Groundwater Sample Results,
Combined Level 2 and Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1700856
Naval Air Warfare Center Trenton
Trenton, New Jersey
August 2019

$$
\text { N62376.SF. } 001174
$$ NAWC TRENTON

5090.3c

LABORATORY DATA PACKAGE, 1700856, NAWC TRENTON, NJ 08/07/2017 VISTA ANALYTICAL LABORATORY

August 07, 2017

Vista Work Order No. 1700856

Ms. Mary Hang
Tetra Tech
661 Andersen Drive, Foster Plaza 7
Pittsburgh, PA 15220
Dear Ms. Mange,
Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on July 12, 2017. This sample set was analyzed on a standard turn-around time, under your Project Name 'NAWC Trenton'. The SDG Number is WE08.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

SDG Number WE08

Vista Work Order No. 1700856

Case Narrative

Sample Condition on Receipt:

Twelve aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. This report was amended on August 7, 2017 to include an anomaly regarding a sample ID discrepancy for sample "ERB-01-20170711" and revise the labeled standard compound recovery statement.

Analytical Notes:

Modified EPA Method 537

Sample "LF-MW-54BR-20170710" contained particulate and was centrifuged prior to extraction.

The aqueous samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. All OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

As requested, an MS/MSD was performed on sample "EFFLUENT-20170710".

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag
$1700856-03$	MID-POINT-20170710	Modified EPA Method 537	13C3-PFBS	H
$1700856-04$	EFFLUENT-20170710	Modified EPA Method 537	13C3-PFBS	181
$1700856-05$	MW-37S-20170711	Modified EPA Method 537	13C2-PFTeDA	160
$1700856-06$	ERB-01-20170711	Modified EPA Method 537	13C3-PFBS	H
$1700856-07$	11-MW-1-20170710	Modified EPA Method 537	13C3-PFBS	H
$1700856-08$	LF-MW-54BR-20170710	Modified EPA Method 537	13C3-PFBS	169
$1700856-09$	MW-48BR-20170711	Modified EPA Method 537	13C3-PFBS	H
$1700856-10$	MW-34S-20170711	Modified EPA Method 537	13C3-PFBS	168
$1700856-11$	MW-31BR-20170711	Modified EPA Method 537	13C3-PFBS	173
B7G0108-BLK1	B7G0108-BLK1	Modified EPA Method 537	13C3-PFBS	H
B7G0108-BS1	B7G0108-BS1	Modified EPA Method 537	13C3-PFBS	H
B7G0108-BS1	B7G0108-BS1	Modified EPA Method 537	13C2-PFTeDA	155
B7G0108-MS1	B7G0108-MS1	Modified EPA Method 537	13C3-PFBS	H
B7G0108-MSD1	B7G0108-MSD1	Modified EPA Method 537	13C3-PFBS	H

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

In addition, the laboratory QC officer must read and sign a copy of the Quality Assurance Review Form displayed on the next page of this Attachment. Electronic deliverables are not considered to be complete without the accompanying Quality Assurance Review Form.

- Anna Helal , as the designated Quality Assurance Officer, hereby attest that all electronic deliverables have been thoroughly reviewed and are in agreement with the associated hardcopy data. The enclosed electronic files have been reviewed for accuracy (including significant figures), completeness and format. The laboratory will be responsible for any labor time necessary to correct enclosed electronic deliverables that have been found to be in error. I can be reached at (916) 673-1520 If there are any questions or problems with the enclosed electronic deliverables.

Revision
IS
08/18/16

TABLE OF CONTENTS

Case Narrative 1
Signed Attestation Statement 4
Table of Contents 5
Sample Inventory 6
Analytical Results 7
Qualifiers 23
Certifications 24
Sample Receipt 27
Correspondence 31
Extraction Information. 33
Sample Data - Modified EPA Method 537 38
Continuing Calibration 198
Initial Calibration 273
PFAS Standards 607

Sample Inventory Report

Vista	Client	
Sample ID	Sample ID	
1700856-01	INFLUENT-20170710	
1700856-02	DUP05-20170710	
1700856-03	MID-POINT-20170710	
1700856-04	EFFLUENT-20170710	MS/MSD
		MSMSD
		MS/MSD
		MS/MSD
		MS/MSD
1700856-05	MW-37S-20170711	
1700856-06	ERB-01-20170711	
1700856-07	11-MW-1-20170710	
1700856-08	LF-MW-54BR-20170710	
1700856-09	MW-48BR-20170711	
1700856-10	MW-34S-20170711	
1700856-11	MW-31BR-20170711	
1700856-12	MW-31S-20170711	

ANALYTICAL RESULTS

Sample ID: OPR

Modified EPA Method 537

Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.125 \mathrm{~L} \end{aligned}$	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7G0108 } \\ & \text { 24-Jul-201 } \end{aligned}$			Lab Sample: \quad B7G0108-BS1 Date Analyzed: 25-Jul-17 20:21 Column: BEH C18			
Analyte		Amt Found (ng/L)	Spike Amt	\%R	Limits		Labeled Standar	\%R	LCL-UCL
PFBS		78.2	80.0	97.8	70-130	IS	13C3-PFBS	158	50-150
PFHxA		74.3	80.0	92.8	70-130	IS	13C2-PFHxA	121	50-150
PFHpA		75.1	80.0	93.9	70-130	IS	13C4-PFHpA	106	50-150
PFHxS		80.3	80.0	100	70-130	IS	1802-PFHxS	130	50-150
PFOA		75.7	80.0	94.6	70-130	IS	13C2-PFOA	125	50-150
PFOS		67.4	80.0	84.3	70-130	IS	13C8-PFOS	121	50-150
PFNA		71.7	80.0	89.7	70-130	IS	13C5-PFNA	110	50-150
PFDA		75.5	80.0	94.3	70-130	IS	13C2-PFDA	108	50-150
MeFOSAA		74.0	80.0	92.5	70-130	IS	d3-MeFOSAA	106	50-150
PFUnA		71.3	80.0	89.1	70-130	IS	13C2-PFUnA	95.1	50-150
EtFOSAA		82.6	80.0	103	70-130	IS	d5-EtFOSAA	96.7	50-150
PFDoA		77.1	80.0	96.4	70-130	IS	13C2-PFDoA	86.2	50-150
PFTrDA		64.1	80.0	80.1	60-130	IS	13C2-PFTeDA	47.2	50-150
PFTeDA		77.2	80.0	96.5	70-130				

[^0]| Sample ID: | INFLUENT-20170710 | | | | | | | Modifie | EPA Me | thod 537 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Client Data
 Name:
 Project:
 Date Collected:
 Location: | Tetra Tech NAWC Trenton 10-Jul-2017 12:05 Trenton | | Sample Data
 Matrix:
 Sample Size: | $\begin{aligned} & \text { Aqueous } \\ & 0.121 \mathrm{~L} \end{aligned}$ | Lab
 La
 Q
 D | rator
 Sam
 Batc
 Ana | Data
 e: $1700856-01$
 B7G0108
 zed: 25-Jul-17 20:53 | Date Received:
 Date Extracted:
 Column: BEH C18 | $\begin{aligned} & \text { 12-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$ | $\begin{gathered} 9: 12 \\ 10: 51 \end{gathered}$ |
| Analyte | Conc. (ng/L) | DL | LOD | LOQ | Qualifiers | | Labeled Standard | \%R | LCL-UCL | Qualifiers |
| PFBS | 14.4 | 1.85 | 5.17 | 8.26 | | IS | 13C3-PFBS | 148 | 50-150 | |
| PFHxA | 63.1 | 2.25 | 5.17 | 8.26 | | IS | 13C2-PFHxA | 120 | 50-150 | |
| PFHpA | 21.7 | 0.611 | 5.17 | 8.26 | | IS | 13C4-PFHpA | 102 | 50-150 | |
| PFHxS | 58.6 | 0.978 | 5.17 | 8.26 | | IS | 1802-PFHxS | 150 | 50-150 | |
| PFOA | 10.8 | 0.673 | 5.17 | 8.26 | | IS | 13C2-PFOA | 135 | 50-150 | |
| PFOS | 62.0 | 0.834 | 5.17 | 8.26 | | IS | 13C8-PFOS | 134 | 50-150 | |
| PFNA | ND | 0.837 | 5.17 | 8.26 | | IS | 13C5-PFNA | 125 | 50-150 | |
| PFDA | ND | 1.54 | 5.17 | 8.26 | | IS | 13C2-PFDA | 126 | 50-150 | |
| MeFOSAA | ND | 1.70 | 5.17 | 8.26 | | IS | d3-MeFOSAA | 99.9 | 50-150 | |
| PFUnA | ND | 1.08 | 5.17 | 8.26 | | IS | 13C2-PFUnA | 86.5 | 50-150 | |
| EtFOSAA | ND | 1.42 | 5.17 | 8.26 | | IS | d5-EtFOSAA | 98.6 | 50-150 | |
| PFDoA | ND | 0.818 | 5.17 | 8.26 | | IS | 13C2-PFDoA | 111 | 50-150 | |
| PFTrDA | ND | 0.510 | 5.17 | 8.26 | | IS | 13C2-PFTeDA | 103 | 50-150 | |
| PFTeDA | ND | 0.780 | 5.17 | 8.26 | | | | | | |
| DL - Detection limit
 RL - Reporting limit | | | | | LCL-UCL - Lower control limit - upper control limit | | | | | |
| | | | | | Only the linear isomer is reported for all other analytes. | | | | | |

Vista
Analytical Laboratory

Matrix Spike Results Modified EPA Method 537															
Source Client ID: Source LabNumber: Matrix: Sample Size:	EFFLUENT-20170710 1700856-04 Aqueous $0.122 / 0.118 \mathrm{~L}$			QC Batch: Date Extracted:		$\begin{aligned} & \text { B7G0108 } \\ & \text { 24-Jul-2017 } \end{aligned}$		10:51		$\begin{aligned} & \text { Lab } \\ & \text { Dat } \end{aligned}$	$\begin{array}{lc} \text { ample: } & \text { B7G0 } \\ \text { Analyzed: } & 25-\mathrm{Jul} \\ & 25-\mathrm{Jul} \end{array}$	B7G0108-MS1/B7G0108-MSD1 25-Jul-17 21:36 Column: BEH C18 25-Jul-17 21:47 Column: BEH C18			
Analyte	$\begin{gathered} \text { Spike-MS } \\ (\mathrm{ng} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \hline \text { MS } \\ & \% R \end{aligned}$	$\begin{gathered} \hline \text { MS } \\ \text { Qual. } \end{gathered}$	$\begin{gathered} \text { Spike-MSD } \\ (\mathrm{ng} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \% \mathrm{R} \end{gathered}$	RPD	$\begin{aligned} & \hline \text { MSD } \\ & \text { Qual. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { \%R } \\ \text { Limit } \end{gathered}$	\%RPD Limit		Labeled Standard	$\begin{gathered} \hline \text { MS } \\ \% R \end{gathered}$	MS Qualifiers	$\begin{gathered} \hline \text { MSD } \\ \% R \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { Qual. } \end{gathered}$
PFBS	82.2	99.2		84.4	97.8	1.42		70-130	25	IS	13C3-PFBS	162	H	154	H
PFHxA	82.2	95.8		84.4	92.2	3.83		70-130	25	IS	13C2-PFHxA	125		131	
PFHpA	82.2	95.1		84.4	89.0	6.63		70-130	25	IS	$13 \mathrm{C} 4-\mathrm{PFHpA}$	104		104	
PFHxS	82.2	95.2		84.4	87.7	8.20		70-130	25	IS	1802-PFHxS	135		140	
PFOA	82.2	97.4		84.4	103	5.59		70-130	25	IS	13C2-PFOA	118		116	
PFOS	82.2	80.4		84.4	80.3	0.124		70-130	25	IS	13C8-PFOS	145		132	
PFNA	82.2	96.7		84.4	98.9	2.25		70-130	25	IS	13C5-PFNA	114		111	
PFDA	82.2	95.2		84.4	88.6	7.18		70-130	25	IS	13C2-PFDA	122		116	
MeFOSAA	82.2	97.9		84.4	103	5.08		70-130	25	IS	d3-MeFOSAA	124		119	
PFUnA	82.2	93.1		84.4	96.7	3.79		70-130	25	IS	13C2-PFUnA	105		103	
EtFOSAA	82.2	89.7		84.4	97.2	8.03		70-130	25	IS	d5-EtFOSAA	125		119	
PFDoA	82.2	93.8		84.4	89.6	4.58		70-130	25	IS	13C2-PFDoA	107		106	
PFTrDA	82.2	81.1		84.4	78.7	3.00		60-130	25	IS	13C2-PFTeDA	56.8		58.2	
PFTeDA	82.2	94.0		84.4	93.5	0.533		70-130	25						

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID:	ERB-01-20170711							Modifie	d EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 11-Jul-2017 13:50 Trenton		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.120 \mathrm{~L} \end{aligned}$	Lab La QC D	ratory Samp Batch Anal	Data e: $1700856-06$ B7G0108 zed: $25-J u l-17$ 22:08	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 12-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{gathered} 9: 12 \\ 10: 51 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	ND	1.86	5.21	8.30		IS	13C3-PFBS	169	50-150	H
PFHxA	ND	2.26	5.21	8.30		IS	13C2-PFHxA	141	50-150	
PFHpA	ND	0.613	5.21	8.30		IS	13C4-PFHpA	114	50-150	
PFHxS	ND	0.983	5.21	8.30		IS	1802-PFHxS	150	50-150	
PFOA	ND	0.676	5.21	8.30		IS	13C2-PFOA	126	50-150	
PFOS	ND	0.838	5.21	8.30		IS	13C8-PFOS	142	50-150	
PFNA	ND	0.841	5.21	8.30		IS	13C5-PFNA	121	50-150	
PFDA	ND	1.55	5.21	8.30			13C2-PFDA	128	50-150	
MeFOSAA	ND	1.71	5.21	8.30		IS	d3-MeFOSAA	131	50-150	
PFUnA	ND	1.09	5.21	8.30		IS	13C2-PFUnA	118	50-150	
EtFOSAA	ND	1.42	5.21	8.30		IS	d5-EtFOSAA	121	50-150	
PFDoA	ND	0.822	5.21	8.30		IS	13C2-PFDoA	127	50-150	
PFTrDA	ND	0.513	5.21	8.30		IS	13C2-PFTeDA	130	50-150	
PFTeDA	ND	0.784	5.21	8.30						
		DL - Detection limit RL - Reporting limit				LCL-UCL - Lower control limit - upper control limit Results reported to DL.	- Lower control limit - upper c orted to DL. orted, PFBS, PFHxS, PFOA and near isomer is reported for all	ontrol limit d PFOS include both linear and b other analytes.	anched isomers.	

Sample ID:	LF-MW-54BR-20170							Modifie	EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 10-Jul-2017 15:10 Trenton		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.117 \mathrm{~L} \end{aligned}$	$\begin{gathered} \hline \text { Labo } \\ \text { Lab } \\ \text { QC } \\ \text { Dat } \end{gathered}$	ator Sam Batch Ana	Data e: $1700856-08$ B7G0108 zed: $25-J u l-17$ 22:30	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 12-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{gathered} 9: 12 \\ 10: 51 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	16.7	1.91	5.34	8.54		IS	13C3-PFBS	173	50-150	H
PFHxA	35.2	2.33	5.34	8.54		IS	13C2-PFHxA	136	50-150	
PFHpA	8.14	0.631	5.34	8.54	J	IS	13C4-PFHpA	109	50-150	
PFHxS	153	1.01	5.34	8.54		IS	1802-PFHxS	141	50-150	
PFOA	95.9	0.695	5.34	8.54		IS	13C2-PFOA	130	50-150	
PFOS	792	0.861	5.34	8.54		IS	13C8-PFOS	137	50-150	
PFNA	ND	0.864	5.34	8.54		IS	13C5-PFNA	126	50-150	
PFDA	ND	1.59	5.34	8.54		IS	13C2-PFDA	133	50-150	
MeFOSAA	ND	1.76	5.34	8.54		IS	d3-MeFOSAA	111	50-150	
PFUnA	ND	1.12	5.34	8.54		IS	13C2-PFUnA	95.3	50-150	
EtFOSAA	ND	1.46	5.34	8.54		IS	d5-EtFOSAA	108	50-150	
PFDoA	ND	0.845	5.34	8.54		IS	13C2-PFDoA	107	50-150	
PFTrDA	ND	0.527	5.34	8.54		IS	13C2-PFTeDA	77.1	50-150	
PFTeDA	ND	0.806	5.34	8.54						
DL - Detection limit RL - Reporting limit						L-UC sults hen re aly the	- Lower control limit - upper orted to DL. rted, PFBS, PFHxS, PFOA and near isomer is reported for all	control limit d PFOS include both linear and b other analytes.	anched isomers.	

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Reporting Limit/LOQ.
M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration
NA Not applicable
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	$17-015-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA 23

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA $8290 / 8290 A$

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

TAT: (Check One) Standard © 21 days

See "Sample Log-in Checklist" for additional sample information

Special Instructions/Comments:
FedEx 661219926853

Container Types: A = 1 Liter Amber, G = Glass Jar
$\mathrm{P}=\mathrm{PUF}, \mathrm{T}=\mathrm{MM} 5$ Train, $\mathrm{O}=$ Other PJ
*Bottle Preservative Type:
$\square \mathrm{O}=$ Other \qquad T = Thiosulfate,
DOCUMENTATION AND RESULTS TO:

Name: Mary Mang
Company: Tetra Tech
Address: $\mathbf{2 3 4}$ Mall Blvd Suite 260
City: King of Prussia \square State: PA Zip: 19406 Phone: 610-382-1174 \qquad Fax: 610-491-9645
Email: mary.mang@tetratech.com \qquad
Matrix Types: DW = Drinking Water, EF = Effluent, $\mathrm{PP}=$ Pulp/Paper,
$\mathrm{SD}=$ Sediment, $\mathrm{SL}=$ Sludge, $\mathrm{SO}=$ Soil, $\mathrm{WW}=$ Wastewater, $\mathrm{B}=$ Blood/Serum $O=O$ ther $A Q$

FOR LABORATORY USE ONLY
Laboratory Project ID: T0 0.2
storage ID WR,
Storage Secured Yes No \square

TAT: (Check One)

See "Sample Log-in Checklist" for additional sample information

Analytical Laboratory

Vista Work Order \#: \qquad 1700856 TAT \qquad

Comments: Sonde abele: FRB-01-20170711 sample abuse: Influant-20170710 $\operatorname{COC} 1 D:$ ERB-01-20170711 sample abbe: Dup $=05-20170710$ CC ID: DUPO5-20170710

Chain of Custody Anomaly/Sample Acceptance Form

Client: Tetra Tech
Contact: Mary Many
Email: mary.mang@tetratech.com
Phone: 610-382-1174

Workorder Number: 1700856
Date Received: \quad 12-Jul-17 09:12
Documented by/date: B.Benedict 08/05/2017

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,

Martha Maier
mmaier@vista-analytical.com
916-673-1520

The following information or item is needed to proceed with analysis:

\square	Complete Chain-of-Custody	\square	Preservative	\square
	Test Method Requested	Sample Identification	Collector's Name Analyse List Requested	\square

The following anomalies were noted. Authorization is needed to proceed with analysis.

Comments:

CDC ID: ERB-01-20170711
Label ID: FRB-01-20170711

Client Authorization

Proceed with Analysis:

Signature and Date

Client Comments/Instructions \qquad with analysis

Correspondence

Karen Volpendesta

From:	Karen Volpendesta
Sent:	Wednesday, July 12, 2017 3:22 PM
To:	Mang, Mary; Ritchie, Megan
Cc:	Martha Maier
Subject:	Vista Work Order \#1700856; NAWC Trenton
Attachments:	WO\# 1700856_Acklet.pdf

Mary,

Please find attached the sample receiving acknowledgement for Vista Analytical Work Order: 1700856.

These samples will be analyzed by Modified EPA Method 537 for the list of 14 analytes.

If you have any questions, please contact me or Martha Maier at (916) 673-1520. We appreciate your business.

Best Regards,

Karen L. Volpendesta
(formerly Lopez)
Project Manager

Vista Analytical Laboratory
1104 Windfield Way
El Dorado Hills, CA 95762
Phone: (916) 673-1520
www.vista-analytical.com
*Hours: Monday, Tuesday, \& Thursday, 8am-4:30pm
A woman-owned, small business enterprise.

EXTRACTION INFORMATION

Prep Expiration: 2017-Jul-24 Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous

Version: 537 (14 Analyte)

WO Comments: Attach balance check doc.

Vista PM:Martha Maier

BALANCE CALIBRATION CHECK

Weights \# _ 22370 and 7718

Date		$\begin{gathered} \text { Weight } 1 \\ 1 g \\ (0.9900-1.0100) \end{gathered}$	$\begin{gathered} \text { Weight } 2 \\ 100 \mathrm{~g} \\ (99.00-101.00) \end{gathered}$	$\begin{gathered} \text { Weight } 3 \\ 2000 \mathrm{~g} \\ (1980-2020) \end{gathered}$	Initials	Acceptable? (YIN)
7/19/17	\checkmark	1.00	100.00	2000.00	KBF	y
712017	Cives	201:01	.0100 .01	2000.04	BSS	FY/15:
$7 / 21 / 17$	\checkmark	0.99	: 100.00	2000.00	EL	Y
7.2417	$\checkmark \times$	100	10001	20000	$B P$	Fys:
71.24117	CN C	100	.100.01	2000.00	EL	FY
$7 / 25117$	$\cdots \sqrt{2}$	1100	99.99	2000.02	HB	-
\cdots	\cdots	Ar. 4 mb	\cdots		.	-
		\therefore 二。	\because		.	
4						
		- . ..				1
4						
Comments:						

Page 24 of 50

PREPARATION BENCH SHEET

Prepared using: LCMS - SPE Extraction-LCMS

c	VISTA Sample ID	${ }_{\substack{\text { pH } \\ \text { Before }}}$	After	$\begin{gathered} \text { Chlorinin } \\ \text { (Ci) } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Hops } \\ \text { Added } \end{array}$	Boalef		$\begin{aligned} & \text { Sample } \\ & \text { nelt } \\ & \text { (1) } \end{aligned}$	$\begin{gathered} \text { IS/NS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$	SPE	$\begin{gathered} \text { CHEM } \\ \text { CHMTIT } \\ \text { DAATE } \end{gathered}$
\square	B7700108-BLK1	5	2	0	2	NA	NA Na	(0.125)	kbs 7	46F F 7 m	$18 P \ggg 1.25 .17$
\square	${ }^{\text {B7G }}$	5	2	0	2	\downarrow	-	\downarrow v	T	-	
\square		6	2	\bigcirc	2	148.39	26.77	0.121621			
\square		6	2	\bigcirc	2	145.30	26.81	0.118490			
\square	${ }^{1700856-018 \mathrm{Cl}}$	6	2	0	2	147.78	26.78	0.12100λ			
\square	${ }^{1700856-02 R E}$	6	2	0	2	143.32	26.85	$0.11647 /$			
\square	${ }^{1700856-03 \mathrm{BEI}}$	7	2	0	2	144.15	26.84	$0.11731 /$			
\square	1700856-048EI	6	2	0	2	147.66	26.82	0.12084			
\square	${ }^{1700856-0.05 R 1}$	6	2	0	2	143.56	26.60	0.116967			
\square	${ }^{1700856-06 R E I}$	-6'5	2	0	2	147.29	26.86	0.120431			
\square	${ }^{1000856-078 E 1}$	6	2	0	2	141.60	26.78	$0 \cdot 11482$			
\square	${ }^{1700886-08851}(4)$	6	2	0	2	144.01	26.87	$0.11713-$			
\square	100885-09REI	6	2	0	2	147.61	26.77	0.120841			
\square	${ }^{1700856-10 R E I}$	6	2	0	"20	144.88	26.76	0.18121			
\square	1700856-112EI	6	2	0	2	144.44	26.70	0.11774 -			
\square	1700856-12REI	6	2	0	2	144.09	26.77	10.11732^{\prime}	V	\downarrow	\downarrow
	$\begin{gathered} (\sqrt{16}) \\ 1761307,10 \mathrm{ml} \end{gathered}$		$7 D=$			$=5038,$			$\begin{aligned} & \text { ata }-X-\mathrm{AN} \\ & \mathrm{H} / 0.5 \% \cdot \mathrm{Nh} \end{aligned}$	$33 \mathrm{~mm} 200 \mathrm{mg} /$ innelit	Check Out: Chemist/Date: 1372417 Check In: ChemistDate: OMPDYNA Balance id: TRMS pH Adiused: ChemisDDe: HB $7 / 2 / 2 / 13$

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ (A) sample was centntuged to remove particul $19 \mathrm{te} \cdot \mathrm{HB} 7124 / 17$

$$
\text { SAMPLE DATA - MODIFIED EPA METHOD } 537
$$

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:IQ4.PRO|results1170725M11170725M1-37.qld
 Last Altered: Thursday, July 27, 2017 15:57:47 Pacific Daylight Time
 Printed: Thursday, July 27, 2017 15:58:34 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		5.26 e 3	0.1250		2.96				
2	4 PFHxA	313.2 > 268.9		1.46 e 4	0.1250		3.19				
3	5 PFHpA	$363>318.9$		3.33 e 4	0.1250		3.45				
4	6 PFHxS	$398.9>79.6$		3.77 e 3	0.1250		3.56				
5	8 PFOA	$413>368.7$		4.23 e 4	0.1250		3.65				
6	10 PFNA	$462.9>418.8$		3.43e4	0.1250		3.83				
7	12 PFOS	$499>79.9$		8.47 e 3	0.1250		3.89				
8	13 PFDA	$513>468.8$	4.37 e 1	3.45e4	0.1250		4.01	4.04	0.0158		
9	15 N-MeFOSAA	$570.1>419$		7.52e3	0.1250		4.03				
10	16 N -EtFOSAA	$584.2>419$		7.88 e 3	0.1250		4.10				
11	17 PFUnA	$562.9>518.9$		3.61 e 4	0.1250		4.17				
12	19 PFDoA	$612.9>318.8$		3.35 e 3	0.1250		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results\170725M11170725M1-37.qld
Last Altered:	Thursday, July 27, 2017 15:57:47 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:58:51 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		3.35 e 3	0.1250		4.50				
2	22 PFTeDA	$712.9>668.8$		1.79 e 4	0.1250		4.68				
3	$3013 C 3-P F B S$	$302>98.8$	5.26 e 3	3.93 e 4	0.1250	0.031	2.96	3.01	0.670	172	172.3
4	31 13C2-PFHxA	$315>269.8$	1.46 e 4	3.93 e 4	0.1250	0.276	3.19	3.23	1.86	53.7	134.2
5	32 13C4-PFHpA	$367.2>321.8$	3.33 e 4	3.93 e 4	0.1250	0.306	3.45	3.49	4.24	111	110.9
6	33 1802-PFHxS	$403>102.6$	3.77 e 3	7.04 e 3	0.1250	0.393	3.56	3.56	6.70	136	136.4
7	$3513 C 2-P F O A$	$414.9>369.7$	4.23 e 4	3.22e4	0.1250	1.067	3.65	3.69	16.4	123	123.0
8	36 13C5-PFNA	$468.2>422.9$	3.43 e 4	3.63 e4	0.1250	0.852	3.83	3.86	11.8	111	110.8
9	3813 C 8 -PFOS	$507>79.9$	8.47 e 3	6.93 e 3	0.1250	0.936	3.89	3.91	15.3	131	130.6
10	39 13C2-PFDA	$515.1>469.9$	3.45 e 4	3.68e4	0.1250	0.810	4.01	4.03	11.7	116	115.7

Dataset: U:\Q4.PRO\results\170725M1\170725M1-37.qld

Last Altered: Thursday, July 27, 2017 15:57:47 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 15:59:12 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	7.52e3	3.43 e 4	0.1250	0.014	4.03	4.06	2.74	1600	123.2
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	7.88 e 3	3.43 e 4	0.1250	0.014	4.12	4.13	2.87	1650	126.7
3	43 13C2-PFUnA	$565>519.8$	3.61 e 4	3.43 e 4	0.1250	0.962	4.17	4.20	13.2	110	109.5
4	44 13C2-PFDoA	$615>569.7$	3.35 e 3	3.43 e 4	0.1250	0.094	4.34	4.36	1.22	103	103.4
5	46 13C2-PFTeDA	$714.8>669.6$	1.79 e 4	3.43 e 4	0.1250	0.694	4.68	4.71	6.51	75.0	75.0
6	52 13C5-PFHXA	$318>272.9$	3.93 e 4	3.93e4	0.1250	1.000	3.19	3.23	5.00	40.0	100.0
7	53 13C3-PFHxS	$401.9>79.9$	7.04 e 3	7.04 e 3	0.1250	1.000	3.56	3.56	12.5	100	100.0
8	54 13C8-PFOA	$421.3>376$	3.22e4	3.22e4	0.1250	1.000	3.65	3.69	12.5	100	100.0
9	55 13C9-PFNA	$472.2>426.9$	3.63 e 4	3.63 e 4	0.1250	1.000	3.83	3.86	12.5	100	100.0
10	56 13C4-PFOS	$503>79.9$	6.93 e 3	6.93 e 3	0.1250	1.000	3.89	3.91	12.5	100	100.0
11	57 13C6-PFDA	$519.1>473.7$	3.68 e 4	3.68 e 4	0.1250	1.000	4.01	4.03	12.5	100	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.43 e 4	3.43 e 4	0.1250	1.000	4.17	4.20	12.5	100	100.0
13	59 Total PFBS	$299>79.7$	0.00 e 0	5.26 e 3	0.1250		2.96		0.000		
14	60 Total PFHxS	$398.9>79.6$	0.00e0	3.77 e 3	0.1250		3.52		0.000		
15	61 Total PFOA	$413>368.7$	0.00 e 0	4.23 e 4	0.1250		3.65		0.000		
16	62 Total PFOS	$499>79.9$	0.00 e 0	8.47 e 3	0.1250		3.89		0.000		
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	7.52e3	0.1250		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00 e 0	7.88 e 3	0.1250		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-37.qld
Last Altered:	Thursday, July 27, 2017 15:57:47 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:59:12 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank
Total PFBS

| | \# Name | Trace | RT | Area | IS Area |
| :---: | :---: | :---: | :---: | :---: | :---: | Response Primary Flags | Conc. |
| :--- |
| 1 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response Primary Flags
1						

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	8 PFOA	$413>368.7$		42261.785	Conc.		

Total PFOS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
12 PFOS	$499>79.9$		8471.787	MM-I			

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	16 N-EtFOSAA	$584.2>419$	7879.182	Conc.			

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-37.qld
Last Altered: Thursday, July 27, 2017 16:00:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:00:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

Total PFBS

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES

13C2-PFHxA

PFHpA

13C4-PFHpA

1802-PFHxS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-37.qld
 Last Altered: Thursday, July 27, 2017 16:00:06 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:00:16 Pacific Daylight Time

Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

Total PFOA

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
499 > 99
$1.000 \mathrm{e}-003$

13C8-PFOS

PFDA

13C2-PFDA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-37.qld

Last Altered: Thursday, July 27, 2017 16:00:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:00:16 Pacific Daylight Time

Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

PFUnA

F43:MRM of 2 channels,ES- | $562.9>518.9$ |
| ---: |
| $2.486 \mathrm{e}+003$ |

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

N-EtFOSAA

F48:MRM of 2 channels,ES-
$584.2>483$

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-37.qld
 Last Altered: Thursday, July 27, 2017 16:00:06 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:00:16 Pacific Daylight Time

Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

F58:MRM of 4 channels,ES

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report

Dataset: U:\Q4.PRO\results\170725M1\170725M1-37.qld
 Last Altered: Thursday, July 27, 2017 16:00:06 Pacific Daylight Time
 Printed:
 Thursday, July 27, 2017 16:00:16 Pacific Daylight Time

Name: 170725M1_37, Date: 25-Jul-2017, Time: 20:43:03, ID: B7G0108-BLK1 Method Blank 0.125, Description: Method Blank

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROVresults 1170725M11170725M1-35.qld
Last Altered:	Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:54:34 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	6.53 e 3	4.49 e 3	0.1250		2.96	3.00	18.2	78.2	97.8
2	4 PFHxA	313.2 > 268.9	3.47 e 4	1.23 e 4	0.1250		3.19	3.23	14.2	74.3	92.8
3	5 PFHpA	$363>318.9$	2.80 e 4	2.95 e 4	0.1250		3.45	3.49	11.8	75.1	93.9
4	6 PFHxS	$398.9>79.6$	4.18 e 3	3.07 e 3	0.1250		3.56	3.56	17.0	80.3	100.4
5	8 PFOA	$413>368.7$	2.95 e 4	3.93 e4	0.1250		3.65	3.69	9.39	75.7	94.6
6	10 PFNA	$462.9>418.8$	2.68 e 4	3.35 e 4	0.1250		3.83	3.86	10.0	71.7	89.7
7	12 PFOS	$499>79.9$	5.81 e 3	7.29 e 3	0.1250		3.89	3.91	9.97	67.4	84.3
8	13 PFDA	$513>468.8$	2.92 e 4	2.95 e 4	0.1250		4.01	4.03	12.4	75.5	94.3
9	$15 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$	6.75 e 3	5.97 e 3	0.1250		4.03	4.06	184	74.0	92.5
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$	5.67 e 3	5.54 e 3	0.1250		4.10	4.13	166	82.6	103.2
11	17 PFUnA	$562.9>518.9$	1.82 e 4	2.89 e 4	0.1250		4.17	4.19	7.88	71.3	89.1
12	19 PFDoA	$612.9>318.8$	1.87 e 3	2.57 e 3	0.1250		4.34	4.36	9.09	77.1	96.4

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-35.qld
Last Altered:	Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:54:51 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$	1.84e4	2.57 e 3	0.1250		4.50	4.52	89.3	64.1	80.1
2	22 PFTeDA	$712.9>668.8$	9.21 e 3	1.03 e 4	0.1250		4.68	4.71	11.1	77.2	96.5
3	30 13C3-PFBS	$302>98.8$	4.49 e 3	3.65 e4	0.1250	0.031	2.96	3.00	0.614	158	158.0
4	31 13C2-PFHxA	$315>269.8$	1.23 e 4	3.65 e4	0.1250	0.276	3.19	3.23	1.68	48.5	121.3
5	32 13C4-PFHpA	$367.2>321.8$	2.95 e 4	3.65 e 4	0.1250	0.306	3.45	3.49	4.04	106	105.8
6	33 1802-PFHxS	$403>102.6$	3.07 e 3	6.03 e 3	0.1250	0.393	3.56	3.56	6.37	130	129.8
7	35 13C2-PFOA	$414.9>369.7$	3.93 e4	2.95 e4	0.1250	1.067	3.65	3.69	16.6	125	124.6
8	36 13C5-PFNA	$468.2>422.9$	3.35 e 4	3.59e4	0.1250	0.852	3.83	3.86	11.7	109	109.5
9	38 13C8-PFOS	$507>79.9$	7.29 e 3	6.46e3	0.1250	0.936	3.89	3.91	14.1	121	120.6
10	39 13C2-PFDA	$515.1>469.9$	2.95 e 4	3.38 e 4	0.1250	0.810	4.01	4.04	10.9	108	107.7

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-35.qld
Last Altered:	Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:55:07 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	5.97e3	3.16 e 4	0.1250	0.014	4.03	4.06	2.36	1380	106.1
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	5.54 e 3	3.16 e 4	0.1250	0.014	4.12	4.12	2.19	1260	96.7
3	43 13C2-PFUnA	$565>519.8$	2.89 e 4	3.16 e 4	0.1250	0.962	4.17	4.20	11.4	95.1	95.1
4	44 13C2-PFDoA	$615>569.7$	2.57 e 3	3.16 e 4	0.1250	0.094	4.34	4.36	1.02	86.2	86.2
5	46 13C2-PFTeDA	$714.8>669.6$	1.03 e 4	3.16 e 4	0.1250	0.694	4.68	4.70	4.09	47.2	47.2
6	52 13C5-PFHxA	$318>272.9$	3.65 e 4	3.65 e 4	0.1250	1.000	3.19	3.23	5.00	40.0	100.0
7	53 13C3-PFHxS	$401.9>79.9$	6.03 e 3	6.03 e 3	0.1250	1.000	3.56	3.56	12.5	100	100.0
8	54 13C8-PFOA	$421.3>376$	2.95 e 4	2.95 e 4	0.1250	1.000	3.65	3.69	12.5	100	100.0
9	55 13C9-PFNA	$472.2>426.9$	3.59 e 4	3.59 e 4	0.1250	1.000	3.83	3.86	12.5	100	100.0
10	56 13C4-PFOS	$503>79.9$	6.46 e 3	6.46e3	0.1250	1.000	3.89	3.91	12.5	100	100.0
11	57 13C6-PFDA	$519.1>473.7$	3.38 e 4	3.38 e 4	0.1250	1.000	4.01	4.03	12.5	100	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.16 e 4	3.16 e 4	0.1250	1.000	4.17	4.20	12.5	100	100.0
13	59 Total PFBS	$299>79.7$	6.53 e 3	4.49 e 3	0.1250		2.96		18.2	78.2	
14	60 Total PFHxS	$398.9>79.6$	4.18 e 3	3.07 e 3	0.1250		3.52		17.0	80.3	
15	61 Total PFOA	$413>368.7$	2.95 e 4	3.93 e 4	0.1250		3.65		9.39	75.7	
16	62 Total PFOS	$499>79.9$	5.81 e 3	7.29 e 3	0.1250		3.89		9.97	67.4	
17	63 Total N-Me-FOSAA	$570.1>419$	6.75 e 3	5.97e3	0.1250		4.03		184	74.0	
18	64 Total N-EtFOSAA	$584.2>419$	5.67 e 3	5.54 e 3	0.1250		4.17		166	82.6	

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-35.qld
Last Altered:	Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:55:07 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR
Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
3 PFBS	$299>79.7$	3.00	6532.394	4489.121	18.190	bb	78.2	

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6 PFHxS | $398.9>79.6$ | 3.56 | 4176.180 | 3073.125 | 16.987 | bb | 80.3 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	29517.063	39300.930	9.388	bb	75.7

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
12 PFOS	$499>79.9$	3.91	5814.498	7292.874	9.966	bb	67.4	

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	15 N-MeFOSAA	$570.1>419$	4.06	6753.356	5969.343	183.843	bb	74.0

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	$16 ~ N-E t F O S A A ~$	$584.2>419$	4.13	5671.405	5535.725	166.483	bb	82.6

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-35.qld
Last Altered:	Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:55:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

Total PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-35.qld
Last Altered: Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 15:55:07 Pacific Daylight Time

Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- |
| ---: |
| $413>368.7$ |
| $6.402 e+005$ |
| 100 |}

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-35.qld
 Last Altered: Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
 Printed: Thursday, July 27, 2017 15:55:07 Pacific Daylight Time

Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

PFUnA

F43:MRM of 2 channels,ES-
$562.9>518.9$
100

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F47.MRM $5733>419$

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-35.qld
 Last Altered: Thursday, July 27, 2017 15:51:40 Pacific Daylight Time Printed: \quad Thursday, July 27, 2017 15:55:07 Pacific Daylight Time

Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

712.9 > 369 $1.270 \mathrm{e}+004$

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset: U:\Q4.PRO\results\170725M1\170725M1-35.qld
 Last Altered: Thursday, July 27, 2017 15:51:40 Pacific Daylight Time
 Printed: Thursday, July 27, 2017 15:55:07 Pacific Daylight Time

Name: 170725M1_35, Date: 25-Jul-2017, Time: 20:21:46, ID: B7G0108-BS1 OPR 0.125, Description: OPR

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-38.qld
Last Altered:	Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:16:55 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	$7.22 e 2$	2.74 e 3	0.1210		2.96	3.00	3.30	14.4	
2	4 PFHxA	313.2 > 268.9	1.83 e 4	7.85e3	0.1210		3.19	3.23	11.7	63.1	
3	5 PFHpA	$363>318.9$	4.95 e 3	1.84 e 4	0.1210		3.45	3.49	3.36	21.7	
4	6 PFHxS	$398.9>79.6$	1.94 e 3	2.02 e 3	0.1210		3.56	3.56	12.0	58.6	
5	8 PFOA	$413>368.7$	3.03 e 3	2.59 e 4	0.1210		3.65	3.69	1.47	10.8	
6	10 PFNA	$462.9>418.8$	3.95 e 2	2.09 e 4	0.1210		3.83	3.87	0.236	0.667	
7	12 PFOS	$499>79.9$	3.28 e 3	4.62 e 3	0.1210		3.89	3.91	8.88	62.0	
8	13 PFDA	$513>468.8$		1.97 e 4	0.1210		4.01				
9	15 N -MeFOSAA	$570.1>419$		3.96e3	0.1210		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		3.98 e3	0.1210		4.10				
11	17 PFUnA	$562.9>518.9$		1.85 e 4	0.1210		4.17				
12	19 PFDoA	$612.9>318.8$		2.33 e 3	0.1210		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:
 U:IQ4.PRO\results\170725M11170725M1-38.qld
 Last Altered: Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:17:19 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.33 e3	0.1210		4.50				
2	22 PFTeDA	$712.9>668.8$		1.59 e 4	0.1210		4.68				
3	30 13C3-PFBS	$302>98.8$	2.74 e 3	2.37 e 4	0.1210	0.031	2.96	3.00	0.577	153	148.4
4	31 13C2-PFHxA	$315>269.8$	7.85e3	2.37 e 4	0.1210	0.276	3.19	3.23	1.65	49.4	119.6
5	32 13C4-PFHpA	367.2 > 321.8	1.84 e 4	2.37 e 4	0.1210	0.306	3.45	3.49	3.88	105	101.5
6	33 1802-PFHxS	$403>102.6$	2.02 e 3	3.44 e 3	0.1210	0.393	3.56	3.56	7.34	155	149.6
7	35 13C2-PFOA	$414.9>369.7$	2.59 e 4	1.80 e 4	0.1210	1.067	3.65	3.69	17.9	139	134.5
8	36 13C5-PFNA	468.2 > 422.9	2.09 e 4	1.96 e 4	0.1210	0.852	3.83	3.86	13.3	129	125.1
9	38 13C8-PFOS	$507>79.9$	4.62 e 3	3.68 e3	0.1210	0.936	3.89	3.91	15.7	139	134.2
10	39 13C2-PFDA	$515.1>469.9$	1.97 e 4	1.93 e 4	0.1210	0.810	4.01	4.03	12.7	130	125.7

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-38.qld
Last Altered:	Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:17:49 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	3.96 e 3	2.23 e 4	0.1210	0.014	4.03	4.06	2.22	1340	99.9
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	3.98 e 3	2.23 e 4	0.1210	0.014	4.12	4.12	2.23	1320	98.6
3	43 13C2-PFUnA	$565>519.8$	1.85 e 4	2.23 e 4	0.1210	0.962	4.17	4.20	10.4	89.4	86.5
4	44 13C2-PFDoA	$615>569.7$	2.33 e 3	2.23 e 4	0.1210	0.094	4.34	4.36	1.31	114	110.7
5	46 13C2-PFTeDA	$714.8>669.6$	1.59 e 4	2.23 e 4	0.1210	0.694	4.68	4.71	8.92	106	102.8
6	52 13C5-PFHxA	$318>272.9$	2.37 e 4	2.37 e 4	0.1210	1.000	3.19	3.23	5.00	41.3	100.0
7	53 13C3-PFHxS	$401.9>79.9$	3.44 e 3	3.44 e 3	0.1210	1.000	3.56	3.56	12.5	103	100.0
8	54 13C8-PFOA	$421.3>376$	1.80 e 4	1.80 e4	0.1210	1.000	3.65	3.69	12.5	103	100.0
9	55 13C9-PFNA	$472.2>426.9$	1.96 e 4	1.96 e4	0.1210	1.000	3.83	3.86	12.5	103	100.0
10	56 13C4-PFOS	$503>79.9$	3.68 e3	3.68 e3	0.1210	1.000	3.89	3.91	12.5	103	100.0
11	57 13C6-PFDA	$519.1>473.7$	1.93 e 4	1.93 e 4	0.1210	1.000	4.01	4.04	12.5	103	100.0
12	58 13C7-PFUnA	$570.1>524.8$	2.23 e 4	2.23 e 4	0.1210	1.000	4.17	4.20	12.5	103	100.0
13	59 Total PFBS	$299>79.7$	7.22 e 2	2.74 e 3	0.1210		2.96		3.30	14.4	
14	60 Total PFHxS	$398.9>79.6$	1.94 e 3	2.02 e 3	0.1210		3.52		12.0	58.6	
15	61 Total PFOA	$413>368.7$	3.38 e 3	2.59 e 4	0.1210		3.65		1.47	10.8	
16	62 Total PFOS	$499>79.9$	3.28 e 3	4.62 e 3	0.1210		3.89		8.88	62.0	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	3.96 e 3	0.1210		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	3.98e3	0.1210		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-38.qld
Last Altered:	Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:17:49 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710 Total PFBS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
3 PFBS	$299>79.7$	3.00	722.292	2738.896	3.296	bb	14.4

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc. | | $398.9>79.6$ |
| ---: | :--- |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	3031.787	25861.203	1.465	MM	10.8
2	61 Total PFOA	$413>368.7$	3.65	344.931	25861.203	0.167	MMI	

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc. 1

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$15 ~ N-M e F O S A A ~$	$570.1>419$	3960.287	Conc.			

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response
1	16 N-EtFOSAA	$584.2>419$		3980.504	Primary Flags	MM-I

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-38.qld
Last Altered: Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:17:49 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

Total PFBS

13C3-PFBS

Reviewed: WJL 8/3/2017

PFHxA

13C2-PFHxA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-38.qld
Last Altered: Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:17:49 Pacific Daylight Time

Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

Total PFOA

F19:MRM of 2 channels, ES-
$413>368.7$

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-38.qld
Last Altered: Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:17:49 Pacific Daylight Time

Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-38.qld
 Last Altered: Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:17:49 Pacific Daylight Time

Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

PFTeDA

F58:MRM of 4 channels,ES

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset: U:\Q4.PRO\results\170725M1\170725M1-38.qld
 Last Altered: Thursday, July 27, 2017 16:05:40 Pacific Daylight Time
 Printed: Thursday, July 27, 2017 16:17:49 Pacific Daylight Time

Name: 170725M1_38, Date: 25-Jul-2017, Time: 20:53:41, ID: 1700856-01RE1 INFLUENT-20170710 0.121, Description: INFLUENT-20170710

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-39.qld
Last Altered:	Thursday, July 27, 2017 16:10:56 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:11:31 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	8.30 e 2	3.29 e 3	0.1165		2.96	3.00	3.16	14.3	
2	4 PFHxA	313.2 > 268.9	2.07 e 4	9.06 e 3	0.1165		3.19	3.23	11.4	63.9	
3	5 PFHpA	$363>318.9$	5.60 e 3	2.20 e 4	0.1165		3.45	3.49	3.19	21.3	
4	6 PFHxS	$398.9>79.6$	2.32 e 3	2.33 e 3	0.1165		3.56	3.56	12.4	62.8	
5	8 PFOA	$413>368.7$	3.24 e 3	2.70 e4	0.1165		3.65	3.69	1.50	11.5	
6	10 PFNA	$462.9>418.8$	5.30 e 2	2.54 e 4	0.1165		3.83	3.86	0.261	0.887	
7	12 PFOS	$499>79.9$	3.72 e 3	5.31 e 3	0.1165		3.89	3.91	8.75	63.5	
8	13 PFDA	$513>468.8$		2.19 e 4	0.1165		4.01				
9	15 N -MeFOSAA	$570.1>419$		4.83e3	0.1165		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		4.88 e 3	0.1165		4.10				
11	17 PFUnA	$562.9>518.9$		2.09 e 4	0.1165		4.17				
12	19 PFDoA	$612.9>318.8$	8.11 e 0	2.79 e 3	0.1165		4.34	4.30	0.0364		

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-39.qld
Last Altered:	Thursday, July 27, 2017 16:10:56 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:11:46 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.79 e3	0.1165		4.50				
2	22 PFTeDA	$712.9>668.8$		1.76 e 4	0.1165		4.68				
3	$3013 C 3-P F B S$	$302>98.8$	3.29 e 3	2.83 e 4	0.1165	0.031	2.96	3.00	0.580	160	149.2
4	31 13C2-PFHxA	$315>269.8$	9.06 e 3	2.83 e 4	0.1165	0.276	3.19	3.22	1.60	49.7	115.8
5	32 13C4-PFHpA	$367.2>321.8$	2.20 e 4	2.83 e 4	0.1165	0.306	3.45	3.49	3.88	109	101.6
6	33 1802-PFHxS	$403>102.6$	2.33 e 3	4.29 e 3	0.1165	0.393	3.56	3.56	6.79	148	138.3
7	35 13C2-PFOA	414.9 > 369.7	2.70 e 4	2.30 e 4	0.1165	1.067	3.65	3.69	14.7	118	109.9
8	36 13C5-PFNA	468.2 > 422.9	2.54 e 4	2.57e4	0.1165	0.852	3.83	3.86	12.4	125	116.2
9	38 13C8-PFOS	$507>79.9$	5.31 e 3	4.33 e3	0.1165	0.936	3.89	3.91	15.3	141	131.1
10	39 13C2-PFDA	$515.1>469.9$	2.19 e 4	2.16 e 4	0.1165	0.810	4.01	4.03	12.6	134	124.8

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-39.qld
Last Altered:	Thursday, July 27, 2017 16:10:56 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:12:16 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	4.83e3	2.27 e 4	0.1165	0.014	4.03	4.06	2.66	1670	119.6
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	4.88 e 3	2.27 e 4	0.1165	0.014	4.12	4.12	2.69	1660	118.6
3	43 13C2-PFUnA	$565>519.8$	2.09 e 4	2.27 e 4	0.1165	0.962	4.17	4.19	11.5	103	95.7
4	44 13C2-PFDoA	$615>569.7$	2.79 e 3	2.27 e 4	0.1165	0.094	4.34	4.36	1.54	140	130.1
5	46 13C2-PFTeDA	$714.8>669.6$	1.76 e 4	2.27 e 4	0.1165	0.694	4.68	4.71	9.71	120	111.5
6	52 13C5-PFHXA	$318>272.9$	2.83 e 4	2.83 e 4	0.1165	1.000	3.19	3.23	5.00	42.9	100.0
7	53 13C3-PFHxS	$401.9>79.9$	4.29 e 3	4.29 e 3	0.1165	1.000	3.56	3.56	12.5	107	100.0
8	54 13C8-PFOA	$421.3>376$	2.30 e 4	2.30 e 4	0.1165	1.000	3.65	3.68	12.5	107	100.0
9	55 13C9-PFNA	$472.2>426.9$	2.57 e 4	2.57 e 4	0.1165	1.000	3.83	3.86	12.5	107	100.0
10	56 13C4-PFOS	$503>79.9$	4.33 e 3	4.33 e3	0.1165	1.000	3.89	3.91	12.5	107	100.0
11	57 13C6-PFDA	$519.1>473.7$	2.16 e 4	2.16 e 4	0.1165	1.000	4.01	4.03	12.5	107	100.0
12	58 13C7-PFUnA	$570.1>524.8$	2.27 e 4	2.27 e 4	0.1165	1.000	4.17	4.19	12.5	107	100.0
13	59 Total PFBS	$299>79.7$	8.30 e 2	$3.29 e 3$	0.1165		2.96		3.16	14.3	
14	60 Total PFHxS	$398.9>79.6$	2.32 e 3	2.33 e 3	0.1165		3.52		12.4	62.8	
15	61 Total PFOA	$413>368.7$	3.50 e 3	2.70 e 4	0.1165		3.65		1.50	11.5	
16	62 Total PFOS	$499>79.9$	3.72 e 3	5.31e3	0.1165		3.89		8.75	63.5	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	4.83 e 3	0.1165		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00 e 0	4.88 e 3	0.1165		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-39.qld
Last Altered:	Thursday, July 27, 2017 16:10:56 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:12:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710 Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 | $299>79.7$ | 3.00 | 829.812 | 3286.767 | 3.156 | bb | 14.3 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
6 PFHxS	$398.9>79.6$	3.56	2315.210	2331.493	12.413	MM	62.8	

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	3242.025	26980.543	1.502	db	11.5
2	61 Total PFOA	$413>368.7$	3.63	255.060	26980.543	0.118	bdl	

Total PFOS

| \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $499>79.9$ | 3.91 | 3717.674 | 5310.273 | 8.751 | MM | 63.5 |

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	15 N-MeFOSAA	$570.1>419$		4832.591	Conc.		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response
1	16 N-EtFOSAA	$584.2>419$		4879.207	Primary Flags	MM-I

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-39.qld
Last Altered: Thursday, July 27, 2017 16:24:03 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:24:37 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

Total PFBS

F6:MRM of 2 channels, ES-
$299>79.7$
$2.366 e+004$

13C3-PFBS

PFHxA

13C2-PFHxA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-39.qld
Last Altered: Thursday, July 27, 2017 16:24:03 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:24:37 Pacific Daylight Time

Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

Total PFOA

13C2-PFOA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
499 > 99
$2.196 \mathrm{e}+004$

13C8-PFOS

PFDA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-39.qld
Last Altered: Thursday, July 27, 2017 16:24:03 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:24:37 Pacific Daylight Time

Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

PFUnA

F43:MRM of 2 channels,ES-

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F47.MAM $5733>419$

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-39.qld
Last Altered: Thursday, July 27, 2017 16:24:03 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:24:37 Pacific Daylight Time

Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

F58:MRM of 4 channels,ES 712.9 > 369
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-39.qld
Last Altered:	Thursday, July 27, 2017 16:24:03 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:24:37 Pacific Daylight Time

Name: 170725M1_39, Date: 25-Jul-2017, Time: 21:04:19, ID: 1700856-02RE1 DUP05-20170710 0.11647, Description: DUP05-20170710

13C4-PFOS

13C6-PFDA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults1170725M11170725M1-40.qld
Last Altered:	Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:14:52 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		5.31e3	0.1173		2.96				
2	4 PFHxA	313.2 > 268.9		1.41 e 4	0.1173		3.19				
3	5 PFHpA	$363>318.9$		$3.26 e 4$	0.1173		3.45				
4	6 PFHxS	$398.9>79.6$	1.17 e 0	3.58 e 3	0.1173		3.56	3.55	0.00408	0.0774	
5	8 PFOA	$413>368.7$		4.30 e 4	0.1173		3.65				
6	10 PFNA	$462.9>418.8$		3.77 e 4	0.1173		3.83				
7	12 PFOS	$499>79.9$	8.39 e 0	8.49e3	0.1173		3.89	3.88	0.0124		
8	13 PFDA	$513>468.8$		3.47 e 4	0.1173		4.01				
9	15 N -MeFOSAA	$570.1>419$		7.12e3	0.1173		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		7.24 e 3	0.1173		4.10				
11	17 PFUnA	$562.9>518.9$		3.50 e 4	0.1173		4.17				
12	19 PFDoA	$612.9>318.8$		3.22 e 3	0.1173		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:
 U:IQ4.PRO\results\170725M11170725M1-40.qld
 Last Altered: Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:15:05 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		$3.22 e 3$	0.1173		4.50				
2	22 PFTeDA	$712.9>668.8$		1.45 e 4	0.1173		4.68				
3	$3013 C 3-P F B S$	$302>98.8$	5.31 e 3	3.77 e 4	0.1173	0.031	2.96	3.00	0.704	193	181.0 H
4	31 13C2-PFHxA	$315>269.8$	1.41 e 4	3.77 e 4	0.1173	0.276	3.19	3.23	1.86	57.5	134.9
5	32 13C4-PFHpA	$367.2>321.8$	3.26 e 4	3.77 e 4	0.1173	0.306	3.45	3.49	4.33	121	113.3
6	33 1802-PFHxS	$403>102.6$	3.58 e3	7.55 e 3	0.1173	0.393	3.56	3.56	5.92	129	120.6
7	35 13C2-PFOA	$414.9>369.7$	4.30 e 4	3.23 e 4	0.1173	1.067	3.65	3.69	16.7	133	124.8
8	36 13C5-PFNA	$468.2>422.9$	3.77 e 4	3.72e4	0.1173	0.852	3.83	3.86	12.6	126	118.7
9	38 13C8-PFOS	$507>79.9$	8.49 e 3	6.51 e 3	0.1173	0.936	3.89	3.91	16.3	148	139.3
10	39 13C2-PFDA	$515.1>469.9$	3.47e4	3.56 e 4	0.1173	0.810	4.01	4.03	12.2	128	120.6

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-40.qld
Last Altered:	Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:15:34 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	7.12 e 3	3.22 e 4	0.1173	0.014	4.03	4.06	2.76	1720	124.2
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	7.24 e 3	3.22 e 4	0.1173	0.014	4.12	4.12	2.81	1720	124.1
3	43 13C2-PFUnA	$565>519.8$	3.50 e 4	3.22 e 4	0.1173	0.962	4.17	4.20	13.6	121	113.2
4	44 13C2-PFDoA	$615>569.7$	$3.22 e 3$	3.22 e 4	0.1173	0.094	4.34	4.36	1.25	113	105.9
5	46 13C2-PFTeDA	$714.8>669.6$	1.45 e 4	3.22 e 4	0.1173	0.694	4.68	4.71	5.64	69.2	64.9
6	52 13C5-PFHXA	$318>272.9$	3.77 e 4	3.77 e 4	0.1173	1.000	3.19	3.23	5.00	42.6	100.0
7	53 13C3-PFHxS	$401.9>79.9$	7.55 e 3	7.55 e 3	0.1173	1.000	3.56	3.56	12.5	107	100.0
8	54 13C8-PFOA	$421.3>376$	3.23 e 4	3.23 e 4	0.1173	1.000	3.65	3.69	12.5	107	100.0
9	55 13C9-PFNA	$472.2>426.9$	3.72 e 4	3.72e4	0.1173	1.000	3.83	3.86	12.5	107	100.0
10	56 13C4-PFOS	$503>79.9$	6.51 e 3	6.51 e 3	0.1173	1.000	3.89	3.91	12.5	107	100.0
11	57 13C6-PFDA	$519.1>473.7$	3.56 e 4	3.56 e4	0.1173	1.000	4.01	4.03	12.5	107	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.22e4	3.22e4	0.1173	1.000	4.17	4.20	12.5	107	100.0
13	59 Total PFBS	$299>79.7$	0.00 e 0	5.31 e 3	0.1173		2.96		0.000		
14	60 Total PFHxS	$398.9>79.6$	1.17 e 0	3.58 e 3	0.1173		3.52		0.00408	0.0774	
15	61 Total PFOA	$413>368.7$	0.00 e 0	4.30 e 4	0.1173		3.65		0.000		
16	62 Total PFOS	$499>79.9$	8.39 e 0	8.49 e 3	0.1173		3.89		0.000		
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	7.12e3	0.1173		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00 e 0	7.24 e 3	0.1173		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-40.qld
Last Altered:	Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:15:34 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710
Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1						Conc.	

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
6 PFHxS	$398.9>79.6$	3.55	1.168	3577.281	0.004	MM	0.1	

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response

Total PFOS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	12 PFOS	$499>79.9$	3.88	8.387	8486.026	0.012	bbl

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response
16 N-EtFOSAA	$584.2>419$		7238.100	Primary Flags	MM-I	

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-40.qld
Last Altered:	Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:15:34 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

Total PFBS

13C3-PFBS

F8:MRM of 2 channels,ES-

13C2-PFHxA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-40.qld
Last Altered: Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:15:34 Pacific Daylight Time

Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$

13C8-PFOS

PFDA

F35:MRM of 2 channels,ES
$513>219$
$4.808 e+001$

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-40.qld
Last Altered: Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:15:34 Pacific Daylight Time

Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-40.qld
Last Altered: Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:15:34 Pacific Daylight Time

Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

PFTeDA

F58:MRM of 4 channels,ES-
712.9 > 369
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-40.qld
Last Altered:	Thursday, July 27, 2017 16:14:12 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:15:34 Pacific Daylight Time

Name: 170725M1_40, Date: 25-Jul-2017, Time: 21:14:58, ID: 1700856-03RE1 MID-POINT-20170710 0.11731, Description: MID-POINT-20170710

13C4-PFOS

13C6-PFDA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults1170725M11170725M1-41.qld
Last Altered:	Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:21:10 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		5.15 e3	0.1208		2.96				
2	4 PFHxA	313.2 > 268.9		1.40e4	0.1208		3.19				
3	5 PFHpA	$363>318.9$		$3.26 e 4$	0.1208		3.45				
4	6 PFHxS	$398.9>79.6$	2.28 e 0	3.52e3	0.1208		3.56	3.58	0.00810	0.0947	
5	8 PFOA	$413>368.7$		4.37 e 4	0.1208		3.65				
6	10 PFNA	$462.9>418.8$		4.06 e 4	0.1208		3.83				
7	12 PFOS	$499>79.9$		8.73 e3	0.1208		3.89				
8	13 PFDA	$513>468.8$		3.80 e 4	0.1208		4.01				
9	15 N -MeFOSAA	$570.1>419$		7.51 e 3	0.1208		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		7.33 e3	0.1208		4.10				
11	17 PFUnA	$562.9>518.9$	1.03 e 2	3.67 e 4	0.1208		4.17	4.19	0.0350	0.252	
12	19 PFDoA	$612.9>318.8$		4.19 e 3	0.1208		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:
 U:\Q4.PRO\results\170725M11170725M1-41.qld
 Last Altered: Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:21:25 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		4.19 e 3	0.1208		4.50				
2	22 PFTeDA	$712.9>668.8$		2.83 e 4	0.1208		4.68				
3	30 13C3-PFBS	$302>98.8$	5.15 e 3	4.15 e 4	0.1208	0.031	2.96	3.00	0.621	165	159.6
4	31 13C2-PFHxA	$315>269.8$	1.40 e 4	4.15 e 4	0.1208	0.276	3.19	3.23	1.69	50.5	122.0
5	32 13C4-PFHpA	$367.2>321.8$	3.26 e 4	4.15 e 4	0.1208	0.306	3.45	3.49	3.93	106	102.8
6	33 1802-PFHxS	$403>102.6$	3.52 e 3	7.63 e 3	0.1208	0.393	3.56	3.56	5.77	122	117.5
7	35 13C2-PFOA	$414.9>369.7$	4.37 e 4	3.76 e 4	0.1208	1.067	3.65	3.69	14.5	113	108.9
8	36 13C5-PFNA	468.2 > 422.9	4.06 e 4	4.24 e 4	0.1208	0.852	3.83	3.86	12.0	116	112.5
9	38 13C8-PFOS	$507>79.9$	8.73 e 3	7.26 e 3	0.1208	0.936	3.89	3.91	15.0	133	128.6
10	39 13C2-PFDA	$515.1>469.9$	3.80 e 4	3.84 e 4	0.1208	0.810	4.01	4.03	12.3	126	121.9

Dataset: U:\Q4.PRO\results\170725M1\170725M1-41.qld

Last Altered: Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:22:02 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	7.51e3	3.98 e 4	0.1208	0.014	4.03	4.06	2.36	1420	105.9
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	7.33 e3	3.98 e 4	0.1208	0.014	4.12	4.12	2.30	1370	101.6
3	43 13C2-PFUnA	$565>519.8$	3.67e4	3.98 e 4	0.1208	0.962	4.17	4.19	11.5	99.2	95.9
4	44 13C2-PFDoA	$615>569.7$	4.19 e 3	3.98 e 4	0.1208	0.094	4.34	4.36	1.32	115	111.5
5	46 13C2-PFTeDA	$714.8>669.6$	2.83 e 4	3.98 e 4	0.1208	0.694	4.68	4.71	8.88	106	102.3
6	52 13C5-PFHXA	$318>272.9$	4.15 e 4	4.15 e 4	0.1208	1.000	3.19	3.23	5.00	41.4	100.0
7	53 13C3-PFHxS	$401.9>79.9$	7.63 e 3	7.63 e 3	0.1208	1.000	3.56	3.56	12.5	103	100.0
8	54 13C8-PFOA	$421.3>376$	3.76 e 4	3.76 e 4	0.1208	1.000	3.65	3.69	12.5	103	100.0
9	55 13C9-PFNA	$472.2>426.9$	4.24 e 4	4.24 e 4	0.1208	1.000	3.83	3.86	12.5	103	100.0
10	56 13C4-PFOS	$503>79.9$	7.26 e 3	7.26 e 3	0.1208	1.000	3.89	3.91	12.5	103	100.0
11	57 13C6-PFDA	$519.1>473.7$	3.84 e 4	3.84 e 4	0.1208	1.000	4.01	4.03	12.5	103	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.98 e 4	3.98 e 4	0.1208	1.000	4.17	4.20	12.5	103	100.0
13	59 Total PFBS	$299>79.7$	0.00 e 0	5.15 e 3	0.1208		2.96		0.000		
14	60 Total PFHxS	$398.9>79.6$	2.28 e 0	3.52e3	0.1208		3.52		0.00810	0.0947	
15	61 Total PFOA	$413>368.7$	0.00 e 0	4.37 e 4	0.1208		3.65		0.000		
16	62 Total PFOS	$499>79.9$	0.00 e 0	8.73 е3	0.1208		3.89		0.000		
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	7.51e3	0.1208		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00 e 0	7.33 e 3	0.1208		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-41.qld
Last Altered:	Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:22:02 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1						Conc.	

