2989.887 & 3.739 & MM & 2.0 & 0.3 \\
\hline \[
5
\] & \(5170705 \mathrm{M} 2 \_6\) & Standard & & 5.000 & 3.49 & 2047.378 & 2866.506 & 8.928 & MM & 4.8 & -4.0 \\
\hline 6 & 6 170705M2_7 & Standard & & 10.000 & 3.48 & 3922.652 & 2774.778 & 17.671 & MM & 9.6 & -4.4 \\
\hline \[
7
\] & 7 170705M2_8 & Standard & & 50.000 & 3.48 & 18716.000 & 2618.582 & 89.342 & MM & 51.2 & 2.3 \\
\hline \[
8
\] & 8170705 M 2 _9 & Standard & & 100.000 & 3.48 & 34991.797 & 2704.431 & 161.734 & MM & 99.4 & -0.6 \\
\hline
\end{tabular}

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: PFOA}

Correlation coefficient: \(\mathrm{r}=0.999420, \mathrm{r} 2=0.998839\)
Calibration curve: 0.933761 * \(\mathrm{x}+0.193294\)
Response type: Internal Std (Ref 19 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT. & Area & IS Area & \multicolumn{4}{|l|}{Response Primar. Conc. \%Dev} \\
\hline \(1{ }^{13}\) & 1 170705M2_2 & Standard & 0.250 & 3.62 & 1284.817 & 43531.598 & 0.369 & bd & 0.2 & -24.8 \\
\hline 2 - \({ }^{2}\) & 2 170705M2_3 & Standard & 0.500 & 3.62 & 2227.929 & 48053.043 & 0.580 & bb & 0.4 & -17.3 \\
\hline \[
3
\] & 3 170705M2_4 & Standard & 1.000 & 3.62 & 4569.104 & 45696.223 & 1.250 & bb & 1.1 & 13.2 \\
\hline \[
4
\] & 4 170705M2_5 & Standard & 2.000 & 3.62 & 8739.742 & 46379.480 & 2.355 & bb & 2.3 & 15.8 \\
\hline 5 \% & 5 170705M2_6 & Standard & 5.000 & 3.62 & 18573.055 & 42715.777 & 5.435 & bb & 5.6 & 12.3 \\
\hline 6.4 & \(6170705 \mathrm{M} 2 \times 7\) & Standard & 10.000 & 3.61 & 35522.211 & 45589.391 & 9.740 & bb & 10.2 & 2.2 \\
\hline \[
7
\] & 7 170705M2_8 & Standard & 50.000 & 3.61 & 150408.438 & 40322.508 & 46.627 & bb & 49.7 & -0.5 \\
\hline 8. & 8170705 M 2 _9 & Standard & 100.000 & 3.61 & 321997.094 & 43389.621 & 92.763 & bb & 99.1 & -0.9 \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Correlation coefficient: \(\mathrm{r}=0.999280, \mathrm{r} \wedge 2=0.998560\)
Calibration curve: 1.11098 * \(x+0.0688283\)
Response type: Internal Std (Ref 20 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std. Cone & RT & Area & IS Area & Response & rimar. & Conc. & \%Dey \\
\hline 1. & 1 170705M2_2 & Standard & 0.250 & 3.81 & 1171.810 & 47770.836 & 0.307 & MM & 0.2 & -14.4 \\
\hline 2 & 2 170705M2_3 & Standard & 0.500 & 3.80 & 2756.608 & 52243.852 & 0.660 & MM & 0.5 & 6.3 \\
\hline & 3 170705M2_4 & Standard & 1.000 & 3.80 & 5663.031 & 54290.777 & 1.304 & bb & 1.1 & 11.2 \\
\hline \[
4
\] & 4 170705M2_5 & Standard & 2.000 & 3.80 & 11539.653 & 54512.996 & 2.646 & bb & 2.3 & 16.0 \\
\hline 5 , & 5 170705M2_6 & Standard & 5.000 & 3.80 & 24322.898 & 48291.633 & 6.296 & bb & 5.6 & 12.1 \\
\hline  & 6170705 M 2 _7 & Standard & 10.000 & 3.79 & 42993.871 & 51635.496 & 10.408 & bb & 9.3 & -6.9 \\
\hline \(7 \times 1\) & 7 170705M2_8 & Standard & 50.000 & 3.79 & 220269.813 & 48688.023 & 56.551 & bb & 50.8 & 1.7 \\
\hline 8. & 8170705 M 2 _9 & Standard & 100.000 & 3.79 & 470415.844 & 53525.945 & 109.857 & bb & 98.8 & -1.2 \\
\hline
\end{tabular}

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: PFOS}

Coefficient of Determination: \(R^{\wedge} 2=0.998873\)
Calibration curve: -0.000575658 * \(x^{\wedge} 2+1.05897\) * \(x+0.0534494\)
Response type: Internal Std (Ref 21 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{} & \multicolumn{3}{|r|}{Area IS Area} & Response & Primar & Conc. & \%Dev \\
\hline 1 & 1 170705M2_2 & Standard & 0.250 & 3.84 & 272.087 & 9413.727 & 0.361 & MM & 0.3 & 16.3 \\
\hline 2 C & 2 170705M2_3 & Standard & 0.500 & 3.86 & 400.136 & 10871.231 & 0.460 & MM & 0.4 & -23.2 \\
\hline \(3=\) & 3 170705M2_4 & Standard & 1.000 & 3.85 & 1042.090 & 11022.589 & 1.182 & MM & 1.1 & 6.6 \\
\hline 4 4, & 4 170705M2_5 & Standard & 2.000 & 3.85 & 2145.399 & 10620.750 & 2.525 & bb & 2.3 & 16.8 \\
\hline & 5 170705M2_6 & Standard & 5.000 & 3.85 & 4941.119 & 10669.258 & 5.789 & MM & 5.4 & 8.6 \\
\hline & 6170705 M 2 _7 & Standard & 10.000 & 3.84 & 8099.005 & 9939.181 & 10.186 & MM & 9.6 & -3.8 \\
\hline \[
7
\] & 7 170705M2_8 & Standard & 50.000 & 3.84 & 39063.281 & 9623.398 & 50.740 & bb & 49.2 & -1.6 \\
\hline 8 - & 8 170705M2_9 & Standard & 100.000 & 3.84 & 78466.844 & 9748.393 & 100.615 & bb & 100.4 & 0.4 \\
\hline
\end{tabular}

\section*{Compound name: PFDA}

Coefficient of Determination: \(R^{\wedge} 2=0.998398\)
Calibration curve: \(0.000759384{ }^{*} x^{\wedge} 2+1.127777^{*} x+0.228347\)
Response type: Internal Std (Ref 22 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name Type \({ }^{\text {a }}\) W} & Std. Conc & RT & Area & IS Area & \multicolumn{2}{|l|}{Response Primar...} & \multicolumn{2}{|l|}{Conc. \%Dev} \\
\hline 1.timer & 1 170705M2_2 & Standard & 0.250 & 3.97 & 1951.477 & 55632.191 & 0.438 & bb & 0.2 & -25.5 \\
\hline \(2.4 y^{4}\) & 2 170705M2_3 & Standard & 0.500 & 3.97 & 3453.753 & 56620.121 & 0.762 & bd & 0.5 & -5.3 \\
\hline 3 & \(3170705 \mathrm{M} 2 \ldots 4\) & Standard & 1.000 & 3.97 & 6905.331 & 62663.176 & 1.377 & bb & 1.0 & 1.8 \\
\hline 4 (\%). & 4 170705M2_5 & Standard & 2.000 & 3.97 & 14230.029 & 57448.082 & 3.096 & bb & 2.5 & 26.9 \\
\hline \[
5
\] & 5 170705M2_6 & Standard & 5.000 & 3.96 & 30603.072 & 59067.801 & 6.476 & bb & 5.5 & 10.4 \\
\hline 6.4 & 6170705 M 27 & Standard & 10.000 & 3.96 & 48989.387 & 57214.508 & 10.703 & bb & 9.2 & -7.7 \\
\hline \(7.4 \pm 4\) & 7 170705M2_8 & Standard & 50.000 & 3.96 & 270264.500 & 58303.238 & 57.944 & bb & 49.5 & -0.9 \\
\hline 8 8. & 8170705 M 2 _9 & Standard & 100.000 & 3.96 & 495796.375 & 51247.992 & 120.931 & bb & 100.3 & 0.3 \\
\hline
\end{tabular}

\section*{Vista Analytical Laboratory Q2}
\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld \\
& \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time
\end{tabular}

\section*{Compound name: PFUnA}

Correlation coefficient: \(\mathrm{r}=0.998781, \mathrm{r}^{\wedge} 2=0.997563\)
Calibration curve: 0.901738 * x + 0.0982118
Response type: Internal Std (Ref 23 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & sponse & ima & Conc. & \%Dev \\
\hline  & 1 170705M2_2 & Standard & 0.250 & 4.13 & 1296.185 & 62046.969 & 0.261 & bb & 0.2 & -27.7 \\
\hline 2 c & 2 170705M2_3 & Standard & 0.500 & 4.14 & 2809.686 & 63528.918 & 0.553 & bb & 0.5 & 0.8 \\
\hline \(3 \times\) & 3 170705M2_4 & Standard & 1.000 & 4.14 & 5080.900 & 55413.711 & 1.146 & bb & 1.2 & 16.2 \\
\hline 4 & 4 170705M2_5 & Standard & 2.000 & 4.14 & 10284.878 & 62163.789 & 2.068 & bb & 2.2 & 9.2 \\
\hline 5 \% \({ }^{\text {che }}\) & 5 170705M2_6 & Standard & 5.000 & 4.13 & 24180.139 & 61536.848 & 4.912 & bb & 5.3 & 6.8 \\
\hline 6 \% ereta & 6 170705M2_7 & Standard & 10.000 & 4.12 & 42430.457 & 59057.191 & 8.981 & bb & 9.9 & -1.5 \\
\hline \[
7 \text { x }
\] & 7 170705M2_8 & Standard & 50.000 & 4.12 & 218260.484 & 64685.254 & 42.177 & bb & 46.7 & -6.7 \\
\hline 8 , & 8 170705M2_9 & Standard & 100.000 & 4.12 & 402963.281 & 54245.828 & 92.856 & bb & 102.9 & 2.9 \\
\hline
\end{tabular}

Compound name: N-MeFOSAA
Coefficient of Determination: \(\mathbf{R}^{\wedge} 2=0.999610\)
Calibration curve: \(-0.00133241^{*} x^{\wedge} 2+1.61336\) * \(x+-0.019444\)
Response type: Internal Std (Ref 24 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std Conc & & 4. Area & IS Area & Response & Primar & Conc. & \%Dev \\
\hline 1 & 1 170705M2_2 & Standard & 0.250 & 4.00 & 429.221 & 13824.592 & 0.388 & bb & 0.3 & 1.1 \\
\hline 2 & 2 170705M2_3 & Standard & 0.500 & 4.00 & 872.219 & 14234.324 & 0.766 & bb & 0.5 & -2.6 \\
\hline 3 & 3 170705M2_4 & Standard & 1.000 & 4.00 & 1658.677 & 13112.977 & 1.581 & bb & 1.0 & -0.7 \\
\hline 4 ( \(\quad\) Ute & 4 170705M2_5 & Standard & 2.000 & 4.00 & 3706.589 & 14049.660 & 3.298 & bb & 2.1 & 3.0 \\
\hline 5 - \({ }^{2}\) & 5170705 M 2 _6 & Standard & 5.000 & 3.99 & 8063.015 & 12826.344 & 7.858 & bb & 4.9 & -2.0 \\
\hline  & 6 170705M2_7 & Standard & 10.000 & 3.99 & 16067.637 & 13268.185 & 15.137 & bb & 9.5 & -5.3 \\
\hline 7 & 7 170705M2_8 & Standard & 50.000 & 3.99 & 81804.094 & 12943.525 & 79.001 & bb & 51.1 & 2.3 \\
\hline 8 & 8 170705M2_9 & Standard & 100.000 & 3.99 & 149881.781 & 12724.132 & 147.242 & bb & 99.4 & -0.6 \\
\hline
\end{tabular}

\title{
Quantify Compound Summary Report \\ \\ Vista Analytical Laboratory Q2
} \\ \\ Vista Analytical Laboratory Q2
}

Dataset:
U:IQ4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: N-EtFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999426\)
Calibration curve: 0.00157116 * \(x^{\wedge} 2+1.12286\) * \(x+0.0790977\)
Response type: Internal Std (Ref 25 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & \multicolumn{2}{|l|}{IS Area Response} & \multicolumn{3}{|l|}{Primar. Conc. \% \%} \\
\hline 1 1-4. \({ }^{\text {a }}\) & 1 170705M2_2 & Standard & 0.250 & 4.08 & 402.172 & 13874.378 & 0.362 & \(b b X\) & 0.3 & 0.9 \\
\hline 2 2 & 2 170705M2_3 & Standard & 0.500 & 4.08 & 625.424 & 13899.495 & 0.562 & bb & 0.4 & -14.0 \\
\hline 3 m & 3 170705M2_4 & Standard & 1.000 & 4.07 & 1486.438 & 13745.829 & 1.352 & bb & 1.1 & 13.2 \\
\hline \[
4
\] & 4 170705M2_5 & Standard & 2.000 & 4.07 & 3091.382 & 14579.158 & 2.651 & bb & 2.3 & 14.1 \\
\hline 5 & 5 170705M2_6 & Standard & 5.000 & 4.06 & 6536.002 & 13540.418 & 6.034 & bb & 5.3 & 5.3 \\
\hline \[
6
\] & 6 170705M2_7 & Standard & 10.000 & 4.06 & 12651.616 & 14363.329 & 11.010 & bb & 9.6 & -3.9 \\
\hline \(7 r^{2}\) Wex & 7 170705M2_8 & Standard & 50.000 & 4.05 & 64759.824 & 13574.722 & 59.633 & bb & 49.6 & -0.8 \\
\hline 8 8. \({ }^{\text {d }}\) \% & \(8170705 \mathrm{M} 2 \_9\) & Standard & 100.000 & 4.06 & 128597.008 & 12523.236 & 128.358 & bb & 100.2 & 0.2 \\
\hline
\end{tabular}

\section*{Compound name: PFDoA}

Correlation coefficient: \(\mathrm{r}=0.999542, \mathrm{r} 2=0.999083\)
Calibration curve: 0.830738 * \(x+0.0366231\)
Response type: Internal Std (Ref 26 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & 4 & Std. Conc & RT & Area & IS Area & Response & Primar. & Conc. & \%Dev \\
\hline 1.10 & 1 170705M2_2 & Standard & & 0.250 & 4.31 & 107.734 & 7090.979 & 0.190 & bb & 0.2 & -26.2 \\
\hline 2 & 2 170705M2_3 & Standard & & 0.500 & 4.30 & 289.868 & 7251.595 & 0.500 & bb & 0.6 & 11.5 \\
\hline \(3 \times 4\) & 3 170705M2_4 & Standard & & 1.000 & 4.29 & 459.943 & 6817.750 & 0.843 & bb & 1.0 & -2.9 \\
\hline \(4{ }^{4}\) & 4 170705M2_5 & Standard & & 2.000 & 4.30 & 1208.494 & 7804.063 & 1.936 & bb & 2.3 & 14.3 \\
\hline 5 2, \({ }^{\text {a }}\), & 5 170705M2_6 & Standard & & 5.000 & 4.29 & 2377.221 & 6537.772 & 4.545 & bb & 5.4 & 8.5 \\
\hline & 6 170705M2_7 & Standard & & 10.000 & 4.28 & 4439.618 & 7053.735 & 7.867 & bb & 9.4 & -5.7 \\
\hline 7 & 7 170705M2_8 & Standard & & 50.000 & 4.28 & 23850.646 & 7085.070 & 42.079 & bb & 50.6 & 1.2 \\
\hline 8 8, & 8170705 M 2 _9 & Standard & & 100.000 & 4.28 & 45273.797 & 6858.020 & 82.520 & bb & 99.3 & -0.7 \\
\hline
\end{tabular}

\section*{Vista Analytical Laboratory Q2}

Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: PFTrDA}

Correlation coefficient: \(\mathrm{r}=0.999307, \mathrm{r}^{\wedge} 2=0.998614\)
Calibration curve: \(10.821^{*}\) x + 2.72105
Response type: Internal Std (Ref 26 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFTeDA}

Coefficient of Determination: \(R^{\wedge} 2=0.999498\)
Calibration curve: \(-0.000989892^{*} x^{\wedge} 2+1.18715^{*} x+0.13375\)
Response type: Internal Std (Ref 27 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & dis & Std. Conc & RT & Area & IS Area & Response & Prim & Conc. & \%Dev \\
\hline 1 - & 1 170705M2_2 & Standard & & 0.250 & 4.64 & 1407.173 & 46747.992 & 0.376 & bb & 0.2 & -18.3 \\
\hline 2 & 2 170705M2_3 & Standard & & 0.500 & 4.64 & 2854.123 & 50027.531 & 0.713 & bb & 0.5 & -2.4 \\
\hline 3 & 3 170705M2_4 & Standard & & 1.000 & 4.64 & 5316.194 & 47718.160 & 1.393 & bb & 1.1 & 6.1 \\
\hline 4 & 4 170705M2_5 & Standard & & 2.000 & 4.64 & 11385.062 & 50935.184 & 2.794 & bb & 2.2 & 12.3 \\
\hline 5 -tat & 5170705 M 2 _6 & Standard & & 5.000 & 4.63 & 25391.598 & 49814.836 & 6.371 & bb & 5.3 & 5.6 \\
\hline 6. & 6170705 M 2 _7 & Standard & & 10.000 & 4.62 & 46087.875 & 49546.270 & 11.627 & bb & 9.8 & -2.4 \\
\hline 4 & 7 170705M2_8 & Standard & & 50.000 & 4.61 & 220414.203 & 48918.633 & 56.322 & bb & 49.4 & -1.3 \\
\hline 8 & 8 170705M2_9 & Standard & & 100.000 & 4.62 & 434117.906 & 49646.109 & 109.303 & bb & 100.4 & 0.4 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset: U:IQ4.PRO|results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C3-PFBS}

Response Factor: 0.0321044
RRF SD: 0.00160131 , Relative SD: 4.98783
Response type: Internal Std (Ref 28 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name .} & Std Conc & RT & \multicolumn{2}{|l|}{Area ISArea} & Response & Primar... & Conc. & \%Dev \\
\hline 1. & 1 170705M2_2 & Standard & 12.500 & 2.90 & 2938.156 & 36934.543 & 0.398 & bb & 12.4 & -0.9 \\
\hline 2 2- & 2 170705M2_3 & Standard & 12.500 & 2.91 & 3185.882 & 37581.402 & 0.424 & bb & 13.2 & 5.6 \\
\hline \(3 \quad \mathrm{x}\) & 3 170705M2_4 & Standard & 12.500 & 2.91 & 2857.299 & 38061.805 & 0.375 & bb & 11.7 & -6.5 \\
\hline \(42 y=\) & 4 170705M2_5 & Standard & 12.500 & 2.91 & 2980.753 & 39265.156 & 0.380 & bb & 11.8 & -5.4 \\
\hline 5. & 5 170705M2_6 & Standard & 12.500 & 2.90 & 3115.085 & 38459.203 & 0.405 & bb & 12.6 & 0.9 \\
\hline 6. & 6 170705M2_7 & Standard & 12.500 & 2.91 & 3067.311 & 35323.004 & 0.434 & bb & 13.5 & 8.2 \\
\hline \(7 \times\) & 7 170705M2_8 & Standard & 12.500 & 2.90 & 2792.265 & 34923.203 & 0.400 & bb & 12.5 & -0.4 \\
\hline 8. & 8 170705M2_9 & Standard & 12.500 & 2.90 & 2979.658 & 37720.324 & 0.395 & bb & 12.3 & -1.6 \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHxA}

Response Factor: 0.296386
RRF SD: 0.0168441, Relative SD: 5.68316
Response type: Internal Std ( Ref 28 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name} & Std. Conc & RT & Area & IS Area & ponse & & & ev \\
\hline  & 1 170705M2_2 & Standard & 5.000 & 3.15 & 10364.861 & 36934.543 & 1.403 & bb & 4.7 & -5.3 \\
\hline 2 . & 2 170705M2_3 & Standard & 5.000 & 3.16 & 11079.211 & 37581.402 & 1.474 & bb & 5.0 & -0.5 \\
\hline 3 & 3 170705M2_4 & Standard & 5.000 & 3.16 & 11239.421 & 38061.805 & 1.476 & bb & 5.0 & -0.4 \\
\hline \(4 \times 2\) & 4 170705M2_5 & Standard & 5.000 & 3.15 & 10441.585 & 39265.156 & 1.330 & bb & 4.5 & -10.3 \\
\hline 5 , & \(5170705 \mathrm{M} 2 \_6\) & Standard & 5.000 & 3.15 & 11712.890 & 38459.203 & 1.523 & bb & 5.1 & 2.8 \\
\hline 6 - \({ }^{\text {a }}\) & 6 170705M2_7 & Standard & 5.000 & 3.15 & 10900.922 & 35323.004 & 1.543 & bb & 5.2 & 4.1 \\
\hline 7. & 7 170705M2_8 & Standard & 5.000 & 3.15 & 11183.368 & 34923.203 & 1.601 & bb & 5.4 & 8.0 \\
\hline 8 & 8170705 M 2 _9 & Standard & 5.000 & 3.15 & 11355.477 & 37720.324 & 1.505 & bb & 5.1 & 1.6 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset:
U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered:
Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C4-PFHpA}

Response Factor: 0.301574
RRF SD: 0.0129733, Relative SD: 4.30187
Response type: Internal Std (Ref 28 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|lllllllllll}
\hline
\end{tabular}

\section*{Compound name: 1802-PFHxS}

Response Factor: 0.434349
RRF SD: 0.0284465, Relative SD: 6.54922
Response type: Internal Std ( Ref 29 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline creme & \multicolumn{2}{|l|}{\# Name} & Std. Conc & RT & Area & IS Area & \multicolumn{4}{|l|}{Response Primar - Conc. \%Dev} \\
\hline 1.4 & 1 170705M2_2 & Standard & 12.500 & 3.49 & 2594.732 & 6817.387 & 4.758 & bb & 11.0 & -12.4 \\
\hline 2.415 & 2 170705M2_3 & Standard & 12.500 & 3.49 & 2589.928 & 6164.226 & 5.252 & bb & 12.1 & -3.3 \\
\hline  & 3 170705M2_4 & Standard & 12.500 & 3.49 & 2913.508 & 6644.131 & 5.481 & bb & 12.6 & 1.0 \\
\hline 4.6 & 4170705 M 2 _5 & Standard & 12.500 & 3.49 & 2989.887 & 6498.437 & 5.751 & bb & 13.2 & 5.9 \\
\hline 5 - \({ }^{3}\) & 5 170705M2_6 & Standard & 12.500 & 3.49 & 2866.506 & 6113.233 & 5.861 & bb & 13.5 & 8.0 \\
\hline 6 & 6 170705M2_7 & Standard & 12.500 & 3.48 & 2774.778 & 6537.576 & 5.305 & bb & 12.2 & -2.3 \\
\hline \(7 \times\) & 7 170705M2_8 & Standard & 12.500 & 3.48 & 2618.582 & 6160.812 & 5.313 & bb & 12.2 & -2.1 \\
\hline 8 8, & 8 170705M2_9 & Standard & 12.500 & 3.48 & 2704.431 & 5917.072 & 5.713 & bb & 13.2 & 5.2 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset: U:IQ4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C2-PFOA}

Response Factor: 1.14047
RRF SD: 0.0311664, Relative SD: 2.73276
Response type: Internal Std (Ref 30 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & \multicolumn{3}{|l|}{RT Area \({ }_{\text {a }}\) IS Area} & \multicolumn{2}{|l|}{Response Primar...} & \multicolumn{2}{|l|}{Conc. \%Dev} \\
\hline  & 1 170705M2_2 & Standard & 12.500 & 3.62 & 43531.598 & 38977.832 & 13.960 & bb & 12.2 & -2.1 \\
\hline 2 & 2 170705M2_3 & Standard & 12.500 & 3.62 & 48053.043 & 41005.910 & 14.648 & bb & 12.8 & 2.8 \\
\hline \(3.3{ }^{3}\) & 3 170705M2_4 & Standard & 12.500 & 3.62 & 45696.223 & 39029.453 & 14.635 & bb & 12.8 & 2.7 \\
\hline 4 - \({ }^{\text {a }}\) & 4 170705M2_5 & Standard & 12.500 & 3.62 & 46379.480 & 42331.734 & 13.695 & bb & 12.0 & -3.9 \\
\hline & 5 170705M2_6 & Standard & 12.500 & 3.62 & 42715.777 & 36537.793 & 14.614 & bb & 12.8 & 2.5 \\
\hline 6 6. & 6170705 M 2 _7 & Standard & 12.500 & 3.61 & 45589.391 & 39402.188 & 14.463 & bb & 12.7 & 1.5 \\
\hline 7 TREM5 & 7 170705M2_8 & Standard & 12.500 & 3.61 & 40322.508 & 36472.195 & 13.820 & bb & 12.1 & -3.1 \\
\hline 8 - \({ }^{3}\) & 8 170705M2_9 & Standard & 12.500 & 3.61 & 43389.621 & 38161.703 & 14.212 & bb & 12.5 & -0.3 \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFNA}

Response Factor: 0.95797
RRF SD: 0.0563983, Relative SD: 5.88727
Response type: Internal Std (Ref 31 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Ar & IS Area & Response & Primar... & \multicolumn{2}{|l|}{Conc. \%Dev} \\
\hline 1.4 & 1 170705M2_2 & Standard & 12.500 & 3.80 & 47770.836 & 52300.438 & 11.417 & bb & 11.9 & -4.7 \\
\hline 2.4 & 2 170705M2_3 & Standard & 12.500 & 3.80 & 52243.852 & 52519.844 & 12.434 & bb & 13.0 & 3.8 \\
\hline 3.4 andx & 3 170705M2_4 & Standard & 12.500 & 3.80 & 54290.777 & 52957.340 & 12.815 & bb & 13.4 & 7.0 \\
\hline 4 & 4 170705M2_5 & Standard & 12.500 & 3.80 & 54512.996 & 54419.230 & 12.522 & bb & 13.1 & 4.6 \\
\hline 5 \% \({ }^{\text {a }}\) & \(5170705 \mathrm{M} 2 \ldots 6\) & Standard & 12.500 & 3.79 & 48291.633 & 56932.551 & 10.603 & bb & 11.1 & -11.5 \\
\hline \[
6
\] & 6 170705M2_7 & Standard & 12.500 & 3.79 & 51635.496 & 52904.762 & 12.200 & bb & 12.7 & 1.9 \\
\hline  & 7 170705M2_8 & Standard & 12.500 & 3.79 & 48688.023 & 50838.715 & 11.971 & bb & 12.5 & -0.0 \\
\hline 8. & 8170705 M 2 _9 & Standard & 12.500 & 3.79 & 53525.945 & 56534.215 & 11.835 & bb & 12.4 & -1.2 \\
\hline
\end{tabular}

\title{
Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN 945
}

Vista Analytical Laboratory Q2
Dataset:
U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C8-PFOS}

Response Factor: 1.06141
RRF SD: 0.0529547, Relative SD: 4.9891
Response type: Internal Std (Ref 32 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name Type} & Std. Conc & RT & Area & IS Area & Response & rima & ne. & Dev \\
\hline 1.7 & 1 170705M2_2 & Standard & 12.500 & 3.85 & 9413.727 & 9402.628 & 12.515 & bb & 11.8 & -5.7 \\
\hline 2 & 2170705 M 23 & Standard & 12.500 & 3.85 & 10871.231 & 9786.112 & 13.886 & bb & 13.1 & 4.7 \\
\hline 3 m & 3 170705M2_4 & Standard & 12.500 & 3.85 & 11022.589 & 9642.229 & 14.289 & bb & 13.5 & 7.7 \\
\hline \(4{ }^{4}\) & 4 170705M2_5 & Standard & 12.500 & 3.85 & 10620.750 & 9991.625 & 13.287 & bb & 12.5 & 0.1 \\
\hline 5. & 5 170705M2_6 & Standard & 12.500 & 3.85 & 10669.258 & 10308.810 & 12.937 & bb & 12.2 & -2.5 \\
\hline 6. & 6170705 M 2 _7 & Standard & 12.500 & 3.84 & 9939.181 & 9025.101 & 13.766 & bb & 13.0 & 3.8 \\
\hline \(7 \times 1 \times\) & 7 170705M2_8 & Standard & 12.500 & 3.84 & 9623.398 & 9648.409 & 12.468 & bd & 11.7 & -6.0 \\
\hline 8 + \({ }^{\text {d }}\) + & \(8170705 \mathrm{M} 2 \_9\) & Standard & 12.500 & 3.84 & 9748.393 & 9378.699 & 12.993 & bd & 12.2 & -2.1 \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDA}

Response Factor: 0.942006
RRF SD: 0.0532165, Relative SD: 5.64928
Response type: Internal Std (Ref 33 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sid. Conc & RT & Area & IS Area & Response & Primar. & Conc. & Dev \\
\hline 1 & 1 170705M2_2 & Standard & 12.500 & 3.97 & 55632.191 & 59940.918 & 11.601 & bb & 12.3 & -1.5 \\
\hline \(2 \times\) & 2 170705M2_3 & Standard & 12.500 & 3.97 & 56620.121 & 63230.613 & 11.193 & bb & 11.9 & -4.9 \\
\hline 3 & 3 170705M2_4 & Standard & 12.500 & 3.97 & 62663.176 & 59436.520 & 13.179 & bb & 14.0 & 11.9 \\
\hline \(4{ }^{4}+4\) & 4 170705M2_5 & Standard & 12.500 & 3.97 & 57448.082 & 59932.414 & 11.982 & bb & 12.7 & 1.8 \\
\hline \(5 \geq 0\). & 5 170705M2_6 & Standard & 12.500 & 3.96 & 59067.801 & 66052.234 & 11.178 & bb & 11.9 & -5.1 \\
\hline & 6 170705M2_7 & Standard & 12.500 & 3.96 & 57214.508 & 59362.641 & 12.048 & bb & 12.8 & 2.3 \\
\hline  & 7 170705M2_8 & Standard & 12.500 & 3.96 & 58303.238 & 61872.145 & 11.779 & bb & 12.5 & 0.0 \\
\hline 8. & 8170705 M 2 _9 & Standard & 12.500 & 3.96 & 51247.992 & 56989.531 & 11.241 & bb & 11.9 & -4.5 \\
\hline
\end{tabular}

\title{
Quantify Compound Summary Report
}

Dataset:
U:\Q4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered:
Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C2-PFUnA}

Response Factor: 1.08439
RRF SD: 0.0985113, Relative SD: 9.08448
Response type: Internal Std (Ref 34 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT Area IS Area & \multicolumn{2}{|l|}{Area IS Area} & \multicolumn{2}{|l|}{Response Primar...} & \multicolumn{2}{|l|}{Conc. \% \%Dev} \\
\hline 1 - & 1 170705M2_2 & Standard & 12.500 & 4.13 & 62046.969 & 53537.027 & 14.487 & bb & 13.4 & 6.9 \\
\hline 2 小* & 2 170705M2_3 & Standard & 12.500 & 4.14 & 63528.918 & 57247.090 & 13.872 & bb & 12.8 & 2.3 \\
\hline 3 & 3 170705M2_4 & Standard & 12.500 & 4.14 & 55413.711 & 51139.855 & 13.545 & bb & 12.5 & -0.1 \\
\hline 4.4 & 4 170705M2_5 & Standard & 12.500 & 4.14 & 62163.789 & 53307.301 & 14.577 & bb & 13.4 & 7.5 \\
\hline & 5 170705M2_6 & Standard & 12.500 & 4.12 & 61536.848 & 58437.289 & 13.163 & bb & 12.1 & -2.9 \\
\hline \[
6
\] & 6170705 M 2 _7 & Standard & 12.500 & 4.12 & 59057.191 & 60314.734 & 12.239 & bb & 11.3 & -9.7 \\
\hline 7 & 7 170705M2_8 & Standard & 12.500 & 4.12 & 64685.254 & 53582.891 & 15.090 & bb & 13.9 & 11.3 \\
\hline 8. & 8170705 M 2 _9 & Standard & 12.500 & 4.12 & 54245.828 & 59133.727 & 11.467 & bb & 10.6 & -15.4 \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSAA}

Response Factor: 0.240382
RRF SD: 0.0195314, Relative SD: 8.12516
Response type: Internal Std ( Ref 34 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name} & Std. Conc & RT & Area & IS Area & Response & imar & Conc. & \%Dev \\
\hline \(1+\sqrt{4}\) & 1 170705M2_2 & Standard & 12.500 & 4.00 & 13824.592 & 53537.027 & 3.228 & bb & 13.4 & 7.4 \\
\hline 2 & 2 170705M2_3 & Standard & 12.500 & 4.00 & 14234.324 & 57247.090 & 3.108 & bb & 12.9 & 3.4 \\
\hline & 3 170705M2_4 & Standard & 12.500 & 4.00 & 13112.977 & 51139.855 & 3.205 & bb & 13.3 & 6.7 \\
\hline 4 - \({ }^{2}\) & 4 170705M2_5 & Standard & 12.500 & 4.00 & 14049.660 & 53307.301 & 3.294 & bb & 13.7 & 9.6 \\
\hline 5 & 5170705 M 2 _6 & Standard & 12.500 & 4.00 & 12826.344 & 58437.289 & 2.744 & bb & 11.4 & -8.7 \\
\hline 6 & 6 170705M2_7 & Standard & 12.500 & 3.99 & 13268.185 & 60314.734 & 2.750 & bb & 11.4 & -8.5 \\
\hline & 7 170705M2_8 & Standard & 12.500 & 3.98 & 12943.525 & 53582.891 & 3.020 & bb & 12.6 & 0.5 \\
\hline 8 \% & \(8170705 \mathrm{M2}\) _9 & Standard & 12.500 & 3.99 & 12724.132 & 59133.727 & 2.690 & bb & 11.2 & -10.5 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset:
U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: d5-N-EtFOSAA}

Response Factor: 0.2474
RRF SD: 0.0204724, Relative SD: 8.27503
Response type: Internal Std (Ref 34 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Primar... & Conc & \%Dev \\
\hline 1. + ar & 1 170705M2_2 & Standard & 12.500 & 4.07 & 13874.378 & 53537.027 & 3.239 & bb & 13.1 & 4.8 \\
\hline 2 2n \({ }^{2}\) & 2 170705M2_3 & Standard & 12.500 & 4.07 & 13899.495 & 57247.090 & 3.035 & bb & 12.3 & -1.9 \\
\hline 3 , & 3 170705M2_4 & Standard & 12.500 & 4.07 & 13745.829 & 51139.855 & 3.360 & bb & 13.6 & 8.6 \\
\hline \(4 \quad 1{ }^{4}\) & 4 170705M2_5 & Standard & 12.500 & 4.07 & 14579.158 & 53307.301 & 3.419 & bb & 13.8 & 10.5 \\
\hline 5 & 5 170705M2_6 & Standard & 12.500 & 4.06 & 13540.418 & 58437.289 & 2.896 & bb & 11.7 & -6.3 \\
\hline 6. & 6170705 M 2 _7 & Standard & 12.500 & 4.05 & 14363.329 & 60314.734 & 2.977 & bb & 12.0 & -3.7 \\
\hline 7.4 & 7 170705M2_8 & Standard & 12.500 & 4.05 & 13574.722 & 53582.891 & 3.167 & bb & 12.8 & 2.4 \\
\hline 8 - \({ }^{\text {a }}\) & 8 170705M2_9 & Standard & 12.500 & 4.06 & 12523.236 & 59133.727 & 2.647 & bb & 10.7 & -14.4 \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDoA}

Response Factor: 0.126983
RRF SD: 0.0114927, Relative SD: 9.05061
Response type: Internal Std (Ref 34 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Wam & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & imar & Conc. & \%Dev \\
\hline 1. & 1 170705M2_2 & Standard & 12.500 & 4.30 & 7090.979 & 53537.027 & 1.656 & bb & 13.0 & 4.3 \\
\hline 2 & 2 170705M2_3 & Standard & 12.500 & 4.30 & 7251.595 & 57247.090 & 1.583 & bb & 12.5 & -0.2 \\
\hline 3 & 3 170705M2_4 & Standard & 12.500 & 4.30 & 6817.750 & 51139.855 & 1.666 & bb & 13.1 & 5.0 \\
\hline 4 & 4 170705M2_5 & Standard & 12.500 & 4.30 & 7804.063 & 53307.301 & 1.830 & bb & 14.4 & 15.3 \\
\hline 5 & 5 170705M2_6 & Standard & 12.500 & 4.29 & 6537.772 & 58437.289 & 1.398 & bb & 11.0 & -11.9 \\
\hline 6 & 6 170705M2_7 & Standard & 12.500 & 4.28 & 7053.735 & 60314.734 & 1.462 & bb & 11.5 & -7.9 \\
\hline & 7 170705M2 8 & Standard & 12.500 & 4.28 & 7085.070 & 53582.891 & 1.653 & bb & 13.0 & 4.1 \\
\hline 8 . & \(8170705 \mathrm{M} 2 \ldots 9\) & Standard & 12.500 & 4.28 & 6858.020 & 59133.727 & 1.450 & bb & 11.4 & -8.7 \\
\hline
\end{tabular}

\section*{Vista Analytical Laboratory Q2}

Dataset: U:IQ4.PRO\results1170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C2-PFTeDA}

Response Factor: 0.882761
RRF SD: 0.0469789, Relative SD: 5.32181
Response type: Internal Std (Ref 34 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Primar... & Conc & \%Dev \\
\hline \(1 \times 2\) & 1 170705M2_2 & Standard & 12.500 & 4.64 & 46747.992 & 53537.027 & 10.915 & bb & 12.4 & -1.1 \\
\hline \[
2 x
\] & 2 170705M2_3 & Standard & 12.500 & 4.64 & 50027.531 & 57247.090 & 10.924 & bb & 12.4 & -1.0 \\
\hline 3 - & 3 170705M2_4 & Standard & 12.500 & 4.64 & 47718.160 & 51139.855 & 11.664 & bb & 13.2 & 5.7 \\
\hline 4. & 4 170705M2_5 & Standard & 12.500 & 4.64 & 50935.184 & 53307.301 & 11.944 & bb & 13.5 & 8.2 \\
\hline 5 2. & 5170705 M 2 _6 & Standard & 12.500 & 4.63 & 49814.836 & 58437.289 & 10.656 & bb & 12.1 & -3.4 \\
\hline 6 \%restix & 6 170705M2_7 & Standard & 12.500 & 4.62 & 49546.270 & 60314.734 & 10.268 & bb & 11.6 & -6.9 \\
\hline  & 7 170705M2_8 & Standard & 12.500 & 4.61 & 48918.633 & 53582.891 & 11.412 & bb & 12.9 & 3.4 \\
\hline + +1 & 8170705 M 2 _9 & Standard & 12.500 & 4.62 & 49646.109 & 59133.727 & 10.494 & bb & 11.9 & -4.9 \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFHxA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 28 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline -3tm & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & fima & onc & Dev \\
\hline & 1 170705M2_2 & Standard & 5.000 & 3.15 & 36934.543 & 36934.543 & 5.000 & bb & 5.0 & 0.0 \\
\hline \(2=4\) & 2 170705M2_3 & Standard & 5.000 & 3.16 & 37581.402 & 37581.402 & 5.000 & bb & 5.0 & 0.0 \\
\hline \(3.4 \pm 4\) & 3 170705M2_4 & Standard & 5.000 & 3.16 & 38061.805 & 38061.805 & 5.000 & bb & 5.0 & 0.0 \\
\hline & 4 170705M2_5 & Standard & 5.000 & 3.15 & 39265.156 & 39265.156 & 5.000 & bb & 5.0 & 0.0 \\
\hline & 5 170705M2_6 & Standard & 5.000 & 3.15 & 38459.203 & 38459.203 & 5.000 & bb & 5.0 & 0.0 \\
\hline 6 & 6170705 M 2 _7 & Standard & 5.000 & 3.15 & 35323.004 & 35323.004 & 5.000 & bb & 5.0 & 0.0 \\
\hline \(7 \times 4\) & 7 170705M2_8 & Standard & 5.000 & 3.15 & 34923.203 & 34923.203 & 5.000 & bb & 5.0 & 0.0 \\
\hline 8. & 8 170705M2_9 & Standard & 5.000 & 3.15 & 37720.324 & 37720.324 & 5.000 & bb & 5.0 & 0.0 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset: U:IQ4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 29 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name Luw Hixin Type} & Std. Conc & RT & Area & IS Area & sponse & Primar & Conc. & \%Dev \\
\hline 1. & 1 170705M2_2 & Standard & 12.500 & 3.49 & 6817.387 & 6817.387 & 12.500 & bb & 12.5 & 0.0 \\
\hline 2 - & 2 170705M2_3 & Standard & 12.500 & 3.49 & 6164.226 & 6164.226 & 12.500 & bb & 12.5 & 0.0 \\
\hline 3 , \({ }^{\text {a }}\) & 3 170705M2_4 & Standard & 12.500 & 3.49 & 6644.131 & 6644.131 & 12.500 & bb & 12.5 & 0.0 \\
\hline 4.4 & 4 170705M2_5 & Standard & 12.500 & 3.49 & 6498.437 & 6498.437 & 12.500 & bb & 12.5 & 0.0 \\
\hline 50.4 & 5 170705M2_6 & Standard & 12.500 & 3.48 & 6113.233 & 6113.233 & 12.500 & bb & 12.5 & 0.0 \\
\hline  & 6 170705M2_7 & Standard & 12.500 & 3.48 & 6537.576 & 6537.576 & 12.500 & bb & 12.5 & 0.0 \\
\hline 7 \% & 7 170705M2_8 & Standard & 12.500 & 3.48 & 6160.812 & 6160.812 & 12.500 & bb & 12.5 & 0.0 \\
\hline 8 CH & 8 170705M2_9 & Standard & 12.500 & 3.48 & 5917.072 & 5917.072 & 12.500 & bb & 12.5 & 0.0 \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 30 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name} & Std Conc & \multicolumn{3}{|l|}{RT Area} & \multicolumn{2}{|l|}{Response Primar...} & \multicolumn{2}{|l|}{Conc. \%Dev} \\
\hline 1 , . \({ }^{\text {a }}\) & 1 170705M2_2 & Standard & 12.500 & 3.62 & 38977.832 & 38977.832 & 12.500 & bb & 12.5 & 0.0 \\
\hline 2 & 2 170705M2_3 & Standard & 12.500 & 3.62 & 41005.910 & 41005.910 & 12.500 & bb & 12.5 & 0.0 \\
\hline \[
3
\] & 3 170705M2_4 & Standard & 12.500 & 3.62 & 39029.453 & 39029.453 & 12.500 & bb & 12.5 & 0.0 \\
\hline 4 & 4 170705M2_5 & Standard & 12.500 & 3.62 & 42331.734 & 42331.734 & 12.500 & bb & 12.5 & 0.0 \\
\hline & 5 170705M2_6 & Standard & 12.500 & 3.62 & 36537.793 & 36537.793 & 12.500 & bb & 12.5 & 0.0 \\
\hline 6 & \(6170705 \mathrm{M} 2 \_7\) & Standard & 12.500 & 3.61 & 39402.188 & 39402.188 & 12.500 & bb & 12.5 & 0.0 \\
\hline 7 & 7 170705M2_8 & Standard & 12.500 & 3.61 & 36472.195 & 36472.195 & 12.500 & bb & 12.5 & 0.0 \\
\hline 8. \({ }^{\text {a }}\) & 8 170705M2_9 & Standard & 12.500 & 3.61 & 38161.703 & 38161.703 & 12.500 & bb & 12.5 & 0.0 \\
\hline
\end{tabular}

Dataset: U:\Q4.PRO|results1170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 31 ), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Compound name: 13C4-PFOS}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 32 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name \({ }^{\text {a }}\), Type} & Std. Conc & RT & Area & IS Area & \multicolumn{3}{|l|}{Response Primar. . Conc.} & \%Dev \\
\hline 1. & 1 170705M2_2 & Standard & 12.500 & 3.85 & 9402.628 & 9402.628 & 12.500 & bb & 12.5 & 0.0 \\
\hline 2 & 2 170705M2_3 & Standard & 12.500 & 3.85 & 9786.112 & 9786.112 & 12.500 & bb & 12.5 & 0.0 \\
\hline 3 & 3 170705M2_4 & Standard & 12.500 & 3.85 & 9642.229 & 9642.229 & 12.500 & bb & 12.5 & 0.0 \\
\hline 4 & 4 170705M2_5 & Standard & 12.500 & 3.85 & 9991.625 & 9991.625 & 12.500 & bb & 12.5 & 0.0 \\
\hline \(5 \times\) & 5 170705M2_6 & Standard & 12.500 & 3.85 & 10308.810 & 10308.810 & 12.500 & bb & 12.5 & 0.0 \\
\hline & 6 170705M2_7 & Standard & 12.500 & 3.84 & 9025.101 & 9025.101 & 12.500 & bb & 12.5 & 0.0 \\
\hline 7 - \({ }^{\text {a }}\) - & 7 170705M2_8 & Standard & 12.500 & 3.84 & 9648.409 & 9648.409 & 12.500 & bb & 12.5 & 0.0 \\
\hline 8 tater & 8 170705M2_9 & Standard & 12.500 & 3.84 & 9378.699 & 9378.699 & 12.500 & bb & 12.5 & 0.0 \\
\hline
\end{tabular}

\section*{Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN 945}

Vista Analytical Laboratory Q2
Dataset: U:IQ4.PRO|results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 19, 2017 13:49:03 Pacific Daylight Time

Compound name: 13C6-PFDA
Response Factor: 1
RRF SD: 4.19625e-017, Relative SD: 4.19625e-015
Response type: Internal Std (Ref 33 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Primari.. & Conc. & \%Dev \\
\hline 4deme & 1 170705M2_2 & Standard & 12.500 & 3.97 & 59940.918 & 59940.918 & 12.500 & bb & 12.5 & 0.0 \\
\hline 4. 4 \% & 2 170705M2_3 & Standard & 12.500 & 3.97 & 63230.613 & 63230.613 & 12.500 & bb & 12.5 & 0.0 \\
\hline 4heme & 3 170705M2_4 & Standard & 12.500 & 3.97 & 59436.520 & 59436.520 & 12.500 & bb & 12.5 & 0.0 \\
\hline \(4{ }^{4} \times 4\) & 4 170705M2_5 & Standard & 12.500 & 3.97 & 59932.414 & 59932.414 & 12.500 & bb & 12.5 & 0.0 \\
\hline 5.4 & 5 170705M2_6 & Standard & 12.500 & 3.96 & 66052.234 & 66052.234 & 12.500 & bb & 12.5 & 0.0 \\
\hline \(6 \times 1\) & 6170705 M 2 _7 & Standard & 12.500 & 3.96 & 59362.641 & 59362.641 & 12.500 & bb & 12.5 & 0.0 \\
\hline \[
7
\] & 7 170705M2_8 & Standard & 12.500 & 3.96 & 61872.145 & 61872.145 & 12.500 & bb & 12.5 & 0.0 \\
\hline 8.4 & 8 170705M2_9 & Standard & 12.500 & 3.96 & 56989.531 & 56989.531 & 12.500 & bb & 12.5 & 0.0 \\
\hline
\end{tabular}

\section*{Compound name: 13C7-PFUnA}

Response Factor: 1
RRF SD: 1.18688e-016, Relative SD: 1.18688e-014
Response type: Internal Std (Ref 34 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std Conc & RT & Area & IS Area & Response & Primar... & Conc. & Dey \\
\hline 1 & 1 170705M2_2 & Standard & 12.500 & 4.13 & 53537.027 & 53537.027 & 12.500 & bb & 12.5 & 0.0 \\
\hline 2 & 2 170705M2_3 & Standard & 12.500 & 4.13 & 57247.090 & 57247.090 & 12.500 & bb & 12.5 & 0.0 \\
\hline 3 , + a & 3 170705M2_4 & Standard & 12.500 & 4.14 & 51139.855 & 51139.855 & 12.500 & bb & 12.5 & 0.0 \\
\hline 4 & 4 170705M2_5 & Standard & 12.500 & 4.14 & 53307.301 & 53307.301 & 12.500 & bb & 12.5 & 0.0 \\
\hline 5 & 5170705 M 2 _6 & Standard & 12.500 & 4.12 & 58437.289 & 58437.289 & 12.500 & bb & 12.5 & 0.0 \\
\hline 6 \% \(x^{2}\) & 6 170705M2_7 & Standard & 12.500 & 4.12 & 60314.734 & 60314.734 & 12.500 & bb & 12.5 & 0.0 \\
\hline 7 & \(7170705 \mathrm{M2} 28\) & Standard & 12.500 & 4.12 & 53582.891 & 53582.891 & 12.500 & bb & 12.5 & 0.0 \\
\hline 8. & 8170705 M 2 . 9 & Standard & 12.500 & 4.12 & 59133.727 & 59133.727 & 12.500 & bb & 12.5 & 0.0 \\
\hline
\end{tabular}
Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN
Vista Analytical Laboratory
Dataset: \(\quad\) Untitled
Last Altered: \(\quad\) Wednesday, July 19, 2017 14:00:18 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 19, 2017 14:00:51 Pacific Daylight Time

\section*{Method: U:IQ4.PROIMethDBIPFAS_L14-6-7-17B.mdb 19 Jul 2017 13:56:08} Calibration: U:IQ4.PROICurveDBIC18 VAL-PFAS Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Compound name: PFBS


Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO|results1170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

\section*{Method: U:IQ4.PROIMethDBIPFAS_L14-6-7-17B.mdb 19 Jul 2017 13:17:05}

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Compound name: PFBS
Correlation coefficient: \(\mathrm{r}=0.999311, \mathrm{r}^{\wedge} 2=0.998622\)
Calibration curve: \(1.8654{ }^{*} x+0.177147\)
Response type: Internal Std (Ref 15 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: \(r=0.999586, r^{\wedge} 2=0.999173\)
Calibration curve: 1.37106 * \(x+0.396864\)
Response type: Internal Std (Ref 16 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFHpA
Correlation coefficient: \(\mathrm{r}=0.998862, \mathrm{r}^{\wedge} 2=0.997726\)
Calibration curve: \(1.17677{ }^{*} x+0.307824\)
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFHxS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999590\)
Calibration curve: \(-0.00247497{ }^{*} x^{\wedge} 2+1.87329\) * \(x+-0.00705947\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: \(\mathrm{r}=0.999420, \mathrm{r}^{\wedge} 2=0.998839\)
Calibration curve: 0.933761 * x + 0.193294
Response type: Internal Std (Ref 19 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFNA
Correlation coefficient: \(\mathrm{r}=0.999280, \mathrm{r}^{\wedge} 2=0.998560\)
Calibration curve: 1.11098 * x + 0.0688283
Response type: Internal Std (Ref 20 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report}

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PROiresults\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFOS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998873\)
Calibration curve: -0.000575658 * \({ }^{\wedge} 2+1.05897\) * \(x+0.0534494\)
Response type: Internal Std (Ref 21 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROlresults\170705M21170705M2-CRV_L14.qld \\
& \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time
\end{tabular}

Compound name: PFDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998398\)
Calibration curve: \(0.000759384{ }^{*} x^{\wedge} 2+1.12777{ }^{*} x+0.228347\)
Response type: Internal Std (Ref 22 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: U:\Q4.PROYresults\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFUnA
Correlation coefficient: \(\mathrm{r}=0.998781, \mathrm{r}^{\wedge} 2=0.997563\)
Calibration curve: 0.901738 * \(x+0.0982118\)
Response type: Internal Std (Ref 23 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Vista Analytical Laboratory Q1}

Dataset: U:IQ4.PRO\results1170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: N-MeFOSAA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999610\)
Calibration curve: -0.00133241 * x^2 + 1.61336 * \(x+-0.019444\)
Response type: Internal Std (Ref 24 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: N-EtFOSAA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999426\)
Calibration curve: \(0.00157116^{*} x^{\wedge} 2+1.12286{ }^{*} x+0.0790977\)
Response type: Internal Std (Ref 25 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results1170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFDoA
Correlation coefficient: \(r=0.999542, r^{\wedge} 2=0.999083\)
Calibration curve: 0.830738 * \(x+0.0366231\)
Response type: Internal Std (Ref 26 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: \\ U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld}

Last Altered:
Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFTrDA
Correlation coefficient: \(\mathrm{r}=0.999307, \mathrm{r}^{\wedge} 2=0.998614\)
Calibration curve: 10.821 * \(x+2.72105\)
Response type: Internal Std (Ref 26 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Vista Analytical Laboratory Q1}

\section*{Dataset: U:IQ4.PRO|results\170705M2\170705M2-CRV_L14.qld}

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:46:10 Pacific Daylight Time

Compound name: PFTeDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999498\)
Calibration curve: -0.000989892 * \(x^{\wedge} 2+1.18715\) * \(x+0.13375\)
Response type: Internal Std (Ref 27 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld}

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Method: U:IQ4.PRO|MethDBIPFAS_L14-6-7-17B.mdb 19 Jul 2017 13:17:05}

Calibration: 19 Jul 2017 13:31:36

Name: 170705M2_2, Date: 05-Jul-2017, Time: 13:27:57, ID: ST170705M2-1 PFC CS-2 17G0503, Description: PFC CS-2 17G0503



13C3-PFBS



13C2-PFHxA



13C4-PFHpA



1802-PFHxS


\section*{Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld}
\(\begin{array}{ll}\text { Last Altered: } & \text { Wednesday, July 19, } 2017 \text { 13:31:36 Pacific Daylight Time } \\ \text { Printed: } & \text { Wednesday, July 19, } 2017 \text { 13:44:34 Pacific Daylight Time }\end{array}\)

Name: 170705M2_2, Date: 05-Jul-2017, Time: 13:27:57, ID: ST170705M2-1 PFC CS-2 17G0503, Description: PFC CS-2 17 G0503



13C2-PFOA


PFNA


13C5-PFNA


PFDA



13C2-PFDA


PFOS


13C8-PFOS


\section*{Vista Analytical Laboratory}

Dataset:
U:IQ4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Name: 170705M2_2, Date: 05-Jul-2017, Time: 13:27:57, ID: ST170705M2-1 PFC CS-2 17G0503, Description: PFC CS-2 17G0503}

\section*{PFUnA}



\section*{13C2-PFUnA}


\section*{N-MeFOSAA}

d3-N-MeFOSAA


\section*{N-EtFOSAA}


d5-N-EtFOSAA
F47:MRM of 1 channel,ES-


PFDoA


13C2-PFDoA


Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_2, Date: 05-Jul-2017, Time: 13:27:57, ID: ST170705M2-1 PFC CS-2 17G0503, Description: PFC CS-2 17 G0503


Dataset: U:IQ4.PROIresults1170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_2, Date: 05-Jul-2017, Time: 13:27:57, ID: ST170705M2-1 PFC CS-2 17G0503, Description: PFC CS-2 17G0503


\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO|results1170705M21170705M2-CRV_L14.qld \\
& Last Altered: \\
Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

Name: 170705M2_3, Date: 05-Jul-2017, Time: 13:38:43, ID: ST170705M2-2 PFC CS-1 17G0504, Description: PFC CS-1 17G0504


Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_3, Date: 05-Jul-2017, Time: 13:38:43, ID: ST170705M2-2 PFC CS-1 17G0504, Description: PFC CS-1 17 G0504

PFOA



13C2-PFOA




13C5-PFNA




13C2-PFDA


PFOS


13C8-PFOS
F31:MRM of 1 channel,ES-
\(507>79.9\)


\section*{Name: 170705M2_3, Date: 05-Jul-2017, Time: 13:38:43, ID: ST170705M2-2 PFC CS-1 17G0504, Description: PFC CS-1 17G0504}

\section*{PFUnA \\  \\ }

13C2-PFUnA


\section*{N-MeFOSAA}


d3-N-MeFOSAA



d5-N-EtFOSAA



13C2-PFDoA
F50:MRM of 1 channel,ES-


\section*{Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld}

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_3, Date: 05-Jul-2017, Time: 13:38:43, ID: ST170705M2-2 PFC CS-1 17G0504, Description: PFC CS-1 17G0504

\section*{PFTrDA}



13C2-PFTeDA


\section*{PFTeDA}


13C2-PFTeDA




13C3-PFHxS




Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_4, Date: 05-Jul-2017, Time: 13:49:28, ID: ST170705M2-3 PFC CS0 17G0505, Description: PFC CS0 17G0505



13C3-PFBS


\section*{PFHxA}


13C2-PFHxA



13C4-PFHpA


PFHxS


1802-PFHxS

Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Name: 170705M2_4, Date: 05-Jul-2017, Time: 13:49:28, ID: ST170705M2-3 PFC CS0 17G0505, Description: PFC CS0 17G0505}



13C2-PFOA


\section*{PFNA}



13C5-PFNA


\section*{PFDA}



\section*{13C2-PFDA}


\section*{PFOS}


13C8-PFOS


\section*{Vista Analytical Laboratory}

Dataset: U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_4, Date: 05-Jul-2017, Time: 13:49:28, ID: ST170705M2-3 PFC CS0 17G0505, Description: PFC CS0 17G0505

\section*{PFUnA}



13C2-PFUnA


\section*{N-MeFOSAA}

d3-N-MeFOSAA

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{N-EtFOSAA} \\
\hline \multicolumn{3}{|r|}{F46:MRM of 2 channels,ES-} \\
\hline & & \(584.2>419\) \\
\hline 100 & \multicolumn{2}{|l|}{\(\mathrm{N}-\mathrm{EtFOSAA} \quad 2.602 \mathrm{e}+004\)} \\
\hline 1007 & \multicolumn{2}{|l|}{4.07 \}} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{25733}} \\
\hline \% & & \\
\hline
\end{tabular}

d5-N-EtFOSAA
47:MRM of 1 channel,ES\(589.3>419\)


PFDoA


13C2-PFDoA


Dataset: U:\Q4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Name: 170705M2_4, Date: 05-Jul-2017, Time: 13:49:28, ID: ST170705M2-3 PFC CS0 17G0505, Description: PFC CS0 17G0505}

\section*{PFTrDA}



13C2-PFTeDA


\section*{PFTeDA}


13C2-PFTeDA


\section*{13C5-PFHxA}


13C8-PFOA


13C3-PFHxS


13C9-PFNA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170705M2\170705M2-CRV_L14.qId \\
& \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

Name: 170705M2_4, Date: 05-Jul-2017, Time: 13:49:28, ID: ST170705M2-3 PFC CS0 17G0505, Description: PFC CS0 17G0505


\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170705M21170705M2-CRV_L14.qld \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

Name: 170705M2_5, Date: 05-Jul-2017, Time: 14:00:11, ID: ST170705M2-4 PFC CS1 17G0506, Description: PFC CS1 17G0506


Dataset: U:\Q4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Name: 170705M2_5, Date: 05-Jul-2017, Time: 14:00:11, ID: ST170705M2-4 PFC CS1 17G0506, Description: PFC CS1 17 G0506}



\section*{13C2-PFOA}


\section*{PFNA}



13C5-PFNA



13C2-PFDA


\section*{PFOS}


13C8-PFOS
F31:MRM of 1 channel,ES-


Name: 170705M2_5, Date: 05-Jul-2017, Time: 14:00:11, ID: ST170705M2-4 PFC CS1 17G0506, Description: PFC CS1 17G0506

\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

Name: 170705M2_5, Date: 05-Jul-2017, Time: 14:00:11, ID: ST170705M2-4 PFC CS1 17G0506, Description: PFC CS1 17G0506



\section*{13C2-PFTeDA}


\section*{PFTeDA}


13C2-PFTeDA



13C8-PFOA


\section*{13C3-PFHxS}



\section*{Vista Analytical Laboratory}

Dataset: U:\Q4.PROVresults\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_5, Date: 05-Jul-2017, Time: 14:00:11, ID: ST170705M2-4 PFC CS1 17G0506, Description: PFC CS1 17 G0506

13C6-PFDA


\section*{Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld}

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Name: 170705M2_6, Date: 05-Jul-2017, Time: 14:10:49, ID: ST170705M2-5 PFC CS2 17G0507, Description: PFC CS2 17G0507}

\section*{PFBS}
F6:MRM of 2 channels,ES-
\(299>79.7\)
\(6.198 e+004\)


13C3-PFBS


\section*{PFHxA}



13C2-PFHxA


\section*{PFHpA}


13C4-PFHpA


PFHxS


1802-PFHxS

Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld
\begin{tabular}{ll} 
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

\section*{Name: 170705M2_6, Date: 05-Jul-2017, Time: 14:10:49, ID: ST170705M2-5 PFC CS2 17G0507, Description: PFC CS2 17 G0507}



13C2-PFOA



13C5-PFNA


\section*{PFDA}



13C2-PFDA


PFOS


13C8-PFOS

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170705M21170705M2-CRV_L14.qld \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

Name: 170705M2_6, Date: 05-Jul-2017, Time: 14:10:49, ID: ST170705M2-5 PFC CS2 17G0507, Description: PFC CS2 17G0507

\section*{PFUnA}
\begin{tabular}{c} 
F41:MRM of 2 channels,ES- \\
\(562.9>518.9\) \\
\\
100 \\
\hline
\end{tabular}


13C2-PFUnA


\section*{N-MeFOSAA}

d3-N-MeFOSAA



d5-N-EtFOSAA


PFDoA



13C2-PFDoA


Name: 170705M2_6, Date: 05-Jul-2017, Time: 14:10:49, ID: ST170705M2-5 PFC CS2 17G0507, Description: PFC CS2 17G0507



PFTeDA


13C2-PFTeDA



13C8-PFOA


13C3-PFHxS

Dataset: U:IQ4.PRO\results\170705M21170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time

Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_6, Date: 05-Jul-2017, Time: 14:10:49, ID: ST170705M2-5 PFC CS2 17G0507, Description: PFC CS2 17 G0507




\section*{Name: 170705M2_7, Date: 05-Jul-2017, Time: 14:21:36, ID: ST170705M2-6 PFC CS3 17G0508, Description: PFC CS3 17G0508}

PFBS



13C3-PFBS


\section*{PFHxA}


13C2-PFHxA


PFHpA


12:MRM of 2 channels,ES-


\section*{13C4-PFHpA}


PFHxS
F14:MRM of 2 channels,ES-


F14:MRM of 2 channels,ES-


18O2-PFHxS
F16:MRM of 1 channel,ES-

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170705M21170705M2-CRV_L14.qId \\
& \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

\section*{Name: 170705M2_7, Date: 05-Jul-2017, Time: 14:21:36, ID: ST170705M2-6 PFC CS3 17G0508, Description: PFC CS3 17G0508}



13C2-PFOA


\section*{PFNA}



13C5-PFNA


PFDA



13C2-PFDA


PFOS


F28:MRM of 2 channels, ES-


13C8-PFOS
F31:MRM of 1 channel,ES-
\(507>79.9\)


Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Name: 170705M2_7, Date: 05-Jul-2017, Time: 14:21:36, ID: ST170705M2-6 PFC CS3 17G0508, Description: PFC CS3 17G0508}



13C2-PFUnA


d3-N-MeFOSAA


d5-N-EtFOSAA



13C2-PFDoA


\section*{Dataset: \\ U:IQ4.PRO\results\170705M21170705M2-CRV_L14.qld}

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_7, Date: 05-Jul-2017, Time: 14:21:36, ID: ST170705M2-6 PFC CS3 17G0508, Description: PFC CS3 17G0508


13C2-PFTeDA



13C2-PFTeDA


13C5-PFHxA


\section*{13C8-PFOA}


13C3-PFHxS


13C9-PFNA


Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_7, Date: 05-Jul-2017, Time: 14:21:36, ID: ST170705M2-6 PFC CS3 17G0508, Description: PFC CS3 17G0508



13C7-PFUnA
F44:MRM of 1 channel,ES
\(570.1>524.8\)


\section*{Name: 170705M2_8, Date: 05-Jul-2017, Time: 14:32:14, ID: ST170705M2-7 PFC CS4 17G0509, Description: PFC CS4 17G0509}
PFBS
\begin{tabular}{c} 
F6:MRM of 2 channels,ES- \\
\(299>79.7\) \\
\\
\hline 100 \\
\hline
\end{tabular}


\section*{13C3-PFBS}

\section*{PFHxA}



13C2-PFHxA



PFHxS


1802-PFHxS

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170705M21170705M2-CRV_L14.qld \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

Name: 170705M2_8, Date: 05-Jul-2017, Time: 14:32:14, ID: ST170705M2-7 PFC CS4 17G0509, Description: PFC CS4 17G0509

Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld

Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

\section*{Name: 170705M2_8, Date: 05-Jul-2017, Time: 14:32:14, ID: ST170705M2-7 PFC CS4 17G0509, Description: PFC CS4 17G0509}

\section*{PFUnA}



13C2-PFUnA


\section*{N-MeFOSAA}


d3-N-MeFOSAA


\section*{N-EtFOSAA}


d5-N-EtFOSAA


PFDoA


13C2-PFDoA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170705M21170705M2-CRV_L14.qld \\
Last Altered: & Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time
\end{tabular}

Name: 170705M2_8, Date: 05-Jul-2017, Time: 14:32:14, ID: ST170705M2-7 PFC CS4 17G0509, Description: PFC CS4 17G0509

PFTrDA
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{F55:MRM of 2 channels,ES-} \\
\hline & & \(662.9>618.9\) \\
\hline \multirow{3}{*}{100} & PFTrDA & \(6.345 \mathrm{e}+006\) \\
\hline & 4.44 & \\
\hline & 3.10 e 5 & \\
\hline \multirow[t]{2}{*}{\%-} & 6326929 & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}


13C2-PFTeDA


PFTEDA


13C2-PFTeDA


\section*{13C5-PFHxA}


13C8-PFOA


\section*{13C3-PFHxS}


Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_8, Date: 05-Jul-2017, Time: 14:32:14, ID: ST170705M2-7 PFC CS4 17G0509, Description: PFC CS4 17G0509

Printed: \(\quad\) Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_9, Date: 05-Jul-2017, Time: 14:43:01, ID: ST170705M2-8 PFC CS5 17G0510, Description: PFC CS5 17G0510


Dataset: U:\Q4.PRO\results\170705M2\170705M2-CRV_L14.qld
Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_9, Date: 05-Jul-2017, Time: 14:43:01, ID: ST170705M2-8 PFC CS5 17G0510, Description: PFC CS5 17 G0510

PFOA


F17:MRM of 2 channels,ES


13C2-PFOA


\section*{PFNA}


F23:MRM of 2 channels,ES-


13C5-PFNA



F33:MRM of 2 channels,ES
\(513>219\) \(1.358 \mathrm{e}+006\)


13C2-PFDA


PFOS


F28:MRM of 2 channels, ES\(499>99\)