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
6 PFHxS	$398.9>79.6$	3.58	2.281	3518.938	0.008	MM	0.1	

Total PFOA

	\# Name	Trace	RT	Area	IS Area
1			Response Primary Flags		

Total PFOS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	12 PFOS	$499>79.9$		8733.464	Conc.	

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response Primary Flags	Conc.
1	15 N-MeFOSAA	$570.1>419$		7505.243	MM-I		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	16 N-EtFOSAA	$584.2>419$		Conc.			

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-41.qld
Last Altered: Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:22:02 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

Total PFBS

13C3-PFBS

F8:MRM of 2 channels,ES

13C2-PFHxA

PFHpA

F14:MRM of 2 channels,ES$363>169$

13C4-PFHpA

Total PFHxS

18O2-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-41.qld
Last Altered: Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:22:02 Pacific Daylight Time

Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

13C2-PFOA

PFNA

P25:MRM of 2 channels,ES- $\begin{array}{r}462.9>418.8 \\ 1.828 \mathrm{e}+003\end{array}$

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$
$000-003$

13C8-PFOS

PFDA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-41.qld
Last Altered: Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:22:02 Pacific Daylight Time

Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-41.qld
 Last Altered: Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:22:02 Pacific Daylight Time

Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

F58:MRM of 4 channels,ES712.9 > 369
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-41.qld
Last Altered:	Thursday, July 27, 2017 16:20:22 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:22:02 Pacific Daylight Time

Name: 170725M1_41, Date: 25-Jul-2017, Time: 21:25:36, ID: 1700856-04RE1 EFFLUENT-20170710 0.12084, Description: EFFLUENT-20170710

13C4-PFOS

13C6-PFDA
100

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-42.qld
Last Altered:	Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:28:01 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_42, Date: $25-J u l-2017$, Time: $21: 36: 14$, ID: B7G0108-MS1 Matrix Spike 0.12162 , Description: Matrix Spike

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	1.47e4	9.95 e3	0.1216		2.96	3.01	18.4	81.6	
2	4 PFHxA	313.2 > 268.9	7.97 e 4	2.73 e 4	0.1216		3.19	3.23	14.6	78.8	
3	5 PFHpA	$363>318.9$	5.99 e 4	6.24 e 4	0.1216		3.45	3.49	12.0	78.2	
4	6 PFHxS	$398.9>79.6$	9.02 e 3	6.99e3	0.1216		3.56	3.56	16.1	78.3	
5	8 PFOA	$413>368.7$	6.55 e 4	8.48 e 4	0.1216		3.65	3.69	9.66	80.1	
6	10 PFNA	$462.9>418.8$	6.17 e 4	7.17 e 4	0.1216		3.83	3.86	10.8	79.5	
7	12 PFOS	$499>79.9$	1.29 e 4	1.69 e 4	0.1216		3.89	3.91	9.51	66.1	
8	13 PFDA	$513>468.8$	6.51 e 4	6.52e4	0.1216		4.01	4.03	12.5	78.3	
9	15 N -MeFOSAA	$570.1>419$	1.77 e 4	1.48 e 4	0.1216		4.03	4.06	195	80.5	
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$	1.35 e 4	1.52 e 4	0.1216		4.10	4.13	145	73.7	
11	17 PFUnA	$562.9>518.9$	4.47 e 4	6.77 e 4	0.1216		4.17	4.20	8.25	76.8	
12	19 PFDoA	$612.9>318.8$	$4.82 e 3$	6.80 e 3	0.1216		4.34	4.36	8.85	77.1	

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-42.qld
Last Altered:	Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:28:14 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$	4.92 e 4	6.80e3	0.1216		4.50	4.53	90.4	66.7	
2	22 PFTeDA	$712.9>668.8$	2.29 e 4	2.65 e 4	0.1216		4.68	4.71	10.8	77.3	
3	30 13C3-PFBS	$302>98.8$	9.95 e 3	7.88 e 4	0.1216	0.031	2.96	3.01	0.631	167	162.3
4	31 13C2-PFHxA	$315>269.8$	2.73 e 4	7.88 e 4	0.1216	0.276	3.19	3.23	1.73	51.4	125.1
5	32 13C4-PFHpA	$367.2>321.8$	6.24 e 4	7.88 e 4	0.1216	0.306	3.45	3.49	3.96	107	103.6
6	33 1802-PFHxS	$403>102.6$	6.99 e 3	1.32 e 4	0.1216	0.393	3.56	3.56	6.60	138	134.5
7	35 13C2-PFOA	414.9 > 369.7	8.48 e 4	6.75 e 4	0.1216	1.067	3.65	3.69	15.7	121	117.7
8	36 13C5-PFNA	468.2 > 422.9	7.17 e 4	7.40 e 4	0.1216	0.852	3.83	3.86	12.1	117	113.6
9	38 13C8-PFOS	$507>79.9$	1.69 e 4	1.25 e 4	0.1216	0.936	3.89	3.91	16.9	149	144.6
10	39 13C2-PFDA	$515.1>469.9$	6.52e4	6.60 e 4	0.1216	0.810	4.01	4.03	12.4	125	122.0

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-42.qld
Last Altered:	Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:28:33 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	1.48 e 4	6.71 e 4	0.1216	0.014	4.03	4.06	2.75	1650	123.5
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	1.52 e 4	6.71 e 4	0.1216	0.014	4.12	4.12	2.83	1670	124.7
3	43 13C2-PFUnA	$565>519.8$	6.77 e 4	6.71 e 4	0.1216	0.962	4.17	4.20	12.6	108	104.9
4	44 13C2-PFDoA	$615>569.7$	6.80 e3	6.71 e 4	0.1216	0.094	4.34	4.36	1.27	110	107.4
5	46 13C2-PFTeDA	$714.8>669.6$	2.65 e 4	6.71 e 4	0.1216	0.694	4.68	4.71	4.93	58.4	56.8
6	52 13C5-PFHXA	$318>272.9$	7.88 e 4	7.88 e 4	0.1216	1.000	3.19	3.23	5.00	41.1	100.0
7	53 13C3-PFHxS	$401.9>79.9$	1.32 e 4	1.32 e 4	0.1216	1.000	3.56	3.56	12.5	103	100.0
8	54 13C8-PFOA	$421.3>376$	6.75 e 4	6.75e4	0.1216	1.000	3.65	3.69	12.5	103	100.0
9	55 13C9-PFNA	$472.2>426.9$	7.40 e 4	7.40 e 4	0.1216	1.000	3.83	3.86	12.5	103	100.0
10	56 13C4-PFOS	$503>79.9$	1.25 e 4	1.25 e4	0.1216	1.000	3.89	3.91	12.5	103	100.0
11	57 13C6-PFDA	$519.1>473.7$	6.60 e 4	6.60 e 4	0.1216	1.000	4.01	4.03	12.5	103	100.0
12	58 13C7-PFUnA	$570.1>524.8$	6.71 e 4	6.71 e 4	0.1216	1.000	4.17	4.20	12.5	103	100.0
13	59 Total PFBS	$299>79.7$	1.47 e 4	9.95 e 3	0.1216		2.96		18.4	81.6	
14	60 Total PFHxS	$398.9>79.6$	9.02 e 3	6.99e3	0.1216		3.52		16.1	78.3	
15	61 Total PFOA	$413>368.7$	6.56 e 4	8.48 e 4	0.1216		3.65		9.66	80.1	
16	62 Total PFOS	$499>79.9$	1.29 e 4	1.69 e 4	0.1216		3.89		9.51	66.1	
17	63 Total N-Me-FOSAA	$570.1>419$	1.77 e 4	1.48 e 4	0.1216		4.03		195	80.5	
18	64 Total N-EtFOSAA	$584.2>419$	1.35 e 4	1.52 e 4	0.1216		4.17		145	73.7	

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-42.qld
Last Altered:	Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:28:33 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 PFBS | $299>79.7$ | 3.01 | 14682.941 | 9948.444 | 18.449 | bb | 81.6 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6 PFHxS | $398.9>79.6$ | 3.56 | 9022.021 | 6993.258 | 16.126 | MM | 78.3 |

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 61 Total PFOA | $413>368.7$ | 3.36 | 90.109 | 84784.000 | 0.013 | bbl | |
| 2 | 8 PFOA | $413>368.7$ | 3.69 | 65492.727 | 84784.000 | 9.656 | bb | |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	12 PFOS	$499>79.9$	3.91	12858.301	16904.828	9.508	MM	66.1

Total N-Me-FOSAA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $15 ~ N-M e F O S A A ~$ | $570.1>419$ | 4.06 | 17669.395 | 14758.991 | 194.544 | bb | 80.5 |

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	$16 ~ N-E t F O S A A ~$	$584.2>419$	4.13	13508.030	15175.487	144.645	bb	73.7

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-42.qld
Last Altered: Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:28:33 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike

Total PFBS

	F6:MRM of 2 channels,ES $299>79.7$	
	PFBS	$3.996 \mathrm{e}+005$
${ }^{100} 7$	3.01	
\%-	398967	

PFHxA

13C2-PFHxA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-42.qld
Last Altered: Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:28:33 Pacific Daylight Time

Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike

Total PFOA

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS
F30:MRM of 2 channels,ES- $\begin{array}{r}499>79.9 \\ 1.969 \mathrm{e}+005 \\ \text { PFOS } \\ 3.91 \\ 1.29 e^{2} \\ 196929 \\ \text { MM }\end{array}$

13C8-PFOS

PFDA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-42.qld
Last Altered: Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:28:33 Pacific Daylight Time

Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-42.qld
Last Altered: Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:28:33 Pacific Daylight Time

Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike

PFTeDA		
	F58:MRM of 4 channels,ES-	
100	PFTeDA	$3.942 \mathrm{e}+005$
	4.71	
	2.29e	
	390317	

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-42.qld
Last Altered:	Thursday, July 27, 2017 16:27:16 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:28:33 Pacific Daylight Time

Name: 170725M1_42, Date: 25-Jul-2017, Time: 21:36:14, ID: B7G0108-MS1 Matrix Spike 0.12162, Description: Matrix Spike

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-43.qld
Last Altered:	Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:31:08 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	7.39 e 3	5.08 e 3	0.1185		2.96	3.01	18.2	82.5	
2	4 PFHxA	313.2 > 268.9	4.33 e 4	1.54 e 4	0.1185		3.19	3.23	14.1	77.8	
3	5 PFHpA	$363>318.9$	3.02e4	3.36 e 4	0.1185		3.45	3.49	11.2	75.1	
4	6 PFHxS	$398.9>79.6$	4.56 e 3	3.83 e 3	0.1185		3.56	3.56	14.9	74.1	
5	8 PFOA	$413>368.7$	3.46e4	4.22 e 4	0.1185		3.65	3.69	10.2	87.4	
6	10 PFNA	$462.9>418.8$	3.23 e 4	3.67 e 4	0.1185		3.83	3.86	11.0	83.4	
7	12 PFOS	$499>79.9$	6.58 e 3	8.66 e 3	0.1185		3.89	3.91	9.50	67.8	
8	13 PFDA	$513>468.8$	2.80 e 4	3.01 e 4	0.1185		4.01	4.04	11.6	74.8	
9	15 N -MeFOSAA	$570.1>419$	8.38 e 3	6.69 e 3	0.1185		4.03	4.07	204	86.5	
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$	6.54 e 3	6.78 e3	0.1185		4.10	4.13	157	82.0	
11	17 PFUnA	$562.9>518.9$	2.14 e 4	3.13 e 4	0.1185		4.17	4.20	8.56	81.9	
12	19 PFDoA	$612.9>318.8$	2.13 e 3	3.14 e 3	0.1185		4.34	4.36	8.47	75.6	

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:
 U:IQ4.PRO\results\170725M11170725M1-43.qld
 Last Altered: Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
 Printed: Thursday, July 27, 2017 16:31:20 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$	2.20 e 4	3.14 e 3	0.1185		4.50	4.53	87.8	66.4	
2	22 PFTeDA	$712.9>668.8$	1.10 e 4	1.27 e 4	0.1185		4.68	4.71	10.8	78.9	
3	30 13C3-PFBS	$302>98.8$	5.08 e 3	4.24 e 4	0.1185	0.031	2.96	3.00	0.599	163	154.1
4	31 13C2-PFHxA	$315>269.8$	1.54 e 4	4.24 e 4	0.1185	0.276	3.19	3.23	1.81	55.4	131.3
5	32 13C4-PFHpA	$367.2>321.8$	3.36 e 4	4.24 e 4	0.1185	0.306	3.45	3.49	3.96	109	103.7
6	33 1802-PFHxS	$403>102.6$	3.83 e 3	6.96e3	0.1185	0.393	3.56	3.56	6.89	148	140.3
7	35 13C2-PFOA	$414.9>369.7$	4.22 e 4	3.42 e 4	0.1185	1.067	3.65	3.69	15.4	122	115.6
8	36 13C5-PFNA	468.2 > 422.9	3.67e4	3.90 e 4	0.1185	0.852	3.83	3.86	11.8	117	110.6
9	$3813 C 8-P F O S$	$507>79.9$	8.66 e 3	6.99e3	0.1185	0.936	3.89	3.91	15.5	140	132.4
10	39 13C2-PFDA	$515.1>469.9$	3.01 e 4	3.19 e 4	0.1185	0.810	4.01	4.03	11.8	123	116.3

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-43.qld
Last Altered:	Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:31:38 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	6.69 e 3	3.15 e 4	0.1185	0.014	4.03	4.06	2.65	1630	119.2
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	6.78 e 3	3.15 e4	0.1185	0.014	4.12	4.13	2.69	1630	118.7
3	43 13C2-PFUnA	$565>519.8$	3.13 e 4	3.15 e4	0.1185	0.962	4.17	4.20	12.4	109	103.2
4	44 13C2-PFDoA	$615>569.7$	3.14 e 3	3.15 e 4	0.1185	0.094	4.34	4.36	1.24	111	105.5
5	46 13C2-PFTeDA	714.8 > 669.6	1.27 e 4	3.15 e 4	0.1185	0.694	4.68	4.71	5.05	61.4	58.2
6	52 13C5-PFHxA	$318>272.9$	4.24 e 4	4.24 e 4	0.1185	1.000	3.19	3.23	5.00	42.2	100.0
7	53 13C3-PFHxS	$401.9>79.9$	6.96 e 3	6.96e3	0.1185	1.000	3.56	3.56	12.5	105	100.0
8	54 13C8-PFOA	$421.3>376$	3.42 e 4	3.42 e 4	0.1185	1.000	3.65	3.69	12.5	105	100.0
9	55 13C9-PFNA	$472.2>426.9$	3.90 e 4	3.90 e 4	0.1185	1.000	3.83	3.86	12.5	105	100.0
10	56 13C4-PFOS	$503>79.9$	6.99 e 3	6.99e3	0.1185	1.000	3.89	3.91	12.5	105	100.0
11	57 13C6-PFDA	$519.1>473.7$	3.19 e 4	3.19 e 4	0.1185	1.000	4.01	4.03	12.5	105	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.15 e 4	3.15 e 4	0.1185	1.000	4.17	4.20	12.5	105	100.0
13	59 Total PFBS	$299>79.7$	7.39 e 3	5.08 e 3	0.1185		2.96		18.2	82.5	
14	60 Total PFHxS	$398.9>79.6$	4.56 e 3	3.83е3	0.1185		3.52		14.9	74.1	
15	61 Total PFOA	$413>368.7$	3.46 e 4	4.22 e 4	0.1185		3.65		10.2	87.4	
16	62 Total PFOS	$499>79.9$	6.58 e 3	8.66 e 3	0.1185		3.89		9.50	67.8	
17	63 Total N-Me-FOSAA	$570.1>419$	8.38 e 3	6.69 e 3	0.1185		4.03		204	86.5	
18	64 Total N-EtFOSAA	$584.2>419$	6.56 e 3	6.78 e 3	0.1185		4.17		157	82.2	

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-43.qld
Last Altered:	Thursday, July 27, 2017 16:32:19 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:32:28 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 | $299>79.7$ | 3.01 | 7393.923 | 5081.999 | 18.187 | bb | 82.5 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6 PFHxS | $398.9>79.6$ | 3.56 | 4563.391 | 3834.847 | 14.875 | bb | 74.1 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	34601.840	42205.180	10.248	bb	87.4

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	12 PFOS	$499>79.9$	3.91	6579.311	8660.243	9.496	MM	67.8

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	$15 \mathrm{~N}-$ MeFOSAA	$570.1>419$	4.07	8382.250	6687.918	203.668	bb	86.5

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	$16 ~ N-E t F O S A A ~$	$584.2>419$	4.13	6541.069	6780.968	156.751	bb	82.0

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-43.qld
Last Altered: Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:31:38 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

\section*{Total PFBS
 | | | F6:MRM of 2 channels,ES $299>79.7$ |
| :---: | :---: | :---: |
| | PFBS | $1.988 \mathrm{e}+005$ |
| 1007 | 3.01 | |
| | 7.39e3 | |
| \%- | 198385 | |

PFHxA

13C2-PFHxA

Total PFHxS

18O2-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-43.qld
Last Altered: Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:31:38 Pacific Daylight Time

Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

Total PFOA

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-43.qld
 Last Altered: Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:31:38 Pacific Daylight Time

Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

PFUnA

F43:MRM of 2 channels,ES$562.9>269$ $1.169 \mathrm{e}+005$

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES$573.3>419$

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-43.qld
 Last Altered: Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
 Printed: \quad Thursday, July 27, 2017 16:31:38 Pacific Daylight Time

Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-43.qld
Last Altered:	Thursday, July 27, 2017 16:30:03 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:31:38 Pacific Daylight Time

Name: 170725M1_43, Date: 25-Jul-2017, Time: 21:47:01, ID: B7G0108-MSD1 Matrix Spike Dup 0.11849, Description: Matrix Spike Dup

13C4-PFOS

13C6-PFDA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROVresults\170725M11170725M1-44.qld
Last Altered:	Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:36:30 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	2.42 e 4	8.68 e 3	0.1170		2.96	3.01	34.9	161	
2	4 PFHxA	$313.2>268.9$	5.74 e 5	2.35 e 4	0.1170		3.19	3.23	122	691	
3	5 PFHpA	$363>318.9$	1.24 e 5	5.57e4	0.1170		3.45	3.49	27.8	189	
4	6 PFHxS	$398.9>79.6$	1.01 e 5	5.38 e 3	0.1170		3.56	3.56	235	1370 E*	
5	8 PFOA	$413>368.7$	8.19 e 4	6.56 e 4	0.1170		3.65	3.69	15.6	136	
6	10 PFNA	$462.9>418.8$	5.48 e 3	5.65 e 4	0.1170		3.83	3.87	1.21	8.29	
7	12 PFOS	$499>79.9$	1.84 e 5	1.28 e 4	0.1170		3.89	3.91	180	1600 E*	
8	13 PFDA	$513>468.8$	1.28 e 3	5.93 e 4	0.1170		4.01	4.03	0.271	0.940	
9	15 N -MeFOSAA	$570.1>419$		1.26 e 4	0.1170		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		1.32 e 4	0.1170		4.10				
11	17 PFUnA	$562.9>518.9$	2.46 e 2	5.92e4	0.1170		4.17	4.21	0.0519	0.421	
12	19 PFDoA	$612.9>318.8$		5.83e3	0.1170		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-44.qld
Last Altered:	Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:36:42 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		5.83e3	0.1170		4.50				
2	22 PFTeDA	$712.9>668.8$		1.78 e4	0.1170		4.68				
3	30 13C3-PFBS	$302>98.8$	8.68 e 3	7.93 e 4	0.1170	0.031	2.96	3.01	0.548	151	140.8
4	31 13C2-PFHxA	$315>269.8$	2.35 e 4	7.93 e 4	0.1170	0.276	3.19	3.23	1.48	45.8	107.2
5	32 13C4-PFHpA	367.2 > 321.8	5.57e4	7.93 e 4	0.1170	0.306	3.45	3.49	3.52	98.4	92.0
6	33 1802-PFHxS	$403>102.6$	5.38 e 3	1.25 e4	0.1170	0.393	3.56	3.56	5.36	117	109.3
7	35 13C2-PFOA	$414.9>369.7$	6.56 e 4	6.85e4	0.1170	1.067	3.65	3.69	12.0	95.9	89.7
8	36 13C5-PFNA	468.2 > 422.9	5.65 e 4	7.52 e 4	0.1170	0.852	3.83	3.87	9.40	94.3	88.2
9	38 13C8-PFOS	$507>79.9$	1.28 e 4	1.17 e 4	0.1170	0.936	3.89	3.92	13.7	125	117.2
10	39 13C2-PFDA	$515.1>469.9$	5.93 e 4	7.18e4	0.1170	0.810	4.01	4.03	10.3	109	101.9

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-44.qld
Last Altered:	Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:37:01 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1 44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	1.26 e 4	6.05 e 4	0.1170	0.014	4.03	4.06	2.61	1630	117.3
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	1.32 e 4	6.05 e 4	0.1170	0.014	4.12	4.13	2.74	1680	120.8
3	43 13C2-PFUnA	$565>519.8$	5.92 e 4	6.05 e 4	0.1170	0.962	4.17	4.19	12.2	109	101.8
4	44 13C2-PFDoA	$615>569.7$	5.83e3	6.05 e 4	0.1170	0.094	4.34	4.36	1.20	109	102.0
5	46 13C2-PFTeDA	$714.8>669.6$	1.78 e 4	6.05e4	0.1170	0.694	4.68	4.71	3.69	45.4	42.5
6	52 13C5-PFHxA	$318>272.9$	7.93 e 4	7.93 e 4	0.1170	1.000	3.19	3.23	5.00	42.7	100.0
7	53 13C3-PFHxS	$401.9>79.9$	1.25 e 4	1.25 e 4	0.1170	1.000	3.56	3.56	12.5	107	100.0
8	54 13C8-PFOA	$421.3>376$	6.85 e 4	6.85e4	0.1170	1.000	3.65	3.69	12.5	107	100.0
9	55 13C9-PFNA	$472.2>426.9$	7.52e4	7.52e4	0.1170	1.000	3.83	3.87	12.5	107	100.0
10	56 13C4-PFOS	$503>79.9$	1.17e4	1.17 e 4	0.1170	1.000	3.89	3.92	12.5	107	100.0
11	57 13C6-PFDA	$519.1>473.7$	7.18 e 4	7.18 e 4	0.1170	1.000	4.01	4.04	12.5	107	100.0
12	58 13C7-PFUnA	$570.1>524.8$	6.05 e 4	6.05e4	0.1170	1.000	4.17	4.20	12.5	107	100.0
13	59 Total PFBS	$299>79.7$	2.42 e 4	8.68 e 3	0.1170		2.96		34.9	161	
14	60 Total PFHxS	$398.9>79.6$	1.01 e 5	5.38 e 3	0.1170		3.52		235	1370	
15	61 Total PFOA	$413>368.7$	8.92 e 4	6.56 e 4	0.1170		3.65		17.0	146	
16	62 Total PFOS	$499>79.9$	1.84 e 5	1.28 e 4	0.1170		3.89		180	1600	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	1.26 e 4	0.1170		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	1.32 e 4	0.1170		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-44.qld
Last Altered:	Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:37:01 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711 Total PFBS

| \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 PFBS | $299>79.7$ | 3.01 | 24209.141 | 8681.784 | 34.856 | bb | 160.5 |

Total PFHxS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.	
1	6 PFHxS	$398.9>79.6$	3.56	100925.438	5375.013	234.710	MM	1369.8

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	81869.352	65550.867	15.612	db	135.7
2	61 Total PFOA	$413>368.7$	3.63	7338.069	65550.867	1.399	bd	10.6

Total PFOS

| \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $499>79.9$ | 3.91 | 183774.781 | 12784.071 | 179.691 | MM | 1595.9 |

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$15 ~ N-M e F O S A A ~$	$570.1>419$		12639.063	Conc.		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response
1	16 N-EtFOSAA	$584.2>419$		13242.798	Primary Flags	MM-I

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-44.qld
Last Altered: Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:37:01 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

Total PFBS

100	F6:MRM of 2 channels, ES-
$299>79.7$	
$6.616 e+005$	

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-44.qld
Last Altered: Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:37:01 Pacific Daylight Time

Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

13C2-PFDA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-44.qld
Last Altered: Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:37:01 Pacific Daylight Time

Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-44.qld
Last Altered: Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 16:37:01 Pacific Daylight Time

Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

F58:MRM of 4 channels,ES$712.9>369$
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-44.qld
Last Altered:	Thursday, July 27, 2017 16:35:41 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 16:37:01 Pacific Daylight Time

Name: 170725M1_44, Date: 25-Jul-2017, Time: 21:57:39, ID: 1700856-05RE1 MW-37S-20170711 0.11696, Description: MW-37S-20170711

13C4-PFOS

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170727M1\170727M1-109.qld
Last Altered:	Friday, July 28, 2017 11:21:18 Pacific Daylight Time
Printed:	Friday, July 28, 2017 11:21:49 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51Name: 170727M1_109, Date: 28-Jul-2017, Time: 07:00:38, ID: 1700856-05RE1@10X MW-37S-20170711 0.11696, Description: MW-37S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	6 PFHxS	398.9 > 79.6	6.01e3	2.70 e 2	0.1170		3.56	3.48	278	1450	
2	11 PFOS	$499>79.9$	9.87 e 3	5.34 e 2	0.1170		3.89	3.84	231	2180	
3	25 18O2-PFHxS	$403>102.6$	2.70 e 2	6.88 e 2	0.1170	0.402	3.56	3.49	4.91	104	97.7
4	29 13C8-PFOS	$507>79.9$	5.34 e 2	5.89 e 2	0.1170	0.951	3.89	3.84	11.3	102	95.3
5	38 13C3-PFHxS	$401.9>79.9$	6.88 e 2	6.88 e 2	0.1170	1.000	3.56	3.49	12.5	107	100.0
6	41 13C4-PFOS	$503>79.9$	5.89 e 2	5.89 e 2	0.1170	1.000	3.89	3.84	12.5	107	100.0
7	45 Total PFHxS	$398.9>79.6$	6.01e3	2.70 e 2	0.1170		3.52		278	1450	
8	47 Total PFOS	$499>79.9$	9.87 e 3	5.34 e 2	0.1170		3.89		231	2180	

Dataset:
 U:\Q4.PRO\results\170727M1\170727M1-109.qld

Last Altered: Friday, July 28, 2017 11:21:18 Pacific Daylight Time
Printed: Friday, July 28, 2017 11:21:49 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_109, Date: 28-Jul-2017, Time: 07:00:38, ID: 1700856-05RE1@10X MW-37S-20170711 0.11696, Description: MW-37S-20170711

Total PFHxS

170727M1_109 Smooth(Mn,1x2) \quad F16:MRM of 2 channels,ES-
MW-37S-20170711 1700856-05RE1@10X MW-37S-201707110.11696
$398.9>79.6$
$8.901 \mathrm{e}+004$
100 PFHxS;3.48;6.01e3;89015;MM
$8.901 \mathrm{e}+004$

1802-PFHxS

170727M1_109 Smooth(Mn,1x2)
MW-37S-20170711 1700856-05RE1@10X MW-37S-20170711 0.11696

13C3-PFHxS

170727M1_109 Smooth(Mn,1x2)
MW-37S-20170711 1700856-05RE1@10X MW-37S-20170711 0.11696
F17:MRM of 1 channel,ES-
100 13C3-PFHxS;3.49;6.88e2;11550;bb
401.9 > 79.9

Last Altered: Friday, July 28, 2017 11:21:18 Pacific Daylight Time
Printed: Friday, July 28, 2017 11:21:49 Pacific Daylight Time

Name: 170727M1_109, Date: 28-Jul-2017, Time: 07:00:38, ID: 1700856-05RE1@10X MW-37S-20170711 0.11696, Description: MW-37S-20170711

Total PFOS

170727M1_109 Smooth(Mn,1x2) F30:MRM of 2 channels,ES.
MW-37S-20170711 1700856-05RE1@10X MW-37S-20170711 0.11696

13C8-PFOS

170727M1_109 Smooth(Mn,1x2)
MW-37S-20170711 1700856-05RE1@10X MW-37S-20170711 0.11696

13C4-PFOS

170727M1_109 Smooth(Mn,1x2)
MW-37S-20170711 1700856-05RE1@10X MW-37S-20170711 0.11696

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results1170725M11170725M1-45.qld
Last Altered:	Friday, July 28, 2017 08:39:04 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:39:39 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		4.02e3	0.1204		2.96				
2	4 PFHxA	313.2 > 268.9		1.19 e 4	0.1204		3.19				
3	5 PFHpA	$363>318.9$		2.65 e 4	0.1204		3.45				
4	6 PFHxS	$398.9>79.6$	4.69 e 0	2.88 e 3	0.1204		3.56	3.58	0.0204	0.155	
5	8 PFOA	$413>368.7$		3.52 e 4	0.1204		3.65				
6	10 PFNA	$462.9>418.8$		3.06 e 4	0.1204		3.83				
7	12 PFOS	$499>79.9$		6.44 e 3	0.1204		3.89				
8	13 PFDA	$513>468.8$		2.73 e 4	0.1204		4.01				
9	15 N -MeFOSAA	$570.1>419$		5.31 e 3	0.1204		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		5.01 e 3	0.1204		4.10				
11	17 PFUnA	$562.9>518.9$		2.58 e 4	0.1204		4.17				
12	19 PFDoA	$612.9>318.8$		2.73 e3	0.1204		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PROIresults1170725M11170725M1-45.qld
Last Altered:	Friday, July 28, 2017 08:39:04 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:39:55 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.73 e3	0.1204		4.50				
2	22 PFTeDA	$712.9>668.8$		2.06 e 4	0.1204		4.68				
3	$3013 C 3-P F B S$	$302>98.8$	$4.02 e 3$	3.06 e 4	0.1204	0.031	2.96	3.00	0.656	175	168.8
4	31 13C2-PFHxA	$315>269.8$	1.19 e 4	3.06 e 4	0.1204	0.276	3.19	3.23	1.94	58.4	140.6
5	32 13C4-PFHpA	$367.2>321.8$	2.65 e 4	3.06 e 4	0.1204	0.306	3.45	3.49	4.34	118	113.5
6	33 18O2-PFHxS	$403>102.6$	2.88 e 3	4.88 e 3	0.1204	0.393	3.56	3.56	7.38	156	150.3
7	$3513 C 2-P F O A$	$414.9>369.7$	3.52e4	2.62 e 4	0.1204	1.067	3.65	3.69	16.8	131	125.9
8	36 13C5-PFNA	468.2 > 422.9	3.06 e 4	2.98 e 4	0.1204	0.852	3.83	3.86	12.8	125	120.5
9	3813 C -PFOS	$507>79.9$	6.44 e 3	4.85 e 3	0.1204	0.936	3.89	3.91	16.6	147	142.0
10	39 13C2-PFDA	$515.1>469.9$	2.73 e 4	2.64 e 4	0.1204	0.810	4.01	4.03	12.9	133	127.7

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-45.qld
Last Altered:	Friday, July 28, 2017 08:39:04 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:40:16 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	5.31 e 3	2.28 e 4	0.1204	0.014	4.03	4.06	2.91	1770	130.9
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	5.01 e 3	2.28 e 4	0.1204	0.014	4.12	4.12	2.75	1640	121.3
3	43 13C2-PFUnA	$565>519.8$	2.58 e 4	2.28 e 4	0.1204	0.962	4.17	4.19	14.2	122	117.8
4	44 13C2-PFDoA	$615>569.7$	2.73 e3	2.28 e 4	0.1204	0.094	4.34	4.36	1.50	132	127.0
5	46 13C2-PFTeDA	$714.8>669.6$	2.06 e 4	2.28 e 4	0.1204	0.694	4.68	4.70	11.3	135	130.2
6	52 13C5-PFHXA	$318>272.9$	3.06 e 4	3.06 e 4	0.1204	1.000	3.19	3.23	5.00	41.5	100.0
7	53 13C3-PFHxS	$401.9>79.9$	4.88 e 3	4.88 e 3	0.1204	1.000	3.56	3.56	12.5	104	100.0
8	54 13C8-PFOA	$421.3>376$	2.62 e 4	2.62 e 4	0.1204	1.000	3.65	3.68	12.5	104	100.0
9	55 13C9-PFNA	$472.2>426.9$	2.98 e 4	2.98 e 4	0.1204	1.000	3.83	3.86	12.5	104	100.0
10	56 13C4-PFOS	$503>79.9$	4.85 e 3	4.85 e 3	0.1204	1.000	3.89	3.91	12.5	104	100.0
11	57 13C6-PFDA	$519.1>473.7$	2.64 e 4	2.64 e 4	0.1204	1.000	4.01	4.03	12.5	104	100.0
12	58 13C7-PFUnA	$570.1>524.8$	2.28 e 4	2.28 e 4	0.1204	1.000	4.17	4.19	12.5	104	100.0
13	59 Total PFBS	$299>79.7$	0.00 e 0	4.02 e 3	0.1204		2.96		0.000		
14	60 Total PFHxS	$398.9>79.6$	4.69 e 0	2.88 e 3	0.1204		3.52		0.0204	0.155	
15	61 Total PFOA	$413>368.7$	0.00 e 0	3.52e4	0.1204		3.65		0.000		
16	62 Total PFOS	$499>79.9$	0.00 e 0	6.44 e 3	0.1204		3.89		0.000		
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	5.31 e 3	0.1204		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00 e 0	5.01 e 3	0.1204		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-45.qld
Last Altered:	Friday, July 28, 2017 08:39:04 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:40:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711
Total PFBS

| | \# Name | Trace | RT | Area | IS Area |
| :---: | :---: | :---: | :---: | :---: | :---: | Response Primary Flags | Conc. |
| :--- |
| 1 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6 PFHxS | $398.9>79.6$ | 3.58 | 4.693 | 2880.085 | 0.020 | MM | 0.2 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	8 PFOA	$413>368.7$		35210.613	Conc.		

Total PFOS

	\# Name	Trace	RT	Area	IS Area
1			Response Primary Flags		

Total N-Me-FOSAA

	\# Name	Trace			RT	Area
1	15 N-MeFOSAA	$570.1>419$		IS Area	Response	Primary Flags

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	16 N-EtFOSAA	$584.2>419$	5005.231	Conc.			

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-45.qld

Last Altered: Friday, July 28, 2017 08:39:04 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 08:40:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA F9:MRM of 1 channel,ES-

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-45.qld

Last Altered: Friday, July 28, 2017 08:39:04 Pacific Daylight Time Printed: Friday, July 28, 2017 08:40:16 Pacific Daylight Time

Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

Total PFOA

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-45.qld

Last Altered: Friday, July 28, 2017 08:39:04 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 08:40:16 Pacific Daylight Time

Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

PFUnA

F43:MRM of 2 channels,ES$562.9>269$
 13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F47.MRM of $5733>419$

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-45.qld
 Last Altered: Friday, July 28, 2017 08:39:04 Pacific Daylight Time
 Printed: Friday, July 28, 2017 08:40:16 Pacific Daylight Time

Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

F58:MRM of 4 channels,ES$712.9>369$
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-45.qld
Last Altered: Friday, July 28, 2017 08:39:04 Pacific Daylight Time
Printed: Friday, July 28, 2017 08:40:16 Pacific Daylight Time

Name: 170725M1_45, Date: 25-Jul-2017, Time: 22:08:34, ID: 1700856-06RE1 ERB-01-20170711 0.12043, Description: ERB-01-20170711

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-46.qld
Last Altered:	Friday, July 28, 2017 08:44:01 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:44:45 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec	*See dilution.
1	3 PFBS	$299>79.7$	8.91e3	3.58 e 3	0.1148		2.96	3.00	31.1	146		
2	4 PFHxA	313.2 > 268.9	2.42 e 5	1.01 e 4	0.1148		3.19	3.23	119	687		
3	5 PFHpA	$363>318.9$	5.12 e 4	2.21 e 4	0.1148		3.45	3.49	29.0	201		
4	6 PFHxS	$398.9>79.6$	4.37 e 4	2.38 e3	0.1148		3.56	3.56	229	1360 E*		
5	8 PFOA	$413>368.7$	3.77 e 4	2.94 e 4	0.1148		3.65	3.69	16.0	142		
6	10 PFNA	$462.9>418.8$	4.71 e 3	2.41 e 4	0.1148		3.83	3.86	2.44	18.2		
7	12 PFOS	$499>79.9$	1.12 e 5	5.23 e 3	0.1148		3.89	3.91	268	3070 E*		
8	13 PFDA	$513>468.8$	1.52 e 3	2.33 e 4	0.1148		4.01	4.03	0.815	4.61		
9	$15 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		5.16 e 3	0.1148		4.03					
10	$16 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		5.53 e3	0.1148		4.10					
11	17 PFUnA	$562.9>518.9$		2.97 e 4	0.1148		4.17					
12	19 PFDoA	$612.9>318.8$		2.96 e 3	0.1148		4.34					

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PROIresults1170725M11170725M1-46.qld
Last Altered:	Friday, July 28, 2017 08:44:01 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:45:00 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	662.9 > 618.9		2.96 e 3	0.1148		4.50				
2	22 PFTeDA	$712.9>668.8$		1.91 e 4	0.1148		4.68				
3	30 13C3-PFBS	$302>98.8$	3.58 e 3	2.74 e 4	0.1148	0.031	2.96	3.00	0.654	183	168.1
4	31 13C2-PFHxA	$315>269.8$	1.01 e 4	2.74 e 4	0.1148	0.276	3.19	3.23	1.85	58.4	134.1
5	32 13C4-PFHpA	$367.2>321.8$	2.21 e 4	2.74 e 4	0.1148	0.306	3.45	3.49	4.03	115	105.5
6	33 1802-PFHxS	$403>102.6$	2.38 e 3	4.40 e 3	0.1148	0.393	3.56	3.56	6.76	150	137.7
7	35 13C2-PFOA	414.9 > 369.7	2.94 e 4	2.35 e 4	0.1148	1.067	3.65	3.69	15.7	128	117.3
8	36 13C5-PFNA	468.2 > 422.9	2.41 e 4	2.58 e 4	0.1148	0.852	3.83	3.86	11.7	119	109.5
9	38 13C8-PFOS	$507>79.9$	5.23 e 3	4.02e3	0.1148	0.936	3.89	3.91	16.3	151	139.1
10	39 13C2-PFDA	$515.1>469.9$	2.33 e 4	2.39 e 4	0.1148	0.810	4.01	4.03	12.2	131	120.6

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-46.qld
Last Altered:	Friday, July 28, 2017 08:44:01 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:49:55 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	5.16 e 3	2.35 e 4	0.1148	0.014	4.03	4.06	2.75	1750	123.6
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	5.53 e3	2.35 e 4	0.1148	0.014	4.12	4.12	2.95	1840	130.1
3	43 13C2-PFUnA	$565>519.8$	2.97 e 4	2.35 e 4	0.1148	0.962	4.17	4.20	15.8	143	131.6
4	44 13C2-PFDoA	$615>569.7$	2.96 e3	2.35 e 4	0.1148	0.094	4.34	4.36	1.58	145	133.6
5	46 13C2-PFTeDA	$714.8>669.6$	1.91 e 4	2.35 e 4	0.1148	0.694	4.68	4.71	10.2	127	117.0
6	52 13C5-PFHxA	$318>272.9$	2.74 e 4	2.74 e 4	0.1148	1.000	3.19	3.23	5.00	43.5	100.0
7	53 13C3-PFHxS	$401.9>79.9$	4.40 e 3	4.40 e 3	0.1148	1.000	3.56	3.56	12.5	109	100.0
8	54 13C8-PFOA	$421.3>376$	2.35 e 4	2.35 e 4	0.1148	1.000	3.65	3.69	12.5	109	100.0
9	55 13C9-PFNA	$472.2>426.9$	2.58 e 4	2.58 e 4	0.1148	1.000	3.83	3.86	12.5	109	100.0
10	56 13C4-PFOS	$503>79.9$	4.02 e 3	4.02 e 3	0.1148	1.000	3.89	3.91	12.5	109	100.0
11	57 13C6-PFDA	$519.1>473.7$	2.39 e 4	2.39 e 4	0.1148	1.000	4.01	4.03	12.5	109	100.0
12	58 13C7-PFUnA	$570.1>524.8$	2.35 e 4	2.35 e 4	0.1148	1.000	4.17	4.20	12.5	109	100.0
13	59 Total PFBS	$299>79.7$	8.91 e 3	3.58 e 3	0.1148		2.96		31.1	146	
14	60 Total PFHxS	$398.9>79.6$	4.37 e 4	2.38 e 3	0.1148		3.52		229	1360	
15	61 Total PFOA	$413>368.7$	4.06 e 4	2.94 e 4	0.1148		3.65		17.2	151	
16	62 Total PFOS	$499>79.9$	1.12 e 5	5.23 e 3	0.1148		3.89		268	3070	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	5.16 e 3	0.1148		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	5.53 e 3	0.1148		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-46.qld
Last Altered:	Friday, July 28, 2017 08:44:01 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:49:55 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710 Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 PFBS | $299>79.7$ | 3.00 | 8905.508 | 3576.117 | 31.128 | bb | 146.0 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
6 PFHxS	$398.9>79.6$	3.56	43650.215	2378.048	229.444	MM	1357.9	

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	37723.840	29430.807	16.022	db	141.9
2	61 Total PFOA	$413>368.7$	3.63	2885.216	29430.807	1.225	bd	9.2

Total PFOS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	49 PFOS	$499>79.9$	3.91	112152.555	5228.008	268.153	MM

Total N-Me-FOSAA

	$\#$ Name	Trace	RT	Area	IS Area	Response Primary Flags
1						

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response
1	16 N-EtFOSAA	$584.2>419$		5533.681	Primary Flags	MM-I

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-46.qld
Last Altered:	Friday, July 28, 2017 08:44:01 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:49:55 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

Total PFBS

		F6:MRM of 2 channels,ES- $299>79.7$
	PFBS	$2.370 \mathrm{e}+005$
1007	3.00	
	$8.91{ }^{\text {e3 }}$	
\%-	$\begin{gathered} 235980 \\ \text { bb } \end{gathered}$	

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-46.qld
Last Altered: Friday, July 28, 2017 08:44:01 Pacific Daylight Time Printed: Friday, July 28, 2017 08:49:55 Pacific Daylight Time

Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- |
| ---: |
| $413>368.7$ |
| $8.129 e+005$ |
| 100 |}

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS

13C2-PFDA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-46.qld

Last Altered: Friday, July 28, 2017 08:44:01 Pacific Daylight Time Printed: Friday, July 28, 2017 08:49:55 Pacific Daylight Time

Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

PFUnA

PrunA		
1007	PFUnA	F43:MRM of 2 channels,ES- $562.9>518.9$
		$5.654 \mathrm{e}+003$
	4.19	
	2.61 e 2	
\%-	5095	
		4.384 .44

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-46.qld
Last Altered: Friday, July 28, 2017 08:44:01 Pacific Daylight Time Printed: Friday, July 28, 2017 08:49:55 Pacific Daylight Time

Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

PFTeDA

F58:MRM of 4 channels,ES

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-46.qld
Last Altered: Friday, July 28, 2017 08:44:01 Pacific Daylight Time
Printed: Friday, July 28, 2017 08:49:55 Pacific Daylight Time

Name: 170725M1_46, Date: 25-Jul-2017, Time: 22:19:33, ID: 1700856-07RE1 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

13C4-PFOS

13C6-PFDA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170727M1\170727M1-110.qld
Last Altered:	Friday, July 28, 2017 11:07:39 Pacific Daylight Time
Printed:	Friday, July 28, 2017 11:14:36 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51Name: 170727M1_110, Date: 28-Jul-2017, Time: 07:11:22, ID: 1700856-07RE1@10X 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	6 PFHxS	$398.9>79.6$	4.04 e 3	1.97 e 2	0.1148		3.56	3.48	257	1360	
2	11 PFOS	$499>79.9$	1.19 e 4	4.66 e 2	0.1148		3.89	3.84	319	3400	
3	25 18O2-PFHxS	$403>102.6$	1.97 e 2	3.47 e 2	0.1148	0.402	3.56	3.49	7.10	154	141.3
4	29 13C8-PFOS	$507>79.9$	4.66 e 2	4.40 e 2	0.1148	0.951	3.89	3.85	13.3	121	111.5
5	38 13C3-PFHxS	$401.9>79.9$	3.47 e 2	3.47 e 2	0.1148	1.000	3.56	3.50	12.5	109	100.0
6	41 13C4-PFOS	$503>79.9$	4.40 e 2	4.40 e 2	0.1148	1.000	3.89	3.84	12.5	109	100.0
7	45 Total PFHxS	$398.9>79.6$	4.04 e 3	1.97 e 2	0.1148		3.52		257	1360	
8	47 Total PFOS	$499>79.9$	1.19 e 4	4.66 e 2	0.1148		3.89		319	3400	

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_110, Date: 28-Jul-2017, Time: 07:11:22, ID: 1700856-07RE1@10X 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

Total PFHxS

1802-PFHxS

170727M1_110 Smooth(Mn,1x2)
11-MW-1-20170710 1700856-07RE1@10X 11-MW-1-20170710 0.11482

13C3-PFHxS

170727M1_110 Smooth(Mn,1x2)
11-MW-1-20170710 1700856-07RE1@10X 11-MW-1-20170710 0.11482

170727M1_110 Smooth(Mn,1x2)

Name: 170727M1_110, Date: 28-Jul-2017, Time: 07:11:22, ID: 1700856-07RE1@10X 11-MW-1-20170710 0.11482, Description: 11-MW-1-20170710

Total PFOS

170727M1 110 Smooth(Mn,1x2) F30:MRM of 2 channels,ES-

13C8-PFOS

170727M1_110 Smooth(Mn,1x2)
11-MW-1-20170710 1700856-07RE1@10X 11-MW-1-20170710 0.11482

13C4-PFOS

170727M1_110 Smooth(Mn,1x2)
11-MW-1-20170710 1700856-07RE1@10X 11-MW-1-20170710 0.11482

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-47.qld
Last Altered:	Friday, July 28, 2017 08:56:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:57:06 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	1.41 e 3	4.78 e 3	0.1171		2.96	3.01	3.69	16.7	
2	4 PFHxA	313.2 > 268.9	1.70 e 4	1.33 e 4	0.1171		3.19	3.23	6.38	35.2	
3	5 PFHpA	$363>318.9$	3.03e3	2.97 e 4	0.1171		3.45	3.49	1.27	8.14	
4	6 PFHxS	398.9 > 79.6	8.11 e3	3.37 e 3	0.1171		3.56	3.56	30.1	153	
5	8 PFOA	$413>368.7$	3.31 e 4	3.99 e 4	0.1171		3.65	3.69	10.4	89.5	
6	10 PFNA	$462.9>418.8$	6.11 e 2	3.52e4	0.1171		3.83	3.87	0.217	0.543	
7	12 PFOS	$499>79.9$	5.95 e 4	7.44 e 3	0.1171		3.89	3.91	99.9	792	
8	13 PFDA	$513>468.8$	3.70 e 2	3.15 e 4	0.1171		4.01	4.04	0.147	0.121	
9	15 N-MeFOSAA	$570.1>419$		6.89e3	0.1171		4.03				
10	16 N -EtFOSAA	$584.2>419$		6.80e3	0.1171		4.10				
11	17 PFUnA	$562.9>518.9$		3.19 e 4	0.1171		4.17				
12	19 PFDoA	$612.9>318.8$		3.52e3	0.1171		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-47.qld
Last Altered:	Friday, July 28, 2017 08:56:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:57:19 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		3.52 e 3	0.1171		4.50				
2	22 PFTeDA	$712.9>668.8$		1.86 e 4	0.1171		4.68				
3	30 13C3-PFBS	$302>98.8$	4.78 e 3	3.55 e 4	0.1171	0.031	2.96	3.01	0.672	185	172.9 H
4	31 13C2-PFHxA	$315>269.8$	1.33 e 4	3.55 e 4	0.1171	0.276	3.19	3.23	1.87	57.9	135.7
5	32 13C4-PFHpA	$367.2>321.8$	2.97 e 4	3.55 e 4	0.1171	0.306	3.45	3.49	4.18	117	109.4
6	33 1802-PFHxS	$403>102.6$	3.37 e 3	6.10 e 3	0.1171	0.393	3.56	3.56	6.90	150	140.6
7	35 13C2-PFOA	$414.9>369.7$	3.99 e 4	2.88 e 4	0.1171	1.067	3.65	3.69	17.3	139	129.8
8	36 13C5-PFNA	$468.2>422.9$	3.52e4	3.29 e 4	0.1171	0.852	3.83	3.86	13.4	134	125.6
9	38 13C8-PFOS	$507>79.9$	7.44 e 3	5.81 e 3	0.1171	0.936	3.89	3.91	16.0	146	136.9
10	39 13C2-PFDA	$515.1>469.9$	3.15 e 4	2.93 e 4	0.1171	0.810	4.01	4.04	13.5	142	132.9

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-47.qld
Last Altered:	Friday, July 28, 2017 08:56:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:57:39 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	6.89 e 3	3.47e4	0.1171	0.014	4.03	4.06	2.48	1550	111.4
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	6.80 e 3	3.47 e 4	0.1171	0.014	4.12	4.12	2.45	1500	108.0
3	43 13C2-PFUnA	$565>519.8$	3.19 e 4	3.47 e 4	0.1171	0.962	4.17	4.19	11.5	102	95.3
4	44 13C2-PFDoA	$615>569.7$	3.52e3	3.47 e 4	0.1171	0.094	4.34	4.36	1.27	114	107.2
5	46 13C2-PFTeDA	$714.8>669.6$	1.86 e 4	3.47 e 4	0.1171	0.694	4.68	4.71	6.69	82.2	77.1
6	52 13C5-PFHxA	$318>272.9$	3.55 e 4	3.55 e 4	0.1171	1.000	3.19	3.23	5.00	42.7	100.0
7	53 13C3-PFHxS	$401.9>79.9$	6.10 e 3	6.10 e 3	0.1171	1.000	3.56	3.56	12.5	107	100.0
8	54 13C8-PFOA	$421.3>376$	2.88 e 4	2.88 e 4	0.1171	1.000	3.65	3.69	12.5	107	100.0
9	55 13C9-PFNA	$472.2>426.9$	3.29 e 4	3.29 e 4	0.1171	1.000	3.83	3.86	12.5	107	100.0
10	56 13C4-PFOS	$503>79.9$	5.81 e 3	5.81e3	0.1171	1.000	3.89	3.91	12.5	107	100.0
11	57 13C6-PFDA	$519.1>473.7$	2.93 e 4	2.93 e 4	0.1171	1.000	4.01	4.03	12.5	107	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.47e4	3.47 e 4	0.1171	1.000	4.17	4.19	12.5	107	100.0
13	59 Total PFBS	$299>79.7$	1.41 e 3	4.78 e 3	0.1171		2.96		3.69	16.7	
14	60 Total PFHxS	$398.9>79.6$	8.11 e 3	3.37 e 3	0.1171		3.52		30.1	153	
15	61 Total PFOA	$413>368.7$	3.61 e 4	3.99 e 4	0.1171		3.65		11.3	95.9	
16	62 Total PFOS	$499>79.9$	5.95 e 4	7.44 e 3	0.1171		3.89		99.9	792	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	6.89 e 3	0.1171		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00 e 0	6.80e3	0.1171		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-47.qld
Last Altered:	Friday, July 28, 2017 08:56:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 08:57:39 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710
Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 PFBS | $299>79.7$ | 3.01 | 1410.075 | 4779.669 | 3.688 | bb | 16.7 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
6 PFHxS	$398.9>79.6$	3.56	8111.104	3370.763	30.079	MM	152.8	

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	33108.750	39873.367	10.379	db	89.5
2	61 Total PFOA	$413>368.7$	3.63	2957.569	39873.367	0.927	bd	6.4

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc. | 12 PFOS |
| :--- |
| 1 |

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	15 N-MeFOSAA	$570.1>419$	6889.878	Conc.			

Total N-EtFOSAA

| | \# Name | Trace | RT | Area | IS Area |
| :---: | :---: | :---: | :---: | :---: | :---: | Response Primary Flags | Conc. |
| :--- |
| 1 |

Dataset: U:\Q4.PRO\results\170725M1\170725M1-47.qld

Last Altered: Friday, July 28, 2017 08:56:19 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 08:57:39 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

Total PFBS

	F6:MRM of 2 channels, ES-
$299>79.7$	
$3.810 e+004$	

13C3-PFBS

PFHxA

13C2-PFHxA

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-47.qld

Last Altered: Friday, July 28, 2017 08:56:19 Pacific Daylight Time Printed: Friday, July 28, 2017 08:57:39 Pacific Daylight Time

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

\section*{Total PFOA

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFDA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-47.qld

Last Altered: Friday, July 28, 2017 08:56:19 Pacific Daylight Time Printed: Friday, July 28, 2017 08:57:39 Pacific Daylight Time

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
$573.3>419$

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-47.qld
Last Altered: Friday, July 28, 2017 08:56:19 Pacific Daylight Time
Printed: Friday, July 28, 2017 08:57:39 Pacific Daylight Time

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

F58:MRM of 4 channels,ES712.9 > 369
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-47.qld

Last Altered: Friday, July 28, 2017 08:56:19 Pacific Daylight Time
Printed: Friday, July 28, 2017 08:57:39 Pacific Daylight Time

Name: 170725M1_47, Date: 25-Jul-2017, Time: 22:30:16, ID: 1700856-08RE1 LF-MW-54BR-20170710 0.11713, Description: LF-MW-54BR-20170710

13C4-PFOS

13C6-PFDA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results1170725M11170725M1-48.qld
Last Altered:	Friday, July 28, 2017 09:01:59 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:02:55 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	4.94 e 3	3.14 e 3	0.1208		2.96	3.00	19.7	87.6	
2	4 PFHxA	313.2 > 268.9	7.59 e 4	8.40 e 3	0.1208		3.19	3.23	45.2	247	
3	5 PFHpA	$363>318.9$	1.85 e 4	2.04 e 4	0.1208		3.45	3.49	11.3	74.4	
4	6 PFHxS	$398.9>79.6$	1.29 e 4	2.24 e 3	0.1208		3.56	3.56	71.9	363	
5	8 PFOA	$413>368.7$	1.38 e 4	2.71 e4	0.1208		3.65	3.69	6.37	52.6	
6	10 PFNA	$462.9>418.8$	1.96 e 3	2.15 e4	0.1208		3.83	3.86	1.14	7.45	
7	12 PFOS	$499>79.9$	2.10 e 4	4.92 e 3	0.1208		3.89	3.91	53.3	390	
8	13 PFDA	$513>468.8$	3.12 e 2	2.29 e 4	0.1208		4.01	4.03	0.171	0.272	
9	15 N -MeFOSAA	$570.1>419$		4.48 e 3	0.1208		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		4.39 e 3	0.1208		4.10				
11	17 PFUnA	$562.9>518.9$		2.35 e 4	0.1208		4.17				
12	19 PFDoA	$612.9>318.8$		2.42e3	0.1208		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results\170725M11170725M1-48.qld
Last Altered:	Friday, July 28, 2017 09:01:59 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:06 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.42 e 3	0.1208		4.50				
2	22 PFTeDA	$712.9>668.8$		1.57 e 4	0.1208		4.68				
3	30 13C3-PFBS	$302>98.8$	3.14 e 3	2.47 e 4	0.1208	0.031	2.96	3.00	0.637	169	163.8
4	31 13C2-PFHxA	$315>269.8$	8.40 e 3	2.47 e 4	0.1208	0.276	3.19	3.23	1.70	51.0	123.3
5	32 13C4-PFHpA	$367.2>321.8$	2.04 e 4	2.47 e 4	0.1208	0.306	3.45	3.49	4.14	112	108.3
6	33 1802-PFHxS	$403>102.6$	2.24 e 3	4.14 e 3	0.1208	0.393	3.56	3.56	6.76	142	137.6
7	35 13C2-PFOA	$414.9>369.7$	2.71 e 4	2.12 e 4	0.1208	1.067	3.65	3.69	16.0	124	119.7
8	36 13C5-PFNA	$468.2>422.9$	2.15 e 4	2.30 e 4	0.1208	0.852	3.83	3.86	11.7	114	109.8
9	38 13C8-PFOS	$507>79.9$	4.92e3	4.38 e 3	0.1208	0.936	3.89	3.91	14.0	124	119.8
10	39 13C2-PFDA	$515.1>469.9$	2.29 e 4	2.09 e 4	0.1208	0.810	4.01	4.03	13.7	140	135.2

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-48.qld
Last Altered:	Friday, July 28, 2017 09:01:59 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:31 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	4.48 e 3	2.56 e 4	0.1208	0.014	4.03	4.06	2.19	1320	98.3
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	4.39 e 3	2.56 e 4	0.1208	0.014	4.12	4.12	2.15	1270	94.8
3	43 13C2-PFUnA	$565>519.8$	$2.35 \mathrm{e}^{4}$	2.56 e 4	0.1208	0.962	4.17	4.19	11.5	98.8	95.5
4	44 13C2-PFDoA	$615>569.7$	2.42 e 3	2.56 e 4	0.1208	0.094	4.34	4.36	1.18	104	100.4
5	46 13C2-PFTeDA	$714.8>669.6$	1.57 e 4	2.56 e 4	0.1208	0.694	4.68	4.70	7.68	91.5	88.5
6	52 13C5-PFHxA	$318>272.9$	2.47 e 4	2.47 e 4	0.1208	1.000	3.19	3.23	5.00	41.4	100.0
7	53 13C3-PFHxS	$401.9>79.9$	4.14 e 3	4.14 e 3	0.1208	1.000	3.56	3.56	12.5	103	100.0
8	54 13C8-PFOA	$421.3>376$	2.12 e 4	2.12 e 4	0.1208	1.000	3.65	3.69	12.5	103	100.0
9	55 13C9-PFNA	$472.2>426.9$	2.30 e 4	2.30 e 4	0.1208	1.000	3.83	3.86	12.5	103	100.0
10	56 13C4-PFOS	$503>79.9$	4.38 e 3	4.38 e 3	0.1208	1.000	3.89	3.91	12.5	103	100.0
11	57 13C6-PFDA	$519.1>473.7$	2.09 e 4	2.09 e 4	0.1208	1.000	4.01	4.03	12.5	103	100.0
12	58 13C7-PFUnA	$570.1>524.8$	2.56 e 4	2.56 e 4	0.1208	1.000	4.17	4.20	12.5	103	100.0
13	59 Total PFBS	$299>79.7$	4.94 e 3	3.14 e 3	0.1208		2.96		19.7	87.6	
14	60 Total PFHxS	$398.9>79.6$	1.29 e 4	2.24 e 3	0.1208		3.52		71.9	363	
15	61 Total PFOA	$413>368.7$	1.49 e 4	2.71 e 4	0.1208		3.65		6.89	55.3	
16	62 Total PFOS	$499>79.9$	2.10 e 4	4.92e3	0.1208		3.89		53.3	390	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00e0	4.48 e 3	0.1208		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	4.39 e 3	0.1208		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results\170725M1\170725M1-48.qld
Last Altered:	Friday, July 28, 2017 09:01:59 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:31 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711 Total PFBS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	3 PFBS	$299>79.7$	3.00	4944.716	3140.435	19.682	bb

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
6 PFHxS	$398.9>79.6$	3.56	12873.857	2237.564	71.919	MM	362.5	

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	13813.598	27098.896	6.372	dd	52.6
2	61 Total PFOA	$413>368.7$	3.63	1115.376	27098.896	0.514	dd	2.7

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | Conc. | 12 PFOS |
| :--- |
| 1 |

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$15 ~ N-M e F O S A A ~$	$570.1>419$		4476.314	Conc.		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1						Conc.	

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-48.qld

Last Altered: Friday, July 28, 2017 09:01:59 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:03:31 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

Total PFBS

		F6:MRM of 2 channels,ES- $299>79.7$
100	PFBS	$1.350 \mathrm{e}+005$
	3.00	
	$4.94{ }^{3}$	
\% -	$\begin{gathered} 134653 \\ \mathrm{bb} \end{gathered}$	

13C3-PFBS

PFHxA

13C2-PFHxA

Total PFHxS

1802-PFHxS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-48.qld

Last Altered: Friday, July 28, 2017 09:01:59 Pacific Daylight Time Printed: Friday, July 28, 2017 09:03:31 Pacific Daylight Time

Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

Total PFOA

	F19:MR	channels,ES-
		$413>368.7$
100	PFOA	$2.915 \mathrm{e}+005$
1007	3.69	
	1.38 e 4	
\%	289074 dd	

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS
F30:MRM of 2 channels, ES-
$499>79.9$
$2.285 \mathrm{e}+005$

13C8-PFOS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-48.qld

Last Altered: Friday, July 28, 2017 09:01:59 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:31 Pacific Daylight Time

Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

PFUnA

F43:MRM of 2 channels,ES$562.9>269$

13C2-PFUnA

N-MeFOSAA

N-EtFOSAA
F48:MRM of 2 channels,ES- $\begin{array}{r}584.2>419 \\ 8.900+002\end{array}$
F48:MRM of 2 channels,ES-
$584.2>483$

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
$5733>419$

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-48.qld

Last Altered: Friday, July 28, 2017 09:01:59 Pacific Daylight Time Printed: Friday, July 28, 2017 09:03:31 Pacific Daylight Time

Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

F58:MRM of 4 channels,ES-
$712.9>369$

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-48.qld

Last Altered: Friday, July 28, 2017 09:01:59 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:31 Pacific Daylight Time

Name: 170725M1_48, Date: 25-Jul-2017, Time: 22:40:54, ID: 1700856-09RE1 MW-48BR-20170711 0.12084, Description: MW-48BR-20170711

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results\170725M11170725M1-49.qld
Last Altered:	Friday, July 28, 2017 09:06:39 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:07:42 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	1.80 e 3	3.08 e 3	0.1181		2.96	3.01	7.31	33.1	
2	4 PFHxA	313.2 > 268.9	1.51 e 4	8.43 e 3	0.1181		3.19	3.23	8.95	49.3	
3	5 PFHpA	$363>318.9$	2.84 e 3	1.92 e 4	0.1181		3.45	3.49	1.84	11.9	
4	6 PFHxS	$398.9>79.6$	8.17 e 3	2.10 e 3	0.1181		3.56	3.56	48.6	247	
5	8 PFOA	$413>368.7$	2.43 e 4	2.60 e 4	0.1181		3.65	3.69	11.7	100	
6	10 PFNA	$462.9>418.8$	3.11 e 2	2.33 e 4	0.1181		3.83	3.87	0.167	0.152	
7	12 PFOS	$499>79.9$	3.47 e 4	4.65 e 3	0.1181		3.89	3.92	93.4	728	
8	13 PFDA	$513>468.8$		2.08 e 4	0.1181		4.01				
9	15 N -MeFOSAA	$570.1>419$		4.56 e 3	0.1181		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		4.43 e3	0.1181		4.10				
11	17 PFUnA	$562.9>518.9$		2.48 e 4	0.1181		4.17				
12	19 PFDoA	$612.9>318.8$		2.43 e3	0.1181		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-49.qld
Last Altered:	Friday, July 28, 2017 09:06:39 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:07:55 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.43 e3	0.1181		4.50				
2	22 PFTeDA	$712.9>668.8$		1.76 e 4	0.1181		4.68				
3	$3013 C 3-P F B S$	$302>98.8$	3.08 e 3	2.57 e 4	0.1181	0.031	2.96	3.01	0.601	164	$154.5{ }^{\text {H }}$
4	31 13C2-PFHxA	$315>269.8$	8.43 e 3	2.57 e 4	0.1181	0.276	3.19	3.23	1.64	50.3	118.9
5	32 13C4-PFHpA	$367.2>321.8$	1.92 e 4	2.57 e 4	0.1181	0.306	3.45	3.49	3.75	104	98.1
6	33 1802-PFHxS	$403>102.6$	2.10 e 3	4.16 e 3	0.1181	0.393	3.56	3.56	6.31	136	128.5
7	35 13C2-PFOA	$414.9>369.7$	2.60 e 4	2.24 e 4	0.1181	1.067	3.65	3.69	14.5	115	108.6
8	36 13C5-PFNA	$468.2>422.9$	2.33 e 4	2.57 e 4	0.1181	0.852	3.83	3.87	11.3	113	106.5
9	38 13C8-PFOS	$507>79.9$	4.65 e 3	4.42e3	0.1181	0.936	3.89	3.92	13.1	119	112.3
10	39 13C2-PFDA	$515.1>469.9$	2.08 e 4	2.38 e 4	0.1181	0.810	4.01	4.04	10.9	114	107.6

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-49.qld
Last Altered:	Friday, July 28, 2017 09:06:39 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:08:11 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	4.56e3	2.36 e 4	0.1181	0.014	4.03	4.07	2.41	1490	108.5
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	4.43 е3	2.36 e 4	0.1181	0.014	4.12	4.13	2.35	1420	103.6
3	43 13C2-PFUnA	$565>519.8$	2.48 e 4	2.36 e 4	0.1181	0.962	4.17	4.20	13.1	115	109.1
4	44 13C2-PFDoA	$615>569.7$	2.43 e3	2.36 e 4	0.1181	0.094	4.34	4.36	1.29	115	109.1
5	46 13C2-PFTeDA	$714.8>669.6$	1.76 e 4	2.36 e 4	0.1181	0.694	4.68	4.71	9.33	114	107.5
6	52 13C5-PFHxA	$318>272.9$	2.57 e 4	2.57 e 4	0.1181	1.000	3.19	3.23	5.00	42.3	100.0
7	53 13C3-PFHxS	$401.9>79.9$	4.16 e 3	4.16 e 3	0.1181	1.000	3.56	3.56	12.5	106	100.0
8	54 13C8-PFOA	$421.3>376$	2.24 e 4	2.24 e 4	0.1181	1.000	3.65	3.69	12.5	106	100.0
9	55 13C9-PFNA	$472.2>426.9$	2.57 e 4	2.57 e 4	0.1181	1.000	3.83	3.87	12.5	106	100.0
10	56 13C4-PFOS	$503>79.9$	4.42e3	4.42 e 3	0.1181	1.000	3.89	3.92	12.5	106	100.0
11	57 13C6-PFDA	$519.1>473.7$	2.38 e 4	2.38 e 4	0.1181	1.000	4.01	4.03	12.5	106	100.0
12	58 13C7-PFUnA	$570.1>524.8$	2.36 e 4	2.36 e 4	0.1181	1.000	4.17	4.20	12.5	106	100.0
13	59 Total PFBS	$299>79.7$	1.80 e 3	3.08 e 3	0.1181		2.96		7.31	33.1	
14	60 Total PFHxS	$398.9>79.6$	8.17 e 3	2.10 e 3	0.1181		3.52		48.6	247	
15	61 Total PFOA	$413>368.7$	2.66 e 4	2.60 e 4	0.1181		3.65		12.8	108	
16	62 Total PFOS	$499>79.9$	3.47 e 4	4.65 e 3	0.1181		3.89		93.4	728	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	4.56 e 3	0.1181		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	4.43 e 3	0.1181		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-49.qld
Last Altered:	Friday, July 28, 2017 09:06:39 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:08:11 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	3 PFBS	$299>79.7$	3.01	1803.416	3082.091	7.314	bb	33.1

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
6 PFHxS	$398.9>79.6$	3.56	8174.622	2102.347	48.604	MM	247.3	

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	24322.738	26001.154	11.693	dd	100.2
2	61 Total PFOA	$413>368.7$	3.64	2306.643	26001.154	1.109	bd	7.9

Total PFOS

| \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $499>79.9$ | 3.92 | 34724.113 | 4647.389 | 93.397 | MM | 728.3 |

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$15 ~ N-M e F O S A A ~$	$570.1>419$		4561.627	Conc.		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response Primary Flags
1						

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-49.qld
Last Altered:	Friday, July 28, 2017 09:06:39 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:08:11 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-49.qld
Last Altered: Friday, July 28, 2017 09:06:39 Pacific Daylight Time Printed: Friday, July 28, 2017 09:08:11 Pacific Daylight Time

Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

Total PFOA

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-49.qld

Last Altered: Friday, July 28, 2017 09:06:39 Pacific Daylight Time Printed: Friday, July 28, 2017 09:08:11 Pacific Daylight Time

Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F47.MRM $573.3>419$

N-EtFOSAA

F45:MRM of 2 channels,ES
5.191 > +002

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-49.qld
 Last Altered: Friday, July 28, 2017 09:06:39 Pacific Daylight Time Printed: Friday, July 28, 2017 09:08:11 Pacific Daylight Time

Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

13C2-PFTeDA

PFTrDA

F57:MRM of 2 channels,ES

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-49.qld

Last Altered: Friday, July 28, 2017 09:06:39 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:11 Pacific Daylight Time

Name: 170725M1_49, Date: 25-Jul-2017, Time: 22:51:33, ID: 1700856-10RE1 MW-34S-20170711 0.11812, Description: MW-34S-20170711

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults\170725M11170725M1-53.qld
Last Altered:	Friday, July 28, 2017 09:19:10 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:19:48 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec	*See dilution.
1	3 PFBS	$299>79.7$	1.53 e 4	4.98 e 3	0.1177		2.96	3.01	38.3	175		
2	4 PFHxA	313.2 > 268.9	3.43 e 5	1.39 e 4	0.1177		3.19	3.23	124	695		
3	5 PFHpA	$363>318.9$	9.22 e 4	3.15 e4	0.1177		3.45	3.49	36.7	248		
4	6 PFHxS	$398.9>79.6$	6.59 e 4	3.33e3	0.1177		3.56	3.56	247	1450 E*		
5	8 PFOA	$413>368.7$	4.28 e 4	3.88 e 4	0.1177		3.65	3.69	13.8	119		
6	10 PFNA	$462.9>418.8$	1.05 e 4	3.59 e 4	0.1177		3.83	3.87	3.63	27.0		
7	12 PFOS	$499>79.9$	1.14 e 5	7.85 e 3	0.1177		3.89	3.92	182	$1610{ }^{\text {E* }}$		
8	13 PFDA	$513>468.8$	2.97 e 3	3.66e4	0.1177		4.01	4.03	1.01	5.80		
9	$15 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		7.47e3	0.1177		4.03					
10	$16 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		7.25 e 3	0.1177		4.10					
11	17 PFUnA	$562.9>518.9$		3.60 e 4	0.1177		4.17					
12	19 PFDoA	$612.9>318.8$		3.63 e3	0.1177		4.34					

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results\170725M11170725M1-53.qld
Last Altered:	Friday, July 28, 2017 09:19:10 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:20:00 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		3.63 e 3	0.1177		4.50				
2	22 PFTeDA	$712.9>668.8$		2.63 e4	0.1177		4.68				
3	$3013 C 3-P F B S$	$302>98.8$	4.98 e 3	4.04 e 4	0.1177	0.031	2.96	3.01	0.616	168	158.5
4	31 13C2-PFHxA	$315>269.8$	1.39 e 4	4.04 e 4	0.1177	0.276	3.19	3.23	1.71	52.7	124.1
5	32 13C4-PFHpA	$367.2>321.8$	3.15 e 4	4.04 e 4	0.1177	0.306	3.45	3.49	3.89	108	101.8
6	33 1802-PFHxS	$403>102.6$	3.33 e 3	6.01 e 3	0.1177	0.393	3.56	3.56	6.93	150	141.1
7	35 13C2-PFOA	$414.9>369.7$	3.88e4	3.13 e4	0.1177	1.067	3.65	3.69	15.5	123	116.2
8	36 13C5-PFNA	$468.2>422.9$	3.59 e 4	3.91 e4	0.1177	0.852	3.83	3.87	11.5	114	107.8
9	38 13C8-PFOS	$507>79.9$	7.85 e 3	6.01 e 3	0.1177	0.936	3.89	3.92	16.3	148	139.6
10	39 13C2-PFDA	$515.1>469.9$	3.66 e 4	4.06 e 4	0.1177	0.810	4.01	4.03	11.3	118	111.6

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-53.qld
Last Altered:	Friday, July 28, 2017 09:19:10 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:20:18 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	7.47e3	3.43e4	0.1177	0.014	4.03	4.06	2.72	1690	122.3
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	7.25 e 3	3.43 e 4	0.1177	0.014	4.12	4.13	2.64	1610	116.6
3	43 13C2-PFUnA	$565>519.8$	3.60 e 4	3.43e4	0.1177	0.962	4.17	4.20	13.1	116	108.9
4	44 13C2-PFDoA	$615>569.7$	3.63 e 3	3.43 e 4	0.1177	0.094	4.34	4.36	1.32	119	112.1
5	46 13C2-PFTeDA	714.8 > 669.6	2.63 e 4	3.43 e 4	0.1177	0.694	4.68	4.71	9.60	117	110.6
6	52 13C5-PFHxA	$318>272.9$	4.04 e 4	4.04 e 4	0.1177	1.000	3.19	3.23	5.00	42.5	100.0
7	53 13C3-PFHxS	$401.9>79.9$	6.01 e 3	6.01e3	0.1177	1.000	3.56	3.56	12.5	106	100.0
8	54 13C8-PFOA	$421.3>376$	3.13 e 4	3.13 e 4	0.1177	1.000	3.65	3.69	12.5	106	100.0
9	55 13C9-PFNA	$472.2>426.9$	3.91 e 4	3.91 e4	0.1177	1.000	3.83	3.86	12.5	106	100.0
10	56 13C4-PFOS	$503>79.9$	6.01 e 3	6.01 e 3	0.1177	1.000	3.89	3.92	12.5	106	100.0
11	57 13C6-PFDA	$519.1>473.7$	4.06 e 4	4.06 e 4	0.1177	1.000	4.01	4.04	12.5	106	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.43 e 4	3.43 e 4	0.1177	1.000	4.17	4.20	12.5	106	100.0
13	59 Total PFBS	$299>79.7$	1.53 e 4	4.98 e 3	0.1177		2.96		38.3	175	
14	60 Total PFHxS	$398.9>79.6$	6.59 e 4	3.33е3	0.1177		3.52		247	1450	
15	61 Total PFOA	$413>368.7$	4.49 e 4	3.88e4	0.1177		3.65		14.4	123	
16	62 Total PFOS	$499>79.9$	1.14 e 5	7.85 e 3	0.1177		3.89		182	1610	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	7.47 e 3	0.1177		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	7.25 e 3	0.1177		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results1170725M11170725M1-53.qld
Last Altered:	Friday, July 28, 2017 09:21:17 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:21:45 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711 Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 PFBS | $299>79.7$ | 3.01 | 15274.838 | 4981.104 | 38.332 | bb | 175.4 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $6 ~ P F H x S$ | $398.9>79.6$ | 3.56 | 65882.773 | 3332.734 | 247.105 | MM | 1448.0 |

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8 PFOA | $413>368.7$ | 3.69 | 42758.148 | 38802.523 | 13.774 | db | 118.8 |
| 2 | 61 Total PFOA | $413>368.7$ | 3.64 | 2026.103 | 38802.523 | 0.653 | bd | |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
12 PFOS	$499>79.9$	3.92	114253.789	7846.438	182.015	MM	1612.3	

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response

Total N-EtFOSAA

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$16 ~ N-E t F O S A A ~$	$584.2>419$		7253.708	Conc.	

Dataset: U:\Q4.PRO\results\170725M1\170725M1-53.qld

Last Altered: Friday, July 28, 2017 09:19:10 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:20:18 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

Total PFBS

	F6:MRM of 2 channels,ES $299>79.7$		
	PFBS		$4.005 \mathrm{e}+005$
${ }^{100} 7$	3.01		
	1.53 e 4		
\%-	399467 $b b$		

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-53.qld
Last Altered: Friday, July 28, 2017 09:19:10 Pacific Daylight Time Printed: Friday, July 28, 2017 09:20:18 Pacific Daylight Time

Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

Total PFOA	
	F19:MRM of 2 channels,ES-
	$413>368.7$
100	$8.192 e+005$

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFDA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-53.qld

Last Altered: Friday, July 28, 2017 09:19:10 Pacific Daylight Time Printed: Friday, July 28, 2017 09:20:18 Pacific Daylight Time

Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA

N-EtFOSAA
F48:MRM of 2 channels,ES- $\begin{array}{r}584.2>419 \\ 8.328 \mathrm{e}+002\end{array}$

d5-N-EtFOSAA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-53.qld
Last Altered: Friday, July 28, 2017 09:19:10 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:20:18 Pacific Daylight Time

Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

F58:MRM of 4 channels,ES
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-53.qld
Last Altered: Friday, July 28, 2017 09:19:10 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:20:18 Pacific Daylight Time

Name: 170725M1_53, Date: 25-Jul-2017, Time: 23:34:14, ID: 1700856-11RE1 MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

13C4-PFOS

13C6-PFDA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170727M1\170727M1-111.qld
Last Altered:	Friday, July 28, 2017 11:17:42 Pacific Daylight Time
Printed:	Friday, July 28, 2017 11:18:07 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51Name: 170727M1_111, Date: 28-Jul-2017, Time: 07:22:03, ID: 1700856-11RE1@5X MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	6 PFHxS	$398.9>79.6$	6.25 e 3	3.12 e 2	0.1177		3.56	3.48	250	1300	
2	11 PFOS	$499>79.9$	1.21 e 4	7.57 e 2	0.1177		3.89	3.84	201	1830	
3	25 18O2-PFHxS	$403>102.6$	3.12 e 2	6.11 e 2	0.1177	0.402	3.56	3.49	6.38	135	127.0
4	29 13C8-PFOS	$507>79.9$	7.57 e 2	6.89 e 2	0.1177	0.951	3.89	3.84	13.7	123	115.5
5	38 13C3-PFHxS	$401.9>79.9$	6.11 e 2	6.11 e 2	0.1177	1.000	3.56	3.49	12.5	106	100.0
6	41 13C4-PFOS	$503>79.9$	6.89 e 2	6.89 e 2	0.1177	1.000	3.89	3.84	12.5	106	100.0
7	45 Total PFHxS	$398.9>79.6$	6.25 e 3	3.12 e 2	0.1177		3.52		250	1300	
8	47 Total PFOS	$499>79.9$	1.21 e 4	7.57 e 2	0.1177		3.89		201	1830	

Method: U:\Q4.PRO\MethDB\PFAS L17 L14 7-27-17.mdb 28 Jul 2017 08:40:43

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_111, Date: 28-Jul-2017, Time: 07:22:03, ID: 1700856-11RE1@5X MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

Total PFHxS

170727M1_111 Smooth(Mn,1x2) F16:MRM of 2 channels,ES-

1802-PFHxS

170727M1_111 Smooth(Mn,1x2)
MW-31BR-20170711 1700856-11RE1@5X MW-31BR-20170711 0.11774

13C3-PFHxS

170727M1_111 Smooth(Mn,1x2)
MW-31BR-20170711 1700856-11RE1@5X MW-31BR-20170711 0.11774
100 13C3-PFHxS;3.49;6.11e2;9319;bb

F17:MRM of 1 channel,ES-
$401.9>79.9$
$9.319 \mathrm{e}+003$

Name: 170727M1_111, Date: 28-Jul-2017, Time: 07:22:03, ID: 1700856-11RE1@5X MW-31BR-20170711 0.11774, Description: MW-31BR-20170711

Total PFOS

170727M1_111 Smooth(Mn,1x2)
MW-31BR-20170711 1700856-11RE1@5X MW-31BR-20170711 0.11774
F30:MRM of 2 channels,ES-
100
\%
0
$499>79.9$
$1.287 e+005$

13C8-PFOS

170727M1_111 Smooth(Mn,1x2)
MW-31BR-20170711 1700856-11RE1@5X MW-31BR-20170711 0.11774

13C4-PFOS

170727M1_111 Smooth(Mn,1x2)
MW-31BR-20170711 1700856-11RE1@5X MW-31BR-20170711 0.11774
100
13C4-PFOS;3.84;6.89e2;10915;bb
$503>79.9$
$1.093 \mathrm{e}+004$

GM 7/28/17

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results1170725M11170725M1-54.qld
Last Altered:	Friday, July 28, 2017 09:30:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:30:44 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec	*See dilution.
1	3 PFBS	$299>79.7$	1.76 e 4	6.44 e 3	0.1173		2.96	3.01	34.2	157		
2	4 PFHxA	313.2 > 268.9	3.21 e 5	2.00 e 4	0.1173		3.19	3.23	80.5	453		
3	5 PFHpA	$363>318.9$	1.01 e 5	4.61 e 4	0.1173		3.45	3.49	27.4	186		
4	6 PFHxS	$398.9>79.6$	7.70 e 4	4.48 e 3	0.1173		3.56	3.56	215	1230 E*		
5	8 PFOA	$413>368.7$	6.23 e 4	5.71 e 4	0.1173		3.65	3.69	13.6	118		
6	10 PFNA	$462.9>418.8$	1.66 e 4	4.97e4	0.1173		3.83	3.86	4.18	31.3		
7	12 PFOS	$499>79.9$	1.36 e 5	9.71 e 3	0.1173		3.89	3.91	175	1540 E*		
8	13 PFDA	$513>468.8$	2.28 e 3	4.62 e 4	0.1173		4.01	4.03	0.618	3.22		
9	15 N-MeFOSAA	$570.1>419$		1.03 e 4	0.1173		4.03					
10	$16 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		9.70 e 3	0.1173		4.10					
11	17 PFUnA	$562.9>518.9$		5.07 e 4	0.1173		4.17					
12	19 PFDoA	$612.9>318.8$		5.40 e 3	0.1173		4.34					

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results\170725M11170725M1-54.qld
Last Altered:	Friday, July 28, 2017 09:30:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:30:57 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		5.40 e 3	0.1173		4.50				
2	22 PFTeDA	$712.9>668.8$		3.06 e 4	0.1173		4.68				
3	30 13C3-PFBS	$302>98.8$	6.44 e 3	5.54 e 4	0.1173	0.031	2.96	3.01	0.582	159	149.6
4	31 13C2-PFHxA	$315>269.8$	2.00 e 4	5.54 e 4	0.1173	0.276	3.19	3.23	1.80	55.6	130.4
5	32 13C4-PFHpA	$367.2>321.8$	4.61 e 4	5.54 e 4	0.1173	0.306	3.45	3.49	4.16	116	108.9
6	33 1802-PFHxS	$403>102.6$	4.48 e 3	8.49 e 3	0.1173	0.393	3.56	3.56	6.59	143	134.3
7	35 13C2-PFOA	$414.9>369.7$	5.71 e 4	4.57 e 4	0.1173	1.067	3.65	3.69	15.6	125	117.1
8	36 13C5-PFNA	468.2 > 422.9	4.97 e 4	5.22e4	0.1173	0.852	3.83	3.86	11.9	119	111.7
9	38 13C8-PFOS	$507>79.9$	9.71 e 3	8.28 e 3	0.1173	0.936	3.89	3.91	14.7	133	125.3
10	39 13C2-PFDA	$515.1>469.9$	4.62 e 4	4.99 e 4	0.1173	0.810	4.01	4.04	11.6	122	114.2

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-54.qld
Last Altered:	Friday, July 28, 2017 09:30:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:31:16 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1 54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	1.03 e 4	4.82e4	0.1173	0.014	4.03	4.06	2.67	1660	119.8
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	9.70 e3	4.82 e 4	0.1173	0.014	4.12	4.13	2.51	1540	$111 . C$
3	43 13C2-PFUnA	$565>519.8$	5.07 e 4	4.82 e 4	0.1173	0.962	4.17	4.20	13.2	117	109.3
4	44 13C2-PFDoA	$615>569.7$	5.40 e 3	4.82 e 4	0.1173	0.094	4.34	4.36	1.40	127	118.7
5	46 13C2-PFTeDA	$714.8>669.6$	3.06 e 4	4.82 e 4	0.1173	0.694	4.68	4.71	7.94	97.5	91.5
6	52 13C5-PFHxA	$318>272.9$	5.54 e 4	5.54 e 4	0.1173	1.000	3.19	3.23	5.00	42.6	100.0
7	53 13C3-PFHxS	$401.9>79.9$	8.49 e 3	8.49 e 3	0.1173	1.000	3.56	3.56	12.5	107	100.0
8	54 13C8-PFOA	$421.3>376$	4.57 e 4	4.57 e 4	0.1173	1.000	3.65	3.69	12.5	107	100.0
9	55 13C9-PFNA	$472.2>426.9$	5.22e4	5.22e4	0.1173	1.000	3.83	3.86	12.5	107	100.0
10	56 13C4-PFOS	$503>79.9$	8.28 e 3	8.28 e 3	0.1173	1.000	3.89	3.91	12.5	107	100.0
11	57 13C6-PFDA	$519.1>473.7$	4.99 e 4	4.99 e 4	0.1173	1.000	4.01	4.04	12.5	107	100.0
12	58 13C7-PFUnA	$570.1>524.8$	4.82e4	4.82e4	0.1173	1.000	4.17	4.20	12.5	107	100.0
13	59 Total PFBS	$299>79.7$	1.81 e 4	6.44 e 3	0.1173		2.96		35.1	161	
14	60 Total PFHxS	$398.9>79.6$	7.70 e 4	4.48 e 3	0.1173		3.52		215	1230	
15	61 Total PFOA	$413>368.7$	6.23 e 4	5.71 e 4	0.1173		3.65		13.6	118	
16	62 Total PFOS	$499>79.9$	1.36 e 5	9.71 e 3	0.1173		3.89		175	1540	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	1.03 e 4	0.1173		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	9.70 e 3	0.1173		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-54.qld
Last Altered:	Friday, July 28, 2017 09:30:19 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:31:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:|Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711 Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 PFBS | $299>79.7$ | 3.01 | 17615.197 | 6443.725 | 34.171 | bb | 156.9 |
| 2 | 59 Total PFBS | $299>79.7$ | 2.90 | 457.047 | 6443.725 | 0.887 | MM | 3.7 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $6 ~ P F H x S$ | $398.9>79.6$ | 3.56 | 77026.383 | 4480.200 | 214.908 | MM | 1230.1 |

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8 PFOA | $413>368.7$ | 3.69 | 62300.727 | 57147.980 | 13.627 | MM | 117.9 |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	12 PFOS	$499>79.9$	3.91	135998.469	9706.817	175.133	MM	1538.6

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$15 ~ N-M e F O S A A ~$	$570.1>419$		10280.650	Conc.		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response
1	16 N-EtFOSAA	$584.2>419$		9696.569	Primary Flags	MM-I

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-54.qld
Last Altered: Friday, July 28, 2017 09:30:19 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:31:16 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

\section*{Total PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-54.qld
Last Altered: Friday, July 28, 2017 09:30:19 Pacific Daylight Time Printed: Friday, July 28, 2017 09:31:16 Pacific Daylight Time

Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

\section*{Total PFOA

13C2-PFOA

$\begin{array}{rr} \\ & \text { F25:MRM of } 2 \text { channels,ES- } \\ 462.9>418.8 \\ 3.286 e+005\end{array}$

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS

PFDA

13C2-PFDA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-54.qld

Last Altered: Friday, July 28, 2017 09:30:19 Pacific Daylight Time Printed: Friday, July 28, 2017 09:31:16 Pacific Daylight Time

Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-54.qld
Last Altered: Friday, July 28, 2017 09:30:19 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:31:16 Pacific Daylight Time

Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

F58:MRM of 4 channels,ES
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Dataset:
U:\Q4.PRO\results\170725M1\170725M1-54.qld
Last Altered: Friday, July 28, 2017 09:30:19 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:31:16 Pacific Daylight Time

Name: 170725M1_54, Date: 25-Jul-2017, Time: 23:45:01, ID: 1700856-12RE1 MW-31S-20170711 0.11732, Description: MW-31S-20170711

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN945 SCN960

Dataset:	U:IQ4.PROIresults\170731M11170731M1-36.qld
Last Altered:	Wednesday, August 02, 2017 11:09:51 Pacific Daylight Time
Printed:	Wednesday, August 02, 2017 11:11:16 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:|Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Name: 170731M1_36, Date: 31-Jul-2017, Time: 18:34:49, ID: 1700856-12RE1@5X MW-31S-20170711 0.11732, Description: MW-31S-20170711

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	6 PFHxS	$398.9>79.6$	9.51 e 3	5.84 e 2	0.1173		3.56	3.50	203	1040	
2	11 PFOS	$499>79.9$	1.81 e 4	1.34 e 3	0.1173		3.89	3.86	169	1470	
3	25 18O2-PFHxS	$403>102.6$	5.84 e 2	1.15 e 3	0.1173	0.460	3.56	3.51	6.37	118	110.8
4	29 13C8-PFOS	$507>79.9$	1.34 e 3	1.07e3	0.1173	1.184	3.89	3.86	15.6	113	105.7
5	38 13C3-PFHxS	$401.9>79.9$	1.15 e 3	1.15 e 3	0.1173	1.000	3.56	3.50	12.5	107	100.0
6	41 13C4-PFOS	$503>79.9$	1.07 e 3	1.07 e 3	0.1173	1.000	3.89	3.86	12.5	107	100.0
7	45 Total PFHxS	$398.9>79.6$	9.51 e 3	5.84 e 2	0.1173		3.52		203	1040	
8	47 Total PFOS	$499>79.9$	1.81 e 4	1.34 e 3	0.1173		3.89		169	1470	

Dataset:
 U:\Q4.PRO\results\170731M1\170731M1-36.qld
 Last Altered: Wednesday, August 02, 2017 11:09:51 Pacific Daylight Time
 Printed: Wednesday, August 02, 2017 11:11:16 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS L17 L14 7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Name: 170731M1_36, Date: 31-Jul-2017, Time: 18:34:49, ID: 1700856-12RE1@5X MW-31S-20170711 0.11732, Description: MW-31S-20170711

Total PFBS

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

13C3-PFBS

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

PFHxA
170731M1_36 Smooth(Mn,1x2)
F8:MRM of 2 channels,ES-
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 $0.11732 \quad 313.2>268.9$

13C2-PFHxA

F9:MRM of 1 channel,ES MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 $0.11732 \quad 315>269.8$

Dataset:
 U:\Q4.PRO\results\170731M1\170731M1-36.qld

Last Altered: Wednesday, August 02, 2017 11:09:51 Pacific Daylight Time
Printed: Wednesday, August 02, 2017 11:11:16 Pacific Daylight Time

Name: 170731M1_36, Date: 31-Jul-2017, Time: 18:34:49, ID: 1700856-12RE1@5X MW-31S-20170711 0.11732, Description: MW-31S-20170711

PFHpA

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

13C4-PFHpA

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

Total PFHxS

170731M1_36 Smooth(Mn,1x2)
F16:MRM of 2 channels,ES $398.9>79.6$ $1.607 \mathrm{e}+005$

1802-PFHxS

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732
F18:MRM of 1 channel,ES$403>102.6$ $1.093 \mathrm{e}+004$

Dataset:
 U:\Q4.PRO\results\170731M1\170731M1-36.qld

Last Altered: Wednesday, August 02, 2017 11:09:51 Pacific Daylight Time
Printed: \quad Wednesday, August 02, 2017 11:11:16 Pacific Daylight Time

Name: 170731M1_36, Date: 31-Jul-2017, Time: 18:34:49, ID: 1700856-12RE1@5X MW-31S-20170711 0.11732, Description: MW-31S-20170711

Total PFOA

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 $0.11732 \quad$ F19:MRM of 2 channels,ES

13C2-PFOA

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

Total PFOS

170731M1 36 Smooth(Mn,1x2)
F30:MRM of 2 channels,ES $499>79.9$ $2.145 \mathrm{e}+005$

13C8-PFOS
170731M1_36 Smooth(Mn,1x2)

Dataset:
 U:\Q4.PRO\results\170731M1\170731M1-36.qld

Last Altered: Wednesday, August 02, 2017 11:09:51 Pacific Daylight Time Printed: Wednesday, August 02, 2017 11:11:16 Pacific Daylight Time

Name: 170731M1_36, Date: 31-Jul-2017, Time: 18:34:49, ID: 1700856-12RE1@5X MW-31S-20170711 0.11732, Description: MW-31S-20170711

13C5-PFHxA

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

13C4-PFOS

170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732

13C3-PFHxS

170731M1_36 Smooth(Mn,1x2)

170731M1_36 Smooth(Mn,1x2)	F17:MRM of 1 channel,ES-
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732	$401.9>79.9$
100	$2.362 \mathrm{e}+004$

13C8-PFOA
170731M1_36 Smooth(Mn,1x2)
MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 0.11732
F21:MRM of 1 channel,ES$421.3>376$ $1.071 e+005$

Dataset:	U:\Q4.PRO\results\170731M1\170731M1-36.qld
Last Altered:	Wednesday, August 02, 2017 11:09:51 Pacific Daylight Time
Printed:	Wednesday, August 02, 2017 11:11:16 Pacific Daylight Time

Name: 170731M1_36, Date: 31-Jul-2017, Time: 18:34:49, ID: 1700856-12RE1@5X MW-31S-20170711 0.11732, Description: MW-31S-20170711

13C4-PFOS

$\begin{array}{lr}\text { 170731M1_36 Smooth(Mn,1 1 } 2 \text { 2) } & \text { F31:MRM of } 1 \text { channel,ES- } \\ \text { MW-31S-20170711 1700856-12RE1@5X MW-31S-20170711 } 0.11732 & 503>79.9 \\ \text { 13C4-PFOS } & 1.946 \mathrm{~F}+004\end{array}$

CONTINUING CALIBRATION

Dataset:
 U:IQ4.PRO\results\170725M11170725M1-33.qld

Last Altered: Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17G2503


```
Dataset: U:\Q4.PRO\results\170725M1\170725M1-33.qld
Last Altered: Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time
```

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17 G2503

	\# Name	Trace	Area	IS Area	RRF	d.RT	RT	sp	onc.	\%Rec	50-150
$32 \times$	32 13C4-PFHpA	367.2 > 321.8	4.12 e 4	5.08 e 4	0.306	3.45	3.48	4.05	13.3	106.1	
33.	33 1802-PFHxS	$403>102.6$	3.97 e3	9.30 e 3	0.393	3.56	3.56	5.33	13.6	108.6	
	34 13C2-6:2 FTS	$429.1>408.9$	9.21 e 3	6.63 e 4	0.158	3.64	3.67	1.74	11.0	88.1	
35.	3513 C 2 -PFOA	$414.9>369.7$	7.29e4	6.63 e 4	1.067	3.65	3.68	13.7	12.9	103.0	
36	36 13C5-PFNA	$468.2>422.9$	7.10e4	8.58 e 4	0.852	3.83	3.86	10.3	12.1	97.1	
37	37 13C8-PFOSA	$506.1>77.7$	7.52e3	6.80 e 4	0.098	3.84	3.87	1.38	14.1	112.6	
$38=$	3813 CB -PFOS	$507>79.9$	1.42e4	1.42 e 4	0.936	3.89	3.91	12.5	13.3	106.5	
39.	39 13C2-PFDA	$515.1>469.9$	6.58e4	8.33 e 4	0.810	4.01	4.03	$9: 88$	12.2	97.6	
40.	40 13C2-8:2 FTS	$529.1>508.7$	7.65 e 3	8.33 e 4	0.086	4.00	4.02	1.15	13.4	107.3	
41 -	41 d3-N-MeFOSAA	$573.3>419$	1.52e4	6.80 e 4	0.014	4.03	4.06	2.79	204	125.4	
$42 . \geq$	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	1.60 e 4	6.80 e 4	0.014	4.12	4.12	2.94	211	129.7	
43 - 3^{4}	43 13C2-PFUnA	$565>519.8$	7.51 e 4	6.80 e 4	0.962	4.17	4.19	13.8	14.3	114.8	
44 -	44 13C2-PFDoA	$615>569.7$	8.10 e 3	6.80 e 4	0.094	4.34	4.36	1.49	15.8	126.2	
45	45 d3-N-MeFOSA	$515.2>168.9$	3.19e4	6.80 e 4	0.034	4.29	4.48	5.87	171	113.7	
46 -	46 13C2-PFTeDA	$714.8>669.6$	5.79e4	6.80 e 4	0.694	4.68	4.70	10.6	15.3	122.7	
47.4	47 d5-N-ETFOSA	$531.1>168.9$	4.40e4	6.80 e 4	0.049	5.01	5.04	8.08	166	110.7	
48 .	48 13C2-PFHxDA	$815>769.7$	2.76e4	6.80 e 4	0.843	5.06	5.08	5.08	6.03	120.5	
$49-2$	49 d7-N-MeFOSE	$623.1>58.9$	4.72 e 4	6.80 e 4	0.055	5.42	5.43	8.68	159	105.9	
$50 \times$	50 d9-N-EtFOSE	$639.2>58.8$	4.69 e 4	6.80 e 4	0.053	5.59	5.60	8.61	161	107.5	V
51.3	51 13C4-PFBA	$217>171.8$	1.99 e 4	1.99 e 4	1.000	1.54	1.57	12.5	12.5	100.0	
	52 13C5-PFHxA	$318>272.9$	5.08 e 4	5.08 e 4	1.000	3.19	3.23	5.00	5.00	100.0	
$53-1$.	53 13C3-PFHxS	$401.9>79.9$	9.30 e 3	9.30 e 3	1.000	3.56	3.56	12.5	12.5	100.0	
$54=$	54 13C8-PFOA	$421.3>376$	6.63 e 4	6.63 e 4	1.000	3.65	3.68	12.5	12.5	100.0	
	55 13C9-PFNA	$472.2>426.9$	8.58 e 4	8.58 e 4	1.000	3.83	3.86	12.5	12.5	100.0	
56 - <	56 13C4-PFOS	$503>79.9$	1.42 e 4	1.42 e 4	1.000	3.89	3.91	12.5	12.5	100.0	
57.4	57 13C6-PFDA	$519.1>473.7$	8.33 e 4	8.33 e 4	1.000	4.01	4.03	12.5	12.5	100.0	
58 -	58 13C7-PFUnA	$570.1>524.8$	6.80e4	6.80 e 4	1.000	4.17	4.20	12.5	12.5	100.0	

Dataset: Untitled
Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:\Q4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Compound name: PFBA

Dataset: Untitled

Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

Votk Order 1700856 Revision

Dataset: Untitled
Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

Name	ID ax, men	Acq.Date	Acq, Time
94,	B7G0033-MSD1@20X Matrix Spike Dup 0.124	26-Jul-17	01:55:28
67whw	1700845-04@5X MW-30S-201707070.11933	26-Jul-17	02:06:06
	1700894-02@5X POND 1 at PD 0.125	26-Jul-17	02:16:53
	1700894-03@5X POND 1 -STAFF 0.125	26-Jul-17	02:27:50
	1700894-04@10X SEED-POND 10.125	26-Jul-17	02:38:34
3ixdy 170725M1_71	1700732-05RE1 SD-46 3.2	26-Jul-17	02:49:12
-170725M1_72	IPA	26-Jul-17	02:59:50
4ustatity 170725M1_73	ST170725M1-6 PFC CS3 17G2503	26-Jul-17	03:10:29
	IPA	26-Jul-17	03:21:15

Method: U:IQ4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17 G2503

13C3-PFBA

F2:MRM of 1 channel,ES$216.1>171.8$ 13C3-PFBA $569 \mathrm{e}+005$

13C3-PFPeA
F5:MRM of 1 channel,ES-
F5:MRM of 1 channel,ES-
$266>221.8$

F6:MRM of 2 channels,ES-

13C3-PFBS
F7:MRM of 1 channel,ES-
$302>98.8$

PFHxA

F8:MRM of 2 channels,ES-

F8:MRM of 2 channels,ES-

F9:MRM of 1 channel,ES-
$315>269.8$

F14:MRM of 2 channels, $\mathrm{ES}-$
$363>169$

13C4-PFHpA

F15:MRM of 1 channel,ES$367.2>321.8$ $9.144 e+005$

1802-PFHxS
F18:MRM of 1 channel,ES$403>102.6$

Dataset:
U:\Q4.PRO\results\170725M11170725M1-33.qld
Last Altered: Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17G2503

F25:MRM of 2 channels,ES-

13C8-PFOSA
F32:MRM of 1 channel,ES-

PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES$507>79.9$

Dataset:	U:IQ4.PRO\results\170725M1\170725M1-33.qld
Last Altered:	Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17 G2503

PFUnA

F43:MRM of 2 channels, ES-

13C2-PFUnA

F44:MRM of 1 channel,ES
$565>519.8$

PFDS

F50:MRM of 2 channels.ES

13C2-PFUnA
F44:MRM of 1 channel,ES $565>519.8$

Dataset:	U:IQ4.PROIresults1170725M11170725M1-33.qld
Last Altered:	Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17G2503

PFTeDA

F59:MRM of 2 channels,ES-
F59:MRM of 2 channers $714.8>669.6$ $9.963 \mathrm{e}+005$

F58:MRM of 4 channels,ES-

4.500 4.750

d5-N-ETFOSA

F42:MRM of 1 channel,ES-

F39:MRM of 2 channels,ES
F39:MRM of 2 channels;ES-
$526.1>219$

13C2-PFHxDA

Dataset:	U:IQ4.PROIresults1170725M11170725M1-33.qld
Last Altered:	Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time

Name: 1707.25M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:	U:IQ4.PRO\results\170725M1\170725M1-33.qld
Last Altered:	Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17 G2503

Dataset:
U:IQ4.PRO|results1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Method: U:IQ4.PRO|MethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

		Acq-Date	Acq. Time
326wth	IPA	25-Jul-17	19:49:44
333	ST170725M1-3 PFC CS3 17G2503	25-Jul-17	20:00:29
64,	IPA	25-Jul-17	20:11:07
	B7G0108-BS1 OPR 0.125	25-Jul-17	20:21:46
360xartutat 170725M1_36	IPA	25-Jul-17	20:32:24
	B7G0108-BLK1 Method Blank 0.125	25-Jul-17	20:43:03
386dduxdx 170725M1_38	1700856-01RE1 INFLUENT-20170710 0.121	25-Jul-17	20:53:41
399xdxas 縎170725M1_39	1700856-02RE1 DUP05-20170710 0.11647	25-Jul-17	21:04:19
40936 Whaty 170725M1_40	1700856-03RE1 MID-POINT-20170710 0.11731	25-Jul-17	21:14:58
	1700856-04RE1 EFFLUENT-20170710 0.12084	25-Jul-17	21:25:36
428	B7G0108-MS1 Matrix Spike 0.12162	25-Jul-17	21:36:14
	B7G0108-MSD1 Matrix Spike Dup 0.11849	25-Jul-17	21:47:01
	1700856-05RE1 MW-37S-201707110.11696	25-Jul-17	21:57:39
6sw	1700856-06RE1 ERB-01-20170711 0.12043	25-Jul-17	22:08:34
	1700856-07RE1 11-MW-1-20170710 0.11482	25-Jul-17	22:19:33
74	1700856-08RE1 LF-MW-54BR-20170710 0.11...	25-Jul-17	22:30:16
	1700856-09RE1 MW-48BR-20170711 0.12084	25-Jul-17	22:40:54
	1700856-10RE1 MW-34S-20170711 0.11812	25-Jul-17	22:51:33
	IPA	25-Jul-17	23:02:11
	ST170725M1-4 PFC CS3 17G2503	25-Jul-17	23:12:50
5b2k	IPA	25-Jul-17	23:23:36
	1700856-11RE1 MW-31BR-201707110.11774	25-Jul-17	23:34:14
	1700856-12RE1 MW-31S-201707110.11732	25-Jul-17	23:45:01
55	1700732-04RE1@5X MW PFC 030.11929	25-Jul-17	23:55:47
	1700906-05@5X MW-02BR-201707180.125	26-Jul-17	00:06:56
	1700907-04@5X AT028-MW17-06-071717-13...	26-Jul-17	00:18:17
	1700907-09@5X AT028-MW 17-01-071817-09..	26-Jul-17	00:29:47
	IPA	26-Jul-17	00:40:33
	ST170725M1-5 PFC CS3 17G2503	26-Jul-17	00:51:21
	IPA	26-Jul-17	01:02:08
170725M1_62	1700845-01@5X MW-29S-20170707 0.12034	26-Jul-17	01:12:49
	1700845-02@5X DUP04-201707070.12279	26-Jul-17	01:23:33
	1700845-03@20X MW-27S-20170707 0.11824	26-Jul-17	01:34:11
	Revisio8G0033-MS1@20X Matrix Spike 0.12283	26-Jul-17	01:44:49

Dataset: Untitled

Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

W\%	10	Acq.Date	Acg. Time
664.SYM	B7G0033-MSD1@20X Matrix Spike Dup 0.124	26-Jul-17	01:55:28
6794Tw $2+170725 \mathrm{M} 1$ _67	1700845-04@5X MW-30S-20170707 0.11933	26-Jul-17	02:06:06
688\%	1700894-02@5X POND 1 at PD 0.125	26-Jul-17	02:16:53
24914 170725M1_69	1700894-03@5X POND 1 -STAFF 0.125	26-Jul-17	02:27:50
45: ${ }^{\text {a }}$ 170725M1_70	1700894-04@10X SEED-POND 10.125	26-Jul-17	02:38:34
324: 170725M1_71	1700732-05RE1 SD-46 3.2	26-Jul-17	02:49:12
FWekidx 170725M1_72	IPA	26-Jul-17	02:59:50
\$4ex 170725M1_73	ST170725M1-6 PFC CS3 17G2503	26-Jul-17	03:10:29
	IPA	26-Jul-17	03:21:15

Dataset: U:IQ4.PRO\results1170725M1\170725M1-51.qld

Last Altered:	Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

13C3-PFBA

1.000Work © 1 59Er 1700856 Revision 4.6002 .800

13C3-PFPeA

F5:MRM of 1 channel,ES

PFBS

F6:MRM of 2 channels,ES

13C3-PFBS
F7:MRM of 1 channel,ES

PFHxA

F8:MRM of 2 channels,ES

13C2-PFHxA

PFHxS

F16:MRM of 2 channels,ES

802-PFHxS
F18:MRM of 1 channel,ES$403>102.6$ $9.059 e+004$

Dataset: U:\Q4.PRO|results\170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

13C2-PFTeDA

13C5-PFNA

F30:MRM of 2 channels,ES-

13C8-PFOS

F33:MRM of 1 channel,ES-
$507>79.9$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-51.qld
Last Altered:	Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

F58:MRM of 4 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels,ES$714.8>669.6$

F39:MRM of 2 channels, ES-
$526.1>219$

13C2-PFHxDA
F61:MRM of 1 channel,ES-
$815>7697$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-51.qld
Last Altered:	Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PRO\results\170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

	\# Name	Trace	-ata Area	IS Area	RRF	PrediRT	RT	y Axis Resp.	Conc.	\%Rec	
32 S.	32 13C4-PFHpA	$367.2>321.8$	4.49 e 4	5.68 e 4	0.306	3.45	3.49	3.96	12.9	103.6	$50-15$
$33.1 \geqslant$	33 1802-PFHxS	$403>102.6$	4.53 e 3	1.12 e 4	0.393	3.56	3.56	5.04	12.8	102.6	
34.4	34 13C2-6:2 FTS	$429.1>408.9$	1.07 e 4	7.14 e 4	0.158	3.64	3.68	1.88	11.9	95.1	
35.4	35 13C2-PFOA	$414.9>369.7$	7.43e4	7.14 e 4	1.067	3.65	3.69	13.0	12.2	97.5	
36	36 13C5-PFNA	$468.2>422.9$	7.47 e 4	8.57 e 4	0.852	3.83	3.86	10.9	12.8	102.3	
$37 \times 1 \times$	37 13C8-PFOSA	$506.1>77.7$	7.86 e 3	8.09 e 4	0.098	3.84	3.87	1.21	12.4	98.8	
38 -	38 13C8-PFOS	$507>79.9$	1.42 e 4	1.49 e 4	0.936	3.89	3.91	11.9	12.8	102.1	
39.	39 13C2-PFDA	$515.1>469.9$	7.73 e 4	8.93 e 4	0.810	4.01	4.03	10.8	13.4	106.9	
40 : ${ }^{\text {a }}$	40 13C2-8:2 FTS	$529.1>508.7$	7.56 e 3	8.93 e 4	0.086	4.00	4.03	1.06	12.4	98.9	
41.4	41 d3-N-MeFOSAA	$573.3>419$	1.69 e 4	8.09 e 4	0.014	4.03	4.06	2.60	190	116.9	
42.4	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	1.67 e 4	8.09 e 4	0.014	4.12	4.13	2.58	185	114.0	
43 .r.	43 13C2-PFUnA	$565>519.8$	8.83e4	8.09 e 4	0.962	4.17	4.20	13.6	14.2	113.4	
44.	44 13C2-PFDoA	$615>569.7$	8.53 e 3	8.09 e 4	0.094	4.34	4.36	1.32	14.0	111.7	
45	45 d3-N-MeFOSA	$515.2>168.9$	3.34 e 4	8.09 e 4	0.034	4.29	4.49	5.16	150	100.1	
46 - ${ }^{\text {\% }}$	46 13C2-PFTeDA	$714.8>669.6$	5.93e4	8.09 e 4	0.694	4.68	4.71	9.15	13.2	105.4	
47.4	47 d5-N-ETFOSA	$531.1>168.9$	4.52 e 4	8.09 e 4	0.049	5.01	5.05	6.99	144	95.7	
48.	48 13C2-PFHxDA	$815>769.7$	2.86 e 4	8.09 e 4	0.843	5.06	5.08	4.42	5.24	104.8	
49 , \%	49 d7-N-MeFOSE	$623.1>58.9$	4.88 e 4	8.09 e 4	0.055	5.42	5.43	7.54	138	92.0	,
50.4	50 d9-N-EtFOSE	$639.2>58.8$	4.91 e 4	8.09 e 4	0.053	5.59	5.60	7.58	142	94.5	\checkmark
51 - ${ }^{\text {Pr }}$	51 13C4-PFBA	$217>171.8$	2.04 e 4	2.04 e 4	1.000	1.54	1.59	12.5	12.5	100.0	
52 2.	52 13C5-PFHxA	$318>272.9$	5.68 e 4	5.68 e 4	1.000	3.19	3.23	5.00	5.00	100.0	
53 \%	53 13C3-PFHxS	$401.9>79.9$	1.12 e 4	1.12 e 4	1.000	3.56	3.56	12.5	12.5	100.0	
54.	54 13C8-PFOA	$421.3>376$	7.14 e 4	7.14 e 4	1.000	3.65	3.69	12.5	12.5	100.0	
55	55 13C9-PFNA	$472.2>426.9$	8.57 e 4	8.57 e 4	1.000	3.83	3.86	12.5	12.5	100.0	
56.1 .4	56 13C4-PFOS	$503>79.9$	1.49 e 4	1.49 e 4	1.000	3.89	3.92	12.5	12.5	100.0	
57	57 13C6-PFDA	$519.1>473.7$	8.93 e 4	8.93 e 4	1.000	4.01	4.03	12.5	12.5	100.0	
$58: 4.1$	58 13C7-PFUnA	$570.1>524.8$	8.09 e 4	8.09 e 4	1.000	4.17	4.20	12.5	12.5	100.0	

Dataset：Untitled
Last Altered：Wednesday，July 26， 2017 10：28：43 Pacific Daylight Time
Printed：Wednesday，July 26， 2017 10：29：07 Pacific Daylight Time

Method：U：Q4．PROIMethDBIPFAS FULL 7－20－17．mdb 25 Jul 2017 12：44：55
Calibration：U：IQ4．PROICurveDBIC18＿VAL－PFAS＿Q4＿7－24－17－FULL．cdb 24 Jul 2017 15：32：30
Compound name：PFBA

		e	Acq．Time
	IPA	25－Jul－17	14：15：31
36xaksw	ST170725M1－1 PFC CS－1 17G2502	25－Jul－17	14：26：15
	B7G0107－BS1 OPR 0.125	25－Jul－17	14：36：53
	IPA	25－Jul－17	14：47：39
53skexs3x 17	B7G0107－BLK1 Method Blank 0.125	25－Jul－17	14：58：18
第紬䊾約緮170725M1＿6	1700851－01RE1 SE 01＿20170710 0.12032	25－Jul－17	15：08：56
170725M1_7	1700851－02RE1 EB 01＿20170710 0.11963	25－Jul－17	15：19：35
Wix 170725M1＿8	1700851－03RE1 18－GW－18MCAS03－5－20170．．．	25－Jul－17	15：30：13
	1700851－04RE1 18－GW－18MCAS03－2－20170．．．	25－Jul－17	15：40：51
W0.	1700851－05RE1 18－GW－18MCAS02－5－20170．．．	25－Jul－17	15：51：30
魏170725M1	1700851－06RE1 18－GW－18MCAS07－3－20170．．．	25－Jul－17	16：02：08
72	1700851－07RE1 24－GW－24MW08B－20170710．．	．．25－Jul－17	16：12：47
	1700851－08RE1 DUP03－20170710 0.12071	25－Jul－17	16：23：25
170725M1＿14	1700851－09RE1 24－GW－24EX11－20170710 0.	25－Jul－17	16：34：03
3kider 170725M1＿15	1700851－10RE1 SGV－GW－SGV Transfer Stati．．	．．25－Jul－17	16：44：46
170725M1＿16	B7G0107－MS2 Matrix Spike 0.11945	25－Jul－17	16：55：33
170725M1＿17	B7G0107－MSD2 Matrix Spike Dup 0.12098	25－Jul－17	17：06：33
纞170725M1＿18	IPA	25－Jul－17	17：17：45
170725M1＿19	ST170725M1－2 PFC CS3 17G2503	25－Jul－17	17：28：43
170725M1＿20	IPA	25－Jul－17	17：39：41
170725M1＿21	1700852－01RE1 EB 02 ＿20170711 0.12122	25－Jul－17	17：50：30
170725M1＿22	1700852－02RE1 DUP01－20170711 0.11996	25－Jul－17	18：01：17
170725M1＿23	1700852－03RE1 1－GW－01－MW204－20170711．．	．．．25－Jul－17	18：12：03
170725M1＿24	B7G0107－MS1 Matrix Spike 0.12078	25－Jul－17	18：22：49
賋170725M1＿25	B7G0107－MSD1 Matrix Spike Dup 0.11599	25－Jul－17	18：33：36
170725M1＿26	1700852－04RE1 1－GW－01－MW206－20170711 ．．	．．．25－Jul－17	18：44：23
170725M1＿27	1700852－05RE1 2－GW－02DGMW59－2017071．．．	25－Jul－17	18：55：10
170725M1＿2	1700852－06RE1 2－GW－02NEW16－20170711 ．．．	．25－Jul－17	19：05：57
紋170725M1＿2	1700852－07RE1 5－GW－05－DGMW68A－20170．	25－Jul－17	19：16：44
F1／170725M1＿30	1700852－08RE1 1－GW－01－PZ20－20170711 0.	25－Jul－17	19：27：29
	OH700852－09RE1 1－GW－02－MW209－20170711．	．．．25－Jul－17	19：38：30

Dataset：Untitled

Last Altered：Wednesday，July 26， 2017 10：28：43 Pacific Daylight Time
Printed：
Wednesday，July 26， 2017 10：29：07 Pacific Daylight Time

Compound name：PFBA

3		Acq．Date	Time
	IPA	25－Jul－17	19：49：44
WhWTM	ST170725M1－3 PFC CS3 17G2503	25－Jul－17	20：00：29
Whedxata 170725M1＿34	IPA	25－Jul－17	20：11：07
	B7G0108－BS1 OPR 0.125	25－Jul－17	20：21：46
	IPA	25－Jul－17	20：32：24
46x	B7G0108－BLK1 Method Blank 0.125	25－Jul－17	20：43：03
Wixaxd 170725M1＿38	1700856－01RE1 INFLUENT－20170710 0.121	25－Jul－17	20：53：41
滑170725M1＿39	1700856－02RE1 DUP05－20170710 0.11647	25－Jul－17	21：04：19
	1700856－03RE1 MID－POINT－20170710 0.11731	25－Jul－17	21：14：58
	1700856－04RE1 EFFLUENT－20170710 0.12084	25－Jul－17	21：25：36
	B7G0108－MS1 Matrix Spike 0.12162	25－Jul－17	21：36：14
䊾Hix 170725M1＿43	B7G0108－MSD1 Matrix Spike Dup 0.11849	25－Jul－17	21：47：01
	1700856－05RE1 MW－37S－20170711 0.11696	25－Jul－17	21：57：39
， 約變 170725M1＿45	1700856－06RE1 ERB－01－20170711 0.12043	25－Jul－17	22：08：34
	1700856－07RE1 11－MW－1－20170710 0.11482	25－Jul－17	22：19：33
170725M1＿47	1700856－08RE1 LF－MW－54BR－20170710 0.11	25－Jul－17	22：30：16
170725M1＿48	1700856－09RE1 MW－48BR－20170711 0.12084	25－Jul－17	22：40：54
34．170725M1＿49	1700856－10RE1 MW－34S－20170711 0.11812	25－Jul－17	22：51：33
170725M1＿5	IPA	25－Jul－17	23：02：11
170725M1＿5	ST170725M1－4 PFC CS3 17G2503	25－Jul－17	23：12：50
塐170725M1＿5	IPA	25－Jul－17	23：23：36
敉170725M1＿5	1700856－11RE1 MW－31BR－20170711 0.11774	25－Jul－17	23：34：14
＊170725M1＿54	1700856－12RE1 MW－31S－201707110．11732	25－Jul－17	23：45：01
－170725M1＿55	1700732－04RE1＠5X MW PFC 030.11929	25－Jul－17	23：55：47
＊170725M1＿56	1700906－05＠5X MW－02BR－20170718 0.125	26－Jul－17	00：06：56
9	1700907－04＠5X AT028－MW17－06－071717－13．．．	26－Jul－17	00：18：17
170725M1＿58	1700907－09＠5X AT028－MW17－01－071817－09	26－Jul－17	00：29：47
170725M1＿59	IPA	26－Jul－17	00：40：33
170725M1＿60	ST170725M1－5 PFC CS3 17G2503	26－Jul－17	00：51：21
34\％19170725M1＿6	IPA	26－Jul－17	01：02：08
－6約變170725M1＿62	1700845－01＠5X MW－29S－20170707 0.12034	26－Jul－17	01：12：49
89 Whe $170725 \mathrm{M} 1 _63$	1700845－02＠5X DUP04－20170707 0.12279	26－Jul－17	01：23：33
644 3xtut	1700845－03＠20X MW－27S－20170707 0.11824	26－Jul－17	01：34：11
$5{ }^{3}$	B7G0033－MS1＠20X Matrix Spike 0.12283	26－Jul－17	01：44：49

Work Order 1700856 Revision
Dataset: Untitled

Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

		Acq: Date	ime
	B7G0033-MSD1@20X Matrix Spike Dup 0.124	26-Jul-17	01:55:28
	1700845-04@5X MW-30S-20170707 0.11933	26-Jul-17	02:06:06
	1700894-02@5X POND 1 at PD 0.125	26-Jul-17	02:16:53
	1700894-03@5X POND 1 -STAFF 0.125	26-Jul-17	02:27:50
	1700894-04@10X SEED-POND 10.125	26-Jul-17	02:38:34
	1700732-05RE1 SD-46 3.2	26-Jul-17	02:49:12
	IPA	26-Jul-17	02:59:50
	ST170725M1-6 PFC CS3 17G2503	26-Jul-17	03:10:29
	IPA	26-Jul-17	03:21:15

Method: U:IQ4.PROMMethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

13C3-PFBA

F8:MRM of 2 channels,ES-

F14:MRM of 2 channels, $\mathrm{ES}-$
$363>169$

PFHxS

1802-PFHxS
F18:MRM of 1 channel,ES-

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-60.qld
Last Altered:	Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17 G 2503

13C2-PFOA
F20:MRM of 1 channel,ES-
$414.9>369.7$

13C2-PFTeDA
F59:MRM of 2 channels,ES-

PFNA

13C5-PFNA
F26:MRM of 1 channel,ES-

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES507 > 79.9

Dataset:
U:IQ4.PRO|resultsI170725M11170725M1-60.qld

Last Altered:	Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17 G2503

13C2-8:2 FTS

d3-N-MeFOSAA

F47:MRM of 1 channel,ES-
$573.3>419$

d5-N-EtFOSAA

Dataset:
U:IQ4.PRO\results\170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17 G2503

F51:MRM of 2 channels,ES-

13C2-PFDoA

F52:MRM of 1 channel,ES$615>569.7$ $1.544 e+005$

F34:MRM of 2 channels,ES-

d3-N-MeFOSA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

F58:MRM of 4 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels,ESF59:MRM of 2 channels,ES-
$714.8>669.6$

F39:MRM of 2 channels,ESF39:MRM of 2 channels,ES
$526.1>219$

d5-N-ETFOSA

F60:MRM of 2 channels,ES-

13C2-PFHxDA
F61:MRM of 1 channel,ES$815>769.7$ $5.224 e+005$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-60.qld
Last Altered:	Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset: U:IQ4.PROIresults1170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945
Vista Analytical Laboratory

Dataset:	U:IQ4.PROIresults1170727M11170727M1-97.qld
Last Altered:	Tuesday, August 01, 2017 12:26:31 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:27:14 Pacific Daylight Time

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709 (i) oft of limit cwlerra.