13C8-PFOS
F31:MRM of 1 channel,ES-


Dataset: U:IQ4.PRO|results1170705M21170705M2-CRV_L14.qld
Last Altered:
Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_9, Date: 05-Jul-2017, Time: 14:43:01, ID: ST170705M2-8 PFC CS5 17G0510, Description: PFC CS5 17G0510

\section*{PFUnA}



13C2-PFUnA


\section*{N-MeFOSAA}


F43:MRM of 2 channels,ES\(70.1>483\)

d3-N-MeFOSAA


\section*{N-EtFOSAA}


d5-N-EtFOSAA


\section*{PFDoA}


13C2-PFDoA


Last Altered: Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_9, Date: 05-Jul-2017, Time: 14:43:01, ID: ST170705M2-8 PFC CS5 17G0510, Description: PFC CS5 17G0510


Dataset: U:IQ4.PROIresults1170705M21170705M2-CRV_L14.qld
Last Altered: \(\quad\) Wednesday, July 19, 2017 13:31:36 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:44:34 Pacific Daylight Time

Name: 170705M2_9, Date: 05-Jul-2017, Time: 14:43:01, ID: ST170705M2-8 PFC CS5 17G0510, Description: PFC CS5 17G0510

13C6-PFDA


13C7-PFUnA


Dataset: U:\Q4.PRO\results\170705M2\170705M2-10.qld

Last Altered: Wednesday, July 19, 2017 13:51:24 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:51:47 Pacific Daylight Time

Inst Biank
FC 7-19-17

Method: U:IQ4.PROMMethDBIPFAS_L14-6-7-17B.mdb 19 Jul 2017 13:17:05 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170705M2_10, Date: 05-Jul-2017, Time: 14:53:47, ID: IPA, Description: IPA




\(\begin{array}{lr}\text { 13C2-PFHXA } \\ \text { IPA IPA } & \text { F9:MRM of } 1 \text { channel,ES- } \\ - & 315>269.8\end{array}\)


\section*{PFHpA}

IPA IPA



\section*{13C4-PFHpA}



\section*{1802-PFHxS
IPA IPA F16:MRM of 1 channel,ES\(403>102.6\) \(1.000 \mathrm{e}-003\)}


\section*{Dataset: U:\Q4.PRO\results\170705M2\170705M2-10.qld}

Last Altered: Wednesday, July 19, 2017 13:51:24 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:51:47 Pacific Daylight Time

\section*{Name: 170705M2_10, Date: 05-Jul-2017, Time: 14:53:47, ID: IPA, Description: IPA}

\section*{Total PFOA \\ }




IPA IPA


\section*{13C2-PFDA}


\section*{Total PFOS}



13C8-PFOS
IPA IPA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170705M2\170705M2-10.qld \\
& \\
Last Altered: & Wednesday, July 19, 2017 13:51:24 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:51:47 Pacific Daylight Time
\end{tabular}

\section*{Name: 170705M2_10, Date: 05-Jul-2017, Time: 14:53:47, ID: IPA, Description: IPA}




\section*{d3-N-MeFOSAA}



\section*{d5-N-EtFOSAA}


PFDoA


13C2-PFDoA


\section*{Dataset: U:\Q4.PRO\results\170705M2\170705M2-10.qld}

Last Altered: Wednesday, July 19, 2017 13:51:24 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:51:47 Pacific Daylight Time

\section*{Name: 170705M2_10, Date: 05-Jul-2017, Time: 14:53:47, ID: IPA, Description: IPA}


\section*{13C2-PFTeDA}


\section*{PFTeDA}


13C2-PFTeDA
IPA IPA F57:MRM of 2 channels,ES\(714.8>669.6\) \(3.723 e+003\)




13C3-PFHxS



Dataset: U:IQ4.PROIresults1170705M21170705M2-10.qld
Last Altered: Wednesday, July 19, 2017 13:51:24 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:51:47 Pacific Daylight Time

Name: 170705M2_10, Date: 05-Jul-2017, Time: 14:53:47, ID: IPA, Description: IPA
13C4-PFOS
IPA IPA
F29:MRM of 1 channel,ES-
\(503>79.9\)
\(2.652 \mathrm{e}+001\)

Dataset:
Untitled
Last Altered: Wednesday, July 19, 2017 13:56:31 Pacific Daylight Time
Printed:
Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L14-6-7-17B.mdb 19 Jul 2017 13:56:08
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17G0502
\(\checkmark A C \neg|19| 17\)


Dataset: Untitled
Last Altered: Wednesday, July 19, 2017 13:56:31 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time

Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17G0502
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & Whivol. & RRF & Pred.RT & RT & y Axis Resp & Conc & \%Ree \\
\hline 32 & 32 13C4-PFOS & \(503>79.9\) & 9.50 e 3 & 9.50 e 3 & 1.0000 & 1.000 & 3.85 & 3.84 & 12.5 & 12.5 & 100.0 \\
\hline 33.2 & 33 13C6-PFDA & \(519.1>473.7\) & 5.52 e 4 & 5.52e4 & 1.0000 & 1.000 & 3.97 & 3.96 & 12.5 & 12.5 & 100.0 \\
\hline 34 - + H & 34 13C7-PFUnA & \(570.1>524.8\) & 5.94 e 4 & 5.94 e 4 & 1.0000 & 1.000 & 4.13 & 4.12 & 12.5 & 12.5 & 100.0 \\
\hline
\end{tabular}
Printed: \(\quad\) Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time

Method: U:\Q4.PROWethDBIPFAS_L14-6-7-17B.mdb 19 Jul 2017 13:56:08
Calibration: U:\Q4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17G0502

\section*{Total PFBS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & , & \multicolumn{2}{|l|}{RT Area} & \multicolumn{4}{|l|}{IS Area Response Primary Flags . Conc.} \\
\hline 1 2m & 1 PFBS & \(299>79.7\) & 2.91 & 4065.935 & 3195.256 & 15.906 & bb & 8.4 \\
\hline
\end{tabular}

Total PFHxS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Trace & RT & Area & IS Area & Response & Primary Flags & Conc. \\
\hline \(4.4{ }^{4}\) & 4 PFHxS & \(398.9>79.6\) & 3.48 & 3468.745 & 3047.549 & 14.228 & MM & 7.7 \\
\hline \(2 \times 4\) & 36 Total PFHxS & \(398.9>79.6\) & 3.43 & 450.082 & 3047.549 & 1.846 & bd & 1.0 \\
\hline
\end{tabular}

\section*{Total PFOA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & - \# Name & ace & RT & Area & IS Area & \multicolumn{2}{|l|}{Response Primary Flags} & Conc. \\
\hline 1 & 5 PFOA & \(413>368.7\) & 3.61 & 37303.105 & 46566.715 & 10.013 & bb & 10.5 \\
\hline
\end{tabular}

\section*{Total PFOS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \# Name & Trace & whane & RT & Area & IS Area & Response & Primary F & Conc. \\
\hline 1 , Me & \(499>79.9\) & & 3.78 & 1246.896 & 10054.862 & 1.550 & bd & 1.4 \\
\hline 2 2- 7 PFOS & \(499>79.9\) & & 3.84 & 8386.800 & 10054.862 & 10.426 & MM & 9.8 \\
\hline
\end{tabular}

\section*{Total N-Me-FOSAA}


\section*{Total N-EtFOSAA}

\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, July 19, 2017 13:56:31 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time
\end{tabular}

Method: U:IQ4.PROMMethDBIPFAS_L14-6-7-17B.mdb 19 Jul 2017 13:56:08
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17G0502


13C3-PFBS



13C2-PFHxA


\section*{PFHpA}


F12:MRM of 2 channels,ES-


13C4-PFHpA


Total PFHxS


F14:MRM of 2 channels,ES


1802-PFHxS


Dataset:
Untitled
Last Altered: Wednesday, July 19, 2017 13:56:31 Pacific Daylight Time
Printed: Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time

Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17G0502

Total PFOA
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{F17:MRM of 2 channels,ES-
\[
413>368.7
\]} \\
\hline 100 & PFOA & \(8.128 \mathrm{e}+005\) \\
\hline 1007 & \[
\begin{gathered}
3.61 \\
3.73 \mathrm{e} 4
\end{gathered}
\] & \\
\hline \% - & \[
\begin{gathered}
807488 \\
\text { bb }
\end{gathered}
\] & \\
\hline
\end{tabular}


13C2-PFOA




13C5-PFNA


\section*{Total PFOS}


13C8-PFOS


PFDA


13C2-PFUnA

\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, July 19, 2017 13:56:31 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time
\end{tabular}

Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17 G0502

\section*{PFUnA}



13C2-PFUnA


\section*{N-MeFOSAA}

d3-N-MeFOSAA


\section*{N-EtFOSAA}


d5-N-EtFOSAA
F47:MRM of 1 channel,ES\(589.3>419\)



F49:MRM of 2 channels,ES


13C2-PFDoA

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, July 19, 2017 13:56:31 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time
\end{tabular}

Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17 G0502

\section*{PFTeDA}
\begin{tabular}{r} 
F56:MRM of 4 channels,ES- \\
\(712.9>668.8\) \\
\(9.953 e+005\) \\
100 \\
\hline
\end{tabular}


13C2-PFTeDA


\section*{PFTrDA}



\section*{13C5-PFHxA \\ }

13C8-PFOA


13C3-PFHxS

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, July 19, 2017 13:56:31 Pacific Daylight Time \\
Printed: & Wednesday, July 19, 2017 13:57:19 Pacific Daylight Time
\end{tabular}

Name: 170705M2_11, Date: 05-Jul-2017, Time: 15:04:25, ID: SS170705M2-1 PFC SSS 17G0502, Description: PFC SSS 17G0502


13C7-PFUnA
F44:MRM of 1 channel,ES-
\(570.1>524.8\)
100 \begin{tabular}{c}
\(\begin{array}{c}13 C 7-P F U n A \\
4.12 \\
5.94 \mathrm{e} 4 \\
1211855 \\
\mathrm{bb}\end{array}\) \\
\hline
\end{tabular}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 14:40:20 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

\section*{Compound name: PFBA}

Correlation coefficient: \(\mathrm{r}=0.999893, \mathrm{r} \wedge 2=0.999786\)
Calibration curve: 1.28141 * \(x+0.357618\)
Response type: Internal Std ( Ref 17 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\sqrt{8 \times 2}
\] & \# Name & Type & Std. Conc & \% RT & Area & 15 Area & Response & Conc & Dev & c & CoD & D F & cluded \\
\hline 1 & 1 170710M3_2 & Standard & 0.250 & 1.54 & 427.146 & 7397.170 & 0.722 & 0.3 & 13.7 & NO & 1.000 & NO & MM \\
\hline 2 & 2 170710M3_3 & Standard & 0.500 & 1.53 & 573.831 & 7319.772 & 0.980 & 0.5 & -2.9 & NO & 1.000 & NO & MM \\
\hline \[
3
\] & 3 170710M3_4 & Standard & 1.000 & 1.53 & 882.903 & 6882.142 & 1.604 & 1.0 & -2.8 & NO & 1.000 & NO & MM \\
\hline 4-4.4.4 & 4 170710M3_5 & Standard & 2.000 & 1.53 & 1699.421 & 7900.523 & 2.689 & 1.8 & -9.0 & NO & 1.000 & NO & MM \\
\hline  & 5 170710M3_6 & Standard & 5.000 & 1.53 & 4102.863 & 7407.220 & 6.924 & 5.1 & 2.5 & NO & 1.000 & NO & MM \\
\hline \[
6
\] & 6 170710M3_7 & Standard & 10.000 & 1.53 & 8104.495 & 7861.154 & 12.887 & 9.8 & -2.2 & NO & 1.000 & NO & MM \\
\hline \[
17
\] & 7 170710M3_8 & Standard & 50.000 & 1.53 & 39359.148 & 7569.607 & 64.995 & 50.4 & 0.9 & NO & 1.000 & NO & bb \\
\hline 8 - & 8 170710M3_9 & Standard & 100.000 & 1.53 & 80359.727 & 7829.357 & 128.299 & 99.8 & -0.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFPeA}

Correlation coefficient: \(\mathrm{r}=0.999846, \mathrm{r}^{\wedge} 2=0.999691\)
Calibration curve: 1.10816 * x +0.0226306
Response type: Internal Std ( Ref 18 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type \({ }^{\text {a }}\) & Std. Conc & RT & Area & IS Area & Response & \multicolumn{2}{|l|}{Conc. \%Dev} & Conc. Flag & \multicolumn{2}{|l|}{CoD CODFlag} & \(x=e x c l u d e d\) \\
\hline 1.4. \({ }^{\text {a }}\) & 1 170710M3_2 & Standard & 0.250 & 2.77 & 360.082 & 14987.434 & 0.300 & 0.3 & 0.2 & NO & 1.000 & NO & MM \\
\hline 2 , 4.4. & 2 170710M3_3 & Standard & 0.500 & 2.76 & 656.584 & 14351.720 & 0.572 & 0.5 & -0.9 & NO & 1.000 & NO & MM \\
\hline \(3 \sim 4\) & 3 170710M3_4 & Standard & 1.000 & 2.75 & 1173.282 & 13204.935 & 1.111 & 1.0 & -1.8 & NO & 1.000 & NO & bb \\
\hline \(4-2 \mathrm{Em}\) & 4 170710M3_5 & Standard & 2.000 & 2.75 & 2648.726 & 14397.656 & 2.300 & 2.1 & 2.7 & NO & 1.000 & NO & bb \\
\hline 5. & 5 170710M3_6 & Standard & 5.000 & 2.75 & 6691.328 & 14859.215 & 5.629 & 5.1 & 1.2 & NO & 1.000 & NO & bb \\
\hline \[
6
\] & \(6170710 \mathrm{M3}\) _7 & Standard & 10.000 & 2.75 & 13251.902 & 14932.953 & 11.093 & 10.0 & -0.1 & NO & 1.000 & NO & bb \\
\hline 7. & 7 170710M3_8 & Standard & 50.000 & 2.75 & 62725.262 & 14515.980 & 54.014 & 48.7 & -2.6 & NO & 1.000 & NO & bb \\
\hline 8 \% \% \({ }^{\text {d }}\) & 8170710 M 3.9 & Standard & 100.000 & 2.75 & 138385.234 & 15422.105 & 112.165 & 101.2 & 1.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Dataset: U:\Q4.PROlresults\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: PFBS}

Correlation coefficient: \(\mathrm{r}=0.999477, \mathrm{r}^{\wedge} 2=0.998954\)
Calibration curve: \(2.28212{ }^{*} x+-0.143002\)
Response type: Internal Std ( Ref 19 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline 1\% & 1 170710M3_2 & Standard & 0.250 & 2.97 & 64.107 & 1829.255 & 0.438 & 0.3 & 1.8 & NO & 0.999 & NO & bb \\
\hline 2 2, m & 2 170710M3_3 & Standard & 0.500 & 2.96 & 174.822 & 1880.541 & 1.162 & 0.6 & 14.4 & NO & 0.999 & NO & bb \\
\hline 3. & 3 170710M3_4 & Standard & 1.000 & 2.95 & 250.827 & 1680.475 & 1.866 & 0.9 & -12.0 & NO & 0.999 & NO & bb \\
\hline 4 4tater & 4 170710M3_5 & Standard & 2.000 & 2.95 & 664.245 & 1678.509 & 4.947 & 2.2 & 11.5 & NO & 0.999 & NO & bb \\
\hline 5, & 5 170710M3_6 & Standard & 5.000 & 2.95 & 1423.155 & 1827.422 & 9.735 & 4.3 & -13.4 & NO & 0.999 & NO & bb \\
\hline & 6170710 M 3 _7 & Standard & 10.000 & 2.95 & 3293.945 & 1863.759 & 22.092 & 9.7 & -2.6 & NO & 0.999 & NO & bb \\
\hline 7 & 7 170710M3_8 & Standard & 50.000 & 2.95 & 14448.479 & 1600.534 & 112.841 & 49.5 & -1.0 & NO & 0.999 & NO & \(b b\) \\
\hline 8 & 8170710 M 3 _9 & Standard & 100.000 & 2.95 & 31826.346 & 1723.074 & 230.883 & 101.2 & 1.2 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxA}

Correlation coefficient: \(\mathrm{r}=0.999918, \mathrm{r} \wedge 2=0.999836\)
Calibration curve: 1.63818 * \(x+0.0563003\)
Response type: Internal Std (Ref 20 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\sqrt{3+\tan }
\] & Na & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \% Dev & Conc, Flag & COD & F & xcl \\
\hline 1 1-Y) \({ }^{\text {a }}\) & 1 170710M3_2 & Standard & 0.250 & 3.19 & 527.456 & 6599.234 & 0.400 & 0.2 & -16.2 & NO & 1.000 & NO & MM \\
\hline 24 & 2 170710M3_3 & Standard & 0.500 & 3.19 & 1190.925 & 6260.955 & 0.951 & 0.5 & 9.2 & NO & 1.000 & NO & bb \\
\hline 3.4 & 3 170710M3_4 & Standard & 1.000 & 3.18 & 2031.727 & 5844.579 & 1.738 & 1.0 & 2.7 & NO & 1.000 & NO & bb \\
\hline 4 4. & 4 170710M3_5 & Standard & 2.000 & 3.18 & 4143.116 & 6111.841 & 3.389 & 2.0 & 1.7 & NO & 1.000 & NO & bb \\
\hline 5 & 5 170710M3_6 & Standard & 5.000 & 3.18 & 11189.35C & 6584.623 & 8.497 & 5.2 & 3.0 & NO & 1.000 & NO & bb \\
\hline 6 6 & 6 170710M3_7 & Standard & 10.000 & 3.19 & 22422.309 & 6880.506 & 16.294 & 9.9 & -0.9 & NO & 1.000 & NO & bb \\
\hline \[
7
\] & 7 170710M3_8 & Standard & 50.000 & 3.19 & 107894.484 & 6517.125 & 82.778 & 50.5 & 1.0 & NO & 1.000 & NO & bb \\
\hline 8. \({ }^{\text {a }}\) & 8 170710M3_9 & Standard & 100.000 & 3.18 & 224318.094 & 6887.408 & 162.847 & 99.4 & -0.6 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: U:\Q4.PRO|results1170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.999627, \mathrm{r}^{\wedge} 2=0.999254\)
Calibration curve: 1.43595 * x +0.0332012
Response type: Internal Std ( Ref 21 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline 1 Mry & 1 170710M3 2 & Standard & 0.250 & 3.46 & 484.804 & 16912.918 & 0.358 & 0.2 & -9.4 & NO & 0.999 & NO & bb \\
\hline 2.4 & 2 170710M3_3 & Standard & 0.500 & 3.45 & 1094.714 & 15983.809 & 0.856 & 0.6 & 14.6 & NO & 0.999 & NO & db \\
\hline  & 3170710 M 3 _4 & Standard & 1.000 & 3.44 & 1816.426 & 14729.492 & 1.541 & 1.1 & 5.0 & NO & 0.999 & NO & bb \\
\hline 4 - \({ }^{\text {a }}\), & 4 170710M3_5 & Standard & 2.000 & 3.44 & 3368.228 & 16736.117 & 2.516 & 1.7 & -13.6 & NO & 0.999 & NO & bb \\
\hline 5. & 5 170710M3_6 & Standard & 5.000 & 3.44 & 9552.159 & 16831.109 & 7.094 & 4.9 & -1.7 & NO & 0.999 & NO & bb \\
\hline 6. \({ }^{\text {a }}\) & \(6170710 \mathrm{M} 3+7\) & Standard & 10.000 & 3.45 & 19620.016 & 16406.695 & 14.948 & 10.4 & 3.9 & NO & 0.999 & NO & bb \\
\hline 7. & 7 170710M3_8 & Standard & 50.000 & 3.45 & 91102.258 & 15463.272 & 73.644 & 51.3 & 2.5 & NO & 0.999 & NO & bb \\
\hline 8 & 8 170710M3_9 & Standard & 100.000 & 3.45 & 193055.844 & 17039.475 & 141.624 & 98.6 & -1.4 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxS}

Correlation coefficient: \(\mathrm{r}=0.998220, \mathrm{r}^{\wedge} 2=0.996443\)
Calibration curve: 1.95713 *x+-0.172436
Response type: Internal Std ( Ref 22 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROlresults\170710M3\170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time
\end{tabular}

\section*{Compound name: PFOA}

Correlation coefficient: \(\mathrm{r}=0.999767, \mathrm{r}^{\wedge} 2=0.999534\)
Calibration curve: 1.13618 * x + 0.150469
Response type: Internal Std (Ref 23), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & THat Type & -4] & Std. Conc \({ }^{\text {a }}\) & RT & Wr Area & SArea & Response & Conc & \%Dev & ne. & CoD & CoDFlag & x=excluded \\
\hline 1.48 & 1 170710M3_2 & Standard & & 0.250 & 3.65 & 785.839 & 24338.092 & 0.404 & 0.2 & -10.9 & NO & 1.000 & NO & MM \\
\hline 2 2 & 2 170710M3_3 & Standard & & 0.500 & 3.65 & 1540.769 & 25154.738 & 0.766 & 0.5 & 8.3 & NO & 1.000 & NO & MM \\
\hline 3. \({ }^{\text {a }}\), & 3 170710M3_4 & Standard & & 1.000 & 3.65 & 2312.138 & 22319.385 & 1.295 & 1.0 & 0.7 & NO & 1.000 & NO & MM \\
\hline \(4 \mathrm{y}, \mathrm{l}\) & 4 170710M3_5 & Standard & & 2.000 & 3.65 & 4933.051 & 25531.586 & 2.415 & 2.0 & -0.3 & NO & 1.000 & NO & bb \\
\hline \[
5
\] & \(5170710 \mathrm{M3} 6\) & Standard & & 5.000 & 3.64 & 12429.696 & 27012.830 & 5.752 & 4.9 & -1.4 & NO & 1.000 & NO & bb \\
\hline 6. & \(6170710 \mathrm{M3} 37\) & Standard & & 10.000 & 3.65 & 25517.219 & 27058.725 & 11.788 & 10.2 & 2.4 & NO & 1.000 & NO & bb \\
\hline \[
7
\] & 7 170710M3_8 & Standard & & 50.000 & 3.64 & 123694.688 & 26424.334 & 58.514 & 51.4 & 2.7 & NO & 1.000 & NO & bb \\
\hline \[
8
\] & 8 170710M3_9 & Standard & & 100.000 & 3.65 & 248919.391 & 27780.598 & 112.002 & 98.4 & -1.6 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Correlation coefficient: \(\mathrm{r}=0.999802, \mathrm{\wedge} \wedge=0.999604\)
Calibration curve: 1.36368 * x +0.0901055
Response type: Internal Std ( Ref 24 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 12twer & 1 170710M3_2 & Standard & 0.250 & 3.83 & 809.352 & 23133.879 & 0.437 & 0.3 & 1.8 & NO & 1.000 & NO & bb \\
\hline \(24{ }^{2}+4\) & 2 170710M3_3 & Standard & 0.500 & 3.82 & 1465.662 & 25510.555 & 0.718 & 0.5 & -7.9 & NO & 1.000 & NO & bb \\
\hline  & 3 170710M3_4 & Standard & 1.000 & 3.82 & 2763.543 & 25152.525 & 1.373 & 0.9 & -5.9 & NO & 1.000 & NO & bb \\
\hline 4. \({ }^{\text {a }}\) & 4 170710M3_5 & Standard & 2.000 & 3.82 & 6805.311 & 27896.482 & 3.049 & 2.2 & 8.5 & NO & 1.000 & NO & bb \\
\hline 5 , & 5 170710M3_6 & Standard & 5.000 & 3.82 & 16015.691 & 27575.711 & 7.260 & 5.3 & 5.2 & NO & 1.000 & NO & bb \\
\hline 6 , \({ }^{\text {a }}\) & 6170710 M 3 _7 & Standard & 10.000 & 3.82 & 32890.461 & 30707.572 & 13.389 & 9.8 & -2.5 & NO & 1.000 & NO & bb \\
\hline 74.4 & 7 170710M3_8 & Standard & 50.000 & 3.82 & 146644.188 & 26401.301 & 69.430 & 50.8 & 1.7 & NO & 1.000 & NO & bb \\
\hline 8 - & 8 170710M3_9 & Standard & 100.000 & 3.82 & 313277.875 & 28967.555 & 135.185 & 99.1 & -0.9 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Vista Analytical Laboratory}

Dataset:
U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: PFOSA}

Correlation coefficient: \(\mathrm{r}=0.999222, \mathrm{r}^{\wedge} 2=0.998444\)
Calibration curve: 1.18859 * \(x+-0.127408\)
Response type: Internal Std (Ref 25 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & & A Area & SAre & spons & Con & Dev & 1. F & COD & & cluded \\
\hline 1.4 & 1 170710M3_2 & Standard & 0.250 & 3.85 & 34.129 & 1942.804 & 0.220 & 0.3 & 16.8 & NO & 0.998 & NO & bb \\
\hline 2. & 2 170710M3_3 & Standard & 0.500 & 3.84 & 64.107 & 2215.917 & 0.362 & 0.4 & -17.7 & NO & 0.998 & NO & bb \\
\hline 3.4 & \(3170710 \mathrm{M3}\) _4 & Standard & 1.000 & 3.85 & 137.984 & 2053.589 & 0.840 & 0.8 & -18.6 & NO & 0.998 & NO & bb \\
\hline 4. & 4 170710M3_5 & Standard & 2.000 & 3.84 & 430.613 & 2071.983 & 2.598 & 2.3 & 14.6 & NO & 0.998 & NO & bb \\
\hline 5 5, & 5170710 M 36 & Standard & 5.000 & 3.84 & 1047.884 & 2036.011 & 6.433 & 5.5 & 10.4 & NO & 0.998 & NO & bb \\
\hline \[
6
\] & 6 170710M3_7 & Standard & 10.000 & 3.84 & 2150.737 & 2370.515 & 11.341 & 9.6 & -3.5 & NO & 0.998 & NO & bb \\
\hline \[
7
\] & 7 170710M3_8 & Standard & 50.000 & 3.84 & 9977.661 & 2179.217 & 57.232 & 48.3 & -3.5 & NO & 0.998 & NO & bb \\
\hline 8 8, & 8 170710M3_9 & Standard & 100.000 & 3.84 & 21289.654 & 2207.907 & 120.531 & 101.5 & 1.5 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFOS}

Coefficient of Determination: \(\mathrm{R}^{\wedge 2}=0.999061\)
Calibration curve: \(0.00185446{ }^{*} x^{\wedge} 2+1.10476\) * \(x+0.0290301\)
Response type: Internal Std (Ref 26 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROlresults1170710M3\170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time \\
\hline
\end{tabular}

\section*{Compound name: PFDA}

Correlation coefficient: \(\mathrm{r}=0.999516, \mathrm{r}^{\wedge} 2=0.999032\)
Calibration curve: 1.56384 * \(x+-0.255433\)
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & \multicolumn{3}{|l|}{Conc \%Dev Conc Flag} & \multicolumn{3}{|l|}{COD CoD Flag \(x\)-excluded} \\
\hline 1 - & 1 170710M3_2 & Standard & 0.250 & 3.99 & 932.302 & 28930.936 & 0.403 & 0.4 & 68.4 & NO & 0.999 & NO & MMX \\
\hline 2 - 0 d & 2 170710M3_3 & Standard & 0.500 & 4.00 & 1408.826 & 29747.686 & 0.592 & 0.5 & 8.4 & NO & 0.999 & NO & MM \\
\hline 3 . \({ }^{\text {a }}\) & 3 170710M3_4 & Standard & 1.000 & 3.99 & 3557.009 & 31897.771 & 1.394 & 1.1 & 5.5 & NO & 0.999 & NO & bb \\
\hline  & 4 170710M3_5 & Standard & 2.000 & 3.99 & 7354.864 & 31493.791 & 2.919 & 2.0 & 1.5 & NO & 0.999 & NO & bb \\
\hline 5 . \({ }^{\text {a }}\) & 5 170710M3_6 & Standard & 5.000 & 4.00 & 16044.657 & 29596.766 & 6.776 & 4.5 & -10.1 & NO & 0.999 & NO & bb \\
\hline 6.4 & 6 170710M3_7 & Standard & 10.000 & 3.99 & 37473.484 & 33043.109 & 14.176 & 9.2 & -7.7 & NO & 0.999 & NO & bb \\
\hline \(7 \times 1\) & 7 170710M3_8 & Standard & 50.000 & 3.99 & 195941.813 & 30631.795 & 79.959 & 51.3 & 2.6 & NO & 0.999 & NO & bb \\
\hline 8 8. & 8 170710M3_9 & Standard & 100.000 & 3.99 & 392413.031 & 31463.066 & 155.902 & 99.9 & -0.1 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFUnA}

Coefficient of Determination: \(\mathbf{R}^{\wedge} 2=0.999111\)
Calibration curve: \(0.00122021^{*} x^{\wedge} 2+0.942287^{*} x+0.216781\)
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{} \\
\hline  & 1 170710M3_2 & Standard & 0.250 & 4.15 & 1010.402 & 28555.941 & 0.442 & 0.2 & -4.3 & NO & 0.999 & NO & MM \\
\hline 2 2, & \(2170710 \mathrm{M3} 3\) & Standard & 0.500 & 4.15 & 1647.712 & 35214.363 & 0.585 & 0.4 & -21.9 & NO & 0.999 & NO & MM \\
\hline 3 & 3 170710M3_4 & Standard & 1.000 & 4.15 & 3030.180 & 29618.668 & 1.279 & 1.1 & 12.5 & NO & 0.999 & NO & bb \\
\hline 4 & 4 170710M3_5 & Standard & 2.000 & 4.15 & 5814.139 & 32452.291 & 2.239 & 2.1 & 7.0 & NO & 0.999 & NO & bb \\
\hline 5 & 5 170710M3_6 & Standard & 5.000 & 4.15 & 14655.979 & 32879.375 & 5.572 & 5.6 & 12.8 & NO & 0.999 & NO & bb \\
\hline \[
6
\] & 6 170710M3_7 & Standard & 10.000 & 4.15 & 29217.963 & 39593.965 & 9.224 & 9.4 & -5.6 & NO & 0.999 & NO & bb \\
\hline 7 7 Mr & 7 170710M3_8 & Standard & 50.000 & 4.15 & 137931.563 & 34542.293 & 49.914 & 49.6 & -0.9 & NO & 0.999 & NO & bb \\
\hline 8 \% & 8 170710M3_9 & Standard & 100.000 & 4.15 & 285394.844 & 33371.344 & 106.901 & 100.2 & 0.2 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time
\end{tabular}

\section*{Compound name: PFDS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998301\)
Calibration curve: \(8.31559 \mathrm{e}-005{ }^{*} x^{\wedge} 2+0.0878672\) * \(x+0.0164965\)
Response type: Internal Std ( Ref 28 ), Area* ( IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & +6.an & Std. Conc & RT & 4t Area & IS Area & Resporise & Conc. & \%Dev & c. F & Cob & CoD Flag & \(x=\) excluded \\
\hline 1. & 1 170710M3_2 & Standard & & 0.250 & 4.19 & 74.979 & 28555.941 & 0.033 & 0.2 & -25.7 & NO & 0.998 & NO & MM \\
\hline 2 2, \({ }^{\text {a }}\) & 2 170710M3_3 & Standard & & 0.500 & 4.19 & 147.908 & 35214.363 & 0.053 & 0.4 & -18.1 & NO & 0.998 & NO & MM \\
\hline 3 , \({ }^{\text {a }}\) & 3 170710M3_4 & Standard & & 1.000 & 4.19 & 278.651 & 29618.668 & 0.118 & 1.1 & 14.9 & NO & 0.998 & NO & bb \\
\hline 4 4. \(4^{4}\) & 4 170710M3_5 & Standard & & 2.000 & 4.19 & 594.978 & 32452.291 & 0.229 & 2.4 & 20.7 & NO & 0.998 & NO & MM \\
\hline 5.1 .5 & 5 170710M3_6 & Standard & & 5.000 & 4.19 & 1375.311 & 32879.375 & 0.523 & 5.7 & 14.6 & NO & 0.998 & NO & bb \\
\hline 6. \({ }^{\text {a }}\), & 6 170710M3_7 & Standard & & 10.000 & 4.19 & 2729.414 & 39593.965 & 0.862 & 9.5 & -4.7 & NO & 0.998 & NO & bb \\
\hline 7 & 7 170710M3_8 & Standard & & 50.000 & 4.19 & 12432.069 & 34542.293 & 4.499 & 48.8 & -2.5 & NO & 0.998 & NO & bb \\
\hline 8 - & 8 170710M3_9 & Standard & & 100.000 & 4.19 & 25881.063 & 33371.344 & 9.694 & 100.6 & 0.6 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFDoA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997169\)
Calibration curve: 0.00815082 * \(x^{\wedge} 2+0.735747\) * \(x+0.0266157\)
Response type: Internal Std (Ref 29 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory
Dataset:
U:IQ4.PROIresults\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: PFTrDA}

Correlation coefficient: \(r=0.999219, r^{\wedge} 2=0.998438\)
Calibration curve: 13.2156 * x +0.215995
Response type: Internal Std (Ref 29 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFTeDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999934\)
Calibration curve: -0.000916009 * \(x^{\wedge} 2+1.26347\) * \(x+0.0596778\)
Response type: Internal Std ( Ref 30 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\sqrt{2}
\] & \multicolumn{2}{|l|}{\# Name Type} & Std. Conc & RT & Area & IS Area & Response & \multicolumn{3}{|l|}{Conc \%Dev Conc Flag} & \multicolumn{3}{|l|}{CoD CoD Flag \(\mathrm{C}=\) excluded} \\
\hline \[
11
\] & 1 170710M3_2 & Standard & 0.250 & 4.65 & 1022.516 & 33198.340 & 0.385 & 0.3 & 3.0 & NO & 1.000 & NO & MM \\
\hline 2 , & 2 170710M3_3 & Standard & 0.500 & 4.64 & 1820.870 & 32091.508 & 0.709 & 0.5 & 2.9 & NO & 1.000 & NO & bb \\
\hline 3, \(+2 \times\) & 3 170710M3_4 & Standard & 1.000 & 4.64 & 2762.201 & 26986.623 & 1.279 & 1.0 & -3.4 & NO & 1.000 & NO & MM \\
\hline 4. & 4 170710M3_5 & Standard & 2.000 & 4.64 & 6675.592 & 32219.420 & 2.590 & 2.0 & 0.3 & NO & 1.000 & NO & MM \\
\hline \[
5
\] & 5 170710M3_6 & Standard & 5.000 & 4.64 & 15829.568 & 31939.072 & 6.195 & 4.9 & -2.5 & NO & 1.000 & NO & bb \\
\hline 6.48 & \(6170710 \mathrm{M3}\) _7 & Standard & 10.000 & 4.64 & 32960.660 & 32979.863 & 12.493 & 9.9 & -0.9 & NO & 1.000 & NO & bb \\
\hline \[
7
\] & 7 170710M3_8 & Standard & 50.000 & 4.64 & 144863.203 & 29463.150 & 61.459 & 50.4 & 0.9 & NO & 1.000 & NO & bb \\
\hline 8 m & 8 170710M3_9 & Standard & 100.000 & 4.64 & 289834.000 & 30963.135 & 117.008 & 99.8 & -0.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory

Dataset:
U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C3-PFBA}

Response Factor: 0.918451
RRF SD: 0.0228833, Relative SD: 2.49151
Response type: Internal Std ( Ref 31 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2-1 & \multicolumn{3}{|l|}{\# Name Ty Type Std Conc} & \multicolumn{3}{|r|}{Area \({ }^{\text {a }}\) IS Area} & Response & Conc. & \multicolumn{2}{|l|}{\(\%\) Dev Conc Fla} & \multicolumn{2}{|l|}{CoDFlag \(x\)-excluded} \\
\hline 1. & 1 170710M3_2 & Standard & 12.500 & 1.53 & 7397.170 & 8045.280 & 11.493 & 12.5 & 0.1 & NO & NO & bb \\
\hline \(2 \times 4\) & 2 170710M3_3 & Standard & 12.500 & 1.53 & 7319.772 & 8103.498 & 11.291 & 12.3 & -1.7 & NO & NO & bb \\
\hline 3 2. \({ }^{\text {d }}\) & 3 170710M3_4 & Standard & 12.500 & 1.52 & 6882.142 & 7483.426 & 11.496 & 12.5 & 0.1 & No & NO & bb \\
\hline \(4{ }^{4}\) & 4 170710M3_5 & Standard & 12.500 & 1.53 & 7900.523 & 8401.936 & 11.754 & 12.8 & 2.4 & No & NO & bd \\
\hline 5 . & 5 170710M3_6 & Standard & 12.500 & 1.53 & 7407.220 & 8412.924 & 11.006 & 12.0 & -4.1 & No & No & bb \\
\hline  & 6 170710M3_7 & Standard & 12.500 & 1.52 & 7861.154 & 8228.657 & 11.942 & 13.0 & 4.0 & No & No & bb \\
\hline \(7 \times 8\) & 7 170710M3_8 & Standard & 12.500 & 1.53 & 7569.607 & 8207.246 & 11.529 & 12.6 & 0.4 & No & NO & bd \\
\hline 8 - & 8 170710M3_9 & Standard & 12.500 & 1.53 & 7829.357 & 8634.025 & 11.335 & 12.3 & -1.3 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFPeA}

\section*{Response Factor: 1.781}

RRF SD: 0.0433451, Relative SD: 2.43375
Response type: Internal Std ( Ref 31 ), Area * ( IS Conc. / IS Area )
Curve type: RF

\(\overline{\text { Quantify Compound Summary Report } \quad \text { MassLynx MassLynx V4.1 SCN 945 Page } 10 \text { of } 19}\)

\section*{Vista Analytical Laboratory}

Dataset: U:IQ4.PRO|results1170710M31170710M3-CRV-116.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C3-PFBS}

Response Factor: 0.215258
RRF SD: 0.0148395 , Relative SD: 6.89383
Response type: Internal Std ( Ref 31 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline -3 & \# Name & Type & Std Conc & RT & Area & IS Area & ponse & Cone. & \%Dev & nc. & D Fl & xclu \\
\hline 4 & 1 170710M3_2 & Standard & 12.500 & 2.97 & 1829.255 & 8045.280 & 2.842 & 13.2 & 5.6 & NO & NO & bb \\
\hline 2 & 2 170710M3_3 & Standard & 12.500 & 2.96 & 1880.541 & 8103.498 & 2.901 & 13.5 & 7.8 & NO & NO & bb \\
\hline \(3 \times 1\) & 3 170710M3_4 & Standard & 12.500 & 2.96 & 1680.475 & 7483.426 & 2.807 & 13.0 & 4.3 & NO & NO & bb \\
\hline 4. & 4 170710M3_5 & Standard & 12.500 & 2.95 & 1678.509 & 8401.936 & 2.497 & 11.6 & -7.2 & NO & NO & bb \\
\hline 5 & 5 170710M3_6 & Standard & 12.500 & 2.95 & 1827.422 & 8412.924 & 2.715 & 12.6 & 0.9 & NO & NO & bb \\
\hline 6 4- & 6 170710M3_7 & Standard & 12.500 & 2.95 & 1863.759 & 8228.657 & 2.831 & 13.2 & 5.2 & NO & NO & bb \\
\hline \(7 \times 4\) & 7 170710M3_8 & Standard & 12.500 & 2.95 & 1600.534 & 8207.246 & 2.438 & 11.3 & -9.4 & NO & NO & bb \\
\hline 8 8, & 8 170710M3_9 & Standard & 12.500 & 2.95 & 1723.074 & 8634.025 & 2.495 & 11.6 & -7.3 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHXA}

Response Factor: 0.303893
RRF SD: 0.0120463, Relative SD: 3.964
Response type: Internal Std (Ref 32 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{} \\
\hline 1 W \({ }^{2}+\) & 1 170710M3_2 & Standard & 5.000 & 3.20 & 6599.234 & 21818.400 & 1.512 & 5.0 & -0.5 & NO & NO & bb \\
\hline 2 L & \(2170710 \mathrm{M3}\)-3 & Standard & 5.000 & 3.19 & 6260.955 & 21557.213 & 1.452 & 4.8 & -4.4 & NO & NO & bb \\
\hline 3 & 3 170710M3_4 & Standard & 5.000 & 3.19 & 5844.579 & 19500.141 & 1.499 & 4.9 & -1.4 & NO & NO & bb \\
\hline 4 & 4 170710M3_5 & Standard & 5.000 & 3.18 & 6111.841 & 20840.465 & 1.466 & 4.8 & -3.5 & NO & NO & bb \\
\hline 5 5ter & 5 170710M3_6 & Standard & 5.000 & 3.18 & 6584.623 & 22435.646 & 1.467 & 4.8 & -3.4 & NO & NO & bb \\
\hline 6 & \(6170710 \mathrm{M3}{ }^{\text {¢ }} 7\) & Standard & 5.000 & 3.19 & 6880.506 & 21282.260 & 1.616 & 5.3 & 6.4 & NO & NO & bb \\
\hline & 7 170710M3_8 & Standard & 5.000 & 3.19 & 6517.125 & 20826.820 & 1.565 & 5.1 & 3.0 & NO & NO & bb \\
\hline 8 & 8 170710M3_9 & Standard & 5.000 & 3.18 & 6887.408 & 21826.197 & 1.578 & 5.2 & 3.8 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C4-PFHpA}

Response Factor: 0.305965
RRF SD: 0.00856155, Relative SD: 2.79821
Response type: Internal Std (Ref 32 ), Area * ( IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag Cad & COD Flag & \(x=\) excluded \\
\hline & 1 170710M3_2 & Standard & 12.500 & 3.45 & 16912.918 & 21818.400 & 3.876 & 12.7 & 1.3 & NO & NO & bb \\
\hline 2 & 2 170710M3_3 & Standard & 12.500 & 3.45 & 15983.809 & 21557.213 & 3.707 & 12.1 & -3.1 & No & NO & bb \\
\hline 3. & 3 170710M3_4 & Standard & 12.500 & 3.45 & 14729.492 & 19500.141 & 3.777 & 12.3 & -1.2 & NO & NO & bb \\
\hline 4 & 4 170710M3_5 & Standard & 12.500 & 3.45 & 16736.117 & 20840.465 & 4.015 & 13.1 & 5.0 & No. & NO & bb \\
\hline 5. & 5 170710M3_6 & Standard & 12.500 & 3.44 & 16831.109 & 22435.646 & 3.751 & 12.3 & -1.9 & NO & NO & bb \\
\hline 6 . & 6 170710M3_7 & Standard & 12.500 & 3.45 & 16406.695 & 21282.260 & 3.855 & 12.6 & 0.8 & NO & NO & bb \\
\hline 7. & 7 170710M3_8 & Standard & 12.500 & 3.44 & 15463.272 & 20826.820 & 3.712 & 12.1 & -2.9 & NO & NO & bb \\
\hline 8 & 8 170710M3_9 & Standard & 12.500 & 3.45 & 17039.475 & 21826.197 & 3.903 & 12.8 & 2.1 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 1802-PFHxS}

Response Factor: 0.437189
RRF SD: 0.0227029, Relative SD: 5.19292
Response type: Internal Std ( Ref 33 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & \multicolumn{3}{|l|}{Std Conc} & \multicolumn{5}{|r|}{Response Conc. \%Dev Conc. Flag} & F & \\
\hline 14* & 1 170710M3_2 & Standard & 12.500 & 3.52 & 1651.524 & 3795.795 & 5.439 & 12.4 & -0.5 & NO & NO & bb \\
\hline 2 , & 2 170710M3_3 & Standard & 12.500 & 3.52 & 1720.000 & 3856.194 & 5.575 & 12.8 & 2.0 & NO & NO & bb \\
\hline \[
3
\] & 3 170710M3_4 & Standard & 12.500 & 3.52 & 1350.057 & 3265.055 & 5.169 & 11.8 & -5.4 & NO & NO & bb \\
\hline 4 4 . c (ting & 4 170710M3_5 & Standard & 12.500 & 3.52 & 1600.253 & 3804.850 & 5.257 & 12.0 & -3.8 & NO & NO & bb \\
\hline & 5 170710M3_6 & Standard & 12.500 & 3.52 & 1665.698 & 3472.170 & 5.997 & 13.7 & 9.7 & NO & NO & bb \\
\hline 6 Mis & 6 170710M3_7 & Standard & 12.500 & 3.51 & 1486.850 & 3371.803 & 5.512 & 12.6 & 0.9 & NO & NO & bb \\
\hline 7 W & 7 170710M3_8 & Standard & 12.500 & 3.51 & 1511.473 & 3354.416 & 5.632 & 12.9 & 3.1 & NO & NO & bb \\
\hline 8 - & \(8170710 \mathrm{M3}\)-9 & Standard & 12.500 & 3.52 & 1590.326 & 3869.111 & 5.138 & 11.8 & -6.0 & NO & NO & bb \\
\hline
\end{tabular}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C2-PFOA}

Response Factor: 1.29206
RRF SD: 0.0648147, Relative SD: 5.01639
Response type: Internal Std (Ref 34 ), Area * ( IS Conc. / IS Area )
Curve type: RF


\section*{Compound name: 13C5-PFNA}

Response Factor: 0.980095
RRF SD: 0.0617584 , Relative SD: 6.30126
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%】ev & c. F & O F & cluded. \\
\hline \[
1
\] & 1 170710M3_2 & Standard & 12.500 & 3.83 & 23133.879 & 24826.572 & 11.648 & 11.9 & -4.9 & NO & NO & bb \\
\hline \[
2
\] & 2 170710M3_3 & Standard & 12.500 & 3.82 & 25510.555 & 25407.900 & 12.551 & 12.8 & 2.4 & NO & NO & \(b b\) \\
\hline 3 \% & 3 170710M3_4 & Standard & 12.500 & 3.82 & 25152.525 & 26987.840 & 11.650 & 11.9 & -4.9 & NO & NO & bb \\
\hline 4 , \({ }^{\text {arma }}\) & 4 170710M3_5 & Standard & 12.500 & 3.82 & 27896.482 & 30615.023 & 11.390 & 11.6 & -7.0 & NO & NO & bb \\
\hline \[
5
\] & 5 170710M3_6 & Standard & 12.500 & 3.82 & 27575.711 & 27704.439 & 12.442 & 12.7 & 1.6 & NO & NO & bb \\
\hline \[
6
\] & 6 170710M3_7 & Standard & 12.500 & 3.82 & 30707.572 & 28246.664 & 13.589 & 13.9 & 10.9 & NO & NO & bb \\
\hline \[
7
\] & 7 170710M3_8 & Standard & 12.500 & 3.82 & 26401.301 & 25411.732 & 12.987 & 13.3 & 6.0 & NO & NO & bb \\
\hline 8 , & 8 170710M3_9 & Standard & 12.500 & 3.82 & 28967.555 & 30807.039 & 11.754 & 12.0 & -4.1 & NO & NO & bb \\
\hline
\end{tabular}

Dataset:
U:IQ4.PROIresults1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C8-PFOSA}

Response Factor: 0.0697066
RRF SD: 0.00599506, Relative SD: 8.60043
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Compound name: 13C8-PFOS}

Response Factor: 1.09812
RRF SD: 0.106578, Relative SD: 9.7055
Response type: Internal Std (Ref 36 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Wramerathen & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD CoD & cluded \\
\hline 1 k , & 1 170710M3_2 & Standard & 12.500 & 3.88 & 5370.698 & 4072.196 & 16.486 & 15.0 & 20.1 & NO & NO & bb \\
\hline 2 2mbuta & 2 170710M3_3 & Standard & 12.500 & 3.88 & 5419.104 & 5130.696 & 13.203 & 12.0 & -3.8 & NO & NO & bb \\
\hline 3 , \({ }^{\text {a }}\), & 3 170710M3_4 & Standard & 12.500 & 3.87 & 5346.955 & 4837.479 & 13.816 & 12.6 & 0.7 & NO & NO & bb \\
\hline 4 \% & 4 170710M3_5 & Standard & 12.500 & 3.88 & 5508.184 & 5669.458 & 12.144 & 11.1 & -11.5 & NO & NO & bb \\
\hline  & \(5170710 \mathrm{M} 3 \_6\) & Standard & 12.500 & 3.87 & 5282.377 & 5068.695 & 13.027 & 11.9 & -5.1 & NO & NO & bb \\
\hline 6 -mat & \(6170710 \mathrm{M3}\) _7 & Standard & 12.500 & 3.88 & 5677.549 & 5023.010 & 14.129 & 12.9 & 2.9 & NO & NO & bb \\
\hline 7. 4 & 7 170710M3_8 & Standard & 12.500 & 3.87 & 5678.869 & 4963.667 & 14.301 & 13.0 & 4.2 & NO & NO & bb \\
\hline 8 84 & 8 170710M3_9 & Standard & 12.500 & 3.88 & 5421.565 & 5333.926 & 12.705 & 11.6 & -7.4 & NO & NO & bd \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M3I170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time
\end{tabular}

\section*{Compound name: 13C2-PFDA}

Response Factor: 0.927939
RRF SD: 0.0650889, Relative SD: 7.01435
Response type: Internal Std ( Ref 37 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\sqrt{6+4}
\] & \# Name & Type & Std. Conc & RT & 4 Area & ea & Response & Conc. & \% Dev & Conc. Flag CoD & CoD Flag & \(x=\) excluded \\
\hline \[
1
\] & 1 170710M3_2 & Standard & 12.500 & 3.99 & 28930.936 & 30066.424 & 12.028 & 13.0 & 3.7 & NO & NO & bb \\
\hline 2 2, 4 , & 2 170710M3_3 & Standard & 12.500 & 3.99 & 29747.686 & 34644.785 & 10.733 & 11.6 & -7.5 & NO & NO & bb \\
\hline  & 3 170710M3_4 & Standard & 12.500 & 3.99 & 31897.771 & 35483.492 & 11.237 & 12.1 & -3.1 & NO & NO & bb \\
\hline  & 4 170710M3_5 & Standard & 12.500 & 3.99 & 31493.791 & 33241.297 & 11.843 & 12.8 & 2.1 & NO & NO & bb \\
\hline 5 & 5 170710M3_6 & Standard & 12.500 & 4.00 & 29596.766 & 34417.320 & 10.749 & 11.6 & -7.3 & NO & NO & bb \\
\hline  & 6170710 M 3 _7 & Standard & 12.500 & 3.99 & 33043.109 & 37874.355 & 10.906 & 11.8 & -6.0 & NO & NO & bb \\
\hline 7 \% & 7 170710M3_8 & Standard & 12.500 & 3.99 & 30631.795 & 30816.412 & 12.425 & 13.4 & 7.1 & NO & NO & bb \\
\hline 8. & 8 170710M3_9 & Standard & 12.500 & 3.99 & 31463.066 & 30550.707 & 12.873 & 13.9 & 11.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFUnA}

Response Factor: 1.08271
RRF SD: 0.0782079, Relative SD: 7.22335
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ter & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conce & \%Dev & Conc. Flag & \multicolumn{2}{|l|}{CoD Flag \(x=\) excluded} \\
\hline 1 1-2. & 1 170710M3_2 & Standard & 12.500 & 4.15 & 28555.941 & 29392.709 & 12.144 & 11.2 & -10.3 & NO & NO & bb \\
\hline 2.4 & 2 170710M3_3 & Standard & 12.500 & 4.15 & 35214.363 & 33292.914 & 13.221 & 12.2 & -2.3 & NO & NO & db \\
\hline \[
3
\] & 3 170710M3_4 & Standard & 12.500 & 4.15 & 29618.668 & 25046.889 & 14.782 & 13.7 & 9.2 & NO & NO & bb \\
\hline \[
4
\] & 4 170710M3_5 & Standard & 12.500 & 4.15 & 32452.291 & 31311.639 & 12.955 & 12.0 & -4.3 & NO & NO & bb \\
\hline 5 etta & 5 170710M3_6 & Standard & 12.500 & 4.15 & 32879.375 & 32131.605 & 12.791 & 11.8 & -5.5 & NO & NO & bb \\
\hline 6 - & 6 170710M3_7 & Standard & 12.500 & 4.15 & 39593.965 & 33095.688 & 14.954 & 13.8 & 10.5 & NO & NO & bb \\
\hline \[
7
\] & 7 170710M3_8 & Standard & 12.500 & 4.15 & 34542.293 & 32101.432 & 13.450 & 12.4 & -0.6 & NO & NO & bb \\
\hline 8 8- & 8 170710M3_9 & Standard & 12.500 & 4.15 & 33371.344 & 29853.807 & 13.973 & 12.9 & 3.2 & NO & NO & bb \\
\hline
\end{tabular}

Dataset:
U:\Q4.PROIresults1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C2-PFDoA}

Response Factor: 0.129746
RRF SD: 0.0132942, Relative SD: 10.2463
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{} & Std. Conc & RT & Ars Area & IS Area & ponse & Conc. & \(\cdots\) & H. F & D F & cl \\
\hline  & 1 170710M3_2 & Standard & 12.500 & 4.31 & 3994.664 & 29392.709 & 1.699 & 13.1 & 4.7 & NO & NO & MM \\
\hline \(2+\) & 2 170710M3_3 & Standard & 12.500 & 4.31 & 4336.155 & 33292.914 & 1.628 & 12.5 & 0.4 & NO & NO & MM \\
\hline \[
3
\] & 3 170710M3_4 & Standard & 12.500 & 4.30 & 3663.755 & 25046.889 & 1.828 & 14.1 & 12.7 & NO & NO & MM \\
\hline 4 . & 4 170710M3_5 & Standard & 12.500 & 4.31 & 3448.438 & 31311.639 & 1.377 & 10.6 & -15.1 & NO & NO & MM \\
\hline 5. & 5 170710M3_6 & Standard & 12.500 & 4.30 & 4397.531 & 32131.605 & 1.711 & 13.2 & 5.5 & NO & NO & bb \\
\hline 6 & 6 170710M3_7 & Standard & 12.500 & 4.31 & 4609.228 & 33095.688 & 1.741 & 13.4 & 7.3 & NO & NO & bb \\
\hline \[
7
\] & 7 170710M3_8 & Standard & 12.500 & 4.30 & 3523.270 & 32101.432 & 1.372 & 10.6 & -15.4 & NO & NO & bb \\
\hline 8. & 8 170710M3_9 & Standard & 12.500 & 4.31 & 3866.813 & 29853.807 & 1.619 & 12.5 & -0.2 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFTeDA}

Response Factor: 1.01816
RRF SD: 0.0659527, Relative SD: 6.47762
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name} & \multicolumn{3}{|l|}{Std. Conc RT Area} & \multicolumn{2}{|r|}{Response} & \multicolumn{3}{|l|}{Conc. \%Dev Conc. Fla} & \multicolumn{2}{|l|}{CoD Flag \(x=e x c l u d e d\)} \\
\hline 1 . & 1 170710M3_2 & Standard & 12.500 & 4.65 & 33198.340 & 29392.709 & 14.118 & 13.9 & 10.9 & NO & NO & bb \\
\hline 2.4 & 2 170710M3_3 & Standard & 12.500 & 4.65 & 32091.508 & 33292.914 & 12.049 & 11.8 & -5.3 & NO & NO & bb \\
\hline 3. & 3 170710M3_4 & Standard & 12.500 & 4.64 & 26986.623 & 25046.889 & 13.468 & 13.2 & 5.8 & NO & NO & bb \\
\hline 4 , & 4 170710M3_5 & Standard & 12.500 & 4.65 & 32219.420 & 31311.639 & 12.862 & 12.6 & 1.1 & NO & NO & bb \\
\hline 5 Hem & 5 170710M3_6 & Standard & 12.500 & 4.65 & 31939.072 & 32131.605 & 12.425 & 12.2 & -2.4 & NO & NO & bb \\
\hline 6 & 6 170710M3_7 & Standard & 12.500 & 4.65 & 32979.863 & 33095.688 & 12.456 & 12.2 & -2.1 & NO & NO & bb \\
\hline  & 7 170710M3_8 & Standard & 12.500 & 4.64 & 29463.150 & 32101.432 & 11.473 & 11.3 & -9.9 & NO & NO & bb \\
\hline 8 - & 8170710 M 3 _9 & Standard & 12.500 & 4.65 & 30963.135 & 29853.807 & 12.964 & 12.7 & 1.9 & NO & NO & bb \\
\hline
\end{tabular}

Dataset: U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C4-PFBA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Compound name: 13C5-PFHxA}

\section*{Response Factor: 1}

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 32 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{2}{|r|}{- \({ }^{\text {ata Type }}\)} & \multicolumn{4}{|l|}{Std. Conc RT} & \multicolumn{4}{|l|}{Response Conc. \%Dev Conc. Fla} & D & cl \\
\hline 1. & 1 170710M3_2 & Standard & 5.000 & 3.19 & 21818.400 & 21818.400 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline 2 & 2 170710M3_3 & Standard & 5.000 & 3.19 & 21557.213 & 21557.213 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline  & 3 170710M3_4 & Standard & 5.000 & 3.18 & 19500.141 & 19500.141 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline 4 * & 4 170710M3_5 & Standard & 5.000 & 3.19 & 20840.465 & 20840.465 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline \[
5
\] & 5 170710M3_6 & Standard & 5.000 & 3.18 & 22435.646 & 22435.646 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline 6 , & 6 170710M3_7 & Standard & 5.000 & 3.19 & 21282.260 & 21282.260 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline 7. & 7 170710M3_8 & Standard & 5.000 & 3.19 & 20826.820 & 20826.820 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline 8. & 8 170710M3_9 & Standard & 5.000 & 3.18 & 21826.197 & 21826.197 & 5.000 & 5.0 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

Dataset:
U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 1.11022e-016, Relative SD: 1.11022e-014
Response type: Internal Std (Ref 33 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \% & \# Name & T Type & - Std. Conc & * RT & Area & IS Area & Response & \multicolumn{2}{|l|}{Conc. \% \(\% \mathrm{Dev}\)} & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 \% & 1 170710M3_2 & Standard & 12.500 & 3.52 & 3795.795 & 3795.795 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \[
v^{2} x
\] & 2 170710M3_3 & Standard & 12.500 & 3.52 & 3856.194 & 3856.194 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline  & 3 170710M3_4 & Standard & 12.500 & 3.51 & 3265.055 & 3265.055 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline - & 4 170710M3_5 & Standard & 12.500 & 3.52 & 3804.850 & 3804.850 & 12.500 & 12.5 & 0.0 & NO. & & NO & bb \\
\hline 5 - 4 & 5 170710M3_6 & Standard & 12.500 & 3.51 & 3472.170 & 3472.170 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6 170710M3_7 & Standard & 12.500 & 3.52 & 3371.803 & 3371.803 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline Wert & 7 170710M3_8 & Standard & 12.500 & 3.52 & 3354.416 & 3354.416 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 - & 8 170710M3_9 & Standard & 12.500 & 3.52 & 3869.111 & 3869.111 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOA}

\section*{Response Factor: 1}

RRF SD: 4.19625e-017, Relative SD: 4.19625e-015
Response type: Internal Std (Ref 34 ), Area * (IS Conc. / IS Area)
Curve type: RF


Dataset: U:\Q4.PROIresults1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 35 ), Area * (IS Conc. / IS Area)
Curve type: RF


\section*{Compound name: 13C4-PFOS}

\section*{Response Factor: 1}

RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 36 ), Area * (IS Conc. / IS Area )
Curve type: RF


\section*{Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN 945}

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

\section*{Compound name: 13C6-PFDA}

Response Factor: 1
RRF SD: \(5.93439 \mathrm{e}-017\), Relative SD: \(5.93439 \mathrm{e}-015\)
Response type: Internal Std (Ref 37 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - m a \({ }^{\text {a }}\) & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD \({ }^{\text {c }}\) CoDFl & xcluded \\
\hline 1 atha & 1 170710M3_2 & Standard & 12.500 & 3.99 & 30066.424 & 30066.424 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 2 20 & 2 170710M3_3 & Standard & 12.500 & 3.99 & 34644.785 & 34644.785 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(3{ }^{3}\) & 3 170710M3_4 & Standard & 12.500 & 3.99 & 35483.492 & 35483.492 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(4 \leq 4\) & 4 170710M3_5 & Standard & 12.500 & 3.99 & 33241.297 & 33241.297 & 12.500 & 12.5 & 0.0 & NO & NO & bb. \\
\hline 5 manter & 5 170710M3_6 & Standard & 12.500 & 3.99 & 34417.320 & 34417.320 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 6 & 6 170710M3_7 & Standard & 12.500 & 4.00 & 37874.355 & 37874.355 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline 7. & 7 170710M3_8 & Standard & 12.500 & 3.99 & 30816.412 & 30816.412 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline \(8 \times\) & 8 170710M3_9 & Standard & 12.500 & 3.99 & 30550.707 & 30550.707 & 12.500 & 12.5 & 0.0 & NO & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C7-PFUnA}

\section*{Response Factor: 1}

RRF SD: 1.18688e-016, Relative SD: 1.18688e-014
Response type: Internal Std (Ref 38 ), Area * (IS Conc. / IS Area)
Curve type: RF

\begin{tabular}{ll}
\hline Quantify Compound Summary Report \(\quad\) MassLynx MassLynx V4.1 \\
Vista Analytical Laboratory \\
Dataset: & Untitled \\
Last Altered: & Tuesday, July 11, 2017 17:10:51 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:12:41 Pacific Daylight Time
\end{tabular}

Method: U:IQ4.PROIMethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 17:05:26 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

\section*{Compound name: PFBA}

\begin{tabular}{ll} 
Quantify Compound Summary Report \(\quad\) MassLynx MassLynx V4.1 \\
Vista Analytical Laboratory \\
Dataset: & Untitled \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:10:51 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:12:41 Pacific Daylight Time
\end{tabular}

Compound name: PFBA
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & Wmbers & Acq. Date & Acq Time \\
\hline 32 & 4-4 170710M3_32 & IPA & 10-Jul-17 & 21:58:44 \\
\hline 33 & IVx \({ }^{\text {a }}\) 170710M3_33 & ST170710M3-9 PFC CS3 17G1008 & 10-Jul-17 & 22:09:22 \\
\hline 34 &  & IPA & 10-Jul-17 & 22:20:01 \\
\hline 35 & [ & 1700804-03 IRPSite5-GW-FD01-20170629 0.... & 10-Jul-17 & 22:31:27 \\
\hline 36 & - 170710M3_36 & 1700804-04 IRPSite33-GW-FRB01-20170629... & 10-Jul-17 & 22:42:07 \\
\hline & [ \(4170710 \mathrm{M3} 37\) & 1700804-05 IRPSite33-GW-11MW204D-2017... & 10-Jul-17 & 22:52:45 \\
\hline 38 & 470710M3_38 & 1700804-06 IRPSite33-GW-11MW204S-2017... & 10-Jul-17 & 23:03:24 \\
\hline 39 & 170710M3 39 & 1700804-07 Bldg 110-GW-11MW205D-20170... & 10-Jul-17 & 23:14:02 \\
\hline 40 & 170710M3 40 & 1700804-08 Bldg 110-GW-FRB01-20170629 0... & 10-Jul-17 & 23:24:41 \\
\hline 41 & , 170710M3_41 & 1700804-09 Bldg 110-GW-11MW205S-20170... & 10-Jul-17 & 23:35:19 \\
\hline 42 & [4: \(170710 \mathrm{M3}\) _42 & 1700804-10 IRPSite7-GW-07GW102-201706... & 10-Jul-17 & 23:45:57 \\
\hline 43 & 170710M3_43 & 1700804-11 IRPSite5-GW-04GW82-2017062. & 10-Jul-17 & 23:56:36 \\
\hline 44 & 170710M3_44 & 1700751-01RE1 NH0100960_10.23355 & 11-Jul-17 & 00:07:41 \\
\hline 45 & 170710M3_45 & IPA & 11-Jul-17 & 00:18:50 \\
\hline 46 & 170710м3_46 & ST170710M3-10 PFC CS3 17G1008 & 11-Jul-17 & 00:29:28 \\
\hline 47 & [-tix 170710М3_47 & IPA & 11-Jul-17 & 00:40:16 \\
\hline 48 & 24. 170710М3_48 & 1700751-02RE1 NH0100960_E 0.24913 & 11-Jul-17 & 00:51:03 \\
\hline 49 & 170710M3_49 & 1700751-03RE1 NH0100901_10.25207 & 11-Jul-17 & 01:01:51 \\
\hline 50 & 170710M3_50 & 1700751-04RE1 NH0100901_E 0.24547 & 11-Jul-17 & 01:12:29 \\
\hline 51 & - \({ }^{\text {a }}\) - 170710M3_51 & 1700751-05RE1 NH0100668_1 0.22393 & 11-Jul-17 & 01:23:08 \\
\hline 52 & - \(=\) 170710M3_52 & 1700751-06RE1 NH0100668_E 0.24262 & 11-Jul-17 & 01:33:46 \\
\hline 53 & 170710M3_53 & 1700751-07RE1 NH0101303_10.05246 & 11-Jul-17 & 01:44:33 \\
\hline 54 & 170710M3_54 & 1700751-08RE1 NH0101303_E 0.24891 & 11-Jul-17 & 01:55:11 \\
\hline 55 & 170710м3_55 & 1700751-09RE1 NH0101311_10.23975 & 11-Jul-17 & 02:06:00 \\
\hline 56 & 170710M3_56 & 1700751-10RE1 NH0101311_E 0.25554 & 11-Jul-17 & 02:17:45 \\
\hline & 4 \({ }^{\text {a }}\) (t) 170710M3_57 & 1700752-01RE1 STP-MW-71-061917 0.11831 & 11-Jul-17 & 02:28:31 \\
\hline & 170710M3_58 & IPA & 11-Jul-17 & 02:39:10 \\
\hline 59 & [ \({ }^{\text {E }}\) - 170710M3_59 & ST170710M3-11 PFC CS3 17G1008 & 11-Jul-17 & 02:49:48 \\
\hline
\end{tabular}

Dataset: U:IQ4.PRO|results1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

\section*{Method: U:IQ4.PROIMethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 14:40:20}

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46
Compound name: PFBA
Correlation coefficient: \(\mathrm{r}=0.999893, \mathrm{r}^{\wedge} 2=0.999786\)
Calibration curve: 1.28141 * \(x+0.357618\)
Response type: Internal Std ( Ref 17 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report}

\section*{Vista Analytical Laboratory Q1}

Dataset: U:\Q4.PRO|results1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time Printed: \(\quad\) Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFPeA
Correlation coefficient: \(\mathrm{r}=0.999846, \mathrm{r}^{\wedge} 2=0.999691\)
Calibration curve: 1.10816 * \(x+0.0226306\)
Response type: Internal Std ( Ref 18 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld}
Last Altered:
Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: \(\mathrm{r}=0.999477, \mathrm{r}^{\wedge} 2=0.998954\)
Calibration curve: 2.28212 * \(x+-0.143002\)
Response type: Internal Std (Ref 19 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: \\ U:\Q4.PROIresults\170710M3\170710M3-CRV-I16.qld}

Last Altered:
Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

\section*{Compound name: PFHxA}

Correlation coefficient: \(\mathrm{r}=0.999918, \mathrm{r}^{\wedge} 2=0.999836\)
Calibration curve: 1.63818 * \(x+0.0563003\)
Response type: Internal Std ( Ref 20 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report}

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results1170710M3\170710M3-CRV-I16.qld
\(\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, July 11, } 2017 \text { 17:05:48 Pacific Daylight Time } \\ \text { Printed: } & \text { Tuesday, July 11, } 2017 \text { 17:07:39 Pacific Daylight Time }\end{array}\)
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.999627, \mathrm{r}^{\wedge} 2=0.999254\)
Calibration curve: 1.43595 * \(x+0.0332012\)
Response type: Internal Std (Ref 21 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report \\ Vista Analytical Laboratory Q1}

Dataset: U:IQ4.PROIresults\170710M3\170710M3-CRV-116.qld

\section*{Last Altered: \\ Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\ Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time}

\section*{Compound name: PFHxS}

Correlation coefficient: \(\mathrm{r}=0.998220, \mathrm{r}^{\wedge} 2=0.996443\)
Calibration curve: 1.95713 * \(x+-0.172436\)
Response type: Internal Std (Ref 22 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report MassLynx MassLynx V4.1 SCN 945}

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: \(\mathrm{r}=0.999767, \mathrm{r}^{\wedge} 2=0.999534\)
Calibration curve: 1.13618 * \(x+0.150469\)
Response type: Internal Std (Ref 23 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Last Altered:
Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFNA
Correlation coefficient: \(\mathrm{r}=0.999802, \mathrm{r}^{\wedge} 2=0.999604\)
Calibration curve: 1.36368 *x + 0.0901055
Response type: Internal Std (Ref 24 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time Printed: \(\quad\) Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

\section*{Compound name: PFOSA}

Correlation coefficient: \(\mathrm{r}=0.999222, \mathrm{r}^{\wedge} 2=0.998444\)
Calibration curve: 1.18859 * \(x+-0.127408\)
Response type: Internal Std (Ref 25 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFOS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999061\)
Calibration curve: \(0.00185446{ }^{*} x^{\wedge} 2+1.10476\) * \(x+0.0290301\)
Response type: Internal Std (Ref 26 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Work Order 1700792

\section*{Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld}
\(\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, July 11, } 2017 \text { 17:05:48 Pacific Daylight Time } \\ \text { Printed: } & \text { Tuesday, July 11, } 2017 \text { 17:07:39 Pacific Daylight Time }\end{array}\)

\section*{Compound name: PFDA}

Correlation coefficient: \(\mathrm{r}=0.999516, \mathrm{r}^{\wedge} 2=0.999032\)
Calibration curve: 1.56384 * \(x+-0.255433\)
Response type: Internal Std (Ref 27 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report}

Dataset: U:IQ4.PRO\results1170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

\section*{Compound name: PFUnA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999111\)
Calibration curve: \(0.00122021^{*} x^{\wedge} 2+0.942287^{*} x+0.216781\)
Response type: Internal Std (Ref 28 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998301\)
Calibration curve: \(8.31559 \mathrm{e}-005\) * \(\mathrm{x}^{\wedge} 2+0.0878672{ }^{*} \mathrm{x}+0.0164965\)
Response type: Internal Std (Ref 28 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Work Order 1700792

\section*{Vista Analytical Laboratory Q1}

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFDoA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997169\)
Calibration curve: \(0.00815082^{*} x^{\wedge} 2+0.7357477^{*} x+0.0266157\)
Response type: Internal Std ( Ref 29 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\ Printed: \\ Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time}

Compound name: PFTrDA
Correlation coefficient: \(\mathbf{r}=0.999219, r^{\wedge} 2=0.998438\)
Calibration curve: 13.2156 * \(x+0.215995\)
Response type: Internal Std (Ref 29 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Vista Analytical Laboratory Q1}

Dataset: U:\Q4.PRO\results1170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFTeDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999934\)
Calibration curve: -0.000916009 * \(x^{\wedge} 2+1.26347{ }^{*} x+0.0596778\)
Response type: Internal Std (Ref 30 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-116.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Method: U:IQ4.PROMMethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 14:40:20 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003


\section*{13C3-PFBA}



13C3-PFPeA


\section*{Total PFBS}
\begin{tabular}{r} 
F6:MRM of 2 channels,ES- \\
\(299>79.7\) \\
100 \\
PFBS \(1.767 \mathrm{e}+003\) \\
2.97 \\
\hline
\end{tabular}


13C3-PFBS



\section*{PFHxA}


13C2-PFHxA
\begin{tabular}{c} 
F9:MRM of 1 channel,ES- \\
\(315>269.8\) \\
\(1.533 \mathrm{e}+005\) \\
\(13 \mathrm{C} 2-\mathrm{PFHxA}\) \\
3.20 \\
6.60 e 3 \\
153021 \\
bb \\
\\
\hline
\end{tabular}

\section*{Vista Analytical Laboratory}

\section*{Dataset: U:IQ4.PROIresults1170710M31170710M3-CRV-116.qid}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003



13C4-PFHpA

\begin{tabular}{rr} 
Total PFHxS \\
& F16:MRM of 2 channels,ES- \\
\(398.9>79.6\)
\end{tabular}


1802-PFHxS




13C2-PFOA


PFNA


13C5-PFNA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M3\170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003

 13C8-PFOSA





13C2-PFDA


\section*{PFUnA}


13C2-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

\section*{Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003}



13C8-PFOS




13C2-PFDoA




13C2-PFTeDA




13C2-PFTeDA

Page 344 of 672
\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_2, Date: 10-Jul-2017, Time: 16:35:25, ID: ST170710M3-1 PFC CS-2 17G1003, Description: PFC CS-2 17G1003


13C9-PFNA



13C4-PFOS



13C6-PFDA


13C8-PFOA


13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results|170710M31170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17G1004


13C3-PFBA



13C3-PFPeA




13C3-PFBS


\section*{PFHxA}


13C2-PFHxA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}


\section*{Dataset: U:IQ4.PROIresults1170710M31170710M3-CRV-116.qld}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

\section*{Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17 G1004}


13C8-PFOSA




13C8-PFOS



F35:MRM of 2 channels,ES \(513>219\) \(3.858 \mathrm{e}+003\)


13C2-PFDA




13C2-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17 G 1004


13C8-PFOS


\section*{PFDoA}



13C2-PFDoA




13C2-PFTeDA


PFTeDA


13C2-PFTeDA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_3, Date: 10-Jul-2017, Time: 16:46:13, ID: ST170710M3-2 PFC CS-1 17G1004, Description: PFC CS-1 17G1004


13C9-PFNA



13C4-PFOS



13C6-PFDA



13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M31170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 \(17 \mathrm{G1005}\)

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M31170710M3-CRV-l16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

\section*{Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 \(17 G 1005\)}



13C4-PFHpA


\section*{Total PFHxS}


F16:MRM of 2 channels,ES-


1802-PFHxS


\section*{Total PFOA}



13C2-PFOA


PFNA


13C5-PFNA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M3\170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 \(17 \mathrm{G1005}\)



13C8-PFOSA




13C8-PFOS




13C2-PFDA


\section*{PFUnA}



13C2-PFUnA

\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

\section*{Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 \(17 \mathrm{G1005}\)}



13C8-PFOS


\section*{PFDoA}



13C2-PFDoA


\section*{PFTrDA}



13C2-PFTeDA
F59:MRM of 2 channels,ES-


PFTeDA


F58:MRM of 4 channels,ES-
\(712.9>369\)


13C2-PFTeDA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

\section*{Name: 170710M3_4, Date: 10-Jul-2017, Time: 16:56:56, ID: ST170710M3-3 PFC CS0 17G1005, Description: PFC CS0 17G1005}


13C9-PFNA



13C4-PFOS



13C6-PFDA


13C8-PFOA
F21:MRM of 1 channel,ES421.3 > 376


13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M3\170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17G1006


13C3-PFBA


\section*{PFPeA}


13C3-PFPeA


\section*{Total PFBS}


13C3-PFBS


PFHxA
F8:MRM of 2 channels,ES
313.2 > 268.9



13C2-PFHxA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 \(17 \mathrm{G1006}\)



13C4-PFHpA



1802-PFHxS




13C2-PFOA


PFNA


13C5-PFNA


\section*{Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 \(17 \mathrm{G1006}\)



13C8-PFOSA



\section*{PFDA}



13C2-PFDA


PFUnA


F43:MRM of 2 channels,ES-
\(562.9>269\)


13C2-PFUnA


\section*{Dataset: \\ U:\Q4.PRO\results\170710M3I170710M3-CRV-I16.qld}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

\section*{Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17 G1006}



13C8-PFOS



13C2-PFDoA




13C2-PFTeDA


PFTeDA


13C2-PFTeDA


\section*{Vista Analytical Laboratory}

Dataset: U:IQ4.PROIresults1170710M3\170710M3-CRV-I16.qid
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

Name: 170710M3_5, Date: 10-Jul-2017, Time: 17:07:35, ID: ST170710M3-4 PFC CS1 17G1006, Description: PFC CS1 17G1006



13C4-PFBA


13C4-PFOS



13C6-PFDA


13C8-PFOA


13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M31170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17 G1007

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M3\170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

\section*{Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 \(17 \mathrm{G1007}\)}


13C4-PFHpA



1802-PFHxS



13C2-PFOA


PFNA


13C5-PFNA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17G1007



13C8-PFOSA


Total PFOS


30:MRM of 2 channels,ES-
\(499>99\)


13C8-PFOS


\section*{PFDA}


F35:MRM of 2 channels,ES:


PFUnA


\section*{Dataset: U:IQ4.PROIresults1170710M31170710M3-CRV-116.qld}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

\section*{Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17G1007}

 13C8-PFOS


\section*{PFDoA}



13C2-PFDoA



13C2-PFTeDA


PFTeDA
F58:MRM of 4 channels,ES \(712.9>668.8\)



13C2-PFTEDA

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

\section*{Name: 170710M3_6, Date: 10-Jul-2017, Time: 17:18:21, ID: ST170710M3-5 PFC CS2 17G1007, Description: PFC CS2 17 G1007}




13C4-PFOS



13C6-PFDA


13C8-PFOA


13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17 G1008


\section*{13C3-PFBA}



13C3-PFPeA



13C3-PFBS


\section*{PFHxA}


F8:MRM of 2 channels,ES


13C2-PFHxA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-116.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008

\section*{PFHpA}


13C4-PFHpA

\section*{Total PFHxS}


1802-PFHxS


\section*{Total PFOA}



13C2-PFOA


PFNA

Dataset: U:\Q4.PROIresults\170710M3\170710M3-CRV-I16.qld

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008


F28:MRM of 2 channels,ES-

\section*{Total PFOS}



13C8-PFOS



13C2-PFDA


PFUnA


F43:MRM of 2 channels,ES-


13C2-PFUnA


\section*{Vista Analytical Laboratory}
\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17 G1008



13C8-PFOS


\section*{PFDoA}




\section*{PFTrDA}



13C2-PFTeDA
F59:MRM of 2 channels,ES-


PFTeDA


13C2-PFTeDA
F59:MRM of 2 channels,ES-
\(714.8>669.6\) \(7.243 \mathrm{e}+005\)

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_7, Date: 10-Jul-2017, Time: 17:28:59, ID: ST170710M3-6 PFC CS3 17G1008, Description: PFC CS3 17G1008


13C9-PFNA



13C4-PFOS



13C6-PFDA


13C8-PFOA


13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results1170710M3|170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009


\section*{13C3-PFBA}


\section*{13C3-PFPeA}



\section*{PFHxA}


F8:MRM of 2 channels,ES-
\(313.2>119\)


13C2-PFHxA

\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID; ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009



13C4-PFHpA


\section*{Total PFHxS}


F16:MRM of 2 channels,ES-


1802-PFHxS


Total PFOA


13C2-PFOA


\section*{PFNA}


13C5-PFNA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results1170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009



13C8-PFOSA


\section*{Total PFOS}



13C8-PFOS


\section*{PFDA}


13C2-PFDA


PFUnA


13C2-PFUnA


\section*{Dataset: U:IQ4.PROIresults\170710M31170710M3-CRV-I16.qld}

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:08:08 Pacific Dayight Time

Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-CRV-116.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

\section*{Name: 170710M3_8, Date: 10-Jul-2017, Time: 17:39:46, ID: ST170710M3-7 PFC CS4 17G1009, Description: PFC CS4 17G1009}


\section*{13C9-PFNA}


13C4-PFBA


13C4-PFOS


\section*{13C3-PFHxS}


13C6-PFDA


13C8-PFOA


13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17 G1010


Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \(\quad\) Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time

\section*{Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17 G1010}

 13C4-PFHpA


\section*{Total PFHxS}



1802-PFHxS


\section*{Total PFOA}


13C2-PFOA


PFNA


13C5-PFNA

\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results 1 170710M31170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

\section*{Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17 G1010}


13C8-PFOSA

\begin{tabular}{c} 
Total PFOS \\
\\
\\
F30:MRM of 2 channels,ES- \\
\(499>79.9\) \\
100 \\
PFOS \(8.958 \mathrm{e}+005\) \\
\hline
\end{tabular}


13C8-PFOS




13C2-PFDA



13C2-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO|results1170710M31170710M3-CRV-I16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17G1010

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M3\170710M3-CRV-I16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:08:08 Pacific Daylight Time
\end{tabular}

Name: 170710M3_9, Date: 10-Jul-2017, Time: 17:50:33, ID: ST170710M3-8 PFC CS5 17G1010, Description: PFC CS5 17 G1010


13C9-PFNA


13C4-PFBA


13C4-PFOS



13C6-PFDA


13C8-PFOA
F21:MRM of 1 channel,ES \(421.3>376\)


13C7-PFUnA

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170710M31170710M3-11-L16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:18:50 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:19:10 Pacific Daylight Time
\end{tabular}

Method: U:IQ4.PROIMethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 17:05:26 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46


Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17G1011


\section*{Vista Analytical Laboratory}
\begin{tabular}{ll} 
Dataset: & U:IQ4.PRO\results\170710M31170710M3-11-L16.qld \\
Last Altered: & Tuesday, July 11, 2017 17:18:50 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:19:10 Pacific Daylight Time
\end{tabular}

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS \(17 \mathrm{G1011}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\sqrt{2 \times 5+4}
\] & \# Name & \multicolumn{2}{|l|}{Trace \({ }^{\text {a }}\) Area} & \multicolumn{2}{|l|}{IS Area WtiNol.} & RRF & \multicolumn{2}{|l|}{PredRT , RT} & \multicolumn{2}{|l|}{y Axis Resp \(=\) \% Conc.} & \%Rec \\
\hline \(32 \sim 4\) & 32 13C5-PFHxA & \(318>272.9\) & 2.07 e 4 & 2.07 e 4 & 1.000 & 1.000 & 3.16 & 3.18 & 5.00 & 5.00 & 100.0 \\
\hline 33 & 33 13C3-PFHxS & \(401.9>79.9\) & 3.46 e 3 & 3.46 e 3 & 1.000 & 1.000 & 3.55 & 3.52 & 12.5 & 12.5 & 100.0 \\
\hline 34. & 34 13C8-PFOA & \(421.3>376\) & 1.73 e 4 & 1.73 e 4 & 1.000 & 1.000 & 3.63 & 3.65 & 12.5 & 12.5 & 100.0 \\
\hline \[
35
\] & 35 13C9-PFNA & \(472.2>426.9\) & 2.84 e 4 & 2.84 e 4 & 1.000 & 1.000 & 3.82 & 3.82 & 12.5 & 12.5 & 100.0 \\
\hline \[
36
\] & 36 13C4-PFOS & \(503>79.9\) & 5.16 e 3 & 5.16 e 3 & 1.000 & 1.000 & 3.86 & 3.87 & 12.5 & 12.5 & 100.0 \\
\hline \[
37
\] & 37 13C6-PFDA & \(519.1>473.7\) & 3.44 e 4 & 3.44 e 4 & 1.000 & 1.000 & 4.00 & 3.99 & 12.5 & 12.5 & 100.0 \\
\hline \[
38
\] & 38 13C7-PFUnA & \(570.1>524.8\) & 3.24 e 4 & 3.24 e 4 & 1.000 & 1.000 & 4.16 & 4.15 & 12.5 & 12.5 & 100.0 \\
\hline
\end{tabular}

\section*{Method: U:IQ4.PROWethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 17:05:26}

\section*{Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46}

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17 G1011


13C3-PFBA



13C3-PFPeA



13C3-PFBS


\section*{PFHxA}


F8:MRM of 2 channels,ES-
\(313.2>119\)


13C2-PFHxA

Printed: \(\quad\) Tuesday, July 11, 2017 17:19:10 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS \(17 \mathrm{G1011}\)

\section*{PFHpA}



13C4-PFHpA


\section*{Total PFHxS}


Total PFOA



13C2-PFOA


PFNA


13C5-PFNA

Printed: \(\quad\) Tuesday, July 11, 2017 17:19:10 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17 G 1011


F28:MRM of 2 channels,ES\(498.1>478\)


13C8-PFOSA




13C8-PFOS




13C2-PFDA


\section*{PFUnA}


F43:MRM of 2 channels,ES-
\(562.9>269\)


13C2-PFUnA


Vista Analytical Laboratory
\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results\170710M31170710M3-11-L16.qld \\
& \\
Last Altered: & Tuesday, July 11, 2017 17:18:50 Pacific Daylight Time \\
Printed: & Tuesday, July 11, 2017 17:19:10 Pacific Daylight Time
\end{tabular}

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS 17 G1011

Printed: Tuesday, July 11, 2017 17:19:10 Pacific Daylight Time

Name: 170710M3_11, Date: 10-Jul-2017, Time: 18:11:57, ID: SS170710M3-1 PFC SSS 17G1011, Description: PFC SSS \(17 \mathrm{G1011}\)


13C9-PFNA



13C4-PFOS


13C3-PFHxS


13C6-PFDA


13C8-PFOA


13C7-PFUnA


Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_(11_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42

\section*{Compound name: PFBA}

Correlation coefficient: \(\mathrm{r}=0.999903\), \(\mathrm{r}^{\wedge} 2=0.999805\)
Calibration curve: 0.812368 * \(x+0.0615352\)
Response type: Internal Std (Ref 11 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline . & \# Name & Sta. Conc & \multicolumn{2}{|l|}{RT. Resp} & IS Resp & Conc & Dev & RRF \\
\hline 1.4.4 \(=\) & 1 170711G3_2 & 0.250 & 1.72 & 3.49e2 & 1.58 e 4 & 0.264 & 5.7 & 1.10 \\
\hline 2 2. \({ }^{\text {2 }}\) & 2 170711G3_3 & 0.500 & 1.74 & 5.86 e 2 & 1.55 e 4 & 0.505 & 1.1 & 0.944 \\
\hline 3.4 & \(3170711 \mathrm{G3}\)-4 & 1.00 & 1.73 & 1.21 e 3 & 1.81 e 4 & 0.951 & -4.9 & 0.834 \\
\hline \(4 x+5=\) & 4 170711G3_5 & 2.00 & 1.73 & 2.38 e 3 & 1.72 e 4 & 2.05 & 2.4 & 0.863 \\
\hline \[
5
\] & 5 170711G3_6 & 5.00 & 1.73 & 5.55 e 3 & 1.70 e 4 & 4.96 & -0.9 & 0.818 \\
\hline \[
6
\] & 6 170711G3_7 & 10.0 & 1.73 & 9.97 e 3 & 1.59 e 4 & 9.56 & -4.4 & 0.783 \\
\hline 7 & 7 170711G3_8 & 50.0 & 1.73 & 5.56e4 & 1.69 e 4 & 50.6 & 1.2 & 0.823 \\
\hline 8.atwem & \(8170711 \mathrm{G3}\) _9 & 100 & 1.73 & 1.04 e 5 & 1.60 e 4 & 99.9 & -0.1 & 0.812 \\
\hline
\end{tabular}


\section*{Compound name: PFPeA}

Correlation coefficient: \(\mathrm{r}=0.999205, \mathrm{r}^{\wedge} 2=0.998411\)
Calibration curve: 1.19919 * \(x+-0.0457496\)
Response type: Internal Std (Ref 13 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & - Std Conc & - \(\mathrm{S}_{\text {W }}\) RT & \multicolumn{2}{|l|}{Resp IS Resp} & \multicolumn{2}{|l|}{Conc - \% \({ }^{\text {\% Dev }}\)} & RRF \\
\hline , & 1 170711G3_2 & 0.250 & 2.66 & 1.45 e 2 & 6.49 e 3 & 0.270 & 8.1 & 1.11 \\
\hline \(2 \times\) & 2 170711G3_3 & 0.500 & 2.66 & 2.85 e 2 & 6.41 e 3 & 0.502 & 0.4 & 1.11 \\
\hline \(3-4\) & 3 170711G3_4 & 1.00 & 2.66 & 6.45 e 2 & 6.98 e 3 & 1.00 & 0.1 & 1.15 \\
\hline \(44^{4}\) & 4 170711G3_5 & 2.00 & 2.66 & 1.12e3 & 6.82e3 & 1.75 & -12.6 & 1.02 \\
\hline 5 5-4. & 5 170711G3_6 & 5.00 & 2.66 & 2.99e3 & 6.09 e 3 & 5.15 & 3.0 & 1.23 \\
\hline 6 & 6 170711G3_7 & 10.0 & 2.66 & 6.17e3 & 6.20 e 3 & 10.4 & 4.1 & 1.24 \\
\hline 7 & 7 170711G3_8 & 50.0 & 2.66 & 2.92e4 & 6.43 e 3 & 47.3 & -5.4 & 1.13 \\
\hline 8 & 8 170711G3_9 & 100 & 2.66 & 5.32e4 & 5.42e3 & 102 & 2.4 & 1.23 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset:
U:IG1.PROUResultsL2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: PFBS}

Correlation coefficient: \(\mathbf{r}=0.999521,{ }^{\wedge} \wedge=0.999042\)
Calibration curve: 2.23981 * x +-0.119881
Response type: Internal Std (Ref 12 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline - & \# Name & Std Conc & RT & Resp & IS Resp & Conc. & \multicolumn{2}{|l|}{\%Der mai RRF} \\
\hline \(1-2\) & 1 170711G3_2 & 0.250 & 2.94 & 1.58 e 2 & 3.78 e 3 & 0.287 & 14.9 & 2.09 \\
\hline 2- & 2 170711G3_3 & 0.500 & 2.93 & 2.53 e 2 & 3.62 e 3 & 0.444 & -11.2 & 1.75 \\
\hline 3. & 3 170711G3_4 & 1.00 & 2.93 & 6.93e2 & 4.02 e 3 & 1.02 & 1.7 & 2.16 \\
\hline \(4{ }^{4}+\) & 4 170711G3_5 & 2.00 & 2.93 & 1.40 e 3 & 3.91 e3 & 2.05 & 2.3 & 2.23 \\
\hline  & 5 170711G3_6 & 5.00 & 2.93 & 3.08e3 & 3.39 e 3 & 5.13 & 2.6 & 2.27 \\
\hline \[
6
\] & 6 170711G3_7 & 10.0 & 2.93 & 5.58 e 3 & 3.54 e 3 & 8.85 & -11.5 & 1.97 \\
\hline W & 7 170711G3_8 & 50.0 & 2.94 & 2.76 e 4 & 3.07 e 3 & 50.3 & 0.5 & 2.25 \\
\hline 8 - \({ }^{2}\) & 8 170711G3_9 & 100 & 2.94 & 5.08 e 4 & 2.82e3 & 101 & 0.7 & 2.25 \\
\hline
\end{tabular}

\section*{Compound name: PFHxA}

Correlation coefficient: \(r=0.999444, r^{\wedge} 2=0.998888\)
Calibration curve: 1.90952 * \(x+0.14452\)
Response type: Internal Std (Ref 14 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Std. Conc & RT & Resp & IS Resp & Conc. & \%Dev & RRF \\
\hline 1.3 & 1 170711G3_2 & 0.250 & 3.32 & 2.43 e 2 & 6.03 e 3 & 0.188 & -24.9 & 2.01 \\
\hline 2 & 2 170711G3_3 & 0.500 & 3.32 & 5.14e2 & 5.41 e 3 & 0.546 & 9.1 & 2.37 \\
\hline +2\% & 3 170711G3_4 & 1.00 & 3.31 & 1.01e3 & 6.15 e 3 & 0.997 & -0.3 & 2.05 \\
\hline 4 & 4 170711G3_5 & 2.00 & 3.32 & 2.17e3 & 5.99 e 3 & 2.29 & 14.5 & 2.26 \\
\hline 5. & 5 170711G3_6 & 5.00 & 3.32 & 4.55 e 3 & 5.79 e 3 & 5.07 & 1.5 & 1.97 \\
\hline 6 6. & 6 170711G3_7 & 10.0 & 3.31 & 8.97e3 & 5.92e3 & 9.85 & -1.5 & 1.89 \\
\hline 7 7eters & 7 170711G3_8 & 50.0 & 3.32 & 4.41e4 & 5.56 e 3 & 51.9 & 3.8 & 1.98 \\
\hline 8 83+14 & 8 170711G3_9 & 100 & 3.32 & 7.99e4 & 5.34 e 3 & 97.9 & -2.1 & 1.87 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.999678, \mathrm{r}^{\wedge} 2=0.999357\)
Calibration curve: 2.37086 * x + 0.00117983
Response type: Internal Std (Ref 15 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & \multicolumn{2}{|l|}{\begin{tabular}{lr} 
\# Name \\
\(1170711 \mathrm{G3} 2\) & Std. Con \\
\hline 1250
\end{tabular}} & & & & & & \\
\hline 1.4 .4 & 1 170711G3_2 & 0.250 & 3.82 & 3.62 e 2 & 7.37 e 3 & 0.259 & 3.6 & 2.46 \\
\hline 2 2. \({ }^{\text {2 }}\) & 2 170711G3_3 & 0.500 & 3.82 & 7.13 e 2 & 7.16e3 & 0.524 & 4.9 & 2.49 \\
\hline \[
3
\] & 3 170711G3_4 & 1.00 & 3.82 & 1.64e3 & 8.40 e 3 & 1.03 & 3.0 & 2.44 \\
\hline \(4{ }^{4}\) & 4 170711G3_5 & 2.00 & 3.83 & 2.94 e 3 & 8.04 e 3 & 1.93 & -3.6 & 2.29 \\
\hline \(5 \cdot \mathrm{SH}\) & 5 170711G3_6 & 5.00 & 3.83 & 6.53 e 3 & 7.67e3 & 4.49 & -10.2 & 2.13 \\
\hline 6 & 6 170711G3_7 & 10.0 & 3.83 & 1.38 e 4 & 7.22 e 3 & 10.1 & 0.6 & 2.39 \\
\hline \[
17
\] & 7 170711G3_8 & 50.0 & 3.83 & 6.29 e 4 & 6.46 e 3 & 51.4 & 2.7 & 2.44 \\
\hline 8. & \(8170711 \mathrm{G3}\)-9 & 100 & 3.83 & 1.13e5 & 6.02e3 & 99.1 & -0.9 & 2.35 \\
\hline
\end{tabular}

\section*{Compound name: PFHxS}

Correlation coefficient: \(r=0.999359, r^{\wedge} 2=0.998718\)
Calibration curve: 2.089 * x +0.0768621
Response type: Internal Std (Ref 16 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Std. Conc & RT & Resp & IS Resp & Cone & \%Dev & RRF \\
\hline \(1-\) & 1 170711G3_2 & 0.250 & 3.95 & 1.52 e 2 & 3.62 e 3 & 0.214 & -14.4 & 2.10 \\
\hline 2 & 2 170711G3_3 & 0.500 & 3.95 & 3.06 e 2 & 3.28 e 3 & 0.522 & 4.4 & 2.33 \\
\hline 3 & 3 170711G3_4 & 1.00 & 3.95 & 6.74 e 2 & 3.99 e 3 & 0.975 & -2.5 & 2.11 \\
\hline 4 & 4 170711G3_5 & 2.00 & 3.95 & 1.27 e 3 & 3.53e3 & 2.11 & 5.7 & 2.25 \\
\hline 5 & 5 170711G3_6 & 5.00 & 3.95 & 3.06e3 & 3.54e3 & 5.14 & 2.8 & 2.16 \\
\hline 6 & 6 170711G3_7 & 10.0 & 3.95 & 5.64 e 3 & 3.30 e 3 & 10.2 & 2.1 & 2.14 \\
\hline 7 mbe & 7 170711G3_8 & 50.0 & 3.95 & 2.86 e 4 & 3.27 e 3 & 52.3 & 4.7 & 2.19 \\
\hline \(8.40=\) & 8 170711G3_9 & 100 & 3.95 & 5.14 e 4 & 3.16 e 3 & 97.2 & -2.8 & 2.03 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder|170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: PFOA}

Correlation coefficient: \(\mathrm{r}=0.999784, \mathrm{r}^{\wedge} 2=0.999567\)
Calibration curve: \(0.87047{ }^{*} \mathrm{x}+0.0781634\)
Response type: Internal Std (Ref 17 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & \# Name & Sctar Std. Conc & Tr RT & Resp & IS Resp & Conc: & \%Dev & RRF \\
\hline 1.14 & 1 170711G3_2 & 0.250 & 4.24 & 3.08 e 2 & 1.58 e 4 & 0.189 & -24.2 & 0.972 \\
\hline 2 2- & 2 170711G3_3 & 0.500 & 4.23 & 6.61e2 & 1.55 e 4 & 0.523 & 4.6 & 1.07 \\
\hline \[
3
\] & 3 170711G3_4 & 1.00 & 4.23 & 1.61e3 & 1.90 e 4 & 1.13 & 12.6 & 1.06 \\
\hline  & 4 170711G3_5 & 2.00 & 4.23 & 2.62e3 & 1.69 e 4 & 2.13 & 6.5 & 0.966 \\
\hline \[
5
\] & 5 170711G3_6 & 5.00 & 4.23 & 5.77e3 & 1.62 e 4 & 5.04 & 0.8 & 0.893 \\
\hline 6. & 6 170711G3_7 & 10.0 & 4.23 & 1.26e4 & 1.81 e 4 & 9.90 & -1.0 & 0.869 \\
\hline \(7 \times 2\) & 7 170711G3_8 & 50.0 & 4.24 & 6.04e4 & \(1.70{ }^{\text {e }}\) & 50.9 & 1.8 & 0.888 \\
\hline 8 8 & \(8170711 \mathrm{G3}\)-9 & 100 & 4.24 & 1.09 e 5 & 1.59 e 4 & 98.9 & -1.1 & 0.862 \\
\hline
\end{tabular}

\section*{Compound name: PFNA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998825\)
Calibration curve: \(-0.00319585^{*} x^{\wedge} 2+2.90085\) * \(x+-0.200852\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{} \\
\hline 1. & 1 170711G3_2 & 0.250 & 4.57 & 2.30 e 2 & 5.19 e 3 & 0.261 & 4.3 & 2.22 \\
\hline 2 tan & 2 170711G3_3 & 0.500 & 4.57 & 5.05 e 2 & 4.82 e 3 & 0.520 & 4.1 & 2.62 \\
\hline 3 3 & \(3170711 \mathrm{G3}\)-4 & 1.00 & 4.57 & 1.24 e 3 & 5.54e3 & 1.04 & 3.8 & 2.81 \\
\hline 4 & 4 170711G3_5 & 2.00 & 4.57 & 2.50 e 3 & 5.55 e 3 & 2.02 & 0.9 & 2.82 \\
\hline 5 - \({ }^{\text {a }}\) & 5 170711G3_6 & 5.00 & 4.57 & 4.65 e 3 & 4.55 e 3 & 4.49 & -10.2 & 2.55 \\
\hline 6-3 & 6 170711G3_7 & 10.0 & 4.57 & 1.07 e 4 & 5.00 e 3 & 9.42 & -5.8 & 2.68 \\
\hline \[
7
\] & 7 170711G3_8 & 50.0 & 4.57 & 5.65 e 4 & 4.97 e 3 & 52.0 & 4.1 & 2.84 \\
\hline \(8 \times\) & 8 170711G3_9 & 100 & 4.57 & 9.65 e 4 & 4.72 e 3 & 98.9 & -1.1 & 2.56 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset:
U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: PFOS}

Correlation coefficient: \(\mathrm{r}=0.999086, \mathrm{r}^{\wedge} 2=0.998172\)
Calibration curve: 0.598169 * \(x+-0.0823444\)
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline usmar & \multicolumn{2}{|l|}{\# Name wamenta Conc} & T-RT & \multicolumn{2}{|l|}{Resp IS Resp} & Conc & & RRF \\
\hline 1.4. & 1 170711G3_2 & 0.250 & 4.62 & 3.18 e 1 & 5.02e3 & 0.270 & 7.9 & 0.316 \\
\hline 2. & 2 170711G3_3 & 0.500 & 4.62 & 8.17e1 & 5.04 e 3 & 0.476 & -4.7 & 0.405 \\
\hline 3 m & 3 170711G3_4 & 1.00 & 4.63 & 2.56 e 2 & 5.98 e 3 & 1.03 & 3.3 & 0.536 \\
\hline +240 & 4 170711G3_5 & 2.00 & 4.63 & 4.27 e 2 & 5.14 e 3 & 1.87 & -6.4 & 0.519 \\
\hline 5 & 5 170711G3_6 & 5.00 & 4.63 & 1.01e3 & 4.82 e 3 & 4.53 & -9.3 & 0.526 \\
\hline 6 6-mitit & \(6170711 \mathrm{G3}\) _7 & 10.0 & 4.63 & 2.26 e 3 & 4.48 e 3 & 10.7 & 6.9 & 0.631 \\
\hline \(7{ }^{7}+\) & 7 170711G3_8 & 50.0 & 4.63 & 1.31 e 4 & 5.25 e 3 & 52.5 & 5.0 & 0.626 \\
\hline 8 8 & 8 170711G3_9 & 100 & 4.63 & 2.48 e 4 & 5.33 e 3 & 97.4 & -2.6 & 0.582 \\
\hline
\end{tabular}

\section*{Compound name: PFDA}

Coefficient of Determination: \(R^{\wedge} 2=0.998620\)
Calibration curve: \(8.29904 \mathrm{e}-005\) * \(\mathrm{x}^{\wedge} 2+0.207158\) * \(\mathrm{x}+0.0227635\)
Response type: Internal Std (Ref 19 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline S & \# Name & d. Con & RT & Resp & IS Resp & Conc & \%Dev & RRF \\
\hline 14. & 1 170711G3_2 & 0.250 & 4.86 & 4.10 e 1 & 8.43 e 3 & 0.184 & -26.6 & 0.243 \\
\hline \(2=\) & 2 170711G3_3 & 0.500 & 4.86 & 7.86 e 1 & 8.93 e3 & 0.421 & -15.7 & 0.220 \\
\hline 3 & 3 170711G3_4 & 1.00 & 4.86 & 2.54 e 2 & 1.13 e 4 & 1.25 & 24.7 & 0.281 \\
\hline \(4=4\) & 4 170711G3_5 & 2.00 & 4.86 & 3.79 e 2 & 9.78 e 3 & 2.23 & 11.3 & 0.242 \\
\hline 5 matar & 5 170711G3_6 & 5.00 & 4.86 & 8.46 e 2 & 9.56 e 3 & 5.22 & 4.4 & 0.221 \\
\hline \[
6
\] & 6 170711G3_7 & 10.0 & 4.86 & 1.52 e 3 & 8.62 e 3 & 10.5 & 5.0 & 0.221 \\
\hline & 7 170711G3_8 & 50.0 & 4.86 & 9.66 e 3 & 1.19 e 4 & 48.1 & -3.8 & 0.204 \\
\hline 8. & 8 170711G3_9 & 100 & 4.86 & 1.86 e 4 & 1.07e4 & 101 & 0.8 & 0.218 \\
\hline
\end{tabular}

Dataset:
U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C3-PFBA}

Response Factor: 1.34288
RRF SD: 0.0418579, Relative SD: 3.11703
Response type: Internal Std ( Ref 21 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 \({ }^{3}\) & \# Name & Std Conc & P-RT & \multicolumn{5}{|l|}{Resp IS Resp \% Conc. \% . . RRE} \\
\hline 1-3 & 1 170711G3_2 & 12.5 & 1.73 & 1.58 e 4 & 1.23 e 4 & 12.0 & -4.1 & 1.29 \\
\hline  & 2 170711G3_3 & 12.5 & 1.73 & 1.55 e 4 & 1.20 e 4 & 12.0 & -3.7 & 1.29 \\
\hline 3 3 & 3 170711G3_4 & 12.5 & 1.73 & 1.81e4 & 1.33 e 4 & 12.6 & 1.1 & 1.36 \\
\hline 4 4. \({ }^{2}\) & 4 170711G3_5. & 12.5 & 1.73 & 1.72e4 & 1.30 e 4 & 12.3 & -1.7 & 1.32 \\
\hline 5\% & 5 170711G3_6 & 12.5 & 1.73 & 1.70 e 4 & 1.22 e 4 & 12.9 & 3.2 & 1.39 \\
\hline 6 \% & 6 170711G3_7 & 12.5 & 1.73 & 1.59e4 & 1.14 e 4 & 13.0 & 3.8 & 1.39 \\
\hline 7 & 7 170711G3_8 & 12.5 & 1.73 & 1.69 e 4 & 1.23 e 4 & 12.8 & 2.6 & 1.38 \\
\hline 88 & 8 170711G3_9 & 12.5 & 1.73 & 1.60 e 4 & 1.20 e 4 & 12.3 & -1.3 & 1.33 \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBS}

\section*{Response Factor: 0.25962}

RRF SD: 0.0207298 , Relative SD: 7.98467
Response type: Internal Std (Ref 22 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 Name & Con & RT & Resp & IS Resp & Conc. & \%Dev & RRF \\
\hline 4 & 1 170711G3_2 & 12.5 & 2.93 & 3.78 e 3 & 1.35 e 4 & 13.4 & 7.6 & 0.279 \\
\hline 2. & 2 170711G3_3 & 12.5 & 2.93 & 3.62e3 & 1.34 e 4 & 13.0 & 3.9 & 0.270 \\
\hline 3 & 3 170711G3_4 & 12.5 & 2.93 & 4.02e3 & 1.47 e 4 & 13.2 & 5.5 & 0.274 \\
\hline \(4{ }^{3}\) - & 4 170711G3_5 & 12.5 & 2.93 & 3.91e3 & 1.44 e 4 & 13.0 & 4.3 & 0.271 \\
\hline 5 - 5 dite & 5 170711G3_6 & 12.5 & 2.93 & 3.39e3 & 1.34 e 4 & 12.2 & -2.3 & 0.254 \\
\hline  & 6 170711G3_7 & 12.5 & 2.93 & 3.54e3 & 1.30 e 4 & 13.1 & 5.0 & 0.272 \\
\hline 7 \% 4er & 7 170711G3_8 & 12.5 & 2.93 & 3.07e3 & 1.38 e 4 & 10.7 & -14.2 & 0.223 \\
\hline \(8.4=\) & 8 170711G3_9 & 12.5 & 2.94 & 2.82e3 & 1.20 e 4 & 11.3 & -9.7 & 0.235 \\
\hline
\end{tabular}

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C3-PFPeA}

Response Factor: 0.469572
RRF SD: 0.0107677, Relative SD: 2.29309
Response type: Internal Std (Ref 22 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name \({ }^{\text {a }}\) Std. Conc} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{RT} \\
2.66
\end{gathered}
\]} & Resp & S Resp & \multicolumn{2}{|l|}{Conc. \%Dev} & RRF \\
\hline 1. & 1 170711G3_2 & 12.5 & & 6.49e3 & 1.35 e 4 & 12.8 & 2.1 & 0.480 \\
\hline 2.4 & 2 170711G3_3 & 12.5 & 2.66 & 6.41 e 3 & 1.34 e 4 & 12.7 & 1.8 & 0.478 \\
\hline \[
3
\] & 3 170711G3_4 & 12.5 & 2.66 & 6.98e3 & 1.47 e 4 & 12.7 & 1.3 & 0.476 \\
\hline 4 , itimis & 4 170711G3_5 & 12.5 & 2.66 & 6.82e3 & 1.44e4 & 12.6 & 0.6 & 0.472 \\
\hline 5. & 5 170711G3_6 & 12.5 & 2.66 & 6.09e3 & 1.34 e 4 & 12.1 & -2.9 & 0.456 \\
\hline 6.54 & 6 170711G3_7 & 12.5 & 2.66 & 6.20e3 & 1.30 e 4 & 12.7 & 1.6 & 0.477 \\
\hline \(7 \mathrm{~F}+\mathrm{H}\) & 7 170711G3_8 & 12.5 & 2.66 & 6.43e3 & 1.38 e 4 & 12.4 & -0.5 & 0.467 \\
\hline 8 8 & \(8170711 \mathrm{G3}\) _9 & 12.5 & 2.66 & 5.42e3 & 1.20 e 4 & 12.0 & -4.0 & 0.451 \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHxA \\ Response Factor: 0.427462}

RRF SD: 0.019949, Relative SD: 4.66684
Response type: Internal Std ( Ref 22 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \# Name \({ }^{\text {a }}\), & Std Conc & \multicolumn{2}{|l|}{RT, Resp} & IS Resp & \multicolumn{3}{|l|}{Conc. \% \% Dev mer} \\
\hline 1.rivilum & 1 170711G3_2 & 12.5 & 3.32 & 6.03e3 & 1.35 e 4 & 13.0 & 4.3 & 0.446 \\
\hline 2 2res & 2 170711G3_3 & 12.5 & 3.32 & 5.41e3 & 1.34 e 4 & 11.8 & -5.6 & 0.404 \\
\hline  & 3 170711G3_4 & 12.5 & 3.32 & 6.15 e 3 & 1.47 e 4 & 12.3 & -2.0 & 0.419 \\
\hline 4 , \({ }^{\text {a }}\) & 4 170711G3_5 & 12.5 & 3.32 & 5.99 e 3 & 1.44 e 4 & 12.1 & -2.9 & 0.415 \\
\hline \[
5
\] & 5 170711G3_6 & 12.5 & 3.32 & 5.79 e 3 & 1.34 e 4 & 12.7 & 1.4 & 0.434 \\
\hline 6 6 & 6 170711G3_7 & 12.5 & 3.31 & 5.92 e 3 & 1.30 e 4 & 13.3 & 6.5 & 0.455 \\
\hline 7.4. & \(7170711 \mathrm{G3} 8\) & 12.5 & 3.32 & 5.56e3 & 1.38 e 4 & 11.8 & -5.6 & 0.404 \\
\hline 8. \({ }^{\text {ata }}\) & \(8170711 \mathrm{G3} 9\) & 12.5 & 3.32 & 5.34 e 3 & 1.20 e 4 & 13.0 & 3.9 & 0.444 \\
\hline
\end{tabular}

Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time

\section*{Printed:} Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C4-PFHpA}

Response Factor: 0.538432
RRF SD: 0.0364647, Relative SD: 6.77239
Response type: Internal Std (Ref 22 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\# Name Std Conc} & W RT & \multicolumn{3}{|l|}{Resp l IS Resp Conc.} & \%Dev & RRF \\
\hline 1.4.4.4. & 1170711 G 3 _2 & 12.5 & 3.83 & 7.37e3 & 1.35 e 4 & 12.6 & 1.1 & 0.544 \\
\hline \[
2
\] & 2170711 G 3 3 & 12.5 & 3.82 & 7.16 e 3 & 1.34 e 4 & 12.4 & -0.9 & 0.534 \\
\hline 3 Hemem & 3 170711G3_4 & 12.5 & 3.82 & 8.40 e 3 & 1.47 e 4 & 13.3 & 6.2 & 0.572 \\
\hline \[
4
\] & 4 170711G3_5 & 12.5 & 3.83 & 8.04 e 3 & 1.44 e 4 & 12.9 & 3.4 & 0.557 \\
\hline 5. & 5 170711G3_6 & 12.5 & 3.83 & 7.67 e 3 & 1.34 e 4 & 13.3 & 6.7 & 0.575 \\
\hline 6.4 & \(6170711 \mathrm{G3}\)-7 & 12.5 & 3.83 & 7.22 e 3 & 1.30 e 4 & 12.9 & 3.2 & 0.556 \\
\hline \[
7
\] & \(7170711 \mathrm{G3} 8\) & 12.5 & 3.83 & 6.46 e 3 & 1.38 e 4 & 10.9 & -12.9 & 0.469 \\
\hline 8, & 8170711 G3_9 & 12.5 & 3.83 & 6.02 e 3 & 1.20 e 4 & 11.6 & -6.9 & 0.501 \\
\hline
\end{tabular}

\section*{Compound name: 1802-PFHxS}

Response Factor: 0.465365
RRF SD: 0.020374, Relative SD: 4.37807
Response type: Internal Std (Ref 23 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Std. Conc & \multicolumn{2}{|l|}{RT Resp} & IS Resp & Conc. & \multicolumn{2}{|l|}{\%Dev} \\
\hline 1.4 & 1 170711G3_2 & 12.5 & 3.95 & 3.62e3 & 8.05 e 3 & 12.1 & -3.4 & 0.449 \\
\hline 2 Cl 2 & 2 170711G3_3 & 12.5 & 3.95 & 3.28 e 3 & 7.22 e 3 & 12.2 & -2.4 & 0.454 \\
\hline 3 3 & 3 170711G3_4 & 12.5 & 3.95 & 3.99 e 3 & 8.19 e 3 & 13.1 & 4.6 & 0.487 \\
\hline \(4{ }^{-1}\) & 4 170711G3_5 & 12.5 & 3.95 & 3.53e3 & 7.72e3 & 12.3 & -1.9 & 0.457 \\
\hline 5 5xtym & 5 170711G3_6 & 12.5 & 3.95 & 3.54e3 & 7.54e3 & 12.6 & 0.8 & 0.469 \\
\hline 6 6 \({ }^{\text {che }}\) & 6 170711G3_7 & 12.5 & 3.95 & 3.30 e 3 & 7.11 e 3 & 12.5 & -0.3 & 0.464 \\
\hline  & 7 170711G3_8 & 12.5 & 3.95 & 3.27 e3 & 7.42e3 & 11.8 & -5.3 & 0.441 \\
\hline 8. & 8 170711G3_9 & 12.5 & 3.95 & 3.16e3 & 6.29 e 3 & 13.5 & 7.9 & 0.502 \\
\hline
\end{tabular}

Dataset: U:IG1.PROIResults\2017\New folderI170711G3-CRV.qid
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C2-PFOA}

Response Factor: 3.71264
RRF SD: 0.217223, Relative SD: 5.85091
Response type: Internal Std ( Ref 24 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline -3 & \# Name & * Sitd. Conc & Ter RT & Resp & 15 Resp & Conc. & & RRF \\
\hline \(1 \times\) & 1 170711G3_2 & 12.5 & 4.23 & 1.58 e 4 & 4.49 e 3 & 11.9 & -5.0 & 3.53 \\
\hline 2 \(2 \times\) & 2 170711G3_3 & 12.5 & 4.23 & 1.55 e 4 & 4.55 e 3 & 11.5 & -8.2 & 3.41 \\
\hline \[
3
\] & 3 170711G3_4 & 12.5 & 4.23 & 1.90 e 4 & 5.04 e 3 & 12.7 & 1.4 & 3.76 \\
\hline  & 4 170711G3_5 & 12.5 & 4.23 & 1.69 e 4 & 4.57 e 3 & 12.5 & -0.1 & 3.71 \\
\hline 5 , & 5 170711G3_6 & 12.5 & 4.23 & 1.62 e 4 & 4.55 e 3 & 12.0 & -4.3 & 3.55 \\
\hline 6 W, & 6 170711G3_7 & 12.5 & 4.23 & 1.81e4 & 4.51 e 3 & 13.5 & 8.3 & 4.02 \\
\hline \(7 \times 1\) & 7 170711G3_8 & 12.5 & 4.23 & 1.70e4 & 4.57 e 3 & 12.5 & 0.3 & 3.72 \\
\hline 8 - \({ }^{3}\) & 8 170711G3_9 & 12.5 & 4.23 & 1.59 e 4 & 3.97 e 3 & 13.5 & 7.6 & 4.00 \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFNA}

\section*{Response Factor: 0.928619}

RRF SD: 0.070955, Relative SD: 7.64091
Response type: Internal Std ( Ref 25 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{} \\
\hline 1. & 1 170711G3_2 & 12.5 & 4.57 & 5.19e3 & 5.57e3 & 12.5 & 0.2 & 0.931 \\
\hline 2 & 2 170711G3_3 & 12.5 & 4.57 & 4.82e3 & 5.04 e 3 & 12.9 & 3.2 & 0.958 \\
\hline 3 & 3 170711G3_4 & 12.5 & 4.57 & 5.54e3 & 5.90 e 3 & 12.6 & 1.1 & 0.939 \\
\hline 4.4 & 4 170711G3_5 & 12.5 & 4.57 & 5.55e3 & 5.17e3 & 14.5 & 15.7 & 1.07 \\
\hline \(5 \mathrm{~L}+\mathrm{T}\) & 5 170711G3_6 & 12.5 & 4.57 & 4.55 e 3 & 5.05 e 3 & 12.1 & -3.0 & 0.900 \\
\hline & 6 170711G3_7 & 12.5 & 4.57 & 5.00e3 & 5.41 e 3 & 12.4 & -0.5 & 0.924 \\
\hline & 7 170711G3_8 & 12.5 & 4.57 & 4.97e3 & 5.75 e 3 & 11.6 & -7.0 & 0.863 \\
\hline 8 8 & \(8170711 \mathrm{G3}\)-9 & 12.5 & 4.57 & 4.72e3 & 5.62 e 3 & 11.3 & -9.6 & 0.839 \\
\hline
\end{tabular}

Dataset: U:IG1.PRO\Results\2017\New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C2- PFDA}

Response Factor: 2.04259
RRF SD: 0.105833, Relative SD: 5.18132
Response type: Internal Std (Ref 27 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{1} & \# Name & \multicolumn{2}{|l|}{Std. Cone} & & IS Resp & \multicolumn{2}{|r|}{\%Dev} & RRF \\
\hline & 1 170711G3_2 & 12.5 & 4.86 & 8.43 e 3 & 4.50 e 3 & 11.5 & -8.2 & 1.88 \\
\hline \[
2
\] & 2 170711G3_3 & 12.5 & 4.86 & 8.93 e 3 & 4.25 e3 & 12.9 & 2.8 & 2.10 \\
\hline 3-6. \({ }^{2}+4\) & 3 170711G3_4 & 12.5 & 4.85 & 1.13e4 & 5.46 e 3 & 12.7 & 1.2 & 2.07 \\
\hline 4 & 4 170711G3_5 & 12.5 & 4.86 & 9.78 e 3 & 4.98 e 3 & 12.0 & -3.8 & 1.96 \\
\hline 5.8 & 5 170711G3_6 & 12.5 & 4.86 & 9.56 e 3 & 4.69 e 3 & 12.5 & -0.2 & 2.04 \\
\hline 6.4 & 6 170711G3_7 & 12.5 & 4.86 & 8.62 e 3 & 4.37 e 3 & 12.1 & -3.4 & 1.97 \\
\hline 7 \% 2 & 7 170711G3_8 & 12.5 & 4.86 & 1.19e4 & 5.34 e 3 & 13.6 & 8.8 & 2.22 \\
\hline 8 - & 8 170711G3_9 & 12.5 & 4.86 & 1.07e4 & 5.09 e 3 & 12.8 & 2.8 & 2.10 \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOS}

Response Factor: 1.026
RRF SD: 0.0446111, Relative SD: 4.34807
Response type: Internal Std (Ref 26 ), Area * (IS Conc. / IS Area)
Curve type: RF


Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C4-PFBA}

\section*{Response Factor: 1}

RRF SD: \(8.3925 \mathrm{e}-017\), Relative SD: \(8.3925 \mathrm{e}-015\)
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 4. \({ }^{\text {a }}\) & \# Name & Std. Conc & - RT & Resp \({ }^{\text {d }}\) & IS Resp & Conc. & Dev & RRF \\
\hline 1-2 & 1 170711G3_2 & 12.5 & 1.72 & 1.23 e 4 & 1.23 e 4 & 12.5 & 0.0 & 1.00 \\
\hline 2 & 2 170711G3_3 & 12.5 & 1.72 & 1.20 e4 & 1.20 e 4 & 12.5 & 0.0 & 1.00 \\
\hline 3 m & 3 170711G3_4 & 12.5 & 1.72 & 1.33 e 4 & 1.33 e 4 & 12.5 & 0.0 & 1.00 \\
\hline \(4 \times \square\) & 4 170711G3_5 & 12.5 & 1.73 & 1.30 e4 & 1.30 e 4 & 12.5 & 0.0 & 1.00 \\
\hline  & 5 170711G3_6 & 12.5 & 1.72 & 1.22 e 4 & 1.22 e 4 & 12.5 & 0.0 & 1.00 \\
\hline 6. & \(6170711 \mathrm{G3}\) _7 & 12.5 & 1.73 & 1.14 e 4 & 1.14 e 4 & 12.5 & 0.0 & 1.00 \\
\hline 7-1.ted & 7 170711G3_8 & 12.5 & 1.73 & 1.23 e 4 & 1.23 e 4 & 12.5 & 0.0 & 1.00 \\
\hline 8 8312 & 8 170711G3_9 & 12.5 & 1.73 & 1.20 e 4 & 1.20 e 4 & 12.5 & 0.0 & 1.00 \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFHxA}

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std ( Ref 22 ), Area * ( IS Conc. / IS Area)
Curve type: RF


Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C3-PFHxS}

Response Factor: 1
RRF SD: 4.19625e-017, Relative SD: 4.19625e-015
Response type: Internal Std (Ref 23 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline - \({ }^{\text {a }}\) & \# Name & Std. Conc \({ }^{\text {a }}\) & \multicolumn{2}{|l|}{RT. Resp} & IS Resp & Conc. & \%Dev & RRF \\
\hline 5r & 1 170711G3_2 & 12.5 & 3.95 & 8.05 e 3 & 8.05e3 & 12.5 & 0.0 & 1.00 \\
\hline \(2+x^{+}\) & 2 170711G3_3 & 12.5 & 3.95 & 7.22e3 & 7.22 e 3 & 12.5 & -0.0 & 1.00 \\
\hline 4.ryt & 3 170711G3_4 & 12.5 & 3.95 & 8.19e3 & 8.19 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 8 xam & 4 170711G3_5 & 12.5 & 3.95 & 7.72e3 & 7.72e3 & 12.5 & 0.0 & 1.00 \\
\hline 4) & 5 170711G3_6 & 12.5 & 3.95 & 7.54e3 & 7.54e3 & 12.5 & 0.0 & 1.00 \\
\hline 6.1 & 6 170711G3_7 & 12.5 & 3.95 & 7.11e3 & 7.11e3 & 12.5 & 0.0 & 1.00 \\
\hline \(7 \times 3\) & 7 170711G3_8 & 12.5 & 3.95 & 7.42e3 & 7.42 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 8 CH & \(8170711 \mathrm{G3}\) _9 & 12.5 & 3.95 & 6.29e3 & 6.29e3 & 12.5 & 0.0 & 1.00 \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 24 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \# Name mindmeder & Std. Con & RT & Resp & IS Resp & Conc & Sev & RRF \\
\hline 1. & 1 170711G3_2 & 12.5 & 4.23 & 4.49e3 & 4.49 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 2.4 & 2 170711G3_3 & 12.5 & 4.23 & 4.55 e 3 & 4.55 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 3 & 3 170711G3_4 & 12.5 & 4.23 & 5.04e3 & 5.04 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 4 & 4 170711G3_5 & 12.5 & 4.23 & 4.57e3 & 4.57 e 3 & 12.5 & 0.0 & 1.00 \\
\hline & 5 170711G3_6 & 12.5 & 4.23 & 4.55 e 3 & 4.55 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 6 & 6 170711G3_7 & 12.5 & 4.23 & 4.51 e 3 & 4.51 e 3 & 12.5 & 0.0 & 1.00 \\
\hline \(7 \times\) & 7 170711G3_8 & 12.5 & 4.24 & 4.57 e 3 & 4.57 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 8 - & 8 170711G3_9 & 12.5 & 4.23 & 3.97e3 & 3.97e3 & 12.5 & 0.0 & 1.00 \\
\hline
\end{tabular}

\section*{Quantify Compound Summary Report MassLynx 4.1 SCN815}

Vista Analytical Laboratory Q2
Dataset: U:IG1.PROIResultsL2017INew folderl170711G3-CRV.qld
Last Altered:
Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 25 ), Area * (IS Conc. / IS Area )
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 3 & \# Name & Std. Conc & |R** RT & \multicolumn{2}{|l|}{Resp 1 R Resp} & \multicolumn{2}{|l|}{Cone} & RRF \\
\hline 1.5 & 1 170711G3_2 & 12.5 & 4.57 & 5.57e3 & 5.57 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 2 L & 2 170711G3_3 & 12.5 & 4.57 & 5.04e3 & 5.04e3 & 12.5 & 0.0 & 1.00 \\
\hline 3 l & 3 170711G3_4 & 12.5 & 4.57 & 5.90e3 & 5.90 e 3 & 12.5 & 0.0 & 1.00 \\
\hline  & 4 170711G3_5 & 12.5 & 4.57 & 5.17e3 & 5.17e3 & 12.5 & 0.0 & 1.00 \\
\hline \[
5
\] & 5 170711G3_6 & 12.5 & 4.57 & 5.05e3 & 5.05 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 6 W & 6 170711G3_7 & 12.5 & 4.57 & 5.41 e 3 & 5.41 e 3 & 12.5 & 0.0 & 1.00 \\
\hline  & 7 170711G3_8 & 12.5 & 4.57 & 5.75 e 3 & 5.75 e 3 & 12.5 & 0.0 & 1.00 \\
\hline  & 8 170711G3_9 & 12.5 & 4.57 & 5.62e3 & 5.62e3 & 12.5 & 0.0 & 1.00 \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFOS}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 26 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & - Std. Conc & RT & Resp & IS Resp & Conc & Jev & RRF \\
\hline  & 1 170711G3_2 & 12.5 & 4.63 & 5.27 e 3 & 5.27 e 3 & 12.5 & 0.0 & 1.00 \\
\hline \[
2
\] & 2 170711G3_3 & 12.5 & 4.63 & 4.57e3 & 4.57 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 3 - & 3 170711G3_4 & 12.5 & 4.63 & 5.74 e 3 & 5.74 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 4 & 4 170711G3_5 & 12.5 & 4.63 & 5.02e3 & 5.02 e 3 & 12.5 & 0.0 & 1.00 \\
\hline \[
5
\] & 5 170711G3_6 & 12.5 & 4.63 & 4.77 e 3 & 4.77 e 3 & 12.5 & 0.0 & 1.00 \\
\hline  & 6 170711G3_7 & 12.5 & 4.63 & 4.31 e 3 & 4.31 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 7.4 & 7 170711G3_8 & 12.5 & 4.63 & 5.31 e 3 & 5.31 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 8 \% M & 8 170711G3_9 & 12.5 & 4.63 & 5.09e3 & 5.09 e 3 & 12.5 & 0.0 & 1.00 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q2
Dataset: U:IG1.PROIResultsL2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

\section*{Compound name: 13C6-PFDA}

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 27 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 5 23 & \# Name & Std. Cone & & Resp & IS Resp & Conc. & \%Dev & RRF \\
\hline 1. & 1 170711G3_2 & 12.5 & 4.86 & 4.50e3 & 4.50 e 3 & 12.5 & 0.0 & 1.00 \\
\hline  & 2 170711G3_3 & 12.5 & 4.85 & 4.25 e 3 & 4.25 e 3 & 12.5 & 0.0 & 1.00 \\
\hline \(3-2\) & 3 170711G3_4 & 12.5 & 4.85 & 5.46e3 & 5.46 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 4 4-4tes: & 4 170711G3_5 & 12.5 & 4.85 & 4.98 e 3 & 4.98 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 5. 5 & 5 170711G3_6 & 12.5 & 4.85 & 4.69 e 3 & 4.69 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 6 - \({ }^{2}\) & 6 170711G3_7 & 12.5 & 4.85 & 4.37 e 3 & 4.37 e 3 & 12.5 & 0.0 & 1.00 \\
\hline 7.4 & 7 170711G3_8 & 12.5 & 4.86 & 5.34 e 3 & 5.34 e 3 & 12.5 & 0.0 & 1.00 \\
\hline \(8.3 \pm\) & 8 170711G3_9 & 12.5 & 4.85 & 5.09e3 & 5.09 e 3 & 12.5 & 0.0 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, July 12, 2017 09:21:06 Pacific Daylight Time \\
Printed: & Wednesday, July 12, 2017 09:21:36 Pacific Daylight Time
\end{tabular}

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42

Compound name: PFOS
\begin{tabular}{|c|c|c|c|c|}
\hline & Name &  & Acq Date & Acq Time \\
\hline \[
\mid 1
\] & 170711G3_1 & IPA & 11-Jul-17 & 17:16:59 \\
\hline \[
2
\] & 170711G3_2 & ST170711G3-1 PFC CS-2 17G1111 & 11-Jul-17 & 17:29:23 \\
\hline 3 3- \({ }^{2}\) & 170711G3_3 & ST170711G3-2 PFC CS-1 17G1112 & 11-Jul-17 & 17:41:54 \\
\hline 4 & 170711G3_4 & ST170711G3-3 PFC CS0 17G1113 & 11-Jul-17 & 17:54:28 \\
\hline \[
5
\] & 170711G3_5 & ST170711G3-4 PFC CS1 17G1114 & 11-Jul-17 & 18:07:01 \\
\hline \[
6
\] & 170711G3_6 & ST170711G3-5 PFC CS2 17G1115 & 11-Jul-17 & 18:19:36 \\
\hline \[
7
\] & 170711G3_7 & ST170711G3-6 PFC CS3 17G1116 & 11-Jul-17 & 18:32:12 \\
\hline \[
8
\] & 170711G3_8 & ST170711G3-7 PFC CS4 17G1117 & 11-Jul-17 & 18:44:45 \\
\hline 9 & 170711G3_9 & ST170711G3-8 PFC CS5 17G1118 & 11-Jul-17 & 18:57:37 \\
\hline 10 & 170711G3_10 & IPA & 11-Jul-17 & 19:10:03 \\
\hline 11 & 170711G3_11 & SS170711G3-1 PFC SSS 17G1119 & 11-Jul-17 & 19:22:36 \\
\hline 12 & 170711G3_12 & IPA & 11-Jul-17 & 19:35:06 \\
\hline \[
13
\] & 170711G3_13 & B7G0031-BS1 OPR 0.125 & 11-Jul-17 & 19:47:42 \\
\hline & 170711G3_14 & IPA & 11-Jul-17 & 20:00:12 \\
\hline \[
15
\] & 170711G3_15 & B7G0031-BLK1 Method Blank 0.125 & 11-Jul-17 & 20:12:48 \\
\hline \[
16
\] & 170711G3_16 & 1700830-07 MW-6-063017-25 0.12093 & 11-Jul-17 & 20:25:18 \\
\hline \[
17
\] & 170711G3_17 & B7G0031-MS1 Matrix Spike 0.12062 & 11-Jul-17 & 20:38:06 \\
\hline \[
18
\] & 170711G3_18 & B7G0031-MSD1 Matrix Spike Dup 0.12141 & 11-Jul-17 & 20:50:26 \\
\hline \[
19
\] & 170711G3_19 & 1700830-11 BARNS-04-GW-TW02-062817-30.. & 11-Jul-17 & 21:02:59 \\
\hline 20. & 170711G3_20 & 1700831-02 BARNS-06-GW-TW01-062817-3... & 11-Jul-17 & 21:15:33 \\
\hline 21.4 & 170711G3_21 & 1700831-07 BARNS-01-GW-TW03-062917-3... & 11-Jul-17 & 21:28:06 \\
\hline \(22 \cdot 3=4\) & 170711G3_22 & 1700831-12 BARNS-06-GW-TW01-062817-D... & 11-Jul-17 & 21:40:34 \\
\hline \[
23
\] & 170711G3_23 & 1700832-04 BARNS-07-GW-TW05-062917-4... & 11-Jul-17 & 21:53:09 \\
\hline \[
24
\] & 170711G3_24 & 1700832-07 BARNS-EB-03-063017 0.12216 & 11-Jul-17 & 22:05:41 \\
\hline 25 & 170711G3_25 & 1700832-08 BARNS-EB-04-063017 0.12295 & 11-Jul-17 & 22:19:37 \\
\hline \[
26
\] & 170711G3_26 & 1700832-09 BARNS-EB-05-063017 0.1174 & 11-Jul-17 & 22:31:51 \\
\hline 27. & 170711G3_27 & 1700832-10 BARNS-08-GW-TW04-063017-3... & 11-Jul-17 & 22:44:20 \\
\hline 28 & 170711G3_28 & IPA & 11-Jul-17 & 22:56:54 \\
\hline 29\% & 170711G3_29 & ST170711G3-9 PFC CS3 17G1116 & 11-Jul-17 & 23:09:26 \\
\hline 30. & 170711G3_30 & IPA & 11-Jul-17 & 23:21:56 \\
\hline
\end{tabular}

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

\section*{Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41}

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
Compound name: PFBA
Correlation coefficient: \(\mathrm{r}=0.999903, \mathrm{r}^{\wedge} 2=0.999805\)
Calibration curve: \(0.812368{ }^{*} x+0.0615352\)
Response type: Internal Std (Ref 11 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Vista Analytical Laboratory Q1}

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: \(\quad\) Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFPeA
Correlation coefficient: \(r=0.999205, r^{\wedge} 2=0.998411\)
Calibration curve: 1.19919 * \(x+-0.0457496\)
Response type: Internal Std (Ref 13 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report}

Dataset: U:IG1.PRO\Results\2017Wew folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

\section*{Compound name: PFBS}

Correlation coefficient: \(\mathrm{r}=0.999521, \mathrm{r}^{\wedge} 2=0.999042\)
Calibration curve: 2.23981 * \(x+-0.119881\)
Response type: Internal Std (Ref 12 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Work Order 1700792

Dataset: U:\G1.PROIResults\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: \(r=0.999444, r^{\wedge} 2=0.998888\)
Calibration curve: 1.90952 * x +0.14452
Response type: Internal Std (Ref 14 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld}

Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.999678, \mathrm{r}^{\wedge} 2=0.999357\)
Calibration curve: 2.37086 * x + 0.00117983
Response type: Internal Std (Ref 15 ), Area * (IS Conc. / IS Area )
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Quantify Calibration Report
Vista Analytical Laboratory Q1
Dataset:
U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFHxS
Correlation coefficient: \(\mathrm{r}=0.999359, \mathrm{r}^{\wedge} 2=0.998718\)
Calibration curve: 2.089 * \(x+0.0768621\)
Response type: Internal Std (Ref 16 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Work Order 1700792
Page 408 of 672

\section*{Dataset: U:IG1.PRO\Results\2017Wew folderl170711G3-CRV.qld}

Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: \(\mathrm{r}=0.999784, \mathrm{r}^{\wedge} 2=0.999567\)
Calibration curve: \(0.87047^{*} x+0.0781634\)
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFNA
Coefficient of Determination: \(R^{\wedge} 2=0.998825\)
Calibration curve: \(-0.00319585{ }^{*} x^{\wedge} 2+2.90085\) * \(x+-0.200852\)
Response type: Internal Std (Ref 18 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Vista Analytical Laboratory Q1}