	\# Name	Trace	Area may	IS Area	Wt./Vol.	RRF	d.RT	RT	y Axis Resp.	Conc.	\%Rec	$60-150$
32	32 d5-N-EtFOSAA	$589.3>419$	1.10e4	5.62 e 4	1.000	0.013	4.12	4.05	2.45	193	118.6	
33 -	33 13C2-PFUnA	$565>519.8$	5.05 e 4	5.62 e 4	1.000	0.928	4.17	4.13	11.2	12.1	96.8	
$34 \pm=$	34 13C2-PFDoA	$615>569.7$	3.49 e 3	5.62 e 4	1.000	0.071	4.34	4.29	0.777	10.9	87.4	
35	35 13C2-PFTeDA	$714.8>669.6$	3.06 e 3	5.62 e 4	1.000	0.273	4.68	4.63	0.681		(A) 19.9	\downarrow
36	$3613 C 4-P F B A$	$217>171.8$	2.53 e 4	2.53 e 4	1.000	1.000	1.32	1.35	12.5	12.5	(A00.0	
$37 \times$	37 13C5-PFHxA	$318>272.9$	7.53 e 4	7.53 e 4	1.000	1.000	3.19	3.15	5.00	5.00	100.0	
38	38 13C3-PFHxS	$401.9>79.9$	1.07 e 4	1.07 e 4	1.000	1.000	3.56	3.49	12.5	12.5	100.0	
39	39 13C8-PFOA	$421.3>376$	6.43 e 4	6.43 e 4	1.000	1.000	3.65	3.62	12.5	12.5	100.0	
40	40 13C9-PFNA	$472.2>426.9$	6.88e4	6.88 e 4	1.000	1.000	3.83	3.80	12.5	12.5	100.0	
41.4	41 13C4-PFOS	$503>79.9$	1.01e4	1.01 e 4	1.000	1.000	3.89	3.85	12.5	12.5	100.0	
42	42 13C6-PFDA	$519.1>473.7$	6.46e4	6.46 e 4	1.000	1.000	4.01	3.96	12.5	12.5	100.0	
$43-$	43 13C7-PFUnA	$570.1>524.8$	5.62 e 4	5.62e4	1.000	1.000	4.17	4.13	12.5	12.5	100.0	

Dataset：	Untitled
Last Altered：	Tuesday，August 01，2017 12：30：23 Pacific Daylight Time
Printed：	Tuesday，August 01，2017 12：32：43 Pacific Daylight Time

Method：U：IQ4．PROMMethDBIPFAS＿L17＿L14＿7－27－17．mdb 30 Jul 2017 07：47：21 Calibration：U：IQ4．PROICurveDBIC18＿VAL－PFAS＿Q4＿7－27－17－L14＿L17．cdb 28 Jul 2017 08：49：51

Compound name：PFBA

Whesw Mane	1b ${ }^{\text {dex }}$	Acq．Date	Acq．Time
84 Weyb 170727M1＿47	ST170727M1－10 PFC CS3 17G2709	27－Jul－17	19：53：28
3isk ${ }^{\text {a }}$ 170727M1＿48	IPA	27－Jul－17	20：04：14
4	1700848－05RE1 DPH－MW2－17 0.12259	27－Jul－17	20：14：52
3 ${ }^{\text {a }}$ 361170727M1＿50	1700848－06RE1 DPH－MW8－17 0.12027	27－Jul－17	20：25：31
	1700848－07RE1 DPH－MW5－17 0.11998	27－Jul－17	20：36：09
53䋝170727M1＿52	1700848－08RE1 DPH－MW4－17 0.11759	27－Jul－17	20：46：48
	IPA	27－Jul－17	20：57：36
	B7G0067－BLK1 Method Blank 0.125	27－Jul－17	21：08：21
紋絃 170727M1＿55	IPA	27－Jul－17	21：19：00
34 ${ }^{\text {a }}$（ ${ }^{\text {d }}$ 170727M1＿56	B7G0067－BS1 OPR 0.125	27－Jul－17	21：29：46
4t 5 S4 170727M1＿57	1700855－01 TF5－EB－02 0.27357	27－Jul－17	21：40：25
	1700855－02 TF5－MW－987 0.27423	27－Jul－17	21：51：11
348170727M1＿59	1700855－03 TF5－MW－987D 0.27164	27－Jul－17	22：01：49
（4xix 170727M1＿60	B7G0067－MS1 Matrix Spike 0.27298	27－Jul－17	22：12：27
（3） d 6 170727M1＿61	B7G0067－MSD1 Matrix Spike Dup 0.2776	27－Jul－17	22：23：06
W變170727M1＿62	1700855－04 TF5－MW－987－D 0.26865	27－Jut－17	22：33：52
	1700855－05 TF5－MW－991 0.2726	27－Jul－17	22：44：39
6榣170727M1＿64	1700855－06 TF5－MW－991D 0.27278	27－Jul－17	22：55：17
	IPA	27－Jul－17	23：05：56
34170727M1＿66	ST170727M1－11 PFC CS－1 17G2705	27－Jul－17	23：16：34
170727M1＿67	IPA	27－Jul－17	23：27：21
4．170727M1＿68	1700855－07 TF5－MW－993 0.26881	27－Jul－17	23：39：43
4170727M1＿69	1700855－08 TF5－MW－993D 0.2612	27－Jul－17	23：50：22
3048w 170727M1＿70	1700855－09 TF5－MW－994 0.25188	28－Jul－17	00：01：08
7170727M1＿71	1700871－01 EB03－20170712 0.12146	28－Jul－17	00：11：55
170727M1＿72	1700871－02 5－GW－05＿DGMW41B－20170712	28－Jul－17	00：22：44
4 Wh $^{\text {170727M1＿73 }}$	1700871－03 18－GW－18BGM03E－20170712 0．．．	28－Jul－17	00：33：31
\＄170727M1＿74	1700871－04 24－GW－24IN03－20170712 0.11741	28－Jul－17	00：44：15
170727M1＿75	1700871－05 DUP02－20170712 0.11807	28－Jul－17	00：54：53
W ${ }^{\text {cter }}$ 170727M1＿76	1700871－06 24－GW－24EX13A－20170712 0．11．．	28－Jul－17	01：05：31
	1700871－07 24－GW－24MW 15D－20170712 0．1．．．	28－Jul－17	01：16：10

Dataset：Untitled

Last Altered：Tuesday，August 01， 2017 12：30：23 Pacific Daylight Time Printed：\quad Tuesday，August 01， 2017 12：32：43 Pacific Daylight Time

Compound name：PFBA

34x whyname		Acq．Date	Acq．Time
W綡䊾䊾170727M1＿78	IPA	28－Jul－17	01：26：56
	ST170727M1－12 PFC CS3 17G2709	28－Jul－17	01：37：35
Whtivixtu 170727M1＿80	IPA	28－Jul－17	01：48：13
\％hatukut 170727M1＿81	1700871－08 16－GW－16＿MW28－20170712 0．1．．．	28－Jul－17	01：58：51
	1700871－09 16－GW－16＿MW19－20170712 0．1．．．	28－Jul－17	02：09：38
	1700871－10 EB04－20170713 0.11646	28－Jul－17	02：20：24
	1700871－11 16－GW－16＿MW04－20170713 0．1．．．	28－Jul－17	02：31：03
Whtwidin 170727M1＿85	IPA	28－Jul－17	02：41：41
	B7G0108－BS1 OPR 0.125	28－Jul－17	02：52：19
	IPA	28－Jul－17	03：02：58
3thky $170727 \mathrm{M} 1 _88$	B7G0108－BLK1 Method Blank 0.125	28－Jul－17	03：13：36
效170727M1＿89	1700856－01RE1 INFLUENT－20170710 0.121	28－Jul－17	03：24：15
絞170727M1＿90	1700856－02RE1 DUP05－20170710 0.11647	28－Jul－17	03：34：53
	1700856－03RE1 MID－POINT－20170710 0.11731	28－Jul－17	03：45：40
1170727M1＿92	1700856－04RE1 EFFLUENT－20170710 0.12084	28－Jul－17	03：56：26
X170727M1＿93	B7G0108－MS1 Matrix Spike 0.12162	28－Jul－17	04：07：38
W變170727M1＿94	B7G0108－MSD1 Matrix Spike Dup 0.11849	28－Jul－17	04：18：57
49483䊾緼170727M1＿95	1700856－06RE1 ERB－01－201707110．12043	28－Jul－17	04：29：35
56才dwask whxt 170727M1＿96	IPA	28－Jul－17	04：40：21
536x4tutw 170727M1＿97	ST170727M1－13 PFC CS3 17G2709	28－Jul－17	04：51：00
	IPA	28－Jul－17	05：01：38

Dataset: U:IQ4.PRO|results1170727M11170727M1-97.qld

Last Altered: Tuesday, August 01, 2017 12:26:31 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:27:14 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

13C3-PFBA

PFPeA

13C3-PFPeA

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

Work Order 1700856 Revision 1

U:IQ4.PROIresults1170727M11170727M1-97.ald
Last Altered: Tuesday, August 01, 2017 12:26:31 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 12:27:14 Pacific Daylight Time

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

1802-PFHxS

Dataset: U:IQ4.PRO|results1170727M11170727M1-97.qld

Last Altered: Tuesday, August 01, 2017 12:26:31 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:27:14 Pacific Daylight Time

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

13C2-PFUnA

PFDS

13C8-PFOS

13C2-PFDoA

13C2-PFTeDA

Dataset:	U:IQ4.PROlresults1170727M11170727M1-97.qld
Last Altered:	Tuesday, August 01, 2017 12:26:31 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:27:14 Pacific Daylight Time

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

Dataset: U:IQ4.PRO|results1170727M11170727M1-97.qld
Last Altered: Tuesday, August 01, 2017 12:26:31 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:27:14 Pacific Daylight Time

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709 13C6-PFDA

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-15 PFC CS3 17G2709, Description: PFC CS3 17G2709

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	Resp:	Core	\%Rec	$10-130$
	1 PFBA	$213.0>168.8$	2.00 e 4	2.26 e 4	1.000		1.32	1.35	11.1	9.59	95.9	
$2, \square$	2 PFPeA	$263.1>218.9$	4.39 e 4	5.60 e 4	1.000		2.77	2.66	9.79	9.71	97.1	
3 Wixtum	3 PFBS	$299>79.7$	9.14 e 3	6.36 e 3	1.000		2.96	2.90	18.0	9.50	95.0	
$4{ }^{4}$	4 PFHxA	313.2 > 268.9	6.28 e 4	2.10 e 4	1.000		3.19	3.15	14.9	10.2	101.7	
5.	5 PFHpA	$363>318.9$	5.05 e 4	$5.25 e 4$	1.000		3.45	3.41	12.0	9.66	96.6	
6 Crimy	6 PFHxS	$398.9>79.6$	6.21 e 3	4.68 e 3	1.000		3.56	3.48	16.6	9.96	99.6	
7 7\% \% \%	7 PFOA	$413>368.7$	5.51e4	6.63 e 4	1.000		3.65	3.62	10.4	10.4	104.4	
	8 PFHpS	$448.9>98.8$	4.96 e 3	6.63 e 4	1.000		3.65	3.67	0.936	10.7	107.4	
9 -	9 PFNA	$462.9>418.8$	4.93 e 4	5.90 e 4	1.000		3.83	3.79	10.4	9.67	96.7	
10 ,	10 PFOSA	$498.1>77.8$	6.80 e 3	8.09 e 3	1.000		3.84	3.80	10.5	9.62	96.2	
11. $\%$	11 PFOS	$499>79.9$	8.85 e 3	1.09 e 4	1.000		3.89	3.84	10.2	9.47	94.7	
12 \%	12 PFDA	$513>468.8$	6.01e4	5.95 e 4	1.000		4.01	3.96	12.6	10.1	101.2	
13 -	13 N -MeFOSAA	$570.1>419$	1.48 e 4	1.17 e 4	1.000		4.03	3.99	204	10.2	102.4	
14. तVm	14 N -EtFOSAA	$584.2>419$	1.07 e 4	1.18 e 4	1.000		4.10	4.05	147	9.58	95.8	
$15 \cdot 4$	15 PFUnA	$562.9>518.9$	3.20 e 4	5.61 e 4	1.000		4.11	4.12	7.14	11.0	110.2	
16	16 PFDS	$598.9>98.7$	2.69 e 3	5.61 e 4	1.000		4.22	4.17	0.598	8.81	88.1	
17: 2 - ${ }^{\text {a }}$	17 PFDoA	$612.9>318.8$	2.27 e 3	3.25 e 3	1.000		4.34	4.29	8.76	9.37	ค 93.7	
18 \% ${ }^{\text {d }}$	18 PFTrDA	$662.9>618.9$	1.09 e 4	3.25 e 3	1.000		4.50	4.45	41.8	4.84	(b) 48.4	
	19 PFTeDA	$712.9>668.8$	2.59 e 3	2.75 e 3	1.000		4.68	4.63	11.8	9.76	97.6	V
20	20 13C3-PFBA	$216.1>171.8$	2.26 e 4	2.73 e 4	1.000	0.823	1.32	1.35	10.3	12.5	100.4	$50-15$
121	21 13C3-PFPeA	$266>221.8$	5.60 e 4	7.62 e 4	1.000	0.264	2.77	2.66	3.67	13.9	111.2	
22.4	22 13C3-PFBS	$302>98.8$	6.36 e 3	7.62 e 4	1.000	0.031	2.96	2.90	0.417	13.6	108.7	
23.4	23 13C2-PFHxA	$315>269.8$	2.10 e 4	7.62 e 4	1.000	0.275	3.19	3.15	1.38	5.01	100.2	
24.4.4.	24 13C4-PFHpA	$367.2>321.8$	5.25 e 4	7.62 e 4	1.000	0.260	3.45	3.42	3.44	13.2	105.9	
25	25 18O2-PFHxS	$403>102.6$	4.68 e 3	1.16 e 4	1.000	0.402	3.56	3.49	5.03	12.5	100.0	
26 \%	26 13C2-PFOA	$414.9>369.7$	6.63 e 4	6.40 e 4	1.000	1.042	3.65	3.61	13.0	12.4	99.5	
27	27 13C5-PFNA	$468.2>422.9$	5.90 e 4	6.76 e4	1.000	0.792	3.83	3.79	10.9	13.8	110.2	
28.	28 13C8-PFOSA	$506.1>77.7$	8.09 e 3	5.36 e 4	1.000	0.175	3.84	3.80	1.89	10.8	86.3	
29.4	29 13C8-PFOS	$507>79.9$	1.09 e 4	1.02 e 4	1.000	0.951	3.89	3.84	13.3	14.0	112.3	
$30^{\circ}+4$.	30 13C2-PFDA	$515.1>469.9$	5.95 e 4	7.06 e 4	1.000	0.869	4.01	3.96	10.5	12.1	97.0	/
31.5	31 d3-N-MeFOSAA	$573.3>419$	1.17 e 4	5.36 e 4	1.000	0.013	4.03	3.99	2.74	211	130.1	\checkmark

Dataset: U:IQ4.PRO|results|170727M11170727M1-113.qld

Last Altered: Thursday, August 03, 2017 13:01:30 Pacific Daylight Time
Printed: \quad Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

14
Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-ł PFC CS3 17G2709, Description: PFC CS3 17G2709

	\# Name	Trace	Area	IS Area	Wt./vol.	RRF	PredRT	RT	Resp.	Conc.	\%Ree	$50-150$
32	$32 \mathrm{d5-N-EtFOSAA}$	$589.3>419$	1.18 e 4	5.36 e 4	1.000	0.013	4.12	4.05	2.76	217	133.5	
33 - 4 -	33 13C2-PFUnA	$565>519.8$	5.61 e 4	5.36 e 4	1.000	0.928	4.17	4.12	13.1	14.1	112.7	1
	34 13C2-PFDoA	$615>569.7$	3.25 e 3	5.36 e 4	1.000	0.071	4.34	4.28	0.756	10.6	85.1	
$35 \sim$	35 13C2-PFTeDA	$714.8>669.6$	2.75 e 3	5.36 e 4	1.000	0.273	4.68	4.63	0.641		(b) 18.8	\checkmark
36	36 13C4-PFBA	$217>171.8$	2.73 e 4	2.73 e 4	1.000	1.000	1.32	1.35	12.5	12.5	100.0	
37.2	37 13C5-PFHxA	$318>272.9$	7.62 e4	7.62 e 4	1.000	1.000	3.19	3.15	5.00	5.00	100.0	
38 \%	$3813 \mathrm{C} 3-\mathrm{PFHxS}$	$401.9>79.9$	1.16 e 4	1.16 e 4	1.000	1.000	3.56	3.49	12.5	12.5	100.0	
39.4	39 13C8-PFOA	$421.3>376$	6.40 e 4	6.40e4	1.000	1.000	3.65	3.61	12.5	12.5	100.0	
40 -	40 13C9-PFNA	$472.2>426.9$	6.76 e 4	6.76e4	1.000	1.000	3.83	3.79	12.5	12.5	100.0	
41×2	41 13C4-PFOS	$503>79.9$	1.02 e 4	1.02 e 4	1.000	1.000	3.89	3.84	12.5	12.5	100.0	
$42=3$	42 13C6-PFDA	$519.1>473.7$	7.06 e 4	7.06 e 4	1.000	1.000	4.01	3.96	12.5	12.5	100.0	
$43 \times$	43 13C7-PFUnA	$570.1>524.8$	5.36 e 4	5.36 e 4	1.000	1.000	4.17	4.12	12.5	12.5	100.0	

(A) Notused.

Printed: \quad Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51
Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Wermeonc.
1.4 the	3 PFBS	$299>79.7$	2.90	9141.570	6357.296	17.975	bb	9.5

Total PFHxS

Total PFOA

	Name		Area IS Area			Response Primary Flags may Conc.		
	7 PFOA	$413>368.7$	3.62	55137.480	66276.078	10.399	bb	

Total PFOS

\#. \# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1 . + at 11 PFOS	$499>79.9$	3.84	8854.648	10879.177	10.174	bb	9.5

Total N -Me-FOSAA

Total N-EtFOSAA

\#nte \# Name	Trace	RT	Area	IS Area	Response	Primary Flags ${ }^{\text {chen }}$
1. 14 N-EtFOSAA	$584.2>419$	4.05	10728.818	11830.036	147.373	bb 9.6

Dataset:	Untitled
Last Altered:	Thursday, August 03, 2017 13:05:07 Pacific Daylight Time
Printed:	Thursday, August 03, 2017 13:05:59 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Compound name: PFBA

4x Name	ID Mexsem max ,	Acq. Date	Acq. Time
	ST170727M1-13 PFC CS3 17G2709	28-Jul-17	04:51:00
2 2Fer 170727M1_98	IPA	28-Jul-17	05:01:38
	1700856-08RE 1 LF-MW-54BR-20170710 0.11...	28-Jul-17	05:12:17
	1700856-09RE1 MW-48BR-201707110.12084	28-Jul-17	05:22:55
5 W	1700856-10RE1 MW-34S-20170711 0.11812	28-Jul-17	05:33:41
6.	1700856-12RE1 MW-31S-20170711 0.11732	28-Jul-17	05:44:28
7 - ${ }^{\text {mes }}$ 170727M1_103	1700856-05RE1 MW-37S-20170711 0.11696	28-Jul-17	05:55:14
8:	IPA	28-Jul-17	06:05:53
9. $=$ ¢! ${ }^{\text {a }}$ 170727M1_105	1700856-07RE 1 11-MW-1-20170710 0.11482	28-Jul-17	06:16:42
10 ¢	IPA	28-Jul-17	06:28:27
11.	1700856-11RE1 MW-31BR-201707110.11774	28-Jul-17	06:39:17
12 LW 170727M1_108	IPA	28-Jul-17	06:49:56
13. - . ${ }^{\text {a }}$ 170727M1_109	1700856-05RE1@10X MW-37S-20170711 0.1..	28-Jul-17	07:00:38
14 \&	1700856-07RE1@10X 11-MW-1-20170710 0...	28-Jul-17	07:11:22
15 . ${ }^{\text {ate }} 170727 \mathrm{M} 1 _111$	1700856-11RE1@5X MW-31BR-20170711 0....	28-Jul-17	07:22:03
16.	IPA	28-Jul-17	07:32:49
17 W M $170727 \mathrm{M} 1 _113$	ST170727M1-13 PFC CS3 17G2709	28-Jul-17	07:43:27
	14		

LC Calibration Standards Review Checklist Qu

Run Log Present: \square
\# of Samples per Sequence Checked:

Reviewed By: \qquad
InItials/Date

$$
\begin{aligned}
& \text { Comments: } \\
& \text { (A) Notused for } \\
& \text { PFTTDAor PFTEDA. } \\
& \text { AC 8/317 }
\end{aligned}
$$

Printed: Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

13C3-PFBA

PFPeA

13C3-PFPeA

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

Work Order 1700856 Revision 1
Printed: \quad Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

Total PFHxS

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

1802-PFHxS

Dataset: U:IQ4.PRO|results1170727M11170727M1-113.qld

Last Altered: Thursday, August 03, 2017 13:01:30 Pacific Daylight Time
Printed: Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

F25:MRM of 2 channels,ES$\begin{array}{lr} & 462.9>219 \\ \text { PFNA } & 6.198 \mathrm{e}+004\end{array}$

13C8-PFOSA

13C5-PFNA

PFOSA

Total PFOS

13C8-PFOS

PFDA

13C2-PFDA

U:IQ4.PROIresults\170727M11170727M1-113.qld

Last Altered: Thursday, August 03, 2017 13:01:30 Pacific Daylight Time
Printed: Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

PFUnA

13C2-PFUnA

PFDS

13C8-PFOS

PFDoA

PFTrDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

U:IQ4.PROIresults\170727M11170727M1-113.qld
Last Altered: Thursday, August 03, 2017 13:01:30 Pacific Daylight Time
Printed:
Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

13C5-PFHxA

13C8-PFOA

13C4-PFBA

13C9-PFNA

13C3-PFHxS

13C4-PFOS

Dataset:	U:IQ4.PROIresults1170727M11170727M1-113.qld
Last Altered:	Thursday, August 03, 2017 13:01:30 Pacific Daylight Time
Printed:	Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709 13C6-PFDA F38:MRM of 1 channel,ES-

13C7-PFUnA

Dataset: U:IQ4.PROXresultsi170731M11170731M1-34.qld
Last Altered: Tuesday, August 01, 2017 10:33:51 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:34:05 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21
Calibration: U:IQ4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19
Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

Quantify Sample Summary Report Vista Analytical Laboratory		MassLynx MassLynx V4.1 SCN 945	Page 2 of 2
Dataset:	U:\Q4.PRO\results\17	1170731M1-34.qld	
Last Altered: Printed:	Tuesday, August 01, Tuesday, August 01,	0:33:51 Pacific Daylight Time 0:34:05 Pacific Daylight Time	

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

Sample List: U:IQ4.PROISampleDBI170731M1.SPL
Last Modified: \quad Monday, July 31, 2017 14:34:49 Pacific Daylight Time
Printed: Monday, July 31, 2017 15:57:00 Pacific Daylight Time

	File Name	RS OK=X	Sample ID	File Text	User Divisor 1	Bottle	Sample Type
1	170731M1_1	--	IPA	IPA			
2	170731M1-2	-	ST170731M1-1 PFC CS0 17G2826	PFC CSO 17G2826	1.0000 1.0000	1:48	Blank
3	170731M1 3	-	IPA	IPA	1.0000	1:48	Blank
4	170731M1_4	-	B7G0067-BS1 OPR 0.125	OPR	0.1250	1:3	Analyte
5	170731M1_5		IPA	IPA	1.0000	1:48	Blank
7	170731M1_6	-	B7G0067-BLK1 Method Blank 0.125	Method Blank	0.1250	1:4	Analyte
7	170731M1 7	-	1700855-01 TF5-EB-02 0.27357	TF5-EB-02	0.2736	1:5	Analyte
8	170731M1_8	-	1700855-02 TF5-MW-987 0.27423	TF5-MW-987	0.2742	1:6	Analyte
10	170731M1-9	--	1700855-03 TF5-MW-987D 0.27164	TF5-MW-987D	0.2716	1:7	Analyte
10	170731M1-10		B7G0067-MS1 Matrix Spike 0.27298	Matrix Spike	0.2730	1:8	Analyte
12	l170731M1 ${ }^{\text {l }}$	-	B7G0067-MSD1 Matrix Spike Dup 0.2776	Matrix Spike Dup	0.2776	1:9	Analyte
13	170731M1-13	二	1700855-05 TF5-MW-991 0.2726	TF5-MW-987-D	0.2687	1:10	Analyte
14	170731M1-14	--	1700855-06 TF5-MW-991D 0.27278	TF5-MW-991	0.2726	1:11	Analyte
15	170731M1-15	-	1700855-07 TF5-MW-993 0.26881	TF5-MW-991D	0.2728 0.2688	1:12	Analyte
16	170731M1_16	-	1700855-08 TF5-MW-993D 0.2612	TF5-MW-993D	0.2612	1:14	Analyte Analyte
17	170731M1 17	-	1700855-09 TF5-MW-994 0.25188	TF5-MW-994	0.2519	1:15	Analyte
18	170731M1_18	-	1700845-03@40X MW-27S-20170707 0.11824	MW-27S-20170707	0.1182	1:16	Analyte
19	170731M1_19	-	IPA	IPA	1.0000	1:48	Blank
20	170731M1-20	-	ST170731M1-2 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
21	170731M1_21	-	IPA	IPA	1.0000	1:48	Blank
22	170731M1 22	-	1700871-01 EB03-20170712 0.12146	EB03-20170712	0.1215	1:17	Analyte
23	170731M1_23	-	1700871-02 5-GW-05_DGMW41B-20170712 0.11547	5-GW-05_DGMW41B-20170712	0.1155	1:18	Analyte
24	170731M1_24	-	1700871-03 18-GW-18BGM03E-20170712 0.11765	18-GW-18BGM03E-20170712	0.1177	1:19	Analyte
25	170731M125	-	1700871-04 24-GW-24IN03-20170712 0.11741	24-GW-24IN03-20170712	0.1174	1:20	Analyte
26	170731M1 26	-	1700871-05 DUP02-20170712 0.11807	DUP02-20170712	0.1181	1:21	Analyte
27	170731M127 170731M1 28	-	1700871-06 24-GW-24EX13A-20170712 0.11851	24-GW-24EX13A-20170712	0.1185	1:22	Analyte
29	170731M1 29	-	1700871-07 24-GW-24MW15D-20170712 0.1193	24-GW-24MW15D-20170712	0.1193	1:23	Analyte
30	170731M1_30	--	1700871-09 16-GW-16-MW19-20170712 0.11913	16-GW-16_MW28-20170712	0.1190	1:24	Analyte
31	170731M1_31	-	1700871-10 EB04-20170713 0.11646.	16-GW-16_MW19-20170712 EB04-20170713	0.1191 0.1165	1:25	Analyte Analyto
32	170731M1_32	-	1700871-11 16-GW-16_MW04-20170713 0.12043	16-GW-16 MW04-20170713	0.1204	1:27	Analyte
33	170731M1 33	-	IPA	IPA	1.0000	1:48	Analyte
34	170731M1_34	-	ST170731M1-3 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
35	170731M1 35	--	IPA	IPA	1.0000	1:48	Blank
36	170731M1 36	-	1700856-12RE1@5X MW-31S-201707110.11732	MW-31S-20170711	0.1173	1:28	Analyte
37	170731M1 37	-	1700935-01 RES29-BLK_201707260.11182	RES29-BLK 20170726	0.1118	1:29	Analyte
38	170731M1 38	-	1700935-04 RES29-GAC2_201707260.12639	RES29-GAC2_20170726	0.1264	1:30	Analyte
39 40	170731M1 39	-	IPA	IPA	1.0000	1:48	Blank
40	170731M1_40	-	ST170731M1-4 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
Work Order 1700856 Revision 1						Ar	14 Lag 45 p q

Sample List: U:IQ4.PROISampleDBI170731M1.SPL
Last Modified: \quad Monday, July 31, 2017 14:34:49 Pacific Daylight Time
Printed:
Monday, July 31, 2017 15:57:00 Pacific Daylight Time
Page Position (1, 2)

	File Name	RS OK=X	Sample ID
41	170731M1_41	-	IPA
42	170731M1-42	-	B7G0122-BS1 OPR 0.25
43	170731M1-43	-	IPA
44	170731M1_44	-	B7G0122-BLK1 Method Blank 0.25
45	170731M1-45	-	1700891-06RE1 VEL FOAM 0.17113
46	170731M1_46	--	1700920-01 RCDM-MW-28S-20170719 0.1113
47	170731M1_47	--	1700920-02 LF-MW-12S-20170719 0.11113
48	170731M1_48	--	1700920-03 RCDM-MW-14S-20170720 0.11405
49	170731M1_49	-	1700920-04 MH-DUP01-20170720 0.12177
50	170731M1_50	-	1700920-05 MH-A97-20170720 0.12086
51	170731M1-51	-	1700920-06 MH-H93-20170720 0.11357
52	170731M1_52	-	IPA
53	170731M1_53	-	ST170731M1-5 PFC CS3 17G2729
54	170731M1_54	\cdots	IPA
55	170731M1_55	-	1700920-07 RCDM-BLANK-20170720 0.11872
56	170731M1_56	-	1700920-08 MH-C94-20170720 0.11568
57	170731M1_57	-	1700920-09 RCDM-MW-13S-20170719 0.11866
58	170731M1_58	\cdots	1700920-10 LF-MW-14S-20170720 0.11481
59	170731M1_59	-	1700920-11 LF-MW-11BR-20170720 0.11664
60	170731M1-60	\cdots	1700920-12 LF-MW-13S-20170719 0.11667
61	170731M1_61	---	1700920-13 RCDM-MW-11BR-20170720 0.11813
62	170731M1-62	-	1700920-14 RCDM-MW-12S-20170719 0.11619
63	170731M1_63	-	1700920-15 LF-MW-28S-20170719 0.11572
64	170731M1_64	-	1700920-16 DUP-07-20170719 0.12023
65	170731M1_65	-	1700920-17 FRB04-20170719 0.11007
66	170731M1-66	-	IPA
67	170731M1_67	--	ST170731M1-6 PFC CS3 17G2729
68	170731M1_68	-	IPA

File Text
IPA
OPR
IPA
Method Blank
VEL FOAM
RCDM-MW-28S-20170719
LF-MW-12S-20170719
RCDM-MW-14S-20170720
MH-DUP01-20170720
MH-A97-20170720
MH-H93-20170720
IPA
PFC CS3 17G2729
IPA
RCDM-BLANK-20170720
MH-C94-20170720
RCDM-MW-13S-20170719
LF-MW-14S-20170720
LF-MW-11BR-20170720
LF-MW-13S-20170719
RCDM-MW-11BR-20170720
RCDM-MW-12S-20170719
LF-MW-28S-20170719
DUP-07-20170719
FRB04-20170719
IPA
PFC CS3 17G2729
IPA

User Divisor 1 Bottle Sample Type

1.0000	$1: 48$	Blank
0.2500	$1: 31$	Analyte
1.0000	$1: 48$	Blank
0.2500	$1: 32$	Analyte
0.1711	$1: 33$	Analyte
0.1113	$1: 34$	Analyte
0.1111	$1: 35$	Analyte
0.1141	$1: 36$	Analyte
0.1218	$1: 37$	Analyte
0.1209	$1: 38$	Analyte
0.1136	$1: 39$	Analyte
1.0000	$1: 48$	Blank
1.0000	$1: 2$	Analyte
1.0000	$1: 48$	Blank
0.1187	$1: 40$	Analyte
0.1157	$1: 41$	Analyte
0.1187	$1: 42$	Analyte
0.1148	$1: 43$	Analyte
0.1166	$1: 44$	Analyte
0.1167	$1: 45$	Analyte
0.1181	$1: 46$	Analyte
0.1162	$1: 47$	Analyte
0.1157	$2: 1$	Analyte
0.1202	$2: 2$	Analyte
0.1101	$2: 3$	Analyte
1.0000	$1: 48$	Blank
1.0000	$1: 2$	Analyte
1.0000	$1: 48$	Blank

Dataset:	U:IQ4.PRO\results\170731M1\170731M1-34.qld
Last Altered:	Tuesday, August 01, 2017 10:33:51 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:34:05 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS L17 L14 7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

13C3-PFBA

Work Order 1700856 Revision 1

13C3-PFPeA

Total PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:	U:\Q4.PRO\results\170731M1\17073/M1-34.qld
Last Altered:	Tuesday, August 01, 2017 10:22:05 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:22:30 Pacific Daylight Time

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

13C4-PFHpA

1802-PFHxS

Total PFOA

13C2-PFOA

1802-PFHxS

Dataset:	U:\Q4.PRO\results\170731M1\17073-1M1-34.qld
Last Altered:	Tuesday, August 01, 2017 10:22:05 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:22:30 Pacific Daylight Time

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

Dataset:
 U:\Q4.PRO\results\170731M1\170731M1-34.qld

Last Altered: Tuesday, August 01, 2017 10:22:05 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:22:30 Pacific Daylight Time

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

13C2-PFUnA

13C8-PFOS

13C2-PFTeDA

Dataset: U:IQ4.PRO|results|170731M11170731M1-34.qid

Last Altered:
Tuesday, August 01, 2017 10:22:05 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 10:22:30 Pacific Daylight Time

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

Last Altered: Tuesday, August 01, 2017 10:22:05 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:22:30 Pacific Daylight Time

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19
Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170731M1\170731M1-40.qld
Last Altered: Tuesday, August 01, 2017 10:35:04 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:35:10 Pacific Daylight Time

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

	\# Name	Trace maty	Area	IS Area	Vt. Vol	RRF	d. PT			onc	Ofreo	$50-150$
334	33 13C2-PFUnA	$565>519.8$	1.01 e 5	8.45 e4	1.000	1.129	4.17	4.15	15.0	13.3	106.3	
	34 13C2-PFDoA	$615>569.7$	9.84 e 3	8.45 e4	1.000	0.116	4.34	4.30	1.46	12.5	100.4	
35.151	3513 C 2 -PFTeDA	$714.8>669.6$	6.80 e 4	8.45 e 4	1.000	0.762	4.68	4.66	10.1	13.2	105.5	\checkmark
6.rirume	36 13C4-PFBA	$217>171.8$	2.73 e 4	2.73 e 4	1.000	1.000	1.32	1.40	12.5	12.5	100.0	
37.4	37 13C5-PFHxA	$318>272.9$	9.67 e 4	9.67 e 4	1.000	1.000	3.19	3.16	5.00	5.00	100.0	
38:	38 13C3-PFHxS	$401.9>79.9$	1.39 e 4	1.39 e 4	1.000	1.000	3.56	3.50	12.5	12.5	100.0	
139	39 13C8-PFOA	$421.3>376$	8.09 e 4	8.09 e 4	1.000	1.000	3.65	3.63	12.5	12.5	100.0	
40 . ${ }^{\text {a }}$	40 13C9-PFNA	$472.2>426.9$	8.92 e4	8.92 e 4	1.000	1.000	3.83	3.81	12.5	12.5	100.0	
41-methre	41 13C4-PFOS	$503>79.9$	1.50 e 4	1.50 e 4	1.000	1.000	3.89	3.87	12.5	12.5	100.0	
42 Wrem	42 13C6-PFDA	$519.1>473.7$	8.94 e 4	8.94 e 4	1.000	1.000	4.01	3.98	12.5	12.5	100.0	
43	43 13C7-PFUnA	$570.1>524.8$	8.45e4	8.45 e 4	1.000	1.000	4.17	4.14	12.5	12.5	100.0	

Sample List:	U:IQ4.PROISampleDBl170731M1.SPL
Last Modified:	Monday, July 31, 2017 14:34:49 Pacific Daylight Time

	File Name	RS OK=X	Sample ID	File Text	User Divisor 1	Bottle	Sample Type
1	170731M1_1	-	IPA	IPA	1.0000	1:48	Blank
2	170731M1_2	-	ST170731M1-1 PFC CS0 17G2826	PFC CSO 17G2826	1.0000	1:1	Analyte
3	170731M1_3	-	IPA	IPA	1.0000	1:48	Blank
4	170731M1_4	-	B7G0067-BS1 OPR 0.125	OPR	0.1250	1:3	Analyte
5	170731M1-5	-	IPA	IPA	1.0000	1:48	Analyte Blank
6	170731M1_6	-	B7G0067-BLK1 Method Blank 0.125	Method Blank	0.1250	1:4	Analyte
7	170731M1-7	--	1700855-01 TF5-EB-02 0.27357	TF5-EB-02	0.2736	1:5	Analyte
8	170731M1_8		1700855-02 TF5-MW-987 0.27423	TF5-MW-987	0.2742	1:6	Analyte
10	170731M1_9 $170731 \mathrm{M1} 10$	-	1700855-03 TF5-MW-987D 0.27164 B7G0067-MS1 Matrix Spike 027298	TF5-MW-987D	0.2716	1:7	Analyte
11	170731M1-11	-	B7G0067-MS1 Matrix Spike 0.27298 B7G0067-MSD1 Matrix Spike Dup	Matrix Spike	0.2730	$1: 8$	Analyte
12	170731M1_12	-	1700855-04 TF5-MW-987-D 0.26865	Matrix Spike Dup	0.2776	1:9	Analyte
13	170731M1_13	--	1700855-05 TF5-MW-991 0.2726	TF5-MW-991	0.2687 0.2726	1:10	Analyte Analyte
14	170731M1_14	--	1700855-06 TF5-MW-991D 0.27278	TF5-MW-991D	0.2728	1:12	Analyte
15	170731M1-15	-	1700855-07 TF5-MW-993 0.26881	TF5-MW-993	0.2688	1:13	Analyte
16	170731M1_16	--	1700855-08 TF5-MW-993D 0.2612	TF5-MW-993D	0.2612	1:14	Analyte
17	170731M1_17	-	1700855-09 TF5-MW-994 0.25188	TF5-MW-994	0.2519	1:15	Analyte
18	170731M1_18	-	1700845-03@40X MW-27S-20170707 0.11824	MW-27S-20170707	0.1182	1:16	Analyte
19	170731M1_19	-	IPA	IPA	1.0000	1:48	Blank
20	170731M1_20	-	ST170731M1-2 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
21	170731M1_21	-	IPA	IPA	1.0000	1:48	Blank
22	170731M1_22	-	1700871-01 EB03-20170712 0.12146	EB03-20170712	0.1215	1:17	Analyte
23	170731M1 23	\cdots	1700871-02 5-GW-05_DGMW41B-20170712 0.11547	5-GW-05_DGMW41B-20170712	0.1155	1:18	Analyte
24	170731M1 24	\cdots	1700871-03 18-GW-18BGM03E-20170712 0.11765	18-GW-18BGM03E-20170712	0.1177	1:19	Analyte
25	170731M1 25	-	1700871-04 24-GW-24IN03-20170712 0.11741	24-GW-24IN03-20170712	0.1174	1:20	Analyte
27	170731M1_26	-	1700871-05 DUP02-20170712 0.11807	DUP02-20170712	0.1181	1:21	Analyte
28	170731M1-28	-	1700871-06 24-GW-24EX13A-20170712 0.11851	24-GW-24EX13A-20170712	0.1185	1:22	Analyte
29	170731M1-29	-	1700871-08 16-GW-16 MW28-20170712 0.11899	24-GW-24MW15D-20170712	0.1193	1:23	Analyte
30	170731M1_30	-	1700871-09 16-GW-16_MW 19-20170712 0.11913	16-GW-16_MW28-20170712 16-GW-16 MW19-20170712	0.1190 0.1191	1:24	Anaiyte Analyte
31	170731M1_31	-	1700871-10 EB04-20170713 0.11646	EB04-20170713	0.1165	1:26	Analyte
32	170731M1_32	--	1700871-11 16-GW-16_MW04-20170713 0.12043	16-GW-16 MW04-20170713	0.1204	1:27	Analyte
33	170731M1-33	-	IPA	IPA	1.0000	1:48	Blank
34	170731M1_34	-	ST170731M1-3 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
35	170731M1_35	-	IPA	IPA	1.0000	1:48	Blank
36	170731M1 36	-	1700856-12RE1@5X MW-31S-201707110.11732	MW-31S-20170711	0.1173	1:28	Analyte
37	170731M1-37	-	1700935-01 RES29-BLK_201707260.11182	RES29-BLK_20170726	0.1118	1:29	Analyte
38	170731M1_38	-	1700935-04 RES29-GAC2_20170726 0.12639	RES29-GAC2_20170726	0.1264	1:30	Analyte
39	170731M1_39	-	IPA	IPA	1.0000	1:48	Blank
40	170731M1_40	-	ST170731M1-4 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
Work Order 1700856 Revision 1				/ArXQuili		Ar	ᄀ Hagq 26及at

Sample List: U:IQ4.PROISampleDBI170731M1.SPL
Last Modified:. Monday, July 31, 2017 14:34:49 Pacific Daylight Time
Printed:
Monday, July 31, 2017 15:57:00 Pacific Daylight Time
Page Position (1, 2)

	File Name	RS OK=X	Sample ID	Flle Text	User Divisor 1	Bottle	Sample Type
41	170731M1_41	-	IPA	IPA	1.0000	1:48	Blank
42	170731M1_42	-	B7G0122-BS1 OPR 0.25	OPR	0.2500	1:31	Alank
43	170731M1 43	-	IPA	IPA	1.0000	1:48	Analyte Blank
44	170731M1-44	--	B7G0122-BLK1 Method Blank 0.25	Method Blank	0.2500	1:32	Analyte
45	170731M1_45	-	1700891-06RE1 VEL FOAM 0.17113	VEL FOAM	0.1711	1:33	Analyte
46	170731M1-46	--	1700920-01 RCDM-MW-28S-20170719 0.1113	RCDM-MW-28S-20170719	0.1113	1:34	Analyte
48	170731M1-48	--	1700920-03 RCDM-MW-14S-20170720 0.11405	LF-MW-12S-20170719	0.1111	1:35	Analyte
49	170731M1_49	-	1700920-04 MH-DUP01-20170720 0.12177	RCDM-MW-14S-20170720 MH-DUP01-20170720	$\begin{aligned} & 0.1141 \\ & 0.1218 \end{aligned}$	$1: 36$ $1: 37$	Analyte Analyte
50	170731M1_50	-	1700920-05 MH-A97-20170720 0.12086	MH-A97-20170720	0.1209	1:38	Analyte
51	170731M1 51	-	1700920-06 MH-H93-20170720 0.11357	MH-H93-20170720	0.1136	1:39	Analyte
52	170731M1_52	-	IPA	IPA	1.0000	1:48	Analyte Blank
53	170731M1-53	\cdots	ST170731M1-5 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
54	170731M1 54	-	IPA	IPA	1.0000	1:48	Blank
55	170731M1_55	--	1700920-07 RCDM-BLANK-20170720 0.11872	RCDM-BLANK-20170720	0.1187	1:40	Analyte
56	170731M1-56	--	1700920-08 MH-C94-20170720 0.11568	MH-C94-20170720	0.1157	1:41	Analyte
57	170731M1_57	-	1700920-09 RCDM-MW-13S-20170719 0.11866	RCDM-MW-13S-20170719	0.1187	1:42	Analyte
58	170731M1_58	-	1700920-10 LF-MW-14S-20170720 0.11481	LF-MW-14S-20170720	0.1148	1:43	Analyte
59	170731M1-59	-	1700920-11 LF-MW-11BR-20170720 0.11664	LF-MW-11BR-20170720	0.1166	1:44	Analyte
60	170731M1 60	-	1700920-12 LF-MW-13S-20170719 0.11667	LF-MW-13S-20170719	0.1167	1:45	Analyte
61	170731M1_61	-	1700920-13 RCDM-MW-11BR-20170720 0.11813	RCDM-MW-11BR-20170720	0.1181	1:46	Analyte
62	170731M1-62	-	1700920-14 RCDM-MW-12S-20170719 0.11619	RCDM-MW-12S-20170719	0.1162	1:47	Analyte
64	170731M1-64	-	1700920-15 LF-MW-28S-20170719 0.11572	LF-MW-28S-20170719	0.1157	2:1	Analyte
65	170731M1-65	-	1700920-17 FRB04-20170719 0.11007	DUP-07-20170719	0.1202	2:2	Analyte
66	170731M1_66	-	IPA	IPRA	0.1101 1.0000	2:3	Analyte
67	170731M1_67	--	ST170731M1-6 PFC CS3 17G2729	PFC CS3 17G2729	1.0000	1:2	Analyte
68	170731M1_68	-	IPA	IPA	1.0000	1:48	Blank

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:IQ4.PRO\CurveDB\C18 VAL-PFAS Q4 7-28-17-L14 L17.cdb 30 Jul 2017 08:10:19

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

13C3-PFBA

13C3-PFPeA

13C2-PFHxA

Dataset:	U:IQ4.PRO\results\170731M1\170731M1-40.qld
Last Altered:	Tuesday, August 01, 2017 10:23:16 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:23:31 Pacific Daylight Time

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

13C4-PFHpA

Total PFHxS

F16:MRM of 2 channels,ES$398.9>99$
$1.047 e+005$

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

F24:MRM of 4 channels,ES $448.9>79.9$

1802-PFHxS

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170731M1\170731M1-40.qld
Last Altered: \quad Tuesday, August 01, 2017 10:23:16 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:23:31 Pacific Daylight Time

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17 G2729

Dataset: U:\Q4.PRO\results\170731M1\170731M1-40.qld
Last Altered: Tuesday, August 01, 2017 10:23:16 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:23:31 Pacific Daylight Time

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17 G 2729

Dataset:	U:IQ4.PRO\results\170731M11170731M1-40.qld
Last Altered:	Tuesday, August 01, 2017 10:23:16 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:23:31 Pacific Daylight Time

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

Dataset:	U:\Q4.PRO\results\170731M1\170731M1-40.qld
Last Altered:	Tuesday, August 01, 2017 10:23:16 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:23:31 Pacific Daylight Time

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

13C7-PFUnA

F46:MRM of 1 channel,ES- | F |
| :---: |
| $570.1>524.8$ |
| $1.496 e+006$ |

INITIAL CALIBRATION

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Correlation coefficient: $r=0.999644, ~ \wedge \wedge 2=0.999287$
Calibration curve: $1.1275{ }^{*} \mathrm{x}+0.163356$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999528, \mathrm{r}^{\wedge} 2=0.999056$
Calibration curve: 0.99208 * $x+0.104629$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	td. Conc	RT	Area	IS Area	Response	Conc	\%Dev	c. F	CoD	D	$\mathrm{x}=$ excluded
1.	$1170724 \mathrm{M1}$ _3	Standard	0.250	2.80	607.592	24708.574	0.307	0.2	-18.3	NO	0.999	NO	bb
2 2. ${ }^{2}$	2 170724M1_4	Standard	0.500	2.80	1138.424	24374.584	0.584	0.5	-3.4	NO	0.999	NO	bb
3-w	3 170724M1_5	Standard	1.000	2.80	2230.288	24321.555	1.146	1.0	5.0	NO	0.999	NO	bb
44^{4}	4 170724M1_6	Standard	2.000	2.80	4575.088	25826.396	2.214	2.1	6.3	NO	0.999	NO	bb
$5:$	5 170724M1_7	Standard	5.000	2.80	11044.060	24387.125	5.661	5.6	12.0	NO	0.999	NO	bb
6. ${ }^{\text {a }}$	$6170724 \mathrm{M1}$-8	Standard	10.000	2.81	20066.025	25621.486	9.790	9.8	-2.4	NO	0.999	NO	bb
17	7 170724M1_9	Standard	50.000	2.80	97100.672	23859.781	50.870	51.2	2.3	NO	0.999	NO	bb
8.	$8170724 \mathrm{M1} 10$	Standard	100.000	2.81	190500.000	24378.607	97.678	98.4	-1.6	NO	0.999	NO	bb

Last Altered:

Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999611, \mathrm{r}^{\wedge} 2=0.999223$
Calibration curve: 1.85223 *x + 0.0752948
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name			RT Area			Response Conc. \%Dev Conc. Flag					CoD Flag x =excluded	
1.4. $\mathrm{N}^{\text {a }}$	1 170724M1_3	Standard	0.250	3.00	116.281	3068.403	0.474	0.2	-14.0	NO	0.999	NO	bb
$2+4$ w	2 170724M1_4	Standard	0.500	3.00	214.965	3020.354	0.890	0.4	-12.1	NO	0.999	NO	MM
3.4 LT	3 170724M1_5	Standard	1.000	2.99	512.501	3001.774	2.134	1.1	11.2	NO	0.999	NO	bb
4 . 4 cter	4 170724M1_6	Standard	2.000	3.00	1085.602	3295.993	4.117	2.2	9.1	NO	0.999	NO	bb' ${ }^{\text {c }}$
5.4	5 170724M1_7	Standard	5.000	3.00	2583.207	3132.764	10.307	5.5	10.5	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.00	4677.829	3302.426	17.706	9.5	-4.8	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	3.00	22355.119	2994.649	93.313	50.3	0.7	NO	0.999	NO	bb
8 , ${ }^{\text {a }}$,	8 170724M1_10	Standard	100.000	3.00	43420.234	2946.134	184.225	99.4	-0.6	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: $r=0.999648, r^{\wedge} 2=0.999296$
Calibration curve: $1.50967{ }^{*} \times+0.157344$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD CoD Flag x=excluded				
	1 170724M1_3	Standard	0.250	3.22	1079.404	11341.955	0.476	0.2	-15.6	NO	0.999	NO	bb
2	2 170724M1_4	Standard	0.500	3.22	1906.946	10636.292	0.896	0.5	-2.1	NO	0.999	NO	bb
3.1	3 170724M1_5	Standard	1.000	3.22	3807.136	10865.864	1.752	1.1	5.6	NO	0.999	NO	db
4 . ${ }^{\text {a }}$.	4 170724M1_6	Standard	2.000	3.22	7912.540	12006.801	3.295	2.1	3.9	NO	0.999	NO	bb
5 . ${ }^{\text {a }}$ +	5 170724M1_7	Standard	5.000	3.22	18325.188	10585.094	8.656	5.6	12.6	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.22	34348.887	11649.966	14.742	9.7	-3.4	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	3.22	154915.125	10379.170	74.628	49.3	-1.3	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	3.22	320392.531	10569.161	151.570	100.3	0.3	NO	0.999	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999811, \mathrm{r}^{\wedge} 2=0.999621$
Calibration curve: 1.25322 * x + 0.0796155
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoD Flag	$x=$ excluded
\#-3/4	1 170724M1_3	Standard	0.250	3.47	835.892	29540.787	0.354	0.2	-12.5	NO	1.000	NO	bb
2	2 170724M1_4	Standard	0.500	3.48	1686.437	28831.211	0.731	0.5	4.0	NO	1.000	NO	db
3 , may	3 170724M1_5	Standard	1.000	3.48	3129.354	30065.992	1.301	1.0	-2.5	NO	1.000	NO	bb
$4 ;-2=$	4 170724M1_6	Standard	2.000	3.48	6923.302	31499.152	2.747	2.1	6.4	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.48	17221.189	31478.633	6.838	5.4	7.9	NO	1.000	NO	bb
6 Wraty	6 170724M1_8	Standard	10.000	3.48	32050.246	32505.703	12.325	9.8	-2.3	NO	1.000	NO	bb
7. ${ }^{\text {a }}$ =	7 170724M1_9	Standard	50.000	3.48	148752.578	30043.684	61.890	49.3	-1.4	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard	100.000	3.48	294885.219	29270.332	125.932	100.4	0.4	NO	1.000	NO	bb

Compound name: PFHxS

Coefficient of Determination: $R^{\wedge} 2=0.999711$
Calibration curve: $-0.00151846{ }^{*} x^{\wedge} 2+1.70838{ }^{*} x+-0.0114403$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	C. F	COD	F	cluded
1	1 170724M1_3	Standard	0.250	3.56	73.733	2957.523	0.312	0.2	-24.3	NO	1.000	NO	MM
	2 170724M1_4	Standard	0.500	3.55	233.030	2945.944	0.989	0.6	17.2	NO	1.000	NO	bb
3	3 170724M1_5	Standard	1.000	3.55	387.605	2882.763	1.681	1.0	-0.9	NO	1.000	NO	bb
4.	4 170724M1_6	Standard	2.000	3.55	883.679	3069.216	3.599	2.1	5.9	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.55	2121.650	3078.477	8.615	5.1	1.4	NO	1.000	NO	MM
	6 170724M1_8	Standard	10.000	3.55	3757.863	2827.577	16.613	9.8	-1.8	NO	1.000	NO	MM
17	7 170724M1_9	Standard	50.000	3.55	19494.768	2990.466	81.487	49.9	-0.2	NO	1.000	NO	MM
8	8 170724M1_10	Standard	100.000	3.55	36940.883	2965.238	155.725	100.1	0.1	NO	1.000	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.003130533^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOA

Correlation coefficient: $r=0.999233, r^{\wedge} 2=0.998466$
Calibration curve: 0.970801 * $x+0.199778$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fla	CoD		
1 1) Water	1 170724M1_3	Standard	0.250	3.67	1654.212	55437.824	0.373	0.2	-28.6	NO	0.998	NO	bb
2	2 170724M1_4	Standard	0.500	3.67	2766.273	52853.566	0.654	0.5	-6.4	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.67	5264.665	53444.164	1.231	1.1	6.3	NO	0.998	NO	bb
4.4.	4 170724M1_6	Standard	2.000	3.68	10233.177	55652.324	2.298	2.2	8.1	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.68	26080.451	55510.707	5.873	5.8	16.9	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.68	45105.969	54392.293	10.366	10.5	4.7	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.67	220048.344	55876.563	49.226	50.5	1.0	NO	0.998	NO	bb
8.	8 170724M1_10	Standard	100.000	3.68	421252.813	55196.383	95.399	98.1	-1.9	NO	0.998	NO	bb

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999150, \mathrm{r}^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * x + 0.014645
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Narne	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD 2 CoDFlag $x=$ excluded		
1.4	$1170724 \mathrm{M} 1 _3$	Standard	0.250	3.74	113.671	55437.824	0.026	0.1	-50.5	NO	0.998	NO	bbX
2	2 170724M1_4	Standard	0.500	3.74	222.089	52853.566	0.053	0.4	-14.6	NO	0.998	NO	bb
3.	3 170724M1_5	Standard	1.000	3.73	522.454	53444.164	0.122	1.2	21.2	NO	0.998	NO	bb
4 \%	4 170724M1_6	Standard	2.000	3.74	936.558	55652.324	0.210	2.2	10.3	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.73	2346.630	55510.707	0.528	5.8	15.8	NO	0.998	NO	bb
	$6170724 \mathrm{M1}$-8	Standard	10.000	3.74	4004.412	54392.293	0.920	10.2	2.0	NO	0.998	NO	bb
7.	$7170724 \mathrm{M1}$ _9	Standard	50.000	3.74	19773.092	55876.563	4.423	49.7	-0.6	NO	0.998	NO	bb
8.	$8170724 \mathrm{M1} 1$ 10	Standard	100.000	3.74	38852.836	55196.383	8.799	99.0	-1.0	NO	0.998	NO	bb

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.998659, \mathrm{r} \wedge 2=0.997320$
Calibration curve: $1.09835{ }^{*} x+0.147218$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	Cob	D	cluded
1. U $^{\text {a }}$	1 170724M1_3	Standard		0.250	3.85	1506.464	55001.828	0.342	0.2	-28.9	NO	0.997	NO	MM
2 2,	2 170724M1_4	Standard		0.500	3.85	2694.965	54762.438	0.615	0.4	-14.8	NO	0.997	NO	bb
3.3	3 170724M1_5	Standard		1.000	3.85	5691.902	55321.512	1.286	1.0	3.7	NO	0.997	NO	bb
4	4 170724M1_6	Standard		2.000	3.85	12559.827	59225.996	2.651	2.3	14.0	NO	0.997	NO	bb
5.	5 170724M1_7	Standard		5.000	3.85	29286.219	53341.520	6.863	6.1	22.3	NO	0.997	NO	bb
6 6.t.	6 170724M1_8	Standard		10.000	3.85	53683.984	56161.168	11.949	10.7	7.4	NO	0.997	NO	bb
	7 170724M1_9	Standard		50.000	3.85	236461.688	55495.742	53.261	48.4	-3.3	NO	0.997	NO	bb
8 8)	8 170724M1_10	Standard		100.000	3.85	475993.000	54308.789	109.557	99.6	-0.4	NO	0.997	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * $x+0.0489398$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOS

Coefficient of Determination: $R^{\wedge} 2=0.999148$
Calibration curve: -0.00122032 * $x^{\wedge} 2+1.19038$ * $x+0.0183073$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name		Std. Conc	RT Area		15 Area	Response Conc. \%Dev Conc. Flag					CoD Flag x-excluded	
11	1 170724M1_3	Standard	0.250	3.90	300.610	10711.932	0.351	0.3	11.8	NO	0.999	NO	MM
2 2-2 ${ }^{2}$	2 170724M1_4	Standard	0.500	3.90	466.042	10010.674	0.582	0.5	-5.3	NO	0.999	NO	bb
	3 170724M1_5	Standard	1.000	3.90	1032.724	10207.536	1.265	1.0	4.8	NO	0.999	NO	MM
4. ${ }^{\text {ata }}$	4 170724M1_6	Standard	2.000	3.90	1981.837	10715.066	2.312	1.9	-3.5	NO	0.999	NO	MM
5 . ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	3.90	5099.578	10217.659	6.239	5.3	5.1	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.90	8336.075	9647.514	10.801	9.1	-8.6	NO	0.999	NO	bb
7.	7 170724M1_9	Standard	50.000	3.91	43091.355	9325.974	57.757	51.2	2.4	NO	0.999	NO	bb
8 田	8 170724M1_10	Standard	100.000	3.90	78910.156	9278.883	106.303	99.4	-0.6	NO	0.999	NO	bb

Dataset: U:IQ4.PRO|results1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $r=0.999397, r^{\wedge} 2=0.998795$
Calibration curve: 1.29731 * $x+0.128184$
Response type: Internal Std (Ref 39), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name = Type		Stc. Conc	$\begin{array}{r} \mathrm{RT} \\ \hline 4.02 \end{array}$	Area IS Area		Response Canc.e \%Dev Conc. Flag				COD COD Flag		x $=$ excluded
1.4.ax+x	1 170724M1_3	Standard			1671.759	55156.438	0.379	0.2	-22.7	NO	0.999	NO	bb
2 c	2 170724M1_4	Standard	0.500	4.02	3226.587	49449.902	0.816	0.5	6.0	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	4.02	6606.647	59736.465	1.382	1.0	-3.3	NO	0.999	NO	db
4 - ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.02	14672.154	61862.684	2.965	2.2	9.3	NO	0.999	NO	bb
5 - ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	4.02	32741.914	53915.461	7.591	5.8	15.1	NO	0.999	NO	bb
6 - ${ }^{2} \mathrm{c}^{2}$	6 170724M1_8	Standard	10.000	4.02	60142.156	58734.430	12.800	9.8	-2.3	NO	0.999	NO	bb
7 -	7 170724M1_9	Standard	50.000	4.03	291430.906	57610.250	63.233	48.6	-2.7	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	4.02	519240.375	49628.984	130.781	100.7	0.7	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996738$
Calibration curve: -0.00420182 * $x^{\wedge} 2+1.49722$ * $x+0.133523$
Response type: Internal Std ($\operatorname{Ref} 40$), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag \% CoD CoD Flag $x=$ excluded				
1	1 170724M1_3	Standard	0.250	4.01	116.059	5712.626	0.254	0.1	-67.8	NO	0.997	NO	bbX
2.4	2 170724M1_4	Standard	0.500	4.02	436.336	5926.817	0.920	0.5	5.2	NO	0.997	NO	bb
3.	3 170724M1_5	Standard	1.000	4.01	704.575	5605.082	1.571	1.0	-3.7	NO	0.997	NO	bb
4.	4 170724M1_6	Standard	2.000	4.01	1467.688	6033.180	3.041	2.0	-2.4	NO	0.997	NO	bb
5×4	5 170724M1_7	Standard	5.000	4.02	3942.699	5463.454	9.021	6.0	20.8	NO	0.997	NO	bb
6	6 170724M1_8	Standard	10.000	4.02	6715.274	5614.961	14.950	10.2	1.9	NO	0.997	NO	bb
7.4	7 170724M1_9	Standard	50.000	4.02	29821.402	6078.795	61.323	47.1	-5.8	NO	0.997	NO	bb
8,-3*	8 170724M1_10	Standard	100.000	4.02	56335.957	6441.568	109.321	102.3	2.3	NO	0.997	NO	bb

Dataset:
U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999848$
Calibration curve: $-0.01040777^{*} x^{\wedge} 2+19.9194 * x+0.547687$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	: 1	Std. Conc	RT	Area	IS Area	Responise	Conc.	\%Dev	Conc. Flag	CoD		$x=$ excluded
1.	1 170724M1_3	Standard		0.250	4.05	448.925	12099.400	6.029	0.3	10.1	NO	1.000	NO	bb
2	2 170724M1_4	Standard		0.500	4.05	716.809	11504.973	10.124	0.5	-3.8	NO	1.000	NO	bb
	3 170724M1_5	Standard		1.000	4.06	1261.768	11265.637	18.200	0.9	-11.3	NO	1.000	NO	bb
4 \% ${ }^{2}$	4 170724M1_6	Standard		2.000	4.05	3173.830	12505.027	41.243	2.0	2.3	. NO	1.000	NO	bb
5.	5 170724M1_7	Standard		5.000	4.05	7648.363	12072.939	102.946	5.2	3.1	NO	1.000	NO	bb
6.	6 170724M1_8	Standard		10.000	4.05	14431.390	11803.941	198.671	10.0	-0.0	NO	1.000	NO	bb
7 PWere	7 170724M1_9	Standard		50.000	4.05	69860.063	11737.307	967.195	49.8	-0.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard		100.000	4.05	130379.672	11210.404	1889.914	100.1	0.1	NO	1.000	NO	bb

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999908$
Calibration curve: $-0.00439744{ }^{*} x^{\wedge} 2+16.1657 * x+0.0580373$
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	Dev.	c.	CoD	F	cluded
1. 2.2 .4	1 170724M1_3	Standard	0.250	4.12	300.173	12172.007	4.007	0.2	-2.3	NO	1.000	NO	bb
2 , mat	2 170724M1_4	Standard	0.500	4.12	550.297	11615.228	7.699	0.5	-5.5	NO	1.000	NO	bb
3.24	3 170724M1_5	Standard	1.000	4.12	1245.830	11653.344	17.372	1.1	7.1	NO	1.000	NO	bb
$4+1$	4 170724M1_6	Standard	2.000	4.12	2483.220	12504.510	32.270	2.0	-0.3	NO	1.000	NO	bb
	5 170724M1_7	Standard	5.000	4.12	6280.812	12228.059	83.466	5.2	3.3	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.12	12176.978	12339.168	160.364	9.9	-0.6	NO	1.000	NO	bb
7. ${ }^{\text {a }}$,	7 170724M1_9	Standard	50.000	4.12	57061.832	11695.135	792.855	49.7	-0.6	NO	1.000	NO	bb
8.	8 170724M1_10	Standard	100.000	4.12	112917.555	11651.338	1574.849	100.1	0.1	NO	1.000	NO	bb

Compound name: PFUnA

Coefficient of Determination: R^2 $=0.998430$
Calibration curve: -0.0020331 * $x^{\wedge} 2+0.901478$ * $x+0.00751751$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std, Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Fla	xcluded
1 \%	1 170724M1_3	Standard	0.250	4.18	1408.556	65735.461	0.268	0.3	15.6	NO	0.998	NO	bb
2.	$2170724 \mathrm{M1}$ _4	Standard	0.500	4.19	2456.148	63870.914	0.481	0.5	5.1	NO	0.998	NO	bb
3 atar	3 170724M1_5	Standard	1.000	4.19	4367.807	64348.984	0.848	0.9	-6.5	NO	0.998	NO	bb
	- 4 170724M1_6	Standard	2.000	4.19	9271.418	67160.539	1.726	1.9	-4.3	NO	0.998	NO	bb
5	$5170724 \mathrm{M1} 1$ 7	Standard	5.000	4.19	22206.646	66089.180	4.200	4.7	-6.0	NO	0.998	NO	bb
6 - ${ }^{\text {a }}$	$6170724 \mathrm{M1} 18$	Standard	10.000	4.19	40104.945	61335.543	8.173	9.3	-7.5	NO	0.998	NO	bb
7 Werta	$7170724 \mathrm{M1} 19$	Standard	50.000	4.19	187190.781	55960.629	41.813	52.6	5.2	NO	0.998	NO	bb
8 -	8 170724M1_10	Standard	100.000	4.19	357250.000	64722.215	68.997	98.3	-1.7	NO	0.998	NO	bb

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998889$
Calibration curve: $-0.000220781^{*} x^{\wedge} 2+0.0914068^{*} x+-0.00228704$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	ype	derm	Std. Conc	RT	Area	IS Area	Response						
1.4	1 170724M1_3	Standard		0.250	4.24	125.500	65735.461	0.024	0.3	14.5	NO	0.999	NO	bb
2.,	2 170724M1_4	Standard		0.500	4.24	213.650	63870.914	0.042	0.5	-3.4	NO	0.999	NO	MM
$3 \times+4$	3 170724M1_5	Standard		1.000	4.23	432.153	64348.984	0.084	0.9	-5.4	NO	0.999	NO	bb
4	4 170724M1_6	Standard		2.000	4.24	998.163	67160.539	0.186	2.1	3.4	NO	0.999	NO	bb
5	5 170724M1_7	Standard		5.000	4.23	2251.549	66089.180	0.426	4.7	-5.2	NO	0.999	NO	bb
6	6 170724M1_8	Standard		10.000	4.23	4080.028	61335.543	0.831	9.3	-6.7	NO	0.999	NO	bb
7	7 170724M1_9	Standard		50.000	4.24	18621.564	55960.629	4.160	52.1	4.2	NO	0.999	NO	bb
8.	8 170724M1_10	Standard		100.000	4.23	35549.465	64722.215	6.866	98.6	-1.4	NO	0.999	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999700$
Calibration curve: $-0.000446703^{*} x^{\wedge} 2+0.926687{ }^{*} x+0.203454$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