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

\section*{Compound name: PFOS}

Correlation coefficient: \(\mathrm{r}=0.999086, \mathrm{r}^{\wedge} 2=0.998172\)
Calibration curve: 0.598169 * \(x+-0.0823444\)
Response type: Internal Std (Ref 20), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998620\)
Calibration curve: \(8.29904 \mathrm{e}-005^{*} x^{\wedge} 2+0.207158\) * \(x+0.0227635\)
Response type: Internal Std (Ref 19 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory Q1
Dataset:
U:IG1.PROIResults\2017\New folderl170711G3-CRV.qld
Last Altered:
Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

Method: U:IG1.prolMethDB\PFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: ST170711G3-1 PFC CS-2 17G1111, Description: PFC CS-2 17G1111, Name: 170711G3_2, Date: 11-Jul-2017, Time: 17:29:23, Instrument: , Lab: , User:


PFPeA


13C3-PFPeA


Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-1 PFC CS-2 17G1111, Description: PFC CS-2 17G1111, Name: 170711G3_2, Date: 11-Jul-2017, Time: 17:29:23, Instrument: , Lab: , User:


\section*{13C3-PFBS}


PFHxA



\section*{13C2-PFHxA}


Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-1 PFC CS-2 17G1111, Description: PFC CS-2 17G1111, Name: 170711G3_2, Date: 11-Jul-2017, Time: 17:29:23, Instrument: , Lab: , User:

PFHPA
170711G3_2
100

\section*{Total PFHxS}


13C4-PFHpA



1802-PFHxS


Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

\section*{ID: ST170711G3-1 PFC CS-2 17G1111, Description: PFC CS-2 17G1111, Name: 170711G3_2, Date: 11-Jul-2017, Time: 17:29:23, Instrument: , Lab: , User:}

\section*{Total PFOA}



\section*{13C2-PFOA}




13C8-PFOS


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\ResultsL2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-1 PFC CS-2 17G1111, Description: PFC CS-2 17G1111, Name: 170711G3_2, Date: 11-Jul-2017, Time: 17:29:23, Instrument: , Lab: , User:


\section*{13C5-PFNA}


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-1 PFC CS-2 17G1111, Description: PFC CS-2 17G1111, Name: 170711G3_2, Date: 11-Jul-2017, Time: 17:29:23, Instrument: , Lab: , User:

\section*{13C5-PFHxA}


13C8-PFOA


\section*{13C3-PFHxS}


13C4-PFOS
\begin{tabular}{lcr} 
170711G3_2 & F5:MRM of 12 channels, ES- \\
100 & 13C4-PFOS & \(503.0>79.9\) \\
& 4.63
\end{tabular}

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-1 PFC CS-2 17G1111, Description: PFC CS-2 17G1111, Name: 170711G3_2, Date: 11-Jul-2017, Time: 17:29:23, Instrument: , Lab: , User:


Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-2 PFC CS-1 17G1112, Description: PFC CS-1 17G1112, Name: 170711G3_3, Date: 11-Jul-2017, Time: 17:41:54, Instrument: , Lab: , User:

\section*{PFBA}


\section*{13C3-PFBA}


PFPeA


13C3-PFPeA


Dataset: U:IG1.PROIResults\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-2 PFC CS-1 17G1112, Description: PFC CS-1 17G1112, Name: 170711G3_3, Date: 11-Jul-2017, Time: 17:41:54, Instrument: , Lab: , User:


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\20171New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-2 PFC CS-1 17G1112, Description: PFC CS-1 17G1112, Name: 170711G3_3, Date: 11-Jul-2017, Time: 17:41:54, Instrument: , Lab: , User:


\section*{13C4-PFHpA}



1802-PFHxS
\begin{tabular}{ll} 
170711G3_3 \\
100 \\
\hline
\end{tabular}

Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-2 PFC CS-1 17G1112, Description: PFC CS-1 17G1112, Name: 170711G3_3, Date: 11-Jul-2017, Time: 17:41:54, Instrument: , Lab: , User:


Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-2 PFC CS-1 17G1112, Description: PFC CS-1 17G1112, Name: 170711G3_3, Date: 11-Jul-2017, Time: 17:41:54, Instrument: , Lab: , User:

\section*{PFNA}
\begin{tabular}{l} 
PFNA \\
170711G3_3 \\
100 \\
\hline
\end{tabular}


PFDA



13C5-PFNA
(130711G3_3

Dataset: U:IG1.PROIResultsL2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-2 PFC CS-1 17G1112, Description: PFC CS-1 17G1112, Name: 170711G3_3, Date: 11-Jul-2017, Time: 17:41:54, Instrument: , Lab: , User:

\section*{13C5-PFHxA}


13C8-PFOA


\section*{13C3-PFHxS}


\section*{13C4-PFOS}


Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-2 PFC CS-1 17G1112, Description: PFC CS-1 17G1112, Name: 170711G3_3, Date: 11-Jul-2017, Time: 17:41:54, Instrument: , Lab: , User:



\section*{Vista Analytical Laboratory Q1}

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-3 PFC CS0 17G1113, Description: PFC CS 0 17G1113, Name: 170711G3_4, Date: 11-Jul-2017, Time: 17:54:28, Instrument: , Lab: , User:


Dataset: U:\G1.PRO\ResultsL2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-3 PFC CS0 17G1113, Description: PFC CS 0 17G1113, Name: 170711G3_4, Date: 11-Jul-2017, Time: 17:54:28, Instrument: , Lab: , User:
\begin{tabular}{lc} 
Total PFBS \\
170711G3_4 \\
100 & PFBS \\
F3:MRM of 9 channels,ES- \\
\(299.0>79.7\) \\
\(2.591 e^{+004}\)
\end{tabular}


\section*{13C3-PFBS}


PFHxA



\section*{13C2-PFHxA}
\begin{tabular}{lcl} 
170711G3_4 & F3:MRM of 9 channels, ES- \\
100 & \(13 \mathrm{C} 2-\mathrm{PFHxA}\) & \(2.3>269.8\) \\
& 3.32
\end{tabular}

Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-3 PFC CS0 17G1113, Description: PFC CS 0 17G1113, Name: 170711G3_4, Date: 11-Jul-2017, Time: 17:54:28, Instrument: , Lab: , User:


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-3 PFC CS0 17G1113, Description: PFC CS 0 17G1113, Name: 170711G3_4, Date: 11-Jul-2017, Time: 17:54:28, Instrument: , Lab: , User:


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-3 PFC CS0 17G1113, Description: PFC CS 0 17G1113, Name: 170711G3_4, Date: 11-Jul-2017, Time: 17:54:28, Instrument: , Lab: , User:

\begin{tabular}{l} 
PFDA \\
170711G3_4 \\
100 \\
\hline
\end{tabular}



\section*{13C5-PFNA}


Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qid
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-3 PFC CS0 17G1113, Description: PFC CS 0 17G1113, Name: 170711G3_4, Date: 11-Jul-2017, Time: 17:54:28, Instrument: , Lab: , User:

\section*{13C5-PFHxA \\ }

13C8-PFOA



\section*{13C4-PFOS}
\(170711 \mathrm{G3} 4\)
100

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-3 PFC CS0 17G1113, Description: PFC CS 0 17G1113, Name: 170711G3_4, Date: 11-Jul-2017, Time: 17:54:28, Instrument: , Lab: , User:


Dataset: U:IG1.PRO\ResultsL20171New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-4 PFC CS1 17G1114, Description: PFC CS1 17G1114, Name: 170711G3_5, Date: 11-Jul-2017, Time: 18:07:01, Instrument: , Lab: , User:


13C3-PFBA
170711G3_5


PFPeA


13C3-PFPeA


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\20171New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-4 PFC CS1 17G1114, Description: PFC CS1 17G1114, Name: 170711G3_5, Date: 11-Jul-2017, Time: 18:07:01, Instrument: , Lab: , User:

\section*{Total PFBS}
\begin{tabular}{l} 
Total PFBS \\
170711G3_5 \\
100 \\
\hline
\end{tabular}


\section*{13C3-PFBS}


PFHxA



13C2-PFHxA


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qid
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-4 PFC CS1 17G1114, Description: PFC CS1 17G1114, Name: 170711G3_5, Date: 11-Jul-2017, Time: 18:07:01, Instrument: , Lab: , User:



\section*{13C4-PFHpA}


\section*{Total PFHxS}



1802-PFHxS


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-4 PFC CS1 17G1114, Description: PFC CS1 17G1114, Name: 170711G3_5, Date: 11-Jul-2017, Time: 18:07:01, Instrument: , Lab: , User:

\section*{Total PFOA}



13C2-PFOA


\section*{Total PFOS}


\section*{13C8-PFOS}


Dataset:
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

\section*{ID: ST170711G3-4 PFC CS1 17G1114, Description: PFC CS1 17G1114, Name: 170711G3_5, Date: 11-Jul-2017, Time: 18:07:01, Instrument: , Lab: , User:}



13C5-PFNA


Dataset: U:IG1.PRO\Results\2017New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

\section*{ID: ST170711G3-4 PFC CS1 17G1114, Description: PFC CS1 17G1114, Name: 170711G3_5, Date: 11-Jul-2017, Time: 18:07:01, Instrument: , Lab: , User:}

\section*{13C5-PFHxA}

\section*{170711G3_5}


13C8-PFOA


\section*{13C3-PFHxS}


\section*{13C4-PFOS}


Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-4 PFC CS1 17G1114, Description: PFC CS1 17G1114, Name: 170711G3_5, Date: 11-Jul-2017, Time: 18:07:01, Instrument: , Lab: , User:
\begin{tabular}{ll} 
13C9-PFNA \\
170711G3_5 \\
100 \\
\hline
\end{tabular}

Dataset: U:IG1.PROIResults\2017\New folder1170711G3-CRV.qld
\(\begin{array}{ll}\text { Last Altered: } \quad \text { Wednesday, July 12, } 2017 \text { 09:08:42 Pacific Daylight Time } \\ \text { Printed: } & \text { Wednesday July 12, } 2017 \text { 09:17:35 Pacific Daylight Time }\end{array}\)
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-5 PFC CS2 17G1115, Description: PFC CS2 17G1115, Name: 170711G3_6, Date: 11-Jul-2017, Time: 18:19:36, Instrument: , Lab: , User:

\section*{PFBA \\ }

\section*{13C3-PFBA}

170711G3_6


PFPeA


\section*{13C3-PFPeA}


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-5 PFC CS2 17G1115, Description: PFC CS2 17G1115, Name: 170711G3_6, Date: 11-Jul-2017, Time: 18:19:36, Instrument: , Lab: , User:

\section*{Total PFBS}



13C3-PFBS


PFHxA


13C2-PFHxA


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-5 PFC CS2 17G1115, Description: PFC CS2 17G1115, Name: 170711G3_6, Date: 11-Jul-2017, Time: 18:19:36, Instrument: , Lab: , User:

PFHpA



13C4-PFHpA




\section*{1802-PFHxS}
\(170711 \mathrm{G3}\) _6
100

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qid
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-5 PFC CS2 17G1115, Description: PFC CS2 17G1115, Name: 170711G3_6, Date: 11-Jul-2017, Time: 18:19:36, Instrument: , Lab: , User:



\section*{13C2-PFOA}

170711G3_6


\section*{Total PFOS}



13C8-PFOS


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-5 PFC CS2 17G1115, Description: PFC CS2 17G1115, Name: 170711G3_6, Date: 11-Jul-2017, Time: 18:19:36, Instrument: , Lab: , User:


13C5-PFNA

Dataset:
U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld

Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-5 PFC CS2 17G1115, Description: PFC CS2 17G1115, Name: 170711G3_6, Date: 11-Jul-2017, Time: 18:19:36, Instrument: , Lab: , User:


13C8-PFOA


\section*{13C3-PFHxS}


13C4-PFOS
170711G3_6


Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-5 PFC CS2 17G1115, Description: PFC CS2 17G1115, Name: 170711G3_6, Date: 11-Jul-2017, Time: 18:19:36, Instrument: , Lab: , User:

\section*{13C9-PFNA}



Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-6 PFC CS3 17G1116, Description: PFC CS3 17G1116, Name: 170711G3_7, Date: 11-Jul-2017, Time: 18:32:12, Instrument: , Lab: , User:


Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-6 PFC CS3 17G1116, Description: PFC CS3 17G1116, Name: 170711G3_7, Date: 11-Jul-2017, Time: 18:32:12, Instrument: , Lab: , User:

\section*{Total PFBS}



\section*{13C3-PFBS}


PFHxA


\section*{13C2-PFHxA}


Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

\section*{ID: ST170711G3-6 PFC CS3 17G1116, Description: PFC CS3 17G1116, Name: 170711G3_7, Date: 11-Jul-2017, Time: 18:32:12, Instrument: , Lab: , User:}


Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-6 PFC CS3 17G1116, Description: PFC CS3 17G1116, Name: 170711G3_7, Date: 11-Jul-2017, Time: 18:32:12, Instrument: , Lab: , User:

\section*{Total PFOA}




\section*{Total PFOS}



13C8-PFOS
\begin{tabular}{lcr} 
170711G3_7 & F5:MRM of 12 channels, ES- \\
100 & 13C8-PFOS & \(507.0>79.9\) \\
& 4.63
\end{tabular}

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-6 PFC CS3 17G1116, Description: PFC CS3 17G1116, Name: 170711G3_7, Date: 11-Jul-2017, Time: 18:32:12, Instrument: , Lab: , User:


\section*{13C5-PFNA}
(130711G3_7

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-6 PFC CS3 17G1116, Description: PFC CS3 17G1116, Name: 170711G3_7, Date: 11-Jul-2017, Time: 18:32:12, Instrument: , Lab: , User:


Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-6 PFC CS3 17G1116, Description: PFC CS3 17G1116, Name: 170711G3_7, Date: 11-Jul-2017, Time: 18:32:12, Instrument: , Lab: , User:



Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered:
Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-7 PFC CS4 17G1117, Description: PFC CS4 17G1117, Name: 170711G3_8, Date: 11-Jul-2017, Time: 18:44:45, Instrument: , Lab: , User:


Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-7 PFC CS4 17G1117, Description: PFC CS4 17G1117, Name: 170711G3_8, Date: 11-Jul-2017, Time: 18:44:45, Instrument: , Lab: , User:


Dataset: U:IG1.PROUResults\2017\New folderl170711G3-CRV.qid
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

\section*{ID: ST170711G3-7 PFC CS4 17G1117, Description: PFC CS4 17G1117, Name: 170711G3_8, Date: 11-Jul-2017, Time: 18:44:45, Instrument: , Lab: , User:}

\section*{PFHPA}



\section*{13C4-PFHpA}

170711G3_8


\section*{Total PFHxS}


\section*{1802-PFHxS}
\begin{tabular}{|c|c|c|}
\hline 170711G3_8 & & F4:MRM of 7 channels, ES- \\
\hline & 1802-PFHxS & \(403>102.6\) \\
\hline 100 & 3.95 & \(1.184 \mathrm{e}+005\) \\
\hline
\end{tabular}

\section*{Dataset: \\ U:IG1.PRO\Results\2017\New folderl170711G3-CRV.qld}

Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-7 PFC CS4 17G1117, Description: PFC CS4 17G1117, Name: 170711G3_8, Date: 11-Jul-2017, Time: 18:44:45, Instrument: , Lab: , User:

\section*{Total PFOA}
\begin{tabular}{|c|c|c|}
\hline 170711G3_8 & & F5:MRM of 12 channels,ES- \\
\hline & PFOA & 413.0 > 368.7 \\
\hline 1007 & 4.24 & \(2.117 \mathrm{e}+006\) \\
\hline & 6.04 e 4 & \\
\hline & \[
\begin{gathered}
\text { bb } \\
6676.38
\end{gathered}
\] & \\
\hline \%- & 6676.38 / & \\
\hline
\end{tabular}


\section*{13C2-PFOA}


\section*{Total PFOS}



\section*{13C8-PFOS}


Quantify Sample Report
Vista Analytical Laboratory Q1
Dataset:
U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-7 PFC CS4 17G1117, Description: PFC CS4 17G1117, Name: 170711G3_8, Date: 11-Jul-2017, Time: 18:44:45, Instrument: , Lab: , User:


PFDA


13C5-PFNA


Vista Analytical Laboratory Q1
Dataset:
U:IG1.PROIResults\2017Wew folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-7 PFC CS4 17G1117, Description: PFC CS4 17G1117, Name: 170711G3_8, Date: 11-Jul-2017, Time: 18:44:45, Instrument: , Lab: , User:


\section*{13C8-PFOA}


\section*{13C3-PFHxS}


13C4-PFOS
\(170711 \mathrm{G3}\) _8
100

Quantify Sample Report
Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-7 PFC CS4 17G1117, Description: PFC CS4 17G1117, Name: 170711G3_8, Date: 11-Jul-2017, Time: 18:44:45, Instrument: , Lab: , User:


Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-8 PFC CS5 17G1118, Description: PFC CS5 17G1118, Name: 170711G3_9, Date: 11-Jul-2017, Time: 18:57:37, Instrument: , Lab: , User:
 13C3-PFBA


\section*{PFPeA}


13C3-PFPeA


Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-8 PFC CS5 17G1118, Description: PFC CS5 17G1118, Name: 170711G3_9, Date: 11-Jul-2017, Time: 18:57:37, Instrument: , Lab: , User:



\section*{13C3-PFBS}


PFHxA



13C2-PFHxA
\begin{tabular}{lc|} 
170711G3_9 & F3:MRM of 9 channels, ES- \\
100 & \(315.0>269.8\) \\
& 3.32
\end{tabular}\(\quad 1.889 \mathrm{e}^{-}+005\)

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

\section*{ID: ST170711G3-8 PFC CS5 17G1118, Description: PFC CS5 17G1118, Name: 170711G3_9, Date: 11-Jul-2017, Time: 18:57:37, Instrument: , Lab: , User:}

\section*{PFHpA}



\section*{13C4-PFHpA}


\section*{Total PFHxS}


\section*{1802-PFHxS}


Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-8 PFC CS5 17G1118, Description: PFC CS5 17G1118, Name: 170711G3_9, Date: 11-Jul-2017, Time: 18:57:37, Instrument: , Lab: , User:




\section*{13C8-PFOS}


Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-8 PFC CS5 17G1118, Description: PFC CS5 17G1118, Name: 170711G3_9, Date: 11-Jul-2017, Time: 18:57:37, Instrument: , Lab: , User:


\section*{13C5-PFNA}


Dataset: U:IG1.PROIResults\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-8 PFC CS5 17G1118, Description: PFC CS5 17G1118, Name: 170711G3_9, Date: 11-Jul-2017, Time: 18:57:37, Instrument: , Lab: , User:

\section*{13C5-PFHxA}


13C8-PFOA
170711G3_9


\section*{170711G3_9}

\section*{13C3-PFHxS}


\section*{13C4-PFOS}


Dataset: U:IG1.PRO\Results\2017\New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:17:35 Pacific Daylight Time

ID: ST170711G3-8 PFC CS5 17G1118, Description: PFC CS5 17G1118, Name: 170711G3_9, Date: 11-Jul-2017, Time: 18:57:37, Instrument: , Lab: , User:


\section*{Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41}

\section*{Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42}

ID: IPA, Description: IPA, Name: 170711G3_10, Date: 11-Jul-2017, Time: 19:10:03, Instrument: , Lab: , User:

\section*{PFBA}


\section*{13C3-PFBA}


\section*{PFPeA}


13C3-PFPeA
(100711G3_10

Dataset: Untitled
Last Altered: Wednesday, July 12, 2017 09:15:06 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:15:17 Pacific Daylight Time

\section*{ID: IPA, Description: IPA, Name: 170711G3_10, Date: 11-Jul-2017, Time: 19:10:03, Instrument: , Lab: , User:}

\section*{Total PFBS}
Total PFBS
170711G3_10
100 F3:MRM of 9 channels,ES-
299.0879 .7


\section*{13C3-PFBS}


\section*{PFHxA}



13C2-PFHxA


Vista Analytical Laboratory Q1
Dataset: Untitled
Last Altered: Wednesday, July 12, 2017 09:15:06 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:15:17 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170711G3_10, Date: 11-Jul-2017, Time: 19:10:03, Instrument: , Lab: , User:

\section*{PFHpA}


13C4-PFHpA


\section*{Total PFHxS}



\section*{1802-PFHxS}
\begin{tabular}{lr} 
170711G3_10 & F4:MRM of 7 channels, ES- \\
100 & \(403>102.6\) \\
& \(6.580 \mathrm{e}+001\)
\end{tabular}
(

Vista Analytical Laboratory Q1
Dataset:
Untitled
Last Altered: Wednesday, July 12, 2017 09:15:06 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:15:17 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170711G3_10, Date: 11-Jul-2017, Time: 19:10:03, Instrument: , Lab: , User:

\section*{Total PFOA}

170711G3_10

\section*{Total PFOS}


\section*{13C8-PFOS}
\begin{tabular}{lcr}
170711 G3_10 & F5:MRM of 12 channels,ES- \\
100 & 4.65 & \(507.0>79.9\) \\
& \(6.100 \mathrm{e}+001\)
\end{tabular}

\section*{ID: IPA, Description: IPA, Name: 170711G3_10, Date: 11-Jul-2017, Time: 19:10:03, Instrument: , Lab: , User:}

\section*{PFNA}



\section*{13C5-PFNA}


\section*{PFDA}


Vista Analytical Laboratory Q1
Dataset:
Untitled
Last Altered: Wednesday, July 12, 2017 09:15:06 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:15:17 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170711G3_10, Date: 11-Jul-2017, Time: 19:10:03, Instrument: , Lab: , User:


\section*{13C8-PFOA}


\section*{13C3-PFHxS}


\section*{13C4-PFOS}
\begin{tabular}{lrr} 
170711G3_10 & F5:MRM of 12 channels,ES- \\
100 & 4.67 & \(503.0>79.9\) \\
& \(4.980 \mathrm{e}+001\)
\end{tabular}
Vista Analytical Laboratory Q1

Dataset:
Untitled
Last Altered: Wednesday, July 12, 2017 09:15:06 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:15:17 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170711G3_10, Date: 11-Jul-2017, Time: 19:10:03, Instrument: , Lab: , User:


13C6-PFDA


Last Altered:
Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:29:38 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17 G1119


Vista Analytical Laboratory Q1

Dataset:
U:\G1.PRO\Results\2017\170711G3\170711G3-11.qld
Last Altered:
Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:29:00 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17G1119, Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, Instrument: , Lab: , User:


Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170711G3\170711G3-11.qld
Last Altered: Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:29:00 Pacific Daylight Time

ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17G1119, Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, Instrument: , Lab: , User:



13C3-PFBS
\begin{tabular}{ll}
\(170711 \mathrm{G3} 11\) \\
100 \\
\hline
\end{tabular}

\section*{PFHxA}
170711G3_11


13C2-PFHxA


\section*{Dataset:}

U:IG1.PRO\Results\2017\170711G3\170711G3-11.qld
Last Altered:
Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:29:00 Pacific Daylight Time

ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17G1119, Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, Instrument: , Lab: , User:


\section*{Dataset: \\ U:IG1.PRO\Results\2017\170711G3\170711G3-11.qld}

Last Altered:
Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:29:00 Pacific Daylight Time

ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17G1119, Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, Instrument: , Lab: , User:

Total PFOA


13C2-PFOA
170711G3_11


\section*{Total PFOS}
170711G3_11

F5:MRM of 12 channeis,ES\(507.0>79.9\) \(1.828 \mathrm{e}+005\)

Last Altered: Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:29:00 Pacific Daylight Time

\section*{ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17G1119, Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, Instrument: , Lab: , User:}

\section*{PFNA}
\begin{tabular}{l} 
PFNA \\
170711G3_11 \\
100 \\
\\
\hline
\end{tabular}


\section*{13C5-PFNA}

170711G3_11


PFDA



\section*{Vista Analytical Laboratory Q1}

Dataset:
U:IG1.PRO\Results\2017\170711G3\170711G3-11.qld
Last Altered: Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:29:00 Pacific Daylight Time

ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17G1119, Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, Instrument: , Lab: , User:


Dataset: U:IG1.PRO\Results\2017\170711G3\170711G3-11.qld
Last Altered: Wednesday, July 12, 2017 09:26:37 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:29:00 Pacific Daylight Time

ID: SS170711G3-1 PFC SSS 17G1119, Description: PFC SSS 17G1119, Name: 170711G3_11, Date: 11-Jul-2017, Time: 19:22:36, Instrument: , Lab: , User:


13C6-PFDA


\title{
Analytical Standard Record
}

Vista Analytical Laboratory
17E2617
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611432 & 13C2-PFHxDA & 14-Sep-16 & ** Vendor ** & 07-Jan-21 & 14-Sep-16 14:19 by TLD & 0.2 \\
\hline 1611433 & 13C2-PFHxA & 14-Sep-16 & ** Vendor ** & 08-Apr-21 & 14-Sep-16 14:22 by TLD & 0.2 \\
\hline 17B2809 & d3-N-Me-FOSAA & 28-Feb-17 & ** Vendor ** & 28-Feb-18 & 28-Feb-17 13:24 by EMS & 0.5 \\
\hline 17B2811 & d5-N-EtFOSAA & 28-Feb-17 & ** Vendor ** & 22-Nov-21 & 28-Feb-17 13:33 by EMS & 0.5 \\
\hline 17D0502 & 13C3-PFPeA & 05-Apr-17 & Jamie C. Stockman & 12-Feb-21 & 05-Apr-17 11:20 by JCS & 0.5 \\
\hline 17D0503 & 13C2-PFOA & 05-Apr-17 & Jamie C. Stockman & 12-Feb-21 & 05-Apr-17 11:21 by JCS & 0.5 \\
\hline 17D0504 & 13C2-PFDA & 05-Apr-17 & Jamie C. Stockman & 28-Sep-21 & 05-Apr-17 11:21 by JCS & 0.5 \\
\hline 17D0505 & 13C8-FOSA-I & 05-Apr-17 & Jamie C. Stockman & 22-Dec-20 & 05-Apr-17 11:22 by JCS & 0.5 \\
\hline 17E2414 & 13C3-PFBA & 24-May-17 & ** Vendor ** & 27-May-21 & 24-May-17 11:20 by INJ & 0.5 \\
\hline 17 E 2417 & 13C5-PFNA & 24-May-17 & ** Vendor ** & 30-Sep-21 & 24-May-17 11:22 by INJ & 0.5 \\
\hline 17 E 2418 & 13C2-PFTeDA & 24-May-17 & ** Vendor ** & 01-Mar-22 & 24-May-17 11:22 by INJ & 0.5 \\
\hline 17 E 2419 & 13C2-PFUdA & 24-May-17 & ** Vendor ** & 22-Nov-21 & 24-May-17 11:23 by INJ & 0.5 \\
\hline 17 E 2420 & 13C4-PFHpA & 24-May-17 & ** Vendor ** & 27-May-21 & 24-May-17 11:23 by INJ & 0.5 \\
\hline 17E2421 & 13C2-PFDoA & 24-May-17 & ** Vendor ** & 08-Apr-21 & 24-May-17 11:24 by INJ & 0.5 \\
\hline \[
17 \mathrm{E} 2612
\] & 1802-PFHxS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:53 by INJ & 0.624 \\
\hline 17E2613 & 13C2-8:2 FTS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:55 by INJ & 0.624 \\
\hline 17 E 2614 & 13C2-6:2 FTS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:57 by INJ & 0.624 \\
\hline 17E2615 & 13C8-PFOS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:59 by INJ & 0.624 \\
\hline 17 E 2616 & 13C3-PFBS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 11:01 by INJ & 0.624 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & PFC - IS & Expires: & 19-Dec-17 \\
Standard Type: & Reagent & Prepared: & 26-May-17 \\
Solvent: & MEOH & Prepared By: & Isaac N. Johnson \\
Final Volume \((\mathrm{mls}):\) & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 26-May-17 13:09 by INJ
\end{tabular}
\begin{tabular}{lcc} 
Analyte & CAS Number & Concentration \\
\hline 13C3-PFBS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-8:2 FTS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFDA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFDoA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFHxA & 0.5 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFHxDA & 0.5 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFOA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFTeDA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-6:2 FTS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C3-PFBA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
d5-EtFOSAA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C3-PFPeA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C4-PFHpA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C5-PFNA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C8-PFOS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\)
\end{tabular}

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2617
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611432 & 13C2-PFHxDA & 14-Sep-16 & ** Vendor ** & 07-Jan-21 & 14-Sep-16 14:19 by TLD & 0.2 \\
\hline 16 I 1433 & 13C2-PFHxA & 14-Sep-16 & ** Vendor ** & 08-Apr-21 & 14-Sep-16 14:22 by TLD & 0.2 \\
\hline 17B2809 & d3-N-Me-FOSAA & 28-Feb-17 & ** Vendor ** & 28-Feb-18 & 28-Feb-17 13:24 by EMS & 0.5 \\
\hline 17B2811 & d5-N-EtFOSAA & 28-Feb-17 & ** Vendor ** & 22-Nov-21 & 28-Feb-17 13:33 by EMS & 0.5 \\
\hline 17D0502 & 13C3-PFPeA & 05-Apr-17 & Jamie C. Stockman & 12-Feb-21 & 05-Apr-17 11:20 by JCS & 0.5 \\
\hline 17D0503 & 13C2-PFOA & 05-Apr-17 & Jamie C. Stockman & 12-Feb-21 & 05-Apr-17 11:21 by JCS & 0.5 \\
\hline 17D0504 & 13C2-PFDA & 05-Apr-17 & Jamie C. Stockman & 28-Sep-21 & 05-Apr-17 11:21 by JCS & 0.5 \\
\hline 17D0505 & 13C8-FOSA-I & 05-Apr-17 & Jamie C. Stockman & 22-Dec-20 & 05-Apr-17 11:22 by JCS & 0.5 \\
\hline 17 E 2414 & 13C3-PFBA & 24-May-17 & ** Vendor ** & 27-May-21 & 24-May-17 11:20 by INJ & 0.5 \\
\hline 17 E 2417 & 13C5-PFNA & 24-May-17 & ** Vendor ** & 30-Sep-21 & 24-May-17 11:22 by INJ & 0.5 \\
\hline 17 E 2418 & 13C2-PFTeDA & 24-May-17 & ** Vendor ** & 01-Mar-22 & 24-May-17 11:22 by INJ & 0.5 \\
\hline 17E2419 & 13C2-PFUdA & 24-May-17 & ** Vendor ** & 22-Nov-21 & 24-May-17 11:23 by INJ & 0.5 \\
\hline 17 E 2420 & 13C4-PFHpA & 24-May-17 & ** Vendor ** & 27-May-21 & 24-May-17 11:23 by INJ & 0.5 \\
\hline 17 E 2421 & 13C2-PFDoA & 24-May-17 & ** Vendor ** & 08-Apr-21 & 24-May-17 11:24 by INJ & 0.5 \\
\hline 17 E 2612 & 1802-PFHxS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:53 by INJ & 0.624 \\
\hline 17E2613 & 13C2-8:2 FTS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:55 by INJ & \[
0.624
\] \\
\hline 17E2614 & 13C2-6:2 FTS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:57 by INJ & 0.624 \\
\hline 17E2615 & 13C8-PFOS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 10:59 by INJ & 0.624 \\
\hline 17 E 2616 & 13C3-PFBS dil. & 26-May-17 & Isaac N. Johnson & 26-May-18 & 26-May-17 11:01 by INJ & 0.624 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & PFC - IS & Expires: & 19-Dec-17 \\
Standard Type: & Reagent & Prepared: & 26-May-17 \\
Solvent: & MEOH & Prepared By: & Isaac N. Johnson \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 26-May-17 13:09 by INJ
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline 13C8-PFOSA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
18O2-PFHxS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
d3-MeFOSAA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFUnA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

M2PFHxDA
Perfluoro-n-[1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right]\) hexadecanoic acid

LOT NUMBER: M2PFHxDA1112

CAS \#:
Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/ysy)
EXPIRY DATE: (mm/dd/ysy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \sqrt{ }\)
>98\%
01/07/2016 01/07/2021

MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
816.11

Methanol
Water ( \(<1 \%\) )
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.3 \%\) of native perfluoro-n-hexadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \(\qquad\)
(mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)
29nov2012_M2PFHxDA_004
M2PFHxDA1112 \(25 \mathrm{ug} / \mathrm{ml}\)
100

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Micromass Quattro micro API MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline \multirow[t]{2}{*}{Column:} & \multicolumn{2}{|l|}{Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\)} \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-1200 amu) \\
\hline Mobile phase: & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% H2O & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=25.00\) \\
\hline & \begin{tabular}{l}
Ramp to \(100 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . \\
Time: 10 min
\end{tabular} & \begin{tabular}{l}
Cone Gas Flow ( \(/ / \mathrm{hr}\) ) \(=60\) \\
Desolvation Gas Flow (l/hr) \(=750\)
\end{tabular} \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline Injection: & \begin{tabular}{l}
Direct loop injection \\
\(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml}\) M2PFHxDA)
\end{tabular} & MS Parameters \\
\hline Mobile phase: & Isocratic 80\% (80:20 MeOH:ACN) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & \[
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=15
\end{aligned}
\] \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MPFHxA
Perfluoro-n-[1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right]\) hexanoic acid

LOT NUMBER: MPFHxA0416

CAS \#: Not available




\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(<0.1 \%\) of perfluoro-n-hexanoic acid and \(\sim 0.3 \%\) of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
mm/da/yyyy

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MPFHxA; LC/MS Data (TIC and Mass Spectrum)
08apr2016_MPFHxA_002
MPFHxA0416 \(10 \mathrm{ug} / \mathrm{ml}\)
100

\begin{tabular}{ll}
\hline \multicolumn{2}{|l|}{ Conditions for Figure 1: } \\
\hline LC: & Waters Acquity Ultra Performance LC \\
MS: & Micromass Quattro micro API MS
\end{tabular}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(50 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(50 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7.5 min and hold for 1.5 min before returning to initial conditions over 0.5 min .
Time: 10 min

\section*{MS Parameters}

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage (V) \(=15.00\)
Cone Gas Flow (l/hr) \(=100\)
Desolvation Gas Flow (l/hr) \(=750\)

Flow: \(300 \mu \mathrm{l} / \mathrm{min}\)

Figure 2: MPFHxA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{|lll} 
Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFHxA)}\)
\end{tabular} & MS Parameters \\
Mobile phase: & \begin{tabular}{l} 
Isocratic \(80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) \\
Flow:
\end{tabular} & \begin{tabular}{l} 
Collision Gas (mbar) \(=3.39 \mathrm{e}-3\) \\
Collision Energy \((\mathrm{eV})=10\)
\end{tabular} \\
& \(300 \mu \mathrm{l} / \mathrm{min}\)
\end{tabular}
\begin{tabular}{lll} 
PRODUCT CODE: & d3-N-MeFOSAA \\
COMPOUND: & LOT NUMBER: & d3NMeFOSAA1116 \\
STRUCTURE: & & CASt \#:
\end{tabular}


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By


Date: \(\qquad\)

\section*{INTENDED USE}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|l|}
\hline Conditions for Figure 1: \\
\hline LC: \\
MS:
\end{tabular}\(\quad\) Waters Acquity Ultra Performance LC
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & \multirow[t]{2}{*}{MS Parameters} \\
\hline Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=35.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min & Cone Gas Flow ( \(1 / \mathrm{hr}\) ) \(=50\) \\
\hline & before returning to initial conditions in 0.5 min . & Desolvation Gas Flow (1/hr) \(=750\) \\
\hline &  & \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline \multirow[t]{3}{*}{Injection:} & Direct loop injection & MS Parameters \\
\hline & \(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml} \mathrm{d} 3-\mathrm{N}-\mathrm{MeFOSAA}\) ) & \\
\hline & & Collision Gas (mbar) \(=3.43 \mathrm{e}-3\) \\
\hline Mobile phase: & Isocratic \(80 \%\) ( \(80: 20 \mathrm{MeOH}: \mathrm{ACN}\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Collision Energy ( eV ) \(=20\) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{PRODUCT CODE: COMPOUND:}

\section*{d5-N-EtFOSAA}

LOT NUMBER: d5NEtFOSAA1116
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid

\section*{STRUCTURE:}

CAS \#:
Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrysy)
EXPIRY DATE: (mmddryyy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: \(\quad 590.26\)
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
\(\geq 98 \%{ }^{2} \mathrm{H}_{5}\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: \(\quad \mathrm{d} 5-\mathrm{N}-E t F O S A A ;\) LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & Micromass Quattro micro API MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=35.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min & Cone Gas Flow (l/hr) \(=50\) \\
\hline & \begin{tabular}{l}
before returning to initial conditions in 0.5 min . \\
Time: 10 min
\end{tabular} & Desolvation Gas Flow (l/hr) \(=750\) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: \(\quad\) d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)



\section*{PRODUCT CODE: COMPOUND:}

M3PFPeA
Perfluoro-n-[3,4,5- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) pentanoic acid

LOT NUMBER: M3PFPeA0216

CAS \#: \(\quad\) Not available

\section*{STRUCTURE:}


MOLECULAR FORMULA:

\section*{CONCENTRATION:}

CHEMICAL PURITY:
LAST TESTED: (mmddaysy)
EXPIRY DATE: (mmdadyyy)
\({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
02/12/2016
02/12/2021

RECOMMENDED STORAGE: Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.95 \%\) of perfluoro- \(n-\left[{ }^{13} \mathrm{C}_{3}\right.\) butanoic acid and \(0.05 \%\) of perfluoro- 1 -pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:


Date: \(\qquad\) (mm/dd/yyyy)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS . The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www.well-labs.com or contact us directly at info@well-labs.com*

Figure 1: M3PFPeA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll} 
12feb2016_M3PFPeA_001 \\
M3PFPeA0216 \(25 \mathrm{ug} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}


\section*{Conditions for Figure 1:}
```

LC: Waters Acquity Ultra Performance LC
MS: Micromass Quattro micro API MS

```

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan ( \(150-850 \mathrm{amu}\) )

Mobile phase: Gradient
Start: \(40 \%\) ( \(80: 20 \mathrm{MeOH}: A C N) / 60 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Figure 2: M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)



\section*{PRODUCT CODE: COMPOUND:}

STRUCTURE:

\section*{1270503}

M2PFOA
Perfluoro-n-[1,2- \({ }^{13} \mathrm{C}_{2}\) ]octanoic acid
LOT NUMBER: M2PFOA0216


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduysy)
EXPIRY DATE: (mmddusys)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{HF}_{15} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
02/12/2016
02/12/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:
416.05

Methanol
Water (<1\%)
\(\geq 99 \%{ }^{13} \mathrm{C}\)
(1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Micromass Quattro micro API MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & \multirow[t]{2}{*}{MS Parameters} \\
\hline Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline Mobile phase: & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=15.00\) \\
\hline & \begin{tabular}{l}
Ramp to \(90 \%\) organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . \\
Time: 10 min
\end{tabular} & \begin{tabular}{l}
Cone Gas Flow (l/hr) \(=100\) \\
Desolvation Gas Flow (l/hr) \(=750\)
\end{tabular} \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|ll|}
\hline Conditions for Figure 2: \\
Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M2PFOA})\)
\end{tabular} \\
Mobile phase: \begin{tabular}{l} 
Isocratic \(80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}\)
\end{tabular} & \begin{tabular}{l} 
MS Parameters
\end{tabular} \\
Flow: & \(300 \mu / \mathrm{min}\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Collision Gas (mbar) \(=3.39 \mathrm{e}-3\) \\
Collision Energy \((\mathrm{eV})=10\)
\end{tabular}

\section*{PRODUCT CODE: COMPOUND:}

MPFDA
Perfluoro-n-[1,2- \({ }^{13} \mathrm{C}_{2}\) ]decanoic acid

LOT NUMBER: MPFDA0916

\section*{STRUCTURE:}



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(<0.1 \%\) of \({ }^{13} \mathrm{C}_{1}\)-PFNA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) (mm/dodnwn)

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: \(\quad\) MPFDA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ \(\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}\) \\ MS: \(\quad\) Micromass Quattro micro API MS}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield \(R P_{18}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

\section*{MS Parameters}

Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage ( V ) \(=15.00\)
Cone Gas Flow (l/hr) \(=50\)
Desolvation Gas Flow \((1 / h r)=750\)

Flow:
\(300 \mu \mathrm{l} / \mathrm{min}\)

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline Injection: & Direct loop injection & MS Parameters \\
\hline & \(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFDA})\) & Collision Gas (mbar) \(=3.31 \mathrm{e}-3\) \\
\hline Mobile ph & Isocratic \(80 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Collision Energy (eV) \(=13\) \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

\section*{PRODUCT CODE: COMPOUND:}

\section*{STRUCTURE:}

M8FOSA-I
Perfluoro-1-[ \({ }^{33} \mathrm{C}_{8}\) ]octanesulfonamide

LOT NUMBER: M8FOSA1215I

CAS \#: Not available


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/ysy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: SOLVENT(S): ISOTOPIC PURITY:
507.09 Isopropanol \(\geq 99 \%{ }^{13} \mathrm{C}\) \(\left({ }^{13} \mathrm{C}_{8}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Micromass Quattro micro API MS}
\begin{tabular}{|c|c|c|}
\hline Chromatograp & hic Conditions & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (150-850 amu) \\
\hline Mobile phase: & \begin{tabular}{l}
Gradient \\
Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) \\
Ramp to \(90 \%\) organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . \\
Time: 10 min
\end{tabular} & \begin{tabular}{l}
Source: Electrospray (negative) \\
Capillary Voltage (kV) \(=2.50\) \\
Cone Voltage \((\mathrm{V})=40.00\) \\
Cone Gas Flow (l/hr) \(=50\) \\
Desolvation Gas Flow (l/hr) \(=750\)
\end{tabular} \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{ll} 
Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}\) M8FOSA-I) \()\)
\end{tabular} \\
Mobile phase: \begin{tabular}{l} 
Isocratic \(80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with 10 mM NH \\
4 \\
OAc buffer)
\end{tabular} \\
Flow: & \(300 \mu / / \mathrm{min}\)
\end{tabular}

\section*{MS Parameters}

Collision Gas (mbar) \(=3.39 \mathrm{e}-3\)
Collision Energy ( eV ) \(=30\)

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE:}

COMPOUND:

M3PFBA
Perfluoro-n-[2,3,4- \({ }^{13} \mathrm{C}_{3}\) butanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoddymy
EXPIRY DATE: (midadmys)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
05/27/2016
05/27/2021
Store ampoule in a cool, dark place

LOT NUMBER: M3PFBA0516

CAS \#: Not available

MOLECULAR WEIGHT: 217.02 SOLVENT(S): Methanol Water (<1\%)
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}

See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.2 \%\) of perfluoro- \(n-\left[{ }^{13} \mathrm{C}_{3}\right]\) propanoic acid and also contains \(\sim 1.0 \%\) of perfluoro-n-[1,2,3,4- \(\left.{ }^{13} \mathrm{C}_{4}\right]\) butanoic acid due to the naturally occurring isotopic abundance of \({ }^{13} \mathrm{C}\) in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)

\title{
CERTIFICATE OF ANALYSIS
}

\section*{PRODUCT CODE:}

COMPOUND:

MPFNA
Perfluoro-n-[1,2,3,4,5- \({ }^{13} \mathrm{C}_{5}\) ]nonanoic acid

\section*{LOT NUMBER: MPFNA0916}

CAS \#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mmiddyyny)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water (<1\%)
\(\geq 99 \%{ }^{13} \mathrm{C}\)
(1,2,3,4,5- \({ }^{13} \mathrm{C}_{5}\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \(\qquad\)

\section*{\(7 E 24-18\)}

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION*}

\author{
PRODUCT CODE: \\ COMPOUND: \\ M2PFTeDA
Perfluoro-n-[1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right]\) tetradecanoic acid
}

LOT NUMBER: M2PFTeDA0217

STRUCTURE:
CAS \#:
Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED; (mm/dodyy)
EXPIRY DATE: (mmodrmys)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
03/01/2017
03/01/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
ISOTOPIC PURITY:
716.10 Methanol Water (<1\%) \(\geq 99 \%{ }^{13} \mathrm{C}\) \(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\title{
CERTIFICATE OF ANALYSIS
}

DOCUMENTATION \({ }^{\prime}\)

\section*{PRODUCT CODE: COMPOUND:}

MPFUdA
Perfluoro-n- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right.\) ]undecanoic acid

LOT NUMBER: MPFUdA1116

CAS \#: Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dolyyy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{9} \mathrm{HF}_{21} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
11/22/2016
11/22/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT (S):

ISOTOPIC PURITY:
566.08

Methanol
Water ( \(<1 \%\) )
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of \(1-{ }^{13} \mathrm{C}_{1}-\) PFUdA ( \(\sim 1 \%\); see Figure 2\(), 2-{ }^{13} \mathrm{C}_{1}-\) PFUdA ( \(\left.\sim 1 \%\right)\), and PFUdA \((\sim 0.2 \%\); see Figure 2) are due to the isotopic purity of the \({ }^{13} \mathrm{C}\)-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\frac{12 / 07 / 2016}{(m m / d d / y y y y)}\)

WELLINGTON LA B OR ATORIES

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE: \\ COMPOUND:}

STRUCTURE:

M4PFHpA
Perfluoro-n-[1,2,3,4- \({ }^{13} \mathrm{C}_{4}\) ]heptanoic acid

LOT NUMBER: M4PFHpA0516

CAS \#: Not available

\begin{tabular}{|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}\) \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) \\
\hline CHEMICAL PURITY: & >98\% \\
\hline LAST TESTED: (mmodirys) & 05/27/2016 \\
\hline EXPIRY DATE: (mmodismy) & 05/27/2021 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
MOLECULAR WEIGHT: & \begin{tabular}{l}
368.03 \\
SOLVENT(S):
\end{tabular} \\
& Methanol \\
Water \((<1 \%)\) \\
ISOTOPIC PURITY: & \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
& \(\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)\)
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{\(7 E 2421\)}

WELLINGTON
LA B OR A TORIES

\section*{CERTIFICATE OF ANALYSIS \\ DOCUMENTATION.}
\begin{tabular}{llll} 
PRODUCT CODE: & MPFDoA & LOT NUMBER: & MPFDoA0416 \\
\hline COMPOUND: & Perfluoro-n- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\) dodecanoic acid & & \\
STRUCTURE: & & CAS \#: & Not available
\end{tabular}

\begin{tabular}{llll} 
MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 616.08 \\
CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & \begin{tabular}{l} 
Methanol \\
Water \((<1 \%)\)
\end{tabular} \\
CHEMICAL PURITY: & \(>98 \%\) & ISOTOPIC PURITY: & \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
LAST TESTED: \((m m / d d y y y)\) & \(04 / 08 / 2016\) & & \(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\) \\
EXPIRY DATE: \((m m / d d / y y y)\) & \(04 / 08 / 2021\) & & \\
RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & &
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2612


\section*{PRODUCT CODE: \\ COMPOUND:}

STRUCTURE:

MPFHxS
Sodium perfluoro-1-hexane \(\left[{ }^{18} \mathrm{O}_{2}\right]\) sulfonate

LOT NUMBER: MPFHxS0217

CAS \#: Not available


\section*{MOLECULAR FORMULA: CONCENTRATION:}

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
\(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{18} \mathrm{ONa}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (MPFHxS anion)
>98\%
02/17/2017
02/17/2022

MOLECULAR WEIGHT: 426.10
SOLVENT(S): Methanol

ISOTOPIC PURITY: \(\quad>94 \%\left({ }^{18} \mathrm{O}_{2}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- \(\quad\) See page 2 for further details.
- The response factor for MPFHxS \(\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)\) has been observed to be up to \(10 \%\) lower than for \(\mathrm{PFHxS}\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)\) when both compounds are injected together. This difference may vary between instruments.
- Contains \(\sim 1.0 \%\) of sodium perfluoro-1-octane \(\left[{ }^{18} \mathrm{O}_{2}\right]\) sulfonate \(\left({ }^{18} \mathrm{O}_{2}-\mathrm{PFOS}\right)\).
- Due to the isotopic purity of the starting material ( \(\left.{ }^{18} \mathrm{O}_{2}>94 \%\right)\), MPFHxS contains \(\sim 0.3 \%\) of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17 E2613


\section*{\(17 E 2415\)}
\begin{tabular}{llll} 
PRODUCT CODE: & M2-8:2FTS & LOT NUMBER: & M282FTS0816 \\
COMPOUND: & Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluoro- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\) decane sulfonate & \\
STRUCTURE: & & CAS\#: & Not available
\end{tabular}


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad\) (Na salt)
\(47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad\) (M2-8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- The native \(8: 2\) FTS contains \(4.22 \%\) of \({ }^{34} \mathrm{~S}\) (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the \(\mathrm{m} / \mathrm{z} 529\) to \(\mathrm{m} / \mathrm{z} 509\) channel during SRM analysis. We recommend using the \(\mathrm{m} / \mathrm{z} 529\) to \(\mathrm{m} / \mathrm{z} 81\) transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2614
\begin{tabular}{|llllll|lll}
\hline Parent Standards used in this standard: \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 17 E 2416 & \(13 \mathrm{C} 2-6: 2 ~ F T S\) & \(24-M a y-17\) & \(* *\) Vendor \(* *\) & 17-Feb-22 & 24-May-17 11:21 by INJ \\
\hline
\end{tabular}
Description:
Standard Type:
Solvent: Methan

Final Volume (mls):
Vials: 1
\begin{tabular}{ll} 
Expires: & 26-May-18 \\
Prepared: & 26-May-17 \\
Prepared By: & Isaac N. Johnson \\
Department: & LCMS \\
Last Edit: & 26-May-17 10:57 by INJ
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline \(13 \mathrm{C} 2-6: 2\) FTS & 40 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\section*{PRODUCT CODE:}

COMPOUND:

M2-6:2FTS
Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluoro-[1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right]\) octane sulfonate

M262FTS0217

STRUCTURE:


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dolyyy)
RECOMMENDED STORAGE:
\(\left.\begin{array}{ll}{ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na} & \text { MOLECULAR WEIGHT: } \\ 50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} & \text { (Na salt) }\end{array}\right)\) SOLVENT(S):
452.13

Methanol
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- The native \(6: 2 \mathrm{FTS}\) contains \(4.22 \%\) of \({ }^{34} \mathrm{~S}\) (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the \(\mathrm{m} / \mathrm{z} 429\) to \(\mathrm{m} / \mathrm{z} 409\) channel during SRM analysis. We recommend using the \(\mathrm{m} / \mathrm{z} 429\) to \(\mathrm{m} / \mathrm{z} 81\) transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\quad 02 / 24 / 2017\)
(mm/dd/yyyy)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2615


\title{
CERTIFICATE OF ANALYSIS
}

\section*{PRODUCT CODE: COMPOUND:}

\section*{STRUCTURE:}

\section*{M8PFOS}

Sodium perfluoro-1-[ \(\left[{ }^{13} \mathrm{C}_{8}\right]\) octanesulfonate

\section*{LOT NUMBER: M8PFOS0916}

CAS \#: Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddaymy)
EXPIRY DATE: (mmddoryny)
RECOMMENDED STORAGE:
\[
{ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}
\]
\(48.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (M8PFOS anion) >97\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 530.05 SOLVENT(S): Methanol

ISOTOPIC PURITY:
\(>99 \%{ }^{13} \mathrm{C}\)
\(\left({ }^{13} \mathrm{C}_{8}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.6 \%\) of sodium perfluoro- \(1-\left[{ }^{13} \mathrm{C}_{7}\right]\) heptanesulfonate ( \({ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}\) ), \(\sim 1.0 \%\) of chlorohexadecafluoro-1-[ \(\left.{ }^{13} \mathrm{C}_{8}\right]\) octanesulfonate, and \(\sim 1.5 \%\) of sodium perfluoro-1-[ \(\left.{ }^{13} \mathrm{C}_{4}\right]\) octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2616


\title{
CERTIFICATE OF ANALYSIS
}

\section*{PRODUCT CODE:}

COMPOUND:

STRUCTURE:

M3PFBS
Sodium perfluoro-1-[2,3,4- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) butanesulfonate
LOT NUMBER: M3PFBS0815

GAS \#: \(\quad\) Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduryw)
EXPIRY DATE: (mmodrysy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(46.5 \pm 2.3 \mu \mathrm{gg} / \mathrm{ml}\) (M3PFBS anion)
>98\%
08/02/2016
08/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol

ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)\)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611414 & PFDA & 14-Sep-16 & ** Vendor ** & 31-May-21 & 15-Dec-16 08:38 by AEW & 0.4 \\
\hline 1611415 & PFHxA & 14-Sep-16 & ** Vendor ** & 22-Dec-20 & 15-Dec-16 08:41 by AEW & 0.4 \\
\hline 1611416 & MeFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 04-Oct-16 08:25 by EMS & 0.4 \\
\hline 1611417 & EtFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 14-Sep-16 14:10 by TLD & 0.4 \\
\hline 1611418 & PFTeDA & 14-Sep-16 & ** Vendor ** & 09-Dec-20 & 15-Dec-16 08:46 by AEW & 0.4 \\
\hline 1613001 & PFTrDA & 30-Sep-16 & ** Vendor ** & 12-Feb-21 & 23-Jan-17 17:44 by AEW & 0.4 \\
\hline 16J0422 & PFDoA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:22 by AEW & 0.4 \\
\hline 16J0423 & FOSA-I & 04-Oct-16 & ** Vendor ** & 02-Sep-17 & 23-Jan-17 17:49 by AEW & 0.4 \\
\hline 16J0424 & PFNA & 04-Oct-16 & ** Vendor ** & 23-Oct-20 & 23-Jan-17 17:40 by AEW & 0.4 \\
\hline 16J0425 & PFPeA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:38 by AEW & 0.4 \\
\hline 16J0426 & PFBA & 04-Oct-16 & ** Vendor ** & 27-May-21 & 23-Jan-17 17:18 by AEW & 0.4 \\
\hline 16L0512 & PFODA & 05-Dec-16 & ** Vendor ** & 29-Apr-21 & 23-Jan-17 17:35 by AEW & 0.4 \\
\hline 17 C 1026 & PFOA & 10-Mar-17 & Jamie C. Stockman & 02-Feb-21 & 10-Mar-17 15:25 by JCS & 0.4 \\
\hline 17D2612 & N-MeFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:56 by INJ & 2 \\
\hline 17D2613 & N-EtFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2614 & N-EtFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17 D 2616 & PFUdA & 26-Apr-17 & ** Vendor ** & 18-Oct-21 & 12-Jun-17 09:32 by AEW & 0.4 \\
\hline 17 D 2617 & PFHxDA & 26-Apr-17 & ** Vendor ** & 25-May-21 & 12-Jun-17 16:08 by AEW & 0.4 \\
\hline 17D2618 & PFHpA & 26-Apr-17 & ** Vendor ** & 02-Dec-21 & 09-Jun-17 14:56 by AEW & 0.4 \\
\hline 17D2621 & N-MeFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:47 by INJ & 2 \\
\hline 17D2706 & L-PFBS anion DIL & 27-Apr-17 & Emilie Schneider & 27-Apr-18 & 27-Apr-17 13:48 by EMS & 0.8 \\
\hline 17D2709 & 8:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:28 by INJ & 0.8 \\
\hline 17D2715 & 6:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:01 by AEW & 0.8 \\
\hline 17D2716 & L-PFDS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:34 by AEW & 0.8 \\
\hline 17 D 2717 & Br-PFOSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:46 by INJ & 0.8 \\
\hline 17D2718 & Br-PFHxSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 08:51 by AEW & 0.8 \\
\hline 17D2813 & L-PFHpS anion DIL & 28-Apr-17 & Isaac N. Johnson & 28-Apr-18 & 12-Jun-17 09:07 by AEW & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Description: & PFC NS Stock & Expires: & 27-Apr-18 \\
Standard Type: & Analyte Spike & Prepared: & 27-Apr-17 & \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson & \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 16:08 by AEW \\
\hline PFOS and PFHxS branched components & & & \\
\hline Analyte & CAS Number & Concentration & Units \\
\hline L-PFDS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
6:2 FTS & \(27619-97-2\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFTeDA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFPeA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFOSA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFOS & & 0.788 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFODA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFOA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611414 & PFDA & 14-Sep-16 & ** Vendor ** & 31-May-21 & 15-Dec-16 08:38 by AEW & 0.4 \\
\hline 1611415 & PFHxA & 14-Sep-16 & ** Vendor ** & 22-Dec-20 & 15-Dec-16 08:41 by AEW & 0.4 \\
\hline 1611416 & MeFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 04-Oct-16 08:25 by EMS & 0.4 \\
\hline 1611417 & EtFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 14-Sep-16 14:10 by TLD & 0.4 \\
\hline 1611418 & PFTeDA & 14-Sep-16 & ** Vendor ** & 09-Dec-20 & 15-Dec-16 08:46 by AEW & 0.4 \\
\hline 1613001 & PFTrDA & 30-Sep-16 & ** Vendor ** & 12-Feb-21 & 23-Jan-17 17:44 by AEW & 0.4 \\
\hline 16J0422 & PFDoA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:22 by AEW & 0.4 \\
\hline 16J0423 & FOSA-I & 04-Oct-16 & ** Vendor ** & 02-Sep-17 & 23-Jan-17 17:49 by AEW & 0.4 \\
\hline 16J0424 & PFNA & 04-Oct-16 & ** Vendor ** & 23-Oct-20 & 23-Jan-17 17:40 by AEW & 0.4 \\
\hline 16J0425 & PFPeA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:38 by AEW & 0.4 \\
\hline 16J0426 & PFBA & 04-Oct-16 & ** Vendor ** & 27-May-21 & 23-Jan-17 17:18 by AEW & 0.4 \\
\hline 16L0512 & PFODA & 05-Dec-16 & ** Vendor ** & 29-Apr-21 & 23-Jan-17 17:35 by AEW & 0.4 \\
\hline 17 C 1026 & PFOA & 10-Mar-17 & Jamie C. Stockman & 02-Feb-21 & 10-Mar-17 15:25 by JCS & 0.4 \\
\hline 17D2612 & N-MeFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:56 by INJ & 2 \\
\hline 17D2613 & N-EtFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2614 & N-EtFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17 D 2616 & PFUdA & 26-Apr-17 & ** Vendor ** & 18-Oct-21 & 12-Jun-17 09:32 by AEW & 0.4 \\
\hline 17 D 2617 & PFHxDA & 26-Apr-17 & ** Vendor ** & 25-May-21 & 12-Jun-17 16:08 by AEW & 0.4 \\
\hline 17D2618 & PFHpA & 26-Apr-17 & ** Vendor ** & 02-Dec-21 & 09-Jun-17 14:56 by AEW & 0.4 \\
\hline 17D2621 & N-MeFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:47 by INJ & 2 \\
\hline 17D2706 & L-PFBS anion DIL & 27-Apr-17 & Emilie Schneider & 27-Apr-18 & 27-Apr-17 13:48 by EMS & 0.8 \\
\hline 17D2709 & 8:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:28 by INJ & 0.8 \\
\hline 17D2715 & 6:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:01 by AEW & 0.8 \\
\hline 17D2716 & L-PFDS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:34 by AEW & 0.8 \\
\hline 17 D 2717 & Br-PFOSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:46 by INJ & 0.8 \\
\hline 17D2718 & Br-PFHxSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 08:51 by AEW & 0.8 \\
\hline 17D2813 & L-PFHpS anion DIL & 28-Apr-17 & Isaac N. Johnson & 28-Apr-18 & 12-Jun-17 09:07 by AEW & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Description: & PFC NS Stock & Expires: & 27-Apr-18 \\
Standard Type: & Analyte Spike & Prepared: & 27-Apr-17 & \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson & \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 16:08 by AEW \\
\hline PFOS and PFHxS branched components & & & \\
\hline Analyte & CAS Number & Concentration & Units \\
\hline L-PFNA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFHxS & & & 0.812 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFHxDA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFHxA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFUnA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFHpA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
MeFOSA & & & \(51506-32-8\) & \\
L-PFDoA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611414 & PFDA & 14-Sep-16 & ** Vendor ** & 31-May-21 & 15-Dec-16 08:38 by AEW & 0.4 \\
\hline 1611415 & PFHxA & 14-Sep-16 & ** Vendor ** & 22-Dec-20 & 15-Dec-16 08:41 by AEW & 0.4 \\
\hline 1611416 & MeFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 04-Oct-16 08:25 by EMS & 0.4 \\
\hline 1611417 & EtFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 14-Sep-16 14:10 by TLD & 0.4 \\
\hline 1611418 & PFTeDA & 14-Sep-16 & ** Vendor ** & 09-Dec-20 & 15-Dec-16 08:46 by AEW & 0.4 \\
\hline 1613001 & PFTrDA & 30-Sep-16 & ** Vendor ** & 12-Feb-21 & 23-Jan-17 17:44 by AEW & 0.4 \\
\hline 16J0422 & PFDoA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:22 by AEW & 0.4 \\
\hline 16J0423 & FOSA-I & 04-Oct-16 & ** Vendor ** & 02-Sep-17 & 23-Jan-17 17:49 by AEW & 0.4 \\
\hline 16J0424 & PFNA & 04-Oct-16 & ** Vendor ** & 23-Oct-20 & 23-Jan-17 17:40 by AEW & 0.4 \\
\hline 16J0425 & PFPeA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:38 by AEW & 0.4 \\
\hline 16J0426 & PFBA & 04-Oct-16 & ** Vendor ** & 27-May-21 & 23-Jan-17 17:18 by AEW & 0.4 \\
\hline 16L0512 & PFODA & 05-Dec-16 & ** Vendor ** & 29-Apr-21 & 23-Jan-17 17:35 by AEW & 0.4 \\
\hline 17 C 1026 & PFOA & 10-Mar-17 & Jamie C. Stockman & 02-Feb-21 & 10-Mar-17 15:25 by JCS & 0.4 \\
\hline 17D2612 & N-MeFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:56 by INJ & 2 \\
\hline 17D2613 & N-EtFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2614 & N-EtFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17 D 2616 & PFUdA & 26-Apr-17 & ** Vendor ** & 18-Oct-21 & 12-Jun-17 09:32 by AEW & 0.4 \\
\hline 17 D 2617 & PFHxDA & 26-Apr-17 & ** Vendor ** & 25-May-21 & 12-Jun-17 16:08 by AEW & 0.4 \\
\hline 17D2618 & PFHpA & 26-Apr-17 & ** Vendor ** & 02-Dec-21 & 09-Jun-17 14:56 by AEW & 0.4 \\
\hline 17D2621 & N-MeFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:47 by INJ & 2 \\
\hline 17D2706 & L-PFBS anion DIL & 27-Apr-17 & Emilie Schneider & 27-Apr-18 & 27-Apr-17 13:48 by EMS & 0.8 \\
\hline 17D2709 & 8:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:28 by INJ & 0.8 \\
\hline 17D2715 & 6:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:01 by AEW & 0.8 \\
\hline 17D2716 & L-PFDS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:34 by AEW & 0.8 \\
\hline 17 D 2717 & Br-PFOSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:46 by INJ & 0.8 \\
\hline 17D2718 & Br-PFHxSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 08:51 by AEW & 0.8 \\
\hline 17D2813 & L-PFHpS anion DIL & 28-Apr-17 & Isaac N. Johnson & 28-Apr-18 & 12-Jun-17 09:07 by AEW & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Description: & PFC NS Stock & Expires: & 27-Apr-18 \\
Standard Type: & Analyte Spike & Prepared: & 27-Apr-17 & \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 16:08 by AEW \\
\hline PFOS and PFHxS branched components & & & \\
\hline Analyte & CAS Number & Concentration & Units \\
\hline L-PFDA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFBS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFBA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-8:2FTS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-6:2 FTS & & \(1691-99-2\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
EtFOSE & \(2991-50-6\) & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
EtFOSAA & \(4151-50-2\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
EtFOSA & & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611414 & PFDA & 14-Sep-16 & ** Vendor ** & 31-May-21 & 15-Dec-16 08:38 by AEW & 0.4 \\
\hline 1611415 & PFHxA & 14-Sep-16 & ** Vendor ** & 22-Dec-20 & 15-Dec-16 08:41 by AEW & 0.4 \\
\hline 1611416 & MeFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 04-Oct-16 08:25 by EMS & 0.4 \\
\hline 1611417 & EtFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 14-Sep-16 14:10 by TLD & 0.4 \\
\hline 1611418 & PFTeDA & 14-Sep-16 & ** Vendor ** & 09-Dec-20 & 15-Dec-16 08:46 by AEW & 0.4 \\
\hline 1613001 & PFTrDA & 30-Sep-16 & ** Vendor ** & 12-Feb-21 & 23-Jan-17 17:44 by AEW & 0.4 \\
\hline 16J0422 & PFDoA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:22 by AEW & 0.4 \\
\hline 16J0423 & FOSA-I & 04-Oct-16 & ** Vendor ** & 02-Sep-17 & 23-Jan-17 17:49 by AEW & 0.4 \\
\hline 16J0424 & PFNA & 04-Oct-16 & ** Vendor ** & 23-Oct-20 & 23-Jan-17 17:40 by AEW & 0.4 \\
\hline 16J0425 & PFPeA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:38 by AEW & 0.4 \\
\hline 16J0426 & PFBA & 04-Oct-16 & ** Vendor ** & 27-May-21 & 23-Jan-17 17:18 by AEW & 0.4 \\
\hline 16L0512 & PFODA & 05-Dec-16 & ** Vendor ** & 29-Apr-21 & 23-Jan-17 17:35 by AEW & 0.4 \\
\hline 17 C 1026 & PFOA & 10-Mar-17 & Jamie C. Stockman & 02-Feb-21 & 10-Mar-17 15:25 by JCS & 0.4 \\
\hline 17D2612 & N-MeFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:56 by INJ & 2 \\
\hline 17D2613 & N-EtFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2614 & N-EtFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17 D 2616 & PFUdA & 26-Apr-17 & ** Vendor ** & 18-Oct-21 & 12-Jun-17 09:32 by AEW & 0.4 \\
\hline 17 D 2617 & PFHxDA & 26-Apr-17 & ** Vendor ** & 25-May-21 & 12-Jun-17 16:08 by AEW & 0.4 \\
\hline 17D2618 & PFHpA & 26-Apr-17 & ** Vendor ** & 02-Dec-21 & 09-Jun-17 14:56 by AEW & 0.4 \\
\hline 17D2621 & N-MeFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:47 by INJ & 2 \\
\hline 17D2706 & L-PFBS anion DIL & 27-Apr-17 & Emilie Schneider & 27-Apr-18 & 27-Apr-17 13:48 by EMS & 0.8 \\
\hline 17D2709 & 8:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:28 by INJ & 0.8 \\
\hline 17D2715 & 6:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:01 by AEW & 0.8 \\
\hline 17D2716 & L-PFDS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:34 by AEW & 0.8 \\
\hline 17 D 2717 & Br-PFOSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:46 by INJ & 0.8 \\
\hline 17D2718 & Br-PFHxSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 08:51 by AEW & 0.8 \\
\hline 17D2813 & L-PFHpS anion DIL & 28-Apr-17 & Isaac N. Johnson & 28-Apr-18 & 12-Jun-17 09:07 by AEW & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Description: & PFC NS Stock & Expires: & 27-Apr-18 \\
Standard Type: & Analyte Spike & Prepared: & 27-Apr-17 & \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson & \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 16:08 by AEW \\
\hline PFOS and PFHxS branched components & & & \\
\hline Analyte & CAS Number & Concentration & Units \\
\hline Br-PFHxS & \(3871-99-6\) & 0.189 & \(\mathrm{ug} / \mathrm{mL}\) \\
8:2 FTS & \(70887-84-2\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFHpS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFHxS & \(355-46-4\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFHxS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFHpS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFDS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total 6:2 FTS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

Analytical Standard Record
Vista Analytical Laboratory
17D2705
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611414 & PFDA & 14-Sep-16 & ** Vendor ** & 31-May-21 & 15-Dec-16 08:38 by AEW & 0.4 \\
\hline 1611415 & PFHxA & 14-Sep-16 & ** Vendor ** & 22-Dec-20 & 15-Dec-16 08:41 by AEW & 0.4 \\
\hline 1611416 & MeFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 04-Oct-16 08:25 by EMS & 0.4 \\
\hline 1611417 & EtFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 14-Sep-16 14:10 by TLD & 0.4 \\
\hline 1611418 & PFTeDA & 14-Sep-16 & ** Vendor ** & 09-Dec-20 & 15-Dec-16 08:46 by AEW & 0.4 \\
\hline 1613001 & PFTrDA & 30-Sep-16 & ** Vendor ** & 12-Feb-21 & 23-Jan-17 17:44 by AEW & 0.4 \\
\hline 16J0422 & PFDoA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:22 by AEW & 0.4 \\
\hline 16J0423 & FOSA-I & 04-Oct-16 & ** Vendor ** & 02-Sep-17 & 23-Jan-17 17:49 by AEW & 0.4 \\
\hline 16J0424 & PFNA & 04-Oct-16 & ** Vendor ** & 23-Oct-20 & 23-Jan-17 17:40 by AEW & 0.4 \\
\hline 16J0425 & PFPeA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:38 by AEW & 0.4 \\
\hline 16J0426 & PFBA & 04-Oct-16 & ** Vendor ** & 27-May-21 & 23-Jan-17 17:18 by AEW & 0.4 \\
\hline 16L0512 & PFODA & 05-Dec-16 & ** Vendor ** & 29-Apr-21 & 23-Jan-17 17:35 by AEW & 0.4 \\
\hline 17 C 1026 & PFOA & 10-Mar-17 & Jamie C. Stockman & 02-Feb-21 & 10-Mar-17 15:25 by JCS & 0.4 \\
\hline 17D2612 & N-MeFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:56 by INJ & 2 \\
\hline 17D2613 & N-EtFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2614 & N-EtFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17 D 2616 & PFUdA & 26-Apr-17 & ** Vendor ** & 18-Oct-21 & 12-Jun-17 09:32 by AEW & 0.4 \\
\hline 17 D 2617 & PFHxDA & 26-Apr-17 & ** Vendor ** & 25-May-21 & 12-Jun-17 16:08 by AEW & 0.4 \\
\hline 17D2618 & PFHpA & 26-Apr-17 & ** Vendor ** & 02-Dec-21 & 09-Jun-17 14:56 by AEW & 0.4 \\
\hline 17D2621 & N-MeFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:47 by INJ & 2 \\
\hline 17D2706 & L-PFBS anion DIL & 27-Apr-17 & Emilie Schneider & 27-Apr-18 & 27-Apr-17 13:48 by EMS & 0.8 \\
\hline 17D2709 & 8:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:28 by INJ & 0.8 \\
\hline 17D2715 & 6:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:01 by AEW & 0.8 \\
\hline 17D2716 & L-PFDS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:34 by AEW & 0.8 \\
\hline 17 D 2717 & Br-PFOSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:46 by INJ & 0.8 \\
\hline 17D2718 & Br-PFHxSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 08:51 by AEW & 0.8 \\
\hline 17D2813 & L-PFHpS anion DIL & 28-Apr-17 & Isaac N. Johnson & 28-Apr-18 & 12-Jun-17 09:07 by AEW & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Description: & PFC NS Stock & Expires: & 27-Apr-18 \\
Standard Type: & Analyte Spike & Prepared: & 27-Apr-17 & \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson & \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 16:08 by AEW \\
\hline PFOS and PFHxS branched components & & & \\
\hline Analyte & CAS Number & Concentration & Units \\
\hline PFUnA & \(2058-94-8\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFTrDA & \(72629-94-8\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFTeDA & \(376-06-7\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFPeA & \(2706-90-3\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFOSA & \(754-91-6\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFOS & \(1763-23-1\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFODA & \(16517-11-6\) & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFTrDA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

Analytical Standard Record
Vista Analytical Laboratory
17D2705
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611414 & PFDA & 14-Sep-16 & ** Vendor ** & 31-May-21 & 15-Dec-16 08:38 by AEW & 0.4 \\
\hline 1611415 & PFHxA & 14-Sep-16 & ** Vendor ** & 22-Dec-20 & 15-Dec-16 08:41 by AEW & 0.4 \\
\hline 1611416 & MeFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 04-Oct-16 08:25 by EMS & 0.4 \\
\hline 1611417 & EtFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 14-Sep-16 14:10 by TLD & 0.4 \\
\hline 1611418 & PFTeDA & 14-Sep-16 & ** Vendor ** & 09-Dec-20 & 15-Dec-16 08:46 by AEW & 0.4 \\
\hline 1613001 & PFTrDA & 30-Sep-16 & ** Vendor ** & 12-Feb-21 & 23-Jan-17 17:44 by AEW & 0.4 \\
\hline 16J0422 & PFDoA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:22 by AEW & 0.4 \\
\hline 16J0423 & FOSA-I & 04-Oct-16 & ** Vendor ** & 02-Sep-17 & 23-Jan-17 17:49 by AEW & 0.4 \\
\hline 16J0424 & PFNA & 04-Oct-16 & ** Vendor ** & 23-Oct-20 & 23-Jan-17 17:40 by AEW & 0.4 \\
\hline 16J0425 & PFPeA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:38 by AEW & 0.4 \\
\hline 16J0426 & PFBA & 04-Oct-16 & ** Vendor ** & 27-May-21 & 23-Jan-17 17:18 by AEW & 0.4 \\
\hline 16L0512 & PFODA & 05-Dec-16 & ** Vendor ** & 29-Apr-21 & 23-Jan-17 17:35 by AEW & 0.4 \\
\hline 17 C 1026 & PFOA & 10-Mar-17 & Jamie C. Stockman & 02-Feb-21 & 10-Mar-17 15:25 by JCS & 0.4 \\
\hline 17D2612 & N-MeFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:56 by INJ & 2 \\
\hline 17D2613 & N-EtFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2614 & N-EtFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17 D 2616 & PFUdA & 26-Apr-17 & ** Vendor ** & 18-Oct-21 & 12-Jun-17 09:32 by AEW & 0.4 \\
\hline 17 D 2617 & PFHxDA & 26-Apr-17 & ** Vendor ** & 25-May-21 & 12-Jun-17 16:08 by AEW & 0.4 \\
\hline 17D2618 & PFHpA & 26-Apr-17 & ** Vendor ** & 02-Dec-21 & 09-Jun-17 14:56 by AEW & 0.4 \\
\hline 17D2621 & N-MeFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:47 by INJ & 2 \\
\hline 17D2706 & L-PFBS anion DIL & 27-Apr-17 & Emilie Schneider & 27-Apr-18 & 27-Apr-17 13:48 by EMS & 0.8 \\
\hline 17D2709 & 8:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:28 by INJ & 0.8 \\
\hline 17D2715 & 6:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:01 by AEW & 0.8 \\
\hline 17D2716 & L-PFDS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:34 by AEW & 0.8 \\
\hline 17 D 2717 & Br-PFOSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:46 by INJ & 0.8 \\
\hline 17D2718 & Br-PFHxSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 08:51 by AEW & 0.8 \\
\hline 17D2813 & L-PFHpS anion DIL & 28-Apr-17 & Isaac N. Johnson & 28-Apr-18 & 12-Jun-17 09:07 by AEW & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Description: & PFC NS Stock & Expires: & 27-Apr-18 \\
Standard Type: & Analyte Spike & Prepared: & 27-Apr-17 & \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson & \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 16:08 by AEW \\
\hline PFOS and PFHxS branched components & & & \\
\hline Analyte & CAS Number & Concentration & Units \\
\hline PFNA & \(375-95-1\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFUnA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFHxDA & \(67905-19-5\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFHxA & \(307-24-4\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFHpS & \(375-92-8\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFHpA & \(375-85-9\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFDS & \(335-77-3\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFDoA & \(307-55-1\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 1611414 & PFDA & 14-Sep-16 & ** Vendor ** & 31-May-21 & 15-Dec-16 08:38 by AEW & 0.4 \\
\hline 1611415 & PFHxA & 14-Sep-16 & ** Vendor ** & 22-Dec-20 & 15-Dec-16 08:41 by AEW & 0.4 \\
\hline 1611416 & MeFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 04-Oct-16 08:25 by EMS & 0.4 \\
\hline 1611417 & EtFOSAA & 14-Sep-16 & ** Vendor ** & 20-Jan-21 & 14-Sep-16 14:10 by TLD & 0.4 \\
\hline 1611418 & PFTeDA & 14-Sep-16 & ** Vendor ** & 09-Dec-20 & 15-Dec-16 08:46 by AEW & 0.4 \\
\hline 16 I 3001 & PFTrDA & 30-Sep-16 & ** Vendor ** & 12-Feb-21 & 23-Jan-17 17:44 by AEW & 0.4 \\
\hline 16J0422 & PFDoA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:22 by AEW & 0.4 \\
\hline 16J0423 & FOSA-I & 04-Oct-16 & ** Vendor ** & 02-Sep-17 & 23-Jan-17 17:49 by AEW & 0.4 \\
\hline 16J0424 & PFNA & 04-Oct-16 & ** Vendor ** & 23-Oct-20 & 23-Jan-17 17:40 by AEW & 0.4 \\
\hline 16J0425 & PFPeA & 04-Oct-16 & ** Vendor ** & 31-May-21 & 23-Jan-17 17:38 by AEW & 0.4 \\
\hline 16J0426 & PFBA & 04-Oct-16 & ** Vendor ** & 27-May-21 & 23-Jan-17 17:18 by AEW & 0.4 \\
\hline 16L0512 & PFODA & 05-Dec-16 & ** Vendor ** & 29-Apr-21 & 23-Jan-17 17:35 by AEW & 0.4 \\
\hline 17C1026 & PFOA & 10-Mar-17 & Jamie C. Stockman & 02-Feb-21 & 10-Mar-17 15:25 by JCS & 0.4 \\
\hline 17D2612 & N-MeFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:56 by INJ & 2 \\
\hline 17D2613 & N-EtFOSA-M & 26-Apr-17 & ** Vendor ** & 24-May-21 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2614 & N-EtFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:54 by INJ & 2 \\
\hline 17D2616 & PFUdA & 26-Apr-17 & ** Vendor ** & 18-Oct-21 & 12-Jun-17 09:32 by AEW & 0.4 \\
\hline 17D2617 & PFHxDA & 26-Apr-17 & ** Vendor ** & 25-May-21 & 12-Jun-17 16:08 by AEW & 0.4 \\
\hline 17D2618 & PFHpA & 26-Apr-17 & ** Vendor ** & 02-Dec-21 & 09-Jun-17 14:56 by AEW & 0.4 \\
\hline 17D2621 & N-MeFOSE-M & 26-Apr-17 & ** Vendor ** & 10-Nov-20 & 27-Apr-17 10:47 by INJ & 2 \\
\hline 17D2706 & L-PFBS anion DIL & 27-Apr-17 & Emilie Schneider & 27-Apr-18 & 27-Apr-17 13:48 by EMS & 0.8 \\
\hline 17D2709 & 8:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:28 by INJ & 0.8 \\
\hline 17D2715 & 6:2 FTS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:01 by AEW & 0.8 \\
\hline 17D2716 & L-PFDS anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 09:34 by AEW & 0.8 \\
\hline 17D2717 & Br-PFOSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 27-Apr-17 14:46 by INJ & 0.8 \\
\hline 17D2718 & Br-PFHxSK anion DIL & 27-Apr-17 & Isaac N. Johnson & 27-Apr-18 & 12-Jun-17 08:51 by AEW & 0.8 \\
\hline 17D2813 & L-PFHpS anion DIL & 28-Apr-17 & Isaac N. Johnson & 28-Apr-18 & 12-Jun-17 09:07 by AEW & 0.8 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Description: & PFC NS Stock & Expires: & 27-Apr-18 \\
Standard Type: & Analyte Spike & Prepared: & 27-Apr-17 & \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson & \\
Final Volume (mls): & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 16:08 by AEW \\
\hline PFOS and PFHxS branched components & & & \\
\hline Analyte & CAS Number & Concentration & Units \\
\hline PFDA & \(335-76-2\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFBS & \(375-73-5\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFBA & \(375-22-4\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
MeFOSE & \(24448-09-7\) & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
MeFOSAA & \(2355-31-9\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFOA & \(335-67-1\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:


Perfluoro-n-decanoic acid

LOT NUMBER: PFDA0516

CAS \#:
335-76-2
\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 514.08 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) ノ & SOLVENT(S): & Methanol \\
\hline & & & Water (<1\%) \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED: (mmodyyy) & 05/31/2016 & & \\
\hline EXPIRY DATE: (mmddy \({ }^{\text {drys) }}\) & 05/31/2021 & & \\
\hline RECOMMENDED STORAGE & & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.2 \%\) of Perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: 06/13/2016
(mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll} 
31may2016_PFDA_001 & 31-May-2016 & 13:43:26 \\
PFDA0516 \(25 \mathrm{ug} / \mathrm{ml}\) \\
100
\end{tabular}


\section*{Conditions for Figure 1: \\ \(\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}\)}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan ( \(150-850 \mathrm{amu}\) )
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\)
Source: Electrospray (negative)
(both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OA}\) buffer)
Ramp to \(90 \%\) organic over 7.5 min and hold for
Cone Voltage \((\mathrm{V})=15.00\)
Cone Gas Flow \((1 / \mathrm{hr})=50\)
Desolvation Gas Flow (l/hr) \(=750\)

Flow:
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

\section*{MS Parameters}

Capillary Voltage (kV) \(=2.00\)

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\(\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { PFDA) }\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH} \\ 4\end{array} \mathrm{OAc} \text { buffer) }\end{array}\right\}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.39 \mathrm{e}-3\)
Collision Energy (eV) \(=13\)

LA B OR A T ORIES

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE: COMPOUND:}

STRUCTURE:

LOT NUMBER: PFHXA1215

CAS \#: 307-24-4


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurym)
EXPIRY DATE: (mmdadsys)
RECOMMENDED STORAGE:
\(\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}\) \(50 \pm 2.5^{11} \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
12/22/2015
12/22/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
314.05

Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.2 \%\) of Perfluoro-n-pentanoic acid (PFPeA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: PFHxA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|ll}
\hline \multicolumn{4}{|l|}{ Conditions for Figure 1: } \\
\hline LC: & Waters Acquity Ultra Performance LC \\
MS: & Micromass Quattro micro API MS
\end{tabular}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan (150-850 amu)

Mobile phase: Gradient Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

\section*{MS Parameters}

Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage ( V ) \(=15.00\)
Cone Gas Flow \((1 / h r)=100\)
Desolvation Gas Flow (1/hr) \(=750\)

Flow: \(300 \mu \mathrm{l} / \mathrm{min}\)

Figure 2: \(\quad\) PFHxA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:
\begin{tabular}{|c|c|}
\hline Injection: & Direct loop injection \(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml}\) PFHxA) \\
\hline Mobile pha & Isocratic 80\% (80:20 MeOH:ACN) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) \\
\hline
\end{tabular}

\section*{MS Parameters}

Collision Gas (mbar) \(=3.43 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=10\)

\section*{PRODUCT CODE:} COMPOUND:

STRUCTURE:

LOT NUMBER: NMeFOSAA0116V
N -methylperfluoro-1-octanesulfonamidoacetic acid



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\) (mm/dd/yyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll} 
20jan2016_NMeFOSAA_003 & 20-Jan-2016 & 17:01:32 \\
NMeFOSAA0116 \(25 \mathrm{ug} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Micromass Quattro micro API MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline \multirow[t]{2}{*}{Column: A} & \multicolumn{2}{|l|}{Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\)} \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: \mathrm{ACN}\) ) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=35.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min & Cone Gas Flow (l/hr) \(=50\) \\
\hline & before returning to initial conditions in 0.5 min . & Desolvation Gas Flow (1/hr) \(=750\) \\
\hline & Time: 10 min & \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: \(\quad \mathrm{N}-\mathrm{MeFOSAA}\); LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

\section*{Conditions for Figure 2:}
\(\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N}-\mathrm{MeFOSAA})\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array} 4 \mathrm{OAc} \text { buffer) }\end{array}\right\}\)

\section*{MS Parameters \\ Collision Gas (mbar) \(=3.66 \mathrm{e}-3\) \\ Collision Energy (eV) \(=25\)}

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION

\section*{PRODUCT CODE:} COMPOUND:

STRUCTURE:

CAS \#:
2991-50-6

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: CONCENTRATION. & \[
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
\] & MOLECULAR WEIGHT: SOLVENT(S): & \[
585.23
\] \\
\hline CONCENTRATION: & & SOLVENT(S): & Water (<1\%) \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED: (mm/d/lyyy) & 01/20/2016 & & \\
\hline EXPIRY DATE: (mm/dodysy) & 01/20/2021 & & \\
\hline RECOMMENDED STORAGE: & Refrigerate ampoule & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll} 
20jan2016_NEtFOSAA_002 & 20-Jan-2016 & 17:12:28 \\
NEtFOSAA0116 \(25 \mathrm{ug} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}


\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Micromass Quattro micro API MS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} \\
\hline Mobile phase: & \begin{tabular}{l}
Gradient \\
Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) \\
Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . \\
Time: 10 min
\end{tabular} \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) \\
\hline
\end{tabular}

MS Parameters
Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=3.00\)
Cone Voltage (V) \(=35.00\)
Cone Gas Flow (l/hr) \(=50\)
Desolvation Gas Flow (l/hr) \(=750\)

Figure 2: N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)


Note: N-EtFOSA is formed by fragmentation of N-EtFOSAA.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline \multirow[t]{3}{*}{Injection:} & Direct loop injection & MS Parameters \\
\hline & \(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml} \mathrm{N}\)-EtFOSAA) & \\
\hline & & Collision Gas (mbar) \(=3.66 \mathrm{e}-3\) \\
\hline Mobile phase: & Isocratic \(80 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH OAc buffer) & Collision Energy ( eV ) \(=25\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{PRODUCT CODE: COMPOUND:}

STRUCTURE:

LOT NUMBER: PFTeDA1215

CAS \#:
376-06-7

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \[
\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}
\] & MOLECULAR WEIGHT: & \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water (<1\%) \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED: (mm/dolyyy) & 12/09/2015 & & \\
\hline EXPIRY DATE: (mm/ddysyy) & 12/09/2020 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.2 \%\) of PFDoA \(\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)\) and \(\sim 0.2 \%\) of PFPeDA \(\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)\).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: PFTeDA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
\hline MS: & Micromass Quattro micro API MS
\end{tabular}

MS: \(\quad\) Micromass Quattro micro API MS
Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(65 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / 35\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with 10 mM NH
Ramp to \(90 \%\) organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

\section*{MS Parameters}

Experiment: Full Scan (250-1250 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=3.00\)
Cone Voltage ( V ) \(=15.00\)
Cone Gas Flow ( \(/ / \mathrm{hr}\) ) \(=60\)
Desolvation Gas Flow (l/hr) \(=750\)

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|lll|}
\hline \multicolumn{2}{l|}{ Conditions for Figure 2: } & \\
\hline Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}\) \\
\\
(500 ng/ml PFTeDA)
\end{tabular} & MS Parameters
\end{tabular}

\section*{PRODUCT CODE: COMPOUND:}

\author{
PFTrDA \\ Perfluoro-n-tridecanoic acid
}

LOT NUMBER: PFTrDA0216

STRUCTURE:
CAS \#:
72629-94-8


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/darym)
EXPIRY DATE: (mmbduryyy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}\) \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
02/12/2016
02/12/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
664.11

Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.1 \%\) of PFUdA \(\left(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\right), \sim 0.4 \%\) of PFDoA \(\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)\), and \(\sim 0.1 \%\) of PFTeDA \(\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)\).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).



**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Micromass Quattro micro API MS}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield \(R P_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan ( \(150-850 \mathrm{amu}\) )

Mobile phase: Gradient
Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

\section*{MS Parameters}

Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage \((\mathrm{V})=22.00\)
Cone Gas Flow ( \(/ / \mathrm{hr}\) ) \(=60\)
Desolvation Gas Flow ( \(1 / h r\) ) \(=650\)
\(300 \mu \mathrm{l} / \mathrm{min}\)

Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|ll|}
\hline Conditions for Figure 2: \\
Injection: \begin{tabular}{ll} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFTDA)}\)
\end{tabular} & MS Parameters \\
Mobile phase: Isocratic \(80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}\) & \begin{tabular}{l} 
Collision Gas (mbar) \(=3.35 \mathrm{e}-3\) \\
Collision Energy \((\mathrm{eV})=15\)
\end{tabular} \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\)
\end{tabular}

\section*{PRODUCT CODE:}

COMPOUND:

PFDoA
Perfluoro-n-dodecanoic acid

\section*{LOT NUMBER: PFDoA0516}

CAS \#: 307-55-1


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidduyy)
EXPIRY DATE: (mmldodsyy)
RECOMMENDED STORAGE:
\[
\begin{aligned}
& \mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
\]
>98\%
\[
05 / 31 / 2016
\]
\[
05 / 31 / 2021
\]

Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:


Date: \(\qquad\) (mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: \(\quad\) PFDoA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ \begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Micromass Quattro micro API MS
\end{tabular}}

\section*{Chromatographic Conditions \\ Column: \\ Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) \\ Mobile phase: Gradient}

Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{NAAc}^{2}\) buffer)
Ramp to \(90 \%\) organic over 7.5 min and hold for
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

\section*{MS Parameters}

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage (V) \(=20.00\)
Cone Gas Flow ( \(\mathrm{I} / \mathrm{hr}\) ) \(=100\)
Desolvation Gas Flow (l/hr) \(=750\)

Flow:
\(300 \mu \mathrm{l} / \mathrm{min}\)

Figure 2: PFDoA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:

Injection: Direct loop injection \(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml}\) PFDoA)

Mobile phase: Isocratic \(80 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.39 \mathrm{e}-3\)
Collision Energy ( eV ) \(=13\)

Flow: \(\quad 300 \mu / / m i n\)

\section*{PRODUCT CODE:} COMPOUND:

FOSA-I
Perfluoro-1-octanesulfonamide

\section*{STRUCTURE:}

\begin{tabular}{ll} 
MOLECULAR FORMULA: & \(\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}\) \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) \\
\hline CHEMICAL PURITY: & \(>98 \%\) \\
\hline LAST TESTED: (mmmddrymy) & \(09 / 02 / 2015\) \\
EXPIRY DATE: (mmmddyyy) & \(09 / 02 / 2017\) \\
RECOMMENDED STORAGE: & Refrigerate ampoule
\end{tabular}

\section*{LOT NUMBER: FOSA0815I}

\section*{CAS \#: 754-91-6}

MOLECULAR WEIGHT: 499.14
SOLVENT(S): Isopropanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


nertionecmatrmal
**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: \(\quad\) FOSA-I; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Micromass Quattro micro API MS}
\begin{tabular}{|c|c|}
\hline Chromatograp & phic Conditions \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} \\
\hline Mobile phase: & Gradient \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH OAc buffer) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . \\
\hline & Time: 10 min ( \\
\hline Flow: & \(300 \mu 1 / \mathrm{min}\) \\
\hline
\end{tabular}

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.50\)
Cone Voltage (V) \(=40.00\)
Cone Gas Flow (l/hr) \(=50\)
Desolvation Gas Flow (l/hr) \(=750\)

Figure 2: \(\quad\) FOSA-I; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:

Injection: Direct loop injection \(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}\) FOSA-I)

Mobile phase: Isocratic \(80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer)

Flow: \(300 \mu 1 / m i n\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.54 \mathrm{e}-3\)
Collision Energy ( eV ) \(=30\)

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE: \\ COMPOUND:}

STRUCTURE:

PFNA
Perfluoro-n-nonanoic acid

LOT NUMBER: PFNA1015

CAS \#:
375-95-1


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (muddismes)
EXPIRY DATE: (mmbdaryys)
RECOMMENDED STORAGE:
\(\mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}\) \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
10/23/2015
10/23/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
464.08

SOLVENT(S): Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.1 \%\) of perfluoro-n-octanoic acid (PFOA) and \(<0.1 \%\) of perfluoro-n-heptanoic acid (PFHpA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)
23oct2015_PFNA_002
PFNA1015 \(10 \mathrm{ug} / \mathrm{ml}\)
100

\begin{tabular}{|ll}
\hline \multicolumn{3}{|l|}{ Conditions for Figure 1: } \\
\hline LC: & Waters Acquity Ultra Performance LC \\
MS: & Micromass Quattro micro API MS
\end{tabular}

\section*{Chromatographic Conditions}
\begin{tabular}{ll} 
Column: & \begin{tabular}{l} 
Acquity UPLC BEH Shield RP \\
\\
\\
\\
\\
Mobile phase: \\
Gradient
\end{tabular}
\end{tabular}

Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
\(300 \mu \mathrm{l} / \mathrm{min}\)

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage ( V ) \(=15.00\)
Cone Gas Flow (l/hr) \(=50\)
Desolvation Gas Flow (l/hr) \(=750\)

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:
\begin{tabular}{ll} 
Injection: & Direct loop injection \\
& \(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}\) PFNA \()\)
\end{tabular}

Mobile phase: Isocratic 80\% ( \(80: 20 \mathrm{MeOH}: \mathrm{ACN}\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)

Flow:
\(300 \mu 1 / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.28 \mathrm{e}-3\)
Collision Energy ( eV ) \(=11\)

\section*{CERTIFICATE OF ANALYSIS \\ DOCUMENTATION}

\section*{PRODUCT CODE:}

COMPOUND:

STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

\section*{LOT NUMBER: PFPeA0516}

GAS \#:
2706-90-3


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/syy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:

MOLECULAR WEIGHT: SOLVENT(S): Methanol Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.3 \%\) of Perfluoro-n-heptanoic acid (PFHpA) and \(\sim 0.2 \%\) of \(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}\) (hydride - derivative) as measured by \({ }^{19} \mathrm{~F}\) NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\) 06/02/2016
(mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Fiqure 1: \(\quad\) PFPeA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ \(\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}\)}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(30 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(70 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

\section*{MS Parameters}

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage (V) \(=15.00\)
Cone Gas Flow ( \(/ / \mathrm{hr}\) ) \(=60\)
Desolvation Gas Flow (l/hr) \(=750\)

Figure 2: \(\quad\) PFPeA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|lll|}
\hline \multicolumn{2}{|c|}{ Conditions for Figure 2: } \\
Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFPeA)}\)
\end{tabular} & \begin{tabular}{l} 
MS Parameters
\end{tabular} \\
Mobile phase: \begin{tabular}{l} 
Isocratic \(80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with 10 mM NH \\
4
\end{tabular} OAc buffer) & \begin{tabular}{l} 
Collision Gas (mbar) \(=3.20 \mathrm{e}-3\) \\
Collision Energy \((\mathrm{eV})=9\)
\end{tabular} \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{PRODUCT CODE: COMPOUND:}

STRUCTURE:

PEBA
Perfluoro-n-butanoic acid

LOT NUMBER: PFBA0516

GAS \#:
375-22-4


\section*{MOLECULAR FORMULA:} CONCENTRATION:

\section*{CHEMICAL PURITY:}

LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/spy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
05/27/2016
05/27/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 214.04
SOLVENT(S): Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- \(\quad\) See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) \(\frac{(\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy})}{\text { ( }}\)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: \(\quad\) PFBA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Micromass Quattro micro API MS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient \\
\hline & Start: 30\% (80:20 MeOH:ACN) / 70\% \(\mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{OAc}_{4}\) buffer) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . \\
\hline & Time: 10 min \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) \\
\hline
\end{tabular}

\section*{MS Parameters}

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=3.00\)
Cone Voltage (V) \(=10.00\)
Cone Gas Flow (I/hr) \(=100\)
Desolvation Gas Flow (l/hr) \(=750\)

Figure 2: PFBA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline \multirow[t]{3}{*}{Injection:} & Direct loop injection & MS Parameters \\
\hline & \(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}\) PFBA) & \\
\hline & & Collision Gas (mbar) \(=3.62 \mathrm{e}-3\) \\
\hline Mobile phase: & Isocratic \(80 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Collision Energy ( eV ) \(=10\) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{WELLINGTON}

LAB OR A TORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
04/29/2016
04/29/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- \(\quad\) See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
05/20/2016
(mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters \(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Waters Acquity Ultra Performance LC}} \\
\hline MS: & & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline \multirow[t]{2}{*}{Column:} & \multicolumn{2}{|l|}{Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\)} \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (250-1000 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 70\% (80:20 MeOH:ACN) / 30\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=25.00\) \\
\hline & Ramp to \(95 \%\) organic over 6 min and hold for 2.5 min before returning to initial conditions in 0.5 min . Time: 10 min & \begin{tabular}{l}
Cone Gas Flow (l/hr) \(=50\) \\
Desolvation Gas Flow (l/hr) \(=750\)
\end{tabular} \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|lll|}
\hline \multicolumn{2}{|l|}{ Conditions for Figure 2: } \\
Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFODA})\)
\end{tabular} & MS Parameters
\end{tabular}

\section*{PRODUCT CODE: \\ COMPOUND:}

\section*{STRUCTURE:}

PROA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0716

\section*{GAS \#:}

335-67-1
\begin{tabular}{llll} 
MOLECULAR FORMULA: & \(\mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 414.07 \\
CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT (S): & \begin{tabular}{l} 
Methanol \\
CHEMICAL PURITY:
\end{tabular} \\
LAST TESTED: \((m m / d d / y s y)\) & \(>98 \%\) & & Water \((<1 \%)\) \\
EXPIRY DATE: \((m m / d d / y m y)\) & \(08 / 02 / 2016\) & \(08 / 02 / 2021\) & \\
RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)
02aug2016_PFOA_001
PFOA0716 \(25 \mathrm{ug} / \mathrm{ml}\)
100



Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:
\begin{tabular}{|ll} 
Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFOA})\)
\end{tabular} \\
Mobile phase: & \begin{tabular}{l} 
Isocratic \(80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
\end{tabular} \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\)
\end{tabular}

：NOII甘Wサ्वO』NI 7VNOIIIGOV

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{PRODUCT CODE： COMPOUND：} & N－MeFOSA－M & \multirow[t]{2}{*}{LOT NUMBER：} & \multirow[t]{2}{*}{NMeFOSA0516M} \\
\hline & N －methylperfluoro－1－octanesulfonamide & & \\
\hline \multirow[t]{2}{*}{STRUCTURE：} & & CAS \＃：31506 & \\
\hline &  & & \\
\hline MOLECULAR FORMULA： & \(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}\) & MOLECULAR WEIGHT： & 513.17 \\
\hline CONCENTRATION： & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT（S）： & Methanol \\
\hline CHEMICAL PURITY： & ＞98\％ & & \\
\hline LAST TESTED：（mmdodmm） & 05／24／2016 & & \\
\hline EXPIRY DATE：（mmodumm） & 05／24／2021 & & \\
\hline RECOMMENDED STORAG & ：Store ampoule in a cool，dark place & & \\
\hline
\end{tabular}


\title{
CERTIFICATE OF ANALYSIS \\ DOCUMENTATION \({ }^{\prime}\)
}

PRODUCT CODE:
COMPOUND:

\section*{STRUCTURE:}

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0516M

\section*{GAS \#:}

4151-50-2



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:
MOLECULAR WEIGHT: 527.20
SOLVENT(S): Methanol
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{CERTIFICATE OF ANALYSIS}

PRODUCT CODE: COMPOUND:

N-EtFOSE-M 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol

STRUCTURE:

GAS \#:
1691-99-2

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodshyy)
EXPIRY DATE: (mmiddsmy)
RECOMMENDED STORAGE
\(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{11} \mathrm{NO}_{3} \mathrm{~S}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
\(11 / 10 / 2015\) (HRGC/LRMS)
\(11 / 09 / 2015\) (LC/MS)
\(11 / 10 / 2020\)

MOLECULAR WEIGHT:
571.25

SOLVENTS):
Methanol

Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\section*{PRODUCT CODE:}

COMPOUND:

\section*{PFUdA}

Perfluoro-n-undecanoic acid

\section*{LOT NUMBER: PFUdA1016}

CAS \#: 2058-94-8


MOLECULAR FORMULA:
\(\mathrm{C}_{n} \mathrm{HF}_{21} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmidolmwn)

\section*{PRODUCT CODE:} COMPOUND:

PFHxDA
Perfluoro-n-hexadecanoic acid

STRUCTURE:

\section*{LOT NUMBER: PFHxDA0516}

\section*{CAS \#:}

67905-19-5


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodryyy)
EXPIRY DATE: (mmddd hyy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
05/25/2016
05/25/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 814.13
SOLVENT(S): Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.4 \%\) of PFODA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: 05/27/2016 (mm/dd/yyyy)

\title{
CERTIFICATE OF ANALYSIS DOCUMENTATION*
}

\section*{PRODUCT CODE: COMPOUND:}
PFHpA
Perfluoro-n-heptanoic acid

\section*{LOT NUMBER: PFHpA1216}

\section*{CAS \#:}

375-85-9

MOLECULAR FORMULA:
CONCENTRATION:
\(\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
CHEMICAL PURITY:
LAST TESTED: (mmodymy)
EXPIRY DATE: (mmddrym)
RECOMMENDED STORAGE:

12/02/2016
12/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water ( \(<1 \%\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\section*{17D2621}

PRODUCT CODE: COMPOUND:

STRUCTURE:

N-MeFOSE-M
2-(N-methylperfluoro-1-octanesulfonamido)-ethanol

CAS \#:
24448-09-7


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)

EXPIRY DATE: (mmlddyyyy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
11/10/2015 (HRGC/LRMS)
11/09/2015 (LC/MS)
11/10/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 557.22
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

\section*{Certified By:}


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17D2706
\begin{tabular}{|llllllll}
\hline Parent Standards used in this standard: & & & & \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 17 C 1027 & PFBS anion & \(10-M a r-17\) & Jamie C. Stockman & 02-Dec-21 & 10-Mar-17 15:27 by JCS \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & L-PFBS anion DIL & Expires: & 27-Apr-18 \\
Standard Type: & Other & Prepared: & 27-Apr-17 \\
Solvent: & Methanol & Prepared By: & Emilie Schneider \\
Final Volume \((\mathrm{mls}):\) & 1.326 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 27-Apr-17 13:48 by EMS
\end{tabular}
\begin{tabular}{lcccc} 
Analyte & CAS Number & Concentration & Units \\
\hline PFBS & \(375-73-5\) & 25 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFBS & & 25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

PRODUCT CODE:
COMPOUND:

L-PFBS
Potassium perfluoro-1-butanesulfonate

\section*{STRUCTURE:}


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddrymy)
EXPIRY DATE: (mmpddymy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{4} \mathrm{~F}_{\mathrm{g}} \mathrm{SO}_{3} \mathrm{~K}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (K salt)
\(44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}\) (PFBS anion)
>98\%
12/02/2016
12/02/2021
Store ampoule in a cool, dark place

\section*{LOT NUMBER: LPFBS1116}

CAS \#: 29420-49-3

\section*{MOLECULAR WEIGHT: 338.19 \\ SOLVENT(S): Methanol}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Conditions for Figure 1:} \\
\hline LC: Waters Acquity Ultra Performance LC & \\
\hline MS: \(\quad\) Micromass Quattro micro API MS & \\
\hline Chromatographic Conditions & MS Parameters \\
\hline Column: Acquity UPLC BEH Shield RP \({ }_{18}\) & Experiment: Full Scan (150-850 amu) \\
\hline Mobile phase: Gradient & Source: Electrospray (negative) \\
\hline Start: \(40 \%\) (80:20 MeOH:ACN) / 60\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline (both with 10 mM NH & Cone Voltage ( V ) \(=40.00\) \\
\hline Ramp to \(90 \%\) organic over 7 min and hold for 2 min & Cone Gas Flow (1/hr) \(=50\) \\
\hline before returning to initial conditions in 0.5 min . Time: 10 min & Desolvation Gas Flow (1/hr) \(=750\) \\
\hline Flow: \(\quad 300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:
\begin{tabular}{ll} 
Injection: & Direct loop injection \\
& \(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFBS})\)
\end{tabular}

Mobile phase: Isocratic \(80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH

Flow: \(300 \mu / / m i n\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.28 \mathrm{e}-3\)
Collision Energy (eV) \(=25\)

\section*{Analytical Standard Record}

Vista Analytical Laboratory

\section*{17D2709}
\begin{tabular}{|lllllll}
\hline Parent Standards used in this standard: & & & & \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 1611427 & \(8: 2\) FTS anion & \(14-\) Sep-16 & \(* *\) Vendor \(* *\) & 22-Aug-21 & 15-Dec-16 08:53 by AEW \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & \(8: 2 \mathrm{FTS}\) anion DIL & Expires: & 27-Apr-18 \\
Standard Type: & Other & Prepared: & \(27-A p r-17\) \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson \\
Final Volume \((\mathrm{mls}):\) & 0.958 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 27-Apr-17 14:28 by INJ
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline L-8:2FTS & & 25 & \(\mathrm{ug} / \mathrm{mL}\) \\
8:2 FTS & \(70887-84-2\) & 25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\section*{CERTIFICATE OF ANALYSIS}


\section*{PRODUCT CODE: COMPOUND:}

STRUCTURE:

LOT NUMBER: 82FTS0816
Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluorodecane sulfonate

CAS \#:
Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyys)
EXPIRY DATE: (mmbdodyw)
RECOMMENDED STORAGE:
\(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\)
MOLECULAR WEIGHT:
SOLVENT(S):
550.16
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad\) (Na salt)
\(47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad\) (8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters \(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

\({ }^{* *}\) For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1:
8:2FTS; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Micromass Quattro micro API MS
\end{tabular}

\section*{Chromatographic Conditions}

Column: Agilent Zorbax Bonus-RP
\(1.8 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
Mobile phase: Gradient
Start: \(55 \%(80: 20 \mathrm{MeOH} / \mathrm{ACN}) / 45 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7.5 min and hold for 1.5 min
before returning to initial conditions in 0.5 min .
Time: 10 min

\section*{MS Parameters}

Experiment: Full Scan (250-850 amu)
Source:Electrospray (negative)
Capillary Voltage (kV) \(=3.00\)
Cone Voltage \((\mathrm{V})=30.00\)
Cone Gas Flow (l/hr) \(=100\)
Desolvation Gas Flow (l/hr) \(=750\)

Figure 2: \(\quad 8: 2 F T S ;\) LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline Injection: & Direct loop injection \(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml}\) 8:2FTS) & MS Parameters \\
\hline Mobile phase: & Isocratic 80\% (80:20 MeOH:ACN) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH} 4{ }_{4} \mathrm{OAc}\) buffer) & \[
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.31 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=30
\end{aligned}
\] \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{Analytical Standard Record}

Vista Analytical Laboratory

\section*{17D2715}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Parent Standards used in this standard:} \\
\hline Standard Description & Description & Prepared & Prepared By & Expires & Last Edit & & (mls) \\
\hline 17D2622 6:2FTS & 6:2FTS & 26-Apr-17 & ** Vendor ** & 25-Jun-21 & 12-Jun-1 & 9:01 by AEW & 0.5 \\
\hline Description: & \multicolumn{2}{|l|}{6:2 FTS anion DIL} & \multicolumn{2}{|l|}{Expires:} & \multicolumn{2}{|l|}{27-Apr-18} & \\
\hline Standard Type: & \multicolumn{2}{|l|}{Other} & \multicolumn{2}{|c|}{Prepared:} & \multicolumn{2}{|l|}{27-Apr-17} & \\
\hline Solvent: & \multicolumn{2}{|l|}{MeOH} & \multicolumn{2}{|r|}{Prepared By:} & \multicolumn{2}{|l|}{Isaac N . Johnson} & \\
\hline Final Volume (mls): & 0.948 & & \multicolumn{2}{|r|}{Department:} & \multicolumn{2}{|l|}{LCMS} & \\
\hline Vials: & 1 & & \multicolumn{2}{|r|}{Last Edit:} & \multicolumn{2}{|l|}{12-Jun-17 09:01 by AEW} & \\
\hline Analyte & & & & CAS Number & Concentration & Units & \\
\hline Total 6:2 FTS & & & & & 25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline L-6:2 FTS & & & & & 25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline 6:2 FTS & & & & 27619-97-2 & 25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline
\end{tabular}

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION \({ }^{\prime}\)}

PRODUCT CODE:
COMPOUND:

\section*{STRUCTURE:}


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmddymm)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 450.15
SOLVENT(S): Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{Analytical Standard Record}

Vista Analytical Laboratory

\section*{17D2716}


\section*{PRODUCT CODE: COMPOUND:}

\section*{L-PFDS}

Sodium perfluoro-1-decanesulfonate

STRUCTURE:

LOT NUMBER: LPFDS0217

GAS \#:
2806-15-7


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrymm)
EXPIRY DATE: (mmddorysy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) ( Na salt)
\(48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (PFDS anion)
>98\%
02/17/2017
02/17/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):
622.13

Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.9 \%\) of sodium perfluoro- 1 -dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17D2717
\begin{tabular}{|lllllll}
\hline Parent Standards used in this standard: & & & & \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 16 J 0431 & br-PFOSK & \(04-\) Oct-16 & \(* *\) Vendor \(* *\) & 14-Oct-20 & 03-Feb-17 13:33 by AEW \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & Br-PFOSK anion DIL & Expires: & 27-Apr-18 \\
Standard Type: & Other & Prepared: & 27-Apr-17 \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson \\
Final Volume \((\mathrm{mls}):\) & 0.928 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 27-Apr-17 14:46 by INJ
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline PFOS & \(1763-23-1\) & 25 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFOS & & 19.7 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\title{
CERTIFICATE OF ANALYSIS DOCUMENTATION
}

\section*{br-PFOSK}

\section*{Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers}

\section*{PRODUCT CODE: \\ LOT NUMBER: \\ CONCENTRATION: \\ SOLVENT(S): \\ DATE PREPARED: (mm/dd/yyy) \\ LAST TESTED: (mm/ddymy) \\ EXPIRY DATE: (mmlddyyyy) \\ RECOMMENDED STORAGE:}
br-PFOSK
brPFOSK1015
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (total potassium salt)
\(46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (total PFOS anion)
Methanol
10/13/2015
10/14/2015
10/14/2020
Store ampoule in a cool, dark place

\section*{DESCRIPTION:}

The chemical purity has been determined to be \(\geq 98 \%\) perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

\section*{DOCUMENTATION/ DATA ATTACHED:}

Table A: Isomeric Components and Percent Composition by \({ }^{19} \mathrm{~F}-\mathrm{NMR}\)
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Table A: br-PFOSK; Isomeric Components and Percent Composition (by \({ }^{19} \mathrm{~F}-\mathrm{NMR}\) )*
\begin{tabular}{|c|c|c|c|}
\hline Isomer & Name & Structure & Percent Composition by \({ }^{19} \mathrm{~F}-\mathrm{NMR}\) \\
\hline 1 & Potassium perfluoro-1-octanesulfonate & \(\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}\) & 78.8 \\
\hline 2 & Potassium 1-trifluoromethylperfluoroheptanesulfonate** &  & 1.2 \\
\hline 3 & Potassium 2-trifluoromethylperfluoroheptanesulfonate &  & 0.6 \\
\hline 4 & Potassium 3-trifluoromethylperfluoroheptanesulfonate &  & 1.9 \\
\hline 5 & Potassium 4-trifluoromethylperfluoroheptanesulfonate &  & 2.2 \\
\hline 6 & Potassium 5-trifluoromethylperfluoroheptanesulfonate &  & 4.5 \\
\hline 7 & Potassium 6-trifluoromethylperfluoroheptanesulfonate &  & 10.0 \\
\hline 8 & Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.2 \\
\hline 9 & Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.03 \\
\hline 10 & Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.4 \\
\hline 11 & Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.07 \\
\hline
\end{tabular}
** Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:


Date: \(\qquad\) (mm/dd/yyyy)

Figure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Micromass Quattro micro API MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(45 \%\) (80:20 MeOH:ACN) / 55\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=60.00\) \\
\hline & Ramp to \(90 \%\) organic over 12 min and hold for 2 min . & Cone Gas Flow (1/hr) \(=50\) \\
\hline & Return to initial conditions over 0.5 min . & Desolvation Gas Flow (l/hr) \(=750\) \\
\hline & Time: 16 min & \\
\hline Flow: & \(300 \mu 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{Figure 2: br-PFOSK; LC/MS Data (SIR)}
140ct2015_brPFOSK_003

\section*{Conditions for Figure 2: \\ LC: Waters Acquity Ultra Performance LC \\ MS: Micromass Quattro micro API MS}

Chromatographic Conditions:
\begin{tabular}{ll} 
Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})\) \\
Injection: & \(1.0 \mu \mathrm{~g} / \mathrm{ml}\) of br-PFOSK \\
Mobile Phase: & \begin{tabular}{l} 
Gradient \\
\(45 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 55 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH \\
4
\end{tabular} OAc buffer) \\
& \begin{tabular}{l} 
Ramp to \(90 \%\) organic over 15 min and hold for 3 min. \\
Return to initial conditions over 1 min. \\
Time: 20 min
\end{tabular} \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) \\
MS Conditions:
\end{tabular}\(\quad\)\begin{tabular}{l} 
SIR (ES) \begin{tabular}{l} 
Source \(=110^{\circ} \mathrm{C}\) \\
Desolvation \(=325^{\circ} \mathrm{C}\) \\
Cone Voltage \(=60 \mathrm{~V}\)
\end{tabular}
\end{tabular}

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 3:
Injection: On-column

Mobile phase: Same as Figure 2

\section*{MS Parameters}

Collision Gas (mbar) \(=3.06 \mathrm{e}-3\)
Collision Energy ( eV ) \(=11-50\) (variable)

\section*{Analytical Standard Record}

Vista Analytical Laboratory

\section*{17D2718}
\begin{tabular}{|lllllll}
\hline Parent Standards used in this standard: & & & & \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 17 D 2615 & br-PFHxSK & \(26-\) Apr-17 & \(* *\) Vendor \(* *\) & 04-Jan-22 & 12-Jun-17 08:51 by AEW \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & Br-PFHxSK anion DIL & Expires: & 27-Apr-18 \\
Standard Type: & Other & Prepared: & 27-Apr-17 \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson \\
Final Volume \((\mathrm{mls}):\) & 0.91 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 12-Jun-17 08:51 by AEW
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline Total PFHxS & & 25 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFHxS & \(355-46-4\) & 25 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFHxS & & 20.3 & \(\mathrm{ug} / \mathrm{mL}\) \\
Br-PFHxS & \(3871-99-6\) & 4.72 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION'}

\section*{br-PFHxSK}

Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers
```

PRODUCT CODE: br-PFHxSK
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED: (mmudilyyy)
LAST TESTED: (mm/dimyy)
EXPIRY DATE: (mnldilywy)
RECOMMENDED STORAGE:
brPFHxSK0117
50.0\pm2.5 \mug/ml (total potassium salt)
45.5\pm2.3 \mu\textrm{g}/\textrm{ml}}\mathrm{ (total PFHxS anion)
Methanol
01/03/2017
01/04/2017
01/04/2022
Store ampoule in a cool, dark place

```

\section*{DESCRIPTION:}

The chemical purity has been determined to be \(\geq 98 \%\) perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

\section*{DOCUMENTATION/ DATA ATTACHED:}

Table A: Isomeric Components and Percent Composition by \({ }^{19} \mathrm{~F}-\mathrm{NMR}\)
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.5 \%\) of perfluoro-1-pentanesulfonate and \(\sim 0.2 \%\) of perfluoro-1-octanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by \({ }^{19} \mathrm{~F}-\mathrm{NMR}\) )*
\begin{tabular}{|c|l|l|c|}
\hline Isomer & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Name }\end{array}\)} & \(\begin{array}{c}\text { Percent } \\
\text { Composition } \\
\text { by }\end{array}\) \\
\hline 1 & Potassium perfluoro-1-hexanesulfonate
\end{tabular}\(]\)
** Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Certified By:


Date: 01/20/2017 (mm/dd/yyyy)

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Micromass Quattro micro API MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \(_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 20\% (80:20 MeOH:ACN) / 80\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=50.00\) \\
\hline & Ramp to \(50 \%\) organic over 14 min . Ramp to & Cone Gas Flow (1/hr) \(=60\) \\
\hline & \(90 \%\) organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min . & Desolvation Gas Flow (1/hr) \(=750\) \\
\hline & Time: 20 min & \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{Figure 2: br-PFHxSK; LC/MS Data (SIR)}
04jan2017_brPFHxSK_002
brPFHxSKO117 \(25 \mathrm{ug} / \mathrm{ml}\)
100


Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 3:}
\begin{tabular}{|c|c|}
\hline Injection: & Direct loop injection \(10 \mu \mathrm{l}\) (500 ng/ml br-PFHxSK) \\
\hline Mobile phase: & Isocratic \(80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH CAc buffer) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) \\
\hline
\end{tabular}

\section*{MS Parameters}

Collision Gas (mbar) \(=3.35 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=30\)

Form\#:13, Issued 2004-11-10
Revision\#:3, Revised 2015-03-24

\section*{Analytical Standard Record}

Vista Analytical Laboratory

\section*{17D2813}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Parent Standards used in this standard:} \\
\hline Standard Description & Description & Prepared & Prepared By & & Expires & Last Edit & & (mls) \\
\hline 17 D 2619 L-PFHpS & L-PFHpS & 26-Apr-17 & ** Vendor ** & & 18-Oct-21 & 12-Jun-1 & 9:07 by AEW & 0.5 \\
\hline Description: & \multicolumn{2}{|l|}{L-PFHpS anion DIL} & \multicolumn{3}{|c|}{Expires:} & \multicolumn{2}{|l|}{28-Apr-18} & \\
\hline Standard Type: & \multicolumn{2}{|l|}{Other} & \multicolumn{3}{|c|}{Prepared:} & \multicolumn{2}{|l|}{28-Apr-17} & \\
\hline Solvent: & \multicolumn{2}{|l|}{Methanol/} & \multicolumn{3}{|c|}{Prepared By:} & \multicolumn{2}{|l|}{Isaac N. Johnson} & \\
\hline Final Volume (mls): & \multicolumn{2}{|l|}{0.952} & \multicolumn{3}{|c|}{Department:} & \multicolumn{2}{|l|}{LCMS} & \\
\hline Vials: & 1 & & \multicolumn{3}{|c|}{Last Edit:} & \multicolumn{2}{|l|}{12-Jun-17 09:07 by AEW} & \\
\hline Analyte & & & & CAS N & mber & Concentration & Units & \\
\hline Total PFHpS & & & & & & 25 & ug/mL & \\
\hline PFHpS & & & & 375-9 & 2-8 & 25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline L-PFHpS & & & & & & 25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline
\end{tabular}

\section*{PRODUCT CODE:}

COMPOUND:

L-PFHpS
Sodium perfluoro-1-heptanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmiddymy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(47.6 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (PFHpS anion)
>98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

LOT NUMBER: LPFHpS1016

CAS \#: Not available

MOLECULAR WEIGHT: 472.10
SOLVENT(S):
Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.2 \%\) of L-PFHxS \(\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)\) and \(\sim 0.1 \%\) of \(\mathrm{L}-\mathrm{PFOS}\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)\).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: 10/20/2016
(mm/dd/yyyy)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E1907
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 17A1206 & 13C9-PFNA & 12-Jan-17 & ** Vendor ** & 27-Aug-19 & 12-Jan-17 10:26 by EMS & 0.375 \\
\hline 17A1208 & 13C4-PFBA & 12-Jan-17 & ** Vendor ** & 24-May-21 & 12-Jan-17 10:28 by EMS & 0.375 \\
\hline 17A1209 & 13C7-PFUdA & 12-Jan-17 & ** Vendor ** & 22-Jan-21 & 12-Jan-17 10:31 by EMS & 0.375 \\
\hline 17D0605 & 13C6-PFDA & 06-Apr-17 & Jamie C. Stockman & 06-May-21 & 06-Apr-17 09:43 by JCS & 0.375 \\
\hline 17 E 1717 & 13C2-FOUEA & 17-May-17 & ** Vendor ** & 02-Aug-18 & 17-May-17 12:46 by INJ & 0.375 \\
\hline 17 E 1906 & 13C4-PFOS dil. & 19-May-17 & Isaac N. Johnson & 19-May-18 & 19-May-17 10:32 by INJ & 0.468 \\
\hline 17 E 2411 & 13C5-PFHxA & 24-May-17 & ** Vendor ** & 27-Aug-19 & 24-May-17 11:19 by INJ & 0.375 \\
\hline 17 E 2422 & 13C3-PFHxS DIL. & 24-May-17 & Isaac N. Johnson & 24-May-18 & 24-May-17 11:48 by INJ & 0.416 \\
\hline 17 E 2423 & 13C2-4:2 FTS dil. & 24-May-17 & Isaac N. Johnson & 24-May-18 & 24-May-17 11:50 by INJ & 0.468 \\
\hline 17 E 2424 & 13C8-PFOA dil. & 24-May-17 & Isaac N. Johnson & 24-May-18 & 24-May-17 11:52 by INJ & 0.468 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & PFC-RS & Expires: & 06-Apr-18 \\
Standard Type: & Reagent & Prepared: & 19-May-17 \\
Solvent: & MEOH & Prepared By: & Isaac N. Johnson \\
Final Volume (mls): & 15 & Department: & LCMS \\
Vials: & 1 & Last Edit: & \(24-M a y-17\) 11:53 by INJ
\end{tabular}
\begin{tabular}{lcc} 
Analyte & CAS Number & Concentration \\
\hline 13C9-PFNA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C8-PFOA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C7-PFUnA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C6-PFDA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C5-PFHxA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C4-PFOS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C4-PFBA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C3-PFHxS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-FOUEA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-4:2 FTS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\title{
CERTIFICATE OF ANALYSIS
}

DOCUMENTATION

\section*{PRODUCT CODE: COMPOUND:}

M9PFNA -
Perfluoro-n- \([\underbrace{12} \mathrm{C}_{9}]\) nonanoic acid
STRUCTURE:

LOT NUMBER: M9PFNA0814

CAS \#: Not available



MOLECULAR WEIGHT: 473.01
SOLVENT (S): Methanol
Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left({ }^{13} \mathrm{C}_{9}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- \(\quad\) See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.9 \%\) of \({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}\) (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \(\qquad\)
(mm/dd/yyyy)

WELLINGTON
LABORATORIES

\section*{PRODUCT CODE: COMPOUND:}

\section*{STRUCTURE:}

MPFBA
Perfluoro-n-[1,2,3,4- \(\left.{ }^{13} \mathrm{C}_{4}\right]\) butanoic acid

LOT NUMBER: MPFBA0516

CAS \#: Not available

MOLECULAR WEIGHT: 218.01
SOLVENT(S): Methanol
Water ( \(<1 \%\) )
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
(1,2,3,4- \({ }^{13} \mathrm{C}_{4}\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
(mm/dd/yyyy)

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


PRODUCT CODE: COMPOUND:

\section*{STRUCTURE:}


GAS \#: \(\quad\) Not available



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) (mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Fiqure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Micromass Quattro micro API MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & \multirow[t]{2}{*}{MS Parameters} \\
\hline Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(50 \%\) (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage ( V ) \(=15.00\) \\
\hline & Ramp to \(90 \%\) organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min & \[
\begin{aligned}
& \text { Cone Gas Flow }(1 / h r)=50 \\
& \text { Desolvation Gas Flow }(1 / h r)=750
\end{aligned}
\] \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)



\section*{CERTIFICATE OF ANALYSIS \\ DOCUMENTATION.}

\section*{PRODUCT CODE: \\ COMPOUND:}

MFOUEA
2H-Perfluoro- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\)-2-decenoic acid

LOT NUMBER: MFOUEA0716

CAS \#: Not available

\begin{tabular}{|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{16} \mathrm{O}_{2}\) \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) \\
\hline CHEMICAL PURITY: & >98\% \\
\hline LAST TESTED: (mm/ddyyy) & 08/02/2016 \\
\hline EXPIRY DATE: (mm/didysyy) & 08/02/2018 \\
\hline RECOMMENDED STORAGE: & Refrigerate ampoule \\
\hline
\end{tabular}
\begin{tabular}{ll} 
MOLECULAR WEIGHT: & 460.08 \\
SOLVENT(S): & \begin{tabular}{l} 
Anhydrous \\
Isopropanol
\end{tabular} \\
& \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
ISOTOPIC PURITY: & \(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\)
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right]\)-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E1906


WELLINGTON
LA B OR A T ORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION \({ }^{\prime}\)

\section*{PRODUCT CODE:}

COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- \(\left.{ }^{13} \mathrm{C}_{4}\right]\) octanesulfonate

STRUCTURE:
LOT NUMBER: MPFOS1216

CAS \#: Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyyys)
EXPIRY DATE: (mmiddyyyy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\)
MOLECULAR WEIGHT:
SOLVENT(S):
>98\% ISOTOPIC PURITY:
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (MPFOS anion)
526.08

12/12/2016
12/12/2021
Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.8 \%\) Sodium perfluoro-1-[1,2,3- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(12 / 14 / 2016\) (mm/dd/yyyy)

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
(1,2,3,4,6- \({ }^{13} \mathrm{C}_{5}\) )

LOT NUMBER: M5PFHxA0814

GAS \#: \(\quad\) Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/mys)
EXPIRY DATE: (mm/ddyyy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{11} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
08/27/2014
08/27/2019
Store ampoule in a cool, dark place

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2422
\begin{tabular}{|lllllll}
\hline Parent Standards used in this standard: & & & & \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 17 E 2410 & \(13 \mathrm{C} 3-\mathrm{PFHxS}\) & \(24-\mathrm{May-17}\) & \(* *\) Vendor \(* *\) & 31-May-21 & 24-May-17 11:18 by INJ \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & 13C3-PFHxS DIL. & Expires: & 24-May-18 \\
Standard Type: & Reagent & Prepared: & \(24-M a y-17\) \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson \\
Final Volume (mls): & 0.473 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 24-May-17 11:48 by INJ
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline \(13 \mathrm{C} 3-\mathrm{PFHxS}\) & 45 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\section*{\(17 E\) \\ 2 \\ 410}

WELLINGTON
LABORATORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION.

\section*{PRODUCT CODE:} COMPOUND:

STRUCTURE:

M3PFHxS
Sodium perfluoro-1-[1,2,3- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) hexanesulfonate

GAS \#:
Not available



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2423
\begin{tabular}{|lllllll}
\hline Parent Standards used in this standard: & & & & \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 17 E 2409 & \(13 \mathrm{C} 2-4: 2\) FTS & \(24-M a y-17\) & \(* *\) Vendor \(* *\) & 25-Jun-21 & 24-May-17 11:18 by INJ \\
\hline
\end{tabular}
Description:

Standard Type:
Solvent: Methan
Final Volume (mls):
Vials:

13C2-4:2 FTS dil.
Other
Methanol
0.876

1
\begin{tabular}{ll} 
Expires: & 24-May-18 \\
Prepared: & 24-May-17 \\
Prepared By: & Isaac N. Johnson \\
Department: & LCMS \\
Last Edit: & 24-May-17 11:50 by INJ
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline \(13 \mathrm{C} 2-4: 2\) FTS & 40 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\section*{CERTIFICATE OF ANALYSIS}
\begin{tabular}{llll} 
PRODUCT CODE: & M2-4:2FTS & LOT NUMBER: & M242FTS0616 \\
COMPOUND: & Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluoro- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\) hexane sulfonate & \\
STRUCTURE: & & GAS \#: & Not available
\end{tabular}


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dodyyy)
EXPIRY DATE: (mm/ddyyyy)
\[
\begin{array}{ll}
{ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na} \\
50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} & \text { (Na salt) } \\
46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} & \text { (M2-4: 2FTS anion) }
\end{array}
\] \(>98 \%\)
352.12

MOLECULAR WEIGHT:
Methanol

06/25/2016
\(\geq 99 \%{ }^{13} \mathrm{C}\)

06/25/2021
RECOMMENDED STORAGE: Refrigerate ampoule

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 1.6 \%\) of an unknown impurity.
- The native \(4: 2 \mathrm{FTS}\) contains \(4.22 \%\) of \({ }^{34} \mathrm{~S}\) (due to natural isotopic abundance) therefore both native 4:2FTS and M2-4:2FTS will produce signals in the \(\mathrm{m} / \mathrm{z} 329\) to \(\mathrm{m} / \mathrm{z} 309\) channel during SRM analysis. We recommend using the \(\mathrm{m} / \mathrm{z} 329\) to \(\mathrm{m} / \mathrm{z} 81\) transition to monitor for M2-4:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17E2424


\section*{WELLINGTON}

LA B OR A TORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION.

\section*{PRODUCT CODE:}

COMPOUND:

STRUCTURE:

M8PFOA
Perfluoro-n-[ \(\left[{ }^{13} \mathrm{C}_{8}\right]\) octanoic acid

LOT NUMBER: M8PFOA0216

CAS \#: Not available


MOLECULAR FORMULA:
CONCENTRATION:

\section*{CHEMICAL PURITY:}

LAST TESTED:
(mm/ddyyyy)
\({ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}\)
\(49 \pm 2.45 \mu \mathrm{~g} / \mathrm{ml}\)

EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
97.9\% (M8PFOA)
2.1\% (MPFOA [M+4])

02/12/2016
02/12/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water ( \(<1 \%\) )
ISOTOPIC PURITY:
\(\left({ }^{13} \mathrm{C}_{8}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(<0.1 \%\) of native perfluoro-n-octanoic acid (PFOA) and \(\sim 2.1 \%\) of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) (mm/dd/yyyy)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17F3038
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & Last Edit & (mls) \\
\hline 17D0605 & 13C6-PFDA & 06-Apr-17 & Jamie C. Stockman & 06-May-21 & 06-Apr-17 09:43 by JCS & 0.375 \\
\hline 17 E 1717 & 13C2-FOUEA & 17-May-17 & ** Vendor ** & 02-Aug-18 & 17-May-17 12:46 by INJ & 0.375 \\
\hline 17E2411 & 13C5-PFHxA & 24-May-17 & ** Vendor ** & 27-Aug-19 & 24-May-17 11:19 by INJ & 0.375 \\
\hline 17F3031 & 13C4-PFOS dil. & 30-Jun-17 & Isaac N. Johnson & 30-Jun-18 & 30-Jun-17 13:31 by INJ & 0.468 \\
\hline 17F3032 & 13C3-PFHxS DIL. & 30-Jun-17 & Isaac N. Johnson & 30-Jun-18 & 30-Jun-17 13:35 by INJ & 0.416 \\
\hline 17F3034 & 13C8-PFOA dil. & 30-Jun-17 & Isaac N. Johnson & 30-Jun-18 & 30-Jun-17 13:40 by INJ & 0.468 \\
\hline 17F3035 & 13C9-PFNA & 30-Jun-17 & ** Vendor ** & 27-Aug-19 & 03-Jul-17 13:07 by INJ & 0.375 \\
\hline 17F3036 & 13C4-PFBA & 30-Jun-17 & ** Vendor ** & 12-Apr-22 & 03-Jul-17 13:08 by INJ & 0.375 \\
\hline 17F3037 & 13C7-PFUdA & 30-Jun-17 & ** Vendor \({ }^{* *}\) & 22-Jan-21 & 03-Jul-17 13:09 by INJ & 0.375 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & PFC-RS & Expires: & 19-May-18 \\
Standard Type: & Reagent & Prepared: & 30-Jun-17 \\
Solvent: & MEOH & Prepared By: & Isaac N. Johnson \\
Final Volume (mls): & 15 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 03-Jul-17 13:09 by INJ
\end{tabular}
\begin{tabular}{lcc} 
Analyte & CAS Number & Concentration \\
\hline 13C9-PFNA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C8-PFOA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C7-PFUnA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C6-PFDA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C5-PFHxA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C4-PFOS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C4-PFBA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C3-PFHxS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-FOUEA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

PRODUCT CODE: COMPOUND:

\section*{STRUCTURE:}


GAS \#: \(\quad\) Not available



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) (mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Fiqure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Micromass Quattro micro API MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & \multirow[t]{2}{*}{MS Parameters} \\
\hline Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(50 \%\) (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage ( V ) \(=15.00\) \\
\hline & Ramp to \(90 \%\) organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min & \[
\begin{aligned}
& \text { Cone Gas Flow }(1 / h r)=50 \\
& \text { Desolvation Gas Flow }(1 / h r)=750
\end{aligned}
\] \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)



\section*{CERTIFICATE OF ANALYSIS \\ DOCUMENTATION.}

\section*{PRODUCT CODE: \\ COMPOUND:}

MFOUEA
2H-Perfluoro- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\)-2-decenoic acid

LOT NUMBER: MFOUEA0716

CAS \#: Not available

\begin{tabular}{|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{16} \mathrm{O}_{2}\) \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) \\
\hline CHEMICAL PURITY: & >98\% \\
\hline LAST TESTED: (mm/ddyyy) & 08/02/2016 \\
\hline EXPIRY DATE: (mm/didysyy) & 08/02/2018 \\
\hline RECOMMENDED STORAGE: & Refrigerate ampoule \\
\hline
\end{tabular}
\begin{tabular}{ll} 
MOLECULAR WEIGHT: & 460.08 \\
SOLVENT(S): & \begin{tabular}{l} 
Anhydrous \\
Isopropanol
\end{tabular} \\
& \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
ISOTOPIC PURITY: & \(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\)
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right]\)-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
(1,2,3,4,6- \(\left.{ }^{13} \mathrm{C}_{5}\right)\)

LOT NUMBER: M5PFHxA0814

GAS \#: \(\quad\) Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yys)
EXPIRY DATE: (mm/ddyyy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{11} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
08/27/2014
08/27/2019
Store ampoule in a cool, dark place

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17F3031


WELLINGTON
LA B OR A T ORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION \({ }^{\prime}\)

\section*{PRODUCT CODE:}

COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- \(\left.{ }^{13} \mathrm{C}_{4}\right]\) octanesulfonate

STRUCTURE:

LOT NUMBER: MPFOS1216

CAS \#: \(\quad\) Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyyys)
EXPIRY DATE: (mmiddyyyy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\)
MOLECULAR WEIGHT:
SOLVENT(S):
>98\% ISOTOPIC PURITY:
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (MPFOS anion)
526.08

12/12/2016
12/12/2021
Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.8 \%\) Sodium perfluoro-1-[1,2,3- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(12 / 14 / 2016\) (mm/dd/yyyy)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17F3032
\begin{tabular}{|llllll|lll}
\hline Parent Standards used in this standard: \\
Standard & Description & Prepared & Prepared By & Expires & Last Edit \\
\hline 17 E 2410 & \(13 \mathrm{C} 3-\mathrm{PFHxS}\) & \(24-M a y-17\) & \(* *\) Vendor \(* *\) & 31-May-21 & 24-May-17 11:18 by INJ \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & 13C3-PFHxS DIL. & Expires: & 30-Jun-18 \\
Standard Type: & Reagent & Prepared: & 30-Jun-17 \\
Solvent: & MeOH & Prepared By: & Isaac N. Johnson \\
Final Volume (mls): & 0.473 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 30-Jun-17 13:35 by INJ \\
& & & \\
Analyte & & CAS Number & Concentration \\
\hline \(13 C 3-P F H x S\) & & & Units \\
\hline
\end{tabular}

\section*{\(17 E\) \\ 2 \\ 410}

WELLINGTON
LABORATORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION.