2	\# Name	Type	\%	Std. Conc	RT	Area	IS Area	Response0.416	Conc. \% \% Dev		Conc. Flag	CoD CoD Flag x-excluded		
	1 170724M1_3	Standard		0.250	4.34	212.884	6396.985		0.2	-8.3		1.000	NO	MM
$2=3$	2 170724M1_4	Standard		0.500	4.35	285.030	5632.353	0.633	0.5	-7.4	NO	1.000	NO	MM
3. ${ }^{\text {a }}$.	3 170724M1_5	Standard		1.000	4.35	576.941	5998.723	1.202	1.1	7.8	NO	1.000	NO	bb
$4-2$	4 170724M1_6	Standard		2.000	4.35	1144.260	6584.378	2.172	2.1	6.3	NO	1.000	, NO	bb
5 2w	5 170724M1_7	Standard		5.000	4.35	2601.126	6419.244	5.065	5.3	5.2	NO	1.000	NO	bb
6 , ${ }^{\text {a }}$ W	6 170724M1_8	Standard		10.000	4.35	4871.013	6690.135	9.101	9.6	-3.5	NO	1.000	NO	bb
7	7 170724M1_9	Standard		50.000	4.35	21850.346	6031.607	45.283	49.8	-0.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard		100.000	4.35	43781.789	6184.443	88.492	100.1	0.1	NO	1.000	NO	bb

Compound name: N-MeFOSA

Correlation coefficient: $\mathrm{r}=0.999273, \mathrm{r}^{\wedge} 2=0.998546$
Calibration curve: 1.0376 * x +0.213391
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

xex	\# Name		Std. Conc	RT	Area	15 Área	Response	Conc.	\%Dev	nc.	CoD	CoD Flag x=excluded	
1 Humbet	1 170724M1_3	Standard	1.250	4.39	228.733	27834.387	1.233	1.0	-21.4	NO	0.999	NO	MM
2 - N.	2 170724M1_4	Standard	2.500	4.39	521.665	26795.877	2.920	2.6	4.3	NO	0.999	NO	db
$3 \times 2 \mathrm{tax}$	3 170724M1_5	Standard	5.000	4.39	1023.477	27001.328	5.686	5.3	5.5	NO	0.999	NO	bb
	4 170724M1_6	Standard	10.000	4.39	2219.793	28178.129	11.817	11.2	11.8	NO	0.999	NO	bb
5 -	5 170724M1_7	Standard	25.000	4.39	5367.556	27075.477	29.737	28.5	13.8	NO	0.999	NO	bb
6 -	6 170724M1_8	Standard	50.000	4.39	9739.016	27395.363	53.325	51.2	2.4	No	0.999	NO	db
	7 170724M1_9	Standard	250.000	4.39	46919.371	26470.068	265.882	256.0	2.4	NO	0.999	NO	bb
$8 \times \pm$	8 170724M1_10	Standard	500.000	4.39	92806.148	27480.182	506.580	488.0	-2.4	NO	0.999	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:\Q4.PRO\results\170724M1\170724M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Monday, July 24, 2017 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, 2017 15:40:40 Pacific Daylight Time }\end{array}$

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999414, \mathrm{r}^{\wedge} 2=0.998828$
Calibration curve: 10.9255 * $x+1.79$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Fla	$x=e x c l u d e d$
1.4	1 170724M1_3	Standard	0.250	4.52	1936.804	6396.985	3.785	0.2	-27.0	NO	0.999	NO	MM
2 2.4.ter	$2170724 \mathrm{M1}$ _4	Standard	0.500	4.52	3347.446	5632.353	7.429	0.5	3.2	NO	0.999	NO	bb
3 . ${ }^{2}$	3 170724M1_5	Standard	1.000	4.52	6246.435	5998.723	13.016	1.0	2.8	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	4.52	13537.021	6584.378	25.699	2.2	9.4	NO	0.999	NO	bb
5 . ${ }^{\text {a }}$,	5 170724M1_7	Standard	5.000	4.52	32633.807	6419.244	63.547	5.7	13.1	NO	0.999	NO	bb
6 \% ${ }^{\text {a }}$,	6 170724M1_8	Standard	10.000	4.52	58224.531	6690.135	108.788	9.8	-2.1	NO	0.999	NO	bb
7.emrata	$7170724 \mathrm{M1}$-9	Standard	50.000	4.52	270796.875	6031.607	561.204	51.2	2.4	NO	0.999	NO	bb
8.4 ate	8 170724M1_10	Standard	100.000	4.52	531631.563	6184.443	1074.534	98.2	-1.8	NO	0.999	NO	bb

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999057$
Calibration curve: $-0.000800394^{*} x^{\wedge} 2+1.14875{ }^{*} x+0.111533$
Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name	Type	Std. Conc	RT	- Area	IS Area	Response	onc.	6Dev	Conc. Flag	CoD	D F	$x=e x c l u d e d$
1.	1 170724M1_3	Standard	0.250	4.70	1552.113	52611.504	0.369	0.2	-10.4	NO	0.999	NO	MM
2 2ramas	2 170724M1_4	Standard	0.500	4.70	2285.720	43220.855	0.661	0.5	-4.3	NO	0.999	NO	bb
$3 \times \sim$	3 170724M1_5	Standard	1.000	4.70	4798.681	44254.344	1.355	1.1	8.4	NO	0.999	NO	bb
4 4. ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.70	9477.179	47041.410	2.518	2.1	4.9	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	4.70	23144.785	45392.488	6.374	5.5	9.4	NO	0.999	NO	bb
6.twrin	$6170724 \mathrm{M1}$-8	Standard	10.000	4.70	40819.449	48426.250	10.536	9.1	-8.7	NO	0.999	NO	bb
	7 170724M1_9	Standard	50.000	4.70	191033.828	42647.246	55.992	50.4	0.8	NO	0.999	NO	bb
88	8 170724M1_10	Standard	100.000	4.70	370959.375	43405.691	106.829	99.8	-0.2	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSA

Correlation coefficient: $\mathrm{r}=0.999689, \mathrm{r} \wedge=0.999377$
Calibration curve: 0.904115 * $x+0.326191$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev .Conc. Flag w CoD. CoDFlag x=excluded				
1	1 170724M1_3	Standard	1.250	4.96	337.684	39437.277	1.284	1.1	-15.2	NO	0.999	NO	bb
2.4	2 170724M1_4	Standard	2.500	4.97	613.630	37412.609	2.460	2.4	-5.6	NO	0.999	NO	bb
3	3 170724M1_5	Standard	5.000	4.97	1267.991	37050.801	5.133	5.3	6.3	NO	0.999	NO	bb
$4{ }^{4}$ Wamer	4 170724M.1_6.	Standard	10.000	4.96	2697.465	40104.539	10.089	10.8	8.0	NO,	0.999	NO	bb
5.	5 170724M1_7	Standard	25.000	4.97	6431.737	38083.547	25.333	27.7	10.6	NO	0.999	NO	bb
6.4	6 170724M1_8	Standard	50.000	4.97	11627.879	39916.621	43.696	48.0	-4.1	NO	0.999	NO	db
7	7 170724M1_9	Standard	250.000	4.96	57443.004	37926.309	227.189	250.9	0.4	NO	0.999	NO	db
8 .	8 170724M1_10	Standard	500.000	4.97	116042.914	38657.641	450.272	497.7	-0.5	NO	0.999	NO	db

Compound name: PFHxDA

Coefficient of Determination: $R^{\wedge} 2=0.999358$
Calibration curve: $-0.000715061^{*} x^{\wedge} 2+1.34773$ * $x+0.264398$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFODA

Correlation coefficient: $\mathrm{r}=0.999378, \mathrm{r} \wedge 2=0.998756$
Calibration curve: 1.27561 * $x+0.10098$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

$\sqrt{5 \times 4 \times}$	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD \quad CoDFlag x -excluded				
12	1 170724M1_3	Standard	0.250	5.43	1893.557	25428.396	0.372	0.2	-14.9	NO	0.999	NO	MM
2	2 170724M1_4	Standard	0.500	5.44	3335.536	21542.566	0.774	0.5	5.5	NO	0.999	NO	bb
3.	3 170724M1_5	Standard	1.000	5.44	6573.281	21611.141	1.521	1.1	11.3	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	5.44	13511.143	22044.896	3.064	2.3	16.2	NO	0.999	NO	bb .
5. ${ }^{\text {a }}$.	5 170724M1_7	Standard	5.000	5.44	32601.881	22327.822	7.301	5.6	12.9	NO	0.999	NO	bb
6.	$6170724 \mathrm{M1}$ _8	Standard	10.000	5.44	59011.938	22552.494	13.083	10.2	1.8	NO	0.999	NO	bb
7. 7 $^{\text {a }}$,	7 170724M1_9	Standard	50.000	5.43	274924.375	21452.613	64.077	50.2	0.3	NO	0.999	NO	bb
8. 2 2	8 170724M1_10	Standard	100.000	5.44	534414.688	21228.160	125.874	98.6	-1.4	NO	0.999	NO	bb

Compound name: N -MeFOSE

Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998953$
Calibration curve: 1.01603 * $\mathrm{x}+0.461771$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results1170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.999680, \mathrm{r}^{\wedge} 2=0.999361$
Calibration curve: 1.16673 * $x+0.501898$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 13C3-PFBA

Response Factor: 0.820483
RRF SD: 0.00867593, Relative SD: 1.05742
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory

Dataset:
U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.248174
RRF SD: 0.00555735 , Relative SD: 2.2393
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

\%	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	$\mathrm{COD}=\mathrm{CoDFl}$	xcluded
12.	1 170724M1_3	Standard	12.500	2.80	24708.574	40367.738	3.060	12.3	-1.3	NO	NO	bb
2 , ${ }^{2}+3$	2 170724M1_4	Standard	12.500	2.80	24374.584	38823.406	3.139	12.6	1.2	NO	NO	bb
	3 170724M1_5	Standard	12.500	2.80	24321.555	37967.629	3.203	12.9	3.2	NO	NO	bb
4 - 4 -	4 170724M1_6	Standard	12.500	2.80	25826.396	42133.270	3.065	12.3	-1.2	NO	NO	bb
tramer	5 170724M1_7	Standard	12.500	2.80	24387.125	39088.754	3.119	12.6	0.6	NO	NO	bb
6 , 4.	6 170724M1_8	Standard	12.500	2.81	25621.486	41725.730	3.070	12.4	-1.0	NO	NO	bb
	7 170724M1_9	Standard	12.500	2.80	23859.781	39920.477	2.988	12.0	-3.7	NO	NO	bb
8 \%	8 170724M1_10	Standard	12.500	2.81	24378.607	38428.922	3.172	12.8	2.2	NO	NO	bb

Compound name: 13C3-PFBS

Response Factor: 0.0311034
RRF SD: 0.000697979 , Relative SD: 2.24406
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

Wertum	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev.	Conc. Flag	CoD CoDFF	xcluded
$12=$	1 170724M1_3	Standard	12.500	3.00	3068.403	40367.738	0.380	12.2	-2.2	NO	NO	bb
2 -	2 170724M1_4	Standard	12.500	3.00	3020.354	38823.406	0.389	12.5	0.0	NO	NO	bb
3.	3 170724M1_5	Standard	12.500	3.00	3001.774	37967.629	0.395	12.7	1.7	NO	NO	bb
$4{ }^{4} \mathrm{max}$.	4 170724M1_6	Standard	12.500	3.00	3295.993	42133.270	0.391	12.6	0.6	NO	NO	bb
5 der a	5 170724M1_7	Standard	12.500	3.00	3132.764	39088.754	0.401	12.9	3.1	NO	NO	bb
6 -	6 170724M1_8	Standard	12.500	3.00	3302.426	41725.730	0.396	12.7	1.8	NO	NO	bb
$7{ }^{\text {a }}$ +4ates	7 170724M1_9	Standard	12.500	3.00	2994.649	39920.477	0.375	12.1	-3.5	NO	NO	bb
8 mat	8 170724M1_10	Standard	12.500	3.00	2946.134	38428.922	0.383	12.3	-1.4	NO	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 0.27639
RRF SD: 0.00850433, Relative SD: 3.07693
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name semerne Type		Std. Conc	RT	Area	IS Area	Response Conc. \%Dev Conc. Flag. CoD - CoDFlag					$x=$ excluded
1 1,	1 170724M1_3	Standard	5.000	3.22	11341.955	40367.738	1.405	5.1	1.7	NO	NO	bb
2.	2 170724M1_4	Standard	5.000	3.22	10636.292	38823.406	1.370	5.0	-0.9	NO	NO	bb
3 -	3 170724M1_5	Standard	5.000	3.22	10865.864	37967.629	1.431	5.2	3.5	NO	NO	bb
4 \%	4 170724M1_6	Standard	5.000	3.22	12006.801	42133.270	1.425	5.2	3.1	NO.	NO	bb
5.3 mas	5 170724M1_7	Standard	5.000	3.22	10585.094	39088.754	1.354	4.9	-2.0	NO	NO	bb
	6 170724M1_8	Standard	5.000	3.22	11649.966	41725.730	1.396	5.1	1.0	NO	NO	bb
$7, \quad, 4 \geqslant$	7 170724M1_9	Standard	5.000	3.22	10379.170	39920.477	1.300	4.7	-5.9	NO	NO	bb
8.4	8 170724M1_10	Standard	5.000	3.22	10569.161	38428.922	1.375	5.0	-0.5	NO	NO	bb

Compound name: 13C4-PFHpA

Response Factor: 0.305626
RRF SD: 0.0102637, Relative SD: 3.35826
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 1802-PFHxS

Response Factor: 0.392715
RRF SD: 0.0177977, Relative SD: 4.53197
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-6:2 FTS

Response Factor: 0.157694
RRF SD: 0.0188884, Relative SD: 11.9778
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.0675
RRF SD: 0.0457168, Relative SD: 4.28261
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	?	Std. Conc	RT	Area	IS Area	Response	Conc. \% Dev		Conc. Flag CoD CoD Flag x=excluded		
$1: 3$	1 170724M1_3	Standard		12.500	3.67	55437.824	50417.762	13.745	12.9	3.0	NO	NO	bb
2 2-	2 170724M1_4	Standard		12.500	3.67	52853.566	52862.527	12.498	11.7	-6.3	NO	NO	bb
3 Med	3 170724M1_5	Standard		12.500	3.67	53444.164	49459.691	13.507	12.7	1.2	NO	NO	bb
4	4 170724M1_6	Standard		12.500	3.67	55652.324	51986.957	13.381	12.5	0.3	NO	NO	bb
5.	5 170724M1_7	Standard		12.500	3.67	55510.707	54009.070	12.848	12.0	-3.7	NO	NO	bb
6	6 170724M1_8	Standard		12.500	3.68	54392.293	53144.688	12.793	12.0	-4.1	NO	NO	bb
7. Une ${ }^{\text {a }}$	7 170724M1_9	Standard		12.500	3.67	55876.563	49946.758	13.984	13.1	4.8	NO	NO	bb
8.	8 170724M1_10	Standard		12.500	3.67	55196.383	49303.969	13.994	13.1	4.9	NO	NO	bb

Compound name: 13C5-PFNA

Response Factor: 0.852128
RRF SD: 0.0623325, Relative SD: 7.31492
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: RF

2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD CoD Flag x=excluded			
1 Whas	1 170724M1_3	Standard	12.500	3.85	55001.828	63362.148	10.851	12.7	1.9	No	NO	bb
2 2-14x	2 170724M1_4	Standard	12.500	3.85	54762.438	66233.305	10.335	12.1	-3.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.85	55321.512	62897.914	10.994	12.9	3.2	NO	NO	bb
	4 170724M1_6	Standard	12.500	3.85	59225.996	73098.813	10.128	11.9	-4.9	NO	NO	bb
5.	5 170724M1_7	Standard	12.500	3.85	53341.520	71059.133	9.383	11.0	-11.9	NO	NO	bb
6 - ${ }^{\text {amam }}$	6 170724M1_8	Standard	12.500	3.85	56161.168	60050.086	11.690	13.7	9.8	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	3.85	55495.742	67689.273	10.248	12.0	-3.8	NO	NO	bb
8 -	8 170724M1_10	Standard	12.500	3.85	54308.789	58608.688	11.583	13.6	8.7	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qId
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 0.0982354
RRF SD: 0.00607611 , Relative SD: 6.18526
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C8-PFOS

Response Factor: 0.935738
RRF SD: 0.0307604, Relative SD: 3.28729
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: RF

xustuta	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD CoD	xcluded
1 ditute	1 170724M1_3	Standard	12.500	3.90	10711.932	10984.350	12.190	13.0	4.2	NO	NO	bb
2	2 170724M1_4	Standard	12.500	3.90	10010.674	10756.134	11.634	12.4	-0.5	NO	NO	bb
$3-\mathrm{m}$	3 170724M1_5	Standard	12.500	3.90	10207.536	10707.182	11.917	12.7	1.9	NO	NO	bb
4.4	4 170724M1_6	Standard	12.500	3.90	10715.066	11395.518	11.754	12.6	0.5	NO	NO	bb
5	5 170724M1_7	Standard	12.500	3.90	10217.659	10582.909	12.069	12.9	3.2	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	3.90	9647.514	10701.979	11.268	12.0	-3.7	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	3.91	9325.974	10546.740	11.053	11.8	-5.5	NO	NO	bb
8.840	8 170724M1_10	Standard	12.500	3.90	9278.883	9922.027	11.690	12.5	-0.1	NO	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 0.809787
RRF SD: 0.0475325, Relative SD: 5.86975
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: RF

	4 Name		Std. Conc	RT	Area	IS Area	Response	Conce	Dev	Conc. Flag	CoD \quad CoD Flag	$x=$ excluded
	1 170724M1_3	Standard	12.500	4.02	55156.438	71538.672	9.638	11.9	-4.8	NO	NO	bb
2 , mmat	2 170724M1_4	Standard	12.500	4.02	49449.902	67518.039	9.155	11.3	-9.6	NO	NO	bb
3 3 mam	3 170724M1_5	Standard	12.500	4.02	59736.465	67946.188	10.990	13.6	8.6	NO	NO	bb
4 4, mbers	4 170724M1_6	Standard	12.500	4.02	61862.684	75237.898	10.278	12.7	1.5	NO	NO	bb
5 , ${ }^{\text {a }}$	5 170724M1_7	Standard	12.500	4.02	53915.461	68309.617	9.866	12.2	-2.5	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	4.02	58734.430	69500.219	10.564	13.0	4.4	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	4.03	57610.250	72719.445	9.903	12.2	-2.2	NO	NO	bb
8.,	8 170724M1_10	Standard	12.500	4.02	49628.984	58601.402	10.586	13.1	4.6	NO	NO	bb

Compound name: 13C2-8:2 FTS

Response Factor: 0.0855752
RRF SD: 0.010191, Relative SD: 11.9089
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: RF

	\% Name	Type	Std. Conc	RT	$\begin{array}{r} \text { Area } \\ 5712.626 \end{array}$	$\begin{array}{r} \text { IS Area } \\ 71538.672 \end{array}$	$\begin{array}{r} \text { Response } \\ 0.998 \end{array}$	Conc. 11.7	\%Dev Conc. Flas		CoD CoDFlag x-excluded	
	1 170724M1_3	Standard	12.500	4.01					-6.7	NO	NO	bb
2 2-x	2 170724M1_4	Standard	12.500	4.02	5926.817	67518.039	1.097	12.8	2.6	NO	NO	bb
3	3 170724M1_5	Standard	12.500	4.01	5605.082	67946.188	1.031	12.0	-3.6	NO	NO	bb
$4{ }^{4}$	4 170724M1_6	Standard	12.500	4.01	6033.180	75237.898	1.002	11.7	-6.3	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.02	5463.454	68309.617	1.000	11.7	-6.5	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	4.02	5614.961	69500.219	1.010	11.8	-5.6	NO	NO	bb
	7 170724M1_9	Standard	12.500	4.02	6078.795	72719.445	1.045	12.2	-2.3	NO	NO	bb
8.	8 170724M1_10	Standard	12.500	4.02	6441.568	58601.402	1.374	16.1	28.5	NO	NO	bb

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qId

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.0136964
RRF SD: 0.000727833 , Relative SD: 5.31404
Response type: Internal Std (Ref 58), Area * (IS Conc. I IS Area)
Curve type: RF

Compound name: d5-N-EtFOSAA

Response Factor: 0.0139456
RRF SD: 0.000844744 , Relative SD: 6.05742
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

T,	\# Name		Std. Conc	RT Area IS Area Response				Conc \% $\%$ Dev Conc, Flag			CoD CoD Flag $x=e x c l u d e d$	
1 W, m	1 170724M1_3	Standard	162.500	4.12	12172.007	66110.742	2.301	165.0	1.6	NO	NO	bb
2.	2 170724M1_4	Standard	162.500	4.12	11615.228	63178.059	2.298	164.8	1.4	NO	NO	bb
3	3 170724M1_5	Standard	162.500	4.12	11653.344	65533.590	2.223	159.4	-1.9	NO	NO	bb
4.4	4 170724M1_6	Standard	162.500	4.12	12504.510	74336.992	2.103	150.8	-7.2	NO	NO	bb
5	5 170724M1_7	Standard	162.500	4.12	12228.059	73722.414	2.073	148.7	-8.5	NO	NO	bb
6	$6170724 \mathrm{M1}$-8	Standard	162.500	4.12	12339.168	61426.844	2.511	180.1	10.8	NO	NO	bb
7.	7 170724M1_9	Standard	162.500	4.12	11695.135	63456.004	2.304	165.2	1.7	NO	NO	bb
8.	8 170724M1_10	Standard	162.500	4.12	11651.338	62878.969	2.316	166.1	2.2	NO	NO	bb

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 0.962105
RRF SD: 0.058365, Relative SD: 6.06639
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response Conc. \%Dev Conc. Flag CoD				CoD Flag	$\mathrm{x}=$ excluded
12	1 170724M1_3	Standard	12.500	4.18	65735.461	66110.742	12.429	12.9	3.3	NO	NO	bb
2 L	2 170724M1_4	Standard	12.500	4.18	63870.914	63178.059	12.637	13.1	5.1	No	NO	bb
3 3. ${ }^{\text {a }}$	3 170724M1_5	Standard	12.500	4.19	64348.984	65533.590	12.274	12.8	2.1	NO	NO	bb
$4{ }^{4} \mathrm{c}$	4 170724M1_6	Standard	12.500	4.18	67160.539	74336.992	11.293	11.7	-6.1	NO	NO	bb
5.	5 170724M1_7	Standard	12.500	4.19	66089.180	73722.414	11.206	11.6	-6.8	NO	NO	bb
6	6 170724M1_8	Standard	12.500	4.19	61335.543	61426.844	12.481	13.0	3.8	NO	NO	bb
7 . ${ }^{\text {cta }}$	7 170724M1_9	Standard	12.500	4.18	55960.629	63456.004	11.024	11.5	-8.3	NO	NO	bb
8	8 170724M1_10	Standard	12.500	4.19	64722.215	62878.969	12.866	13.4	7.0	NO	NO	bb

Compound name: 13C2-PFDoA

Response Factor: 0.0944269
RRF SD: 0.00712756, Relative SD: 7.54822
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. Flag	CoD = CoD Flag	$x=e x$ cluded
1	1 170724M1_3	Standard	12.500	4.34	6396.985	66110.742	1.210	12.8	2.5	NO	NO	bb
2×1	2 170724M1_4	Standard	12.500	4.35	5632.353	63178.059	1.114	11.8	-5.6	NO	NO	bb
3.46	3 170724M1_5	Standard	12.500	4.35	5998.723	65533.590	1.144	12.1	-3.1	NO	NO	bb
4	4 170724M1_6	Standard	12.500	4.35	6584.378	74336.992	1.107	11.7	-6.2	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.35	6419.244	73722.414	1.088	11.5	-7.8	NO	NO	bb
6	6 170724M1_8	Standard	12.500	4.35	6690.135	61426.844	1.361	14.4	15.3	NO	NO	bb
7 , , +m-	7 170724M1_9	Standard	12.500	4.35	6031.607	63456.004	1.188	12.6	0.7	NO	NO	bb
8 近	8 170724M1_10	Standard	12.500	4.35	6184.443	62878.969	1.229	13.0	4.2	NO	NO	bd

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d3-N-MeFOSA

Response Factor: 0.0344131
RRF SD: 0.00225283, Relative SD: 6.54642
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

\qquad	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	C. Flag ne CoD	CoD Flag	$\mathrm{x}=$ excluded
$1 \sim \sim 4$	1 170724M1_3	Standard	150.000	4.42	27834.387	66110.742	5.263	152.9	2.0	NO	NO	bb
2	2 170724M1_4	Standard	150.000	4.42	26795.877	63178.059	5.302	154.1	2.7	NO	NO	bb
$3 \text { ytate }$	3 170724M1_5	Standard	150.000	4.42	27001.328	65533.590	5.150	149.7	-0.2	NO	NO	bb
$4 \mathrm{ym}+\mathrm{m}$	4 170724M1_6	Standard	150.000	4.42	28178.129	74336.992	4.738	137.7	-8.2	NO	NO	bb
5 5, mey	5 170724M1_7	Standard	150.000	4.42	27075.477	73722.414	4.591	133.4	-11.1	NO	NO	bb
6.4	$6170724 \mathrm{M1}$ _8	Standard	150.000	4.43	27395.363	61426.844	5.575	162.0	8.0	NO	NO	bb
$7{ }^{2}+87.46$	7 170724M1_9	Standard	150.000	4.42	26470.068	63456.004	5.214	151.5	1.0	NO	NO	bb
8 -	8 170724M1_10	Standard	150.000	4.43	27480.182	62878.969	5.463	158.7	5.8	NO	NO	bb

Compound name: 13C2-PFTeDA

Response Factor: 0.694311

RRF SD: 0.0655535, Relative SD: 9.44152
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IQ4.PROYresultsl170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d5-N-ETFOSA

Response Factor: 0.0486714
RRF SD: 0.00353064, Relative SD: 7.25403
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFHxDA

Response Factor: 0.843007
RRF SD: 0.0734853, Relative SD: 8.71705
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

+6,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc.	D F	xcluded
1 1, medy	1 170724M1_3	Standard	5.000	5.07	25428.396	66110.742	4.808	5.7	14.1	No	NO	bb
2	2 170724M1_4	Standard	5.000	5.07	21542.566	63178.059	4.262	5.1	1.1	NO	NO	bb
3.	3 170724M1_5	Standard	5.000	5.07	21611.141	65533.590	4.122	4.9	-2.2	NO	NO	bb
4	4 170724M1_6	Standard	5.000	5.07	22044.896	74336.992	3.707	4.4	-12.1	NO	NO	bb
5	5 170724M1_7	Standard	5.000	5.07	22327.822	73722.414	3.786	4.5	-10.2	NO	NO	bb
6	6 170724M1_8	Standard	5.000	5.07	22552.494	61426.844	4.589	5.4	8.9	NO	No	bb
$7 \times$	7 170724M1_9	Standard	5.000	5.07	21452.613	63456.004	4.226	5.0	0.3	NO	NO	bb
8.4	8 170724M1_10	Standard	5.000	5.07	21228.160	62878.969	4.220	5.0	0.1	NO	No	bb

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d7-N-MeFOSE

Response Factor: 0.054631
RRF SD: 0.0039309, Relative SD: 7.19536
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Whather	\# Name	Type		RT	Area	IS Area	Response	Conc.	\%Dey	Conc. Flag te CoD	COD	$x=$ excluded
1-5	1 170724M1_3	Standard	150.000	5.42	45355.609	66110.742	8.576	157.0	4.6	NO	NO	bb
$2{ }^{2}$	2 170724M1_4	Standard	150.000	5.42	42298.965	63178.059	8.369	153.2	2.1	NO	NO	bb
3	3 170724M1_5	Standard	150.000	5.42	42181.715	65533.590	8.046	147.3	-1.8	NO	NO	bb
4. ${ }^{\text {a }}$ -	4 170724M1_6	Standard	150.000	5.42	44882.496	74336.992	7.547	138.1	-7.9	NO	NO	bb
5	5 170724M1_7	Standard	150.000	5.42	42480.406	73722.414	7.203	131.8	-12.1	NO	NO	bb
6	6 170724M1_8	Standard	150.000	5.42	44502.430	61426.844	9.056	165.8	10.5	NO	NO	bb
72×4	7 170724M1_9	Standard	150.000	5.42	42011.336	63456.004	8.276	151.5	1.0	NO	NO	bb
8 8.	8 170724M1_10	Standard	150.000	5.42	42682.813	62878.969	8.485	155.3	3.5	NO	NO	bb

Compound name: d9-N-EtFOSE

Response Factor: 0.0534223
RRF SD: 0.00380471, Relative SD: 7.12196
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 1.02787e-016, Relative SD: 1.02787e-014
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: RF

Sar	\# Name	Type	Std, Conc	RT	- Area	IS Area	Response	Conc. \%Dev		Conc. Flag	CoD CoDFlag x excluded	
+	1 170724M1_3	Standard	12.500	1.55	15090.568	15090.568	12.500	12.5	0.0	NO	NO	bb
2 , matas	2 170724M1_4	Standard	12.500	1.55	14962.116	14962.116	12.500	12.5	0.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	1.55	14894.126	14894.126	12.500	12.5	0.0	NO	NO	bb
4 Cl +	4 170724M1_6	Standard	12.500	1.55	15482.658	15482.658	12.500	12.5	0.0	NO	NO	bb
$5 \times 8{ }^{\text {a }}$	5 170724M1_7	Standard	12.500	1.55	15091.931	15091.931	12.500	12.5	0.0	NO	NO'	bb
6 ,	6 170724M1_8	Standard	12.500	1.55	15599.055	15599.055	12.500	12.5	0.0	NO	NO	bb
7 \%tar	7 170724M1_9	Standard	12.500	1.55	14839.394	14839.394	12.500	12.5	0.0	NO	NO	bb
8.	8 170724M1_10	Standard	12.500	1.56	14929.445	14929.445	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 7.26812e-017, Relative SD: 7.26812e-015
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: RF

Hamame	\# Name	Type	\%	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. F	CoD Fla	xcly
1 1.	1 170724M1_3	Standard		12.500	3.55	7582.089	7582.089	12.500	12.5	0.0	NO	NO	bb
$2 . \quad$ -	2 170724M1_4	Standard		12.500	3.55	7322.380	7322.380	12.500	12.5	0.0	NO	NO	bb
3 m	3 170724M1_5	Standard		12.500	3.55	7368.760	7368.760	12.500	12.5	0.0	NO	NO	bb
4 4, maty	4 170724M1_6	Standard		12.500	3.55	7556.806	7556.806	12.500	12.5	0.0	NO	.. NO	bb
5. ${ }^{\text {a }}$	5 170724M1_7	Standard		12.500	3.55	7669.834	7669.834	12.500	12.5	0.0	NO	NO	bb
	6 170724M1_8	Standard		12.500	3.55	8056.833	8056.833	12.500	12.5	0.0	NO	NO	bb
7. - -	7 170724M1_9	Standard		12.500	3.55	7531.759	7531.759	12.500	12.5	0.0	NO	NO	bb
8 -	8 170724M1_10	Standard		12.500	3.55	7365.456	7365.456	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: $9.3831 \mathrm{e}-017$, Relative SD: $9.3831 \mathrm{e}-015$
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory

Dataset:	U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 9.3831e-017, Relative SD: 9.3831e-015
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: RF

\%	\# Name	Type	,	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD CoD Flag	$x=$ excluded
1 -	1 170724M1_3	Standard		12.500	3.90	10984.350	10984.350	12.500	12.5	0.0	NO	NO	bb
2 , ${ }^{\text {a }}$	2 170724M1_4	Standard		12.500	3.90	10756.134	10756.134	12.500	12.5	0.0	NO	NO	bb
$3-1=2$	3 170724M1_5	Standard		12.500	3.90	10707.182	10707.182	12.500	12.5	0.0	NO	NO	bb
$4 \quad 20$	4 170724M1_6	Standard		12.500	3.90	11395.518	11395.518	12.500	12.5	0.0	No	NO	bb
5	5 170724M1_7	Standard		12.500	3.90	10582.909	10582.909	12.500	12.5	0.0	NO	No	bb
6	6 170724M1_8	Standard		12.500	3.90	10701.979	10701.979	12.500	12.5	0.0	NO	NO	bb
$7-1+8 y^{4}$	7 170724M1_9	Standard		12.500	3.91	10546.740	10546.740	12.500	12.5	0.0	NO	NO	bb
8 ,	8 170724M1_10	Standard		12.500	3.90	9922.027	9922.027	12.500	12.5	0.0	NO	NO	bb

Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:IQ4.PRO\results1170724M11170724M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Monday, July 24, 2017 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, 2017 15:40:40 Pacific Daylight Time }\end{array}$
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	Type	Std. Conc	RT	Area	IS Area	Response Conc.		\%Dev Conc. Flag CoD CoD Flag			$x=$ excluted
12	1 170724M1_3	Standard	12.500	4.02	71538.672	71538.672	12.500	12.5	0.0	NO	NO	bb
$2=$	2 170724M1_4	Standard	12.500	4.02	67518.039	67518.039	12.500	12.5	0.0	No	NO	bb.
3.	3 170724M1_5	Standard	12.500	4.02	67946.188	67946.188	12.500	12.5	0.0	NO	NO	bb
4. W $^{\text {a }}$	4 170724M1_6	Standard	12.500	4.02	75237.898	75237.898	12.500	12.5	0.0	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.02	68309.617	68309.617	12.500	12.5	0.0	NO	NO	bb
6 - 2mb $^{\text {a }}$	6 170724M1_8	Standard	12.500	4.02	69500.219	69500.219	12.500	12.5	0.0	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	4.03	72719.445	72719.445	12.500	12.5	0.0	No	NO	bb
$8 \quad$	8 170724M1_10	Standard	12.500	4.02	58601.402	58601.402	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C7-PFUnA

Response Factor: 1

RRF SD: 1.45362e-016, Relative SD: 1.45362e-014
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

\# Name				RT	$\begin{array}{r} \text { Area } \\ 66110.742 \end{array}$	$\begin{aligned} & \text { IS Area } \\ & 66110.742 \end{aligned}$	Response Conc. \%Dev Conc. Flag				CoD CoD Flag $x=$ excluded	
$14 x^{2}$	1 170724M1_3	Standard	12.500	4.18			12.500	12.5	0.0	NO	NO	bb
2	2 170724M1_4	Standard	12.500	4.19	63178.059	63178.059	12.500	12.5	0.0	NO	NO	bb
3.	3 170724M1_5	Standard	12.500	4.18	65533.590	65533.590	12.500	12.5	0.0	NO	NO	bb
4.	4 170724M1_6	Standard	12.500	4.19	74336.992	74336.992	12.500	12.5	0.0	NO	NO	bb
5 5.4.e.t	5 170724M1_7	Standard	12.500	4.19	73722.414	73722.414	12.500	12.5	0.0	NO	NO	bb
6.4.	6 170724M1_8	Standard	12.500	4.19	61426.844	61426.844	12.500	12.5	0.0	NO	NO	bb
7	7 170724M1_9	Standard	12.500	4.18	63456.004	63456.004	12.500	12.5	0.0	NO	NO	bb
8 8,	8 170724M1_10	Standard	12.500	4.19	62878.969	62878.969	12.500	12.5	0.0	NO	NO	bb

Dataset:	Untitled
Last Altered:	Monday, July 24, 2017 15:48:17 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:50:08 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Dataset:
 U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999644, \mathrm{r}^{\wedge} 2=0.999287$
Calibration curve: $1.1275^{*} x+0.163356$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999528, \mathrm{r}^{\wedge} 2=0.999056$
Calibration curve: 0.99208 * x + 0.104629
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $r=0.999611, r^{\wedge} 2=0.999223$
Calibration curve: $1.85223^{*} x+0.0752948$
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: $r=0.999648, r^{\wedge} 2=0.999296$
Calibration curve: 1.50967 * $x+0.157344$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $r=0.999811, r^{\wedge} 2=0.999621$
Calibration curve: 1.25322 * x + 0.0796155
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999711$
Calibration curve: -0.00151846 * $x^{\wedge} 2+1.70838{ }^{*} x+-0.0114403$
Response type: Internal Std (Ref 33), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 24, } 2017 \text { 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, } 2017 \text { 15:37:22 Pacific Daylight Time }\end{array}$

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.00313053^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
 U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: $r=0.999233, r^{\wedge} 2=0.998466$
Calibration curve: $0.970801^{*} x+0.199778$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset:

U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHpS

Correlation coefficient: $r=0.999150, r^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * $x+0.014645$
Response type: Interna! Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $r=0.998659, r^{\wedge} 2=0.997320$
Calibration curve: 1.09835 * x + 0.147218
Response type: Internal Std (Ref 36), Area * (IS Conc. /IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
U:IQ4.PROVresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * x + 0.0489398
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PROVresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFOS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999148$
Calibration curve: -0.00122032 * $x^{\wedge} 2+1.19038{ }^{*} x+0.0183073$
Response type: Internal Std (Ref 38), Area * (IS Conc. IIS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.gld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $r=0.999397, r^{\wedge} 2=0.998795$
Calibration curve: $1.29731^{*} x+0.128184$
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:

U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: 8:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996738$
Calibration curve: $-0.00420182^{*} x^{\wedge} 2+1.49722^{*} x+0.133523$
Response type: Intemal Std (Ref 40), Aree * (is Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999848$
Calibration curve: $-0.0104077^{*} x^{\wedge} 2+19.9194^{*} x+0.547687$
Response type: Internal Std́ (Ref 41), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:

U:\Q4.PROIresults\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999908$
Calibration curve: -0.00439744 * $^{\wedge} 2+16.1657$ * $x+0.0580373$
Response type: internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 24, 2017 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, } 2017 \text { 15:37:22 Pacific Daylight Time }\end{array}$

Compound name: PFUnA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998430$
Calibration curve: $-0.0020331^{*} x^{\wedge} 2+0.9014788^{*} x+0.00751751$
Response type: Internal Std (Ref 43), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998889$
Calibration curve: $-0.000220781^{*} x^{\wedge} 2+0.0914068$ * $x+-0.00228704$
Response type: Intemal Std (Ref 43), Area* (is Conc. IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset:
 U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999700$
Calibration curve: $-0.000446703^{*} x^{\wedge} 2+0.926687 * x+0.203454$
Response type: Iritemai Std (Ref 44), Area* (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO|results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-MeFOSA
Correlation coefficient: $r=0.999273, r^{\wedge} 2=0.998546$
Calibration curve: 1.0376 * $x+0.213391$
Response ype: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
 U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999414, \mathrm{r}^{\wedge} 2=0.998828$
Calibration curve: 10.9255 * $x+1.79$
Response type: Internal Std (Ref 44), Area * (IS Conc. IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999057$
Calibration curve: $-0.000800394^{*} x^{\wedge} 2+1.14875^{*} x+0.111533$
Response type: Internal Std (Ref 46), Areá * (15 Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weightirig: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-EtFOSA

Correlation coefficient: $r=0.999689, r^{\wedge} 2=0.999377$
Calibration curve: 0.904115 * $x+0.326191$
Response type: Intemal Sid (Ref 47), Area* (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999358$
Calibration curve: $-0.000715061^{*} x^{\wedge} 2+1.34773^{*} x+0.254398$
Response type: Internal Std (Ref 48), Aca* (1S Conc. I SS Areá)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Datase
U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFODA
Correlation coefficient: $r=0.999378, r^{\wedge} 2=0.998756$
Calibration curve: $1.27561^{*} x+0.10098$
Response type: Internal Std (Rei 48), Area* (IS Conc./IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: U:\Q4.PRO\results\170724M1170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-MeFOSE

Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998953$
Calibration curve: $1.01603^{*} x+0.461771$
Response type: Internal Sid (Ref 49), Area* (IS Cono. / 1 S Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $r=0.999680, r^{\wedge} 2=0.99936$
Calibration curve: 1.16673 * $x+0.501898$
Response type: Internal Sid (Ref 50), Area* (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset:	U:IQ4.PROlresults1170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17 G2422

 1.000 Work Order 1700856 Revision 2

13C3-PFPeA

F6:MRM of 2 channels,ES-

3C3-PFBS

F14:MRM of 2 channels,ES-

PFHxS

F16:MRM of 2 channels,ES-

1802-PFHxS

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

13C2-6:2 FTS
F23:MRM of 1 channel,ES$429.1>408.9$

PFOA

 F19:MRM of 2 channels,ES-
$413>169$

13C2-PFOA
F20:MRM of 1 channel,ES.

PFHpS

F24:MRM of 4 channels,ES-
448.9 > 79.9

13C3-PFBS

PFNA

F25:MRM of 2 channels,ES-

13C5-PFNA

PFOSA

F28:MRM of 2 channels,ES

F28:MRM of 2 channels, ES-
$498.1>478$

13C8-PFOSA

F32:MRM of 1 channel,ES-
$506.1>77.7$

PFOS

F30:MRM of 2 channels,ES $499>79.9$

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES-

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

PFDS

F50:MRM of 2 channels, ES-

F50:MRM of 2 channels,ES-
$598.9>80$

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17 G2422

PFTeDA

F58:MRM of 4 channels,ES-
$712.9>668.8$
100
PFTeDA
4.70
1.55 e 3
23749
MM
F58:MRM of 4 channels,ES$712.9>369$

13C2-PFTeDA

F59:MRM of 2 channels,ES-

d5-N-ETFOSA

F42:MRM of 1 channel,ES-
$531.1>168.9$

PFHxDA

F60:MRM of 2 channels,ES $812.8>768.9$

F60:MRM of 2 channels,ES

13C2-PFHxDA

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

d7-N-MeFOSE

F54:MRM of 1 channel,ES
$623.1>58.9$

13C3-PFHxS
F17:MRM of 1 channel,ES-
$401.9>79.9$

13C8-PFOA

$$
\text { F21:MRM of } 1 \text { channel,ES- }
$$

13C9-PFNA
F27:MRM of 1 channel,ES $472.2>426.9$ $1.139 \mathrm{e}+006$

Dataset:	U:IQ4.PROlresults1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

13C6-PFDA
F38:MRM of 1 channel,ES$519.1>473.7$

13C7-PFUnA
F46:MRM of 1 channel,ES $570.1>524.8$

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

13C3-PFBA
F2:MRM of 1 channel,ES-
$216.1>171.8$
100
$13 \mathrm{C} 3-\mathrm{PFBA} 1.891 \mathrm{e}+005$
1.55
1.22 e 4
186282
bb
0.99

PFPeA
F4:MRM of 1 channel ES

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES-

13C3-PFBS

PFHxA

13C2-PFHxA

PFHpA

F14:MRM of 2 channels,ES

- $363>318$
$100 \quad 3.987 \mathrm{e}+004$

F14:MRM of 2 channels, ES-
$363>169$

$3.250 \quad 3.500 \quad 3.750$

PFHxS

1802-PFHxS
F18:MRM of 1 channel,ES-
$403>102.6$

Dataset:
 U:IQ4.PRO\results\170724M1 1170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

F22:MRM of 2 channels, ES$427.1>80$

PFOA

F19:MRM of 2 channels,ES-
$413>169$

13C2-PFOA

F24:MRM of 4 channels,ES$448.9>79.9$

13C3-PFBS

F25:MRM of 2 channels,ES

3C5-PFNA

F28:MRM of 2 channels,ES

13C8-PFOSA

PFOS

F30:MRM of 2 channels, ES

13C8-PFOS

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
 Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
 Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

13C2-PFDoA

F52:MRM of 1 channel,ES$615>569.7$ $9.914 \mathrm{e}+004$

F34:MRM of 2 channels,ES-

d3-N-MeFOSA

F37:MRM of 1 channel,ES $515.2>168.9$ $4.209 \mathrm{e}+005$

13C2-PFTeDA

F59:MRM of 2 channels,ES F59:MRM of 2 channels, ES-
$714.8>669.6$

F58:MRM of 4 channels, ES

13C2-PFTeDA

F39:MRM of 2 channels,ES$526.1>219$

d5-N-ETFOSA

F42:MRM of 1 channel,ES-

F60:MRM of 2 channels,ES
$812.8>219$

13C2-PFHxDA

48005.0005 .200

Dataset:	U:IQ4.PROlresults\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

d7-N-MeFOSE
F54:MRM of 1 channel,ES
F54:MRM of 1 channel, ES
$623.1>58.9$

d9-N-EtFOSE
 F56.MRM

F17:MRM of 1 channel,ES-
F17:MRM of 1 channel,ES-
$401.9>79.9$

Dataset:	U:\Q4.PROlresults\170724M1
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17 G 2119

```
13C4-PFOS
F31:MRM of 1 channel,ES \(503>79.9\)
```


13C6-PFDA

F38:MRM of 1 channel, ES
$519,1>473.7$ $2.025 \mathrm{e}+005 \quad 1.278 \mathrm{e}+006$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

13C3-PFBA

PFPeA

13C3-PFPeA

F5:MRM of 1 channel,ES-

PFBS

$299>99$

13C3-PFBS

PFHxA

13C2-PFHxA

F9:MRM of 1 channel,ES-
$315>269.8$

PFHpA

F14:MRM of 2 channels,ES$363>318.9$

$363>169$ $2.875 \mathrm{e}+003$

13C4-PFHpA

F15:MRM of 1 channel,ES-
$367.2>321.8$

PFHxS

1802-PFHxS

F18:MRM of 1 channel,ES-
$403>102.6$

Dataset: U:\Q4.PRO\resultsi170724M1\170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

13C2-6:2 FTS

F23:MRM of 1 channel,ES-
$429.1>408.9$

F19:MRM of 2 channels,ES-

13C2-PFOA
F20:MRM of 1 channel,ES-

PFHpS

F24:MRM of 4 channels, ES-
$448.9>79.9$

13C3-PFBS
F7:MRM of 1 channel,ES-
$302>98.8$

PFNA

F25:MRM of 2 channels,ES-

13C5-PFNA
F26:MRM of 1 channel,ESF26:MRM of
$468.2>422.9$

PFOSA

F28:MRM of 2 channels, ES-

F28:MRM of 2 channels,ES-

13C8-PFOSA

PFOS

F30:MRM of 2 channels,ES

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17 G 2423

F45:MRM of 2 channels,ES$570.1>483$

d3-N-MeFOSAA

$\begin{array}{rrr}\text { F47:MRM of } 1 \text { channel,ES- } & \text { F49:MRM of } 1 \text { channel,ES- } \\ & 573.3>419 & \\ 2.105 \mathrm{e}+005 & 100- & 2.190 \mathrm{e}+005\end{array}$

13C2-PFUnA
F44:MRM of 1 channel,ES-

$$
\begin{array}{l}565>519.8\end{array}
$$

PFDS

F50:MRM of 2 channels,ES-

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17 G 2423

PFTeDA

F58:MRM of 4 channels, ES-

F58:MRM of 4 channels, ES-

13C2-PFTeDA
F59:MRM of 2 channels,ESFS9.MRM of 2 channels,ES
$714.8>669.6$

d5-N-ETFOSA

F42:MRM of 1 channel,ES-
$531.1>168.9$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

d7-N-MeFOSE
F54:MRM of 1 channel,ES-

d9-N-EtFOSE

13C8-PFOA
F21:MRM of 1 channel,ES-
$421.3>376$

$$
\begin{aligned}
& 421.3>376 \\
& 1.044 \mathrm{e}+006
\end{aligned}
$$

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CSO 17G2423

13C4-PFOS
 F31:MRM of 1 channel,ES-

13C6-PFDA
F38:MRM of 1 channel,ES$519.1>473.7$
 3.7504 .0004 .250

13C7-PFUnA

F46:MRM of 1 channel,ES

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G 2424

13C3-PFBA

13C3-PFPeA

PFBS

13C3-PFBS

PFHpA

F14:MRM of 2 channels,ES-
$363>318.9$
$1.527 \mathrm{e}+005$

13C4-PFHpA
F15:MRM of 1 channel,ES-
$367.2>321.8$
$100-7.476 \mathrm{e}+005$

PFHxS

1802-PFHxS
F18:MRM of 1 channel,ES-
$403>102.6$

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G 2424

PFNA

F25:MRM of 2 channels, ES-

13C5-PFNA

PFOSA

F28:MRM of 2 channels, ES-

		498.1 > 77.8
100	PFOSA	$2.483 \mathrm{e}+004$
	3.86	
	1.32 e 3	
\% -	24768	
	bb	

F28:MRM of 2 channels, ES

PFOS

F30:MRM of 2 channels,ES

F30:MRM of 2 channels, ES-

13C8-PFOS
F33:MRM of 1 channel,ES-
$507>79.9$

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

PFDS

$\begin{aligned} & \text { F50:MRM of } 2 \mathrm{ch} \\ & 100 \\ & \text { PFDS } \\ & 4.24 \\ & 9.98 \mathrm{e} 2 \\ & \%-18864 \\ & \mathrm{bb} \end{aligned}$	

F50:MRM of 2 channels,ES-

13C2-PFUnA
F44:MRM of 1 channel,ES$565>519.8$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 24, } 2017 \text { 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, } 2017 \text { 15:36:37 Pacific Daylight Time }\end{array}$

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G 2424

13C2-PFDoA

d3-N-MeFOSA

F37:MRM of 1 channel,ES$515.2>168.9$ $4.430 \mathrm{e}+005$

F57:MRM of 2 channels, ES-
$662.9>319$

13C2-PFTeDA

F59:MRM of 2 channels, ES-

F58:MRM of 4 channels, ES-

13C2-PFTeDA

F39:MRM of 2 channels,ES$526.1>219$
100 2.737e+004

d5-N-ETFOSA

F42:MRM of 1 channel,ESF531.1 > 168.9

F60:MRM of 2 channels, ES-
$812.8>219$

13C2-PFHxDA

Dataset:	U:IQ4.PRO\results1170724M1
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G 2424

d7-N-MeFOSE
F54:MRM of 1 channel,ES-
$623.1>58.9$

13C8-PFOA

F21:MRM of 1 channel,ES. $421.3>376$ $1.017 e+006$

Dataset:	U:IQ4.PROVresults\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

Dataset:	U:IQ4.PROlresults1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

13C3-PFBA

PFPeA

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES-

F6:MRM of 2 channels, ES

13C3-PFBS
F7:MRM of 1 channel,ES

PFHxA

F8:MRM of 2 channels,ES

F8:MRM of 2 channels,ES

13C2-PFHxA

PFHpA

F14:MRM of 2 channels, ES $363>318.9$

$363>169$

13C4-PFHpA

F15:MRM of 1 channel,ES-
$367.2>321.8$

PFHxS

F16:MRM of 2 channels,ES

F16:MRM of 2 channels, ES

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-CRV.qid

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

PFNA

13C5-PFNA

F26:MRM of 1 channel,ES-

PFOSA

F28:MRM of 2 channels, ES-

F28:MRM of 2 channels,ES-
$498.1>478$

PFOS

F30:MRM of 2 channels,ES-
$499>79.9$

F30:MRM of 2 channels,ES

13C8-PFOS
F33:MRM of 1 channel,ES-
$507>79.9$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: \quad Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$
$1.366 \mathrm{e}+006$

PFDS

13C2-PFUnA

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

13C2-PFDoA
 F52:MRM of 1 channel,ES$615>569.7$

F57:MRM of 2 channels, ES-

13C2-PFTeDA

F59:MRM of 2 channels,ES-

$$
\begin{array}{r}
714.8>669.6 \\
7.767 \mathrm{e}+005
\end{array}
$$

PFTeDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

F39:MRM of 2 channels, ES-

d5-N-ETFOSA

F42:MRM of 1 channel, ES
$531.1>168.9$

PFHxDA

F60:MRM of 2 channets,ES

13C2-PFHxDA

F61:MRM of 1 channel,ES-

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

d7-N-MeFOSE

13C8-PFOA
F21:MRM of 1 channel,ES-
$421.3>376$

$$
\begin{array}{r}
421.3>376 \\
1.121 \mathrm{e}+006
\end{array}
$$

Dataset:	U:IQ4.PROlresults1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

PFHXA

13C2-PFHxA

F9:MRM of 1 channel,ES-
$315>269.8$

PFHpA

F14:MRM of 2 channels, ES-

13C4-PFHpA

PFHxS

F16:MRM of 2 channels,ES

		398.9 > 79.6
100	PFHxS	$6.825 \mathrm{e}+004$
	3.55	
	3.76 e 3	
	68250	
	MM	
	TTTTM	

1802-PFHxS

Dataset:	U:IQ4.PROlresults\170724M1
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

13C8-PFOSA

PFOS

F30:MRM of 2 channels, ES-

13C8-PFOS
F33:MRM of 1 channel,ES-
$507>79.9$

Dataset:	U:\Q4.PRO\results1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

PFDS
F50:MRM of 2 channels,ES$598.9>98.7$

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset:	U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

PFTrDA

F57:MRM of 2 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels, ES-

$$
\begin{array}{r}
714.8>669.6 \\
8.263 \mathrm{e}+005
\end{array}
$$

PFTeDA

F58:MRM of 4 channels,ES-

d5-N-ETFOSA
F42:MRM of 1 channel, ES-
$531.1>168.9$

PFHxDA

F60:MRM of 2 channels, ES$812.8>768.9$

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

F6:MRM of 2 channels,ES-
$299>99$

PFHxA

PFHpA

13C4-PFHPA

F15:MRM of 1 channel,ES-
$367.2>321.8$
100

PFHxS

1802-PFHxS
F18:MRM of 1 channel, ES-

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

PFNA

13C5-PFNA

PFOSA
F28:MRM of 2 channels,ES-

F28:MRM of 2 channels,ES-

FOSA

PFOS

13C8-PFOS

Dataset:	U:IQ4.PRO\results1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

13C2-PFDA
F36:MRM of 1 channei,ES$515.1>469.9$ $1.141 \mathrm{e}+006$

13C2-8:2 FTS
F41:MRM of t channel, ES-

$$
\begin{array}{l}529.1>508.7\end{array}
$$

F45:MRM of 2 channels, ES$570.1>483$

F47:MRM of i channel, ES-
$573.3>419$

PFUnA

F43:MRM of 2 channels, ES-

13C2-PFUnA
F44:MRM of 1 channel, ES-

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

d5-N-ETFOSA
F42:MRM of 1 channei, ES$531.1>168.9$ $5.875 \mathrm{e}+005$

PFHxDA

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset:	U:IQ4.PROlresults\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426
$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 24, } 2017 \text { 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, 2017 15:36:37 Pacific Daylight Time }\end{array}$

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

Dataset:	U:\Q4.PROlresults\170724M1\170724M1-CRV. qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427

13C3-PFBA

13C3-PFP A

PFBS

F6:MRM of 2 channels,ES-
$299>99$

$2.750 \quad 3.000 \quad 3.250$

F8:MRM of 2 channels, ES-

13C2-PFHxA

PFHpA

13C4-PFHpA

F15:MRM of 1 channei,ES-
$367.2>321.8$

PFHxS

F16:MRM of 2 channels,ES $398.9>99$

18O2-PFHxS
F18:MRM of 1 channel ES-

Dataset:	U:IQ4.PRO\results1170724M11170724M1-CRV. qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427

13C2.PFOA
F20MFM of Shannel, ES-
$414.9>369.7$

PFNA

F2G:MRMM of channe, EG-

13C8-PFOS
F33:MRM of 1 channel,ES$507>79.9$
$1690+005$

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427

F40:MRM of 2 channeis, ES-
$527>80$

2C2-8:2 FTS

F45:MRM of 2 channels.ES$570.1>483$ $1.809 e+005$

F48:MRM of 2 channels,ES$584.2>483$

-5-N-EtFOSAA.

F43:MRM of 2 channels, ES-

13C2-PFUnA

PFDS

F50:MRM of 2 channels, ES-
$598.9>80$

13C2-PFUnA
F44:MRM of 1 channel, ES-
$565>519.8$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV qid

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427
PFDoA
F51:MRM of 2 channels, ES-
$612.9>318.8$
$7.544 \mathrm{e}+005$

PFTrDA

F57:MRM of 2 channels,ES $662.9>618.9$ $9.092 \mathrm{e}+006$

PFTeDA

F58:MRM of 4 channels, ES$712.9>668.8$

d5-N-ETFOSA.
F42MRM of 1 chanci, ES-
$531.1>168.9$

PFHxDA

1302-PFHxDA
FO1:NRM of 1 channel,ES-
$815>769.7$
3.7558005

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G2427

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Dataset:
Untitled
Last Altered: Monday, July 24, 2017 15:45:04 Pacific Daylight Time
Printed:

Inst. Blank

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

13C3-PFBA

13C3-PFPeA

F6:MRM of 2 channels,ES-

13C3-PFBS
$\left.\begin{array}{rr}\text { F7:MRM of } 1 \text { channel,ES- } & \text { F9:MRM of } 1 \text { channel,ES- } \\ 302>98.8 \\ 1.000 \mathrm{e}-003\end{array}\right)$

1802-PFHxS

Monday, July 24, 2017 15:45:24 Pacific Daylight Time

Name: 170724M1_11, Date: $\mathbf{2 4 - J u l - 2 0 1 7 , ~ T i m e : ~ 1 5 : 1 7 : 3 0 , ~ I D : ~ I P A , ~ D e s c r i p t i o n : ~ I P A ~}$

PFOSA

F28:MRM of 2 channels,ES-
F28:MRM of 2 channels,ES-
$498.1>77.8$

F28:MRM of 2 channels,ES-

PFOS
F30:MRM of 2 channels, ES

F30:MRM of 2 channels,ES
$499>99$

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

PFDA
F35:MRM of 2 channels,ES-
$513>468.8$
$1.227 \mathrm{e}+003$

$$
\begin{array}{r}
\text { F35:MRM of } 2 \text { channels,ES- } \\
513>219
\end{array}
$$

13C2-PFDA

13C2-8:2 FTS

F45:MRM of 2 channels,ES-

3-N-MeFOSAA

PFUnA

13C2-PFUnA

F44:MRM of 1 channel,ES-

PFDS

13C2-PFUnA
F44:MRM of 1 channel,ES-

13C2-PFDoA
F52:MRM of 1 channel,ES$615>569.7$

F34:MRM of 2 channels,ES-
$512.1>219$

d3-N-MeFOSA

PFTeDA

F57:MRM of 2 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels,ES-

F58:MRM of 4 channels,ES- F39:MRM of 2 channels,ES-

d5-N-ETFOSA

PFHxDA

F60:MRM of 2 channels,ES-

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset:	Untitled
Last Altered:	Monday, July 24, 2017 15:45:04 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:45:24 Pacific Daylight Time

Name: 170724M1_11, Date: 24 -Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

d7-N-MeFOSE
F54:MRM of 1 channel,ES

d9-N-EtFOSE

13C3-PFHxS

F17:MRM of 1 channel,ES

13C8-PFOA

13C2-PFHxDA
F61:MRM of 1 channel,ES
$815>769.7$

Last Altered: Monday, July 24, 2017 15:45:04 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:45:24 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

Last Altered:
Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:47:51 Pacific Daylight Time

(A) Not in SS .