\section*{PRODUCT CODE:} COMPOUND:

STRUCTURE:

M3PFHxS
Sodium perfluoro-1-[1,2,3- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) hexanesulfonate

GAS \#:
Not available



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\section*{Analytical Standard Record}

Vista Analytical Laboratory
17F3034


\section*{WELLINGTON}

LA B OR A TORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION.

\section*{PRODUCT CODE:}

COMPOUND:

STRUCTURE:

M8PFOA
Perfluoro-n-[ \(\left[{ }^{13} \mathrm{C}_{8}\right]\) octanoic acid

LOT NUMBER: M8PFOA0216

CAS \#: Not available


MOLECULAR FORMULA:
CONCENTRATION:

\section*{CHEMICAL PURITY:}

LAST TESTED:
(mm/ddyyyy)
\({ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}\)
\(49 \pm 2.45 \mu \mathrm{~g} / \mathrm{ml}\)

EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
97.9\% (M8PFOA)
2.1\% (MPFOA [M+4])

02/12/2016
02/12/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water ( \(<1 \%\) )
ISOTOPIC PURITY:
\(\left({ }^{13} \mathrm{C}_{8}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(<0.1 \%\) of native perfluoro-n-octanoic acid (PFOA) and \(\sim 2.1 \%\) of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) \(\frac{02 / 24 / 2016}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}\)

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE:} COMPOUND:

STRUCTURE:

M9PFNA
Perfluoro- \(n-\left[{ }^{13} \mathrm{C}_{9}\right]\) nonanoic acid

LOT NUMBER: M9PFNA0814

CIS \#: \(\quad\) Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrymy)
EXPIRY DATE: (mnldodryy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
08/27/2014
08/27/2019

MOLECULAR WEIGHT:
SOLVENTS):
ISOTOPIC PURITY:
473.01

Methanol
Water (<1\%)
\(\geq 99 \%{ }^{13} \mathrm{C}\) \(\left({ }^{13} \mathrm{C}_{9}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.9 \%\) of \({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}\) (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additiorial information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
\hline MS: & Micromass Quattro micro API MS
\end{tabular}

\section*{Chromatographic Conditions}
\(\begin{array}{ll}\text { Column: } \quad \text { Acquity UPLC BEH Shield } R P_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}\)
Mobile phase: Gradient
Start: 55\% (80:20 MeOH:ACN) / 45\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage \((\mathrm{V})=15.00\)
Cone Gas Flow (l/hr) \(=50\)
Desolvation Gas Flow (l/hr) \(=750\)

17F3035

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)



\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION

\section*{PRODUCT CODE: COMPOUND:}

STRUCTURE:

MPFBA
Perfluoro-n-[1,2,3,4- \({ }^{13} \mathrm{C}_{4}\) butanoic acid
LOT NUMBER: MPFBA0417

GAS \#: \(\quad\) Not available

MOLECULAR WEIGHT: 218.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
(1,2,3,4- \({ }^{13} \mathrm{C}_{4}\) )

MOLECULAR FORM
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoddryyy)
EXPIRY DATE: (mmbdalyyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
\({ }^{13} \mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
04/12/2017
04/12/2022

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
\(\frac{4 / 20 / 2017}{(m m / d d / y y y)}\)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}


\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{\prime \prime} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{|lll} 
12apr2017_MPFBA_001 \\
MPFBA0417 \(25 \mathrm{ug} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}

\begin{tabular}{|ll}
\hline \multicolumn{2}{l}{ Conditions for Figure 1: } \\
\hline LC: & Waters Acquity Ultra Performance LC \\
MS: & Micromass Quattro micro API MS
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{romatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \(_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 30\% (80:20 MeOH:ACN) / 70\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{S}_{4} \mathrm{OAC}\) buffer) & Cone Voltage ( V ) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min & Cone Gas Flow (1/hr) \(=100\) \\
\hline & \begin{tabular}{l}
before returning to initial conditions in 0.5 min . \\
Time: 10 min
\end{tabular} & Desolvation Gas Flow (l/hr) \(=750\) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{ll} 
Injection: & \begin{tabular}{l} 
Direct loop injection \\
\(10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFBA})\)
\end{tabular} \\
Mobile phase: & \begin{tabular}{l} 
Isocratic \(80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
\end{tabular} \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\)
\end{tabular}

\section*{MS Parameters}

Collision Gas (mbar) \(=3.35 \mathrm{e}-3\)
Collision Energy ( eV ) \(=10\)

LABORATORIES

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION
PRODUCT CODE:
COMPOUND:
STRUCTURE:
\begin{tabular}{lll} 
M7PFUdA & LOT NUMBER: & M7PFUdA0116 \\
Perfluoro- \(n-\left[1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right.\) ] undecanoic acid & \\
& CAS \#: & Not available
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{7}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 571.04 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water (<1\%) \\
\hline CHEMICAL PURITY: & >98\% & ISOTOPIC PURITY: & \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
\hline LAST TESTED: (mmmadyme) & 01/22/2016 & & (1,2,3,4,5,6,7- \({ }^{13} \mathrm{C}_{7}\) ) \\
\hline EXPIRY DATE: (mmbduhyy) & 01/22/2021 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyyy)

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Micromass Quattro micro API MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & ent: Full Scan (225 \\
\hline Mobile phase: & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=15.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min & \\
\hline & before returning to initial conditions in 0.5 min . & Desolvation Gas Flow (l/hr) \(=750\) \\
\hline & Time: 10 min & \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{|c|c|}
\hline Injection: & \begin{tabular}{l}
Direct loop injection \\
\(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml}\) M7PFUdA)
\end{tabular} \\
\hline Mobile phase: & Isocratic \(80 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH 4 OAc buffer) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) \\
\hline
\end{tabular}

\section*{MS Parameters}

Collision Gas (mbar) \(=3.50 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=11\)
"West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","375-73-5","PFBS","5.34","ng/L","U","1.92","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","307-24-4","PFHxA","70.8","ng/L","","2.33","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","375-85-9","PFHpA","52.7","ng/L","","0.632","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","355-46-4","PFHxS","3.87","ng/L","J","1.01","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","335-67-1","PFOA","39.8","ng/L","","0.697","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","1763-23-1","PFOS","9.80","ng/L","","0.863","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","375-95-1","PFNA","7.76","ng/L","J","0.867","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","335-76-2","PFDA","5.34","ng/L","U","1.59","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","2355-31-9","MeFOSAA","5.34","ng/L","U","1.77","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34" ""
"West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","2058-94-8","PFUnA","5.34","ng/L","U","1.12","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","2991-50-6","EtFOSAA","5.34","ng/L","U","1.47","LOD","","TRG","","","8.56","LOQ","YES","-99","","0.117","0.001","5.34", ""
"West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","307-55-1","PFDoA","5.17","ng/L","U","0.816","LOD","","TRG","","","8.24","LOQ","YES","-99","","0.121","0.001","5.17","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","72629-94-8","PFTrDA","5.17","ng/L","U","0.509","LOD","","TRG","","","8.24","LOQ","YES","-99","","0.121","0.001","5.17","
"West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","376-06-7","PFTeDA","5.17","ng/L","U","0.778","LOD","","TRG","","","8.24","LOQ","YES","-99","","0.121","0.001","5.17", ""
"West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C3-PFBS","13C3-PFBS","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C2-PFHxA","13C2-PFHxA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C4-PFHpA","13C4-PFHpA","84.9","\%R","","-99","NA","","IS","84.9","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","18O2-PFHxS","18O2-PFHxS","97.5","\%R","","-99","NA","","IS","97.5","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C2-PFOA","13C2-PFOA","96.8","\%R","","-99","NA","","IS","96.8","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C8-PFOS","13C8-PFOS","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C5-PFNA","13C5-PFNA","92.1","\%R","","-99","NA","","IS","92.1","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C2-PFDA","13C2-PFDA","86.9","\%R","","-99","NA","","IS","86.9","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","d3-MeFOSAA","d3-MeFOSAA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C2-PFUnA","13C2-PFUnA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","d5-EtFOSAA","d5-

EtFOSAA","60.4","\%R","","-99","NA","","IS","60.4","","-99","NA","YES","100","","0.117","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C2-PFDoA","13C2-PFDoA","32.5","\%R","H","-99","NA","","IS","32.5","","-99","NA","YES","100","","0.121","0.001","-99","" "West Ditch In-20170627","Modified EPA Method 537","Initial","1700792-01","Vista","13C2-PFTeDA","13C2-PFTeDA","27.8","\%R","H","-99","NA","","IS","27.8","","-99","NA","YES","100","","0.121","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","375-73-5","PFBS","5.43","ng/L","U","1.95","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","307-24-4","PFHxA","70.5","ng/L","","2.37","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","375-85-9","PFHpA","41.8","ng/L","","0.644","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","355-46-4","PFHxS","4.70","ng/L","J","1.03","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","335-67-1","PFOA","37.0","ng/L","","0.709","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","1763-23-1","PFOS","4.73","ng/L","J","0.879","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","375-95-1","PFNA","4.90","ng/L","J","0.882","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","335-76-
2","PFDA","5.43","ng/L","U","1.62","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","2355-31-9","MeFOSAA","5.43","ng/L","U","1.80","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43" ""
"MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","2058-94-
8","PFUnA","5.43","ng/L","U","1.14","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","2991-50-
6","EtFOSAA","5.43","ng/L","U","1.49","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43", ""
"MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","307-55-
1","PFDoA","5.43","ng/L","U","0.863","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","72629-94-
8","PFTrDA","5.43","ng/L","U","0.538","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","
"MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","376-06-
7","PFTeDA","5.43","ng/L","U","0.822","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43", ""
"MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C3-PFBS","13C3-PFBS","129","\%R","","-99","NA","","IS","129","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C2-PFHxA","13C2-PFHxA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C4-PFHpA","13C4-PFHpA","98.2","\%R","","-99","NA","","IS","98.2","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","18O2-PFHxS","18O2-PFHxS","97.3","\%R","","-99","NA","","IS","97.3","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C2-PFOA","13C2-PFOA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C8-PFOS","13C8-PFOS","94.2","\%R","","-99","NA","","IS","94.2","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C5-PFNA","13C5-PFNA","88.1","\%R","","-99","NA","","IS","88.1","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C2-PFDA","13C2-PFDA","72.8","\%R","","-99","NA","","IS","72.8","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","d3-MeFOSAA","d3-

MeFOSAA","92.8","\%R","","-99","NA","","IS","92.8","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C2-PFUnA","13C2-PFUnA","71.1","\%R","","-99","NA","","IS","71.1","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","d5-EtFOSAA","d5-EtFOSAA","59.1","\%R","","-99","NA","","IS","59.1","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C2-PFDoA","13C2-PFDoA","52.1","\%R","","-99","NA","","IS","52.1","","-99","NA","YES","100","","0.115","0.001","-99","" "MH-140-20170628","Modified EPA Method 537","Initial","1700792-02","Vista","13C2-PFTeDA","13C2-PFTeDA","55.6","\%R","","-99","NA","","IS","55.6","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","375-73-5","PFBS","5.43","ng/L","U","1.95","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","307-24-4","PFHxA","35.9","ng/L","","2.38","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","375-85-9","PFHpA","24.2","ng/L","","0.645","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","355-46-4","PFHxS","4.88","ng/L","J","1.03","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","335-67-1","PFOA","29.8","ng/L","","0.710","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","1763-23-1","PFOS","5.89","ng/L","J","0.880","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","375-95-1","PFNA","4.92","ng/L","J","0.884","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","335-76-2","PFDA","5.43","ng/L","U","1.63","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","2355-31-9","MeFOSAA","5.43","ng/L","U","1.80","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43" ""
"Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","2058-94-8","PFUnA","5.43","ng/L","U","1.15","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","2991-50-6","EtFOSAA","5.43","ng/L","U","1.49","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43", ""
"Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","307-55-1","PFDoA","5.43","ng/L","U","0.864","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","72629-94-8","PFTrDA","5.43","ng/L","U","0.539","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43","
"Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","376-06-
7","PFTeDA","5.43","ng/L","U","0.824","LOD","","TRG","","","8.73","LOQ","YES","-99","","0.115","0.001","5.43", ""
"Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C3-PFBS","13C3-PFBS","129","\%R","","-99","NA","","IS","129","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C2-PFHxA","13C2-PFHxA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C4-PFHpA","13C4-PFHpA","98.5","\%R","","-99","NA","","IS","98.5","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","18O2-PFHxS","18O2-PFHxS","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C2-PFOA","13C2-PFOA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C8-PFOS","13C8-PFOS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C5-PFNA","13C5-

PFNA","89.4","\%R","","-99","NA","","IS","89.4","","-99","NA","YES","100","","0.115","0.001","-99",""
"Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C2-PFDA","13C2-PFDA","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","d3-MeFOSAA","d3-MeFOSAA","67.1","\%R","","-99","NA","","IS","67.1","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C2-PFUnA","13C2-PFUnA","83.7","\%R","","-99","NA","","IS","83.7","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","d5-EtFOSAA","d5-EtFOSAA","46.8","\%R","H","-99","NA","","IS","46.8","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C2-PFDoA","13C2-PFDoA","21.4","\%R","H","-99","NA","","IS","21.4","","-99","NA","YES","100","","0.115","0.001","-99","" "Interceptor-20170628","Modified EPA Method 537","Initial","1700792-03","Vista","13C2-PFTeDA","13C2-PFTeDA","20.1","\%R","H","-99","NA","","IS","20.1","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","375-73-5","PFBS","5.43","ng/L","U","1.95","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","307-24-4","PFHxA","86.4","ng/L","","2.37","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","375-85-9","PFHpA","64.6","ng/L","","0.643","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","355-46-4","PFHxS","3.22","ng/L","J","1.03","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","335-67-1","PFOA","35.8","ng/L","","0.709","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","1763-23-1","PFOS","3.82","ng/L","J","0.878","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","375-95-1","PFNA","4.94","ng/L","J","0.882","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","335-76-2","PFDA","5.43","ng/L","U","1.62","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","2355-31-9","MeFOSAA","5.43","ng/L","U","1.80","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43" ""
"Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","2058-94-8","PFUnA","5.43","ng/L","U","1.14","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","2991-50-6","EtFOSAA","5.43","ng/L","U","1.49","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43", ""
"Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","307-55-
1","PFDoA","5.43","ng/L","U","0.862","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","72629-94-8","PFTrDA","5.43","ng/L","U","0.538","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43"," "
"Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","376-06-7","PFTeDA","5.43","ng/L","U","0.822","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43", ""
"Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C3-PFBS","13C3-PFBS","128","\%R","","-99","NA","","IS","128","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C2-PFHxA","13C2-PFHxA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C4-PFHpA","13C4-PFHpA","95.1","\%R","","-99","NA","","IS","95.1","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","18O2-PFHxS","18O2-PFHxS","96.8","\%R","","-99","NA","","IS","96.8","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C2-PFOA","13C2-

PFOA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C8-PFOS","13C8-PFOS","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C5-PFNA","13C5-PFNA","97.9","\%R","","-99","NA","","IS","97.9","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C2-PFDA","13C2-PFDA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.115","0.001","-99","'" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","d3-MeFOSAA","d3-MeFOSAA","90.5","\%R","","-99","NA","","IS","90.5","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C2-PFUnA","13C2-PFUnA","93.6","\%R","","-99","NA","","IS","93.6","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","d5-EtFOSAA","d5-EtFOSAA","61.5","\%R","","-99","NA","","IS","61.5","","-99","NA","YES","100","","0.115","0.001","-99","" "Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C2-PFDoA","13C2-PFDoA","29.8","\%R","H","-99","NA","","IS","29.8","","-99","NA","YES","100","","0.115","0.001","-99",""
"Roof Drain-20170628","Modified EPA Method 537","Initial","1700792-04","Vista","13C2-PFTeDA","13C2-PFTeDA","40.5","\%R","H","-99","NA","","IS","40.5","","-99","NA","YES","100","","0.115","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","375-73-5","PFBS","6.41","ng/L","U","2.29","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","307-24-4","PFHxA","87.5","ng/L","","2.79","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","375-85-9","PFHpA","62.9","ng/L","","0.758","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","355-46-4","PFHxS","2.96","ng/L","J","1.21","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","335-67-1","PFOA","39.6","ng/L","","0.835","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","1763-23-1","PFOS","4.28","ng/L","J","1.03","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","375-95-1","PFNA","8.19","ng/L","J","1.04","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","335-76-2","PFDA","6.41","ng/L","U","1.91","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","2355-31-9","MeFOSAA","6.41","ng/L","U","2.12","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41 " ""
"Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","2058-94-
8","PFUnA","6.41","ng/L","U","1.35","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","2991-50-
6","EtFOSAA","6.41","ng/L","U","1.76","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41" ""
"Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","307-55-
1","PFDoA","6.41","ng/L","U","1.02","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41",""
"Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","72629-94-
8","PFTrDA","6.41","ng/L","U","0.633","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41", " "
"Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","376-06-
7","PFTeDA","6.41","ng/L","U","0.968","LOD","","TRG","","","10.3","LOQ","YES","-99","","0.0975","0.001","6.41" ""
"Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C3-PFBS","13C3-PFBS","123","\%R","","-99","NA","","IS","123","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C2-PFHxA","13C2-PFHxA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C4-PFHpA","13C4-

PFHpA","89.3","\%R","","-99","NA","","IS","89.3","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","18O2-PFHxS","18O2-PFHxS","97.8","\%R","","-99","NA","","IS","97.8","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C2-PFOA","13C2-PFOA","93.7","\%R","","-99","NA","","IS","93.7","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C8-PFOS","13C8-PFOS","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C5-PFNA","13C5-PFNA","97.2","\%R","","-99","NA","","IS","97.2","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C2-PFDA","13C2-PFDA","92.0","\%R","","-99","NA","","IS","92.0","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","d3-MeFOSAA","d3-MeFOSAA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C2-PFUnA","13C2-PFUnA","85.5","\%R","","-99","NA","","IS","85.5","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","d5-EtFOSAA","d5-EtFOSAA","68.5","\%R","","-99","NA","","IS","68.5","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C2-PFDoA","13C2-PFDoA","34.9","\%R","H","-99","NA","","IS","34.9","","-99","NA","YES","100","","0.0975","0.001","-99","" "Spring-20170628","Modified EPA Method 537","Initial","1700792-05","Vista","13C2-PFTeDA","13C2-PFTeDA","46.6","\%R","H","-99","NA","","IS","46.6","","-99","NA","YES","100","","0.0975","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","375-73-5","PFBS","5.58","ng/L","U","2.00","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","307-24-4","PFHxA","5.58","ng/L","U","2.43","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","375-85-9","PFHpA","5.58","ng/L","U","0.659","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","355-46-4","PFHxS","5.58","ng/L","U","1.06","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","335-67-1","PFOA","5.58","ng/L","U","0.726","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","1763-23-1","PFOS","5.58","ng/L","U","0.900","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","375-95-1","PFNA","5.58","ng/L","U","0.903","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","335-76-2","PFDA","5.58","ng/L","U","1.66","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","2355-31-9","MeFOSAA","5.58","ng/L","U","1.84","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58" ""
"FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","2058-94-
8","PFUnA","5.58","ng/L","U","1.17","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58",""
"FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","2991-50-
6","EtFOSAA","5.58","ng/L","U","1.53","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58", ""
"FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","307-55-
1","PFDoA","5.58","ng/L","U","0.883","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","72629-94-8","PFTrDA","5.58","ng/L","U","0.551","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58","
"FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","376-06-
7","PFTeDA","5.58","ng/L","U","0.842","LOD","","TRG","","","8.92","LOQ","YES","-99","","0.112","0.001","5.58", "
"FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C3-PFBS","13C3-

PFBS","127","\%R","","-99","NA","","IS","127","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C2-PFHxA","13C2-PFHxA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C4-PFHpA","13C4-PFHpA","95.4","\%R","","-99","NA","","IS","95.4","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","18O2-PFHxS","18O2-PFHxS","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C2-PFOA","13C2-PFOA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C8-PFOS","13C8-PFOS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C5-PFNA","13C5-PFNA","89.8","\%R","","-99","NA","","IS","89.8","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C2-PFDA","13C2-PFDA","74.7","\%R","","-99","NA","","IS","74.7","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","d3-MeFOSAA","d3-MeFOSAA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C2-PFUnA","13C2-PFUnA","70.2","\%R","","-99","NA","","IS","70.2","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","d5-EtFOSAA","d5-EtFOSAA","64.3","\%R","","-99","NA","","IS","64.3","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C2-PFDoA","13C2-PFDoA","32.9","\%R","H","-99","NA","","IS","32.9","","-99","NA","YES","100","","0.112","0.001","-99","" "FRB-20170628","Modified EPA Method 537","Initial","1700792-06","Vista","13C2-PFTeDA","13C2-PFTeDA","34.8","\%R","H","-99","NA","","IS","34.8","","-99","NA","YES","100","","0.112","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","375-73-5","PFBS","5.25","ng/L","U","1.88","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","307-24-4","PFHxA","84.8","ng/L","","2.30","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","375-85-9","PFHpA","54.2","ng/L","","0.622","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","355-46-4","PFHxS","3.38","ng/L","J","0.997","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","335-67-1","PFOA","63.4","ng/L","","0.685","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","1763-23-
1","PFOS","6.63","ng/L","J","0.850","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25",""
"MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","375-95-
1","PFNA","9.93","ng/L","","0.853","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","335-76-2","PFDA","3.10","ng/L","J","1.57","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","2355-31-9","MeFOSAA","5.25","ng/L","U","1.74","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25" ""
"MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","2058-94-
8","PFUnA","5.25","ng/L","U","1.11","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","2991-50-
6","EtFOSAA","5.25","ng/L","U","1.44","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25", "1"
"MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","307-55-
1","PFDoA","5.25","ng/L","U","0.834","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","72629-94-8","PFTrDA","5.25","ng/L","U","0.520","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25"," "
"MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","376-06-
7","PFTeDA","5.25","ng/L","U","0.795","LOD","","TRG","","","8.42","LOQ","YES","-99","","0.119","0.001","5.25", " "
"MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C3-PFBS","13C3-PFBS","119","\%R","","-99","NA","","IS","119","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C2-PFHxA","13C2-PFHxA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C4-PFHpA","13C4-PFHpA","92.2","\%R","","-99","NA","","IS","92.2","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","18O2-PFHxS","18O2-PFHxS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C2-PFOA","13C2-PFOA","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C8-PFOS","13C8-PFOS","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C5-PFNA","13C5-PFNA","91.5","\%R","","-99","NA","","IS","91.5","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C2-PFDA","13C2-PFDA","95.5","\%R","","-99","NA","","IS","95.5","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","d3-MeFOSAA","d3-MeFOSAA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C2-PFUnA","13C2-PFUnA","88.8","\%R","","-99","NA","","IS","88.8","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","d5-EtFOSAA","d5-EtFOSAA","66.3","\%R","","-99","NA","","IS","66.3","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C2-PFDoA","13C2-PFDoA","31.8","\%R","H","-99","NA","","IS","31.8","","-99","NA","YES","100","","0.119","0.001","-99","" "MH318.9-20170628","Modified EPA Method 537","Initial","1700792-07","Vista","13C2-PFTeDA","13C2-PFTeDA","24.8","\%R","H","-99","NA","","IS","24.8","","-99","NA","YES","100","","0.119","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","375-73-5","PFBS","5.34","ng/L","U","1.91","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","307-24-4","PFHxA","84.6","ng/L","","2.33","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","375-85-9","PFHpA","52.2","ng/L","","0.631","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","355-46-4","PFHxS","2.84","ng/L","J","1.01","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","335-67-
1","PFOA","55.2","ng/L","","0.695","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","1763-23-1","PFOS","2.75","ng/L","J","0.861","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","375-95-1","PFNA","5.49","ng/L","J","0.864","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","335-76-2","PFDA","5.34","ng/L","U","1.59","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","2355-31-9","MeFOSAA","5.34","ng/L","U","1.76","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34" ""
"MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","2058-94-
8","PFUnA","5.34","ng/L","U","1.12","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","2991-50-
6","EtFOSAA","5.34","ng/L","U","1.46","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34",
"MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","307-55-

1","PFDoA","5.08","ng/L","U","0.803","LOD","","TRG","","","8.11","LOQ","YES","-99","","0.123","0.001","5.08","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","72629-94-
8","PFTrDA","5.08","ng/L","U","0.501","LOD","","TRG","","","8.11","LOQ","YES","-99","","0.123","0.001","5.08"," "
"MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","376-06-
7","PFTeDA","5.08","ng/L","U","0.766","LOD","","TRG","","","8.11","LOQ","YES","-99","","0.123","0.001","5.08", ""
"MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C3-PFBS","13C3-PFBS","118","\%R","","-99","NA","","IS","118","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C2-PFHxA","13C2-PFHxA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C4-PFHpA","13C4-PFHpA","88.8","\%R","","-99","NA","","IS","88.8","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","18O2-PFHxS","18O2-PFHxS","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C2-PFOA","13C2-PFOA","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C8-PFOS","13C8-PFOS","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C5-PFNA","13C5-PFNA","86.2","\%R","","-99","NA","","IS","86.2","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C2-PFDA","13C2-PFDA","74.5","\%R","","-99","NA","","IS","74.5","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","d3-MeFOSAA","d3-MeFOSAA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C2-PFUnA","13C2-PFUnA","86.9","\%R","","-99","NA","","IS","86.9","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","d5-EtFOSAA","d5-EtFOSAA","64.2","\%R","","-99","NA","","IS","64.2","","-99","NA","YES","100","","0.117","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C2-PFDoA","13C2-PFDoA","78.0","\%R","","-99","NA","","IS","78.0","","-99","NA","YES","100","","0.123","0.001","-99","" "MH388.9-20170628","Modified EPA Method 537","Initial","1700792-08","Vista","13C2-PFTeDA","13C2-PFTeDA","43.3","\%R","H","-99","NA","","IS","43.3","","-99","NA","YES","100","","0.123","0.001","-99",""
"Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","375-73-5","PFBS","5.30","ng/L","U","1.89","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","307-24-4","PFHxA","35.2","ng/L","","2.30","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","375-85-9","PFHpA","26.1","ng/L","","0.625","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","355-46-4","PFHxS","4.10","ng/L","J","1.00","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","335-67-1","PFOA","30.6","ng/L","","0.688","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","1763-23-
1","PFOS","6.62","ng/L","J","0.853","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","375-95-1","PFNA","3.69","ng/L","J","0.856","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","335-76-
2","PFDA","5.30","ng/L","U","1.58","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","2355-31-9","MeFOSAA","5.30","ng/L","U","1.74","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30" ""
"Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","2058-94-8","PFUnA","5.30","ng/L","U","1.11","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30",""
"Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","2991-50-
6","EtFOSAA","5.30","ng/L","U","1.45","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30", ""
"Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","307-55-
1","PFDoA","5.30","ng/L","U","0.837","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","72629-94-
8","PFTrDA","5.30","ng/L","U","0.522","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30"," "
"Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","376-06-7","PFTeDA","5.30","ng/L","U","0.798","LOD","","TRG","","","8.46","LOQ","YES","-99","","0.118","0.001","5.30", ""
"Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C3-PFBS","13C3-PFBS","134","\%R","","-99","NA","","IS","134","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C2-PFHxA","13C2-PFHxA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C4-PFHpA","13C4-PFHpA","98.4","\%R","","-99","NA","","IS","98.4","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","18O2-PFHxS","18O2-PFHxS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C2-PFOA","13C2-PFOA","98.1","\%R","","-99","NA","","IS","98.1","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C8-PFOS","13C8-PFOS","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C5-PFNA","13C5-PFNA","86.0","\%R","","-99","NA","","IS","86.0","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C2-PFDA","13C2-PFDA","82.8","\%R","","-99","NA","","IS","82.8","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","d3-MeFOSAA","d3-MeFOSAA","75.5","\%R","","-99","NA","","IS","75.5","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C2-PFUnA","13C2-PFUnA","81.8","\%R","","-99","NA","","IS","81.8","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","d5-EtFOSAA","d5-EtFOSAA","48.3","\%R","H","-99","NA","","IS","48.3","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C2-PFDoA","13C2-PFDoA","27.3","\%R","H","-99","NA","","IS","27.3","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup03-20170628","Modified EPA Method 537","Initial","1700792-09","Vista","13C2-PFTeDA","13C2-PFTeDA","34.5","\%R","H","-99","NA","","IS","34.5","","-99","NA","YES","100","","0.118","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","375-73-5","PFBS","127","ng/L","","1.97","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","307-24-4","PFHxA","612","ng/L","","2.40","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","375-85-9","PFHpA","190","ng/L","","0.652","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","355-46-4","PFHxS","799","ng/L","","1.04","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","335-67-1","PFOA","116","ng/L","","0.718","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Dilution","1700792-10","Vista","1763-23-
1","PFOS","1600","ng/L","D","8.90","LOD","","TRG","","","88.2","LOQ","YES","-99","","0.113","0.001","55.3","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","375-95-
1","PFNA","10.7","ng/L","","0.893","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","335-76-2","PFDA","3.79","ng/L","J","1.64","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","2355-31-

9","MeFOSAA","5.53","ng/L","U","1.82","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53" ""
"Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","2058-94-8","PFUnA","5.53","ng/L","U","1.16","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","2991-50-
6","EtFOSAA","5.53","ng/L","U","1.51","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53", ""
"Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","307-55-
1","PFDoA","5.53","ng/L","U","0.873","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","72629-94-
8","PFTrDA","5.53","ng/L","U","0.545","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53"," "
"Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","376-06-
7","PFTeDA","5.53","ng/L","U","0.832","LOD","","TRG","","","8.82","LOQ","YES","-99","","0.113","0.001","5.53", ""
"Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C3-PFBS","13C3-PFBS","131","\%R","","-99","NA","","IS","131","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C2-PFHxA","13C2-PFHxA","117","\%R","","-99","NA","","IS","117","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C4-PFHpA","13C4-PFHpA","99.0","\%R","","-99","NA","","IS","99.0","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","18O2-PFHxS","18O2-PFHxS","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C2-PFOA","13C2-PFOA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Dilution","1700792-10","Vista","13C8-PFOS","13C8-PFOS","128","\%R","D","-99","NA","","IS","128","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C5-PFNA","13C5-PFNA","84.1","\%R","","-99","NA","","IS","84.1","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C2-PFDA","13C2-PFDA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","d3-MeFOSAA","d3-MeFOSAA","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C2-PFUnA","13C2-PFUnA","89.6","\%R","","-99","NA","","IS","89.6","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","d5-EtFOSAA","d5-EtFOSAA","78.7","\%R","","-99","NA","","IS","78.7","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C2-PFDoA","13C2-PFDoA","50.5","\%R","","-99","NA","","IS","50.5","","-99","NA","YES","100","","0.113","0.001","-99","" "Dup01-20170627","Modified EPA Method 537","Initial","1700792-10","Vista","13C2-PFTeDA","13C2-PFTeDA","34.0","\%R","H","-99","NA","","IS","34.0","","-99","NA","YES","100","","0.113","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","375-73-5","PFBS","5.21","ng/L","U","1.86","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","307-24-4","PFHxA","5.21","ng/L","U","2.27","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","375-85-9","PFHpA","5.21","ng/L","U","0.615","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","355-46-4","PFHxS","5.21","ng/L","U","0.986","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","335-67-1","PFOA","5.21","ng/L","U","0.678","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","1763-23-1","PFOS","5.21","ng/L","U","0.840","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","375-95-

1","PFNA","5.21","ng/L","U","0.843","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","335-76-
2","PFDA","5.21","ng/L","U","1.55","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21",""
"RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","2355-31-
9","MeFOSAA","5.21","ng/L","U","1.72","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21" ""
"RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","2058-94-
8","PFUnA","5.21","ng/L","U","1.09","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","2991-50-6","EtFOSAA","5.21","ng/L","U","1.43","LOD","","TRG","","","8.33","LOQ","YES","-99","","0.120","0.001","5.21", ""
"RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","307-55-
1","PFDoA","5.08","ng/L","U","0.807","LOD","","TRG","","","8.15","LOQ","YES","-99","","0.123","0.001","5.08","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","72629-94-8","PFTrDA","5.08","ng/L","U","0.503","LOD","","TRG","","","8.15","LOQ","YES","-99","","0.123","0.001","5.08","
"RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","376-06-
7","PFTeDA","5.08","ng/L","U","0.769","LOD","","TRG","","","8.15","LOQ","YES","-99","","0.123","0.001","5.08", ""
"RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C3-PFBS","13C3-PFBS","129","\%R","","-99","NA","","IS","129","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C2-PFHxA","13C2-PFHxA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C4-PFHpA","13C4-PFHpA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","18O2-PFHxS","18O2-PFHxS","93.7","\%R","","-99","NA","","IS","93.7","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C2-PFOA","13C2-PFOA","95.5","\%R","","-99","NA","","IS","95.5","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C8-PFOS","13C8-PFOS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C5-PFNA","13C5-PFNA","92.6","\%R","","-99","NA","","IS","92.6","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C2-PFDA","13C2-PFDA","87.8","\%R","","-99","NA","","IS","87.8","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","d3-MeFOSAA","d3-MeFOSAA","97.2","\%R","","-99","NA","","IS","97.2","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C2-PFUnA","13C2-PFUnA","62.0","\%R","","-99","NA","","IS","62.0","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","d5-EtFOSAA","d5-EtFOSAA","54.6","\%R","","-99","NA","","IS","54.6","","-99","NA","YES","100","","0.120","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C2-PFDoA","13C2-PFDoA","28.5","\%R","H","-99","NA","","IS","28.5","","-99","NA","YES","100","","0.123","0.001","-99","" "RB01-20170628","Modified EPA Method 537","Initial","1700792-11","Vista","13C2-PFTeDA","13C2-PFTeDA","36.9","\%R","H","-99","NA","","IS","36.9","","-99","NA","YES","100","","0.123","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","375-73-5","PFBS","5.00","ng/L","U","1.79","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","307-24-4","PFHxA","5.00","ng/L","U","2.18","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","375-85-9","PFHpA","5.00","ng/L","U","0.591","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","355-46-4","PFHxS","5.00","ng/L","U","0.947","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","335-67-

1","PFOA","5.00","ng/L","U","0.651","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","1763-23-
1","PFOS","5.00","ng/L","U","0.807","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","375-95-
1","PFNA","5.00","ng/L","U","0.810","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","335-76-2","PFDA","5.00","ng/L","U","1.49","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","2355-31-
9","MeFOSAA","5.00","ng/L","U","1.65","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00" ""
"B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","2058-94-
8","PFUnA","5.00","ng/L","U","1.05","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00",""
"B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","2991-50-
6","EtFOSAA","5.00","ng/L","U","1.37","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00", ""
"B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","307-55-
1","PFDoA","5.00","ng/L","U","0.792","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","72629-94-
8","PFTrDA","5.00","ng/L","U","0.494","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00"," "
"B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","376-06-
7","PFTeDA","5.00","ng/L","U","0.755","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00", ""
"B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C3-PFBS","13C3-PFBS","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C2-PFHxA","13C2-PFHxA","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C4-PFHpA","13C4-PFHpA","99.1","\%R","","-99","NA","","IS","99.1","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","18O2-PFHxS","18O2-PFHxS","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C2-PFOA","13C2-PFOA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C8-PFOS","13C8-PFOS","114","\%R","","-99","NA","","IS","114","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C5-PFNA","13C5-PFNA","90.4","\%R","","-99","NA","","IS","90.4","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C2-PFDA","13C2-PFDA","76.9","\%R","","-99","NA","","IS","76.9","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","d3-MeFOSAA","d3-MeFOSAA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C2-PFUnA","13C2-PFUnA","77.3","\%R","","-99","NA","","IS","77.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","d5-EtFOSAA","d5-EtFOSAA","81.3","\%R","","-99","NA","","IS","81.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C2-PFDoA","13C2-PFDoA","64.6","\%R","","-99","NA","","IS","64.6","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BLK1","Modified EPA Method 537","Initial","B7F0137-BLK1","Vista","13C2-PFTeDA","13C2-PFTeDA","53.8","\%R","","-99","NA","","IS","53.8","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","375-735","PFBS","80.7","ng/L","","1.79","LOD","","TRG","101","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","307-244","PFHxA","81.7","ng/L","","2.18","LOD","","TRG","102","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","375-85-
9","PFHpA","86.1","ng/L","","0.591","LOD","","TRG","108","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00" ""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","355-46-
4","PFHxS","73.3","ng/L","","0.947","LOD","","TRG","91.7","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00 ","
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","335-67-
1","PFOA","81.7","ng/L","","0.651","LOD","","TRG","102","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","1763-23-
1","PFOS","87.7","ng/L","","0.807","LOD","","TRG","110","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00"," "
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","375-95-
1","PFNA","83.0","ng/L","","0.810","LOD","","TRG","104","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","335-76-
2","PFDA","88.3","ng/L","","1.49","LOD","","TRG","110","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00"," "
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","2355-31-
9","MeFOSAA","95.0","ng/L","","1.65","LOD","","TRG","119","","8.00","LOQ","YES","80.0","","0.125","0.001","5. 00",""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","2058-94-
8","PFUnA","71.6","ng/L","","1.05","LOD","","TRG","89.5","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","2991-50-
6","EtFOSAA","70.5","ng/L","","1.37","LOD","","TRG","88.1","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","307-55-
1","PFDoA","77.3","ng/L","","0.792","LOD","","TRG","96.7","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00 " ""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","72629-94-
8","PFTrDA","54.1","ng/L","","0.494","LOD","","TRG","67.6","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","376-06-
7","PFTeDA","73.5","ng/L","","0.755","LOD","","TRG","91.8","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C3-PFBS","13C3-PFBS","118","\%R","","-99","NA","","IS","118","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C2-PFHxA","13C2-PFHxA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C4-PFHpA","13C4-PFHpA","92.3","\%R","","-99","NA","","IS","92.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","18O2-PFHxS","18O2-PFHxS","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C2-PFOA","13C2-PFOA","93.4","\%R","","-99","NA","","IS","93.4","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C8-PFOS","13C8-PFOS","91.0","\%R","","-99","NA","","IS","91.0","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C5-PFNA","13C5-PFNA","92.5","\%R","","-99","NA","","IS","92.5","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C2-PFDA","13C2-PFDA","78.1","\%R","","-99","NA","","IS","78.1","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","d3-MeFOSAA","d3-MeFOSAA","84.7","\%R","","-99","NA","","IS","84.7","","-99","NA","YES","100","","0.125","0.001","-99",""
"B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C2-PFUnA","13C2-PFUnA","80.5","\%R","","-99","NA","","IS","80.5","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","d5-EtFOSAA","d5-EtFOSAA","87.0","\%R","","-99","NA","","IS","87.0","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C2-PFDoA","13C2-PFDoA","44.1","\%R","H","-99","NA","","IS","44.1","","-99","NA","YES","100","","0.125","0.001","-99","" "B7F0137-BS1","Modified EPA Method 537","Initial","B7F0137-BS1","Vista","13C2-PFTeDA","13C2-PFTeDA","37.9","\%R","H","-99","NA","","IS","37.9","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0033-BLK1","Modified EPA Method 537","Initial","B7G0033-BLK1","Vista","307-55-1","PFDoA","5.00","ng/L","U","0.792","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0033-BLK1","Modified EPA Method 537","Initial","B7G0033-BLK1","Vista","72629-94-8","PFTrDA","5.00","ng/L","U","0.494","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00"," "
"B7G0033-BLK1","Modified EPA Method 537","Initial","B7G0033-BLK1","Vista","376-06-
7","PFTeDA","5.00","ng/L","U","0.755","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00", ""
"B7G0033-BLK1","Modified EPA Method 537","Initial","B7G0033-BLK1","Vista","13C2-PFDoA","13C2-PFDoA","33.9","\%R","H","-99","NA","","IS","33.9","","-99","NA","YES","100","","0.125","0.001","-99",""
"B7G0033-BLK1","Modified EPA Method 537","Initial","B7G0033-BLK1","Vista","13C2-PFTeDA","13C2-PFTeDA","29.1","\%R","H","-99","NA","","IS","29.1","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0033-BS1","Modified EPA Method 537","Initial","B7G0033-BS1","Vista","307-55-
1","PFDoA","81.0","ng/L","","0.792","LOD","","TRG","101","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00" ""
"B7G0033-BS1","Modified EPA Method 537","Initial","B7G0033-BS1","Vista","72629-94-
8","PFTrDA","52.2","ng/L","","0.494","LOD","","TRG","65.3","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7G0033-BS1","Modified EPA Method 537","Initial","B7G0033-BS1","Vista","376-06-
7","PFTeDA","69.4","ng/L","","0.755","LOD","","TRG","86.8","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7G0033-BS1","Modified EPA Method 537","Initial","B7G0033-BS1","Vista","13C2-PFDoA","13C2-PFDoA","50.3","\%R","","-99","NA","","IS","50.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0033-BS1","Modified EPA Method 537","Initial","B7G0033-BS1","Vista","13C2-PFTeDA","13C2-PFTeDA","23.8","\%R","H","-99","NA","","IS","23.8","","-99","NA","YES","100","","0.125","0.001","-99","" "NAWC Trenton","NAWC Trenton","West Ditch In-20170627","06/27/2017 14:35","AQ","170079201","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017 15:33","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","West Ditch In-20170627","06/27/2017 14:35","AQ","170079201","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/10/2017 09:18","07/11/2017
19:19","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0033","B7G0033","NA","S7G0028","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MH-140-20170628","06/28/2017 08:35","AQ","1700792-
02","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017 15:43","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","Interceptor-20170628","06/28/2017 08:50","AQ","1700792-
03","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
15:54","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","Roof Drain-20170628","06/28/2017 09:30","AQ","1700792-
04","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
16:05","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","Spring-20170628","06/28/2017 10:05","AQ","1700792-

05","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017 16:15","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","FRB-20170628","06/28/2017 12:15","AQ","1700792-
06","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
16:26","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MH318.9-20170628","06/28/2017 10:30","AQ","1700792-
07","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
16:37","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MH388.9-20170628","06/28/2017 10:40","AQ","1700792-
08","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/10/2017 09:18","07/11/2017
19:09","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0033","B7G0033","NA","S7G0028","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MH388.9-20170628","06/28/2017 10:40","AQ","1700792-
08","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
17:20","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","Dup03-20170628","06/28/2017 08:50","AQ","1700792-
09","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
17:31","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","Dup01-20170627","06/27/2017 16:00","AQ","1700792-
10","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
17:41","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","Dup01-20170627","06/27/2017 16:00","AQ","1700792-
10","NM","","4.00","Modified EPA Method 537","METHOD","Dilution","06/30/2017 08:38","07/21/2017
16:16","Vista","COA","WET","NA","10","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","RB01-20170628","06/28/2017 12:15","AQ","1700792-
11","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/10/2017 09:18","07/11/2017
18:58","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0033","B7G0033","NA","S7G0028","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","RB01-20170628","06/28/2017 12:15","AQ","1700792-
11","NM","","4.00","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
17:52","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","06/29/2017 10:09","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7F0137-BLK1","01/01/1900 00:00","AQ","B7F0137-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
13:56","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7F0137-BS1","01/01/1900 00:00","AQ","B7F0137-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","06/30/2017 08:38","07/07/2017
14:18","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7F0137","B7F0137","NA","S7G0018","1700792","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0033-BLK1","01/01/1900 00:00","AQ","B7G0033-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","07/10/2017 09:18","07/11/2017
18:47","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0033","B7G0033","NA","S7G0028","1700792","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0033-BS1","01/01/1900 00:00","AQ","B7G0033-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","07/10/2017 09:18","07/11/2017
18:15","Vista","COA","WET","NA","1","NA","NA","01/01/1900
\begin{tabular}{llll} 
TO: & MARY MANG & DATE: & SEPTEMBER 15, 2017 \\
FROM: & MEGAN RITCHIE & COPIES: & DV FILE/ \\
SUBJECT: & ORGANIC DATA VALIDATION - POLYFLUOROAKLYL SUBSTANCES (PFAS) \\
& \begin{tabular}{l} 
CTO WE08 - FORMER NAWC TRENTON
\end{tabular} \\
& SDG 1700792
\end{tabular}

SAMPLES: 11 / Surface Water / PFAS
\begin{tabular}{lll} 
West Ditch In-20170627 & Spring-20170628 & Dup03-20170628 \\
MH-140-20170628 & FRB-20170628 & Dup01-20170627 \\
Interceptor-20170628 & MH318.9-20170628 & RB01-20170628 \\
Roof Drain-20170628 & MH388.9-20170628 &
\end{tabular}

The sample set for NAWC Trenton, SDG 17007892 consists of nine (9) surface water environmental samples and two (2) field quality control blank (designated FRB- and RB-). Two field duplicate pairs (Dup01-20170627/MH-118.5N-20170627 [from SDG 1700789] and Dup03-20170628/MH-140-20170628) were included in this SDG. The samples were analyzed for polyfluoroalkyl substances (PFAS).

The samples were collected by Tetra Tech on June 27 and 28, 2017 and analyzed by Vista Analytical of Sheffield, California. The analysis was conducted in accordance with modified EPA Method 537 Rev. 1.1 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters:
```

* Data Completeness
* Holding Times/Sample Preservation
* GC/MS Instrument Tuning and System Performance
* Initial and Continuing Calibration Verification Results
* Laboratory Method/Preparation Blank Analyses
* Surrogate Recoveries
* Ongoing Precision and Recovery (OPR) Results
* Matrix Spike/Matrix Spike Duplicate Results
* Laboratory Duplicate Sample Results
Internal Standard Results
Field Duplicate Precision
* Detection Limits

```

The symbol (*) indicates that quality control criteria were met for this parameter. Issues affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B .

TO: M. MANG
PAGE 2
SDG: 1700792

\section*{PFAS}

The recovery of internal standard 13C2-PFTeDA was below the lower QC limit for samples Dup0120170628 and MH388.9-20170628. The non-detected results for analytes PFTeDA in these samples were qualified as estimated (UJ).

The recoveries of internal standards 13C2-PFDoA and 13C2-PFTeDA were below the lower QC limits for samples Dup03-20170628, FRB-20170628, MH318.9-20170628, RB01-20170628, Roof Drain-20170628, Spring-20170628, and West Ditch In-20170627. The non-detected results for analytes PFDoA, PFTrDA, and PFTeDA in these samples were qualified as estimated (UJ).

The recoveries of internal standards d5-EtFOSAA, 13C2-PFDoA, 13C2-PFTeDA were below the lower QC limits for sample Interceptor-20170628. The non-detected results for analytes EtFOSAA, PFDoA, PFTrDA, and PFTeDA in this sample were qualified as estimated (UJ).

Field duplicate relative percent difference (RPD) for PFOS exceeded the QC criterion of 30\% for samples \(\mathrm{MH}-118.5 \mathrm{~N}-20170627\) and Dup01-20170627. The positive results for PFOS in these samples were qualified as estimated (J).

Field duplicate RPDs for PFHpA and PFHxA exceeded the QC criterion of \(30 \%\) for samples MH-14020170628 and Dup03-20170628. The positive results for PFHpA and PFHxA in these samples were qualified as estimated (J).

Detected results reported below the Limit of Quantitation (LOQ) but above the Detection Limit (DL) were qualified as estimated (J).

\section*{Notes}

A 10X dilution was required for PFOS for sample Dup01-20170627 because the concentration in the original analysis exceeded the calibration range of the instrument. The field duplicate sample is associated with sample MH-118.5N-20170627 from SDG 1700789.

The field reagent blank (FRB-20170628) and rinsate blank (RB01-20170628) were free of contamination.
All analyses were conducted within the hold times specified by the site specific Sampling and Analysis Plan (SAP) and the analytical method.

Non-detected results were reported to the Limit of Detection (LOD).

TO: M. MANG
PAGE 3 SDG: 1700792

\section*{Executive Summary}

Laboratory Performance: Internal standard recoveries for were below the lower QC limits in several samples.

Other Factors Affecting Data Quality: Field duplicate precision exceeded the QC criterion for two analytes. Positive results below the LOQ were qualified as estimated.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Superfund Organic Methods Data Review" (January 2017). The text of this report has been formulated to address only those areas affecting data quality.

Megan Richie
Tetra Tech, Inc.
Megan Richie
Chemist/Data Validator


Attachments:
Appendix A - Qualified Analytical Results
Appendix B - Results as Reported by the Laboratory
Appendix C - Support Documentation

\section*{Appendix A}

Qualified Analytical Results


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline PROJ_NO: 08005-WE08 & NSAMPLE & Roof Drain-20 & 70628 & & Spring-201706 & & & West Ditch In-2 & 20170 & 7RE \\
\hline SDG: 1700792 & LAB_ID & 1700792-04 & & & 1700792-05 & & & 1700792-01 & & \\
\hline FRACTION: PFAS & SAMP_DATE & 6/28/2017 & & & 6/28/2017 & & & 6/27/2017 & & \\
\hline MEDIA: WATER & QC_TYPE & NM & & & NM & & & NM & & \\
\hline & UNITS & NG/L & & & NG/L & & & NG/L & & \\
\hline & PCT_SOLIDS & 0.0 & & & 0.0 & & & 0.0 & & \\
\hline & DUP_OF & & & & & & & & & \\
\hline PARAMETER & & RESULT & VQL & QLCD & RESULT & VQL & QLCD & RESULT & VQL & QLCD \\
\hline N-ETHYL PERFLUORO & TANE & 5.43 & U & & 6.41 & U & & 5.34 & U & \\
\hline & & & & & & & & & & \\
\hline N-METHYL PERFLUORO & CTANE & 5.43 & U & & 6.41 & U & & 5.34 & U & \\
\hline PENTADECAFLUOROOC & ANOIC ACID & 35.8 & & & 39.6 & & & 39.8 & & \\
\hline PERFLUOROBUTANESUL & FONIC ACID & 5.43 & U & & 6.41 & U & & 5.34 & U & \\
\hline PERFLUORODECANOIC & CID & 5.43 & U & & 6.41 & U & & 5.34 & U & \\
\hline PERFLUORODODECANO & ACID & 5.43 & U & & 6.41 & U & & 5.17 & U & \\
\hline PERFLUOROHEPTANOIC & ACID & 64.6 & & & 62.9 & & & 52.7 & & \\
\hline PERFLUOROHEXANESUL & ONIC ACID & 3.22 & J & P & 2.96 & J & P & 3.87 & J & P \\
\hline PERFLUOROHEXANOIC & CID & 86.4 & & & 87.5 & & & 70.8 & & \\
\hline PERFLUORONONANOIC & CID & 4.94 & J & P & 8.19 & J & P & 7.76 & J & P \\
\hline PERFLUOROOCTANE SU & FONIC ACID & 3.82 & J & P & 4.28 & J & P & 9.8 & & \\
\hline PERFLUOROTETRADEC & NOIC ACID & 5.43 & UJ & N & 6.41 & UJ & N & 5.17 & UJ & N \\
\hline PERFLUOROTRIDECANO & C ACID & 5.43 & UJ & N & 6.41 & UJ & N & 5.17 & UJ & N \\
\hline PERFLUOROUNDECANO & ACID & 5.43 & UJ & N & 6.41 & UJ & N & 5.34 & UJ & N \\
\hline
\end{tabular}

\section*{Data Qualifier Definitions}

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.
\begin{tabular}{|c|l|}
\hline \(\mathbf{U}\) & \begin{tabular}{l} 
The analyte was analyzed for, but was not detected at a level greater than or equal to \\
the level of the adjusted method detection limit for sample and method.
\end{tabular} \\
\hline \(\mathbf{J}\) & \begin{tabular}{l} 
The analyte was positively identified and the associated numerical value is the \\
approximate concentration of the analyte in the sample (due either to the quality of \\
the data generated because certain quality control criteria were not met, or the \\
concentration of the analyte was below the reporting limit).
\end{tabular} \\
\hline \(\mathbf{J +}\) & The result is an estimated quantity, but the result may be biased high. \\
\hline \(\mathbf{J -}\) & The result is an estimated quantity, but the result may be biased low. \\
\hline \(\mathbf{U J}\) & \begin{tabular}{l} 
The analyte was analyzed for, but was not detected. The reported detection limit is \\
approximate and may be inaccurate or imprecise.
\end{tabular} \\
\hline \(\mathbf{R}\) & \begin{tabular}{l} 
The sample result (detected) is unusable due to the quality of the data generated \\
because certain criteria were not met. The analyte may or may not be present in the \\
sample.
\end{tabular} \\
\hline \(\mathbf{U R}\) & \begin{tabular}{l} 
The sample result (nondetected) is unusable due to the quality of the data generated \\
because certain criteria were not met. The analyte may or may not be present in the \\
sample.
\end{tabular} \\
\hline
\end{tabular}

\section*{Qualifier Codes:}

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 = GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
\(\mathrm{G}=\) Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
\(J=\) ICP PDS Recovery Noncompliance; MSA's \(r<0.995\)
\(\mathrm{K}=\) ICP Interference - includes ICS \% R Noncompliance
\(\mathrm{L}=\) Instrument Calibration Range Exceedance
\(\mathrm{M}=\) Sample Preservation Noncompliance
\(\mathrm{N}=\) Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
\(P=\) Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
\(\mathrm{Q}=\) Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
\(\mathrm{S}=\) Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
\(\mathrm{U}=\) RPD between columns/detectors \(>40 \%\) for positive results determined via GC/HPLC
\(\mathrm{V}=\) Non-linear calibrations; correlation coefficient \(\mathrm{r}<0.995\)
W = EMPC result
\(\mathrm{X}=\) Signal to noise response drop
\(Y=\) Percent solids \(<30 \%\)
\(Z \quad=\) Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

\section*{Appendix B}

Results as Reported by the Laboratory






\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sample ID: & MH318.9-20170628 & & & & & & & Modifie & EPA Met & thod 537 \\
\hline \begin{tabular}{l}
Client Data \\
Name: \\
Project: \\
Date Collected: Location:
\end{tabular} & Tetra Tech NAWC Trenton 28-Jun-2017 10:30 & & \begin{tabular}{l}
Sample Data \\
Matrix: \\
Sample Size:
\end{tabular} & \[
\begin{aligned}
& \text { Aqueous } \\
& 0.119 \mathrm{~L}
\end{aligned}
\] & \[
\begin{array}{r}
\hline \text { Labo } \\
\text { Lab } \\
\text { QC } \\
\mathrm{Da}
\end{array}
\] & \begin{tabular}{l}
rator \\
Samp \\
Batch \\
Ana
\end{tabular} & \begin{tabular}{ll} 
Data & \\
e: & \(1700792-07\) \\
& B7F0137 \\
yzed: & \(07-J u l-17\) 16:37
\end{tabular} & \begin{tabular}{l}
Date Received: \\
Date Extracted: \\
Column: BEH C18
\end{tabular} & \[
\begin{aligned}
& \text { 29-Jun-2017 } \\
& \text { 30-Jun-2017 }
\end{aligned}
\] & \[
\begin{gathered}
10: 09 \\
8: 38
\end{gathered}
\] \\
\hline Analyte & Conc. (ng/L) & DL & LOD & LOQ & Qualifiers & & Labeled Standard & \%R & LCL-UCL & Qualifiers \\
\hline PFBS & ND & 1.88 & 5.25 & 8.42 & & IS & 13C3-PFBS & 119 & 50-150 & \\
\hline PFHxA & 84.8 & 2.30 & 5.25 & 8.42 & & IS & 13C2-PFHxA & 102 & 50-150 & \\
\hline PFHpA & 54.2 & 0.622 & 5.25 & 8.42 & & & 13C4-PFHpA & 92.2 & 50-150 & \\
\hline PFHxS & 3.38 & 0.997 & 5.25 & 8.42 & J & & 1802-PFHxS & 105 & 50-150 & \\
\hline PFOA & 63.4 & 0.685 & 5.25 & 8.42 & & IS & 13C2-PFOA & 100 & 50-150 & \\
\hline PFOS & 6.63 & 0.850 & 5.25 & 8.42 & J & IS & 13C8-PFOS & 106 & 50-150 & \\
\hline PFNA & 9.93 & 0.853 & 5.25 & 8.42 & & IS & 13C5-PFNA & 91.5 & 50-150 & \\
\hline PFDA & 3.10 & 1.57 & 5.25 & 8.42 & J & IS & 13C2-PFDA & 95.5 & 50-150 & \\
\hline MeFOSAA & ND & 1.74 & 5.25 & 8.42 & & IS & d3-MeFOSAA & 102 & 50-150 & \\
\hline PFUnA & ND & 1.11 & 5.25 & 8.42 & & IS & 13C2-PFUnA & 88.8 & 50-150 & \\
\hline EtFOSAA & ND & 1.44 & 5.25 & 8.42 & & & d5-EtFOSAA & 66.3 & 50-150 & \\
\hline PFDoA & ND & 0.834 & 5.25 & 8.42 & & IS & 13C2-PFDoA & 31.8 & 50-150 & H \\
\hline PFTrDA & ND & 0.520 & 5.25 & 8.42 & & IS & 13C2-PFTeDA & 24.8 & 50-150 & H \\
\hline PFTeDA & ND & 0.795 & 5.25 & 8.42 & & & & & & \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{\begin{tabular}{l}
DL - Detection limit \\
RL - Reporting limit
\end{tabular}} & & \begin{tabular}{l}
CL-UC \\
esults r hen re nly the
\end{tabular} & \begin{tabular}{l}
- Lower control limit - upper ported to DL. \\
rted, PFBS, PFHxS, PFOA an near isomer is reported for all
\end{tabular} & \begin{tabular}{l}
control limit \\
d PFOS include both linear and br other analytes.
\end{tabular} & anched isomers. & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sample ID: & Dup03-20170628 & & & & & & & Modifie & d EPA Met & thod 537 \\
\hline \begin{tabular}{l}
Client Data \\
Name: \\
Project: \\
Date Collected: Location:
\end{tabular} & \begin{tabular}{l}
Tetra Tech \\
NAWC Trenton
28-Jun-2017 8:50
\end{tabular} & & \begin{tabular}{l}
Sample Data \\
Matrix: \\
Sample Size:
\end{tabular} & Aqueous
\[
0.118 \mathrm{~L}
\] & \[
\begin{array}{r}
\hline \text { Lab } \\
\mathrm{La} \\
\mathrm{Q} \\
\mathrm{Da}
\end{array}
\] & \[
\begin{aligned}
& \text { ratory } \\
& \text { Samp } \\
& \text { Batch } \\
& \text { e Anal }
\end{aligned}
\] & \begin{tabular}{ll} 
Data & \\
e: & \(1700792-09\) \\
& B7F0137 \\
zed: & \(07-J u l-17\) 17:31
\end{tabular} & \begin{tabular}{l}
Date Received: \\
Date Extracted: \\
Column: BEH C18
\end{tabular} & \[
\begin{aligned}
& 29-J u n-2017 \\
& 30-J u n-2017
\end{aligned}
\] & \[
\begin{gathered}
10: 09 \\
8: 38
\end{gathered}
\] \\
\hline Analyte & Conc. (ng/L) & DL & LOD & LOQ & Qualifiers & & Labeled Standard & \%R & LCL-UCL & Qualifiers \\
\hline PFBS & ND & 1.89 & 5.30 & 8.46 & & IS & 13C3-PFBS & 134 & 50-150 & \\
\hline PFHxA & 35.2 & 2.30 & 5.30 & 8.46 & & & 13C2-PFHxA & 113 & 50-150 & \\
\hline PFHpA & 26.1 & 0.625 & 5.30 & 8.46 & & & 13C4-PFHpA & 98.4 & 50-150 & \\
\hline PFHxS & 4.10 & 1.00 & 5.30 & 8.46 & J & & 18O2-PFHxS & \[
105
\] & \[
50-150
\] & \\
\hline PFOA & 30.6 & 0.688 & 5.30 & 8.46 & & IS & 13C2-PFOA & 98.1 & 50-150 & \\
\hline PFOS & 6.62 & 0.853 & 5.30 & 8.46 & J & IS & 13C8-PFOS & 102 & 50-150 & \\
\hline PFNA & 3.69 & 0.856 & 5.30 & 8.46 & J & IS & 13C5-PFNA & 86.0 & 50-150 & \\
\hline PFDA & ND & 1.58 & 5.30 & 8.46 & & IS & 13C2-PFDA & 82.8 & 50-150 & \\
\hline MeFOSAA & ND & 1.74 & 5.30 & 8.46 & & & d3-MeFOSAA & 75.5 & 50-150 & \\
\hline PFUnA & ND & 1.11 & 5.30 & 8.46 & & & 13C2-PFUnA & 81.8 & 50-150 & \\
\hline EtFOSAA & ND & 1.45 & 5.30 & 8.46 & & & d5-EtFOSAA & 48.3 & 50-150 & H \\
\hline PFDoA & ND & 0.837 & 5.30 & 8.46 & & IS & 13C2-PFDoA & 27.3 & 50-150 & H \\
\hline PFTrDA & ND & 0.522 & 5.30 & 8.46 & & & 13C2-PFTeDA & 34.5 & 50-150 & H \\
\hline PFTeDA & ND & 0.798 & 5.30 & 8.46 & & & & & & \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{\begin{tabular}{l}
DL - Detection limit \\
RL - Reporting limit
\end{tabular}} & &  & \begin{tabular}{l}
- Lower control limit - upper orted to DL. \\
rted, PFBS, PFHxS, PFOA an near isomer is reported for all
\end{tabular} & \begin{tabular}{l}
control limit \\
d PFOS include both linear and br other analytes.
\end{tabular} & anched isomers. & \\
\hline
\end{tabular}



\section*{Appendix C}

Support Documentation

Analytical Laboratory
CHAIN OF CUSTODY

\begin{tabular}{|l|}
\hline TAT \\
(check one):
\end{tabular}

Project ID: NAWC Trenton \(\qquad\) PO\#: \(\frac{1132341 \text { W1R } 3}{\text { Sampler: CharlC5 Meyer }}\) (name)
Invoice to: Name Company

\section*{Address}



\section*{Vista Work Order No. 1700792}

Case Narrative

\section*{Sample Condition on Receipt:}

Eleven aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. A sample ID for "FRB-20170628" was resolved by following the Chain-of-Custody format, as requested.

\section*{Analytical Notes:}

\section*{Modified EPA Method 537}

The aqueous samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Samples "West Ditch In-20170627", "MH388.9-20170628" and "RB01-20170628" were re-extracted due to very low recoveries of 13C2-PFDoA and 13C2-PFTeDA in the original extractions. The PFDoA, PFTrDA and PFTeDA results are reported from prep batch B7G0033 for those samples.

\section*{Holding Times}

The samples were extracted and analyzed within the method hold times.