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Dataset:	U:\Q4.PRO\results1170724M11170724M1-12.qId
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:51 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G 2421

	\# Name	**	Trace	Area	IS Resp	RRF	Wt./Vol	RT	Conc.	\%Rec
32×1	32 13C4-PFHpA		$367.2>321.8$	29688.498	38341.938	0.306	1.000	3.48	12.67	101.34
33 -	33 1802-PFHxS		$403>102.6$	2850.923	7151.517	0.393	1.000	3.55	12.69	101.51
34 .	$3413 \mathrm{C} 2-6: 2 \mathrm{FTS}$		$429.1>408.9$	7715.412	55193.199	0.158	1.000	3.67	11.08	88.65
35 -	$3513 \mathrm{C} 2-\mathrm{PFOA}$		$414.9>369.7$	57527.922	55193.199	1.067	1.000	3.68	12.20	97.64
36	36 13C5-PFNA		$468.2>422.9$	55397.191	58314.438	0.852	1.000	3.85	13.94	111.4ε
37 , 相	37 13C8-PFOSA		$506.1>77.7$	6500.262	73602.336	0.098	1.000	3.86	11.24	89.90
38.	3813 C 8 -PFOS		$507>79.9$	10272.242	10242.656	0.936	1.000	3.91	13.40	107.18
39 -	39 13C2-PFDA		$515.1>469.9$	56205.117	70397.750	0.810	1.000	4.02	12.32	98.59
40 , \quad 2	40 13C2-8:2 FTS		$529.1>508.7$	5254.963	70397.750	0.086	1.000	4.02	10.90	87.23
41	41 d3-N-MeFOSAA		$573.3>419$	11971.411	73602.336	0.014	1.000	4.05	148.44	91.35
42	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA		$589.3>419$	12068.997	73602.336	0.014	1.000	4.12	146.98	90.45
43	43 13C2-PFUnA		$565>519.8$	59926.145	73602.336	0.962	1.000	4.19	10.58	84.63
44	44 13C2-PFDoA		$615>569.7$	5849.101	73602.336	0.094	1.000	4.35	10.52	84.16
	45 d3-N-MeFOSA		$515.2>168.9$	26376.414	73602.336	0.034	1.000	4.43	130.17	86.78
46 .	46 13C2-PFTeDA		714.8 > 669.6	40951.586	73602.336	0.694	1.000	4.70	10.02	80.14
47	47 d5-N-ETFOSA		$531.1>168.9$	6321.303	73602.336	0.049	1.000	5.01	22.06	14.70
48	48 13C2-PFHxDA		$815>769.7$	19848.846	73602.336	0.843	1.000	5.07	4.00	79.97
49	$49 \mathrm{d7}$-N-MeFOSE		$623.1>58.9$	40883.168	73602.336	0.055	1.000	5.42	127.09	84.73
50	50 d9-N-EtFOSE		$639.2>58.8$	40456.262	73602.336	0.053	1.000	5.59	128.61	85.74
51	51 13C4-PFBA		$217>171.8$	14974.247	14974.247	1.000	1.000	1.55	12.50	100.00
52	52 13C5-PFHxA		318 > 272.9	38341.938	38341.938	1.000	1.000	3.22	5.00	100.00
53	53 13C3-PFHxS		$401.9>79.9$	7151.517	7151.517	1.000	1.000	3.55	12.50	100.00
	54 13C8-PFOA		$421.3>376$	55193.199	55193.199	1.000	1.000	3.68	12.50	100.00
55 -	55 13C9-PFNA		$472.2>426.9$	58314.438	58314.438	1.000	1.000	3.85	12.50	100.00
56	56 13C4-PFOS		$503>79.9$	10242.656	10242.656	1.000	1.000	3.91	12.50	100.00
57.	57 13C6-PFDA		$519.1>473.7$	70397.750	70397.750	1.000	1.000	4.02	12.50	100.00
58.8	58 13C7-PFUnA		$570.1>524.8$	73602.336	73602.336	1.000	1.000	4.19	12.50	100.00

Dataset:
 U:IQ4.PRO|results1170724M11170724M1-12.qld

Last Altered: Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

PFHxA		
F8:MRM of 2 channels,ES-		
		313.2 > 268.9
	PFHxA	$7.726 \mathrm{e}+005$
	3.23	
	3.16e4	
\%	769385	
	T1T	TTT1 min

13C3-PFBA
13C3-PFPeA

13C2-PFHxA

13C4-PFHpA

F16:MRM of 2 channels,ES-

1802-PFHxS

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-12.qld
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

13C5-PFNA
F26:MRM of 1 channel,ES-

PFOS

13C8-PFOS

F33:MRM of 1 channel,ES-

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-12.qld
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

PFTeDA
F58:MRM of 4 channels,ES-

F60:MRM of 2 channeis,ES$812.8>219$ $1.570 \mathrm{e}+003$

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Dataset:	U:IQ4.PRO\|resultsI170724M11170724M1-12.qld
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results1170727M11170727M1-CRV.qld
Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Compound name: PFBA
Coefficient of Determination: $R^{\wedge} 2=0.999016$
Calibration curve: $-0.000148745^{*} x^{\wedge} 2+1.144{ }^{*} x+0.0934277$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

-	\# Name		Std Conc	RT	Area - IS Area		Response Conc. \%Dev Conc. Flag				COD COD Flag $x=$ excluded		
12	1 170727M1 6	Standard	0.250	1.32	402.541	13153.632	0.383	0.3	1.1	NO	0.999	NO	MM
2. $4 \times$	2 170727M1_7	Standard	0.500	1.32	900.679	16229.239	0.694	0.5	5.0	NO	0.999	NO	bb
3.15	3 170727M1_8	Standard	1.000	1.32	1532.875	13631.894	1.406	1.1	14.7	NO	0.999	NO	bb
4.2	4 170727M1_9	Standard	2.000	1.32	3476.482	17379.277	2.500	2.1	5.2	NO	0.999	NO	bb
5	5 170727M1_10	Standard	5.000	1.32	7094.940	13706.406	6.470	5.6	11.6	NO	0.999	NO	bb
$\stackrel{1}{4}$	6 170727M1_11	Standard	10.000	1.32	14607.091	16386.203	11.143	9.7	-3.3	NO	0.999	NO	bb
$7 \times$	7 170727M1_12	Standard	50.000	1.32	69465.063	15585.783	55.712	48.9	-2.1	NO	0.999	NO	bb
$8 \div$	8 170727M1_13	Standard	100.000	1.32	120916.445	13303.807	113.611	100.5	0.5	NO	0.999	NO	bb

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999743, \mathrm{r}^{\wedge} 2=0.999486$
Calibration curve: 0.998566 * $x+0.0863273$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	15 Area	pons	onc.	\%Dev		C	D F	xclu
3.	1 170727M1_6	Standard	0.250	2.62	977.753	42840.023	0.285	0.2	-20.3	NO	0.999	NO	MM
2.	2 170727M1_7	Standard	0.500	2.63	2278.154	48017.777	0.593	0.5	1.5	NO	0.999	NO	MM
3.	3 170727M1_8	Standard	1.000	2.63	4013.757	44080.910	1.138	1.1	5.3	NO	0.999	NO	MM
4	4 170727M1_9	Standard	2.000	2.63	8123.328	46122.711	2.202	2.1	5.9	NO	0.999	NO	MM
5.4	5 170727M1_10	Standard	5.000	2.63	19398.813	43342.047	5.595	5.5	10.3	NO	0.999	NO	MM
6. ${ }^{\text {a }}$	6 170727M1_11	Standard	10.000	2.63	35041.879	44586.609	9.824	9.8	-2.5	NO	0.999	NO	MM
7	7 170727M1_12	Standard	50.000	2.63	167534.391	41776.168	50.129	50.1	0.2	NO	0.999	NO	MM
8 8.	8 170727M1_13	Standard	100.000	2.63	297744.313	37430.172	99.433	99.5	-0.5	NO	0.999	NO	MM

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999583, \mathrm{r}^{\wedge} 2=0.999166$
Calibration curve: 1.87908 * $x+0.124036$
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

\# Name			Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc Flag CoD			CoD Flag	$x=$ excluded
1- W W W	1 170727M1_6	Standard	0.250	2.86	216.161	5089.555	0.531	0.2	-13.4	NO	0.999	NO	MM
2	2 170727M1_7	Standard	0.500	2.88	430.884	5384.093	1.000	0.5	-6.7	NO	0.999	NO	bb
3	3 170727M1_8	Standard	1.000	2.88	835.393	5220.958	2.000	1.0	-0.2	NO	0.999	NO	bb
4	4 170727M1_9	Standard	2.000	2.88	1775.403	5238.489	4.236	2.2	9.4	NO	0.999	NO	bb
5	5 170727M1_10	Standard	5.000	2.87	4544.860	5270.990	10.778	5.7	13.4	NO	0.999	NO	bb
6 E ¢ ${ }^{\text {a }}$	6 170727M1_11	Standard	10.000	2.87	7856.220	5320.907	18.456	9.8	-2.4	NO	0.999	NO	bb
7	7 170727M1_12	Standard	50.000	2.88	35191.227	4634.577	94.915	50.4	0.9	NO	0.999	NO	bb
8	8 170727M1_13	Standard	100.000	2.88	64080.703	4302.573	186.170	99.0	-1.0	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: $r=0.999556, r^{\wedge} 2=0.999111$
Calibration curve: $1.45287^{*} \times+0.152663$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	COD	D Fla	$x=$ excluded
1.3	1 170727M1_6	Standard	0.250	3.13	1523.459	18704.734	0.407	0.2	-29.9	NO	0.999	NO	bb
2	2 170727M1_7	Standard	0.500	3.14	3349.999	19036.875	0.880	0.5	0.1	NO	0.999	NO	bb
$3 \times$	3 170727M1_8	Standard	1.000	3.13	6240.815	17953.455	1.738	1.1	9.1	NO	0.999	NO	bb
$4{ }^{4}+{ }^{2}+5$	4 170727M1_9	Standard	2.000	3.14	12461.357	18121.797	3.438	2.3	13.1	NO	0.999	NO	bb
	5 170727M1_10	Standard	5.000	3.13	30436.348	18473.457	8.238	5.6	11.3	NO	0.999	NO	bb
	6 170727M1_11	Standard	10.000	3.13	54673.695	19237.354	14.210	9.7	-3.2	NO	0.999	NO	bb
7.5	7 170727M1_12	Standard	50.000	3.14	251307.063	17235.859	72.902	50.1	0.1	NO	0.999	NO	bb
8×3	8 170727M1_13	Standard	100.000	3.14	465411.344	16095.404	144.579	99.4	-0.6	NO	0.999	NO	bb

Quantify Compound Summary Report	MassLynx MassLynx V4
Vista Analytical Laboratory	
Datase::	U:IQ4.PROIresults 1170727 M1 1170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:08:22 Pacific Daylight Time

$\begin{array}{ll}\text { Last Altered: } & \text { Friday, July 28, } 2017 \text { 08:49:51 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, July 28, } 2017 \text { 09:08:22 Pacific Daylight Time }\end{array}$
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999612, \mathrm{r}^{\wedge} 2=0.999224$
Calibration curve: 1.23238 * x +0.112392
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

5-			Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	c.	Cob	D Fl	xcluded
1 ,	1 170727M1_6	Standard	0.250	3.40	1192.731	43063.793	0.346	0.2	-24.1	NO	0.999	NO	bb
2.4	2 170727M1_7	Standard	0.500	3.41	2552.004	45204.484	0.706	0.5	-3.7	NO	0.999	NO	bb
3.	3 170727M1_8	Standard	1.000	3.40	5112.497	44567.395	1.434	1.1	7.2	NO	0.999	NO	bb
4	4 170727M1_9	Standard	2.000	3.40	9742.448	43767.641	2.782	2.2	8.3	NO	0.999	NO	bb
5 .	5 170727M1_10	Standard	5.000	3.40	25370.670	44912.559	7.061	5.6	12.8	NO	0.999	NO	bb
6 , ${ }^{\text {ata }}$	6 170727M1_11	Standard	10.000	3.40	42822.836	42955.043	12.462	10.0	0.2	NO	0.999	NO	bb
7	7 170727M1_12	Standard	50.000	3.40	198742.078	40157.961	61.863	50.1	0.2	NO	0.999	NO	bb
8. ${ }^{\text {a }}$,	8 170727M1_13	Standard	100.000	3.41	369376.406	37780.906	122.210	99.1	-0.9	NO	0.999	NO	bb

Compound name: PFHxS

Correlation coefficient: $r=0.999353, r \wedge 2=0.998707$
Calibration curve: 1.63949 * x +0.27697
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	COD	CoD Flag	$x=$ excluded
1. 2 2 ?	1 170727M1_6	Standard	0.250	3.47	96.020	3850.929	0.312	0.0	-91.5	NO	0.999	NO	MMX
2	2 170727M1_7	Standard	0.500	3.49	280.310	3764.178	0.931	0.4	-20.2	NO	0.999	NO	MM
3 3,tw	3 170727M1_8	Standard	1.000	3.47	582.460	3967.092	1.835	1.0	-5.0	NO	0.999	NO	MM
14	4 170727M1_9	Standard	2.000	3.48	1200.082	3867.868	3.878	2.2	9.8	NO	0.999	NO	bb
5.	5 170727M1_10	Standard	5.000	3.47	3145.393	3971.926	9.899	5.9	17.4	NO	0.999	NO	bb
6	6 170727M1_11	Standard	10.000	3.47	4979.415	3753.762	16.581	9.9	-0.6	NO	0.999	NO	bb
7	7 170727M1_12	Standard	50.000	3.47	23568.961	3626.088	81.248	49.4	-1.2	NO	0.999	NO	bb
8.	8 170727M1_13	Standard	100.000	3.48	43767.965	3339.629	163.820	99.8	-0.2	NO	0.999	NO	MM

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.999168, \mathrm{r}^{\wedge} 2=0.998337$
Calibration curve: $0.97941^{*} \mathrm{x}+0.169979$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD			CoD Flag $x=e x c l u d e d$	
1	1 170727M1_6	Standard	0.250	3.60	1650.811	59865.938	0.345	0.2	-28.6	NO	0.998	NO	MM
2.	2 170727M1_7	Standard	0.500	3.60	3196.288	59919.949	0.667	0.5	1.4	NO	0.998	NO	bb
3 3 ${ }^{\text {a }}$	3 170727M1_8	Standard	1.000	3.60	5374.311	55415.613	1.212	1.1	6.4	NO	0.998	NO	MM
4.4	4-170727M1_9	Standard	2.000	3.60	10962.036	59868.074	2.289	2.2	8.2	NO	0.998	NO	bb
5 -	5 170727M1_10	Standard	5.000	3.60	27432.125	58695.875	5.842	5.8	15.8	NO	0.998	NO	bb
6	6 170727M1_11	Standard	10.000	3.60	46826.324	61262.559	9.554	9.6	-4.2	NO	0.998	NO	bb
7.42 L	7 170727M1_12	Standard	50.000	3.60	221201.672	54632.066	50.612	51.5	3.0	NO	0.998	NO	bb
8.	8 170727M1_13	Standard	100.000	3.60	393668.469	51197.766	96.115	98.0	-2.0	NO	0.998	NO	bb

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999393, \mathrm{r} \wedge 2=0.998786$
Calibration curve: $0.0865329 * x+0.00638428$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999135, \mathrm{r} \wedge 2=0.998270$
Calibration curve: 1.06404 * $x+0.151731$
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

$4 \times$	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD CoD Flag x=excluded		
1 -	1 170727M1_6	Standard	0.250	3.77	1418.062	51114.008	0.347	0.2	-26.7	NO	0.998	NO	bb
2	2 170727M1_7	Standard	0.500	3.78	2579.519	51529.840	0.626	0.4	-10.9	NO	0.998	NO	bd
	3 170727M1_8	Standard	1.000	3.78	4744.847	46721.047	1.269	1.1	5.0	NO	0.998	NO	bb
4 ,	4 170727M1_9	Standard	2.000	3.78	10626.438	50271.816	2.642	2.3	17.0	NO	0.998	No	bb
5 514.tes	5 170727M1_10	Standard	5.000	3.78	25077.686	48716.914	6.435	5.9	18.1	NO	0.998	No	bb
6 k - $\mathrm{c}^{\text {d }}$	6 170727M1_11	Standard	10.000	3.78	43029.453	49942.039	10.770	10.0	-0.2	NO	0.998	NO	bb
7 , Eat	7 170727M1_12	Standard	50.000	3.78	190384.000	45725.195	52.046	48.8	-2.5	NO	0.998	No	bb
8 \% ${ }^{\text {a }}$,	8 170727M1_13	Standard	100.000	3.78	355715.094	41697.215	106.636	100.1	0.1	NO	0.998	No	bb

Compound name: PFOSA

Correlation coefficient: $r=0.999394,{ }^{\wedge} \wedge 2=0.998789$
Calibration curve: 1.06848 * $x+0.223419$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

-			Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc, Flag CoD			CoD Flag x =excluded	
$1.4 \times$	1 170727M1_6	Standard	0.250	3.79	250.989	11862.194	0.264	0.0	-84.6	NO	0.999	NO	bbX
$2+3$	2 170727M1_7	Standard	0.500	3.78	698.528	11221.438	0.778	0.5	3.8	NO	0.999	NO	bb
3 3 ${ }^{\text {a }}$	3 170727M1_8	Standard	1.000	3.78	996.158	11168.887	1.115	0.8	-16.6	NO	0.999	NO	bb
4 ,	4 170727M1_9	Standard	2.000	3.79	2339.715	11376.144	2.571	2.2	9.8	NO	0.999	NO	bb
5 \%	5 170727M1_10	Standard	5.000	3.79	5314.163	10985.451	6.047	5.5	9.0	NO	0.999	NO	bb
6 . ${ }^{\text {a }}$.	6 170727M1_11	Standard	10.000	3.79	9316.069	11154.32¢	10.440	9.6	-4.4	NO	0.999	NO	bb
7 -	7 170727M1_12	Standard	50.000	3.79	38523.172	9284.536	51.865	48.3	-3.3	NO	0.999	NO	bb
	8 170727M1_13	Standard	100.000	3.79	69731.266	8012.283	108.788	101.6	1.6	NO	0.999	NO	bb

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960
 Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999093$
Calibration curve: -0.000652924 * $x^{\wedge} 2+1.07342$ * x + 0.0667583
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

- x^{2}. x^{2}	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	Dev	Conc. Flag	CoD CoD Flag $x=$ excluded		
1.	1 170727M1_6	Standard	0.250	3.83	246.486	9351.420	0.329	0.2	-2.1	NO	0.999	NO	bb
2	2 170727M1_7	Standard	0.500	3.84	477.693	9058.424	0.659	0.6	10.4	NO	0.999	NO	bb
3	3 170727M1_8	Standard	1.000	3.83	942.525	9156.141	1.287	1.1	13.7	NO	0.999	NO	bb
$4+4 \mathrm{ta}$	4 170727M1_9	Standard	2.000	3.83	1601.983	8775.251	2.282	2.1	3.3	NO	0.999	NO	.. bb
5	5 170727M1_10	Standard	5.000	3.83	3988.879	8595.392	5.801	5.4	7.2	NO	0.999	NO	bb
6.t.un*	6 170727M1_11	Standard	10.000	3.83	7578.040	9601.248	9.866	9.2	-8.2	NO	0.999	NO	bb
7. What ${ }^{\text {a }}$	7 170727M1_12	Standard	50.000	3.83	34494.703	8226.863	52.412	50.3	0.6	NO	0.999	NO	bb
8 8.	8 170727M1_13	Standard	100.000	3.83	63517.383	7877.385	100.791	99.9	-0.1	NO	0.999	NO	bb

Compound name: PFDA

Correlation coefficient: $\mathrm{r}=0.999716, \mathrm{r}^{\wedge} 2=0.999431$
Calibration curve: 1.23228 * $x+0.147279$
Response type: Internal Std (Ref 30), Area * (IS Conc. /IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

merer	\# Name		\pm Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	OD Fla	xcluded
	1 170727M1_6	Standard	0.250	3.95	1756.771	52030.340	0.422	0.2	-10.8	NO	0.999	NO	bb
2	2 170727M1_7	Standard	0.500	3.95	3265.883	57299.637	0.712	0.5	-8.3	NO	0.999	NO	bb
3 B	3 170727M1_8	Standard	1.000	3.95	6418.463	54266.875	1.478	1.1	8.0	NO	0.999	NO	bb
4	4 170727M1_9	Standard	2.000	3.95	12635.267	56721.223	2.785	2.1	7.0	NO	0.999	NO	bb
	5 170727M1_10	Standard	5.000	3.95	32229.738	60391.582	6.671	5.3	5.9	NO	0.999	NO	bb
6 -	6 170727M1_11	Standard	10.000	3.95	55974.184	56074.902	12.478	10.0	0.1	NO	0.999	NO	bb
7 4, 4 ar	7 170727M1_12	Standard	50.000	3.95	250603.625	52224.242	59.983	48.6	-2.9	NO	0.999	NO	bb
8 -	8 170727M1_13	Standard	100.000	3.95	494240.344	49584.195	124.596	101.0	1.0	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset:	U:IQ4.PROlresults1170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $R^{\wedge} 2=0.999665$
Calibration curve: $0.00022775^{*} x^{\wedge} 2+19.9472$ * x + 0.0898127
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998879$
Calibration curve: $0.00266631^{*} x^{\wedge} 2+15.33533^{*} x+0.19972$
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Quantify Compound Summary Report
Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:IQ4.PROIresults1170727M1\170727M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Friday, July 28, 2017 08:49:51 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, July 28, 2017 09:08:22 Pacific Daylight Time }\end{array}$

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999664$
Calibration curve: -0.000726299 * $x^{\wedge} 2+0.648776$ * $x+0.0756752$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type ${ }^{\text {and }}$	Std. Conc	RT	Area	, IS Area	Response	Conc.	\%Dev	Conc.	Co	F	cexcluded
1. der $^{\text {a }}$	1 170727M1_6	Standard	0.250	4.11	937.638	53937.508	0.217	0.2	-12.7	NO	1.000	NO	bb
2 .	2170727 M 1 _7	Standard	0.500	4.11	1856.364	57651.277	0.402	0.5	0.8	NO	1.000	NO	bb
3	3 170727M1_8	Standard	1.000	4.11	3381.308	53976.422	0.783	1.1	9.2	NO	1.000	NO	bb
4.4 Larandx	4 170727M1_9	Standard	2.000	4.11	6702.618	60891.270	1.376	2.0	0.4	NO	1.000	NO	bb
5. ${ }^{\text {a }}$,	5 170727M1_10	Standard	5.000	4.11	15902.064	56820.336	3.498	5.3	6.1	NO	1.000	NO	bb
6	6 170727M1_11	Standard	10.000	4.11	29007.316	58040.508	6.247	9.6	-3.8	NO	1.000	NO	bb
17	7 170727M1_12	Standard	50.000	4.11	135465.156	55210.184	30.670	50.0	-0.1	NO	1.000	NO	bb
8.	8 170727M1_13	Standard	100.000	4.11	249990.313	54140.109	57.718	100.1	0.1	NO	1.000	NO	bb

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998629$
Calibration curve: $-1.32982 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.0672039$ * $\mathrm{x}+0.00706292$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\% 2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc. \%Dev		Conc, Flag COD		CoD Flag x-excluded	
1. ${ }^{\text {a }}$,	1 170727M1_6	Standard	0.250	4.16	86.766	53937.508	0.020	0.2	-22.4	NO	0.999	NO	MM
2. ${ }^{\text {a }}$	2 170727M1_7	Standard	0.500	4.16	172.141	57651.277	0.037	0.5	-9.9	NO	0.999	NO	MM
3.2	3 170727M1_8	Standard	1.000	4.15	388.743	53976.422	0.090	1.2	23.5	NO	0.999	NO	bb
4.42	4 170727M1_9	Standard	2.000	4.16	690.005	60891.270	0.142	2.0	0.2	NO	0.999	NO	bb
5 -	5 170727M1_10	Standard	5.000	4.16	1779.465	56820.336	0.391	5.7	14.5	NO	0.999	NO	bb
6.412×4	6 170727M1_11	Standard	10.000	4.16	3001.466	58040.508	0.646	9.5	-4.7	NO	0.999	NO	bb
7.3.	7 170727M1_12	Standard	50.000	4.16	14488.668	55210.184	3.280	49.2	-1.6	NO	0.999	NO	bb
8	8 170727M1_13	Standard	100.000	4.16	28680.693	54140.109	6.622	100.4	0.4	NO	0.999	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results\170727M11170727M1-CRV.qld
Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997867$
Calibration curve: 0.000108363 * $x^{\wedge} 2+0.920945$ * x + 0.119714
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc. \% \% Dev		Conc. Flag COD		CoD Flag x-excluded	
1.	1 170727M1_6	Standard	0.250	4.28	107.979	4359.285	0.310	0.2	-17.5	NO	0.998	NO	MM
2 2-m	2 170727M1_7	Standard	0.500	4.27	187.376	4725.039	0.496	0.4	-18.4	NO	0.998	NO	MM
3	3 170727M1_8	Standard	1.000	4.28	387.923	4065.133	1.193	1.2	16.5	NO	0.998	NO	bd
4.	4 170727M1_9	Standard	2.000	4.27	764.237	4580.176	2.086	2.1	6.7	NO	0.998	NO	bd
5 ,	5 170727M1_10	Standard	5.000	4.27	1877.270	4125.885	5.687	6.0	20.8	NO	0.998	NO	bb
	6 170727M1_11	Standard	10.000	4.27	2974.082	4254.241	8.739	9.3	-6.5	NO	0.998	NO	bb
7.4.4.	7 170727M1_12	Standard	50.000	4.28	15238.717	4195.593	45.401	48.9	-2.2	NO	0.998	NO	bb
8 8.4.	8 170727M1_13	Stȧndard	100.000	4.28	31571.641	4206.188	93.825	100.6	0.6	NO	0.998	NO	bb

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999051, \mathrm{r}^{\wedge} 2=0.998103$
Calibration curve: $8.39255{ }^{*} x+1.22744$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name ${ }^{\text {a }}$, Type		Std. Conc	RT	Area	IS Area	Response	Conc. \% \% ev Conc. Flag			CoD CoD Flag $x=$ excluded		
14.4 ${ }^{\text {a }}$	1 170727M1_6	Standard	0.250	4.43	949.985	4359.285	2.724	0.2	-28.7	NO	0.998	NO	bb
2 2*, x^{2} \%	2 170727M1_7	Standard	0.500	4.44	2085.832	4725.039	5.518	0.5	2.2	NO	0.998	NO	bb
3	3 170727M1_8	Standard	1.000	4.44	3568.302	4065.133	10.972	1.2	16.1	NO	0.998	NO	bb
4 4, wat	4 170727M1_9	Standard	2.000	4.44	6820.030	4580.176	18.613	2.1	3.6	NO	0.998	NO	bb
5*	5 170727M1_10	Standard	5.000	4.44	16192.957	4125.885	49.059	5.7	14.0	NO	0.998	NO	bb
	6 170727M1_11	Standard	10.000	4.44	27675.627	4254.241	81.318	9.5	-4.6	NO	0.998	NO	bb
7	7 170727M1_12	Standard	50.000	4.43	134870.219	4195.593	401.821	47.7	-4.5	NO	0.998	NO	bb
8	8 170727M1_13	Standard	100.000	4.44	288052.313	4206.188	856.037	101.9	1.9	NO	0.998	NO	bb

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:
Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999478$
Calibration curve: -0.00104256 * $x^{\wedge} 2+1.20262$ * $x+0.131178$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: 2 nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Kxam	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag CoD CoD Flag x-excluded			
1 l +	1 170727M1_6	Standard	0.250	4.61	648.233	20264.934	0.400	0.2	-10.6	NO	0.999	NO	MM
2 ,	2 170727M1_7	Standard	0.500	4.62	1160.108	20001.139	0.725	0.5	-1.2	NO	0.999	NO	MM
$3 \text {. }$	3 170727M1_8	Standard	1.000	4.61	1839.107	16096.357	1.428	1.1	8.0	NO	0.999	NO	bb
4 - Wu	4 170727M1_9	Standard	2.000	4.61	3400.659	15958.571	2.664	2.1	5.5	NO	0.999	NO	bb
5 . 5	5 170727M1_10	Standard	5.000	4.61	7239.503	14196.442	6.374	5.2	4.3	NO	0.999	NO	bb
	6 170727M1_11	Standard	10.000	4.61	13249.020	14711.492	11.257	9.3	-6.7	NO	0.999	NO	bb
$7 . \quad$ erther	7 170727M1_12	Standard	50.000	4.61	64597.203	13866.051	58.233	50.5	1.1	NO	0.999	NO	bb
8 \%	8 170727M1_13	Standard	100.000	4.61	152598.266	17381.359	109.743	99.8	-0.2	NO	0.999	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.823368
RRF SD: 0.0102963 , Relative SD: 1.25051
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.264201
RRF SD: 0.00819028, Relative SD: 3.10002
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C3-PFBS

Response Factor: 0.0306879
RRF SD: 0.000800336, Relative SD: 2.60798
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170727M11170727M1-CRV.qld

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 0.274967
RRF SD: 0.00571947 , Relative SD: 2.08006
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

+	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag $\quad \mathrm{COD}$	CoDFlag	$x=e x c l u d e d$
1 L +	1 170727M1_6	Standard	5.000	3.13	18704.734	66777.414	1.401	5.1	1.9	NO	NO	bb
2) 2 ,	2 170727M1_7	Standard	5.000	3.14	19036.875	68960.672	1.380	5.0	0.4	NO	NO	bb
3 ,	3 170727M1_8	Standard	5.000	3.14	17953.455	65807.906	1.364	5.0	-0.8	NO	NO	bb
4	4 17.0727M1_9..	Standard	5.000	3.13	18121.797	68399.328	1.325	4.8	-3.6	NO	NO	bb.
5 d ${ }^{2}$ andm	5 170727M1_10	Standard	5.000	3.13	18473.457	68240.281	1.354	4.9	-1.5	NO	NO	bb
6 , ${ }^{\text {a }}$,	6 170727M1_11	Standard	5.000	3.14	19237.354	67807.313	1.419	5.2	3.2	NO	NO	bb
	7 170727M1_12	Standard	5.000	3.13	17235.859	62651.332	1.376	5.0	0.1	NO	NO	bb
8	8 170727M1_13	Standard	5.000	3.14	16095.404	58255.043	1.381	5.0	0.5	NO	NO	bb

Compound name: 13C4-PFHpA

Response Factor: 0.259934
RRF SD: 0.00549928 , Relative SD: 2.11565
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:
Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 1802-PFHxS

Response Factor: 0.402115
RRF SD: 0.0114628, Relative SD: 2.85063
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT	Area	IS Area	ponse	Conc. \%Dev		Conc. Flag	CoD . CoD Flag $x=$ excluded	
1 ,	1 170727M1_6	Standard	12.500	3.47	3850.929	9307.117	5.172	12.9	2.9	NO	NO	bb
2.	2 170727M1_7	Standard	12.500	3.47	3764.178	9382.290	5.015	12.5	-0.2	NO	NO	bb
$3,$	3 170727M1_8	Standard	12.500	3.47	3967.092	9569.128	5.182	12.9	3.1	NO	NO	bb
4 4-x ${ }^{\text {a }}$	4 170727M1_9	Standard	12.500	3.47	3867.868	9630.841	5.020	12.5	-0.1	NO	NO	bb
5.4 mater	5 170727M1_10	Standard	12.500	3.47	3971.926	9691.771	5.123	12.7	1.9	NO	NO	bb
6	6 170727M1_11	Standard	12.500	3.48	3753.762	9802.307	4.787	11.9	-4.8	NO	NO	bb
7	7 170727M1_12	Standard	12.500	3.47	3626.088	9340.884	4.852	12.1	-3.5	NO	NO	bb
8	8 170727M1_13	Standard	12.500	3.48	3339.629	8249.938	5.060	12.6	0.7	NO	NO	bb

Compound name: 13C2-PFOA

Response Factor: 1.04194
RRF SD: 0.027956, Relative SD: 2.68308
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: RF

4.	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag CoD	COD	xcluded
1.	1 170727M1_6	Standard	12.500	3.60	59865.938	56873.047	13.158	12.6	1.0	NO	NO	bb
2	2 170727M1_7	Standard	12.500	3.60	59919.949	56797.777	13.187	12.7	1.3	NO	NO	bb
	3 170727M1_8	Standard	12.500	3.60	55415.613	53219.633	13.016	12.5	-0.1	NO	NO	bb
4×3	4 170727M1_9	Standard	12.500	3.60	59868.074	57690.141	12.972	12.4	-0.4	NO	NO	bb
5	[170727M1_10	Standard	12.500	3.60	58695.875	59743.707	12.281	11.8	-5.7	NO	NO	bb
6 - 7 \%	6 170727M1_11	Standard	12.500	3.60	61262.559	59019.414	12.975	12.5	-0.4	NO	NO	bb
7.	7 170727M1_12	Standard	12.500	3.60	54632.066	52202.523	13.082	12.6	0.4	NO	NO	bb
8.	8 170727M1_13	Standard	12.500	3.60	51197.766	47323.363	13.523	13.0	3.8	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C5-PFNA

Response Factor: 0.79204
RRF SD: 0.030586, Relative SD: 3.86168
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: RF

4x+5x	\# Name		3为	Std. Conc 12.500	$\begin{array}{r} \mathrm{RT} \\ 3.78 \end{array}$	$\begin{array}{r} \text { Area } \\ 51114.008 \end{array}$	$\begin{array}{r} \text { IS Area } \\ 61088.508 \end{array}$	Response Conc. $\%$ Dev Conc. Flag				CoD ${ }^{\text {a }}$ CoD Flag x-excluded	
1 ,	1 170727M1_6	Standard						10.459	13.2	5.6	NO	NO	bb
2	2 170727M1_7	Standard		12.500	3.78	51529.840	63082.246	10.211	12.9	3.1	NO	NO	bb
3.4.	3 170727M1_8	Standard		12.500	3.78	46721.047	61854.789	9.442	11.9	-4.6	NO	NO	bb
4 ,	4 170727M1_9	Standard		12.500	3.78	50271.816	63851.328	9.842	12.4	-0.6	NO	NO	bb.
5 - 4 \%	5 170727M1_10	Standard		12.500	3.78	48716.914	63831.750	9.540	12.0	-3.6	NO	NO	bb
	6 170727M1_11	Standard		12.500	3.78	49942.039	61124.367	10.213	12.9	3.2	NO	NO	bb
7	7 170727M1_12	Standard		12.500	3.78	45725.195	57150.492	10.001	12.6	1.0	NO	NO	bb
8 -	8 170727M1_13	Standard		12.500	3.78	41697.215	54884.840	9.497	12.0	-4.1	NO	NO	bb

Compound name: 13C8-PFOSA

Response Factor: 0.174678

RRF SD: 0.0164608, Relative SD: 9.42349
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
	1 170727M1_6	Standard	12.500	3.78	11862.194	60651.570	2.445	14.0	12.0	NO		NO	bb
2	2 170727M1_7	Standard	12.500	3.79	11221.438	63780.648	2.199	12.6	0.7	NO		NO	bb
3	3 170727M1_8	Standard	12.500	3.78	11168.887	58640.852	2.381	13.6	9.0	NO		NO	bb
$4 \cdots 3$	4 170727M1_9	Standard	12.500	3.79	11376.144	63482.531	2.240	12.8	2.6	NO		NO	bb
5	5 170727M1_10	Standard	12.500	3.79	10985.451	63993.852	2.146	12.3	-1.7	NO		NO	bb
6 6.	6 170727M1_11	Standard	12.500	3.79	11154.32¢	61602.465	2.263	13.0	3.7	NO		NO	bb
7 me	7 170727M1_12	Standard	12.500	3.79	9284.536	58621.656	1.980	11.3	-9.3	NO		NO	bb
8 .	8 170727M1_13	Standard	12.500	3.79	8012.283	55207.715	1.814	10.4	-16.9	NO		NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C8-PFOS

Response Factor: 0.950628
RRF SD: 0.0413599, Relative SD: 4.3508
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	onc.	ev	Elag	COD F	cluded
$1{ }^{\text {a }}$,	1 170727M1_6	Standard	12.500	3.83	9351.420	9521.391	12.277	12.9	3.3	NO	NO	bb
$2{ }^{2}+$	2 170727M1_7	Standard	12.500	3.83	9058.424	9673.590	11.705	12.3	-1.5	NO	NO	bb
3	3 170727M1_8	Standard	12.500	3.83	9156.141	9654.983	11.854	12.5	-0.2	NO	NO	bb
4.3 ar	4 170727M1_9	Standard	12.500	3.83	8775.251	9669.445	11.344	11.9	-4.5	NO	NO	bb
5 .	5 170727M1_10	Standard	12.500	3.83	8595.392	9633.635	11.153	11.7	-6.1	NO	NO	bb
6 -	6 170727M1_11	Standard	12.500	3.83	9601.248	9505.756	12.626	13.3	6.3	NO	NO	bb
7 .	7 170727M1_12	Standard	12.500	3.83	8226.863	8791.099	11.698	12.3	-1.6	NO	NO	bb
8.	8 170727M1_13	Standard	12.500	3.83	7877.385	7936.742	12.407	13.1	4.4	NO	NO	bd

Compound name: 13C2-PFDA

Response Factor: 0.869042
RRF SD: 0.0152756, Relative SD: 1.75775
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: RF

10	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	ne. Flag	D Fi	xcluded
1.	1 170727M1_6	Standard	12.500	3.94	52030.340	59640.039	10.905	12.5	0.4	NO	NO	bb
2	2 170727M1_7	Standard	12.500	3.95	57299.637	64993.883	11.020	12.7	1.4	NO	NO	bb
3×1	3 170727M1_8	Standard	12.500	3.95	54266.875	64060.777	10.589	12.2	-2.5	No	NO	bb
4	4 170727M1_9	Standard	12.500	3.95	56721.223	64542.324	10.985	12.6	1.1	NO	NO	bb
5 \% 4	5 170727M1_10	Standard	12.500	3.95	60391.582	68173.781	11.073	12.7	1.9	NO	NO	bb
+hite	6 170727M1_11	Standard	12.500	3.95	56074.902	65514.582	10.699	12.3	-1.5	NO	No	bb
	7 170727M1_12	Standard	12.500	3.95	52224.242	61362.461	10.638	12.2	-2.1	NO	NO	bb
	8 170727M1_13	Standard	12.500	3.95	49584.195	56375.438	10.994	12.7	1.2	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: d3-N-MeFOSAA
Response Factor: 0.0129438
RRF SD: 0.000754884 , Relative SD: 5.832
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: d5-N-EtFOSAA

Response Factor: 0.0127089

RRF SD: 0.000726057, Relative SD: 5.71297

Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld

Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 0.928174
RRF SD: 0.0335518, Relative SD: 3.61482
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDoA

Response Factor: 0.07109
RRF SD: 0.00354453, Relative SD: 4.98597
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	cr	D F	cluded
$1+2$	1 170727M1_6	Standard	12.500	4.26	4359.285	60651.570	0.898	12.6	1.1	NO	NO	bb
2 2.	2 170727M1_7	Standard	12.500	4.27	4725.039	63780.648	0.926	13.0	4.2	NO	NO	bb
3. ${ }^{\text {a }}$, M4tes	3 170727M1_8	Standard	12.500	4.27	4065.133	58640.852	0.867	12.2	-2.5	NO	NO	bb
4×1	4 170727M1_9	Standard	12.500	4.27	4580.176	63482.531	0.902	12.7	1.5	NO	NO	bd
5 (xastme	5 170727M1_10	Standard	12.500	4.27	4125.885	63993.852	0.806	11.3	-9.3	NO	NO	bb
6 .	6 170727M1_11	Standard	12.500	4.27	4254.241	61602.465	0.863	12.1	-2.9	NO	NO	bb
	7 170727M1_12	Standard	12.500	4.27	4195.593	58621.656	0.895	12.6	0.7	NO	NO	bb
8 8, 4	8 170727M1_13	Standard	12.500	4.27	4206.188	55207.715	0.952	13.4	7.2	NO	NO	bb

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C2-PFTeDA

Response Factor: 0.273202
RRF SD: 0.0426255, Relative SD: 15.6022
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

\%	\# Name	Type	Std Conc	RT ${ }_{\text {drea }}$		IS Area	Response	Conc.	\%Der Conc Flag CoD		CoD Flag x=excluded	
	1 170727M1_6	Standard	12.500	4.61	20264.934	60651.570	4.177	15.3	22.3	NO	NO	bb
2×14	2 170727M1_7	Standard	12.500	4.61	20001.139	63780.648	3.920	14.3	14.8	NO	NO	bb
$3-4$	3 170727M1_8	Standard	12.500	4.61	16096.357	58640.852	3.431	12.6	0.5	NO	No	bb
4	4 17.0727M1_9	Standard	12.500	4.61	15958.571	63482.531	3.142	11.5	-8.0	NO	NO	bb
$5 \times+$	5 170727M1_10	Standard	12.500	4.61	14196.442	63993.852	2.773	10.2	-18.8	NO	NO	bb
6 -	6 170727M1_11	Standard	12.500	4.61	14711.492	61602.465	2.985	10.9	-12.6	NO	No	bb
7	7 170727M1_12	Standard	12.500	4.61	13866.051	58621.656	2.957	10.8	-13.4	NO	NO	bb
8	8 170727M1_13	Standard	12.500	4.62	17381.359	55207.715	3.935	14.4	15.2	NO	NO	bb

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: $8.3925 \mathrm{e}-015$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C5-PFHXA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: $8.3925 \mathrm{e}-015$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std, Cone	RT	* Area	IS Area	Response	Conc:	\%Dev	Conc. Flag mad	CoDFlag x=excluded	
	1 170727M1_6	Standard	12.500	3.47	9307.117	9307.117	12.500	12.5	0.0	NO	NO	bb
2)	2 170727M1_7	Standard	12.500	3.47	9382.290	9382.290	12.500	12.5	0.0	NO	NO	bb
3 - ${ }^{\text {a }}$	3 170727M1_8	Standard	12.500	3.47	9569.128	9569.128	12.500	12.5	0.0	NO	NO	bb
4 4,	4 170727M1_9	Standard	12.500	3.48	9630.841	9630.841	12.500	12.5	0.0	NO	NO	bb
5	5 170727M1_10	Standard	12.500	3.47	9691.771	9691.771	12.500	12.5	0.0	NO	NO	bb
6 \%	6 170727M1_11	Standard	12.500	3.47	9802.307	9802.307	12.500	12.5	0.0	NO	NO	bb
7 .	7 170727M1_12	Standard	12.500	3.47	9340.884	9340.884	12.500	12.5	0.0	NO	NO	bb
8.	8 170727M1_13	Standard	12.500	3.47	8249.938	8249.938	12.500	12.5	0.0	NO	NO	bb

Vista Analytical Laboratory

Dataset: U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 1.18688e-016, Relative SD: 1.18688e-014
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: RF

+48	\# Name	Type mer	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD \quad CoD Flag	$x=e x c l u d e d$
1. ${ }^{\text {a }}$	1 170727M1_6	Standard	12.500	3.78	61088.508	61088.508	12.500	12.5	0.0	NO	NO	bb
2.4	2 170727M1_7	Standard	12.500	3.78	63082.246	63082.246	12.500	12.5	0.0	NO	NO	bb
3.24	3 170727M1_8	Standard	12.500	3.78	61854.789	61854.789	12.500	12.5	0.0	NO	NO	bb
4.	4 170727M1_9	Standard	12.500	3.78	63851.328	63851.328	12.500	12.5	0.0	NO	NO	bb
5	5 170727M1_10	Standard	12.500	3.78	63831.750	63831.750	12.500	12.5	0.0	NO	NO	bb
6 \% ${ }^{\text {a }}$	6 170727M1_11	Standard	12.500	3.78	61124.367	61124.367	12.500	12.5	0.0	NO	NO	bb
7. + He	7 170727M1_12	Standard	12.500	3.78	57150.492	57150.492	12.500	12.5	0.0	NO	NO	bb
8 \%	8 170727M1_13	Standard	12.500	3.78	54884.840	54884.840	12.500	12.5	0.0	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed
Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: RF

T, ${ }^{\text {a }}$,	\# Name , wex Type		Std. Conc	RT	Area	15 Area	Response	Conc.	Dev	nc. Fla	CoD CoDFlag	$\mathrm{x}=$ excluded
1	1 170727M1_6	Standard	12.500	3.94	59640.039	59640.039	12.500	12.5	0.0	NO	NO	bb
$2+1.4 \pm+4$	2 170727M1_7	Standard	12.500	3.95	64993.883	64993.883	12.500	12.5	0.0	NO	NO	bb
3.	3 170727M1_8	Standard	12.500	3.95	64060.777	64060.777	12.500	12.5	0.0	NO	NO	bb
4.	4 170727M1_9	Standard	12.500	3.95	64542.324	64542.324	12.500	12.5	0.0	NO	NO	bb
5 S. ${ }^{\text {a }}$	5 170727M1_10	Standard	12.500	3.95	68173.781	68173.781	12.500	12.5	0.0	NO	NO	bb
6 ,	6 170727M1_11	Standard	12.500	3.95	65514.582	65514.582	12.500	12.5	0.0	NO	NO	bb
7	7 170727M1_12	Standard	12.500	3.95	61362.461	61362.461	12.500	12.5	0.0	NO	NO	bb
8 , 2 y	8 170727M1_13	Standard	12.500	3.95	56375.438	56375.438	12.500	12.5	0.0	NO	NO	bb

Vista Analytical Laboratory

Dataset:
 U:\Q4.PRO\results\170727M11170727M1-CRV.qld

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time Printed: \quad Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: 13C7-PFUnA

Response Factor:

RRF SD: 1.02787e-016, Relative SD: 1.02787e-014
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

4 c	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Der	Conc. Flag	CoD CoD Flag	$x=$ excluded
1.4.tert	1 170727M1_6	Standard	12.500	4.11	60651.570	60651.570	12.500	12.5	0.0	NO	NO	bb
2.84	2 170727M1_7	Standard	12.500	4.11	63780.648	63780.648	12.500	12.5	0.0	NO	NO	bb
3 3	3 170727M1_8	Standard	12.500	4.11	58640.852	58640.852	12.500	12.5	0.0	NO	NO	bb
4	4 170727M1_9	Standard	12.500	4.11	63482.531	63482.531	12.500	12.5	0.0	NO	NO	bb
5 .	5 170727M1_10	Standard	12.500	4.11	63993.852	63993.852	12.500	12.5	0.0	NO	NO	bb
6	6 170727M1_11	Standard	12.500	4.11	61602.465	61602.465	12.500	12.5	0.0	NO	NO	bb
17	7 170727M1_12	Standard	12.500	4.11	58621.656	58621.656	12.500	12.5	0.0	NO	NO	bb
8 8, ${ }^{2}$	8 170727M1_13	Standard	12.500	4.11	55207.715	55207.715	12.500	12.5	0.0	NO	NO	bb

Dataset:	Untitled
Last Altered:	Friday, July 28, 2017 09:09:44 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:10:05 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Compound name: PFBA

W Name	ID, wow	Date	Acq: Time
	IPA	27-Jul-17	11:37:28
2) . $170727 \mathrm{M} 1 _6$	ST170727M1-1 PFC CS-2 17G2704	27-Jul-17	11:48:12
3. . - , 170727M1_7	ST170727M1-2 PFC CS-1 17G2705	27-Jul-17	11:58:50
4*:\& \% 170727M1_8	ST170727M1-3 PFC CS0 17G2706	27-Jul-17	12:09:28
5 : - . $170727 \mathrm{M1} \mathrm{_9}$	ST170727M1-4 PFC CS1 17G2707	27-Jul-17	12:20:15
	ST170727M1-5 PFC CS2 17G2708	27-Jul-17	12:30:53
7 \% \% 170727M1_11	ST170727M1-6 PFC CS3 17G2709	27-Jul-17	12:41:40
8. ${ }_{\text {c }}$	ST170727M1-7 PFC CS4 17G2729	27-Jul-17	12:52:18
9. ${ }^{\text {a }}$ - 170727M1_13	ST170727M1-8 PFC CS5 17G2710	27-Jul-17	13:02:56
10. \#, . 170727 M 1 14	IPA	27-Jul-17	13:13:35
11.	SS170727M1-1 PFC SSS 17G2703	27-Jul-17	13:24:13
12) $170727 \mathrm{M1} 16$	IPA	27-Jul-17	13:34:52

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51
Compound name: PFBA
Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999016$
Calibration curve: $-0.000148745^{*} x^{\wedge} 2+1.144$ * $x+0.0934277$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qid
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFPeA
Correlation coefficient: $r=0.999743, r^{\wedge} 2=0.999486$
Calibration curve: 0.998566 * $x+0.0863273$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:

U:\Q4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999583, \mathrm{r}^{\wedge} 2=0.999166$
Calibration curve: 1.87908 * x + 0.124036
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset:	U:IQ4.PROlresults1170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: $\mathrm{r}=0.999556, \mathrm{r}^{\wedge} 2=0.999111$
Calibration curve: 1.45287 * x + 0.152663
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFHpA
Correlation coefficient: $\mathrm{r}=0.999612, \mathrm{r}^{\wedge} 2=0.999224$
Calibration curve: 1.23238 * $x+0.112392$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFHxS
Correlation coefficient: $\mathrm{r}=0.999353, \mathrm{r}^{\wedge} 2=0.998707$
Calibration curve: 1.63949 * x + 0.27697
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results1170727M11170727M1-CRV.qld

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: $\mathrm{r}=0.999168, \mathrm{r}^{\wedge} 2=0.998337$
Calibration curve: $0.97941^{*} x+0.169979$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PROYresults\170727M11170727M1-CRV.qld

Last Altered:
Printed:

Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999393, \mathrm{r}^{\wedge} 2=0.998786$
Calibration curve: 0.0865329 * $x+0.00638428$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFNA
Correlation coefficient: $\mathrm{r}=0.999135, \mathrm{r}^{\wedge} 2=0.998270$
Calibration curve: 1.06404 * $x+0.151731$
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Dataset: U:IQ4.PRO\results1170727M11170727M1-CRV.qld

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time Printed: \quad Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.999394, \mathrm{r}^{\wedge} 2=0.998789$
Calibration curve: 1.06848 * x + 0.223419
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
 U:IQ4.PRO\results\170727M11170727M1-CRV.qld

Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999093$
Calibration curve: $-0.000652924{ }^{*} x^{\wedge} 2+1.07342$ * $x+0.0667583$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFDA
Correlation coefficient: $r=0.999716, r^{\wedge} 2=0.999431$
Calibration curve: 1.23228 * x + 0.147279
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: N-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999665$
Calibration curve: $0.00022775^{*} x^{\wedge} 2+19.9472{ }^{*} x+0.0898127$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700856 Revision 1

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: N-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998879$
Calibration curve: $0.00266631^{*} x^{\wedge} 2+15.3353^{*} x+0.19972$
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Quantify Calibration Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Friday, July 28, } 2017 \text { 08:49:51 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, July 28, } 2017 \text { 09:06:47 Pacific Daylight Time }\end{array}$
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFUnA
Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999664$
Calibration curve: -0.000726299 * $x^{\wedge} 2+0.648776$ * $x+0.0756752$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: $R^{\wedge} 2=0.998629$
Calibration curve: $-1.32982 e-005$ * $x^{\wedge} 2+0.0672039$ * $x+0.00706292$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO|results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:
Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997867$
Calibration curve: 0.000108363 * $x^{\wedge} 2+0.920945$ * x + 0.119714
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset:
U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFTrDA
Correlation coefficient: $\mathrm{r}=0.999051, \mathrm{r}^{\wedge} 2=0.998103$
Calibration curve: $8.39255^{*} x+1.22744$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:06:47 Pacific Daylight Time

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999478$
Calibration curve: $-0.00104256{ }^{*} x^{\wedge} 2+1.20262{ }^{*} x+0.131178$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_6, Date: 27-Jul-2017, Time: 11:48:12, ID: ST170727M1-1 PFC CS-2 17G2704, Description: PFC CS-2 17G2704

13C3-PFBA

13C3-PFPeA

13C3-PFBS

13C2-PFHxA

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_6, Date: 27-Jul-2017, Time: 11:48:12, ID: ST170727M1-1 PFC CS-2 17G2704, Description: PFC CS-2 17G2704

PFHpA

Total PFHxS			
	F16:MRM of 2 channels, ES-		
			398.9 > 79.6
1007	PFHxS	PFHxS	$1.381 \mathrm{e}+003$
	3.47	M 3.47	
	9.60 e 1	- 9.60e1	
\%-	1381	- 1381	
	MmX	MMX	

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

13C2-PFOA

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_6, Date: 27-Jul-2017, Time: 11:48:12, ID: ST170727M1-1 PFC CS-2 17G2704, Description: PFC CS-2 17G2704

PFNA

13C5-PFNA

PFOSA

13C8-PFOSA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$

13C8-PFOS
F33:MRM of 1 channel,ES-

PFDA

13C2-PFDA

Dataset:	U:IQ4.PRO\results1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_6, Date: 27-Jul-2017, Time: 11:48:12, ID: ST170727M1-1 PFC CS-2 17G2704, Description: PFC CS-2 17G2704

d3-N-MeFOSAA

N-EtFOSAA

d5-N-EtFOSAA

PFUnA

F43:MRM of 2 channels,ES$562.9>269$ $3.247 \mathrm{e}+003$

13C2-PFUnA

PFDS

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset:	U:IQ4.PRO\results1170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_6, Date: 27-Jul-2017, Time: 11:48:12, ID: ST170727M1-1 PFC CS-2 17G2704, Description: PFC CS-2 17G2704

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV. qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Dataset:	U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_7, Date: 27-Jul-2017, Time: 11:58:50, ID: ST170727M1-2 PFC CS-1 17G2705, Description: PFC CS-1 17G2705

13C3-PFBA

PFPeA

13C3-PFPeA

13C3-PFBS

PFHxA

13C2-PFHxA
F9:MRM of 1 channel,ES-

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_7, Date: 27-Jul-2017, Time: 11:58:50, ID: ST170727M1-2 PFC CS-1 17G2705, Description: PFC CS-1 17G2705

Dataset:	U:IQ4.PRO\results1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_7, Date: 27-Jul-2017, Time: 11:58:50, ID: ST170727M1-2 PFC CS-1 17G2705, Description: PFC CS-1 17 G2705

13C5-PFNA

PFOSA

13C8-PFOSA

Total PFOS

13C8-PFOS

PFDA

13C2-PFDA

Dataset:	U:IQ4.PRO\|results1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_7, Date: 27-Jul-2017, Time: 11:58:50, ID: ST170727M1-2 PFC CS-1 17G2705, Description: PFC CS-1 17G2705

d3-N-MeFOSAA

d5-N-EtFOSAA

PFUnA

13C2-PFUnA

13C2-PFUnA

Last Altered: Printed:

Friday, July 28, 2017 08:49:51 Pacific Daylight Time Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_7, Date: 27-Jul-2017, Time: 11:58:50, ID: ST170727M1-2 PFC CS-1 17G2705, Description: PFC CS-1 17G2705

13C2-PFDoA

13C2-PFDoA
$\begin{array}{rr}\text { 13C2-PFDOA } \\ & \\ & \text { F52:MRM of } 1 \text { channel,ES- } \\ 615>569.7\end{array}$

13C2-PFTeDA

13C5-PFHxA

Dataset: U:IQ4.PROIresults|170727M11170727M1-CRV.qld

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time

Printed:

Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_7, Date: 27-Jul-2017, Time: 11:58:50, ID: ST170727M1-2 PFC CS-1 17G2705, Description: PFC CS-1 17G2705

13C4-PFOS

13C6-PFDA

13C8-PFOA

13C7-PFUnA

Dataset:	U:IQ4.PRO\results1170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_8, Date: 27-Jul-2017, Time: 12:09:28, ID: ST170727M1-3 PFC CS0 17G2706, Description: PFC CS0 17 G2706

13C3-PFBA

PFPeA

13C3-PFPeA

PFBS

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qid
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_8, Date: 27-Jul-2017, Time: 12:09:28, ID: ST170727M1-3 PFC CS0 17G2706, Description: PFC CS0 17G2706

PFHpA

F14:MRM of 2 channels,ES$363>169$

13C4-PFHpA

Total PFHxS

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

13C2-PFOA

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:
Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_8, Date: 27-Jul-2017, Time: 12:09:28, ID: ST170727M1-3 PFC CS0 17G2706, Description: PFC CS0 17 G2706

13C5-PFNA

PFOSA

13C8-PFOSA

Total PFOS

13C8-PFOS

PFDA

F35:MRM of 2 channels,ES-

13C2-PFDA

Dataset: U:\Q4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_8, Date: 27-Jul-2017, Time: 12:09:28, ID: ST170727M1-3 PFC CS0 17G2706, Description: PFC CS0 17 G2706

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_8, Date: 27-Jul-2017, Time: 12:09:28, ID: ST170727M1-3 PFC CS0 17G2706, Description: PFC CS0 17G2706

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_8, Date: 27-Jul-2017, Time: 12:09:28, ID: ST170727M1-3 PFC CS0 17G2706, Description: PFC CS0 17G2706

13C6-PFDA

13C8-PFOA

13C7-PFUnA

13C9-PFNA

Dataset:	U:IQ4.PRO\results1170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_9, Date: 27-Jul-2017, Time: 12:20:15, ID: ST170727M1-4 PFC CS1 17G2707, Description: PFC CS1 17 G2707

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_9, Date: 27-Jul-2017, Time: 12:20:15, ID: ST170727M1-4 PFC CS1 17G2707, Description: PFC CS1 17 G2707

PFHpA

Total PFHxS

1802-PFHxS

13C2-PFOA
F20:MRM of 1 channel,ES-

PFHpS

13C2-PFOA

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Dataset:	U:IQ4.PRO\results1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_9, Date: 27-Jul-2017, Time: 12:20:15, ID: ST170727M1-4 PFC CS1 17G2707, Description: PFC CS1 17 G2707

N-MeFOSAA

d5-N-EtFOSAA
F49:MRM of 1 channel,ES-
$589.3>419$

13C2-PFUnA

PFDS

13C2-PFUnA

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_9, Date: 27-Jul-2017, Time: 12:20:15, ID: ST170727M1-4 PFC CS1 17G2707, Description: PFC CS1 17G2707

Dataset:	U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_10, Date: 27-Jul-2017, Time: 12:30:53, ID: ST170727M1-5 PFC CS2 17G2708, Description: PFC CS2 17G2708

13C3-PFBA

PFPeA

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES-
$299>99$
$3.696 \mathrm{e}+004$

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_10, Date: 27-Jul-2017, Time: 12:30:53, ID: ST170727M1-5 PFC CS2 17G2708, Description: PFC CS2 17G2708

13C4-PFHpA

Total PFHxS

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

F24:MRM of 4 channels,ES-

13C2-PFOA

Dataset:	U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_10, Date: 27-Jul-2017, Time: 12:30:53, ID: ST170727M1-5 PFC CS2 17G2708, Description: PFC CS2 17G2708

PFOSA

13C8-PFOSA

Total PFOS F30:MRM of 2 channels,ES-

13C8-PFOS

PFDA

13C2-PFDA

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_10, Date: 27-Jul-2017, Time: 12:30:53, ID: ST170727M1-5 PFC CS2 17G2708, Description: PFC CS2 17G2708

d3-N-MeFOSAA

d5-N-EtFOSAA

PFUnA

F43:MRM of 2 channels,ES$562.9>269$ $6.475 \mathrm{e}+004$

13C2-PFUnA

13C2-PFUnA

Name: 170727M1_10, Date: 27-Jul-2017, Time: 12:30:53, ID: ST170727M1-5 PFC CS2 17G2708, Description: PFC CS2 17G2708

13C2-PFDoA

PFTrDA

13C2-PFDoA

PFTeDA

13C2-PFTEDA
F59:MRM of 2 channels,ES
714.8 > 669.6
$1.952 e+005$

13C4-PFBA

13C5-PFHxA
F10:MRM of 1 channel,ES-
$\begin{array}{ll} & 318>272.9\end{array}$

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV. qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_10, Date: 27-Jul-2017, Time: 12:30:53, ID: ST170727M1-5 PFC CS2 17G2708, Description: PFC CS2 17G2708

13C2-PFTeDA

13C6-PFDA

13C8-PFOA F21:MRM of 1 channel,ES-
13C9-PFNA

Dataset:	U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_11, Date: 27-Jul-2017, Time: 12:41:40, ID: ST170727M1-6 PFC CS3 17G2709, Description: PFC CS3 17G2709

13C3-PFBA

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES$29>99$

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES $313.2>119$

13C2-PFHxA

Work Order 1700856 Revision 1

Last Altered:
Printed:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_11, Date: 27-Jul-2017, Time: 12:41:40, ID: ST170727M1-6 PFC CS3 17G2709, Description: PFC CS3 17G2709

13C4-PFHpA

Total PFHxS

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

13C2-PFOA

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_11, Date: 27-Jul-2017, Time: 12:41:40, ID: ST170727M1-6 PFC CS3 17G2709, Description: PFC CS3 17G2709

Name: 170727M1_11, Date: 27-Jul-2017, Time: 12:41:40, ID: ST170727M1-6 PFC CS3 17G2709, Description: PFC CS3 17 G2709

d3-N-MeFOSAA

d5-N-EtFOSAA

N-EtFOSAA

13C2-PFUnA

13C2-PFUnA

Dataset: U:IQ4.PROIresults1170727M11170727M1-CRV.qld

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_11, Date: 27-Jul-2017, Time: 12:41:40, ID: ST170727M1-6 PFC CS3 17G2709, Description: PFC CS3 17G2709

13C2-PFDoA

PFTrDA

13C2-PFDoA
F52:MRM of 1 channel,ES-

PFTeDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

13C4-PFBA

13C5-PFHxA

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_11, Date: 27-Jul-2017, Time: 12:41:40, ID: ST170727M1-6 PFC CS3 17G2709, Description: PFC CS3 17G2709

Last Altered:
Printed:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_12, Date: 27-Jul-2017, Time: 12:52:18, ID: ST170727M1-7 PFC CS4 17G2729, Description: PFC CS4 17G2729

13C3-PFBA

13C3-PFPeA

F6:MRM of 2 channels,ES-
$299>99$ $2.960 \mathrm{e}+005$

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES
$313.2>119$

13C2-PFHxA

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_12, Date: 27-Jul-2017, Time: 12:52:18, ID: ST170727M1-7 PFC CS4 17G2729, Description: PFC CS4 17G2729

Abstract

PFHpA

F14:MRM of 2 channels,ES
$363>169$

13C4-PFHpA

Total PFHxS

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

13C2-PFOA

Dataset:
U:IQ4.PROIresultsI170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_12, Date: 27-Jul-2017, Time: 12:52:18, ID: ST170727M1-7 PFC CS4 17G2729, Description: PFC CS4 17G2729

PFNA

13C5-PFNA

13C8-PFOSA

13C8-PFOS

PFDA

13C2-PFDA

Dataset:	U:IQ4.PROIresults1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_12, Date: 27-Jul-2017, Time: 12:52:18, ID: ST170727M1-7 PFC CS4 17G2729, Description: PFC CS4 17G2729

 d3-N-MeFOSAA

d5-N-EtFOSAA

PFUnA

13C2-PFUnA

13C2-PFUnA

Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_12, Date: 27-Jul-2017, Time: 12:52:18, ID: ST170727M1-7 PFC CS4 17G2729, Description: PFC CS4 17G2729

13C2-PFDoA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

Dataset:	U:IQ4.PRO\results1170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_12, Date: 27-Jul-2017, Time: 12:52:18, ID: ST170727M1-7 PFC CS4 17G2729, Description: PFC CS4 17G2729

13C4-PFOS

13C2-PFTeDA

13C6-PFDA

13C8-PFOA

13C9-PFNA

13C7-PFUnA

Dataset: U:\Q4.PRO|results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_13, Date: 27-Jul-2017, Time: 13:02:56, ID: ST170727M1-8 PFC CS5 17G2710, Description: PFC CS5 17 G2710

13C3-PFBA

13C3-PFPeA

13C3-PFBS

13C2-PFHxA

Printed: \quad Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_13, Date: 27-Jul-2017, Time: 13:02:56, ID: ST170727M1-8 PFC CS5 17G2710, Description: PFC CS5 17 G2710

PFHpA

F14:MRM of 2 channels,ES

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

F24:MRM of 4 channels,ES-
448.9 > 79.9

13C2-PFOA

Dataset:	U:IQ4.PROlresults\170727M11170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_13, Date: 27-Jul-2017, Time: 13:02:56, ID: ST170727M1-8 PFC CS5 17G2710, Description: PFC CS5 17 G2710

13C5-PFNA

PFOSA

13C8-PFOSA

Total PFOS

$\begin{array}{r}\text { F30:MRM of } 2 \text { channels,ES- } \\ 499>79.9 \\ 7.585 \mathrm{e}+005 \\ \text { PFOS } \\ \hline 100 \\ \hline 1.83 \\ \hline\end{array}$
F30:MRM of 2 channels,ES-

13C8-PFOS

PFDA

13C2-PFDA

Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qld

Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Name: 170727M1_13, Date: 27-Jul-2017, Time: 13:02:56, ID: ST170727M1-8 PFC CS5 17G2710, Description: PFC CS5 17 G2710

d3-N-MeFOSAA

F48:MRM of 2 channels,ES $584.2>483$ $9.597 e+004$

d5-N-EtFOSAA

F43:MRM of 2 channels,ES$562.9>269$ $1.116 \mathrm{e}+006$

13C2-PFUnA

13C2-PFUnA

Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:

Name: 170727M1_13, Date: 27-Jul-2017, Time: 13:02:56, ID: ST170727M1-8 PFC CS5 17G2710, Description: PFC CS5 17G2710

13C2-PFDoA

PFTrDA

13C2-PFDoA

PFTeDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

13C4-PFBA

13C5-PFHxA

Last Altered: \quad Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:03:52 Pacific Daylight Time

Dataset: Untitled
Last Altered: Friday, July 28, 2017 09:11:54 Pacific Daylight Time
Printed:
Friday, July 28, 2017 09:12:13 Pacific Daylight Time

Dise ISlenk $7-28-17$

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_14, Date: 27-Jul-2017, Time: 13:13:35, ID: IPA, Description: IPA

13C3-PFBA
IPA IPA \quad F2:MRM of 1 channel,ES-
$216.1>171.8$

13C3-PFPeA

\section*{| PFBS | |
| :--- | ---: |
| IPA IPA | |
| | |
| $299>79.7$ | |
| 100 | |}