\section*{Quality Control}

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with each preparation batch. No analytes were detected in the Method Blanks above \(1 / 2\) the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

FORMER NAWC TRENTON
1700792

SAMPLE IDENTIFICATION
\begin{tabular}{lr} 
COMPOUND & PFOS \\
COMPOUND AREA & 151.815 \\
INTERNAL STANDARD AMOUNT \((\mathrm{ng} / \mathrm{ml})\) & 141 \\
DILUTION FACTOR & 10 \\
INTERNAL STANDARD AREA & 17.47 \\
AVERAGE RRF & 1.026 \\
SAMPLE VOLUME \((\mathrm{ml})\) & 113.37 \\
VOLUME EXTRACT \((\mathrm{ml})\) & 0.001 \\
VOLUME INJECTED \((\mu \mathrm{l})\) & 15 \\
ml to L & 1000 \\
CONCENTRATION \(=\) & \(1580.11 \mathrm{ng} / \mathrm{L}\)
\end{tabular}
\(152 \times 141 \mathrm{ng} / \mathrm{ml} \times 15 \mathrm{uL} \times 1000 \mathrm{ml} \times 10 /(17.5 \times 0.001 \times 113 \mathrm{ml} \times 1 \mathrm{~L})\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Sample II & Method Blank & & & & & & & \multicolumn{3}{|l|}{Modified EPA Method 537} \\
\hline \begin{tabular}{l}
Matrix: \\
Sample Size:
\end{tabular} & \[
\begin{aligned}
& \text { Aqueous } \\
& 0.125 \mathrm{~L}
\end{aligned}
\] & \begin{tabular}{l}
QC Batch: \\
Date Extracted:
\end{tabular} & \[
\begin{aligned}
& \text { B7F0137 } \\
& 30-J u n-2017
\end{aligned}
\] & & & \multicolumn{5}{|c|}{\begin{tabular}{ll} 
Lab Sample: & B7F0137-BLK1 \\
Date Analyzed: & \(07-J u l-1713: 56\) Column: BEH C18
\end{tabular}} \\
\hline Analyte & Conc. (ng/L) & DL & LOD & LOQ & Qualifiers & & Labeled Standard & \%R & LCL-UCL & Qualifiers \\
\hline PFBS & ND & 1.79 & 5.00 & 8.00 & & IS & S 13C3-PFBS & 120 & 50-150 & \\
\hline PFHxA & ND & 2.18 & 5.00 & 8.00 & & IS & S 13C2-PFHxA & 110 & 50-150 & \\
\hline PFHpA & ND & 0.591 & 5.00 & 8.00 & & IS & S 13C4-PFHpA & 99.1 & 50-150 & \\
\hline PFHxS & ND & 0.947 & 5.00 & 8.00 & & IS & S 18O2-PFHxS & 104 & 50-150 & \\
\hline PFOA & ND & 0.651 & 5.00 & 8.00 & & IS & 13C2-PFOA & 106 & 50-150 & \\
\hline PFOS & ND & 0.807 & 5.00 & 8.00 & & IS & S 13C8-PFOS & 114 & 50-150 & \\
\hline PFNA & ND & 0.810 & 5.00 & 8.00 & & IS & 13C5-PFNA & 90.4 & 50-150 & \\
\hline PFDA & ND & 1.49 & 5.00 & 8.00 & & IS & S 13C2-PFDA & 76.9 & 50-150 & \\
\hline MeFOSAA & ND & 1.65 & 5.00 & 8.00 & & IS & S d3-MeFOSAA & 116 & 50-150 & \\
\hline PFUnA & ND & 1.05 & 5.00 & 8.00 & & IS & S 13C2-PFUnA & 77.3 & 50-150 & \\
\hline EtFOSAA & ND & 1.37 & 5.00 & 8.00 & & IS & S d5-EtFOSAA & 81.3 & 50-150 & \\
\hline PFDoA & ND & 0.792 & 5.00 & 8.00 & & IS & S 13C2-PFDoA & 64.6 & 50-150 & \\
\hline PFTrDA & ND & 0.494 & 5.00 & 8.00 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IS 13C2-PFTeDA}} & 53.8 & 50-150 & \\
\hline PFTeDA & ND & 0.755 & 5.00 & 8.00 & & & & & & \\
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
DL - Detection limit \\
RL - Reporting limit
\end{tabular}} & \multicolumn{5}{|l|}{\begin{tabular}{l}
LCL-UCL - Lower control limit - upper control limit \\
Results reported to DL. \\
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.
\end{tabular}} \\
\hline
\end{tabular}

Analytical Laboratory

\section*{Sample ID: OPR}

Modified EPA Method 537
\(\left.\begin{array}{|ll|llll|llll}\hline \begin{array}{l}\text { Matrix: } \\ \text { Sample Size: }\end{array} & \begin{array}{l}\text { Aqueous } \\ 0.125 \mathrm{~L}\end{array} & \begin{array}{llllll}\text { QC Batch: } \\ \text { Date Extracted: }\end{array} & \begin{array}{l}\text { B7F0137 } \\ \text { 30-Jun-2017 }\end{array} & 8: 38\end{array}\right]\)

LCL-UCL - Lower control limit - upper control limit

Analytical Laboratory


\section*{Sample ID: OPR}

Modified EPA Method 537
\begin{tabular}{|ll|llll|lll}
\hline \begin{tabular}{l} 
Matrix: \\
Sample Size:
\end{tabular} & \begin{tabular}{l} 
Aqueous \\
0.125 L
\end{tabular} & \begin{tabular}{l} 
QC Batch: \\
Date Extracted:
\end{tabular} & \begin{tabular}{l} 
B7G0033 \\
10-Jul-2017
\end{tabular} & \(9: 18\)
\end{tabular}

LCL-UCL - Lower control limit - upper control limit

Prep Expiration: 2017-Jul-11
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mR) Matrix: Aqueous

Prep Batch: \(\qquad\)

Prep Data Entered:


Initial Sequence:
5760018


WO Comments: Attach balance check doc.
Vista PM:Martha Meier
Vial Box ID: Sarom-Mader

\section*{Batch: B7F0137}

Matrix: Aqueous

\(れ\)
7311

PREPARATION BENCH SHEET

\section*{Matrix: Aqueous}
-Method: 537M PFAS DOD (LOO as mRL)
B7F0137

\section*{chemist: G.Mendiola}

Prep Date/Time: 30-Jun-17 08:38
Prepared using: LCMS - SPE Extraction-LCMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline c & \(\underset{\text { Sample id }}{\substack{\text { IITA }}}\) & \({ }^{\text {Pf }}\) Before & \({ }_{\text {dfter }}^{\substack{\text { PH } \\ \text { Af }}}\) & Chlorine
\((\mathrm{Cl})\) & \[
\begin{array}{|l|l}
\hline \text { Drops } \\
\text { Hoct }
\end{array}
\] & \[
\underset{\substack{\text { Botile } \\ \text { Sanple } \\(g)}}{\text { (e) }}
\] & \[
\begin{gathered}
\text { Botle } \\
\text { only } \\
(\varepsilon)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Sample } \\
& \text { mat } \\
& \text { (a) }
\end{aligned}
\] &  & & SE & & \[
\begin{aligned}
& \text { RS } \\
& \text { EMWTT }
\end{aligned}
\]
Aite \\
\hline \(\square\) & 37-BLK1 & 5 & 2 & 0 & 2 & M & Np. & 0.125 & 2in ons 413 & & 130117 & em & 555613019 \\
\hline \(\square\) & \({ }^{\text {B7F0137-8S1 }}\) & 5 & 2 & 0 & 2 & & & 2 & , & & & & \\
\hline \(\square\) & 1700792-01 & 6 & 2 & 0 & 3 & 143.54 & 26.71 & 0.11683 l & & & & & \\
\hline \(\square\) & 170 & 6 & 2 & 0 & 3 & 141.52 & 2.77 & 3.11475V & & & & & \\
\hline \(\square\) & \({ }^{1700792-03}\) & 6 & 2 & 0 & 3 & 141.27 & 26.68 & 0.11459 & & & & & \\
\hline \(\square\) & \({ }^{1700792.04}\) & 5 & 2 & 0 & 2 & 141.63 & 26.79 & 0.114841 & & & & & \\
\hline \(\square\) & \({ }^{1700792-05}\) & 5 & 2 & 0 & 2 & 124.37 & 26.86 & 0.09751. & & & & & \\
\hline \(\square\) & \({ }^{1700792-06}\) & 4 & 2 & 0 & 2 & 138.93 & 26.83 & 0.11210 & & & & & \\
\hline \(\square\) & \({ }^{1700792}\) & 5 & 2 & 0 & 2 & 145.57 & 26.84 & 0.11873 & & & & & \\
\hline \(\square\) & \({ }^{1700792-08}\) & 5 & 2 & 0 & 2 & 144.00 & 26.87 & 0.11713 & & & & & \\
\hline \(\square\) & \({ }^{1700792-09}\) & 6 & 2 & 0 & 3 & 145.05 & 26.81 & 0.11824 & & & & & \\
\hline \(\square\) & \({ }^{1700792-10}\) & 5 & 2 & 0 & 2 & 140.25 & 26.88 & 0.11337. & & & & & \\
\hline \(\square\) & \({ }^{1700792-11}\) & 5 & 2 & 0 & 2 & 140.77 & 26.72 & d. 12005 & + & & V & & \\
\hline
\end{tabular}


Comments: Assume \(1 \mathrm{~g}=1 \mathrm{~mL}\)

Prep Expiration: 2017-Jul-11
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mR) Matrix: Aqueous

Version: 537 (14 Analyte)

Workorder Due:21-Jul-17 00:00
TAT: 22
Prep Batch: \(B 7 G \infty 033\)
Prep Data Entered:
 Initial Sequence: \(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline LabNumber & WetWeight (Initial) & \begin{tabular}{l}
\% Solids \\
(Extraction Solids)
\end{tabular} & DryWeight & Final & Extracted & Ext By & Spike & SpikeAmount & ClientMatrix & Analysis \\
\hline 1700792-01RE1 & \(0.12136 \checkmark\) & NA & NA & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS DOD (LOQ as \\
\hline 1700792-08RE1 & \(0.12326 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS DOD (LOQ as \\
\hline 1700792-11RE1 & 0.12273 & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS DOD (LOQ as \\
\hline 1700820-01 & \(0.26911 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Water & 537M PFAS \\
\hline 1700836-01 & 0.1236 & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS Static RL \\
\hline 1700836-02 & \(0.1224 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS Static RL \\
\hline 1700836-03 & \(0.1219 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS Static RL \\
\hline 1700836-04 & 0.12243 J & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS Static RL \\
\hline 1700836-05 & \(0.12319 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS Static RL \\
\hline 1700844-01 & 0.277 J & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS \\
\hline 1700845-01 & \(0.12034 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS DOD (LOQ as \\
\hline 1700845-02 & 0.12279 & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS DOD (LOQ as \\
\hline 1700845-03 & \(0.11824 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS Static RL \\
\hline 1700845-03 & 0.11824 & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS DOD (LOQ as \\
\hline 1700845-03 & \(0.11824 \sqrt{ }\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS \\
\hline 1700845-04 & \(0.11933 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & Aqueous & 537M PFAS DOD (LOQ as \\
\hline B7G0033-BLK1 & \(0.125 \checkmark\) & & & 1000 & 10-Jul-17 09:18 & BAP & & & & QC \\
\hline B7G0033-BS1 & 0.125 / & & & 1000 & 10-Jul-17 09:18 & BAP & 17D2705 & \(\checkmark 10 \mathrm{~J}\) & & QC \\
\hline B7G0033-MS1 & \(0.12283 /\) & & & 1000 & 10-Jul-17 09:18 & BAP & 17D2705 & \(\checkmark 10 \checkmark\) & & QC \\
\hline B7G0033-MSD1 & \(0.124 \checkmark\) & \(\sqrt{2}\) & \(\checkmark\) & 1000 & 10-Jul-17 09:18 & BAP & 17D2705 & \(\checkmark 10 \checkmark\) & & QC \\
\hline
\end{tabular}

PREPARATION BENCH SHEET

Prepared using: LCMS - SPE Extraction-LCMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline c & \[
\begin{array}{|c}
\text { visTA } \\
\text { Sample }
\end{array}
\] & \({ }_{\text {Pforore }}^{\text {pH }}\) & \({ }_{\text {dfer }}^{\substack{\text { PH } \\ \text { Afer }}}\) & \[
\begin{aligned}
& \text { Chlorine } \\
& (\mathrm{Cl})
\end{aligned}
\] & \[
\begin{gathered}
\text { Props } \\
\text { Add } \\
\text { dide }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Botle+ } \\
& \text { Sanple } \\
& \text { (g) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Botre } \\
\text { Only } \\
\text { (g) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Sample } \\
& \text { ant } \\
& \text { (L) }
\end{aligned}
\] & \[
\begin{gathered}
\text { IS/NS } \\
\text { CHEM/WIT } \\
\text { DATE }
\end{gathered}
\] & SPE & \[
\begin{gathered}
\text { CHS } \\
\text { CHMTIT } \\
\text { DANIT }
\end{gathered}
\] \\
\hline \(\square\) & B7G003-BLK1 & 5 & 2 & 0 & 2 & NA & NA & (0.125) & ELT:0 & BP 7.10 .17 & BP 2\% 71117 \\
\hline \(\square\) & B7c003-3SI & 5 & 2 & 0 & 2 & \(\downarrow\) & \(\downarrow\) & \(\downarrow\) & T & T & , \\
\hline \(\square\) & \({ }^{1700792-011 R E I}\) & 7 & 2 & 0 & 2 & 148.12 & 26.76 & 0.12136 & & & \\
\hline \(\square\) & \({ }^{1700792-088 E 1}\) & 7 & 2 & 0 & 2 & 150.10 & 26.84 & 0.12326 & & & \\
\hline \(\square\) & \({ }^{\text {1700792-11REI }}\) & 6 & 2 & 0 & 2 & 149.56 & 26.83 & 0.12273 & & & \\
\hline \(\square\) & 170082001 & 6 & 2 & 0 & 5 & 303.41 & 34.30 & 0.26911 & \(\downarrow\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline IS Name
\[
\frac{17 E 2617,10 c}{(a)}
\] & NS Name
\[
\frac{1702705,10}{\sqrt{2}}
\] & RS Name
\[
\frac{17 F 3038,10 x}{(\omega)}
\] & SPE Chem: Strata \(X\)-AW \(35 \mathrm{am} 200 \mathrm{ng} / 6 \mathrm{~mL}\) Ele SOLV: \(0.5 \%\) NHuOA in MeOH lheat Final Volume(s) 1 ml & \begin{tabular}{l}
Check Out: \\
Chemist/Date: \(\qquad\) \\
Check In: \\
Chemist/Date: \(\qquad\) empty \\
Balance ID: \(\qquad\) HRM5 8 \\
pH Adjusted: H18 7101017
\(\qquad\)
\end{tabular} \\
\hline
\end{tabular}

Comments: Assume \(1 \mathrm{~g}=1 \mathrm{~mL}\)

Dataset:
Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36
Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & Wt.Not. & RRF & Pred.RT & ( RT & y Axis Resp. & Conc. & \%Rec & \\
\hline \(1-2\) & 1 PFBS & \(299>79.7\) & 6.16e3 & 4.19 e 3 & 1.0000 & & 2.92 & 2.92 & 18.4 & 9.76 & 97.6 & 70-13 \\
\hline \[
2
\] & \(2 \mathrm{PFH} x \mathrm{~A}\) & 313.2 > 268.9 & 4.75 e 4 & 1.62 e 4 & 1.0000 & & 3.16 & 3.16 & 14.7 & 10.4 & 104.0 & \\
\hline \(3-2\) & 3 PFHpA & \(363>318.9\) & 4.25 e 4 & 4.61 e4 & 1.0000 & & 3.43 & 3.42 & 11.5 & 9.54 & 95.4 & \\
\hline \(4-3\) & 4 PFHxS & \(398.9>79.6\) & 5.27 e 3 & 4.08 e 3 & 1.0000 & & 3.55 & 3.49 & 16.2 & 8.73 & 87.3 & \\
\hline  & 5 PFOA & \(413>368.7\) & 7.77e4 & 9.64 e 4 & 1.0000 & & 3.63 & 3.62 & 10.1 & 10.6 & 105.9 & \\
\hline 6 & 6 PFNA & \(462.9>418.8\) & 7.54 e 4 & 7.98 e 4 & 1.0000 & & 3.82 & 3.80 & 11.8 & 10.6 & 105.7 & \\
\hline \[
7
\] & 7 PFOS & \(499>79.9\) & 1.27 e 4 & 1.58 e 4 & 1.0000 & & 3.86 & 3.85 & 10.1 & 9.53 & 95.3 & \\
\hline \(8 \times 3\) & 8 PFDA & \(513>468.8\) & 7.01e4 & 8.05 e 4 & 1.0000 & & 4.00 & 3.96 & 10.9 & 9.39 & 93.9 & \\
\hline \(9 \longrightarrow\) & 9 PFUnA & \(562.9>518.9\) & 5.77 e 4 & 7.40 e 4 & 1.0000 & & 4.13 & 4.13 & 9.74 & 10.7 & 107.0 & \\
\hline 10. & \(10 \mathrm{~N}-\mathrm{MeFOSAA}\) & \(570.1>419\) & 2.12 e 4 & 1.80 e 4 & 1.0000 & & 4.00 & 4.00 & 14.7 & 9.22 & 92.2 & \\
\hline 11. & 11 N-EtFOSAA & \(584.2>419\) & 1.75 e 4 & 1.85 e 4 & 1.0000 & & 4.07 & 4.07 & 11.8 & 10.3 & 103.0 & \() 1\) \\
\hline 12. & 12 PFDoA & \(612.9>318.8\) & 6.02 e 3 & 1.01 e 4 & 1.0000 & & 4.31 & 4.28 & 7.42 & 8.89 & 88.9 & ) 12 \\
\hline 13 & 13 PFTrDA & \(662.9>618.9\) & 8.91 e 4 & 1.01 e 4 & 1.0000 & & 4.50 & 4.45 & 110 & 9.90 & 99.0 & \\
\hline \(14{ }^{4}\) & 14 PFTeDA & \(712.9>668.8\) & 6.53 e 4 & 7.45 e 4 & 1.0000 & & 4.65 & 4.62 & 10.9 & 9.18 & 91.8 & \(\sqrt{ }\) \\
\hline \(15 \sim\) & 15 13C3-PFBS & \(302>98.8\) & 4.19 e 3 & 5.15 e4 & 1.0000 & 0.032 & 2.92 & 2.92 & 0.407 & 12.7 & 101.4 & 50-15 \\
\hline 16 & 16 13C2-PFHxA & \(315>269.8\) & 1.62 e 4 & 5.15 e 4 & 1.0000 & 0.296 & 3.15 & 3.16 & 1.57 & 5.31 & 106.1 & \[
11
\] \\
\hline 17. & 17 13C4-PFHpA & 367.2 > 321.8 & 4.61e4 & 5.15 e 4 & 1.0000 & 0.302 & 3.43 & 3.42 & 4.48 & 14.9 & 118.9 & \\
\hline 18. & 18 1802-PFHxS & \(403>102.6\) & 4.08 e 3 & 1.03 e 4 & 1.0000 & 0.434 & 3.49 & 3.49 & 4.93 & 11.3 & 90.8 & \\
\hline 19 - & 19 13C2-PFOA & \(414.9>369.7\) & 9.64 e4 & 8.32 e 4 & 1.0000 & 1.140 & 3.62 & 3.62 & 14.5 & 12.7 & 101.6 & \\
\hline 20 : & 20 13C5-PFNA & \(468.2>422.9\) & 7.98 e 4 & 8.20 e 4 & 1.0000 & 0.958 & 3.80 & 3.80 & 12.2 & 12.7 & 101.6 & \\
\hline \[
21
\] & 21 13C8-PFOS & \(507>79.9\) & 1.58 e 4 & 1.53 e 4 & 1.0000 & 1.061 & 3.85 & 3.85 & 12.9 & 12.1 & 97.1 & \\
\hline \(22=\) & 22 13C2-PFDA & \(515.1>469.9\) & 8.05 e 4 & 8.59 e 4 & 1.0000 & 0.942 & 3.97 & 3.96 & 11.7 & 12.4 & 99.4 & \\
\hline \(23-1\) & 23 13C2-PFUnA & \(565>519.8\) & 7.40e4 & 8.94 e 4 & 1.0000 & 1.084 & 4.13 & 4.13 & 10.3 & 9.54 & 76.3 & \\
\hline \[
24
\] & 24 d3-N-MeFOSAA & \(573.3>419\) & 1.80 e 4 & 8.94 e 4 & 1.0000 & 0.240 & 4.00 & 4.00 & 2.52 & 10.5 & 83.7 & \\
\hline 25. & 25 d5-N-EtFOSAA & \(589.3>419\) & 1.85 e 4 & 8.94 e 4 & 1.0000 & 0.247 & 4.07 & 4.06 & 2.59 & 10.5 & 83.7 & \\
\hline 26 & 26 13C2-PFDoA & \(615>569.7\) & 1.01 e 4 & 8.94 e 4 & 1.0000 & 0.127 & 4.32 & 4.29 & 1.42 & 11.2 & 89.3 & \\
\hline 27.5 & 27 13C2-PFTeDA & \(714.8>669.6\) & 7.45 e 4 & 8.94 e 4 & 1.0000 & 0.883 & 4.64 & 4.62 & 10.4 & 11.8 & 94.5 & \(\checkmark\) \\
\hline 28 - 4 & 28 13C5-PFHxA & \(318>272.9\) & 5.15 e 4 & 5.15 e 4 & 1.0000 & 1.000 & 3.15 & 3.16 & 5.00 & 5.00 & 100.0 & \\
\hline 29. & 29 13C3-PFHxS & \(401.9>79.9\) & 1.03 e 4 & 1.03 e 4 & 1.0000 & 1.000 & 3.49 & 3.49 & 12.5 & 12.5 & 100.0 & \\
\hline 30 & 30 13C8-PFOA & \(421.3>376\) & 8.32e4 & 8.32 e 4 & 1.0000 & 1.000 & 3.62 & 3.62 & 12.5 & 12.5 & 100.0 & \\
\hline 31 Work &  & \(472.2>426.9\) & 8.20 e 4 & 8.20 e 4 & 1.0000 & 1.000 & 3.82 & 3.80 & 12.5 & 12.5 & 100ag & 35 of 120 \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults1170707M21170707M2-2.qId
Last Altered: Thursday, July 20, 2017 12:06:04 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:07:25 Pacific Daylight Time

Name: 170707M2_2, Date: 07-Jul-2017, Time: 13:45:44, ID: ST170707M2-1 PFC CS3 17G0508, Description: PFC CS3 17G0508

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Thursday, July 20, 2017 16:34:18 Pacific Daylight Time \\
Printed: & Thursday, July 20, 2017 16:38:16 Pacific Daylight Time \\
\hline
\end{tabular}

\section*{Compound name: PFHxA}
\begin{tabular}{|c|c|c|c|}
\hline Name & ID & Acq.Date & Acq Time \\
\hline 1. & ST170707M2-1 PFC CS3 17G0508 & 07-Jul-17 & 13:45:44 \\
\hline 2 2ti \({ }^{\text {a }}\) 170707M2_3 & B7F0137-BLK1 Method Blank 0.125 & 07-Jul-17 & 13:56:23 \\
\hline  & IPA & 07-Jul-17 & 14:07:44 \\
\hline 4 4- & B7F0137-BS1 OPR 0.125 & 07-Jul-17 & 14:18:24 \\
\hline 5 5x Mel 170707M2_6 & 1700789-01@5X GR-OF-20170627 0.10782 & 07-Jul-17 & 14:29:12 \\
\hline  & 1700789-02@5X MH-117T-20170627 0.12311 & 07-Jul-17 & 14:39:57 \\
\hline 7.4. & 1700789-03@5X MH-117N-201706270.12348 & 07-Jul-17 & 14:50:35 \\
\hline 8 ¢ & B7F0136-MS1@5X Matrix Spike 0.12272 & 07-Jul-17 & 15:01:14 \\
\hline \(9 . \longleftarrow 170707 \mathrm{M} 2 \_10\) & B7F0136-MSD1@5X Matrix Spike Dup 0.12124 & 07-Jul-17 & 15:11:54 \\
\hline 10 Wr 170707 M 2 _11 & 1700789-05@10X MH-118.5N-20170627 0.12. & 07-Jul-17 & 15:22:39 \\
\hline 11
170707M2_12 & 1700792-01 West Ditch in-20170627 0.11683 & 07-Jul-17 & 15:33:17 \\
\hline 12.4 . 170707 M 2 _13 & 1700792-02 MH-140-20170628 0.11475 & 07-Jul-17 & 15:43:56 \\
\hline 13 : H - 170707M2_14 & 1700792-03 Interceptor-20170628 0.11459 & 07-Jul-17 & 15:54:34 \\
\hline 14.4 : 470707 M 2 _15 & 1700792-04 Roof Drain-20170628 0.11484 & 07-Jul-17 & 16:05:13 \\
\hline 15. & 1700792-05 Spring-20170628 0.09751 & 07-Jul-17 & 16:15:51 \\
\hline 16. & 1700792-06 FRB-20170628 0.1121 & 07-Jul-17 & 16:26:52 \\
\hline 17. \% 170707M2_18 & 1700792-07 MH318.9-20170628 0.11873 & 07-Jul-17 & 16:37:41 \\
\hline 18. & IPA & 07-Jul-17 & 16:48:19 \\
\hline 19 : \({ }^{\text {a }}\), 170707M2_20 & ST170707M2-2 PFC CS3 17G0508 & 07-Jul-17 & 16:58:58 \\
\hline 20. & IPA & 07-Jul-17 & 17:09:44 \\
\hline 21.4170707 M 2 22 & 1700792-08 MH388.9-20170628 0.11713 & 07-Jul-17 & 17:20:31 \\
\hline 22.4 : 170707 M 2 23 & 1700792-09 Dup03-20170628 0.11824 & 07-Jul-17 & 17:31:09 \\
\hline 23-\% 170707M2_24 & 1700792-10 Dup01-20170627 0.11337 & 07-Jul-17 & 17:41:47 \\
\hline 24.4 & 1700792-11 RB01-20170628 0.12005 & 07-Jul-17 & 17:52:26 \\
\hline 25 - \({ }^{5}\) (70707M2_26 & IPA & 07-Jul-17 & 18:03:04 \\
\hline 26.5 170707M2_27 & ST170707M2-3 PFC CS3 17G0508 & 07-Jul-17 & 18:13:43 \\
\hline
\end{tabular}


Run Log Present: \(\square{ }^{\prime}\)



Method: U:IQ4.PROIMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34

\section*{Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36}

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17G0508

\begin{tabular}{ll} 
Dataset: & U:\Q4.PRO\results\170707M2\170707M2-20.qld \\
Last Altered: & Thursday, July 20, 2017 12:08:08 Pacific Daylight Time \\
Printed: & Thursday, July 20, 2017 12:08:56 Pacific Daylight Time
\end{tabular}

Name: 170707M2_20, Date: 07-Jul-2017, Time: 16:58:58, ID: ST170707M2-2 PFC CS3 17G0508, Description: PFC CS3 17G0508
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & \multicolumn{2}{|l|}{\# Name \(\quad\) Trace} & Area & IS Area & Wt.Nol. & RRF & PrediRT & \multicolumn{4}{|l|}{R. RT Y Axis Resp. \% Conc. \%Rec} \\
\hline 32 & 32 13C4-PFOS & \(503>79.9\) & 1.44 e 4 & 1.44e4 & 1.0000 & 1.000 & 3.85 & 3.87 & 12.5 & 12.5 & 100.0 \\
\hline 33 - & 33 13C6-PFDA & \(519.1>473.7\) & 9.06 e 4 & 9.06 e 4 & 1.0000 & 1.000 & 3.97 & 3.99 & 12.5 & 12.5 & 100.0 \\
\hline \(34 \times\) & 34 13C7-PFUnA & \(570.1>524.8\) & 1.01 e 5 & 1.01 e 5 & 1.0000 & 1.000 & 4.13 & 4.15 & 12.5 & 12.5 & 100.0 \\
\hline
\end{tabular}

Dataset: Untitled

Last Altered: Thursday, July 20, 2017 16:34:18 Pacific Daylight Time
Printed: \(\quad\) Thursday, July 20, 2017 16:38:16 Pacific Daylight Time

\section*{Compound name: PFHxA}
\begin{tabular}{|c|c|c|c|}
\hline & & Acq. Date & AcqTime \\
\hline Tithistry 170707M2_2 & ST170707M2-1 PFC CS3 17G0508 & 07-Jul-17 & 13:45:44 \\
\hline W4ixts \({ }^{\text {a }}\) 170707M2_3 & B7F0137-BLK1 Method Blank 0.125 & 07-Jul-17 & 13:56:23 \\
\hline  & IPA & 07-Jul-17 & 14:07:44 \\
\hline  & B7F0137-BS1 OPR 0.125 & 07-Jul-17 & 14:18:24 \\
\hline  & 1700789-01@5X GR-OF-20170627 0.10782 & 07-Jul-17 & 14:29:12 \\
\hline  & 1700789-02@5X MH-117T-20170627 0.12311 & 07-Jul-17 & 14:39:57 \\
\hline Whtw & 1700789-03@5X MH-117N-20170627 0.12348 & 07-Jul-17 & 14:50:35 \\
\hline 8.fry wev 170707M2_9 & B7F0136-MS1@5X Matrix Spike 0.12272 & 07-Jul-17 & 15:01:14 \\
\hline 96twxtett \({ }^{\text {d }}\) 170707M2_10 & B7F0136-MSD1@5X Matrix Spike Dup 0.12124 & 07-Jul-17 & 15:11:54 \\
\hline  & 1700789-05@10X MH-118.5N-20170627 0.12... & 07-Jul-17 & 15:22:39 \\
\hline Hukukik 170707 M 2 _12 & 1700792-01 West Ditch in-20170627 0.11683 & 07-Jul-17 & 15:33:17 \\
\hline  & 1700792-02 MH-140-20170628 0.11475 & 07-Jul-17 & 15:43:56 \\
\hline Wax 170707M2_14 & 1700792-03 Interceptor-20170628 0.11459 & 07-Jul-17 & 15:54:34 \\
\hline  & 1700792-04 Roof Drain-20170628 0.11484 & 07-Jul-17 & 16:05:13 \\
\hline  & 1700792-05 Spring-20170628 0.09751 & 07-Jul-17 & 16:15:51 \\
\hline  & 1700792-06 FRB-20170628 0.1121 & 07-Jul-17 & 16:26:52 \\
\hline  & 1700792-07 MH318.9-20170628 0.11873 & 07-Jul-17 & 16:37:41 \\
\hline 48whstuti 170707M2_19 & IPA & 07-Jul-17 & 16:48:19 \\
\hline OStw, fhix 170707M2_20 & ST170707M2-2 PFC CS3 17G0508 & 07-Jul-17 & 16:58:58 \\
\hline 170707M2_21 & IPA & 07-Jul-17 & 17:09:44 \\
\hline 170707M2_22 & 1700792-08 MH388.9-20170628 0.11713 & 07-Jul-17 & 17:20:31 \\
\hline 絲170707M2_23 & 1700792-09 Dup03-20170628 0.11824 & 07-Jul-17 & 17:31:09 \\
\hline 236約d 170707M2_24 & 1700792-10 Dup01-20170627 0.11337 & 07-Jul-17 & 17:41:47 \\
\hline  & 1700792-11 RB01-201706280.12005 & 07-Jul-17 & 17:52:26 \\
\hline  & IPA & 07-Jul-17 & 18:03:04 \\
\hline 26030 & ST170707M2-3 PFC CS3 17G0508 & 07-Jul-17 & 18:13:43 \\
\hline
\end{tabular}

\section*{Dataset: \\ U:IQ4.PRO|results1170707M21170707M2-27_L14.qld}

Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed: Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L14-6-7-17B.mdb 20 Jul 2017 12:05:34 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-5-17-L14.cdb 19 Jul 2017 13:31:36

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17G0508


Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults\170707M21170707M2-27_L14.qld
Last Altered: Thursday, July 20, 2017 12:09:21 Pacific Daylight Time
Printed: \(\quad\) Thursday, July 20, 2017 12:10:06 Pacific Daylight Time

Name: 170707M2_27, Date: 07-Jul-2017, Time: 18:13:43, ID: ST170707M2-3 PFC CS3 17G0508, Description: PFC CS3 17G0508
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \# Name & Trace & Area & Area & Wt Nol , & RRF & Pred.RT & RT & Resp. & Conc & \%Rec \\
\hline 32 & & 32 13C4-PFOS & \(503>79.9\) & 1.46 e 4 & 1.46 e 4 & 1.0000 & 1.000 & 3.85 & 3.87 & 12.5 & 12.5 & 100.0 \\
\hline 33 & 14 & 33 13C6-PFDA & \(519.1>473.7\) & 1.02 e 5 & 1.02e5 & 1.0000 & 1.000 & 3.97 & 3.98 & 12.5 & 12.5 & 100.0 \\
\hline 34 & 17 & 34 13C7-PFUnA & \(570.1>524.8\) & 8.27e4 & 8.27e4 & 1.0000 & 1.000 & 4.13 & 4.15 & 12.5 & 12.5 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Thursday, July 20, 2017 16:34:18 Pacific Daylight Time \\
Printed: & Thursday, July 20, 2017 16:38:16 Pacific Daylight Time
\end{tabular}

\section*{Compound name: PFHxA}
\begin{tabular}{|c|c|c|c|}
\hline  & 10 & Acq. Date & Acqi Time \\
\hline 4) \({ }_{\text {d }} 170707 \mathrm{M2} 22\) & ST170707M2-1 PFC CS3 17G0508 & 07-Jul-17 & 13:45:44 \\
\hline - & B7F0137-BLK1 Method Blank 0.125 & 07-Jul-17 & 13:56:23 \\
\hline It \({ }^{\text {a }}\) ( 170707M2_4 & IPA & 07-Jul-17 & 14:07:44 \\
\hline WTi\$ 170707M2_5 & B7F0137-BS1 OPR 0.125 & 07-Jul-17 & 14:18:24 \\
\hline 4. \({ }^{\text {dex }}\) W 170707M2_6 & 1700789-01@5X GR-OF-20170627 0.10782 & 07-Jul-17 & 14:29:12 \\
\hline \$: \(1700707 \mathrm{M} 2 \_7\) & 1700789-02@5X MH-117T-20170627 0.12311 & 07-Jul-17 & 14:39:57 \\
\hline 3EfY & 1700789-03@5X MH-117N-20170627 0.12348 & 07-Jul-17 & 14:50:35 \\
\hline W & B7F0136-MS1@5X Matrix Spike 0.12272 & 07-Jul-17 & 15:01:14 \\
\hline 4170707M2_10 & B7F0136-MSD1@5X Matrix Spike Dup 0.12124 & 07-Jul-17 & 15:11:54 \\
\hline  & 1700789-05@10X MH-118.5N-20170627 0.12... & 07-Jul-17 & 15:22:39 \\
\hline 11. \({ }^{\text {atin }}\) / & 1700792-01 West Ditch In-20170627 0.11683 & 07-Jul-17 & 15:33:17 \\
\hline  & 1700792-02 MH-140-20170628 0.11475 & 07-Jul-17 & 15:43:56 \\
\hline 4170707M2_14 & 1700792-03 Interceptor-20170628 0.11459 & 07-Jul-17 & 15:54:34 \\
\hline \$4170707M2_15 & 1700792-04 Roof Drain-20170628 0.11484 & 07-Jul-17 & 16:05:13 \\
\hline 15\#Fw & 1700792-05 Spring-20170628 0.09751 & 07-Jul-17 & 16:15:51 \\
\hline  & 1700792-06 FRB-20170628 0.1121 & 07-Jul-17 & 16:26:52 \\
\hline 17. SMtes 170707M2_18 & 1700792-07 MH318.9-20170628 0.11873 & 07-Jul-17 & 16:37:41 \\
\hline 4? \({ }^{1} 170707 \mathrm{M} 219\) & IPA & 07-Jul-17 & 16:48:19 \\
\hline 19454 & ST170707M2-2 PFC CS3 17G0508 & 07-Jul-17 & 16:58:58 \\
\hline \# & IPA & 07-Jul-17 & 17:09:44 \\
\hline 170707M2_22 & 1700792-08 MH388.9-20170628 0.11713 & 07-Jul-17 & 17:20:31 \\
\hline 1170707M2_23 & 1700792-09 Dup03-20170628 0.11824 & 07-Jul-17 & 17:31:09 \\
\hline 170707M2_24 & 1700792-10 Dup01-20170627 0.11337 & 07-Jul-17 & 17:41:47 \\
\hline 170707M2_25 & 1700792-11 RB01-201706280.12005 & 07-Jul-17 & 17:52:26 \\
\hline  & IPA & 07-Jul-17 & 18:03:04 \\
\hline 26, dix:* & ST170707M2-3 PFC CS3 17G0508 & 07-Jul-17 & 18:13:43 \\
\hline
\end{tabular}
Quantify Sample Summary Report MassLynx MassLynx V4.1
Vista Analytical Laboratory
\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults 1 170711M1\170711M1-41_L14.qld \\
Last Altered: & Thursday, July 13, 2017 10:49:12 Pacific Daylight Time \\
Printed: & Thursday, July 13, 2017 10:52:03 Pacific Daylight Time
\end{tabular}

Method: U:IQ4.PROIMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22
Last Altered: Thursday, July 13, 2017 10:49:12 Pacific Daylight Time
Printed: Thursday, July 13, 2017 10:52:03 Pacific Daylight Time

Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17G1008

\begin{tabular}{ll} 
Dataset: & U:IQ4.PROIresults1170711M11170711M1-41_L14.qld \\
& \\
Last Altered: & Thursday, July 13, 2017 10:49:12 Pacific Daylight Time \\
Printed: & Thursday, July 13, 2017 10:52:03 Pacific Daylight Time
\end{tabular}

\section*{Name: 170711M1_41, Date: 11-Jul-2017, Time: 17:43:19, ID: ST170711M1-4 PFC CS3 17G1008, Description: PFC CS3 17G1008}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & \& Trace & Area & IS Area & WtiNol. & RRF & Pred.RT & \multicolumn{2}{|l|}{RT y Axis Resp.} & Conc. & \%Rec \\
\hline 32 & 32 13C3-PFHxS & \(401.9>79.9\) & 6.46e3 & 6.46 e 3 & 1.000 & 1.000 & 3.55 & 3.44 & 12.5 & 12.5 & 100.0 \\
\hline 33 & 33 13C8-PFOA & \(421.3>376\) & 4.16e4 & 4.16 e 4 & 1.000 & 1.000 & 3.63 & 3.58 & 12.5 & 12.5 & 100.0 \\
\hline 34 & 34 13C9-PFNA & \(472.2>426.9\) & 6.25 e4 & 6.25 e 4 & 1.000 & 1.000 & 3.82 & 3.75 & 12.5 & 12.5 & 100.0 \\
\hline 35 & 35 13C4-PFOS & \(503>79.9\) & 1.09 e 4 & 1.09 e 4 & 1.000 & 1.000 & 3.86 & 3.80 & 12.5 & 12.5 & 100.0 \\
\hline 36 & 36 13C6-PFDA & \(519.1>473.7\) & 6.86e4 & 6.86 e 4 & 1.000 & 1.000 & 4.00 & 3.91 & 12.5 & 12.5 & 100.0 \\
\hline 37 & 37 13C7-PFUnA & \(570.1>524.8\) & 6.95 e 4 & 6.95e4 & 1.000 & 1.000 & 4.16 & 4.08 & 12.5 & 12.5 & 100.0 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, July 14, 2017 11:59:09 Pacific Daylight Time \\
Printed: & Friday, July 14, 2017 12:00:08 Pacific Daylight Time
\end{tabular}

Method: U:IQ4.PRO\MethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22

\section*{Compound name: PFBS}

Quantify Compound Summary Report MassLynx MassLynx V4.1
Vista Analytical Laboratory
\begin{tabular}{ll} 
Dataset: & Untitled \\
\begin{tabular}{ll} 
Last Altered: & Friday, July 14, 2017 11:59:09 Pacific Daylight Time \\
Printed: & Friday, July 14, 2017 12:00:08 Pacific Daylight Time
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l}
\end{tabular}

\section*{Compound name: PFBS}

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, July 14, 2017 11:59:09 Pacific Daylight Time \\
Printed: & Friday, July 14, 2017 12:00:08 Pacific Daylight Time \\
\hline
\end{tabular}

\section*{Compound name: PFBS}
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & 10 - & Aca Date & Acg Time \\
\hline 66 & 170711M1_66 & 1700836-01 DPH-MW11 0.1236 & 11-Jul-17 & 22:10:40 \\
\hline 67 & 170711M1_67 & 1700836-02 DPH-B7 0.1224 & 11-Jul-17 & 22:21:19 \\
\hline 68 & 170711M1_68 & 1700836-03 DPH-MW3-17 0.1219 & 11-Jul-17 & 22:31:57 \\
\hline 69 & 170711M1_69 & 1700836-04 DPH-EX4 0.12243 & 11-Jul-17 & 22:42:36 \\
\hline 70 & 170711M1_70 & 1700836-05 DPH-MW6-17 0.12319 & 11-Jul-17 & 22:53:14 \\
\hline 71 & 170711M1_71 & 1700844-01 20410100010.277 & 11-Jul-17 & 23:03:52 \\
\hline 72 & 170711M1_72 & 1700845-01 MW-29S-20170707 0.12034 & 11-Jul-17 & 23:14:31 \\
\hline 73 & 170711M1_73 & 1700845-02 DUP04-20170707 0.12279 & 11-Jul-17 & 23:25:17 \\
\hline 74 & 17071 1M1_74 & 1700845-03 MW-27S-20170707 0.11824 & 11-Jul-17 & 23:36:03 \\
\hline 75 & 17071 1M1_75 & B7G0033-MS1 Matrix Spike 0.12283 & 11-Jul-17 & 23:46:42 \\
\hline 76 & 170711M1_76 & B7G0033-MSD1 Matrix Spike Dup 0.124 & 11-Jul-17 & 23:57:29 \\
\hline 77 & 170711M1_77 & 1700845-04 MW-30S-20170707 0.11933 & 12-Jul-17. & 00:08:07 \\
\hline 78 & 170711M1_78 & IPA . & 12-Jul-17 & 00:18:45 \\
\hline 79 & 170711M1_79 & ST170711M1-6 PFC CS3 17G1008 \(\sqrt{ }\) & 12-Jul-17 & 00:29:24 \\
\hline 80 & 170711M1_80 & IPA & 12-Jul-17 & 00:40:11 \\
\hline
\end{tabular}

LC Calibration Standards Review Checklist Q4


\section*{\# of Samples per Sequence Checked:}


\section*{Dataset:}

U:IQ4.PRO|results|170711M11170711M1-63_L14.qld
Last Altered: Thursday, July 13, 2017 10:54:41 Pacific Daylight Time
Printed: Thursday, July 13, 2017 10:55:26 Pacific Daylight Time

\section*{Method: U:IQ4.PROMMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14} Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

Dataset: U:IQ4.PROIresults 1 170711M11170711M1-63_L14.qld

Last Altered: Thursday, July 13, 2017 10:54:41 Pacific Daylight Time
Printed: Thursday, July 13, 2017 10:55:26 Pacific Daylight Time

Name: 170711M1_63, Date: 11-Jul-2017, Time: 21:38:37, ID: ST170711M1-5 PFC CS3 17G1008, Description: PFC CS3 17G1008

\begin{tabular}{l} 
Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960 \\
Vista Analytical Laboratory \\
Dataset: \(\quad\) Untitled \\
Last Altered: \(\quad\) Friday, July 14, 2017 11:59:09 Pacific Daylight Time \\
\begin{tabular}{ll} 
Printed: & Friday, July 14, 2017 12:00:08 Pacific Daylight Time
\end{tabular} \\
\hline
\end{tabular}

Method: U:IQ4.PROIMethDBIPFAS_L14-7-5-17.mdb 10 Jul 2017 08:06:14
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L14.cdb 11 Jul 2017 08:36:22
Compound name: PFBS
\begin{tabular}{|c|c|c|c|c|}
\hline & Name & 10 & Acg Bate & cog 1 mime \\
\hline 2\% & 170711M1_1 & IPA & 11-Jul-17 & 08:51:57 \\
\hline \% & 170711M1_2 & ST170711M1-1 PFC CS3 17G1008 & 11-Jul-17 & 09:02:53 \\
\hline \% & 170711M1_3 & IPA & 11-Jul-17 & 09:13:39 \\
\hline \%e3 & 170711M1_4 & B7E0157-BS1 OPR 1 & 11-Jul-17 & 09:24:20 \\
\hline 4iz & \(170711 \mathrm{M1} 1.5\) & IPA & 11-Jul-17 & 09:35:03 \\
\hline \% \({ }^{3}\) & 170711M1_6 & B7E0157-BLK1 Method Blank 1 & 11-Jul-17 & 09:45:42 \\
\hline [ 2 cis & 170711M1_7 & 1700655-01 Pedigree Chopped Ground Dinne... & 11-Jul-17 & 09:56:20 \\
\hline  & 170711M1_8 & 1700655-02 Purina Friskies Salmon Dinner Cl... & 11-Jul-17 & 10:06:59 \\
\hline  & 170711M1_9 & IPA & 11-Jul-17 & 10:17:44 \\
\hline \% & 170711M1_10 & B7G0024-BS2 OPR 0.25 & 11-Jul-17 & 10:28:24 \\
\hline \% & 170711M1_11 & IPA & 11-Jul-17 & 10:39:03 \\
\hline 4x & 170711M1_12 & ST170711M1-2 PFC CS3 17G1008 & 11-Jul-17 & 10:49:41 \\
\hline \% & 170711M1_13 & IPA & 11-Jul-17 & 11:00:27 \\
\hline 2\% & 170711M1_14 & B7G0029-BS1 OPR 0.005 & 11-Jul-17 & 12:51:34 \\
\hline + & 170711M1_15 & IPA & 11-Jul-17 & 13:02:29 \\
\hline 16 & 170711M1_16 & B7G0029-BLK1 Method Blank 0.005 & 11-Jul-17 & 13:13:07 \\
\hline 77: & 170711M1_17 & 1700842-01 Shaws/Littleton 0.005 & 11-Jul-17 & 13:23:46 \\
\hline 18.4 & 170711M1_18 & 1700842-02 Walmart/Gorham 0.005 & 11-Jul-17 & 13:34:24 \\
\hline \(19 \times 5\) & 170711M1_19 & 1700842-03 Whole Foods/Nashua 0.005 & 11-Jul-17 & 13:45:02 \\
\hline \% & 170711M1_20 & 1700842-04 Walmar/Epping 0.005 & 11-Jul-17 & 13:57:16 \\
\hline S & 170711M1_21 & 1700842-05 Freshmarket/Portsmouth 0.005 & 11-Jul-17 & 14:08:28 \\
\hline 22. & 170711M1_22 & 1700842-06 Trader Joes/Newington 0.005 & 11-Jul-17 & 14:19:07 \\
\hline - 2 & 170711M1_23 & 1700842-07 Market Basket/Dover 0.005 & 11-Jul-17 & 14:29:45 \\
\hline 24-2\% & 170711M1_24 & 1700842-08 Hannaford/Keene 0.005 & 11-Jul-17 & 14:40:32 \\
\hline  & 170711M1_25 & 1700842-09 Market Basket /Claremont 0.005 & 11-Jul-17 & 14:51:10 \\
\hline 26.35 \({ }^{\text {2 }}\) & 170711M1_26 & 1700842-10 Market Basket/Claremont 20.005 & 11-Jul-17 & 15:01:59 \\
\hline \% & 170711M1_27 & IPA & 11-Jul-17 & 15:12:44 \\
\hline \[
28
\] & 170711M1_28 & ST170711M1-3 PFC CS3 17G1008 & 11-Jul-17 & 15:23:22 \\
\hline 2 & 170711M1_29 & IPA & 11-Jul-17 & 15:34:09 \\
\hline 30:30 & 170711M1_30 & 1700842-11 Market Basket/Ciaremont 30.005 & 11-Jul-17 & 15:44:47 \\
\hline 31-208tor & \(170711 \mathrm{M1} 31\) & 1700842-12 Price Chopper/W.Lebanon 0.005 & 11-Jul-17 & 15:55:26 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Quantify Compound Summary Report \(\quad\) MassLynx MassLynx V4 \\
Vista Analytical Laboratory \\
Dataset： & Untitled \\
& \\
Last Altered： & Friday，July 14， 2017 11：59：09 Pacific Daylight Time \\
Printed： & Friday，July 14，2017 12：00：08 Pacific Daylight Time
\end{tabular}

Compound name：PFBS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline  & 1700842－13 Market Basket／Concord 0.005 & 11－Jul－17 & 16：06：13 \\
\hline  & 1700842－14 Cumberland Farms／Meredith 0.005 & 11－Jul－17 & 16：17：42 \\
\hline  & 1700842－15 EM－Heath／Center Harbor 0.005 & 11－Jul－17 & 16：28：34 \\
\hline 170711M1_35 & 1700842－16 Shaws／North Conway 0.005 & 11－Jul－17 & 16：39：13 \\
\hline Whwedut \(170711 \mathrm{M1} 36\) & 1700842－17 Milk 10.005 & 11－Jul－17 & 16：49：59 \\
\hline 3xty & 1700842－18 Milk 20.005 & 11－Jul－17 & 17：00：38 \\
\hline WSER趧170711M1＿38 & 170711＿929 & 11－Jul－17 & 17：11：16 \\
\hline  & 170711＿972 & 11－Jul－17 & 17：21：55 \\
\hline  & IPA & 11－Jul－17 & 17：32：33 \\
\hline 170711M1＿41 & ST170711M1－4 PFC CS3 17G1008 & 11－Jul－17 & 17：43：19 \\
\hline  & IPA & 11－Jul－17 & 17：54：06 \\
\hline 變170711M1＿43 & B7G0014－BS1 OPR 0.125 & 11－Jul－17 & 18：04：47 \\
\hline 170711M1＿44 & B7G0033－BS1 OPR 0.125 & 11－Jul－17 & 18：15：31 \\
\hline 170711M1＿45 & IPA & 11－Jul－17 & 18：26：18 \\
\hline 170711M1＿46 & B7G0014－BLK1 Method Blank 0.125 & 11－Jul－17 & 18：37：02 \\
\hline 䌇170711M1＿47 & B7G0033－BLK1 Method Blank 0.125 & 11－Jul－17 & 18：47：43 \\
\hline 3\％ & 1700792－11RE1 RB01－20170628 0.12273 & 11－Jul－17 & 18：58：21 \\
\hline 170711M1＿49 & 1700792－08RE1 MH388．9－20170628 0．12326 & 11－Jul－17 & 19：09：07 \\
\hline 170711M1＿50 & 1700792－01RE1 West Ditch In－20170627 0．12．．． & 11－Jul－17 & 19：19：46 \\
\hline 170711M1＿5 & 1700803－01 SB01 0.12033 & 11－Jul－17 & 19：30：24 \\
\hline 170711M1＿52 & 1700803－03 IRPSite7－GW－46GW205－201706．．． & 11－Jul－17 & 19：41：03 \\
\hline 56 Makusexi 170711M1＿53 & 1700803－04 IRPSite7－GW－FD01－20170628 0．．． & 11－Jul－17 & 19：51：41 \\
\hline －whidilin0711M1＿54 & 1700803－05 IRPSite7－GW－07GW202－201706．．． & 11－Jul－17 & 20：02：19 \\
\hline 553mekema 170711 M 1 ＿55 & 1700803－06 IRPSite7－GW－FRB01－20170628 ．．． & 11－Jul－17 & 20：12：58 \\
\hline 56， & 1700803－07 IRPSite5－GW－FRB01－20170628 ．．． & 11－Jul－17 & 20：23：36 \\
\hline  & 1700803－08 IRPSite5－GW－04GW81S－201706．．． & 11－Jul－17 & 20：34：15 \\
\hline 緼170711M1＿58 & 1700803－09 IRPSite5－GW－04GW80－2017062．．． & 11－Jul－17 & 20：44：53 \\
\hline  & B7G0014－MS1 Matrix Spike 0.12163 & 11－Jul－17 & 20：55：31 \\
\hline 170711M1＿60 & B7G0014－MSD1 Matrix Spike Dup 0.1181 & 11－Jul－17 & 21：06：22 \\
\hline 64， & 1700803－10 EB02 0.10956 & 11－Jul－17 & 21：17：12 \\
\hline －\％Wix in0711M1＿62 & IPA & 11－Jul－17 & 21：27：59 \\
\hline W紋170711M1＿63 & ST170711M1－5 PFC CS3 17G1008 V & 11－Jul－17 & 21：38：37 \\
\hline 縭170711M1＿64 & IPA & 11－Jul－17 & 21：49：23 \\
\hline 65． & 1700820－01 MTBE＿5527 0.26911 & 11－Jul－17 & 22：00：02 \\
\hline
\end{tabular}

Work Order 1700792
\begin{tabular}{lll} 
Quantify Compound Summary Report & MassLynx MassLynx V4.1 SCN945 SCN960 \\
Vista Analytical Laboratory \\
Dataset: & Untitled \\
& \\
Last Altered: & Friday, July 14, 2017 11:59:09 Pacific Daylight Time \\
Printed: & Friday, July 14, 2017 12:00:08 Pacific Daylight Time \\
\hline
\end{tabular}

\section*{Compound name: PFBS}
\begin{tabular}{|c|c|c|c|}
\hline 66: & 1700836-01 DPH-MW110.1236 & 11-Jul-17 & 22:10:40 \\
\hline 67futuk & 1700836-02 DPH-B7 0.1224 & 11-Jul-17 & 22:21:19 \\
\hline  & 1700836-03 DPH-MW3-17 0.1219 & 11-Jul-17 & 22:31:57 \\
\hline 170711M1_69 & 1700836-04 DPH-EX4 0.12243 & 11-Jul-17 & 22:42:36 \\
\hline 70 & 1700836-05 DPH-MW6-17 0.12319 & 11-Jul-17 & 22:53:14 \\
\hline  & 1700844-01 20410100010.277 & 11-Jul-17 & 23:03:52 \\
\hline  & 1700845-01 MW-29S-20170707 0.12034 & 11-Jul-17 & 23:14:31 \\
\hline  & 1700845-02 DUP04-20170707 0.12279 & 11-Jul-17 & 23:25:17 \\
\hline  & 1700845-03 MW-27S-20170707 0.11824 & 11-Jul-17 & 23:36:03 \\
\hline  & B7G0033-MS1 Matrix Spike 0.12283 & 11-Jul-17 & 23:46:42 \\
\hline  & B7G0033-MSD1 Matrix Spike Dup 0.124 & 11-Jul-17 & 23:57:29 \\
\hline  & 1700845-04 MW-30S-20170707 0.11933 & 12-Jul-17, & 00:08:07 \\
\hline  & IPA & 12-Jul-17 & 00:18:45 \\
\hline  & ST170711M1-6 PFC CS3 17G1008 & 12-Jul-17 & 00:29:24 \\
\hline  & IPA & 12-Jul-17 & 00:40:11 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Quantify Sample Summary Report \(\quad\) MassLynx 4.1 SCN815 & Page 1 of 1 \\
Vista Analytical Laboratory Q1 & \\
Dataset: & U:IG1.PROXResults\20171New folderl170721G6-2.qld & \\
Last Altered: & Saturday, July 22, 2017 09:47:35 Pacific Daylight Time & \\
Printed: & Saturday, July 22, 2017 09:49:15 Pacific Daylight Time & \\
\hline
\end{tabular}

Last Altered: \(\quad\) Saturday, July 22, 2017 09:47:35 Pacific Daylight Time Pinted. Saturday, July 22, 2017 09:49:15 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: ST170721G6-1 PFC CS-1 17G2117, Description: PFC CS-1 17G2117, Name: 170721G6_2, Date: 21-Jul-2017, Time: 15:51:03
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Peak Area & IS Resp & RRF Mean & wt/vol & RT & Conc. & \%Rec & \multirow{4}{*}{\[
\begin{aligned}
& 70-130 \\
& 50-150
\end{aligned}
\]} \\
\hline 1 & 9 PFOS & \(499.0>79.9\) & 1.322 e 2 & 7.861e3 & & 1.00 & 4.66 & 0.489 & 97.8 & \\
\hline 2 & 20 13C8-PFOS & 507.0 > 79.9 & 7.861 e 3 & 8.139e3 & 1.026 & 1.00 & 4.65 & 11.8 & 94.1 & \\
\hline 3 & 26 13C4-PFOS & \(503.0>79.9\) & 8.139 e 3 & 8.139e3 & 1.000 & 1.00 & 4.65 & 12.5 & 100 & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Quantify Compound Summary Report & MassLynx 4.1 SCN815 \\
Vista Analytical Laboratory VG-9 \\
Dataset: & Untitled \\
& \\
Last Altered: & Saturday, July 22, 2017 09:52:13 Pacific Daylight Time \\
Printed: & Saturday, July 22, 2017 09:52:59 Pacific Daylight Time
\end{tabular}

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42

\section*{Compound name: PFBA}
\begin{tabular}{|lllll|}
\hline & Name & ID & Acq.Date & Acq.Time \\
1 & 170721G6_1 & IPA & 21-Jul-17 & 15:38:33 \\
2 & 170721G6_2 & ST170721G6-1 PFC CS-1 17G2117 & 21-Jul-17 & 15:51:03 \\
3 & 170721G6_3 & IPA & 21-Jul-17 & \(16: 03: 33\) \\
4 & 170721 G6_4 & 1700792-10@10X Dup01-20170627 0.11337 & 21-Jul-17 & \(16: 16: 32\) \\
5 & \(170721 G 6 \_5\) & IPA & 21-Jul-17 & \(16: 29: 14\) \\
6 & \(170721 G 6 \_6\) & ST170721G6-2 PFC CS3 17G1927 & 21-Jul-17 & \(16: 41: 30\) \\
7 & \(170721 G 6 \_7\) & IPA & 21-Jul-17 & \(16: 54: 01\) \\
\hline
\end{tabular}
Printed: \(\quad\) Saturday, July 22, 2017 10:06:51 Pacific Daylight Time
```


Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
ID: ST170721G6-2 PFC CS3 17G1927, Description: PFC CS3 17G1927, Name: 170721G6_6, Date: 21-Jul-2017, Time: 16:41:30

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec	$\begin{aligned} & 70-130 \\ & 50-150 \end{aligned}$
1	9 PFOS	$499.0>79.9$	3.472 e 3	7.858 e 3		1.00	4.66	9.37	93.7	
2	20 13C8-PFOS	$507.0>79.9$	7.858 e 3	7.400 e 3	1.026	1.00	4.65	12.9	104	
3	26 13C4-PFOS	$503.0>79.9$	7.400 e 3	7.400 e 3	1.000	1.00	4.65	12.5	100	

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \quad Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 14:40:20
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

Compound name: PFBA

Correlation coefficient: $\mathrm{r}=0.999893, \mathrm{r} \wedge 2=0.999786$
Calibration curve: 1.28141 * $x+0.357618$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Cive	\# Name	Type	Std. Conc	- RT	Area	IS Area	Response	Conc.	Dev	c	CoD	D F	cluded
1	1 170710M3_2	Standard	0.250	1.54	427.146	7397.170	0.722	0.3	13.7	NO	1.000	NO	MM
2	2 170710M3_3	Standard	0.500	1.53	573.831	7319.772	0.980	0.5	-2.9	NO	1.000	NO	MM
3	3 170710M3_4	Standard	1.000	1.53	882.903	6882.142	1.604	1.0	-2.8	NO	1.000	NO	MM
4-4.4.4	4 170710M3_5	Standard	2.000	1.53	1699.421	7900.523	2.689	1.8	-9.0	NO	1.000	NO	MM
5 LT	5 170710M3_6	Standard	5.000	1.53	4102.863	7407.220	6.924	5.1	2.5	NO	1.000	NO	MM
6	6 170710M3_7	Standard	10.000	1.53	8104.495	7861.154	12.887	9.8	-2.2	NO	1.000	NO	MM
17	7 170710M3_8	Standard	50.000	1.53	39359.148	7569.607	64.995	50.4	0.9	NO	1.000	NO	bb
8 -	8 170710M3_9	Standard	100.000	1.53	80359.727	7829.357	128.299	99.8	-0.2	NO	1.000	NO	bb

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999846, \mathrm{r}^{\wedge} 2=0.999691$
Calibration curve: 1.10816 * x +0.0226306
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoDFlag	$\mathrm{x}=$ excluded
1.45	1 170710M3_2	Standard	0.250	2.77	360.082	14987.434	$0 . \overline{300}$	0.3	0.2	NO	1.000	NO	MM
2	2 170710M3_3	Standard	0.500	2.76	656.584	14351.720	0.572	0.5	-0.9	NO	1.000	NO	MM
3	3 170710M3_4	Standard	1.000	2.75	1173.282	13204.935	1.111	1.0	-1.8	NO	1.000	NO	bb
4	4 170710M3_5	Standard	2.000	2.75	2648.726	14397.656	2.300	2.1	2.7	NO	1.000	NO	bb
5	5 170710M3_6	Standard	5.000	2.75	6691.328	14859.215	5.629	5.1	1.2	NO	1.000	NO	bb
6	6 170710M3_7	Standard	10.000	2.75	13251.902	14932.953	11.093	10.0	-0.1	NO	1.000	NO	bb
7.4\% ${ }^{\text {a }}$,	7 170710M3_8	Standard	50.000	2.75	62725.262	14515.980	54.014	48.7	-2.6	NO	1.000	NO	bb
	$8170710 \mathrm{M3}$ _9	Standard	100.000	2.75	138385.234	15422.105	112.165	101.2	1.2	NO	1.000	NO	bb

Dataset: U:\Q4.PROlresults\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999477, \mathrm{r}^{\wedge} 2=0.998954$
Calibration curve: $2.28212{ }^{*} x+-0.143002$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

1\%	1 170710M3_2	Standard	0.250	2.97	64.107	1829.255	0.438	0.3	1.8	NO	0.999	NO	bb
2 2, m	2 170710M3_3	Standard	0.500	2.96	174.822	1880.541	1.162	0.6	14.4	NO	0.999	NO	bb
3.	3 170710M3_4	Standard	1.000	2.95	250.827	1680.475	1.866	0.9	-12.0	NO	0.999	NO	bb
4 4tater	4 170710M3_5	Standard	2.000	2.95	664.245	1678.509	4.947	2.2	11.5	NO	0.999	NO	bb
5,	5 170710M3_6	Standard	5.000	2.95	1423.155	1827.422	9.735	4.3	-13.4	NO	0.999	NO	bb
	6170710 M 3 _7	Standard	10.000	2.95	3293.945	1863.759	22.092	9.7	-2.6	NO	0.999	NO	bb
7	7 170710M3_8	Standard	50.000	2.95	14448.479	1600.534	112.841	49.5	-1.0	NO	0.999	NO	$b b$
8	8170710 M 3 _9	Standard	100.000	2.95	31826.346	1723.074	230.883	101.2	1.2	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999918, \mathrm{r} \wedge 2=0.999836$
Calibration curve: 1.63818 * $x+0.0563003$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

$\sqrt{3+\tan }$	Na	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\% Dev	Conc, Flag	COD	F	xcl
1 1-Y) ${ }^{\text {a }}$	1 170710M3_2	Standard	0.250	3.19	527.456	6599.234	0.400	0.2	-16.2	NO	1.000	NO	MM
24	2 170710M3_3	Standard	0.500	3.19	1190.925	6260.955	0.951	0.5	9.2	NO	1.000	NO	bb
3.4	3 170710M3_4	Standard	1.000	3.18	2031.727	5844.579	1.738	1.0	2.7	NO	1.000	NO	bb
4 4.	4 170710M3_5	Standard	2.000	3.18	4143.116	6111.841	3.389	2.0	1.7	NO	1.000	NO	bb
5	5 170710M3_6	Standard	5.000	3.18	11189.35C	6584.623	8.497	5.2	3.0	NO	1.000	NO	bb
6 6	6 170710M3_7	Standard	10.000	3.19	22422.309	6880.506	16.294	9.9	-0.9	NO	1.000	NO	bb
7	7 170710M3_8	Standard	50.000	3.19	107894.484	6517.125	82.778	50.5	1.0	NO	1.000	NO	bb
8. ${ }^{\text {a }}$	8 170710M3_9	Standard	100.000	3.18	224318.094	6887.408	162.847	99.4	-0.6	NO	1.000	NO	bb

Vista Analytical Laboratory
Dataset: U:\Q4.PRO|results1170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999627, \mathrm{r}^{\wedge} 2=0.999254$
Calibration curve: 1.43595 * x +0.0332012
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

1 Mry	1 170710M3 2	Standard	0.250	3.46	484.804	16912.918	0.358	0.2	-9.4	NO	0.999	NO	bb
2.4	2 170710M3_3	Standard	0.500	3.45	1094.714	15983.809	0.856	0.6	14.6	NO	0.999	NO	db
	3170710 M 3 _4	Standard	1.000	3.44	1816.426	14729.492	1.541	1.1	5.0	NO	0.999	NO	bb
4 - ${ }^{\text {a }}$,	4 170710M3_5	Standard	2.000	3.44	3368.228	16736.117	2.516	1.7	-13.6	NO	0.999	NO	bb
5.	5 170710M3_6	Standard	5.000	3.44	9552.159	16831.109	7.094	4.9	-1.7	NO	0.999	NO	bb
6. ${ }^{\text {a }}$	$6170710 \mathrm{M} 3+7$	Standard	10.000	3.45	19620.016	16406.695	14.948	10.4	3.9	NO	0.999	NO	bb
7.	7 170710M3_8	Standard	50.000	3.45	91102.258	15463.272	73.644	51.3	2.5	NO	0.999	NO	bb
8	8 170710M3_9	Standard	100.000	3.45	193055.844	17039.475	141.624	98.6	-1.4	NO	0.999	NO	bb

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.998220, \mathrm{r}^{\wedge} 2=0.996443$
Calibration curve: 1.95713 *x+-0.172436
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	4W4	\# Name	Type ${ }^{\text {axem }}$	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc.	COD	CODF	=excluded
1	+	1 170710M3_2	Standard	0.250	3.52	58.724	1651.524	0.444	0.3	26.1	NO	0.996	NO	bb
2	4 Wet	2 170710M3_3	Standard	0.500	3.51	92.843	1720.000	0.675	0.4	-13.4	NO	0.996	NO	MM
3	W\%	3 170710M3_4	Standard	1.000	3.51	184.365	1350.057	1.707	1.0	-4.0	NO	0.996	NO	MM
4		4 170710M3_5	Standard	2.000	3.51	444.710	1600.253	3.474	1.9	-6.8	NO	0.996	NO	MM
5		5170710 M 36	Standard	5.000	3.51	1145.275	1665.698	8.595	4.5	-10.4	NO	0.996	NO	bb
6	$\pi+\pi$	6 170710M3_7	Standard	10.000	3.51	2600.573	1486.850	21.863	11.3	12.6	NO	0.996	NO	MM
7.	W+ ${ }^{4}$	7 170710M3_8	Standard	50.000	3.51	10992.927	1511.473	90.912	46.5	-6.9	NO	0.996	NO	MM
8	4tw	8170710 M 3 _9	Standard	100.000	3.51	25599.898	1590.326	201.216	102.9	2.9	NO	0.996	NO	MM

Dataset:	U:IQ4.PROlresults\170710M3\170710M3-CRV-I16.qld
Last Altered:	Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:	Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.999767, \mathrm{r}^{\wedge} 2=0.999534$
Calibration curve: 1.13618 * x + 0.150469
Response type: Internal Std (Ref 23), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999802, \mathrm{r} 2=0.999604$
Calibration curve: 1.36368 * x +0.0901055
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory

Dataset:
U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.999222, \mathrm{r}^{\wedge} 2=0.998444$
Calibration curve: 1.18859 * $x+-0.127408$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc		A Area	SAre	spons	Con	Dev	1. F	COD		cluded
1.4	1 170710M3_2	Standard	0.250	3.85	34.129	1942.804	0.220	0.3	16.8	NO	0.998	NO	bb
2.	2 170710M3_3	Standard	0.500	3.84	64.107	2215.917	0.362	0.4	-17.7	NO	0.998	NO	bb
3.	3 170710M3_4	Standard	1.000	3.85	137.984	2053.589	0.840	0.8	-18.6	NO	0.998	NO	bb
4.	4 170710M3_5	Standard	2.000	3.84	430.613	2071.983	2.598	2.3	14.6	NO	0.998	NO	bb
$5 \cdot 4$	5170710 M 36	Standard	5.000	3.84	1047.884	2036.011	6.433	5.5	10.4	NO	0.998	NO	bb
6	6 170710M3_7	Standard	10.000	3.84	2150.737	2370.515	11.341	9.6	-3.5	NO	0.998	NO	bb
7	7 170710M3_8	Standard	50.000	3.84	9977.661	2179.217	57.232	48.3	-3.5	NO	0.998	NO	bb
8 8,	8 170710M3_9	Standard	100.000	3.84	21289.654	2207.907	120.531	101.5	1.5	NO	0.998	NO	bb

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge 2}=0.999061$
Calibration curve: $0.00185446{ }^{*} x^{\wedge} 2+1.10476$ * $x+0.0290301$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PROlresults1170710M3\170710M3-CRV-I16.qld
Last Altered:	Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:	Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $\mathrm{r}=0.999516, \mathrm{r}^{\wedge} 2=0.999032$
Calibration curve: 1.56384 * $x+-0.255433$
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc \%Dev Conc Flag			COD CoD Flag x-excluded		
1 -	1 170710M3_2	Standard	0.250	3.99	932.302	28930.936	0.403	0.4	68.4	NO	0.999	NO	MMX
2 - 0 d	2 170710M3_3	Standard	0.500	4.00	1408.826	29747.686	0.592	0.5	8.4	NO	0.999	NO	MM
3 . ${ }^{\text {a }}$	3 170710M3_4	Standard	1.000	3.99	3557.009	31897.771	1.394	1.1	5.5	NO	0.999	NO	bb
	4 170710M3_5	Standard	2.000	3.99	7354.864	31493.791	2.919	2.0	1.5	NO	0.999	NO	bb
5 . ${ }^{\text {a }}$	5 170710M3_6	Standard	5.000	4.00	16044.657	29596.766	6.776	4.5	-10.1	NO	0.999	NO	bb
6.4	6 170710M3_7	Standard	10.000	3.99	37473.484	33043.109	14.176	9.2	-7.7	NO	0.999	NO	bb
7×1	7 170710M3_8	Standard	50.000	3.99	195941.813	30631.795	79.959	51.3	2.6	NO	0.999	NO	bb
8 8.	8 170710M3_9	Standard	100.000	3.99	392413.031	31463.066	155.902	99.9	-0.1	NO	0.999	NO	bb

Compound name: PFUnA

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999111$
Calibration curve: $0.00122021^{*} x^{\wedge} 2+0.942287^{*} x+0.216781$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	1 170710M3_2	Standard	0.250	4.15	1010.402	28555.941	0.442	0.2	-4.3	NO	0.999	NO	MM
2 2,	$2170710 \mathrm{M3} 3$	Standard	0.500	4.15	1647.712	35214.363	0.585	0.4	-21.9	NO	0.999	NO	MM
3	3 170710M3_4	Standard	1.000	4.15	3030.180	29618.668	1.279	1.1	12.5	NO	0.999	NO	bb
4	4 170710M3_5	Standard	2.000	4.15	5814.139	32452.291	2.239	2.1	7.0	NO	0.999	NO	bb
5	5 170710M3_6	Standard	5.000	4.15	14655.979	32879.375	5.572	5.6	12.8	NO	0.999	NO	bb
6	6 170710M3_7	Standard	10.000	4.15	29217.963	39593.965	9.224	9.4	-5.6	NO	0.999	NO	bb
7 7 Mr	7 170710M3_8	Standard	50.000	4.15	137931.563	34542.293	49.914	49.6	-0.9	NO	0.999	NO	bb
8 \%	8 170710M3_9	Standard	100.000	4.15	285394.844	33371.344	106.901	100.2	0.2	NO	0.999	NO	bb

Dataset:	U:IQ4.PROIresults1170710M31170710M3-CRV-I16.qld
Last Altered:	Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:	Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998301$
Calibration curve: $8.31559 \mathrm{e}-005{ }^{*} x^{\wedge} 2+0.0878672$ * $x+0.0164965$
Response type: Internal Std (Ref 28), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

-	\# Name	Type	+6.an	Std. Conc	RT	4t Area	IS Area	Resporise	Conc.	\%Dev	c. F	Cob	CoD Flag	$x=$ excluded
1.	1 170710M3_2	Standard		0.250	4.19	74.979	28555.941	0.033	0.2	-25.7	NO	0.998	NO	MM
2 2, ${ }^{\text {a }}$	2 170710M3_3	Standard		0.500	4.19	147.908	35214.363	0.053	0.4	-18.1	NO	0.998	NO	MM
3 , ${ }^{\text {a }}$	3 170710M3_4	Standard		1.000	4.19	278.651	29618.668	0.118	1.1	14.9	NO	0.998	NO	bb
4 4. ${ }^{\text {a }}$	4 170710M3_5	Standard		2.000	4.19	594.978	32452.291	0.229	2.4	20.7	NO	0.998	NO	MM
5.1 .5	5 170710M3_6	Standard		5.000	4.19	1375.311	32879.375	0.523	5.7	14.6	NO	0.998	NO	bb
6. ${ }^{\text {a }}$ -	6 170710M3_7	Standard		10.000	4.19	2729.414	39593.965	0.862	9.5	-4.7	NO	0.998	NO	bb
7	7 170710M3_8	Standard		50.000	4.19	12432.069	34542.293	4.499	48.8	-2.5	NO	0.998	NO	bb
8 -	8 170710M3_9	Standard		100.000	4.19	25881.063	33371.344	9.694	100.6	0.6	NO	0.998	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997169$
Calibration curve: 0.00815082 * $x^{\wedge} 2+0.735747$ * $x+0.0266157$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory
Dataset:
U:IQ4.PROIresults1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: $r=0.999219, r^{\wedge} 2=0.998438$
Calibration curve: 13.2156 * x +0.215995
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999934$
Calibration curve: -0.000916009 * $x^{\wedge} 2+1.26347$ * $x+0.0596778$
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

$\sqrt{2}$	\# Name Type		Std. Conc	RT	Area	IS Area	Response	Conc \%Dev Conc Flag			CoD CoD Flag $\mathrm{C}=$ excluded		
11	1 170710M3_2	Standard	0.250	4.65	1022.516	33198.340	0.385	0.3	3.0	NO	1.000	NO	MM
2 ,	2 170710M3_3	Standard	0.500	4.64	1820.870	32091.508	0.709	0.5	2.9	NO	1.000	NO	bb
3, $+2 \times$	3 170710M3_4	Standard	1.000	4.64	2762.201	26986.623	1.279	1.0	-3.4	NO	1.000	NO	MM
4.	4 170710M3_5	Standard	2.000	4.64	6675.592	32219.420	2.590	2.0	0.3	NO	1.000	NO	MM
5	5 170710M3_6	Standard	5.000	4.64	15829.568	31939.072	6.195	4.9	-2.5	NO	1.000	NO	bb
6.48	$6170710 \mathrm{M3}$ _7	Standard	10.000	4.64	32960.660	32979.863	12.493	9.9	-0.9	NO	1.000	NO	bb
7	7 170710M3_8	Standard	50.000	4.64	144863.203	29463.150	61.459	50.4	0.9	NO	1.000	NO	bb
8 m	8 170710M3_9	Standard	100.000	4.64	289834.000	30963.135	117.008	99.8	-0.2	NO	1.000	NO	bb

Vista Analytical Laboratory

Dataset:
U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \quad Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C3-PFBA

Response Factor: 0.918451
RRF SD: 0.0228833, Relative SD: 2.49151
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: RF

Wix	\# Name Ty Type Std Conc			Area ${ }^{\text {a }}$ IS Area			Response	Conc.	$\%$ Dev Conc Fla		CoDFlag x-excluded	
1.	1 170710M3_2	Standard	12.500	1.53	7397.170	8045.280	11.493	12.5	0.1	NO	NO	bb
2×4	2 170710M3_3	Standard	12.500	1.53	7319.772	8103.498	11.291	12.3	-1.7	NO	NO	bb
3 2. ${ }^{\text {d }}$	3 170710M3_4	Standard	12.500	1.52	6882.142	7483.426	11.496	12.5	0.1	No	NO	bb
$4{ }^{4}$	4 170710M3_5	Standard	12.500	1.53	7900.523	8401.936	11.754	12.8	2.4	No	NO	bd
5 .	5 170710M3_6	Standard	12.500	1.53	7407.220	8412.924	11.006	12.0	-4.1	No	No	bb
	6 170710M3_7	Standard	12.500	1.52	7861.154	8228.657	11.942	13.0	4.0	No	No	bb
7×8	7 170710M3_8	Standard	12.500	1.53	7569.607	8207.246	11.529	12.6	0.4	No	NO	bd
8 -	8 170710M3_9	Standard	12.500	1.53	7829.357	8634.025	11.335	12.3	-1.3	NO	NO	bb

Compound name: 13C3-PFPeA

Response Factor: 1.781

RRF SD: 0.0433451, Relative SD: 2.43375
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: RF

$\overline{\text { Quantify Compound Summary Report } \quad \text { MassLynx MassLynx V4.1 SCN } 945}$ Page 10 of 19

Vista Analytical Laboratory

Dataset: U:IQ4.PRO|results1170710M31170710M3-CRV-116.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C3-PFBS

Response Factor: 0.215258
RRF SD: 0.0148395 , Relative SD: 6.89383
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: RF

-3	\# Name	Type	Std Conc	RT	Area	IS Area	sponse	Conc:	\%Dev	nc.	D Fl	xclu
4	1 170710M3_2	Standard	12.500	2.97	1829.255	8045.280	2.842	13.2	5.6	NO	NO	bb
2	2 170710M3_3	Standard	12.500	2.96	1880.541	8103.498	2.901	13.5	7.8	NO	NO	bb
3×1	3 170710M3_4	Standard	12.500	2.96	1680.475	7483.426	2.807	13.0	4.3	NO	NO	bb
4.	4 170710M3_5	Standard	12.500	2.95	1678.509	8401.936	2.497	11.6	-7.2	NO	NO	bb
5	5 170710M3_6	Standard	12.500	2.95	1827.422	8412.924	2.715	12.6	0.9	NO	NO	bb
6 4-	6 170710M3_7	Standard	12.500	2.95	1863.759	8228.657	2.831	13.2	5.2	NO	NO	bb
7×4	7 170710M3_8	Standard	12.500	2.95	1600.534	8207.246	2.438	11.3	-9.4	NO	NO	bb
8 8,	8 170710M3_9	Standard	12.500	2.95	1723.074	8634.025	2.495	11.6	-7.3	NO	NO	bb

Compound name: 13C2-PFHXA

Response Factor: 0.303893
RRF SD: 0.0120463, Relative SD: 3.964
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: RF

1 W ${ }^{2}+$	1 170710M3_2	Standard	5.000	3.20	6599.234	21818.400	1.512	5.0	-0.5	NO	NO	bb
2,	$2170710 \mathrm{M3}$-3	Standard	5.000	3.19	6260.955	21557.213	1.452	4.8	-4.4	NO	NO	bb
3	3 170710M3_4	Standard	5.000	3.19	5844.579	19500.141	1.499	4.9	-1.4	NO	NO	bb
4	4 170710M3_5	Standard	5.000	3.18	6111.841	20840.465	1.466	4.8	-3.5	NO	NO	bb
5 5ter	5 170710M3_6	Standard	5.000	3.18	6584.623	22435.646	1.467	4.8	-3.4	NO	NO	bb
6	$6170710 \mathrm{M3}{ }^{\text {¢ }} 7$	Standard	5.000	3.19	6880.506	21282.260	1.616	5.3	6.4	NO	NO	bb
	7 170710M3_8	Standard	5.000	3.19	6517.125	20826.820	1.565	5.1	3.0	NO	NO	bb
8	8 170710M3_9	Standard	5.000	3.18	6887.408	21826.197	1.578	5.2	3.8	NO	NO	bb

Dataset: U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C4-PFHpA

Response Factor: 0.305965
RRF SD: 0.00856155, Relative SD: 2.79821
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	Type	Std. Conc	RT	Area	IS Area Response		Conc. \%Dev Conc. Flag			CoD	CoD Flag	$\mathrm{x}=\mathrm{excluded}$
1	1 170710M3_2	Standard	12.500	3.45	16912.918	21818.400	3.876	12.7	1.3	NO		NO	bb
2	2 170710M3_3	Standard	12.500	3.45	15983.809	21557.213	3.707	12.1	-3.1	NO		NO	bb
3	3 170710M3_4	Standard	12.500	3.45	14729.492	19500.141	3.777	12.3	-1.2	No		NO	bb
4	4 170710M3_5	Standard	12.500	3.45	16736.117	20840.465	4.015	13.1	5.0	No.		NO	bb
	5 170710M3_6	Standard	12.500	3.44	16831.109	22435.646	3.751	12.3	-1.9	NO		NO	bb
6. ${ }^{\text {a }}$	6 170710M3_7	Standard	12.500	3.45	16406.695	21282.260	3.855	12.6	0.8	NO		NO	bb
	7 170710M3_8	Standard	12.500	3.44	15463.272	20826.820	3.712	12.1	-2.9	NO		NO	bb
8	8 170710M3_9	Standard	12.500	3.45	17039.475	21826.197	3.903	12.8	2.1	NO		NO	bb

Compound name: 1802-PFHxS

Response Factor: 0.437189
RRF SD: 0.0227029, Relative SD: 5.19292
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.29206
RRF SD: 0.0648147, Relative SD: 5.01639
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C5-PFNA

Response Factor: 0.980095
RRF SD: 0.0617584 , Relative SD: 6.30126
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	C. F	D F	cluded.
1	1 170710M3_2	Standard	12.500	3.83	23133.879	24826.572	11.648	11.9	-4.9	NO	NO	bb
2 \%	2 170710M3_3	Standard	12.500	3.82	25510.555	25407.900	12.551	12.8	2.4	NO	NO	bb
3 为	3 170710M3_4	Standard	12.500	3.82	25152.525	26987.840	11.650	11.9	-4.9	NO	NO	bb
4 ,	4 170710M3_5	Standard	12.500	3.82	27896.482	30615.023	11.390	11.6	-7.0	NO	NO	bb
5	5 170710M3_6	Standard	12.500	3.82	27575.711	27704.439	12.442	12.7	1.6	NO	NO	bb
6	6 170710M3_7	Standard	12.500	3.82	30707.572	28246.664	13.589	13.9	10.9	NO	NO	bb
7	7 170710M3_8	Standard	12.500	3.82	26401.301	25411.732	12.987	13.3	6.0	NO	NO	bb
8 ,	8 170710M3_9	Standard	12.500	3.82	28967.555	30807.039	11.754	12.0	-4.1	NO	NO	bb

Dataset:
U:IQ4.PROIresults1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \quad Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 0.0697066
RRF SD: 0.00599506, Relative SD: 8.60043
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C8-PFOS

Response Factor: 1.09812
RRF SD: 0.106578, Relative SD: 9.7055
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

Traterset	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD CoD	cluded
1.5 , what	1 170710M3_2	Standard	12.500	3.88	5370.698	4072.196	16.486	15.0	20.1	NO	NO	bb
2 2-	2 170710M3_3	Standard	12.500	3.88	5419.104	5130.696	13.203	12.0	-3.8	NO	NO	bb
3 , ${ }^{\text {ata }}$	3 170710M3_4	Standard	12.500	3.87	5346.955	4837.479	13.816	12.6	0.7	NO	NO	$b b$
4 .	4 170710M3_5	Standard	12.500	3.88	5508.184	5669.458	12.144	11.1	-11.5	NO	NO	$b b$
5.4 ara	5 170710M3_6	Standard	12.500	3.87	5282.377	5068.695	13.027	11.9	-5.1	NO	NO	$b b$
6 -	$6170710 \mathrm{M} 3+7$	Standard	12.500	3.88	5677.549	5023.010	14.129	12.9	2.9	NO	NO	$b b$
7. 4	7 170710M3_8	Standard	12.500	3.87	5678.869	4963.667	14.301	13.0	4.2	NO	NO	bb
8 8,	8 170710M3_9	Standard	12.500	3.88	5421.565	5333.926	12.705	11.6	-7.4	NO	NO	bd

Dataset:	U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered:	Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:	Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 0.927939
RRF SD: 0.0650889, Relative SD: 7.01435
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

rexamex	\# Name	Type	Std. Conc		Area IS Area		ponse	Con	\%Dev	Fla	CoDFlag	$\mathrm{x}=$ excluded
1	1 170710M3_2	Standard	12.500	3.99	28930.936	30066.424	12.028	13.0	3.7	NO	NO	bb
2 2, 4 ,	2 170710M3_3	Standard	12.500	3.99	29747.686	34644.785	10.733	11.6	-7.5	NO	NO	bb
	3 170710M3_4	Standard	12.500	3.99	31897.771	35483.492	11.237	12.1	-3.1	NO	NO	bb
	4 170710M3_5	Standard	12.500	3.99	31493.791	33241.297	11.843	12.8	2.1	NO	NO	bb
5	5 170710M3_6	Standard	12.500	4.00	29596.766	34417.320	10.749	11.6	-7.3	NO	NO	bb
6 , mkx	6170710 M 3 _7	Standard	12.500	3.99	33043.109	37874.355	10.906	11.8	-6.0	NO	NO	bb
7 \%	7 170710M3_8	Standard	12.500	3.99	30631.795	30816.412	12.425	13.4	7.1	NO	NO	bb
8.	8 170710M3_9	Standard	12.500	3.99	31463.066	30550.707	12.873	13.9	11.0	NO	NO	bb

Compound name: 13C2-PFUnA

Response Factor: 1.08271
RRF SD: 0.0782079, Relative SD: 7.22335
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

Ter	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conce	\%Dev	Conc. Flag	CoD Flag $x=$ excluded	
1 1-2.	1 170710M3_2	Standard	12.500	4.15	28555.941	29392.709	12.144	11.2	-10.3	NO	NO	bb
2.4	2 170710M3_3	Standard	12.500	4.15	35214.363	33292.914	13.221	12.2	-2.3	NO	NO	db
3	3 170710M3_4	Standard	12.500	4.15	29618.668	25046.889	14.782	13.7	9.2	NO	NO	bb
4	4 170710M3_5	Standard	12.500	4.15	32452.291	31311.639	12.955	12.0	-4.3	NO	NO	bb
5 etta	5 170710M3_6	Standard	12.500	4.15	32879.375	32131.605	12.791	11.8	-5.5	NO	NO	bb
6 -	6 170710M3_7	Standard	12.500	4.15	39593.965	33095.688	14.954	13.8	10.5	NO	NO	bb
7	7 170710M3_8	Standard	12.500	4.15	34542.293	32101.432	13.450	12.4	-0.6	NO	NO	bb
8 8-	8 170710M3_9	Standard	12.500	4.15	33371.344	29853.807	13.973	12.9	3.2	NO	NO	bb

Dataset:
U:\Q4.PROIresults1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C2-PFDoA

Response Factor: 0.129746
RRF SD: 0.0132942, Relative SD: 10.2463
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

			Std. Conc	RT	Ars Area	IS Area	ponse	Conc.	\cdots	H. F	D F	cl
	1 170710M3_2	Standard	12.500	4.31	3994.664	29392.709	1.699	13.1	4.7	NO	NO	MM
$2+$	2 170710M3_3	Standard	12.500	4.31	4336.155	33292.914	1.628	12.5	0.4	NO	NO	MM
3	3 170710M3_4	Standard	12.500	4.30	3663.755	25046.889	1.828	14.1	12.7	NO	NO	MM
4 .	4 170710M3_5	Standard	12.500	4.31	3448.438	31311.639	1.377	10.6	-15.1	NO	NO	MM
5.	5 170710M3_6	Standard	12.500	4.30	4397.531	32131.605	1.711	13.2	5.5	NO	NO	bb
6	6 170710M3_7	Standard	12.500	4.31	4609.228	33095.688	1.741	13.4	7.3	NO	NO	bb
7	7 170710M3_8	Standard	12.500	4.30	3523.270	32101.432	1.372	10.6	-15.4	NO	NO	bb
8.	8 170710M3_9	Standard	12.500	4.31	3866.813	29853.807	1.619	12.5	-0.2	NO	NO	bb

Compound name: 13C2-PFTeDA

Response Factor: 1.01816
RRF SD: 0.0659527, Relative SD: 6.47762
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc RT Area			Response		Conc. \%Dev Conc. Fla			CoD Flag $x=e x c l u d e d$	
1 .	1 170710M3_2	Standard	12.500	4.65	33198.340	29392.709	14.118	13.9	10.9	NO	NO	bb
2.	2 170710M3_3	Standard	12.500	4.65	32091.508	33292.914	12.049	11.8	-5.3	NO	NO	bb
3.	3 170710M3_4	Standard	12.500	4.64	26986.623	25046.889	13.468	13.2	5.8	NO	NO	bb
4 ,	4 170710M3_5	Standard	12.500	4.65	32219.420	31311.639	12.862	12.6	1.1	NO	NO	bb
5 Hem	5 170710M3_6	Standard	12.500	4.65	31939.072	32131.605	12.425	12.2	-2.4	NO	NO	bb
6	6 170710M3_7	Standard	12.500	4.65	32979.863	33095.688	12.456	12.2	-2.1	NO	NO	bb
	7 170710M3_8	Standard	12.500	4.64	29463.150	32101.432	11.473	11.3	-9.9	NO	NO	bb
8 -	8170710 M 3 _9	Standard	12.500	4.65	30963.135	29853.807	12.964	12.7	1.9	NO	NO	bb

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \quad Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C5-PFHxA

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:
U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 1.11022e-016, Relative SD: 1.11022e-014
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: RF

\%	\# Name	T Type	- Std. Conc	* RT	Area	IS Area	Response	Conc. $\%$ \% Dev		Conc. Flag	COD	COD Flag	$x=$ excluded
1 \%	1 170710M3_2	Standard	12.500	3.52	3795.795	3795.795	12.500	12.5	0.0	NO		NO	bb
$v^{2} x$	2 170710M3_3	Standard	12.500	3.52	3856.194	3856.194	12.500	12.5	0.0	NO		NO	bb
	3 170710M3_4	Standard	12.500	3.51	3265.055	3265.055	12.500	12.5	0.0	NO		NO	bb
-	4 170710M3_5	Standard	12.500	3.52	3804.850	3804.850	12.500	12.5	0.0	NO.		NO	bb
5 - 4	5 170710M3_6	Standard	12.500	3.51	3472.170	3472.170	12.500	12.5	0.0	NO		NO	bb
6	6 170710M3_7	Standard	12.500	3.52	3371.803	3371.803	12.500	12.5	0.0	NO		NO	bb
Wert	7 170710M3_8	Standard	12.500	3.52	3354.416	3354.416	12.500	12.5	0.0	NO		NO	bb
8 -	8 170710M3_9	Standard	12.500	3.52	3869.111	3869.111	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 4.19625e-017, Relative SD: 4.19625e-015
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\Q4.PROIresults1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \quad Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN 945

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:12 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: $5.93439 \mathrm{e}-017$, Relative SD: $5.93439 \mathrm{e}-015$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

mam	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Cone.	Dev	ne. Flag	DFl	cluded
1 -	1 170710M3_2	Standard	12.500	3.99	30066.424	30066.424	12.500	12.5	0.0	NO	NO	bb
2 ater	2 170710M3_3	Standard	12.500	3.99	34644.785	34644.785	12.500	12.5	0.0	NO	NO	bb
3 a	3 170710M3_4	Standard	12.500	3.99	35483.492	35483.492	12.500	12.5	0.0	NO	NO	bb
4	4 170710M3_5	Standard	12.500	3.99	33241.297	33241.297	12.500	12.5	0.0	NO	NO	bb.
5 medret	5 170710M3_6	Standard	12.500	3.99	34417.320	34417.320	12.500	12.5	0.0	NO	NO	bb
6	6 170710M3_7	Standard	12.500	4.00	37874.355	37874.355	12.500	12.5	0.0	NO	NO	bb
7	7 170710M3_8	Standard	12.500	3.99	30816.412	30816.412	12.500	12.5	0.0	NO	NO	bb
8 8icm	8 170710M3_9	Standard	12.500	3.99	30550.707	30550.707	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C7-PFUnA

Response Factor: 1
RRF SD: 1.18688e-016, Relative SD: 1.18688e-014
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1	
Vista Analytical Laboratory	
Dataset:	Untitled
Last Altered:	Tuesday, July 11, 2017 17:10:51 Pacific Daylight Time
Printed:	Tuesday, July 11, 2017 17:12:41 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 17:05:26 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46

Compound name: PFBA

Quantify Compound Summary Report \quad MassLynx MassLynx V4.1	
Vista Analytical Laboratory	
Dataset:	Untitled
Last Altered:	Tuesday, July 11, 2017 17:10:51 Pacific Daylight Time
Printed:	Tuesday, July 11, 2017 17:12:41 Pacific Daylight Time

Compound name: PFBA

	Name	Mmaymer	Acq. Date	Acq Time
32	- ${ }^{\text {aty }}$ 170710M3_32	IPA	10-Jul-17	21:58:44
33	IT: ${ }^{\text {a }}$ 170710M3_33	ST170710M3-9 PFC CS3 17G1008	10-Jul-17	22:09:22
34	U 5	IPA	10-Jul-17	22:20:01
35	[2 : ${ }^{\text {a }}$ 170710M3_35	1700804-03 IRPSite5-GW-FD01-20170629 0....	10-Jul-17	22:31:27
36	- 170710M3_36	1700804-04 IRPSite33-GW-FRB01-20170629...	10-Jul-17	22:42:07
	4 ${ }^{\text {a }}$	1700804-05 IRPSite33-GW-11MW204D-2017...	10-Jul-17	22:52:45
38	470710M3_38	1700804-06 IRPSite33-GW-11MW204S-2017...	10-Jul-17	23:03:24
39	170710М3_39	1700804-07 Bldg 110-GW-11MW205D-20170...	10-Jul-17	23:14:02
40	170710M3 40	1700804-08 Bldg 110-GW-FRB01-20170629 0...	10-Jul-17	23:24:41
41	-170710M3_41	1700804-09 Bldg 110-GW-11MW205S-20170...	10-Jul-17	23:35:19
42	- $=170710 \mathrm{M3}$ _42	1700804-10 IRPSite7-GW-07GW102-201706...	10-Jul-17	23:45:57
43	170710M3_43	1700804-11 IRPSite5-GW-04GW82-2017062.	10-Jul-17	23:56:36
44	170710M3_44	1700751-01RE1 NH0100960_10.23355	11-Jul-17	00:07:41
45	170710M3_45	IPA	11-Jul-17	00:18:50
46	170710M3_46	ST170710M3-10 PFC CS3 17G1008	11-Jul-17	00:29:28
47	- :4 170710М3_47	IPA	11-Jul-17	00:40:16
48	[14: ${ }^{\text {a }}$ 170710M3_48	1700751-02RE1 NH0100960_E 0.24913	11-Jul-17	00:51:03
49	170710M3_49	1700751-03RE1 NH0100901_10.25207	11-Jul-17	01:01:51
50	170710M3_50	1700751-04RE1 NH0100901_E 0.24547	11-Jul-17	01:12:29
51	-	1700751-05RE1 NH0100668_1 0.22393	11-Jul-17	01:23:08
52	12: ${ }^{\text {ax }} 170710 \mathrm{M3} 352$	1700751-06RE1 NH0100668_E 0.24262	11-Jul-17	01:33:46
53	170710M3_53	1700751-07RE1 NH0101303_10.05246	11-Jul-17	01:44:33
54	170710М3_54	1700751-08RE1 NH0101303_E 0.24891	11-Jul-17	01:55:11
55	170710м3_55	1700751-09RE1 NH0101311_10.23975	11-Jul-17	02:06:00
56	170710M3_56	1700751-10RE1 NH0101311_E 0.25554	11-Jul-17	02:17:45
	4. ${ }^{\text {a }}$ (170710M3_57	1700752-01RE1 STP-MW-71-061917 0.11831	11-Jul-17	02:28:31
	170710M3_58	IPA	11-Jul-17	02:39:10
59	- + + 170710M3_59	ST170710M3-11 PFC CS3 17G1008	11-Jul-17	02:49:48

Dataset: U:IQ4.PRO|results1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L16_7-10-17.mdb 11 Jul 2017 14:40:20

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-10-17-L16.cdb 11 Jul 2017 17:05:46
Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999893, \mathrm{r}^{\wedge} 2=0.999786$
Calibration curve: 1.28141 * $x+0.357618$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO|results1170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time Printed: \quad Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFPeA
Correlation coefficient: $\mathrm{r}=0.999846, \mathrm{r}^{\wedge} 2=0.999691$
Calibration curve: 1.10816 * $x+0.0226306$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
 U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld

Last Altered:
Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $\mathrm{r}=0.999477, \mathrm{r}^{\wedge} 2=0.998954$
Calibration curve: 2.28212 * $x+-0.143002$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\Q4.PROIresults\170710M3\170710M3-CRV-I16.qld

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999918, \mathrm{r}^{\wedge} 2=0.999836$
Calibration curve: 1.63818 * $x+0.0563003$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170710M3\170710M3-CRV-I16.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, July 11, } 2017 \text { 17:05:48 Pacific Daylight Time } \\ \text { Printed: } & \text { Tuesday, July 11, } 2017 \text { 17:07:39 Pacific Daylight Time }\end{array}$ Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999627, \mathrm{r}^{\wedge} 2=0.999254$
Calibration curve: 1.43595 * $x+0.0332012$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report
 Vista Analytical Laboratory Q1

Dataset: U:IQ4.PROIresults\170710M3\170710M3-CRV-116.qld

Last Altered:
 Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
 Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.998220, \mathrm{r}^{\wedge} 2=0.996443$
Calibration curve: 1.95713 * $x+-0.172436$
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report MassLynx MassLynx V4.1 SCN 945

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: \quad Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: $\mathrm{r}=0.999767, \mathrm{r}^{\wedge} 2=0.999534$
Calibration curve: 1.13618 * $x+0.150469$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered:
Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFNA
Correlation coefficient: $\mathrm{r}=0.999802, \mathrm{r}^{\wedge} 2=0.999604$
Calibration curve: 1.36368 *x + 0.0901055
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report MassLynx MassLynx V4.1 SCN 945

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time Printed: \quad Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.999222, \mathrm{r}^{\wedge} 2=0.998444$
Calibration curve: 1.18859 * $x+-0.127408$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFOS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999061$
Calibration curve: $0.00185446{ }^{*} x^{\wedge} 2+1.10476$ * $x+0.0290301$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, July 11, } 2017 \text { 17:05:48 Pacific Daylight Time } \\ \text { Printed: } & \text { Tuesday, July 11, } 2017 \text { 17:07:39 Pacific Daylight Time }\end{array}$

Compound name: PFDA

Correlation coefficient: $\mathrm{r}=0.999516, \mathrm{r}^{\wedge} 2=0.999032$
Calibration curve: 1.56384 * $x+-0.255433$
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Dataset: U:IQ4.PRO\results1170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999111$
Calibration curve: $0.00122021^{*} x^{\wedge} 2+0.942287^{*} x+0.216781$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed:
Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998301$
Calibration curve: $8.31559 \mathrm{e}-005$ * $\mathrm{x}^{\wedge} 2+0.0878672{ }^{*} \mathrm{x}+0.0164965$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\170710M3\170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
Printed: Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997169$
Calibration curve: $0.00815082^{*} x^{\wedge} 2+0.7357477^{*} x+0.0266157$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time
 Printed:
 Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFTrDA
Correlation coefficient: $\mathbf{r}=0.999219, r^{\wedge} 2=0.998438$
Calibration curve: 13.2156 * $x+0.215995$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\Q4.PRO\results\170710M31170710M3-CRV-I16.qld
Last Altered: Tuesday, July 11, 2017 17:05:48 Pacific Daylight Time Printed Tuesday, July 11, 2017 17:07:39 Pacific Daylight Time

Compound name: PFTeDA
Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999934$
Calibration curve: $-0.000916009^{*} x^{\wedge} 2+1.26347^{*} x+0.0596778$
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_(11_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42

Compound name: PFBA

Correlation coefficient: $\mathrm{r}=0.999903$, $\mathrm{r}^{\wedge} 2=0.999805$
Calibration curve: 0.812368 * $x+0.0615352$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Γ	\# Name	Std. Conc	RT. Resp		IS Resp	Conc	Dev	RRF
1.4.4 $=$	1 170711G3_2	0.250	1.72	3.49e2	1.58 e 4	0.264	5.7	1.10
2 2. ${ }^{\text {2 }}$	2 170711G3_3	0.500	1.74	5.86 e 2	1.55 e 4	0.505	1.1	0.944
3.4	$3170711 \mathrm{G3}$-4	1.00	1.73	1.21 e 3	1.81 e 4	0.951	-4.9	0.834
$4 x+5=$	4 170711G3_5	2.00	1.73	2.38 e 3	1.72 e 4	2.05	2.4	0.863
5	5 170711G3_6	5.00	1.73	5.55 e 3	1.70 e 4	4.96	-0.9	0.818
6	6 170711G3_7	10.0	1.73	9.97 e 3	1.59 e 4	9.56	-4.4	0.783
7	7 170711G3_8	50.0	1.73	5.56e4	1.69 e 4	50.6	1.2	0.823
8.atisum	$8170711 \mathrm{G3}$ _9	100	1.73	1.04 e 5	1.60 e 4	99.9	-0.1	0.812

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999205, \mathrm{r}^{\wedge} 2=0.998411$
Calibration curve: 1.19919 * $x+-0.0457496$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

5	\# Name	- Std Conc	- $\mathrm{S}_{\text {W }}$ RT	Resp IS Resp		Conc - \% ${ }^{\text {\% Dev }}$		RRF
,	1 170711G3_2	0.250	2.66	1.45 e 2	6.49 e 3	0.270	8.1	1.11
$2 \times$	2 170711G3_3	0.500	2.66	2.85 e 2	6.41 e 3	0.502	0.4	1.11
$3-4$	3 170711G3_4	1.00	2.66	6.45 e 2	6.98 e 3	1.00	0.1	1.15
44^{4}	4 170711G3_5	2.00	2.66	1.12e3	6.82e3	1.75	-12.6	1.02
5 5-4.	5 170711G3_6	5.00	2.66	2.99e3	6.09 e 3	5.15	3.0	1.23
6	6 170711G3_7	10.0	2.66	6.17e3	6.20 e 3	10.4	4.1	1.24
7	7 170711G3_8	50.0	2.66	2.92e4	6.43 e 3	47.3	-5.4	1.13
8	8 170711G3_9	100	2.66	5.32e4	5.42e3	102	2.4	1.23

Vista Analytical Laboratory Q2
Dataset:
U:IG1.PROUResultsL2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathbf{r}=0.999521,{ }^{\wedge} \wedge=0.999042$
Calibration curve: 2.23981 * x +-0.119881
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

-	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Der mai RRF	
$1-2$	1 170711G3_2	0.250	2.94	1.58 e 2	3.78 e 3	0.287	14.9	2.09
2-	2 170711G3_3	0.500	2.93	2.53 e 2	3.62 e 3	0.444	-11.2	1.75
3.	3 170711G3_4	1.00	2.93	6.93e2	4.02 e 3	1.02	1.7	2.16
$4{ }^{4}+$	4 170711G3_5	2.00	2.93	1.40 e 3	3.91 e3	2.05	2.3	2.23
	5 170711G3_6	5.00	2.93	3.08e3	3.39 e 3	5.13	2.6	2.27
6	6 170711G3_7	10.0	2.93	5.58 e 3	3.54 e 3	8.85	-11.5	1.97
W	7 170711G3_8	50.0	2.94	2.76 e 4	3.07 e 3	50.3	0.5	2.25
8 -	8 170711G3_9	100	2.94	5.08 e 4	2.82e3	101	0.7	2.25

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999444, \mathrm{r}^{\wedge} 2=0.998888$
Calibration curve: 1.90952 * $x+0.14452$
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1.3	1 170711G3_2	0.250	3.32	2.43 e 2	6.03 e 3	0.188	-24.9	2.01
2	2 170711G3_3	0.500	3.32	5.14e2	5.41 e 3	0.546	9.1	2.37
+2\%	3 170711G3_4	1.00	3.31	1.01e3	6.15 e 3	0.997	-0.3	2.05
4	4 170711G3_5	2.00	3.32	2.17e3	5.99 e 3	2.29	14.5	2.26
5.	5 170711G3_6	5.00	3.32	4.55 e 3	5.79 e 3	5.07	1.5	1.97
6 6.	6 170711G3_7	10.0	3.31	8.97e3	5.92e3	9.85	-1.5	1.89
7 7eters	7 170711G3_8	50.0	3.32	4.41e4	5.56 e 3	51.9	3.8	1.98
8 83+14	8 170711G3_9	100	3.32	7.99e4	5.34 e 3	97.9	-2.1	1.87

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999678, \mathrm{r}^{\wedge} 2=0.999357$
Calibration curve: 2.37086 * x + 0.00117983
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

1								
1.4 .4	1 170711G3_2	0.250	3.82	3.62 e 2	7.37 e 3	0.259	3	2.46
2 2.	2 170711G3_3	0.500	3.82	7.13 e 2	7.16e3	0.524	4.9	2.49
3	3 170711G3_4	1.00	3.82	1.64e3	8.40 e 3	1.03	3.0	2.44
$4{ }^{4}$	4 170711G3_5	2.00	3.83	2.94 e 3	8.04 e 3	1.93	-3.6	2.29
$5 \cdot \mathrm{SH}$	5 170711G3_6	5.00	3.83	6.53 e 3	7.67e3	4.49	-10.2	2.13
6.	6 170711G3_7	10.0	3.83	1.38 e 4	7.22 e 3	10.1	0.6	2.39
17	7 170711G3_8	50.0	3.83	6.29 e 4	6.46 e 3	51.4	2.7	2.44
8.	$8170711 \mathrm{G3}$-9	100	3.83	1.13e5	6.02e3	99.1	-0.9	2.35

Compound name: PFHxS

Correlation coefficient: $r=0.999359, r^{\wedge} 2=0.998718$
Calibration curve: 2.089 * x +0.0768621
Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

-	\# Name 4 - ${ }^{\text {a }}$	Sta. Cone	RT.	Resp	IS Resp	Concer	\%Dev	RRF
$1-5$	1 170711G3_2	0.250	3.95	1.52 e 2	3.62 e 3	0.214	-14.4	2.10
	2 170711G3_3	0.500	3.95	3.06e2	3.28 e 3	0.522	4.4	2.33
3.	3 170711G3_4	1.00	3.95	6.74 e 2	3.99 e 3	0.975	-2.5	2.11
4	4 170711G3_5	2.00	3.95	1.27e3	3.53e3	2.11	5.7	2.25
5	5 170711G3_6	5.00	3.95	3.06e3	3.54 e 3	5.14	2.8	2.16
6 6 mix	6 170711G3_7	10.0	3.95	5.64 e 3	3.30 e 3	10.2	2.1	2.14
7-3	7 170711G3_8	50.0	3.95	2.86 e 4	3.27 e 3	52.3	4.7	2.19
$8 \mathrm{~B}=$	8 170711G3_9	100	3.95	5.14 e 4	3.16e3	97.2	-2.8	2.03

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder|170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.999784, \mathrm{r}^{\wedge} 2=0.999567$
Calibration curve: $0.87047{ }^{*} \mathrm{x}+0.0781634$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

5	\# Name	Sctar Std. Conc	RT	Resp	IS Resp	Conc:	\%Dev	RRF
1.14	1 170711G3_2	0.250	4.24	3.08 e 2	1.58 e 4	0.189	-24.2	0.972
$2 \sim$	2 170711G3_3	0.500	4.23	6.61e2	1.55 e 4	0.523	4.6	1.07
3	3 170711G3_4	1.00	4.23	1.61e3	1.90 e 4	1.13	12.6	1.06
	4 170711G3_5	2.00	4.23	2.62e3	1.69 e 4	2.13	6.5	0.966
5	5 170711G3_6	5.00	4.23	5.77e3	1.62 e 4	5.04	0.8	0.893
6.	6 170711G3_7	10.0	4.23	1.26e4	1.81 e 4	9.90	-1.0	0.869
7×2	7 170711G3_8	50.0	4.24	6.04e4	$1.70{ }^{\text {e }}$	50.9	1.8	0.888
8 8	$8170711 \mathrm{G3}$-9	100	4.24	1.09 e 5	1.59 e 4	98.9	-1.1	0.862

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998825$
Calibration curve: $-0.00319585^{*} x^{\wedge} 2+2.90085$ * $x+-0.200852$
Response type: Internal Std (Ref 18), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

1.	1 170711G3_2	0.250	4.57	2.30 e 2	5.19 e 3	0.261	4.3	2.22
2 tan	2 170711G3_3	0.500	4.57	5.05 e 2	4.82 e 3	0.520	4.1	2.62
3 3	$3170711 \mathrm{G3}$-4	1.00	4.57	1.24 e 3	5.54e3	1.04	3.8	2.81
4	4 170711G3_5	2.00	4.57	2.50 e 3	5.55 e 3	2.02	0.9	2.82
5 - ${ }^{\text {a }}$	5 170711G3_6	5.00	4.57	4.65 e 3	4.55 e 3	4.49	-10.2	2.55
6-3	6 170711G3_7	10.0	4.57	1.07 e 4	5.00 e 3	9.42	-5.8	2.68
7	7 170711G3_8	50.0	4.57	5.65 e 4	4.97 e 3	52.0	4.1	2.84
$8 \times$	8 170711G3_9	100	4.57	9.65 e 4	4.72 e 3	98.9	-1.1	2.56

Vista Analytical Laboratory Q2
Dataset:
U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: $\mathrm{r}=0.999086, \mathrm{r}^{\wedge} 2=0.998172$
Calibration curve: 0.598169 * $x+-0.0823444$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

usmar	\# Name wamenta Conc		TmT	Resp IS Resp		Conc		RRF
1.4.	1 170711G3_2	0.250	4.62	3.18 e 1	5.02e3	0.270	7.9	0.316
2.	2 170711G3_3	0.500	4.62	8.17e1	5.04 e 3	0.476	-4.7	0.405
3 m	3 170711G3_4	1.00	4.63	2.56 e 2	5.98 e 3	1.03	3.3	0.536
+240	4 170711G3_5	2.00	4.63	4.27 e 2	5.14 e 3	1.87	-6.4	0.519
5	5 170711G3_6	5.00	4.63	1.01e3	4.82 e 3	4.53	-9.3	0.526
6 6-mitit	$6170711 \mathrm{G3}$ _7	10.0	4.63	2.26 e 3	4.48 e 3	10.7	6.9	0.631
$7{ }^{7}+$	7 170711G3_8	50.0	4.63	1.31 e 4	5.25 e 3	52.5	5.0	0.626
8 8	8 170711G3_9	100	4.63	2.48 e 4	5.33 e 3	97.4	-2.6	0.582

Compound name: PFDA

Coefficient of Determination: R^2 $=0.998620$
Calibration curve: $8.29904 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.207158$ * $\mathrm{x}+0.0227635$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

S	\# Name	d. Con	RT	Resp	IS Resp	Conc	\%Dev	RRF
14.	1 170711G3_2	0.250	4.86	4.10 e 1	8.43 e 3	0.184	-26.6	0.243
$2=$	2 170711G3_3	0.500	4.86	7.86 e 1	8.93 e3	0.421	-15.7	0.220
3	3 170711G3_4	1.00	4.86	2.54 e 2	1.13 e 4	1.25	24.7	0.281
$4=4$	4 170711G3_5	2.00	4.86	3.79 e 2	9.78 e 3	2.23	11.3	0.242
5 matar	5 170711G3_6	5.00	4.86	8.46 e 2	9.56 e 3	5.22	4.4	0.221
6	6 170711G3_7	10.0	4.86	1.52 e 3	8.62 e 3	10.5	5.0	0.221
	7 170711G3_8	50.0	4.86	9.66 e 3	1.19 e 4	48.1	-3.8	0.204
8.	8 170711G3_9	100	4.86	1.86 e 4	1.07e4	101	0.8	0.218

Dataset:
U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C3-PFBA

Response Factor: 1.34288
RRF SD: 0.0418579, Relative SD: 3.11703
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: RF

5 ${ }^{3}$	\# Name	Sta Conc	T RT	Resp IS Resp \% Conc. \% . . RRE				
1-3	1 170711G3_2	12.5	1.73	1.58 e 4	1.23 e 4	12.0	-4.1	1.29
	2 170711G3_3	12.5	1.73	1.55 e 4	1.20 e 4	12.0	-3.7	1.29
3 3	3 170711G3_4	12.5	1.73	1.81e4	1.33 e 4	12.6	1.1	1.36
4 4. ${ }^{2}$	4 170711G3_5.	12.5	1.73	1.72e4	1.30 e 4	12.3	-1.7	1.32
5\%	5 170711G3_6	12.5	1.73	1.70 e 4	1.22 e 4	12.9	3.2	1.39
6.	6 170711G3_7	12.5	1.73	1.59e4	1.14 e 4	13.0	3.8	1.39
7	7 170711G3_8	12.5	1.73	1.69 e 4	1.23 e 4	12.8	2.6	1.38
88	8 170711G3_9	12.5	1.73	1.60 e 4	1.20 e 4	12.3	-1.3	1.33

Compound name: 13C3-PFBS

Response Factor: 0.25962

RRF SD: 0.0207298 , Relative SD: 7.98467
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

	4 Name	Con	RT	Resp	IS Resp	Conc.	\%Dev	RRF
4	1 170711G3_2	12.5	2.93	3.78 e 3	1.35 e 4	13.4	7.6	0.279
2.	2 170711G3_3	12.5	2.93	3.62e3	1.34 e 4	13.0	3.9	0.270
3	3 170711G3_4	12.5	2.93	4.02e3	1.47 e 4	13.2	5.5	0.274
$4{ }^{3}$ -	4 170711G3_5	12.5	2.93	3.91e3	1.44 e 4	13.0	4.3	0.271
5 - 5 dite	5 170711G3_6	12.5	2.93	3.39e3	1.34 e 4	12.2	-2.3	0.254
	6 170711G3_7	12.5	2.93	3.54e3	1.30 e 4	13.1	5.0	0.272
7 \% 4er	7 170711G3_8	12.5	2.93	3.07e3	1.38 e 4	10.7	-14.2	0.223
$8.4=$	8 170711G3_9	12.5	2.94	2.82e3	1.20 e 4	11.3	-9.7	0.235

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.469572
RRF SD: 0.0107677, Relative SD: 2.29309
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		+ $\mathrm{RT}^{\text {dem}}$					RRF
1 1	1 170711G3_2	12.5	2.66	6.49 e 3	1.35 e 4	12.8	2.1	0.480
$2 \times$	2 170711G3_3	12.5	2.66	6.41 e3	1.34 e 4	12.7	1.8	0.478
3	3 170711G3_4	12.5	2.66	6.98 e 3	1.47 e 4	12.7	1.3	0.476
4.4	4 170711G3_5	12.5	2.66	6.82e3	1.44e4	12.6	0.6	0.472
5	5 170711G3_6	12.5	2.66	6.09e3	1.34 e 4	12.1	-2.9	0.456
6.54	6 170711G3_7	12.5	2.66	6.20e3	1.30 e 4	12.7	1.6	0.477
7 7-2	7 170711G3_8	12.5	2.66	6.43e3	1.38 e 4	12.4	-0.5	0.467
8 -	8 170711G3_9	12.5	2.66	5.42e3	1.20 e 4	12.0	-4.0	0.451

Compound name: 13C2-PFHxA
 Response Factor: 0.427462

RRF SD: 0.019949, Relative SD: 4.66684
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

		Std. Conc	RT. Resp		IS Resp	Conc. $\%$ \% Dev \quad RRF		
1 ,	1 170711G3_2	12.5	3.32	6.03 e 3	1.35 e 4	13.0	4.3	0.446
2.	2 170711G3_3	12.5	3.32	5.41e3	1.34 e 4	11.8	-5.6	0.404
	3 170711G3_4	12.5	3.32	6.15e3	1.47 e 4	12.3	-2.0	0.419
4	4 170711G3_5	12.5	3.32	5.99 e 3	1.44 e 4	12.1	-2.9	0.415
5	5 170711G3_6	12.5	3.32	5.79 e 3	1.34 e 4	12.7	1.4	0.434
6 6.	6 170711G3_7	12.5	3.31	5.92 e 3	1.30 e 4	13.3	6.5	0.455
17	7 170711G3_8	12.5	3.32	5.56 e 3	1.38 e 4	11.8	-5.6	0.404
$8{ }^{8}+3$	8170711 G3_9	12.5	3.32	5.34 e 3	1.20 e 4	13.0	3.9	0.444

Dataset:
U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered:
Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C4-PFHpA

Response Factor: 0.538432
RRF SD: 0.0364647, Relative SD: 6.77239
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Resp IS Resp Conc					RRF
1 m	1 170711G3_2	12.5	3.83	7.37e3	1.35 e 4	12.6	1.1	0.544
2	2 170711G3_3	12.5	3.82	7.16 e 3	1.34 e 4	12.4	-0.9	0.534
3 - ${ }^{\text {atam}}$	3 170711G3_4	12.5	3.82	8.40 e 3	1.47 e 4	13.3	6.2	0.572
4	4 170711G3_5	12.5	3.83	8.04 e 3	1.44 e 4	12.9	3.4	0.557
5. ${ }^{\text {a }}$ (4x	5 170711G3_6	12.5	3.83	7.67 e 3	1.34 e 4	13.3	6.7	0.575
6	$6170711 \mathrm{G3}$-7	12.5	3.83	7.22 e 3	1.30 e 4	12.9	3.2	0.556
7.	7 170711G3_8	12.5	3.83	6.46 e 3	1.38 e 4	10.9	-12.9	0.469
8 M	$8170711 \mathrm{G3}$-9	12.5	3.83	6.02 e 3	1.20 e 4	11.6	-6.9	0.501

Compound name: 1802-PFHxS

Response Factor: 0.465365
RRF SD: 0.020374, Relative SD: 4.37807
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

-4. ${ }^{\text {che }}$	\# Name	Std. Conc	RT Resp		IS Resp	Conc.	\%Dev menerra	
1.4	1 170711G3_2	12.5	3.95	3.62e3	8.05 e 3	12.1	-3.4	0.449
$2 \times$	2 170711G3_3	12.5	3.95	3.28 e 3	7.22 e 3	12.2	-2.4	0.454
3.0	3 170711G3_4	12.5	3.95	3.99 e 3	8.19 e 3	13.1	4.6	0.487
$4{ }^{\text {a }}$	4 170711G3_5	12.5	3.95	3.53e3	7.72e3	12.3	-1.9	0.457
5 - 5^{2+2}	5 170711G3_6	12.5	3.95	3.54 e 3	7.54e3	12.6	0.8	0.469
64×4	6 170711G3_7	12.5	3.95	3.30 e 3	7.11e3	12.5	-0.3	0.464
7.4	7 170711G3_8	12.5	3.95	3.27 e 3	7.42e3	11.8	-5.3	0.441
8 \%	$8170711 \mathrm{G3}$ _9	12.5	3.95	3.16e3	6.29 e 3	13.5	7.9	0.502

Dataset: U:IG1.PROIResults\2017\New folderI170711G3-CRV.qid
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 3.71264
RRF SD: 0.217223, Relative SD: 5.85091
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

-3	\# Name	* Sitd. Conc	Ter RT	Resp	15 Resp	Conc.		RRF
$1 \times$	1 170711G3_2	12.5	4.23	1.58 e 4	4.49 e 3	11.9	-5.0	3.53
2 $2 \times$	2 170711G3_3	12.5	4.23	1.55 e 4	4.55 e 3	11.5	-8.2	3.41
3	3 170711G3_4	12.5	4.23	1.90 e 4	5.04 e 3	12.7	1.4	3.76
	4 170711G3_5	12.5	4.23	1.69 e 4	4.57 e 3	12.5	-0.1	3.71
5 ,	5 170711G3_6	12.5	4.23	1.62 e 4	4.55 e 3	12.0	-4.3	3.55
6 W,	6 170711G3_7	12.5	4.23	1.81e4	4.51 e 3	13.5	8.3	4.02
7×1	7 170711G3_8	12.5	4.23	1.70e4	4.57 e 3	12.5	0.3	3.72
8 - ${ }^{3}$	8 170711G3_9	12.5	4.23	1.59 e 4	3.97 e 3	13.5	7.6	4.00

Compound name: 13C5-PFNA

Response Factor: 0.928619

RRF SD: 0.070955, Relative SD: 7.64091
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

1.	1 170711G3_2	12.5	4.57	5.19e3	5.57e3	12.5	0.2	0.931
2	2 170711G3_3	12.5	4.57	4.82e3	5.04 e 3	12.9	3.2	0.958
3	3 170711G3_4	12.5	4.57	5.54e3	5.90 e 3	12.6	1.1	0.939
4.4	4 170711G3_5	12.5	4.57	5.55e3	5.17e3	14.5	15.7	1.07
$5 \mathrm{~L}+\mathrm{T}$	5 170711G3_6	12.5	4.57	4.55 e 3	5.05 e 3	12.1	-3.0	0.900
	6 170711G3_7	12.5	4.57	5.00e3	5.41 e 3	12.4	-0.5	0.924
	7 170711G3_8	12.5	4.57	4.97e3	5.75 e 3	11.6	-7.0	0.863
8 8	$8170711 \mathrm{G3}$-9	12.5	4.57	4.72e3	5.62 e 3	11.3	-9.6	0.839

Dataset: U:IG1.PRO\Results\2017\New folderl170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: \quad Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C2- PFDA

Response Factor: 2.04259
RRF SD: 0.105833, Relative SD: 5.18132
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: RF

1	\# Name	Std. Cone			IS Resp	\%Dev		RRF
	1 170711G3_2	12.5	4.86	8.43 e 3	4.50 e 3	11.5	-8.2	1.88
2	2 170711G3_3	12.5	4.86	8.93 e 3	4.25 e3	12.9	2.8	2.10
3-6. ${ }^{2}+4$	3 170711G3_4	12.5	4.85	1.13e4	5.46 e 3	12.7	1.2	2.07
4	4 170711G3_5	12.5	4.86	9.78 e 3	4.98 e 3	12.0	-3.8	1.96
5.8	5 170711G3_6	12.5	4.86	9.56 e 3	4.69 e 3	12.5	-0.2	2.04
6.4	6 170711G3_7	12.5	4.86	8.62 e 3	4.37 e 3	12.1	-3.4	1.97
7 \% 2	7 170711G3_8	12.5	4.86	1.19e4	5.34 e 3	13.6	8.8	2.22
8 ,	8 170711G3_9	12.5	4.86	1.07e4	5.09 e 3	12.8	2.8	2.10

Compound name: 13C8-PFOS

Response Factor: 1.026
RRF SD: 0.0446111, Relative SD: 4.34807
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\G1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1

RRF SD: $8.3925 \mathrm{e}-017$, Relative SD: $8.3925 \mathrm{e}-015$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: RF

4. ${ }^{\text {a }}$	\# Name	Std. Conc	- RT	Resp ${ }^{\text {d }}$	IS Resp	Conc.	Dev	RRF
1-2	1 170711G3_2	12.5	1.72	1.23 e 4	1.23 e 4	12.5	0.0	1.00
2	2 170711G3_3	12.5	1.72	1.20 e4	1.20 e 4	12.5	0.0	1.00
3 m	3 170711G3_4	12.5	1.72	1.33 e 4	1.33 e 4	12.5	0.0	1.00
$4 \times \square$	4 170711G3_5	12.5	1.73	1.30 e4	1.30 e 4	12.5	0.0	1.00
	5 170711G3_6	12.5	1.72	1.22 e 4	1.22 e 4	12.5	0.0	1.00
6 \% ${ }^{\text {a }}$	$6170711 \mathrm{G3}$ _7	12.5	1.73	1.14 e 4	1.14 e 4	12.5	0.0	1.00
7-1.ted	7 170711G3_8	12.5	1.73	1.23 e 4	1.23 e 4	12.5	0.0	1.00
8 8312	8 170711G3_9	12.5	1.73	1.20 e 4	1.20 e 4	12.5	0.0	1.00

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std Con	RT	Resp	IS Resp	Ex Conc.	\%Dev	RRF
1	1 170711G3_2	12.5	3.32	1.35 e 4	1.35 e 4	12.5	0.0	1.00
2.410	2 170711G3_3	12.5	3.32	1.34 e 4	1.34 e 4	12.5	0.0	1.00
3 W TME	3 170711G3_4	12.5	3.32	1.47e4	1.47 e 4	12.5	0.0	1.00
$4 \times 34{ }^{\text {a }}$	4 170711G3_5	12.5	3.32	1.44 e 4	1.44 e 4	12.5	0.0	1.00
5×4	$5170711 \mathrm{G3}$ _6	12.5	3.32	1.34 e 4	1.34 e 4	12.5	0.0	1.00
6.	$6170711 \mathrm{G3}$ _7	12.5	3.31	1.30 e 4	1.30 e 4	12.5	-0.0	1.00
	7 170711G3_8	12.5	3.32	1.38 e 4	1.38 e 4	12.5	0.0	1.00
8 -	8 170711G3_9	12.5	3.32	1.20 e 4	1.20 e 4	12.5	0.0	1.00

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 4.19625e-017, Relative SD: 4.19625e-015
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

- 7 \# Name		Std. Conc	RT. Resp		IS Resp	Conc.	\%Dev	RRF
34:	1 170711G3_2	12.5	3.95	8.05e3	8.05e3	12.5	0.0	1.00
14.	2 170711G3_3	12.5	3.95	7.22e3	7.22 e 3	12.5	-0.0	1.00
24.te	3 170711G3_4	12.5	3.95	8.19e3	8.19 e 3	12.5	0.0	1.00
4.3 ra	4 170711G3_5	12.5	3.95	7.72e3	7.72e3	12.5	0.0	1.00
4.	5 170711G3_6	12.5	3.95	7.54e3	7.54 e 3	12.5	0.0	1.00
6 6,	6 170711G3_7	12.5	3.95	7.11e3	7.11e3	12.5	0.0	1.00
7×1	7 170711G3_8	12.5	3.95	7.42 e 3	7.42 e 3	12.5	0.0	1.00
8 \%	8 170711G3_9	12.5	3.95	6.29e3	6.29 e 3	12.5	0.0	1.00

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name mindmeder	Std. Con	RT	Resp	IS Resp	Conc	Sev	RRF
1.	1 170711G3_2	12.5	4.23	4.49e3	4.49 e 3	12.5	0.0	1.00
2.4	2 170711G3_3	12.5	4.23	4.55e3	4.55 e 3	12.5	0.0	1.00
3	3 170711G3_4	12.5	4.23	5.04e3	5.04 e 3	12.5	0.0	1.00
4 4.	4 170711G3_5	12.5	4.23	4.57e3	4.57 e 3	12.5	0.0	1.00
	5 170711G3_6	12.5	4.23	4.55 e 3	4.55 e 3	12.5	0.0	1.00
6	6 170711G3_7	12.5	4.23	4.51 e 3	4.51 e 3	12.5	0.0	1.00
$7 \times$	7 170711G3_8	12.5	4.24	4.57 e 3	4.57 e 3	12.5	0.0	1.00
8 -	8 170711G3_9	12.5	4.23	3.97e3	3.97e3	12.5	0.0	1.00

Quantify Compound Summary Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q2
Dataset: U:IG1.PROIResultsL2017INew folderl170711G3-CRV.qld
Last Altered:
Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

5	\# Name	Sid. Conc	\|R** RT	Resp ${ }^{\text {a }}$ IS Resp		Conc \% \% = - Rev		
1.5	1 170711G3_2	12.5	4.57	5.57e3	5.57e3	12.5	0.0	1.00
2.	2 170711G3_3	12.5	4.57	5.04e3	5.04 e 3	12.5	0.0	1.00
3 H - ${ }^{\text {a }}$	3 170711G3_4	12.5	4.57	5.90e3	5.90 e 3	12.5	0.0	1.00
4, ${ }^{\text {a }}$ +	4 170711G3_5	12.5	4.57	5.17e3	5.17e3	12.5	0.0	1.00
5	5 170711G3_6	12.5	4.57	5.05 e 3	5.05 e 3	12.5	0.0	1.00
6 W	6 170711G3_7	12.5	4.57	5.41 e 3	5.41 e 3	12.5	0.0	1.00
7 -3.4ytit	7 170711G3_8	12.5	4.57	5.75 e 3	5.75 e 3	12.5	0.0	1.00
$8 \quad+5$	8 170711G3_9	12.5	4.57	5.62e3	5.62e3	12.5	0.0	1.00

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	- Std. Conc	RT	Resp	IS Resp	Conc	Jev	RRF
	1 170711G3_2	12.5	4.63	5.27 e 3	5.27 e 3	12.5	0.0	1.00
2	2 170711G3_3	12.5	4.63	4.57e3	4.57 e 3	12.5	0.0	1.00
3 -	3 170711G3_4	12.5	4.63	5.74 e 3	5.74 e 3	12.5	0.0	1.00
4	4 170711G3_5	12.5	4.63	5.02e3	5.02 e 3	12.5	0.0	1.00
5	5 170711G3_6	12.5	4.63	4.77 e 3	4.77 e 3	12.5	0.0	1.00
	6 170711G3_7	12.5	4.63	4.31 e 3	4.31 e 3	12.5	0.0	1.00
7.4	7 170711G3_8	12.5	4.63	5.31 e 3	5.31 e 3	12.5	0.0	1.00
8 \% M	8 170711G3_9	12.5	4.63	5.09e3	5.09 e 3	12.5	0.0	1.00

Vista Analytical Laboratory Q2
Dataset: U:IG1.PROIResultsL2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:10 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: RF

5 5 23	\# Name	Std. Cone		Resp	IS Resp	Conc.	\%Dev	RRF
1.	1 170711G3_2	12.5	4.86	4.50e3	4.50 e 3	12.5	0.0	1.00
	2 170711G3_3	12.5	4.85	4.25 e 3	4.25 e 3	12.5	0.0	1.00
$3-2$	3 170711G3_4	12.5	4.85	5.46e3	5.46 e 3	12.5	0.0	1.00
4 4-4tes:	4 170711G3_5	12.5	4.85	4.98 e 3	4.98 e 3	12.5	0.0	1.00
5. 5	5 170711G3_6	12.5	4.85	4.69 e 3	4.69 e 3	12.5	0.0	1.00
6 - ${ }^{2}$	6 170711G3_7	12.5	4.85	4.37 e 3	4.37 e 3	12.5	0.0	1.00
7.4	7 170711G3_8	12.5	4.86	5.34 e 3	5.34 e 3	12.5	0.0	1.00
$8.3 \pm$	8 170711G3_9	12.5	4.85	5.09e3	5.09 e 3	12.5	0.0	1.00

Dataset:	Untitled
Last Altered:	Wednesday, July 12, 2017 09:21:06 Pacific Daylight Time
Printed:	Wednesday, July 12, 2017 09:21:36 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42

Compound name: PFOS

	Name		Acq Date	Acq Time
$\mid 1$	170711G3_1	IPA	11-Jul-17	17:16:59
2	170711G3_2	ST170711G3-1 PFC CS-2 17G1111	11-Jul-17	17:29:23
3 3- ${ }^{2}$	170711G3_3	ST170711G3-2 PFC CS-1 17G1112	11-Jul-17	17:41:54
4.	170711G3_4	ST170711G3-3 PFC CS0 17G1113	11-Jul-17	17:54:28
5	170711G3_5	ST170711G3-4 PFC CS1 17G1114	11-Jul-17	18:07:01
6	170711G3_6	ST170711G3-5 PFC CS2 17G1115	11-Jul-17	18:19:36
7	170711G3_7	ST170711G3-6 PFC CS3 17G1116	11-Jul-17	18:32:12
8	170711G3_8	ST170711G3-7 PFC CS4 17G1117	11-Jul-17	18:44:45
9	170711G3_9	ST170711G3-8 PFC CS5 17G1118	11-Jul-17	18:57:37
10	170711G3_10	IPA	11-Jul-17	19:10:03
11	170711G3_11	SS170711G3-1 PFC SSS 17G1119	11-Jul-17	19:22:36
12	170711G3_12	IPA	11-Jul-17	19:35:06
13	170711G3_13	B7G0031-BS1 OPR 0.125	11-Jul-17	19:47:42
	170711G3_14	IPA	11-Jul-17	20:00:12
15	170711G3_15	B7G0031-BLK1 Method Blank 0.125	11-Jul-17	20:12:48
16	170711G3_16	1700830-07 MW-6-063017-25 0.12093	11-Jul-17	20:25:18
17	170711G3_17	B7G0031-MS1 Matrix Spike 0.12062	11-Jul-17	20:38:06
18	170711G3_18	B7G0031-MSD1 Matrix Spike Dup 0.12141	11-Jul-17	20:50:26
19	170711G3_19	1700830-11 BARNS-04-GW-TW02-062817-30..	11-Jul-17	21:02:59
20.	170711G3_20	1700831-02 BARNS-06-GW-TW01-062817-3...	11-Jul-17	21:15:33
21.4	170711G3_21	1700831-07 BARNS-01-GW-TW03-062917-3...	11-Jul-17	21:28:06
22	170711G3_22	1700831-12 BARNS-06-GW-TW01-062817-D...	11-Jul-17	21:40:34
23	170711G3_23	1700832-04 BARNS-07-GW-TW05-062917-4...	11-Jul-17	21:53:09
24	170711G3_24	1700832-07 BARNS-EB-03-063017 0.12216	11-Jul-17	22:05:41
25	170711G3_25	1700832-08 BARNS-EB-04-063017 0.12295	11-Jul-17	22:19:37
26	170711G3_26	1700832-09 BARNS-EB-05-063017 0.1174	11-Jul-17	22:31:51
27.	170711G3_27	1700832-10 BARNS-08-GW-TW04-063017-3...	11-Jul-17	22:44:20
28	170711G3_28	IPA	11-Jul-17	22:56:54
29\%	170711G3_29	ST170711G3-9 PFC CS3 17G1116	11-Jul-17	23:09:26
30.	170711G3_30	IPA	11-Jul-17	23:21:56

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0630.mdb 10 Jul 2017 16:23:41

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-11-17_L16_2Trans_NEW.cdb 12 Jul 2017 09:08:42
Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999903, \mathrm{r}^{\wedge} 2=0.999805$
Calibration curve: $0.812368{ }^{*} x+0.0615352$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFPeA
Correlation coefficient: $\mathrm{r}=0.999205, \mathrm{r}^{\wedge} 2=0.998411$
Calibration curve: 1.19919 * $x+-0.0457496$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\20171New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999521, \mathrm{r}^{\wedge} 2=0.999042$
Calibration curve: 2.23981 * $x+-0.119881$
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PROIResults\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: $r=0.999444, r^{\wedge} 2=0.998888$
Calibration curve: 1.90952 * x +0.14452
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld

$\begin{array}{ll}\text { Last Altered: } \quad \text { Wednesday, July 12, } 2017 \text { 09:08:42 Pacific Daylight Time } \\ \text { Printed: } & \text { Wednesday, July 12, } 2017 \text { 09:13:41 Pacific Daylight Time }\end{array}$
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999678, \mathrm{r}^{\wedge} 2=0.999357$
Calibration curve: 2.37086 * x + 0.00117983
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report
Vista Analytical Laboratory Q1
Dataset:
U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFHxS
Correlation coefficient: $\mathrm{r}=0.999359, \mathrm{r}^{\wedge} 2=0.998718$
Calibration curve: 2.089 * $x+0.0768621$
Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017Wew folderl170711G3-CRV.qld

Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: $\mathrm{r}=0.999784, \mathrm{r}^{\wedge} 2=0.999567$
Calibration curve: $0.87047^{*} x+0.0781634$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\20171New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time Printed: \quad Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFNA
Coefficient of Determination: $R^{\wedge} 2=0.998825$
Calibration curve: $-0.00319585{ }^{*} x^{\wedge} 2+2.90085{ }^{*} x+-0.200852$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Results\2017\New folder\170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed:
Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: $\mathrm{r}=0.999086, \mathrm{r}^{\wedge} 2=0.998172$
Calibration curve: 0.598169 * $x+-0.0823444$
Response type: Internal Std (Ref 20), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\New folder1170711G3-CRV.qld
Last Altered: Wednesday, July 12, 2017 09:08:42 Pacific Daylight Time
Printed: Wednesday, July 12, 2017 09:13:41 Pacific Daylight Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998620$
Calibration curve: $8.29904 \mathrm{e}-005^{*} x^{\wedge} 2+0.207158$ * $x+0.0227635$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