13C3-PFBS

13C2-PFHxA
F9:MRM of 1 channel,ES-
$315>269.8$
$1.000 \mathrm{e}-003$

Dataset:	Untitled
Last Altered:	Friday, July 28, 2017 09:11:54 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:12:13 Pacific Daylight Time

Name: 170727M1_14, Date: 27-Jul-2017, Time: 13:13:35, ID: IPA, Description: IPA

Work Order 1700856 Revision 1

Total PFHxS

1802-PFHxS

IPA IPA \quad F19:MRM of 2 channels, ES-
$413>169$

13C2-PFOA F20:MRM of 1 channel,ES-
IPA IPA
IPA IPA F20:MRM of 1 channel,ES-

Dataset: Untitled
 Last Altered:
 Friday, July 28, 2017 09:11:54 Pacific Daylight Time
 Printed: Friday, July 28, 2017 09:12:13 Pacific Daylight Time

Name: 170727M1_14, Date: 27 -Jul-2017, Time: 13:13:35, ID: IPA, Description: IPA

Dataset: Untitled
 Last Altered:
 Friday, July 28, 2017 09:11:54 Pacific Daylight Time
 Printed:
 Friday, July 28, 2017 09:12:13 Pacific Daylight Time

Name: 170727M1_14, Date: 27-Jul-2017, Time: 13:13:35, ID: IPA, Description: IPA

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFUnA

Dataset:	Untitled
Last Altered:	Friday, July 28, 2017 09:11:54 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:12:13 Pacific Daylight Time

Name: 170727M1_14, Date: 27 -Jul-2017, Time: 13:13:35, ID: IPA, Description: IPA

13C2-PFTeDA

IPA IPA \quad F59:MRM of 2 channels,ES-
$714.8>669.6$

Dataset:	Untitled
Last Altered:	Friday, July 28, 2017 09:11:54 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:12:13 Pacific Daylight Time

Name: 170727M1_14, Date: 27-Jul-2017, Time: 13:13:35, ID: IPA, Description: IPA

13C7-PFUnA

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51
Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS $17 \mathrm{G2703}$

	\# Name	Trace	Area	, IS Resp	RRF	Wt. Nol	RT	Conc.	\%Rec	$70-130$
	1 PFBA	$213.0>168.8$	15072.896	16053.381		1.000	1.32	10.19	101.91	
2	2 PFPeA	$263.1>218.9$	35956.582	44314.332		1.000	2.63	10.07	100.71	
3 ,	3 PFBS	$299>79.7$	6769.659	4858.718		1.000	2.88	9.20	92.03	
4 4, ${ }^{2}$	4 PFHxA	$313.2>268.9$	53387.461	17954.670		1.000	3.14	10.13	101.28	
5 . Nixtm	5 PFHpA	$363>318.9$	44124.266	40823.363		1.000	3.41	10.87	108.72	
6 6 \% . ${ }^{\text {a }}$	6 PFHxS	$398.9>79.6$	4501.415	3639.156		1.000	3.47	9.26	92.62	
7. $\mathrm{T}^{\text {a }}$	7 PFOA	$413>368.7$	46273.188	56263.316		1.000	3.61	10.32	103.23	
$8.4+5$	8 PFHpS	$448.9>98.8$	3813.298	56263.316		1.000	3.67	9.72	97.17	
9 9, ${ }^{2}$	9 PFNA	$462.9>418.8$	44301.281	47976.594		1.000	3.79	10.71	107.05	
10 .	10 PFOSA	$498.1>77.8$	9025.501	10158.539		1.000	3.79	10.18	101.85	
11	11 PFOS	$499>79.9$	7022.120	8620.282		1.000	3.83	9.48	94.79	
12.	12 PFDA	$513>468.8$	53575.969	53813.082		1.000	3.95	9.98	99.80	
13.	$13 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$	12994.350	9958.847		1.000	3.98	10.62	106.24	
14.	14 N-EtFOSAA	$584.2>419$	9767.218	9591.058		1.000	4.05	10.76	107.58	
15 -	15 PFUnA	$562.9>518.9$	29004.047	53532.066		1.000	4.11	10.44	104.44	
16	16 PFDS	$598.9>98.7$	2966.187	53532.066		1.000	4.17	10.22	102.22	
17 Wmy	17 PFDoA	$612.9>318.8$	3426.855	4293.898		1.000	4.29	10.69	106.89	
18.	18 PFTrDA	$662.9>618.9$	30729.227	4293.898		1.000	4.44	10.51	105.13	
19 He	19 PFTeDA	$712.9>668.8$	13853.436	14573.548		1.000	4.61	9.86	98.55	\checkmark
20 , m	20 13C3-PFBA	$216.1>171.8$	16053.381	19378.115	0.823	1.000	1.33	12.58	100.61	
21.4	21 13C3-PFPeA	$266>221.8$	44314.332	65249.512	0.264	1.000	2.63	12.85	102.82	
22	22 13C3-PFBS	$302>98.8$	4858.718	65249.512	0.031	1.000	2.88	12.13	97.06	
23.	23 13C2-PFHxA	$315>269.8$	17954.670	65249.512	0.275	1.000	3.14	5.00	100.07	
24	24 13C4-PFHpA	$367.2>321.8$	40823.363	65249.512	0.260	1.000	3.41	12.03	96.28	
25.4	25 18O2-PFHxS	$403>102.6$	3639.156	9129.876	0.402	1.000	3.47	12.39	99.13	
26	26 13C2-PFOA	$414.9>369.7$	56263.316	55490.434	1.042	1.000	3.60	12.16	97.31	
27	27 13C5-PFNA	$468.2>422.9$	47976.594	60366.590	0.792	1.000	3.79	12.54	100.34	
28	28 13C8-PFOSA	$506.1>77.7$	10158.539	59968.848	0.175	1.000	3.79	12.12	96.98	
29 .	29 13C8-PFOS	$507>79.9$	8620.282	9061.870	0.951	1.000	3.84	12.51	100.07	
30. We mat	$3013 \mathrm{C} 2-\mathrm{PFDA}$	$515.1>469.9$	53813.082	64909.809	0.869	1.000	3.95	11.92	95.40	
31 Work A		$573.3>419$	9958.847	59968.848	0.013	1.000	3.98	160.37	98.69	

Dataset
U:IQ4.PRO\results\170727M11170727M1-15.qld
Last Altered:
Friday, July 28, 2017 09:19:12 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:20:31 Pacific Daylight Time

Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS 17 G2703

	\# Name	Trace	Area	IS Resp	RRF	Wt./Vol	RT	Conc	\%Rec
32	32 d5-N-EtFOSAA	$589.3>419$	9591.058	59968.848	0.013	1.000	4.04	157.30	96.80
$33:+$	33 13C2-PFUnA	$565>519.8$	53532.066	59968.848	0.928	1.000	4.12	12.02	96.17
34	34 13C2-PFDoA	$615>569.7$	4293.898	59968.848	0.071	1.000	4.28	12.59	100.72
35	35 13C2-PFTeDA	$714.8>669.6$	14573.548	59968.848	0.273	1.000	4.62	11.12	88.95
36	36 13C4-PFBA	$217>171.8$	19378.115	19378.115	1.000	1.000	1.32	12.50	100.00
37.	37 13C5-PFHxA	$318>272.9$	65249.512	65249.512	1.000	1.000	3.14	5.00	100.00
38 .	38 13C3-PFHxS	$401.9>79.9$	9129.876	9129.876	1.000	1.000	3.47	12.50	100.00
39 \% ${ }^{\text {a }}$	39 13C8-PFOA	$421.3>376$	55490.434	55490.434	1.000	1.000	3.60	12.50	100.00
40.	40 13C9-PFNA	$472.2>426.9$	60366.590	60366.590	1.000	1.000	3.79	12.50	100.00
41.	41 13C4-PFOS	$503>79.9$	9061.870	9061.870	1.000	1.000	3.84	12.50	100.00
42 , \%	42 13C6-PFDA	$519.1>473.7$	64909.809	64909.809	1.000	1.000	3.95	12.50	100.00
43 ,	43 13C7-PFUnA	$570.1>524.8$	59968.848	59968.848	1.000	1.000	4.12	12.50	100.00

Method: U:IQ4.PRO|MethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51
Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS 17G2703

13C3-PFBA

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES$299>99$

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PRO\results1170727M11170727M1-15.qld
Last Altered:	Friday, July 28, 2017 09:19:12 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:20:01 Pacific Daylight Time

Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS 17 G2703

PFHpA

Total PFHxS

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

13C2-PFOA

Dataset:	U:IQ4.PRO\results1170727M1\170727M1-15.qld
Last Altered:	Friday, July 28, 2017 09:19:12 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:20:01 Pacific Daylight Time

Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS 17G2703

13C5-PFNA

13C8-PFOSA

Total PFOS

13C8-PFOS

PFDA

13C2-PFDA

Dataset: U:IQ4.PROIresults1170727M11170727M1-15.qld

Last Altered: Friday, July 28, 2017 09:19:12 Pacific Daylight Time
Printed:

Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS 17 G2703

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFUnA

13C2-PFUnA

Dataset:	U:IQ4.PRO\results1170727M1\170727M1-15.qld
Last Altered:	Friday, July 28, 2017 09:19:12 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:20:01 Pacific Daylight Time

Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS 17G2703

13C2-PFDoA

PFTrDA

57:MRM of 2 channels,ES-

13C2-PFDoA
F52:MRM of 1 channel,ES-
615 > 569.7

13C2-PFTeDA
F59:MRM of 2 channels,ES-
F59:MRM of 2 channels,ES-
$714.8>669.6$

13C4-PFBA

13C5-PFHxA

Dataset:	U:IQ4.PROIresults\170727M11170727M1-15.qld
Last Altered:	Friday, July 28, 2017 09:19:12 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:20:01 Pacific Daylight Time

Dataset:
U:\Q4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Compound name: PFBA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999678$
Calibration curve: $0.000110804{ }^{*} x^{\wedge} 2+1.07999{ }^{*} x+0.11163$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999801, \mathrm{r}^{2} 2=0.999602$
Calibration curve: 0.958373 * $x+0.0576289$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Work Order 1700856 Revision 1

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999861, \mathrm{r}^{\wedge} 2=0.999721$
Calibration curve: 1.85784 * x + - 0.00404936
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name =		td. Conc	RT Area 1 Area Response				Conc. \%Dev Conc. Flag \% CoD				CoD Flag x xexcluded	
1.	1 170728M2_2	Standard	0.250	2.90	124.236	3725.665	0.417	0.2	-9.4	NO	1.000	NO	bb
24.4 .3	2 170728M2_3	Standard	0.500	2.89	287.609	3680.041	0.977	0.5	5.6	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	2.90	605.269	3805.429	1.988	1.1	7.2	NO	1.000	NO	bb
4	4 170728M2_5	Standard	2.000	2.89	650.990	2141.663	3.800	2.0	2.4	NO	1.000	NO	bb
5	5 170728M2_6	Standard	5.000	2.90	2677.018	3529.564	9.481	5.1	2.1	NO	1.000	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	2.89	5207.783	3732.698	17.440	9.4	-6.1	NO	1.000	NO	bb
7	$7170728 \mathrm{M} 2 _8$	Standard	50.000	2.90	25941.150	3533.129	91.778	49.4	-1.2	NO	1.000	NO	bb
8	8170728 M 2 _9	Standard	100.000	2.90	52001.789	3559.104	182.637	98.3	-1.7	NO	1.000	NO	bb
9 9,	9 170728M2_10	Standard	250.000	2.90	109519.203	2916.369	469.416	252.7	1.1	NO	1.000	NO	bb

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999860, \mathrm{r} \wedge=0.999719$
Calibration curve: $1.39516{ }^{*} x+0.138496$
Response type: Internal Std (Ref 23), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999957, \mathrm{r}^{\wedge} 2=0.999914$
Calibration curve: 1.17847 * $x+0.0681471$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	$R \mathrm{R}$	Area	IS Area	Response	Conc.	Dev	I	CoD	D F	$x=$ excluded
1 nrumax	1 170728M2_2	Standard	0.250	3.40	1204.282	43061.438	0.350	0.2	-4.5	NO	1.000	NO	bb
2 2rita	2 170728M2_3	Standard	0.500	3.40	2014.244	38433.738	0.655	0.5	-0.4	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	3.40	3878.673	40909.711	1.185	0.9	-5.2	NO	1.000	NO	bb
4	4 170728M2_5	Standard	2.000	3.40	4962.255	24182.768	2.565	2.1	5.9	NO	1.000	NO	bb
	5 170728M2_6	Standard	5.000	3.41	19800.123	39156.566	6.321	5.3	6.1	NO	1.000	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	3.41	37646.004	40354.555	11.661	9.8	-1.6	NO	1.000	NO	bb
17	7 170728M2_8	Standard	50.000	3.41	183598.906	38873.176	59.038	50.0	0.1	NO	1.000	NO	bb
8	8 170728M2_9	Standard	100.000	3.41	381024.406	40612.637	117.274	99.5	-0.5	NO	1.000	NO	bb
9. 9	9 170728M2_10	Standard	250.000	3.41	849145.438	35974.605	295.050	250.3	0.1	NO	1.000	NO	bb

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.999604, \mathrm{r}^{\wedge} 2=0.999209$
Calibration curve: $1.66642{ }^{*} x+0.0527668$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		W, ma	Std. Conc		Area173.816	IS Area	Response 0.588	Conc. \%Dev Conc.Flag CoD CoD Flag x=excluded					
1	1 170728M2_2	Standard		0.250	3.48				0.3	28.5	NO	0.999	NO	MM
2	2 170728M2_3	Standard		0.500	3.48	211.907	3400.828	0.779	0.4	-12.9	NO	0.999	NO	MM
3	3 170728M2_4	Standard		1.000	3.47	425.566	3811.290	1.396	0.8	-19.4	NO	0.999	NO	MM
4 W	4 170728M2_5	Standard		2.000	3.47	583.868	1965.832	3.713	2.2	9.8	NO	0.999	NO	bb
5.	5 170728M2_6	Standard		5.000	3.47	2141.738	3173.995	8.435	5.0	0.6	NO	0.999	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard		10.000	3.48	4660.597	3599.749	16.184	9.7	-3.2	NO	0.999	NO	bb
17	7 170728M2_8	Standard		50.000	3.48	23173.209	3541.580	81.790	49.0	-1.9	NO	0.999	NO	bb
8	$8170728 \mathrm{M} 2 _9$	Standard		100.000	3.48	46227.219	3591.229	160.903	96.5	-3.5	NO	0.999	NO	bb
9.	9 170728M2_10	Standard		250.000	3.48	96280.008	2835.098	424.500	254.7	1.9	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO|results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.999602, \mathrm{r}^{\wedge} 2=0.999203$
Calibration curve: 0.972567 * $x+0.119743$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999698, \mathrm{r}^{\wedge} 2=0.999396$
Calibration curve: $0.0834866{ }^{*} x+0.000361382$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	WISArea	Response	Conc.	\%Dev	Conc.	Cob	CoD Flag	$x=e x c l u d e d$
+ $)^{2}$	1 170728M2_2	Standard	0.250	3.66	129.349	67432.422	0.024	0.3	13.1	NO	0.999	NO	bb
2	2 170728M2_3	Standard	0.500	3.66	184.534	69121.398	0.033	0.4	-20.9	NO	0.999	NO	bb
3	3 170728M2_4	Standard	1.000	3.65	440.810	65175.223	0.085	1.0	0.8	NO	0.999	NO	MM
4	4 170728M2_5	Standard	2.000	3.67	446.333	37231.426	0.150	1.8	-10.5	NO	0.999	NO	bb
5	5 170728M2_6	Standard	5.000	3.66	2501.044	65033.895	0.481	5.8	15.1	NO	0.999	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	3.67	4417.773	65066.762	0.849	10.2	1.6	NO	0.999	NO	bb
7	7 170728M2_8	Standard	50.000	3.67	22320.723	65231.879	4.277	51.2	2.5	NO	0.999	NO	bb
8	8 170728M2_9	Standard	100.000	3.67	43490.797	64313.508	8.453	101.2	1.2	NO	0.999	NO	bb
9.4	9 170728M2_10	Standard	250.000	3.67	88324.172	53563.473	20.612	246.9	-1.2	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset:
U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999774, \mathrm{r}^{\wedge} 2=0.999549$
Calibration curve: 1.0688 * x + 0.0838738
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998852, \mathrm{r}^{\wedge} 2=0.997705$
Calibration curve: 1.09922 * $x+0.0380461$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cob Flag	x=excluded
1.4.	1 170728M2_2	Standard	0.250	3.79	212.952	7534.616	0.353	0.3	14.7	NO	0.998	NO	bb
2	2 170728M2_3	Standard	0.500	3.79	402.743	7838.506	0.642	0.5	9.9	NO	0.998	NO	bb
3 LH	3 170728M2_4	Standard	1.000	3.78	641.875	7863.147	1.020	0.9	-10.6	NO	0.998	NO	bb
4 4TMM.	4 170728M2_5	Standard	2.000	3.79	796.114	4067.927	2.446	2.2	9.5	NO	0.998	NO	bb
5.4*	5 170728M2_6	Standard	5.000	3.79	3167.917	8322.412	4.758	4.3	-14.1	NO	0.998	NO	bb
6	6 170728M2_7	Standard	10.000	3.80	6695.482	7844.739	10.669	9.7	-3.3	NO	0.998	NO	bb
17	7 170728M2_8	Standard	50.000	3.80	31041.506	7294.865	53.191	48.4	-3.3	NO	0.998	NO	bb
8	8 170728M2_9	Standard	100.000	3.79	58226.086	7074.365	102.882	93.6	-6.4	NO	0.998	NO	bb
$9: 3$	9 170728M2_10	Standard	250.000	3.79	126557.727	5557.022	284.680	258.9	3.6	NO	0.998	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999381$
Calibration curve: $-8.2411 \mathrm{e}-005{ }^{*} x^{\wedge} 2+0.991329$ * $x+0.038537$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFDA

Correlation coefficient: $\mathrm{r}=0.999404, \mathrm{r}^{\wedge} 2=0.998807$
Calibration curve: 1.20688 * $x+0.163006$
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	\cdots Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	c. F	CoD		$x=e x c l u d e d$,
1	1 170728M2_2	Standard	0.250	3.95	1834.598	60003.141	0.382	0.2	-27.4	NO	0.999	NO	bb
$2=4$	2 170728M2_3	Standard	0.500	3.95	3284.270	55549.078	0.739	0.5	-4.5	NO	0.999	NO	bb
3	3 170728M2_4	Standard	1.000	3.95	6330.603	53618.211	1.476	1.1	8.8	NO	0.999	NO	bb
14	4 170728M2_5	Standard	2.000	3.95	6936.152	30851.922	2.810	2.2	9.7	NO	0.999	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	5.000	3.95	31825.025	59808.203	6.651	5.4	7.5	NO	0.999	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	3.96	63066.832	64638.613	12.196	10.0	-0.3	NO	0.999	NO	bb
7	7 170728M2_8	Standard	50.000	3.96	307105.938	58663.914	65.438	54.1	8.2	NO	0.999	NO	bb
8	8 170728M2_9	Standard	100.000	3.96	539413.000	55892.832	120.636	99.8	-0.2	NO	0.999	NO	bb
9 W*s	9 170728M2_10	Standard	250.000	3.96	1346063.625	56744.188	296.520	245.6	-1.8	NO	0.999	NO	bb

Dataset: U:IQ4.PROIresults1170728M21170728M2-CRV.ald
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999878$
Calibration curve: $-0.00407341{ }^{*} x^{\wedge} 2+19.807{ }^{*} x+-0.260375$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fir	CoD	D F	cla
1\%24xite	1 170728M2_2	Standard	0.250	3.96	435.997	12883.249	5.499	0.3	16.3	NO	1.000	NO	bd
2 20,	2 170728M2_3	Standard	0.500	3.98	741.759	12942.593	9.313	0.5	-3.3	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	3.98	1500.287	13619.269	17.901	0.9	-8.3	NO	1.000	NO	bb
4 , 4^{3}	4 170728M2_5	Standard	2.000	3.98	1869.939	7508.003	40.472	2.1	2.9	NO	1.000	NO	bb
	$5170728 \mathrm{M} 2 _6$	Standard	5.000	3.98	8162.221	14192.388	93.456	4.7	-5.3	NO	1.000	NO	bb
6 6, ${ }^{2}$	6170728 M 2 _7	Standard	10.000	3.98	16022.469	13644.029	190.827	9.7	-3.3	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	3.99	73798.828	12178.927	984.677	50.2	0.5	NO	1.000	NO	bb
	8 170728M2_9	Standard	100.000	3.99	144718.797	12044.903	1952.428	100.7	0.7	NO	1.000	NO	bb
	9170728 M 2 _10	Standard	250.000	3.99	311738.625	10798.391	4691.211	249.7	-0.1	NO	1.000	NO	bb

Compound name: N-ETFOSAA

Coefficient of Determination: $R^{\wedge} 2=0.999787$
Calibration curve: $-0.00107779{ }^{*} x^{\wedge} 2+15.2465{ }^{*} x+0.807358$
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Coric.	\%Dev	nc. Flag	CoD	CoDFlag	$x=$ excluded
1-4tse	1 170728M2_2	Standard	0.250	4.04	379.553	13002.753	4.743	0.3	3.3	NO	1.000	NO	bb
2	2 170728M2_3	Standard	0.500	4.04	831.407	13332.326	10.134	0.6	22.3	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	4.04	1236.473	13734.974	14.629	0.9	-9.3	NO	1.000	NO	bb
4	4 170728M2_5	Standard	2.000	4.04	1479.109	7359.929	32.657	2.1	4.5	NO	1.000	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	5.000	4.05	6354.800	13694.013	75.409	4.9	-2.1	NO	1.000	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	4.05	12531.979	12997.170	156.684	10.2	2.3	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	4.05	60396.695	12723.811	771.346	50.7	1.4	NO	1.000	NO	bb
8	8170728 M 2 _9	Standard	100.000	4.05	113763.313	12372.299	1494.188	98.6	-1.4	NO	1.000	NO	bb
9×4	$9170728 \mathrm{M} 2 _10$	Standard	250.000	4.05	260195.766	11272.279	3750.955	250.4	0.2	NO	1.000	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999945$
Calibration curve: $-0.000352587^{*} x^{\wedge} 2+0.738655 * x+0.0923596$
Response type: Internal Std (Ref 33), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	d.	RT	\% Area	IS Area	Response	Conc \%Dev Conc. Flag			CoD. Con Flag $x=$ excluded		
1. H Hix	1 170728M2_2	Standard	0.250	4.11	1300.977	57359.027	0.284	0.3	3.5	NO	1.000	NO	bb
2.4	2 170728M2_3	Standard	0.500	4.11	2222.104	62862.797	0.442	0.5	-5.3	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	4.11	4280.404	62925.098	0.850	1.0	2.7	NO	1.000	NO	bb
4 \% ${ }^{\text {a }}$. 4 170728M2_5	Standard	2.000	4.11	4679.629	38112.383	1.535	2.0	-2.3	NO	1.000	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	5.000	4.11	20068.451	65242.195	3.845	5.1	1.9	NO	1.000	NO	bb
6	6 170728M2_7	Standard	10.000	4.12	38402.559	64369.324	7.457	10.0	0.2	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	4.12	181049.781	63436.871	35.675	49.3	-1.3	NO	1.000	NO	bb
8	8 170728M2_9	Standard	100.000	4.12	354982.063	62525.133	70.968	100.8	0.8	NO	1.000	NO	bb
9 , < ${ }^{\text {a }}$	9170728 M 2	Standard	250.000	4.12	806806.375	62024.961	162.597	249.8	-0.1	NO	1.000	NO	bb

Compound name: PFDS

Coefficient of Determination: $R^{\wedge} 2=0.999598$
Calibration curve: $-4.79281 \mathrm{e}-005{ }^{*} \mathrm{x}^{\wedge} 2+0.0714733 * x+-0.00107069$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	CoD	CoDFlag	$\mathrm{x}=$ excluded
	1 170728M2_2	Standard	0.250	4.15	96.159	57359.027	0.021	0.3	23.3	NO	1.000	NO	MM
$2=4$	$2170728 \mathrm{M} 2 _3$	Standard	0.500	4.17	132.913	62862.797	0.026	0.4	-23.0	NO	1.000	NO	MM
3 \%	3 170728M2_4	Standard	1.000	4.17	352.819	62925.098	0.070	1.0	-0.4	NO	1.000	NO	bb
$4{ }^{4}$	$4170728 \mathrm{M} 2 \ldots 5$	Standard	2.000	4.15	460.965	38112.383	0.151	2.1	6.7	NO	1.000	NO	bb
5 .	5 170728M2_6	Standard	5.000	4.16	1773.629	65242.195	0.340	4.8	-4.3	NO	1.000	NO	bb
6.	$6170728 \mathrm{M} 2 _7$	Standard	10.000	4.16	3496.559	64369.324	0.679	9.6	-4.2	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	4.17	18043.170	63436.871	3.555	51.5	3.1	NO	1.000	NO	bb
8	8 170728M2_9	Standard	100.000	4.17	32985.578	62525.133	6.594	98.8	-1.2	NO	1.000	NO	bb
9 -	9 170728M2_10	Standard	250.000	4.17	73842.891	62024.961	14.882	250.2	0.1	NO	1.000	NO	bb

Dataset:
U:IQ4.PRO\results\170728M2\170728M2-CRV.ald
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998624$
Calibration curve: 0.000483062 * $x^{\wedge} 2+0.770384 * x+0.341437$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999451, \mathrm{r}^{\wedge} 2=0.998903$
Calibration curve: 9.7472 * x + 1.17215
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	ne	CoD	F	xcluded
- ${ }^{\text {a }}$	1 170728M2_2	Standard	0.250	4.43	1587.994	5962.159	3.329	0.2	-11.5	NO	0.999	NO	bb
2 2-	2 170728M2_3	Standard	0.500	4.43	3275.602	6995.869	5.853	0.5	-4.0	NO	0.999	NO	MM
3 \%	3 170728M2_4	Standard	1.000	4.43	5908.142	6271.752	11.775	1.1	8.8	NO	0.999	NO	bb
4	4 170728M2_5	Standard	2.000	4.44	6200.105	3674.716	21.090	2.0	2.2	NO	0.999	NO	bd
5	5 170728M2_6	Standard	5.000	4.44	28220.949	6599.834	53.450	5.4	7.3	NO	0.999	NO	bb
6.3	6 170728M2_7	Standard	10.000	4.44	54049.188	6719.549	100.545	10.2	1.9	NO	0.999	NO	bb
7	7 170728M2_8	Standard	50.000	4.45	253970.109	6608.889	480.357	49.2	-1.7	NO	0.999	NO	bb
8	8 170728M2_9	Standard	100.000	4.45	504655.469	6820.428	924.897	94.8	-5.2	NO	0.999	NO	bb
9*R\%	9 170728M2_10	Standard	250.000	4.44	1158187.375	5812.105	2490.895	255.4	2.2	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults|170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFTeDA

Coefficient of Determination: $R^{\wedge} 2=0.999781$
Calibration curve: -0.000168072 * $x^{\wedge} 2+1.03773 * x+0.147897$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 13C3-PFBA

Response Factor: 1.06832
RRF SD: 0.0716737 , Relative SD: 6.70898
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.27137
RRF SD: 0.0158354 , Relative SD: 5.83535
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Conc	RT	Area	IS Area			6Dev	nc. F	Of	xcluded
1	1 170728M2_2	Standard	12.500	2.65	29626.736	43858.891	3.378	12.4	-0.4	NO	NO	MM
2 , 4	2 170728M2_3	Standard	12.500	2.65	29534.408	43343.379	3.407	12.6	0.4	NO	NO	MM
3.4	3 170728M2_4	Standard	12.500	2.65	29804.117	42543.984	3.503	12.9	3.3	NO	NO	MM
4	4 170728M2_5	Standard	12.500	2.65	16510.811	24635.240	3.351	12.3	-1.2	NO	NO	MM
5	5 170728M2_6	Standard	12.500	2.65	28830.305	42398.152	3.400	12.5	0.2	NO	NO	MM
6 . ${ }^{\text {che }}$	$6170728 \mathrm{M} 2 \ldots 7$	Standard	12.500	2.65	30611.281	42712.195	3.583	13.2	5.6	NO	NO	MM
17	7 170728M2_8	Standard	12.500	2.66	30216.350	43123.621	3.503	12.9	3.3	NO	NO	MM
8	8 170728M2_9	Standard	12.500	2.65	30196.234	43136.543	3.500	12.9	3.2	NO	NO	MM
9.4	9 170728M2_10	Standard	12.500	2.66	26920.408	46352.453	2.904	10.7	-14.4	NO	NO	MM

Compound name: 13C3-PFBS

Response Factor: 0.0330768
RRF SD: 0.00312302, Relative SD: 9.44172
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

			Sid. Conc	RT		IS Area Response		Conc. \%Dev Conc. Fla			CodFlag $\mathrm{x}=$-excluded	
2.	1 170728M2_2	Standard	12.500	2.89	3725.665	43858.891	0.425	12.8	2.7	NO	NO	bb
2	2 170728M2_3	Standard	12.500	2.89	3680.041	43343.379	0.425	12.8	2.7	NO	NO	bb
3	3 170728M2_4	Standard	12.500	2.90	3805.429	42543.984	0.447	13.5	8.2	NO	NO	bb
4 4.	4 170728M2_5	Standard	12.500	2.90	2141.663	24635.240	0.435	13.1	5.1	NO	NO	bb
5.4	5 170728M2_6	Standard	12.500	2.89	3529.564	42398.152	0.416	12.6	0.7	NO	NO	bb
6	6 170728M2_7	Standard	12.500	2.89	3732.698	42712.195	0.437	13.2	5.7	NO	NO	bb
7	7 170728M2_8	Standard	12.500	2.90	3533.129	43123.621	0.410	12.4	-0.9	NO	NO	bb
8	8 170728M2_9	Standard	12.500	2.90	3559.104	43136.543	0.413	12.5	-0.2	NO	NO	bb
9.4	9 170728M2_10	Standard	12.500	2.90	2916.369	46352.453	0.315	9.5	-23.9	NO	NO	bb

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld

Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C2-PFHxA
Response Factor: 0.335131
RRF SD: 0.0194922, Relative SD: 5.81629
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFHpA

Response Factor: 0.368851
RRF SD: 0.0255164 , Relative SD: 6.91781
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

.	\# Name	Type ${ }^{\text {a }}$	d. Conc	RT	Area	IS Area	onse	Conc.	\%Dev	nc.	D	xcl
$1{ }^{\text {1 }}$	1 170728M2_2	Standard	12.500	3.40	43061.438	43858.891	4.909	13.3	6.5	NO	NO	bb
$2{ }^{2}=4$	2170728 M 2 _3	Standard	12.500	3.40	38433.738	43343.379	4.434	12.0	-3.8	NO	NO	bb
3.	3 170728M2_4	Standard	12.500	3.41	40909.711	42543.984	4.808	13.0	4.3	NO	NO	bb
4.	4 170728M2_5	Standard	12.500	3.40	24182.768	24635.240	4.908	13.3	6.5	NO	NO	bb
	$5170728 \mathrm{M} 2 _6$	Standard	12.500	3.41	39156.566	42398.152	4.618	12.5	0.2	NO	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	12.500	3.41	40354.555	42712.195	4.724	12.8	2.5	NO	NO	bb
$7 . m$ are	7 170728M2_8	Standard	12.500	3.41	38873.176	43123.621	4.507	12.2	-2.2	NO	NO	bb
8.	8 170728M2_9	Standard	12.500	3.41	40612.637	43136.543	4.707	12.8	2.1	NO	NO	bb
9 9, ma	9 170728M2_10	Standard	12.500	3.41	35974.605	46352.453	3.881	10.5	-15.8	NO	NO	bb

Compound name: 1802-PFHxS

Response Factor: 0.460288
RRF SD: 0.0389674 , Relative SD: 8.46587
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD $=$ CoD Fia	xcluded
	1 170728M2_2	Standard	12.500	3.47	3693.206	7812.813	5.909	12.8	2.7	NO	NO	bb
2	2 170728M2_3	Standard	12.500	3.47	3400.828	7661.151	5.549	12.1	-3.6	No	NO	bb
$3-1$	3 170728M2_4	Standard	12.500	3.47	3811.290	7158.323	6.655	14.5	15.7	NO	NO	bb
	4 1.70728M2_5	Standard	12.500	3.47	1965.832	4300.112	5.714	12.4	-0.7	NO	NO	bb
5	5 170728M2_6	Standard	12.500	3.48	3173.995	6977.436	5.686	12.4	-1.2	NO	NO	bb
6	6 170728M2_7	Standard	12.500	3.47	3599.749	7970.943	5.645	12.3	-1.9	NO	NO	bb
7	7 170728M2_8	Standard	12.500	3.49	3541.580	7411.993	5.973	13.0	3.8	NO	NO	bb
8.	8 170728M2_9	Standard	12.500	3.48	3591.229	7651.521	5.867	12.7	2.0	NO	NO	bb
$9 \times$	9 170728M2_10	Standard	12.500	3.48	2835.098	7407.810	4.784	10.4	-16.9	NO	NO	bb

Compound name: 13C2-PFOA

Response Factor: 1.29343
RRF SD: 0.0978713, Relative SD: 7.56682
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std Conc	RT- Area		, IS Área	Response	Conc. \% $\%$ Dev		Conc. Flag	CoD Flag $x=e x c l u d e d$.	
4	1 170728M2_2	Standard	12.500	3.60	67432.422	50353.582	16.740	12.9	3.5	NO	NO	bb
$2=14$	2 170728M2_3	Standard	12.500	3.60	69121.398	51722.332	16.705	12.9	3.3	NO	NO	bb
3 3	3 170728M2_4	Standard	12.500	3.60	65175.223	51349.039	15.866	12.3	-1.9	NO	NO	bb
(4	4 170728M2_5	Standard	12.500	3.60	37231.426	27008.686	17.231	13.3	6.6	NO	NO	bb
5	5 170728M2_6	Standard	12.500	3.61	65033.895	47128.594	17.249	13.3	6.7	NO	NO	bb
6	6 170728M2_7	Standard	12.500	3.60	65066.762	50246.984	16.187	12.5	0.1	NO	NO	bb
7 \% ${ }^{\text {a }}$	7 170728M2_8	Standard	12.500	3.61	65231.879	50282.098	16.216	12.5	0.3	NO	NO	bb
\checkmark	8 170728M2_9	Standard	12.500	3.60	64313.508	49800.309	16.143	12.5	-0.2	NO	NO	bb
9×1	9 170728M2_10	Standard	12.500	3.61	53563.473	50823.395	13.174	10.2	-18.5	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROlresults\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C5-PFNA

Response Factor: 0.985933
RRF SD: 0.0816002, Relative SD: 8.27645
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C8-PFOSA

Response Factor: 0.132492
RRF SD: 0.0168341, Relative SD: 12.7057
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results\170728M21170728M2-CRV.qld
Last Altered:
Printed:
Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C8-PFOS

Response Factor: 1.18433
RRF SD: 0.0947906, Relative SD: 8.00375
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDA

Response Factor: 0.997715
RRF SD: 0.0821401 , Relative SD: 8.23282
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	Dev	c.	D	duded:
	1 170728M2_2	Standard	12.500	3.95	60003.141	60101.680	12.480	12.5	0.1	NO	NO	bb
2.4*	2 170728M2_3	Standard	12.500	3.95	55549.078	61783.742	11.239	11.3	-9.9	NO	NO	bb
3.4	3 170728M2_4	Standard	12.500	3.95	53618.211	49093.789	13.652	13.7	9.5	NO	NO	bb
4. Le	$4170728 \mathrm{M} 2 _5$	Standard	12.500	3.95	30851.922	30032.572	12.841	12.9	3.0	NO	NO	bb
5 , + ${ }^{\text {a }}$	5 170728M2_6	Standard	12.500	3.95	59808.203	63988.594	11.683	11.7	-6.3	NO	NO	bb
6	6170728 M 2 _7	Standard	12.500	3.95	64638.613	57573.766	14.034	14.1	12.5	NO	NO	bb
$7,$	7 170728M2_8	Standard	12.500	3.96	58663.914	57140.258	12.833	12.9	2.9	NO	NO	bb
8	8 170728M2_9	Standard	12.500	3.96	55892.832	55938.863	12.490	12.5	0.1	NO	NO	bb
9 Cl	9170728 M 2 _10	Standard	12.500	3.96	56744.188	64531.480	10.992	11.0	-11.9	NO	NO	bb

Dataset:	U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.0176867

RRF SD: 0.0016968, Relative SD: 9.59363
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

2. ${ }^{\text {a }}$			Std Conc	RT	Area	IS Area	Response Conc.		\%Dev Conc. Flag		CoDFlag $x=$ excluded	
-	1 170728M2_2	Standard	162.500	3.97	12883.249	55026.387	2.927	165.5	1.8	NO	NO	bb
2, mix	2 170728M2_3	Standard	162.500	3.98	12942.593	57174.012	2.830	160.0	-1.5	NO	NO	bb
3.15	3 170728M2_4	Standard	162.500	3.97	13619.269	56604.801	3.008	170.0	4.6	NO	No	bb
$4{ }^{4}+3$	4 170728M2_5	Standard	162.500	3.98	7508.003	32976.875	2.846	160.9	-1.0	NO	NO	bb
5×2	5 170728M2_6	Standard	162.500	3.98	14192.388	54183.844	3.274	185.1	13.9	NO	NO	bb
6	6 170728M2_7	Standard	162.500	3.98	13644.029	56154.422	3.037	171.7	5.7	NO	NO	bb
7	7 170728M2_8	Standard	162.500	3.99	12178.927	54787.105	2.779	157.1	-3.3	NO	NO	bb
8.	8 170728M2_9	Standard	162.500	3.99	12044.903	51641.449	2.916	164.8	1.4	NO	NO	bb
9-5cte	9 170728M2_10	Standard	162.500	3.98	10798.391	59947.359	2.252	127.3	-21.7	NO	NO	bb

Compound name: d5-N-EtFOSAA

Response Factor: 0.0177723
RRF SD: 0.00139291 , Relative SD: 7.83752
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults1170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 1.12922
RRF SD: 0.0629902, Relative SD: 5.57822
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDoA

Response Factor: 0.116007
RRF SD: 0.0102256, Relative SD: 8.81464
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	CoD Flag $x=$ excluded	
1	1 170728M2_2	Standard	12.500	4.27	5962.159	55026.387	1.354	11.7	-6.6	NO	NO	bb
2 2.	$2170728 \mathrm{M} 2 _3$	Standard	12.500	4.27	6995.869	57174.012	1.530	13.2	5.5	NO	NO	bd
3.	3 170728M2_4	Standard	12.500	4.27	6271.752	56604.801	1.385	11.9	-4.5	NO	NO	bb
4	4 170728M2 5	Standard	12.500	4.27	3674.716	32976.875	1.393	12.0	-3.9	NO	NO	bb
5 cts	5170728 M 2 _6	Standard	12.500	4.27	6599.834	54183.844	1.523	13.1	5.0	NO	NO	bb
6	6 170728M2_7	Standard	12.500	4.28	6719.549	56154.422	1.496	12.9	3.2	NO	NO	bb
17	7 170728M2_8	Standard	12.500	4.28	6608.889	54787.105	1.508	13.0	4.0	NO	NO	bb
8 - STH	8 170728M2_9	Standard	12.500	4.28	6820.428	51641.449	1.651	14.2	13.8	NO	NO	bb
9 9,	9 170728M2_10	Standard	12.500	4.28	5812.105	59947.359	1.212	10.4	-16.4	NO	NO	bb

Dataset:	U:IQ4.PROlresults\170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C2-PFTeDA

Response Factor: 0.762144
RRF SD: 0.0538952, Relative SD: 7.07152
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFBA

Response Factor: 1

RRF SD: 1.30185e-016, Relative SD: $1.30185 \mathrm{e}-014$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD - CoDFlag	$x=e x c l u d e d$
1	1 170728M2_2	Standard	12.500	1.34	14679.223	14679.223	12.500	12.5	0.0	NO	NO	bb
2. Wims	2 170728M2_3	Standard	12.500	1.35	14157.839	14157.839	12.500	12.5	0.0	NO	NO	bb
3	3 170728M2_4	Standard	12.500	1.35	13901.761	13901.761	12.500	12.5	0.0	NO	NO	bb
4	4 170728M2_5	Standard	12.500	1.35	7966.370	7966.370	12.500	12.5	0.0	NO	NO	bb
5	5 170728M2_6	Standard	12.500	1.36	13542.045	13542.045	12.500	12.5	0.0	NO	NO	bb
6	$6170728 \mathrm{M} 2 \ldots 7$	Standard	12.500	1.36	14135.810	14135.810	12.500	12.5	0.0	NO	NO	bb
7	7 170728M2_8	Standard	12.500	1.36	13890.406	13890.406	12.500	12.5	0.0	NO	NO	bb
	8170728 M 2 _9	Standard	12.500	1.35	14422.259	14422.259	12.500	12.5	0.0	NO	NO	bb
9-4ty	9 170728M2_10	Standard	12.500	1.36	15665.605	15665.605	12.500	12.5	0.0	NO	NO	bb

Last Altered: \quad Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: RF

1. 2 3	\# Name frat Type		cor	Area		Response		Conc. \%Dev		Conc, Flag	COD	Cob Flag $\mathrm{x}=$ excluded	
	1 170728M2_2	Standard	5.000	3.13	43858.891	43858.891	5.000	5.0	0.0	NO		NO	bb
	2 170728M2_3	Standard	5.000	3.14	43343.379	43343.379	5.000	5.0	0.0	NO		NO	bb
	3 170728M2_4	Standard	5.000	3.13	42543.984	42543.984	5.000	5.0	0.0	NO		NO	bb
4	4 170728M2_5	Standard	5.000	3.14	24635.240	24635.240	5.000	5.0	0.0	NO		NO	bb
5	5 170728M2_6	Standard	5.000	3.14	42398.152	42398.152	5.000	5.0	0.0	NO		NO	bb
6	6170728 M 2 _7	Standard	5.000	3.14	42712.195	42712.195	5.000	5.0	0.0	NO		NO	bb
7.	7 170728M2_8	Standard	5.000	3.14	43123.621	43123.621	5.000	5.0	0.0	NO		NO	bb
8	8 170728M2_9	Standard	5.000	3.14	43136.543	43136.543	5.000	5.0	0.0	NO		NO	bb
9 Y	9 170728M2_10	Standard	5.000	3.14	46352.453	46352.453	5.000	5.0	0.0	NO		NO	bb

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 3.92523e-017, Relative SD: 3.92523e-015
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:
Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT Area IS Area Response				Conc. \%Dev Conc. Flag			CoDFlag x -excluded	
3 S	1 170728M2_2	Standard	12.500	3.60	50353.582	50353.582	12.500	12.5	0.0	NO	NO	bb
2.4	2 170728M2_3	Standard	12.500	3.60	51722.332	51722.332	12.500	12.5	0.0	NO	NO	bb
3	3 170728M2_4	Standard	12.500	3.60	51349.039	51349.039	12.500	12.5	0.0	NO	NO	bb
4. \% ${ }^{\text {atam }}$	4 170728M2_5	Standard	12.500	3.60	27008.686	27008.686	12.500	12.5	0.0	NO	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	12.500	3.60	47128.594	47128.594	12.500	12.5	0.0	NO	NO	bb
6	6 170728M2_7	Standard	12.500	3.61	50246.984	50246.984	12.500	12.5	0.0	NO	NO	bb
7	7 170728M2_8	Standard	12.500	3.61	50282.098	50282.098	12.500	12.5	0.0	NO	NO	bb
8	8 170728M2_9	Standard	12.500	3.60	49800.309	49800.309	12.500	12.5	0.0	NO	NO	bb
9 9, +3	9 170728M2_10	Standard	12.500	3.61	50823.395	50823.395	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 1.30185e-016, Relative SD: 1.30185e-014
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:
U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	+4	Std. Conc	RT	\% Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD CoD Flag	$x=$ excluded
1.4.ET	1 170728M2_2	Standard		12.500	3.83	8684.470	8684.470	12.500	12.5	0.0	NO	NO	bb
2 2-	2 170728M2_3	Standard		12.500	3.83	8914.332	8914.332	12.500	12.5	0.0	NO	NO	bb
3 C	3 170728M2_4	Standard		12.500	3.83	8566.251	8566.251	12.500	12.5	0.0	NO	NO	bb
$4-5$	4 170728M2_5	Standard		12.500	3.83	5073.126	5073.126	12.500	12.5	0.0	NO	NO	bb
5 5	5 170728M2_6	Standard		12.500	3.83	9069.241	9069.241	12.500	12.5	0.0	NO	NO	bb
6	6170728 M 2	Standard		12.500	3.84	9441.893	9441.893	12.500	12.5	0.0	NO	NO	bb
17	7 170728M2_8	Standard		12.500	3.84	8412.276	8412.276	12.500	12.5	0.0	NO	NO	bb
$8{ }^{8}$	$8170728 \mathrm{M2} 2$ 9	Standard		12.500	3.84	8094.951	8094.951	12.500	12.5	0.0	NO	NO	bb
$9+1$	9 170728M2_10	Standard		12.500	3.84	8844.576	8844.576	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C6-PFDA

Response Factor: 1

RRF SD: 8.77708e-017, Relative SD: 8.77708e-015
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag COD	CoD Flag	$x=e x c l u d e d$.
	1 170728M2_2	Standard	12.500	3.95	60101.680	60101.680	12.500	12.5	0.0	NO	NO	bb
2	2 170728M2_3	Standard	12.500	3.95	61783.742	61783.742	12.500	12.5	0.0	NO	NO	bb
3	3 170728M2_4	Standard	12.500	3.94	49093.789	49093.789	12.500	12.5	0.0	NO	NO	bb
4	4 170728M2_5	Standard	12.500	3.95	30032.572	30032.572	12.500	12.5	0.0	NO	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	12.500	3.95	63988.594	63988.594	12.500	12.5	0.0	NO	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	12.500	3.95	57573.766	57573.766	12.500	12.5	0.0	NO	NO	bb
7	7 170728M2_8	Standard	12.500	3.95	57140.258	57140.258	12.500	12.5	0.0	NO	NO	bb
8. ${ }^{\text {a }}$,	8170728 M 2 _9	Standard	12.500	3.96	55938.863	55938.863	12.500	12.5	0.0	NO	NO	bb
9, ${ }^{\text {a }}$	$9170728 \mathrm{M} 2 \ldots 10$	Standard	12.500	3.95	64531.480	64531.480	12.500	12.5	0.0	NO	NO	bb

Quantify Compound Summary Report Vista Analytical Laboratory		MassLynx MassLynx V4.1 SCN945 SCN960	Page 22 of 22
Dataset:	U:IQ4.PRO\results\17072	M21170728M2-CRV.qld	
Last Altered:	Sunday, July 30, 201708	0:19 Pacific Daylight Time	
Printed:	Sunday, July 30, 201708	1:02 Pacific Daylight Time	

Compound name: 13C7-PFUnA

Response Factor: 1
RRF SD: 3.92523e-017, Relative SD: $3.92523 \mathrm{e}-015$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Cone.	\%Dev	Conc. Flag	COD COD Fla	oxcluded
$1 \times$	1 170728M2_2	Standard	12.500	4.11	55026.387	55026.387	12.500	12.5	0.0	NO	NO	MM
2	2 170728M2_3	Standard	12.500	4.12	57174.012	57174.012	12.500	12.5	0.0	NO	NO	bb
3×1	3 170728M2_4	Standard	12.500	4.11	56604.801	56604.801	12.500	12.5	0.0	NO	NO	bb
	4 170728M2_5	Standard	12.500	4.11	32976.875	32976.875	12.500	12.5	0.0	NO	NO	bb
$5: 3$	5 170728M2_6	Standard	12.500	4.12	54183.844	54183.844	12.500	12.5	0.0	NO	NO	bb
6	6 170728M2_7	Standard	12.500	4.12	56154.422	56154.422	12.500	12.5	0.0	NO	NO	bb
7.	7 170728M2_8	Standard	12.500	4.12	54787.105	54787.105	12.500	12.5	0.0	NO	NO	bb
8.48	8 170728M2_9	Standard	12.500	4.12	51641.449	51641.449	12.500	12.5	0.0	NO	NO	bb
9 - 0^{4}	9 170728M2_10	Standard	12.500	4.12	59947.359	59947.359	12.500	12.5	0.0	NO	NO	bb

Dataset:	Untitled
Last Altered:	Monday, July 31, 2017 08:41:44 Pacific Daylight Time
Printed:	Monday, July 31, 2017 08:42:20 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Compound name: PFBA

Weme	ID	Acq.Date	Acq. Time
	IPA	28-Jul-17	16:09:52
$2 \times 4170728 \mathrm{M} 2 _2$	ST170728M2-1 PFC CS-2 17G2824	28-Jul-17	16:20:47
3. ${ }^{\text {a }}$-170728M2_3	ST170728M2-2 PFC CS-1 17G2825	28-Jul-17	16:31:32
4 4. ${ }^{\text {a }}$ (70728M2_4	ST170728M2-3 PFC CS0 17G2826	28-Jul-17	16:42:11
5.4. 170728M2_5	ST170728M2-4 PFC CS1 17G2827	28-Jul-17	16:52:57
	ST170728M2-5 PFC CS2 17G2828	28-Jul-17	17:03:36
7 7. ${ }^{\text {\% }}$ - $170728 \mathrm{M2} 27$	ST170728M2-6 PFC CS3 17G2829	28-Jul-17	17:14:14
8.	ST170728M2-7 PFC CS4 17G2830	28-Jul-17	17:24:53
9.	ST170728M2-8 PFC CS5 17G2831	28-Jul-17	17:35:31
$10.5170728 \mathrm{M} 2 _10$	ST170728M2-9 PFC CS6 17G2801	28-Jul-17	17:46:09
11.	ST170728M2-10 PFC CS7 17G2802	28-Jul-17	17:56:56
12.	IPA	28-Jul-17	18:07:42
13 : 170728M2_13	SS170728M2-1 PFC SSS 17G2823	28-Jul-17	18:18:40
14.	IPA	28-Jul-17	18:29:24

Dataset: U:\Q4.PRO\results\170728M2\170728M2-CRV.qld

Last Altered:
Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L17_I_14_7-27-17.mdb 28 Jul 2017 08:40:43

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:05:03

Compound name: PFBA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999678$
Calibration curve: $0.000110804{ }^{*} x^{\wedge} 2+1.07999^{*} x+0.11163$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFPeA
Correlation coefficient: $\mathrm{r}=0.999801, \mathrm{r}^{\wedge} 2=0.999602$
Calibration curve: 0.958373 * $x+0.0576289$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700856 Revision 1

Quantify Calibration Report
 Vista Analytical Laboratory Q1

MassLynx MassLynx V4.1 SCN945 SCN960

Dataset: U:IQ4.PROIresults\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $\mathrm{r}=0.999861, \mathrm{r}^{\wedge} 2=0.999721$
Calibration curve: 1.85784 * $x+-0.00404936$
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: $\mathrm{r}=0.999860, \mathrm{r}^{\wedge} 2=0.999719$
Calibration curve: 1.39516 * x + 0.138496
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFHpA
Correlation coefficient: $\mathrm{r}=0.999957, \mathrm{r}^{\wedge} 2=0.999914$
Calibration curve: $1.17847{ }^{*} x+0.0681471$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700856 Revision 1

Dataset: U:QQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFHxS
Correlation coefficient: $\mathrm{r}=0.999604, \mathrm{r}^{\wedge} 2=0.999209$
Calibration curve: 1.66642 * $x+0.0527668$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results1170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: $\mathrm{r}=0.999602, \mathrm{r}^{\wedge} 2=0.999203$
Calibration curve: $0.972567^{*} x+0.119743$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld

Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFHpS
Correlation coefficient: $\mathrm{r}=0.999698, \mathrm{r}^{\wedge} 2=0.999396$
Calibration curve: 0.0834866 * $x+0.000361382$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFNA
Correlation coefficient: $\mathrm{r}=0.999774, \mathrm{r}^{\wedge} 2=0.999549$
Calibration curve: 1.0688 *x + 0.0838738
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld

Last Altered:
Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998852, \mathrm{r}^{\wedge} 2=0.997705$
Calibration curve: 1.09922 * $x+0.0380461$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Sunday, July 30, } 2017 \text { 08:05:03 Pacific Daylight Time } \\ \text { Printed: } & \text { Sunday, July 30, } 2017 \text { 08:06:31 Pacific Daylight Time }\end{array}$
Printed:
Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFOS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999381$
Calibration curve: $-8.2411 e-005^{*} x^{\wedge} 2+0.991329$ * $x+0.038537$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1700856 Revision 1

Dataset: U:\Q4.PRO\results1170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $\mathrm{r}=0.999404, \mathrm{r}^{\wedge} 2=0.998807$
Calibration curve: 1.20688 * $x+0.163006$
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700856 Revision 1

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: N-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999878$
Calibration curve: $-0.00407341^{*} x^{\wedge} 2+19.807$ * $x+-0.260375$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1
Dataset:
U:\Q4.PRO\results1170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: N-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999787$
Calibration curve: $-0.00107779^{*} x^{\wedge} 2+15.24655^{*} x+0.807358$
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Work Order 1700856 Revision 1

Dataset: U:IQ4.PRO|results\170728M21170728M2-CRV.qld

Last Altered:
 Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
 Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999945$
Calibration curve: $-0.000352587{ }^{*} x^{\wedge} 2+0.738655{ }^{*} \times+0.0923596$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700856 Revision 1

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qid
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999598$
Calibration curve: $-4.79281 e-005^{*} x^{\wedge} 2+0.0714733^{*} x+-0.00107069$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998624$
Calibration curve: 0.000483062 * $x^{\wedge} 2+0.770384$ * $x+0.341437$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results1170728M21170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFTrDA
Correlation coefficient: $\mathrm{r}=0.999451, \mathrm{r}^{\wedge} 2=0.998903$
Calibration curve: 9.7472 * $x+1.17215$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report
 \section*{Vista Analytical Laboratory Q1}

Dataset:	U:\Q4.PRO\results\170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:06:31 Pacific Daylight Time

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999741$
Calibration curve: $-0.000171677^{*} x^{\wedge} 2+1.03861$ * $x+0.13428$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PROIresults1170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:05:03

Name: 170728M2_2, Date: 28-Jul-2017, Time: 16:20:47, ID: ST170728M2-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824

13C3-PFBA

13C3-PFPeA

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:

U:IQ4.PRO\results\170728M2\170728M2-CRV.qid
Last Altered:
Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_2, Date: 28-Jul-2017, Time: 16:20:47, ID: ST170728M2-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824

13C4-PFHpA

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

13C2-PFOA

Dataset: U:\Q4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_2, Date: 28-Jul-2017, Time: 16:20:47, ID: ST170728M2-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824

13C5-PFNA

13C8-PFOSA

Total PFOS

13C8-PFOS

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_2, Date: 28-Jul-2017, Time: 16:20:47, ID: ST170728M2-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFUnA

13C2-PFUnA

Work Order 1700856 Revision 1

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2 2, Date: 28-Jul-2017, Time: 16:20:47, ID: ST170728M2-1 PFC CS-2 17G2824, Description: PFC CS-2 17 G2824

Dataset:	U:IQ4.PROVresults\170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_3, Date: 28-Jul-2017, Time: 16:31:32, ID: ST170728M2-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825

13C3-PFBA

PFPeA

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES-
$299>99$

13C3-PFBS

PFHxA

Dataset: U:IQ4.PROIresults\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_3, Date: 28-Jul-2017, Time: 16:31:32, ID: ST170728M2-2 PFC CS-1 17G2825, Description: PFC CS-1 17 G2825

13C4-PFHpA

Total PFHxS

F16:MRM of 2 channels,ES$398.9>99$ $2.771 e+003$

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

24:MRM of 4 channels,ES
$448.9>79.9$

13C2-PFOA

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170728M21170728M2-CRV.qld

Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_3, Date: 28-Jul-2017, Time: 16:31:32, ID: ST170728M2-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825

Name: 170728M2_3, Date: 28-Jul-2017, Time: 16:31:32, ID: ST170728M2-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825

d3-N-MeFOSAA

d5-N-EtFOSAA

PFUnA

F43:MRM of 2 channels,ES562.9 > 269 $8.512 \mathrm{e}+003$

13C2-PFUnA

F50:MRM of 2 channels,ES-
$598.9>80$

13C2-PFUnA

Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_3, Date: 28-Jul-2017, Time: 16:31:32, ID: ST170728M2-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825

13C2-PFDoA

PFTrDA

13C2-PFDoA

PFTeDA

F58:MRM of 4 channels,ES-
$712.9>369$

13C2-PFTeDA

13C5-PFHxA

Dataset: U:\Q4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_3, Date: 28-Jul-2017, Time: 16:31:32, ID: ST170728M2-2 PFC CS-1 17G2825, Description: PFC CS-1 17 G2825

13C2-PFTeDA

13C6-PFDA

13C7-PFUnA

13C9-PFNA

Dataset: U:\Q4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_4, Date: 28-Jul-2017, Time: 16:42:11, ID: ST170728M2-3 PFC CS0 17G2826, Description: PFC CS0 17 G2826

13C3-PFBA

PFHxA

13C2-PFHxA

Work Order 1700856 Revision 1

Dataset:	U:\Q4.PRO\results\170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_4, Date: 28-Jul-2017, Time: 16:42:11, ID: ST170728M2-3 PFC CS0 17G2826, Description: PFC CS0 17 G 2826

1802-PFHxS

Total PFOA

13C2-PFOA

PFHpS

F24:MRM of 4 channels,ES-

Dataset:	U:IQ4.PROIresults\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_4, Date: 28-Jul-2017, Time: 16:42:11, ID: ST170728M2-3 PFC CS0 17G2826, Description: PFC CS0 17G2826

13C5-PFNA

PFOSA

13C8-PFOSA

Total PFOS

100	F30:MRM of 2 channels,ES-	
	PFOS	$1.142 \mathrm{e}+004$
	3.83	
	8.75 e 2	
\%	11409	

13C8-PFOS

PFDA

13C2-PFDA

Dataset:	U:IQ4.PROIresults1170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_4, Date: 28-Jul-2017, Time: 16:42:11, ID: ST170728M2-3 PFC CS0 17G2826, Description: PFC CS0 17G2826

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFUnA

13C2-PFUnA

Work Order 1700856 Revision 1

Dataset:	U:IQ4.PRO\|resultsI170728M21170728M2-CRV. qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_4, Date: 28-Jul-2017, Time: 16:42:11, ID: ST170728M2-3 PFC CS0 17G2826, Description: PFC CS0 17G2826

Dataset: U:\Q4.PRO\results1170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_4, Date: 28-Jul-2017, Time: 16:42:11, ID: ST170728M2-3 PFC CS0 17G2826, Description: PFC CS0 17 G2826

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170728M2\170728M2-CRV.qld

Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_5, Date: 28-Jul-2017, Time: 16:52:57, ID: ST170728M2-4 PFC CS1 17G2827, Description: PFC CS1 17 G2827

13C3-PFBA

13C3-PFPeA

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset: U:IQ4.PROIresults1170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_5, Date: 28-Jul-2017, Time: 16:52:57, ID: ST170728M2-4 PFC CS1 17G2827, Description: PFC CS1 17 G2827

13C4-PFHpA

Total PFHxS

F16:MRM of 2 channels,ES-

1802-PFHxS

PFHpS

F24:MRM of 4 channels,ES-
448.9 > 79.9

13C2-PFOA

Dataset:	U:IQ4.PROIresults1170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Paciific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_5, Date: 28-Jul-2017, Time: 16:52:57, ID: ST170728M2-4 PFC CS1 17G2827, Description: PFC CS1 17G2827

13C5-PFNA

PFOSA

F28:MRM of 2 channels,ES-

13C8-PFOSA

Total PFOS

13C8-PFOS

13C2-PFDA

Dataset:	U:IQ4.PROIresults1170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_5, Date: 28-Jul-2017, Time: 16:52:57, ID: ST170728M2-4 PFC CS1 17G2827, Description: PFC CS1 17G2827

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFUnA

13C2-PFUnA

Work Order 1700856 Revision 1

Dataset:	U:IQ4.PROIresults\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2 5, Date: 28-Jul-2017, Time: 16:52:57, ID: ST170728M2-4 PFC CS1 17G2827, Description: PFC CS1 17 G2827

13C2-PFDoA

13C2-PFDoA

PFTeDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-
$714.8>669.6$ $3.270 \mathrm{e}+005$

13C4-PFBA

13C5-PFHxA

Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_6, Date: 28-Jul-2017, Time: 17:03:36, ID: ST170728M2-5 PFC CS2 17G2828, Description: PFC CS2 17G2828

Dataset: U:IQ4.PROIresults1170728M21170728M2-CRV.qld

Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_6, Date: 28-Jul-2017, Time: 17:03:36, ID: ST170728M2-5 PFC CS2 17G2828, Description: PFC CS2 17 G 2828

Total PFOA

13C4-PFHpA

Total PFHxS

18O2-PFHxS

13C2-PFOA

PFHpS

13C2-PFOA

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_6, Date: 28-Jul-2017, Time: 17:03:36, ID: ST170728M2-5 PFC CS2 17G2828, Description: PFC CS2 17 G2828

13C5-PFNA

13C8-PFOSA

Total PFOS

13C8-PFOS

Dataset:	U:\Q4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_6, Date: 28-Jul-2017, Time: 17:03:36, ID: ST170728M2-5 PFC CS2 17G2828, Description: PFC CS2 17 G2828

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFUnA

13C2-PFUnA

Work Order 1700856 Revision 1

Dataset:	U:IQ4.PROIresults1170728M21170728M2-CRV. qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_6, Date: 28-Jul-2017, Time: 17:03:36, ID: ST170728M2-5 PFC CS2 17G2828, Description: PFC CS2 17 G2828

Dataset:	U:IQ4.PROIresults1170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_6, Date: 28-Jul-2017, Time: 17:03:36, ID: ST170728M2-5 PFC CS2 17G2828, Description: PFC CS2 17G2828

13C4-PFOS

13C2-PFTeDA
F59:MRM of 2 channels,ES-

13C6-PFDA

13C7-PFUnA

Name: 170728M2_7, Date: 28-Jul-2017, Time: 17:14:14, ID: ST170728M2-6 PFC CS3 17G2829, Description: PFC CS3 17G2829

13C3-PFBA

13C3-PFPeA

PFHxA

13C3-PFBS

Printed: Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Dataset:	U:IQ4.PROIresults1170728M2I170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_7, Date: 28-Jul-2017, Time: 17:14:14, ID: ST170728M2-6 PFC CS3 17G2829, Description: PFC CS3 17G2829

N-MeFOSAA

d3-N-MeFOSAA

d5-N-EtFOSAA
F49:MRM of 1 channel,ES-
$589.3>419$

13C2-PFUnA

13C2-PFUnA

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_7, Date: 28-Jul-2017, Time: 17:14:14, ID: ST170728M2-6 PFC CS3 17G2829, Description: PFC CS3 17 G 2829

Dataset:	U:IQ4.PROlresultsI170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_7, Date: 28-Jul-2017, Time: 17:14:14, ID: ST170728M2-6 PFC CS3 17G2829, Description: PFC CS3 17 G2829

13C6-PFDA

13C7-PFUnA

Work Order 1700856 Revision 1

Dataset:	U:\Q4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_8, Date: 28-Jul-2017, Time: 17:24:53, ID: ST170728M2-7 PFC CS4 17G2830, Description: PFC CS4 17 G2830

13C3-PFBA

13C3-PFPeA

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PRO\results1170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_8, Date: 28-Jul-2017, Time: 17:24:53, ID: ST170728M2-7 PFC CS4 17G2830, Description: PFC CS4 17G2830

PFHpA

13C4-PFHpA

1802-PFHxS

13C2-PFOA

PFHpS

13C2-PFOA

Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_8, Date: 28-Jul-2017, Time: 17:24:53, ID: ST170728M2-7 PFC CS4 17G2830, Description: PFC CS4 17G2830

13C5-PFNA

PFOSA

13C8-PFOSA

Total PFOS

F30:MRM of 2 channels,ES-
$499>79.9$
$4.872 \mathrm{e}+005$
100

13C8-PFOS

PFDA

35:MRM of 2 channels,ES
$513>219$

13C2-PFDA

Dataset: U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_8, Date: 28-Jul-2017, Time: 17:24:53, ID: ST170728M2-7 PFC CS4 17G2830, Description: PFC CS4 17 G2830

d3-N-MeFOSAA

d5-N-EtFOSAA
(5 F49:MRM of 1 channel,ES-

PFDS

F50:MRM of 2 channels,ES-
$598.9>80$

13C2-PFUnA

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_8, Date: 28-Jul-2017, Time: 17:24:53, ID: ST170728M2-7 PFC CS4 17G2830, Description: PFC CS4 17 G2830

F51:MRM of 2 channels,ES-

13C2-PFDoA

13C2-PFDoA

PFTeDA

F58:MRM of 4 channels,ES
$712.9>369$

13C2-PFTeDA

13C4-PFBA

13C5-PFHxA

Dataset: U:IQ4.PROIresults|170728M2\170728M2-CRV.qld

Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_8, Date: 28-Jul-2017, Time: 17:24:53, ID: ST170728M2-7 PFC CS4 17G2830, Description: PFC CS4 17G2830

13C4-PFOS

13C2-PFTeDA

13C6-PFDA

13C8-PFOA

13C7-PFUnA

13C9-PFNA

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_9, Date: 28-Jul-2017, Time: 17:35:31, ID: ST170728M2-8 PFC CS5 17G2831, Description: PFC CS5 17 G283

13C3-PFBA

13C3-PFPeA

13C3-PFBS

PFHxA

13C2-PFHxA

Work Order 1700856 Revision 1
Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld

Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_9, Date: 28-Jul-2017, Time: 17:35:31, ID: ST170728M2-8 PFC CS5 17G2831, Description: PFC CS5 17 G2831

13C4-PFHpA

1802-PFHxS

13C2-PFOA

PFHpS

13C2-PFOA

Dataset:	U:IQ4.PROlresults1170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_9, Date: 28-Jul-2017, Time: 17:35:31, ID: ST170728M2-8 PFC CS5 17G2831, Description: PFC CS5 17G2831

13C8-PFOSA

Total PFOS

13C8-PFOS

PFDA

F35:MRM of 2 channels,ES
$513>219$ $9.559 \mathrm{e}+005$

13C2-PFDA

Dataset: U:IQ4.PROIresults\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_9, Date: 28-Jul-2017, Time: 17:35:31, ID: ST170728M2-8 PFC CS5 17G2831, Description: PFC CS5 17G2831

d5-N-EtFOSAA

13C2-PFUnA

PFDS

13C2-PFUnA

Work Order 1700856 Revision 1

Dataset:	U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_9, Date: 28-Jul-2017, Time: 17:35:31, ID: ST170728M2-8 PFC CS5 17G2831, Description: PFC CS5 17 G2831

13C2-PFDoA

13C2-PFDoA

13C2-PFTeDA

13C4-PFBA

13C5-PFHxA

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_9, Date: 28-Jul-2017, Time: 17:35:31, ID: ST170728M2-8 PFC CS5 17G2831, Description: PFC CS5 17G2831

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld

Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_10, Date: 28-Jul-2017, Time: 17:46:09, ID: ST170728M2-9 PFC CS6 17G2801, Description: PFC CS5 17G2801

Vista Analytical Laboratory
Dataset: U:IQ4.PROVresults\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_10, Date: 28-Jul-2017, Time: 17:46:09, ID: ST170728M2-9 PFC CS6 17G2801, Description: PFC CS5 17 G2801

13C4-PFHpA

1802-PFHxS

13C2-PFOA

PFHpS

13C2-PFOA

Dataset: U:\Q4.PRO\results\170728M2\170728M2-CRV.qld

Last Altered: \quad Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_10, Date: 28-Jul-2017, Time: 17:46:09, ID: ST170728M2-9 PFC CS6 17G2801, Description: PFC CS5 17G2801

Last Altered: Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_10, Date: 28-Jul-2017, Time: 17:46:09, ID: ST170728M2-9 PFC CS6 17G2801, Description: PFC CS5 17 G2801

Dataset:	U:IQ4.PROlresults\170728M2\170728M2-CRV.qld
Last Altered:	Sunday, July 30, 2017 08:05:03 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:05:49 Pacific Daylight Time

Name: 170728M2_10, Date: 28-Jul-2017, Time: 17:46:09, ID: ST170728M2-9 PFC CS6 17G2801, Description: PFC CS5 17G2801

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Dataset:	Untitled
Last Altered:	Sunday, July 30, 2017 08:12:48 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:13:11 Pacific Daylight Time

instrument
blank

Printed: Sunday, July 30, 2017 08:13:11 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS L17 L14 7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Name: 170728M2_12, Date: 28-Jul-2017, Time: 18:07:42, ID: IPA, Description: IPA

13C3-PFPeA

13C3-PFBS
IPA IPA F7:MRM of 1 channel,ES-

Dataset: Untitled
Last Altered: \quad Sunday, July 30, 2017 08:12:48 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:13:11 Pacific Daylight Time

Name: 170728M2_12, Date: 28-Jul-2017, Time: 18:07:42, ID: IPA, Description: IPA

Name: 170728M2_12, Date: 28-Jul-2017, Time: 18:07:42, ID: IPA, Description: IPA

13C8-PFOSA
$\begin{array}{rr}\text { IPA IPA } & \text { F32:MRM of } 1 \text { channel, ES- } \\ 506.1>77.7\end{array}$

13C8-PFOS

13C2-PFDA

Dataset:	Untitled
Last Altered:	Sunday, July 30, 2017 08:12:48 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:13:11 Pacific Daylight Time

Name: 170728M2_12, Date: 28-Jul-2017, Time: 18:07:42, ID: IPA, Description: IPA

N-MeFOSAA

d3-N-MeFOSAA

d5-N-EtFOSAA

Last Altered: \quad Sunday, July 30, 2017 08:12:48 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:13:11 Pacific Daylight Time

Name: 170728M2_12, Date: 28-Jul-2017, Time: 18:07:42, ID: IPA, Description: IPA

13C2-PFDoA

13C2-PFTeDA

13C5-PFHxA

Dataset:

Untitled
Last Altered:
Sunday, July 30, 2017 08:12:48 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:13:11 Pacific Daylight Time

Name: 170728M2_12, Date: 28-Jul-2017, Time: 18:07:42, ID: IPA, Description: IPA

Last Altered: Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:16:04 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17G2823

Dataset:	U:IQ4.PROIresults1170728M21170728M2-13.qld
Last Altered:	Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:16:04 Pacific Daylight Time

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17G2823

	\# Name	Trace	Area	IS Resp	RRF	Wt/Vol RT Conc \%Rec			
32.	$32 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	12473.139	56361.164	0.018	1.000	4.05	155.65	95.79
33.	33 13C2-PFUnA	$565>519.8$	63778.582	56361.164	1.129	1.000	4.12	12.53	100.21
34.4	34 13C2-PFDoA	$615>569.7$	6412.423	56361.164	0.116	1.000	4.28	12.26	98.07
35.	35 13C2-PFTeDA	$714.8>669.6$	42185.617	56361.164	0.762	1.000	4.63	12.28	98.21
	36 13C4-PFBA	$217>171.8$	13338.616	13338.616	1.000	1.000	1.37	12.50	100.00
37.4	37 13C5-PFHxA	$318>272.9$	41541.566	41541.566	1.000	1.000	3.15	5.00	100.00
38.	38 13C3-PFHxS	$401.9>79.9$	7683.510	7683.510	1.000	1.000	3.49	12.50	100.00
39.	39 13C8-PFOA	$421.3>376$	47325.004	47325.004	1.000	1.000	3.61	12.50	100.00
40 \%	40 13C9-PFNA	$472.2>426.9$	52466.008	52466.008	1.000	1.000	3.79	12.50	100.00
41	41 13C4-PFOS	$503>79.9$	8480.035	8480.035	1.000	1.000	3.84	12.50	100.00
42.	42 13C6-PFDA	$519.1>473.7$	53553.129	53553.129	1.000	1.000	3.96	12.50	100.00
43.	43 13C7-PFUnA	$570.1>524.8$	56361.164	56361.164	1.000	1.000	4.13	12.50	100.00

Dataset: U:IQ4.PROTresults|170728M2\170728M2-13.qld

Last Altered: Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:15:41 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17G2823

13C3-PFBA

13C3-PFPeA

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:	U:\Q4.PRO\results\170728M2\170728M2-13.qld
Last Altered:	Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:15:41 Pacific Daylight Time

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17 G2823

13C4-PFHpA

1802-PFHxS

13C2-PFOA

PFHpS

13C2-PFOA

Dataset:	U:IQ4.PROIresults1170728M21170728M2-13.qld
Last Altered:	Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:15:41 Pacific Daylight Time

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17G2823

13C5-PFNA

13C8-PFOSA

Total PFOS

F30:MRM of 2 channels,ES
$499>9$

13C8-PFOS

13C2-PFDA

Dataset: U:IQ4.PROIresults1170728M21170728M2-13.qld

Last Altered: Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:15:41 Pacific Daylight Time

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17G2823

d3-N-MeFOSAA

d5-N-EtFOSAA

13C2-PFUnA

PFDS
F50:MRM of 2 channels,ES-
$598.9>98.7$

13C2-PFUnA

Vista Analytical Laboratory

Dataset:	U:IQ4.PRO\results\170728M2\170728M2-13.qld
Last Altered:	Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:15:41 Pacific Daylight Time

Dataset: U:\Q4.PRO\results\170728M2\170728M2-13.qld

Last Altered: \quad Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:15:41 Pacific Daylight Time

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17 G2823

Analytical Standard Record

Vista Analytical Laboratory
17G1307

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611432	13C2-PFHxDA	14-Sep-16	** Vendor **	07-Jan-21	14-Sep-16 14:19 by TLD	0.2
1611433	13C2-PFHxA	14-Sep-16	** Vendor **	08-Apr-21	14-Sep-16 14:22 by TLD	0.2
17B2809	d3-N-Me-FOSAA	28-Feb-17	** Vendor **	28-Feb-18	28-Feb-17 13:24 by EMS	0.5
17B2811	d5-N-EtFOSAA	28-Feb-17	** Vendor **	22-Nov-21	28-Feb-17 13:33 by EMS	0.5
17E1718	18O2-PFHxS	17-May-17	** Vendor **	17-Feb-22	17-May-17 12:46 by INJ	0.529
17 E 2412	13C8-PFOS	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:19 by INJ	0.539
$17 \mathrm{E} 2413$	13C3-PFBS	24-May-17	** Vendor **	02-Aug-21	24-May-17 11:20 by INJ	0.538
17E2414	13C3-PFBA	24-May-17	** Vendor **	27-May-21	24-May-17 11:20 by INJ	0.5
17E2415	13C2-8:2 FTS	24-May-17	** Vendor **	22-Aug-21	24-May-17 11:21 by INJ	0.522
17 E 2416	13C2-6:2 FTS	24-May-17	** Vendor **	17-Feb-22	24-May-17 11:21 by INJ	0.526
17 E 2417	13C5-PFNA	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:22 by INJ	0.5
17 E 2418	13C2-PFTeDA	24-May-17	** Vendor **	01-Mar-22	24-May-17 11:22 by INJ	0.5
17E2419	13C2-PFUdA	24-May-17	** Vendor **	22-Nov-21	24-May-17 11:23 by INJ	0.5
$17 \mathrm{E} 2420$	13C4-PFHpA	24-May-17	** Vendor **	27-May-21	24-May-17 11:23 by INJ	0.5
17E2421	13C2-PFDoA	24-May-17	** Vendor **	08-Apr-21	24-May-17 11:24 by INJ	0.5
17 G 1303	13C3-PFPeA	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:18 by INJ	0.5
17G1304	13C2-PFOA	13-Jul-17	** Vendor **	12-Feb-21	13-Jul-17 09:25 by INJ	0.5
17G1305	13C8-FOSA-I	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:33 by INJ	0.5
17G1306	13C2-PFDA	13-Jul-17	** Vendor **	30-Sep-21	13-Jul-17 09:36 by INJ	0.5

Description:	PFC - IS	Expires:	28-Feb-18
Standard Type:	Reagent	Prepared:	13-Jul-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	13-Jul-17 $09: 58$ by INJ

Analyte	CAS Number	Concentration
13C3-PFBS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFTeDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-6:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFPeA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFHpA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFNA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOS	1.25	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory

17G1307

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611432	13C2-PFHxDA	14-Sep-16	** Vendor **	07-Jan-21	14-Sep-16 14:19 by TLD	0.2
1611433	13C2-PFHxA	14-Sep-16	** Vendor **	08-Apr-21	14-Sep-16 14:22 by TLD	0.2
17B2809	d3-N-Me-FOSAA	28-Feb-17	** Vendor **	28-Feb-18	28-Feb-17 13:24 by EMS	0.5
17B2811	d5-N-EtFOSAA	28-Feb-17	** Vendor **	22-Nov-21	28-Feb-17 13:33 by EMS	0.5
17E1718	18O2-PFHxS	17-May-17	** Vendor **	17-Feb-22	17-May-17 12:46 by INJ	0.529
17 E 2412	13C8-PFOS	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:19 by INJ	0.539
17 E 2413	13C3-PFBS	24-May-17	** Vendor **	02-Aug-21	24-May-17 11:20 by INJ	0.538
17E2414	13C3-PFBA	24-May-17	** Vendor **	27-May-21	24-May-17 11:20 by INJ	0.5
17E2415	13C2-8:2 FTS	24-May-17	** Vendor **	22-Aug-21	24-May-17 11:21 by INJ	0.522
17E2416	13C2-6:2 FTS	24-May-17	** Vendor **	17-Feb-22	24-May-17 11:21 by INJ	0.526
17 E 2417	13C5-PFNA	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:22 by INJ	0.5
17 E 2418	13C2-PFTeDA	24-May-17	** Vendor **	01-Mar-22	24-May-17 11:22 by INJ	0.5
17 E 2419	13C2-PFUdA	24-May-17	** Vendor **	22-Nov-21	24-May-17 11:23 by INJ	0.5
17 E 2420	13C4-PFHpA	24-May-17	** Vendor **	27-May-21	24-May-17 11:23 by INJ	0.5
17 E 2421	13C2-PFDoA	24-May-17	** Vendor **	08-Apr-21	24-May-17 11:24 by INJ	0.5
17G1303	13C3-PFPeA	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:18 by INJ	0.5
17G1304	13C2-PFOA	13-Jul-17	** Vendor **	12-Feb-21	13-Jul-17 09:25 by INJ	0.5
17G1305	13C8-FOSA-I	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:33 by INJ	0.5
17 G 1306	13C2-PFDA	13-Jul-17	** Vendor **	30-Sep-21	13-Jul-17 09:36 by INJ	0.5

Description:	PFC - IS	Expires:	28-Feb-18
Standard Type:	Reagent	Prepared:	13-Jul-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	13-Jul-17 $09: 58$ by INJ

Analyte	CAS Number	Concentration	Units
13C8-PFOSA	1.25	$\mathrm{ug} / \mathrm{mL}$	
18O2-PFHxS	1.25	$\mathrm{ug} / \mathrm{mL}$	
d3-MeFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-PFUnA	1.25	$\mathrm{ug} / \mathrm{mL}$	

M2PFHxDA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexadecanoic acid

LOT NUMBER: M2PFHxDA1112

CAS \#:

Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/ysy)
EXPIRY DATE: (mm/dd/ysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \sqrt{ }$
>98\%
01/07/2016 01/07/2021

MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
816.11

Methanol Water ($<1 \%$) $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)
29nov2012_M2PFHxDA_004
M2PFHxDA1112 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-1200 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 100% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2PFHxDA)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=15 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MPFHxA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexanoic acid

LOT NUMBER: MPFHxA0416

CAS \#: Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n-hexanoic acid and $\sim 0.3 \%$ of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/da/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFHxA; LC/MS Data (TIC and Mass Spectrum)
08apr2016_MPFHxA_002
MPFHxA0416 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{OA}_{4} \mathrm{Ac}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions over 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: MPFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFHxA)}$	MS Parameters
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Flow:	Collision Gas (mbar) $=3.39 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=10$
	$300 \mu \mathrm{l} / \mathrm{min}$	

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By

Date: \qquad

INTENDED USE

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC:
MS:

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow ($1 / \mathrm{hr}$) $=50$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{d} 3-\mathrm{N}-\mathrm{MeFOSAA}$)	
		Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

d5-N-EtFOSAA

LOT NUMBER: d5NEtFOSAA1116
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid

STRUCTURE:

CAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrysy)
EXPIRY DATE: (mmddryyy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: $\quad 590.26$
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 98 \%{ }^{2} \mathrm{H}_{5}$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: $\quad \mathrm{d} 5-\mathrm{N}-E t F O S A A ;$ LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: \quad d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ d5-N-EtFOSAA)	
		Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu 1 / m i n$	

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

MPFHxS
Sodium perfluoro-1-hexane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate

LOT NUMBER: MPFHxS0217

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{18} \mathrm{ONa}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFHxS anion)
>98\%
02/17/2017
02/17/2022

MOLECULAR WEIGHT: 426.10
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>94 \%\left({ }^{18} \mathrm{O}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- The response factor for MPFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)$ has been observed to be up to 10% lower than for $\mathrm{PFHxS}\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)$ when both compounds are injected together. This difference may vary between instruments.
- Contains $\sim 1.0 \%$ of sodium perfluoro-1-octane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate $\left({ }^{18} \mathrm{O}_{2}-\mathrm{PFOS}\right)$.
- Due to the isotopic purity of the starting material ($\left.{ }^{18} \mathrm{O}_{2}>94 \%\right)$, MPFHxS contains $\sim 0.3 \%$ of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

M8PFOS

Sodium perfluoro-1-[$\left[{ }^{13} \mathrm{C}_{8}\right]$ octanesulfonate

LOT NUMBER: M8PFOS0916

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddaymy)
EXPIRY DATE: (mmddaymy)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}
$$

$48.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M8PFOS anion)
>97\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 530.05 SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>99 \%{ }^{13} \mathrm{C}$ $\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.6 \%$ of sodium perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonate (${ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}$), $\sim 1.0 \%$ of chlorohexadecafluoro-1-[$\left.{ }^{13} \mathrm{C}_{8}\right]$ octanesulfonate, and $\sim 1.5 \%$ of sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

STRUCTURE:

M3PFBS
Sodium perfluoro-1-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate
LOT NUMBER: M3PFBS0815

GAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduryw)
EXPIRY DATE: (mmodrysy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFBS anion)
>98\%
08/02/2016
08/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$ $\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

M3PFBA
Perfluoro-n- $\left[2,3,4-{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$

CHEMICAL PURITY:
LAST TESTED: (mmoddymy
>98\%
05/27/2016
EXPIRY DATE: (midadmys)
05/27/2021
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

LOT NUMBER: M3PFBA0516

CAS \#: Not available

MOLECULAR WEIGHT: 217.02 SOLVENT(S): Methanol Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro- $n-\left[{ }^{13} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

$17 E 2415$

PRODUCT CODE:	M2-8:2FTS	LOT NUMBER:	M282FTS0816
COMPOUND:	Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ decane sulfonate		
STRUCTURE:		CAS \#:	Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2$ FTS contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE:

COMPOUND:

M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ octane sulfonate

M262FTS0217

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dolyyy)
RECOMMENDED STORAGE:

${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)

452.13

Methanol
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $6: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\quad 02 / 24 / 2017$
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

MPFNA
Perfluoro-n-[1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$]nonanoic acid

LOT NUMBER: MPFNA0916

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mmiddyyny)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

$7 E 24-18$

CERTIFICATE OF ANALYSIS DOCUMENTATION*

PRODUCT CODE:
COMPOUND:
M2PFTeDA Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ tetradecanoic acid

LOT NUMBER: M2PFTeDA0217

STRUCTURE:
CAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED; (mm/dodyy)
EXPIRY DATE: (mmodryms)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
03/01/2017
03/01/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
ISOTOPIC PURITY:
716.10 Methanol Water (<1\%) $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE: COMPOUND:

MPFUdA
Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right.$]undecanoic acid

LOT NUMBER: MPFUdA1116

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dolyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{9} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/22/2016
11/22/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT (S):

ISOTOPIC PURITY:
566.08

Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1-{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\sim 1 \%$; see Figure 2$), 2-{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\left.\sim 1 \%\right)$, and PFUdA $(\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{12 / 07 / 2016}{(m m / d d / y y y y)}$

$7 E$
 2420

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M4PFHpA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$]heptanoic acid

LOT NUMBER: M4PFHpA0516

CAS \#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mmodism)	05/27/2016
EXPIRY DATE: (mmoddryy)	05/27/2021

MOLECULAR WEIGHT:	368.03 SOLVENT(S):
	Methanol
Water $(<1 \%)$	
ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
	$\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

$7 E 2421$

WELLINGTON
LA B OR A TORIES

CERTIFICATE OF ANALYSIS
 DOCUMENTATION.

PRODUCT CODE:	MPFDoA	LOT NUMBER:	MPFDoA0416
COMPOUND:	Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ dodecanoic acid		
STRUCTURE:		CAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	616.08
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: $(m m / d d y y y)$	$04 / 08 / 2016$		$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$
EXPIRY DATE: $(m m / d d / y y y)$	$04 / 08 / 2021$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE: COMPOUND:

Perfluoro-n-[3,4,5- $-^{13} \mathrm{C}_{3}$]pentanoic acid

LOT NUMBER: M3PFPeA0417

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyms)
EXPIRY DATE: (mnddusw)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/20/2017

MOLECULAR WEIGHT: 267.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(3,4,5-{ }_{-13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro-n- $\left[{ }^{13} \mathrm{C}_{3}\right.$ butanoic acid and 0.05% of perfluoro- 1 -pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyy)
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (l/hr) $=60$
	2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{~L}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 3 \mathrm{PFPeA})$	MS Parameters

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
COMPOUND:

Perfluoro-n-[1,2- $-^{13} \mathrm{C}_{2}$]octanoic acid

LOT NUMBER: M2PFOA0216

GAS \#: \quad Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

$$
17 G 1304
$$

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M2PFOA $)$

Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

 COMPOUND:LOT NUMBER: M8FOSA04171

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmiddymy)
EXPIRY DATE: (mmuddrmys)
RECOMMENDED STORAGE: Refrigerate ampoule
${ }^{13} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
04/20/2017
04/20/2022

MOLECULAR WEIGHT:
SOLVENTS):
ISOTOPIC PURITY:
507.09 Isopropanol $\geq 99 \%{ }^{13} \mathrm{C}$ $\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.1 \%$ of perfluoro- $1-\left[{ }^{[3} \mathrm{C}_{4}\right]$ octanesulfonamide and $\sim 0.01 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right.$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: Micromass Quattro micro API MS

Chromatograp	ic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 85% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.50$ Cone Voltage (V) $=40.00$ Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$17 G 1305$

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M8FOSA-I) $)$
Mobile phase:socratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	
Flow:	$300 \mu / / \mathrm{min}$

$17 G 1306$

WELLINGTON

LABORATORIES

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
COMPOUND:

STRUCTURE:

Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]decanoic acid

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodyyyy
EXPIRY DATE: (mmddolsyys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:

LOT NUMBER: MPFDA0916

GAS \#:
Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of ${ }^{13} \mathrm{C}_{1}$-PENA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAC}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFDA)}$
Mobile ph	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)
Flow:	$300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=13$

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFDS		1	$\mathrm{ug} / \mathrm{mL}$	
6:2 FTS	$27619-97-2$	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFTeDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFPeA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOSA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOS		0.788	$\mathrm{ug} / \mathrm{mL}$	
L-PFODA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOA		1	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFNA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHxS			0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHxA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFUnA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpA			1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA			$51506-32-8$	
L-PFDoA			1	$\mathrm{ug} / \mathrm{mL}$

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFBS		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFBA		1	$\mathrm{ug} / \mathrm{mL}$	
L-8:2FTS		1	$\mathrm{ug} / \mathrm{mL}$	
L-6:2 FTS		$1691-99-2$	1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE	$2991-50-6$	5	$\mathrm{ug} / \mathrm{mL}$	
EtFOSAA	$4151-50-2$	1	$\mathrm{ug} / \mathrm{mL}$	
EtFOSA		5	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
Br-PFHxS	$3871-99-6$	0.189	$\mathrm{ug} / \mathrm{mL}$	
8:2 FTS	$70887-84-2$	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpS		1	$\mathrm{ug} / \mathrm{mL}$	
PFHxS	$355-46-4$	1	$\mathrm{ug} / \mathrm{mL}$	
Total PFHxS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS			1	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record
Vista Analytical Laboratory
17D2705

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFUnA	$2058-94-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFTrDA	$72629-94-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFTeDA	$376-06-7$	1	$\mathrm{ug} / \mathrm{mL}$	
PFPeA	$2706-90-3$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOSA	$754-91-6$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOS	$1763-23-1$	1	$\mathrm{ug} / \mathrm{mL}$	
PFODA	$16517-11-6$		1	$\mathrm{ug} / \mathrm{mL}$
L-PFTrDA		1	$\mathrm{ug} / \mathrm{mL}$	

Analytical Standard Record
Vista Analytical Laboratory
17D2705

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFNA	$375-95-1$	1	$\mathrm{ug} / \mathrm{mL}$	
Total PFUnA		1	$\mathrm{ug} / \mathrm{mL}$	
PFHxDA	$67905-19-5$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHxA	$307-24-4$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHpS	$375-92-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHpA	$375-85-9$	1	$\mathrm{ug} / \mathrm{mL}$	
PFDS	$335-77-3$	1	$\mathrm{ug} / \mathrm{mL}$	
PFDoA	$307-55-1$	1	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
16 I 3001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17C1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17D2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17D2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17D2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFDA	$335-76-2$	1	$\mathrm{ug} / \mathrm{mL}$	
PFBS	$375-73-5$	1	$\mathrm{ug} / \mathrm{mL}$	
PFBA	$375-22-4$	1	$\mathrm{ug} / \mathrm{mL}$	
MeFOSE	$24448-09-7$	5	$\mathrm{ug} / \mathrm{mL}$	
MeFOSAA	$2355-31-9$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOA	$335-67-1$	1	$\mathrm{ug} / \mathrm{mL}$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

Perfluoro-n-decanoic acid

LOT NUMBER: PFDA0516

CAS \#:
335-76-2

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	514.08
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ ノ	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmodyyy)	05/31/2016		
EXPIRY DATE: (mmddy ${ }^{\text {drys) }}$	05/31/2021		
RECOMMENDED STORAGE			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of Perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)

31may2016_PFDA_001	31-May-2016	13:43:26
PFDA0516 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:
 $\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
Source: Electrospray (negative)
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OA}$ buffer)
Ramp to 90% organic over 7.5 min and hold for
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow $(1 / \mathrm{hr})=50$
Desolvation Gas Flow (l/hr) $=750$

Flow:
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

MS Parameters

Capillary Voltage (kV) $=2.00$

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { PFDA) }\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH} \\ 4\end{array} \mathrm{OAc} \text { buffer) }\end{array}\right\}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=13$

LA B OR A T ORIES

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: PFHXA1215

CAS \#: 307-24-4

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddypm)
EXPIRY DATE: (mmdadsys)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$ $50 \pm 2.5^{11} \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/22/2015
12/22/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
314.05

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of Perfluoro-n-pentanoic acid (PFPeA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxA; LC/MS Data (TIC and Mass Spectrum)
22dec2015_PFHxA_002
PFHXA1215 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:			
LC:	Waters Acquity Ultra Performance LC		
MS:	Micromass Quattro micro API MS		

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (150-850 amu)

Mobile phase: Gradient Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow (1/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: \quad PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFHxA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

PRODUCT CODE:

 COMPOUND:STRUCTURE:

LOT NUMBER: NMeFOSAA0116V
N -methylperfluoro-1-octanesulfonamidoacetic acid

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: $\quad \mathrm{N}-\mathrm{MeFOSAA}$; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

Conditions for Figure 2:

$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N}-\mathrm{MeFOSAA})\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array} 4 \mathrm{OAc} \text { buffer) }\end{array}\right\}$

MS Parameters
 Collision Gas (mbar) $=3.66 \mathrm{e}-3$
 Collision Energy (eV) $=25$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

ETFOSAA

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

N -ethylperfluoro-1-octanesulfonamidoacetic acid

LOT NUMBER: NEtFOSAA0116

CAS \#:
2991-50-6

MOLECULAR FORMULA: CONCENTRATION:	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \mathrm{~J} \end{aligned}$	MOLECULAR WEIGHT: SOLVENT(S):	585.23 Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmuddyys)	01/20/2016		
EXPIRY DATE: (mmuddrysy)	01/20/2021		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

20jan2016_NEtFOSAA_002	20-Jan-2016	17:12:28
NEtFOSAA0116 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters
Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=35.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Note: N-EtFOSA is formed by fragmentation of N-EtFOSAA.

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{N}$-EtFOSAA)	
		Collision Gas (mbar) $=3.66 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Collision Energy (eV) $=25$
Flow:	$300 \mu / / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: PFTeDA1215

GAS \#:
376-06-7

MOLECULAR FORMULA:	$\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}$		
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	MOLECULAR WEIGHT:	714.11 Methanol SOLVENT (S):
CHEMICAL PURITY:	$>98 \%$		
Water $(<1 \%)$			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$ and $\sim 0.2 \%$ of PFPeDA $\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

MS: \quad Micromass Quattro micro API MS
Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 65% ($80: 20 \mathrm{MeOH}: A C N$) / 35\% $\mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (250-1250 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ (500 ng/ml PFTeDA)	MS Parameters

PRODUCT CODE: COMPOUND:

PFTrDA
Perfluoro-n-tridecanoic acid

LOT NUMBER: PFTrDA0216

STRUCTURE:
CAS \#:
72629-94-8

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/12/2016
02/12/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
664.11

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of PFUdA $\left(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\right)$, $\sim 0.4 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)

Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=22.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow ($1 / h r$) $=650$
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFTDA)}$	MS Parameters
Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$	Collision Gas (mbar) $=3.35 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=15$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

PRODUCT CODE:

COMPOUND:

PFDoA
Perfluoro-n-dodecanoic acid

LOT NUMBER: PFDoA0516

CAS \#: 307-55-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidduyy)
EXPIRY DATE: (mmldoryyy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

>98\%

$$
05 / 31 / 2016
$$

$$
05 / 31 / 2021
$$

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad (mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFDoA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
 Column:
 Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
 Mobile phase: Gradient

Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH 4 OAc buffer)
Ramp to 90% organic over 7.5 min and hold for
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=20.00$
Cone Gas Flow ($1 / \mathrm{hr}$) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: PFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFDoA)

Mobile phase: Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=13$

Flow: $\quad 300 \mu / / m i n$

PRODUCT CODE:

 COMPOUND:FOSA-I
Perfluoro-1-octanesulfonamide

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mm/ddyyy)	$09 / 02 / 2015$
EXPIRY DATE: (mm/dd/yyy)	$09 / 02 / 2017$
RECOMMENDED STORAGE:	Refrigerate ampoule

LOT NUMBER: FOSA0815I

CAS \#: 754-91-6

MOLECULAR WEIGHT: 499.14
SOLVENT(S): Isopropanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

nertacioc mutrnal
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{HA}_{4} \mathrm{C}$ buffer)
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
	Time: 10 min
Flow:	$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage (V) $=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ FOSA-I)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.54 \mathrm{e}-3$
Collision Energy (eV) $=30$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PFNA
Perfluoro-n-nonanoic acid

LOT NUMBER: PFNA1015

CAS \#:
375-95-1

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrymy)
EXPIRY DATE: (mmodaryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{5} \mathrm{HF}_{17} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/23/2015
10/23/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
464.08

SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of perfluoro-n-octanoic acid (PFOA) and $<0.1 \%$ of perfluoro-n-heptanoic acid (PFHpA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \begin{array}{l}\text { Acquity UPLC BEH Shield RP } \\ \\ \\ \\ \\ \text { Mobile phase: }\end{array} \\ & \text { Gradient }\end{array}$
Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
$\begin{array}{ll}\text { Injection: } & \text { Direct loop injection } \\ & 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { PFNA })\end{array}$
Mobile phase: Isocratic 80\% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=11$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0516

GAS \#:
2706-90-3

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/syy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
MOLECULAR WEIGHT: SOLVENT(S): Methanol Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydride - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad 06/02/2016
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com*»

Figure 1: PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 $\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 30% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFPeA)}$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.20 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=9$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

STRUCTURE:

PEBA
Perfluoro-n-butanoic acid

LOT NUMBER: PFBA0516

GAS \#:
375-22-4

MOLECULAR FORMULA:

 CONCENTRATION:
CHEMICAL PURITY:

LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/spy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/27/2016
05/27/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 214.04
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{(\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy})}{\text { (}}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatograp	ic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=10.00$ Cone Gas Flow (l/hr) $=100$ Desolvation Gas Flow $(1 / h r)=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFBA)	
		Collision Gas (mbar) $=3.62 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=10$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

WELLINGTON

LAB OR A TORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/29/2016
04/29/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
05/20/2016
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:		
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1000 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 70\% (80:20 MeOH:ACN) / 30\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 95% organic over 6 min and hold for 2.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFODA})$	MS Parameters

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PROA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0716

GAS \#:

335-67-1

MOLECULAR WEIGHT: 414.07
SOLVENT(S): Methanol
Water ($<1 \%$)

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mm/dod/ysy)	$08 / 02 / 2016$
EXPIRY DATE: (mm/dd/yyy)	$08 / 02 / 2021$
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFOA})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

N-MeFOSA-M
N -methylperfluoro-1-octanesulfonamide

LOT NUMBER: NMeFOSA0516M

CAS \#: 31506-32-8

MOLECULAR FORMULA:		$\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:		$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:		$>98 \%$
LAST TESTED: (mm/dd/myy)		$05 / 24 / 2016$
EXPIRY DATE: (mm/dd/yny)	$05 / 24 / 2021$	
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place	

MOLECULAR WEIGHT: 513.17
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0516M

GAS \#:

4151-50-2

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:
MOLECULAR WEIGHT: 527.20
SOLVENT(S): Methanol

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

N-EtFOSE-M 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol

STRUCTURE:

GAS \#:
1691-99-2

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodshyy)
EXPIRY DATE: (mmiddsmy)
RECOMMENDED STORAGE
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{11} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
$11 / 10 / 2015$ (HRGC/LRMS)
$11 / 09 / 2015$ (LC/MS)
$11 / 10 / 2020$

MOLECULAR WEIGHT:
571.25

SOLVENTS):
Methanol

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE:

COMPOUND:

PFUdA

Perfluoro-n-undecanoic acid

LOT NUMBER: PFUdA1016

CAS \#: 2058-94-8

MOLECULAR FORMULA:
$\mathrm{C}_{n} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmidolmwn)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

PRODUCT CODE:

 COMPOUND:PFHxDA
Perfluoro-n-hexadecanoic acid

STRUCTURE:

LOT NUMBER: PFHxDA0516

CAS \#:

67905-19-5

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodryyy)
EXPIRY DATE: (mmddd hyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/25/2016
05/25/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 814.13
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.4 \%$ of PFODA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 05/27/2016 (mm/dd/yyyy)

CERTIFICATE OF ANALYSIS DOCUMENTATION*

PRODUCT CODE: COMPOUND:

PFHpA
Perfluoro-n-heptanoic acid

LOT NUMBER: PFHpA1216

CAS \#:

375-85-9

MOLECULAR FORMULA:
CONCENTRATION:
$\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
CHEMICAL PURITY:
LAST TESTED: (mmodymy)
EXPIRY DATE: (mmddrym)
RECOMMENDED STORAGE:

12/02/2016
12/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{12 / 12 / 2016}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}$ 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

17D2621

PRODUCT CODE: COMPOUND:

STRUCTURE:

N-MeFOSE-M
2-(N-methylperfluoro-1-octanesulfonamido)-ethanol

CAS \#:
24448-09-7

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)

EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/10/2015 (HRGC/LRMS)
11/09/2015 (LC/MS)
11/10/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 557.22
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Analytical Standard Record

Vista Analytical Laboratory
17D2706

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 C 1027 | PFBS anion | $10-M a r-17$ | Jamie C. Stockman | 02-Dec-21 | 10-Mar-17 15:27 by JCS |

Description:	L-PFBS anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	Methanol	Prepared By:	Emilie Schneider
Final Volume $(\mathrm{mls}):$	1.326	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 13:48 by EMS

| Analyte | CAS Number | Concentration | Units |
| :--- | :---: | :---: | :---: | :---: |
| PFBS | $375-73-5$ | 25 | $\mathrm{ug} / \mathrm{mL}$ |
| L-PFBS | | 25 | $\mathrm{ug} / \mathrm{mL}$ |

PRODUCT CODE:
COMPOUND:

L-PFBS
Potassium perfluoro-1-butanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddrymy)
EXPIRY DATE: (mmpddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{~F}_{\mathrm{g}} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
12/02/2016
12/02/2021
Store ampoule in a cool, dark place

LOT NUMBER: LPFBS1116

CAS \#: 29420-49-3

MOLECULAR WEIGHT: 338.19
 SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: \quad Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP ${ }_{18}$	Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
(both with 10 mM NH	Cone Voltage (V) $=40.00$
Ramp to 90% organic over 7 min and hold for 2 min	Cone Gas Flow (1/hr) $=50$
before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFBS})$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=25$

Analytical Standard Record

Vista Analytical Laboratory

17D2709

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 1611427 | $8: 2$ FTS anion | $14-$ Sep-16 | $* *$ Vendor $* *$ | 22-Aug-21 | 15-Dec-16 08:53 by AEW |

Description:	$8: 2 \mathrm{FTS}$ anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	$27-A p r-17$
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.958	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 14:28 by INJ

Analyte	CAS Number	Concentration	Units
L-8:2FTS		25	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS	$70887-84-2$	25	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate

STRUCTURE:
CAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyys)
EXPIRY DATE: (mmbdaryy)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

[^1]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1:
8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Agilent Zorbax Bonus-RP
$1.8 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $55 \%(80: 20 \mathrm{MeOH} / \mathrm{ACN}) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min
before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (250-850 amu)
Source:Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=30.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: $\quad 8: 2 F T S ;$ LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ 8:2FTS)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} 4{ }_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.31 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=30 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Analytical Standard Record

Vista Analytical Laboratory

17D2715

CERTIFICATE OF ANALYSIS DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmddymm)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 450.15
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory

17D2716

PRODUCT CODE: COMPOUND:

L-PFDS

Sodium perfluoro-1-decanesulfonate

STRUCTURE:

LOT NUMBER: LPFDS0217

GAS \#:
2806-15-7

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro- 1 -dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17D2717

Parent Standards used in this standard:									
Standard De	Description		Prepared	Prepared By		Expires	Last Edit		(mls)
16J0431 br-	br-PFOSK		04-Oct-16	** Vendor **		14-Oct-20	03-Feb-1	3:33 by AEW	0.5
Description:		Br-PFOSK anion DIL		Expires:			27-Apr-18		
Standard Type:		Other		Prepared:			27-Apr-17		
Solvent:		MeOH		Prepared By:			Isaac N. Johnson		
Final Volume (mls)		0.928		Department:			LCMS		
Vials:		1		Last Edit:			27-Apr-17 14:46 by INJ		
Analyte					CAS	mber	Concentration	Units	
PFOS					1763	23-1	25	$\mathrm{ug} / \mathrm{mL}$	
L-PFOS							19.7	ug/mL	

CERTIFICATE OF ANALYSIS DOCUMENTATION

br-PFOSK

Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:
 LOT NUMBER:
 CONCENTRATION:
 SOLVENT(S):
 DATE PREPARED: (mm/dd/yyy)
 LAST TESTED: (mm/ddymy)
 EXPIRY DATE: (mmlddyyyy)
 RECOMMENDED STORAGE:

br-PFOSK
brPFOSK1015
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
Methanol
10/13/2015
10/14/2015
10/14/2020
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

> FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^2]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
1	Potassium perfluoro-1-octanesulfonate	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}$	78.8
2	Potassium 1-trifluoromethylperfluoroheptanesulfonate**		1.2
3	Potassium 2-trifluoromethylperfluoroheptanesulfonate		0.6
4	Potassium 3-trifluoromethylperfluoroheptanesulfonate		1.9
5	Potassium 4-trifluoromethylperfluoroheptanesulfonate		2.2
6	Potassium 5-trifluoromethylperfluoroheptanesulfonate		4.5
7	Potassium 6-trifluoromethylperfluoroheptanesulfonate		10.0
8	Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate		0.2
9	Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate		0.03
10	Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate		0.4
11	Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate		0.07

** Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:

Date: \qquad (mm/dd/yyyy)

Figure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)

Figure 2: br-PFOSK; LC/MS Data (SIR)

140ct2015_brPFOSK_003

Conditions for Fiqure 2:
 LC: Waters Acquity Ultra Performance LC
 MS: Micromass Quattro micro API MS

Chromatographic Conditions:

Column:	Acquity UPLC BEH Shield $\mathrm{RP}_{18}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})$		
Injection:	$1.0 \mu \mathrm{~g} / \mathrm{ml}$ of br-PFOSK		
Mobile Phase:	Gradient $45 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 55 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)		
	Ramp to 90% organic over 15 min and hold for 3 min. Return to initial conditions over 1 min. Time: 20 min		
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$		
MS Conditions:		\quad	SIR (ES)Source $=110^{\circ} \mathrm{C}$ Desolvation $=325^{\circ} \mathrm{C}$ Cone Voltage $=60 \mathrm{~V}$
:---			

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:
Injection: On-column

Mobile phase: Same as Figure 2

MS Parameters

Collision Gas (mbar) $=3.06 \mathrm{e}-3$
Collision Energy (eV) $=11-50$ (variable)

Analytical Standard Record

Vista Analytical Laboratory

17D2718

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 D 2615 | br-PFHxSK | $26-$ Apr-17 | $* *$ Vendor $* *$ | 04-Jan-22 | 12-Jun-17 08:51 by AEW |

Description:	Br-PFHxSK anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.91	Department:	LCMS
Vials:	1	Last Edit:	12-Jun-17 08:51 by AEW

Analyte	CAS Number	Concentration	Units
Total PFHxS		25	$\mathrm{ug} / \mathrm{mL}$
PFHxS	$355-46-4$	25	$\mathrm{ug} / \mathrm{mL}$
L-PFHxS	$3871-99-6$	20.3	$\mathrm{ug} / \mathrm{mL}$
Br-PFHxS		4.72	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS DOCUMENTATION'

br-PFHxSK

Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers

```
PRODUCT CODE: br-PFHxSK
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED: (mmudyyys)
LAST TESTED: (mm/dimyy)
EXPIRY DATE: (mnldilywy)
RECOMMENDED STORAGE:
    brPFHxSK0117
    50.0\pm2.5 \mug/ml (total potassium salt)
    45.5\pm2.3 \mu\textrm{g}/\textrm{ml}}\mathrm{ (total PFHxS anion)
    Methanol
    01/03/2017
    01/04/2017
    01/04/2022
    Store ampoule in a cool, dark place
```


DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-$ NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ of perfluoro-1-pentanesulfonate and $\sim 0.2 \%$ of perfluoro-1-octanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 - info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

| Isomer | $\begin{array}{c}\text { Name }\end{array}$ | $\begin{array}{c}\text { Percent } \\ \text { Composition } \\ \text { by }\end{array}$ |
| :---: | :--- | :--- | :---: |
| 1 | Potassium perfluoro-1-hexanesulfonate | |$]$

** Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Certified By:

Date: 01/20/2017 (mm/dd/yyyy)

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 20\% (80:20 MeOH:ACN) / 80\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=50.00$
	Ramp to 50% organic over 14 min . Ramp to	Cone Gas Flow (1/hr) $=60$
	90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 20 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: br-PFHxSK; LC/MS Data (SIR)

04jan2017_brPFHxSK_002
brPFHxSKO117 $25 \mathrm{ug} / \mathrm{ml}$
100

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ (500 ng/ml br-PFHxSK)
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH CAc buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=30$

Form\#:13, Issued 2004-11-10
Revision\#:3, Revised 2015-03-24

Analytical Standard Record

Vista Analytical Laboratory
17D2813

Parent Standards used in this standard:								
Standard Description	Description	Prepared	Prepared By		Expires	Last Edit		(mls)
17D2619 L-PFHpS	L-PFHpS	26-Apr-17	** Vendor **		18-Oct-21	12-Jun-17 09:07 by AEW		0.5
Description:	L-PFHpS anion DIL		Expires:			28-Apr-18		
Standard Type:	Other		Prepared:			28-Apr-17		
Solvent:	Methanol/		Prepared By:			Isaac N. Johnson		
Final Volume (mls):	0.952		Department:			LCMS		
Vials:	1		Last Edit:			12-Jun-17 09:07 by AEW		
Analyte				CAS N	mber	Concentration	Units	
Total PFHpS						25	$\mathrm{ug} / \mathrm{mL}$	
PFHpS				375-9	2-8	25	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpS						25	$\mathrm{ug} / \mathrm{mL}$	

PRODUCT CODE:

COMPOUND:

L-PFHpS
Sodium perfluoro-1-heptanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmiddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.6 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFHpS anion)
>98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

LOT NUMBER: LPFHpS1016

CAS \#: Not available

MOLECULAR WEIGHT: 472.10
SOLVENT(S):
Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of L-PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)$ and $\sim 0.1 \%$ of $\mathrm{L}-\mathrm{PFOS}\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 10/20/2016
(mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory
17F3038

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
17D0605	13C6-PFDA	06-Apr-17	Jamie C. Stockman	06-May-21	06-Apr-17 09:43 by JCS	0.375
17E1717	13C2-FOUEA	17-May-17	** Vendor **	02-Aug-18	17-May-17 12:46 by INJ	0.375
17 E 2411	13C5-PFHxA	24-May-17	** Vendor **	27-Aug-19	24-May-17 11:19 by INJ	0.375
17F3031	13C4-PFOS dil.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:31 by INJ	0.468
17F3032	13C3-PFHxS DIL.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:35 by INJ	0.416
17F3034	13C8-PFOA dil.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:40 by INJ	0.468
17F3035	13C9-PFNA	30-Jun-17	** Vendor **	27-Aug-19	03-Jul-17 13:07 by INJ	0.375
17F3036	13C4-PFBA	30-Jun-17	** Vendor **	12-Apr-22	03-Jul-17 13:08 by INJ	0.375
17 F 3037	13C7-PFUdA	30-Jun-17	** Vendor **	22-Jan-21	03-Jul-17 13:09 by INJ	0.375

Description:	PFC-RS	Expires:	19-May-18
Standard Type:	Reagent	Prepared:	30-Jun-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	15	Department:	LCMS
Vials:	1	Last Edit:	03-Jul-17 13:09 by INJ

Analyte	CAS Number	Concentration
13C9-PFNA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C7-PFUnA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C6-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFHxA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFOS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFHxS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-FOUEA	1.25	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

GAS \#: \quad Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\frac{06 / 13 / 2016}{(m m / d d y m y)}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	$\begin{aligned} & \text { Cone Gas Flow }(1 / h r)=50 \\ & \text { Desolvation Gas Flow }(1 / h r)=750 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION.

PRODUCT CODE:
 COMPOUND:

MFOUEA
2H-Perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid

LOT NUMBER: MFOUEA0716

CAS \#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{16} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mm/ddyyy)	08/02/2016
EXPIRY DATE: (mm/didysyy)	08/02/2018
RECOMMENDED STORAGE:	Refrigerate ampoule

MOLECULAR WEIGHT:	460.08
SOLVENT(S):	Anhydrous Isopropanol
	$\geq 99 \%{ }^{13} \mathrm{C}$
ISOTOPIC PURITY:	$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

LOT NUMBER: M5PFHxA0814

GAS \#: \quad Not available

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,6- $\left.{ }^{13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17F3031

WELLINGTON
LA B OR A T ORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:

COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate

STRUCTURE:
LOT NUMBER: MPFOS1216

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyyys)
EXPIRY DATE: (mmiddyyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
MOLECULAR WEIGHT:
SOLVENT(S):
>98\% ISOTOPIC PURITY:
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFOS anion)
526.08

12/12/2016
12/12/2021
Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.8 \%$ Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17F3032

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 E 2410 | $13 \mathrm{C} 3-\mathrm{PFHxS}$ | $24-M a y-17$ | $* *$ Vendor $* *$ | 31-May-21 | 24-May-17 11:18 by INJ |

Description:	13C3-PFHxS DIL.	Expires:	30-Jun-18
Standard Type:	Reagent	Prepared:	30-Jun-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	0.473	Department:	LCMS
Vials:	1	Last Edit:	30-Jun-17 13:35 by INJ
Analyte		CAS Number	Concentration
$13 C 3-P F H x S$			Units

$17 E$
 2
 410

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION.

PRODUCT CODE:

 COMPOUND:STRUCTURE:

M3PFHxS
Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ hexanesulfonate

GAS \#:
Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17F3034

WELLINGTON

LA B OR A TORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION.

PRODUCT CODE:

COMPOUND:

M8PFOA
Perfluoro-n-[$\left[{ }^{13} \mathrm{C}_{8}\right]$ octanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED: (mm/ddryyy)
${ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$
$49 \pm 2.45 \mu \mathrm{~g} / \mathrm{ml}$
97.9\% (M8PFOA)
2.1\% (MPFOA [M+4])

EXPIRY DATE: (mmiddyyyy)
02/12/2016

RECOMMENDED STORAGE:
02/12/2021
Store ampoule in a cool, dark place

LOT NUMBER: M8PFOA0216

CAS \#: \quad Not available

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of native perfluoro-n-octanoic acid (PFOA) and $\sim 2.1 \%$ of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\frac{02 / 24 / 2016}{(m m / d / d y y y)}$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:STRUCTURE:

M9PFNA
Perfluoro- $n-\left[{ }^{13} \mathrm{C}_{9}\right]$ nonanoic acid

LOT NUMBER: M9PFNA0814

CIS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrymy)
EXPIRY DATE: (mnldodryy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
08/27/2014
08/27/2019

MOLECULAR WEIGHT:
SOLVENT (S):
ISOTOPIC PURITY:
473.01

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{9}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.9 \%$ of ${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additiorial information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } \quad \text { Acquity UPLC BEH Shield } R P_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

17F3035

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M9PFNA)	MS Parameters
		Collision Gas (mbar) $=3.74 \mathrm{e}-3$
Mobile phas	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=11$
Flow:	$300 \mu / / m i n$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

MPFBA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ butanoic acid
LOT NUMBER: MPFBA0417

GAS \#: \quad Not available

MOLECULAR WEIGHT: 218.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)

MOLECULAR FORM
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoddryyy)
EXPIRY DATE: (mmddasyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
${ }^{13} \mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/12/2017
04/12/2022

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
$\frac{4 / 20 / 2017}{(m \text { mid dod My })}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value (s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)

| 12apr2017_MPFBA_001 |
| :--- | :--- | :--- |
| MPFBA0417 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (1/hr) $=100$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFBA})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=10$

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION
PRODUCT CODE:
COMPOUND:
STRUCTURE:

M7PFUdA	LOT NUMBER:	M7PFUdA0116
Perfluoro- $n-\left[1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right.$] undecanoic acid		
	CAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{7}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	571.04
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmmadyme)	01/22/2016		(1,2,3,4,5,6,7- ${ }^{13} \mathrm{C}_{7}$)
EXPIRY DATE: (mmbduhyy)	01/22/2021		
RECOMMENDED STORAGE:	Store ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .	Cone Gas Flow (l/hr) $=65$ Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M7PFUdA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$
"INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","375-73-
5","PFBS","14.4","ng/L","","1.85","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","307-24-4","PFHxA","63.1","ng/L","","2.25","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","375-85-9","PFHpA","21.7","ng/L","","0.611","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","355-46-4","PFHxS","58.6","ng/L","","0.978","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","335-67-1","PFOA","10.8","ng/L","","0.673","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","1763-23-1","PFOS","62.0","ng/L","","0.834","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","375-95-1","PFNA","5.17","ng/L","U","0.837","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","335-76-2","PFDA","5.17","ng/L","U","1.54","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","2355-31-9","MeFOSAA","5.17","ng/L","U","1.70","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17" ""
"INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","2058-94-8","PFUnA","5.17","ng/L","U","1.08","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","2991-50-6","EtFOSAA","5.17","ng/L","U","1.42","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17", ""
"INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","307-55-
1","PFDoA","5.17","ng/L","U","0.818","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","72629-94-8","PFTrDA","5.17","ng/L","U","0.510","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","
"INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","376-06-7","PFTeDA","5.17","ng/L","U","0.780","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17", ""
"INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C3-PFBS","13C3-PFBS","148","\%R","","-99","NA","","IS","148","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C2-PFHxA","13C2-PFHxA","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C4-PFHpA","13C4-PFHpA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","18O2-PFHxS","18O2-PFHxS","150","\%R","","-99","NA","","IS","150","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C2-PFOA","13C2-PFOA","135","\%R","","-99","NA","","IS","135","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C8-PFOS","13C8-PFOS","134","\%R","","-99","NA","","IS","134","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C5-PFNA","13C5-PFNA","125","\%R","","-99","NA","","IS","125","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C2-PFDA","13C2-PFDA","126","\%R","","-99","NA","","IS","126","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","d3-MeFOSAA","d3-MeFOSAA","99.9","\%R","","-99","NA","","IS","99.9","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C2-PFUnA","13C2-PFUnA","86.5","\%R","","-99","NA","","IS","86.5","","-99","NA","YES","100","","0.121","0.001","-99","" "INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","d5-EtFOSAA","d5-

EtFOSAA","98.6","\%R","","-99","NA","","IS","98.6","","-99","NA","YES","100","","0.121","0.001","-99",""
"INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C2-PFDoA","13C2-PFDoA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.121","0.001","-99",""
"INFLUENT-20170710","Modified EPA Method 537","Initial","1700856-01","Vista","13C2-PFTeDA","13C2-PFTeDA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.121","0.001","-99",""
"DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","375-73-
5","PFBS","14.3","ng/L","","1.92","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","307-24-4","PFHxA","63.9","ng/L","","2.34","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","375-85-9","PFHpA","21.3","ng/L","","0.634","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","355-46-4","PFHxS","62.8","ng/L","","1.02","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","335-67-
1","PFOA","11.5","ng/L","","0.699","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","1763-23-1","PFOS","63.5","ng/L","","0.866","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","375-95-1","PFNA","0.887","ng/L","J","0.869","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","335-76-
2","PFDA","5.39","ng/L","U","1.60","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","2355-31-9","MeFOSAA","5.39","ng/L","U","1.77","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39" ""
"DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","2058-94-
8","PFUnA","5.39","ng/L","U","1.13","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","2991-50-6","EtFOSAA","5.39","ng/L","U","1.47","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39", ""
"DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","307-55-1","PFDoA","5.39","ng/L","U","0.850","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","72629-94-8","PFTrDA","5.39","ng/L","U","0.530","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39"," "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","376-06-7","PFTeDA","5.39","ng/L","U","0.810","LOD","","TRG","","","8.59","LOQ","YES","-99","","0.116","0.001","5.39", ""
"DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C3-PFBS","13C3-PFBS","149","\%R","","-99","NA","","IS","149","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C2-PFHxA","13C2-PFHxA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C4-PFHpA","13C4-PFHpA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","18O2-PFHxS","18O2-PFHxS","138","\%R","","-99","NA","","IS","138","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C2-PFOA","13C2-PFOA","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C8-PFOS","13C8-PFOS","131","\%R","","-99","NA","","IS","131","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C5-PFNA","13C5-PFNA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C2-PFDA","13C2-PFDA","125","\%R","","-99","NA","","IS","125","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","d3-MeFOSAA","d3-

MeFOSAA","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C2-PFUnA","13C2-PFUnA","95.7","\%R","","-99","NA","","IS","95.7","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","d5-EtFOSAA","d5-EtFOSAA","119","\%R","","-99","NA","","IS","119","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C2-PFDoA","13C2-PFDoA","130","\%R","","-99","NA","","IS","130","","-99","NA","YES","100","","0.116","0.001","-99","" "DUP05-20170710","Modified EPA Method 537","Initial","1700856-02","Vista","13C2-PFTeDA","13C2-PFTeDA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.116","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","375-73-5","PFBS","5.34","ng/L","U","1.91","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","307-24-4","PFHxA","5.34","ng/L","U","2.32","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","375-85-9","PFHpA","5.34","ng/L","U","0.630","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","355-46-4","PFHxS","5.34","ng/L","U","1.01","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","335-67-1","PFOA","5.34","ng/L","U","0.694","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","1763-23-1","PFOS","5.34","ng/L","U","0.860","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","375-95-1","PFNA","5.34","ng/L","U","0.863","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","335-76-2","PFDA","5.34","ng/L","U","1.59","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","2355-31-9","MeFOSAA","5.34","ng/L","U","1.76","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34" ""
"MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","2058-94-8","PFUnA","5.34","ng/L","U","1.12","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","2991-50-6","EtFOSAA","5.34","ng/L","U","1.46","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34", ""
"MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","307-55-1","PFDoA","5.34","ng/L","U","0.844","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","72629-94-8","PFTrDA","5.34","ng/L","U","0.526","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","
"MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","376-06-
7","PFTeDA","5.34","ng/L","U","0.804","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34", " "
"MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C3-PFBS","13C3-
PFBS","181","\%R","H","-99","NA","","IS","181","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C2-PFHxA","13C2-PFHxA","135","\%R","","-99","NA","","IS","135","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C4-PFHpA","13C4-PFHpA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","18O2-PFHxS","18O2-PFHxS","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C2-PFOA","13C2-PFOA","125","\%R","","-99","NA","","IS","125","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C8-PFOS","13C8-PFOS","139","\%R","","-99","NA","","IS","139","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C5-PFNA","13C5-

PFNA","119","\%R","","-99","NA","","IS","119","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C2-PFDA","13C2-PFDA","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","d3-MeFOSAA","d3-MeFOSAA","124","\%R","","-99","NA","","IS","124","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C2-PFUnA","13C2-PFUnA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","d5-EtFOSAA","d5-EtFOSAA","124","\%R","","-99","NA","","IS","124","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C2-PFDoA","13C2-PFDoA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.117","0.001","-99","" "MID-POINT-20170710","Modified EPA Method 537","Initial","1700856-03","Vista","13C2-PFTeDA","13C2-PFTeDA","64.9","\%R","","-99","NA","","IS","64.9","","-99","NA","YES","100","","0.117","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","375-73-5","PFBS","5.17","ng/L","U","1.85","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","307-24-4","PFHxA","5.17","ng/L","U","2.26","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","375-85-9","PFHpA","5.17","ng/L","U","0.611","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","355-46-4","PFHxS","5.17","ng/L","U","0.980","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","335-67-1","PFOA","5.17","ng/L","U","0.673","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","1763-23-1","PFOS","5.17","ng/L","U","0.835","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","375-95-1","PFNA","5.17","ng/L","U","0.838","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","335-76-2","PFDA","5.17","ng/L","U","1.54","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","2355-31-9","MeFOSAA","5.17","ng/L","U","1.71","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17" ""
"EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","2058-94-8","PFUnA","5.17","ng/L","U","1.09","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","2991-50-6","EtFOSAA","5.17","ng/L","U","1.42","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17", ""
"EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","307-55-
1","PFDoA","5.17","ng/L","U","0.819","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","72629-94-8","PFTrDA","5.17","ng/L","U","0.511","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","
"EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","376-06-7","PFTeDA","5.17","ng/L","U","0.781","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17", ""
"EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C3-PFBS","13C3-PFBS","160","\%R","H","-99","NA","","IS","160","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C2-PFHxA","13C2-PFHxA","122","\%R","","-99","NA","","IS","122","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C4-PFHpA","13C4-PFHpA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","18O2-PFHxS","18O2-PFHxS","118","\%R","","-99","NA","","IS","118","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C2-PFOA","13C2-

PFOA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C8-PFOS","13C8-PFOS","129","\%R","","-99","NA","","IS","129","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C5-PFNA","13C5-PFNA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C2-PFDA","13C2-PFDA","122","\%R","","-99","NA","","IS","122","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","d3-MeFOSAA","d3-MeFOSAA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C2-PFUnA","13C2-PFUnA","95.9","\%R","","-99","NA","","IS","95.9","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","d5-EtFOSAA","d5-EtFOSAA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C2-PFDoA","13C2-PFDoA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.121","0.001","-99","" "EFFLUENT-20170710","Modified EPA Method 537","Initial","1700856-04","Vista","13C2-PFTeDA","13C2-PFTeDA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","375-73-5","PFBS","161","ng/L","","1.91","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","307-24-4","PFHxA","691","ng/L","","2.33","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","375-85-9","PFHpA","189","ng/L","","0.632","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Dilution","1700856-05","Vista","355-46-4","PFHxS","1450","ng/L","D","10.1","LOD","","TRG","","","85.5","LOQ","YES","-99","","0.117","0.001","53.4","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","335-67-1","PFOA","146","ng/L","","0.696","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Dilution","1700856-05","Vista","1763-23-1","PFOS","2180","ng/L","D","8.62","LOD","","TRG","","","85.5","LOQ","YES","-99","","0.117","0.001","53.4","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","375-95-1","PFNA","8.29","ng/L","J","0.866","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","335-76-2","PFDA","5.34","ng/L","U","1.59","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","2355-31-9","MeFOSAA","5.34","ng/L","U","1.76","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34" ""
"MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","2058-94-
8","PFUnA","5.34","ng/L","U","1.12","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","2991-50-6","EtFOSAA","5.34","ng/L","U","1.46","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34",
"MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","307-55-
1","PFDoA","5.34","ng/L","U","0.846","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","72629-94-
8","PFTrDA","5.34","ng/L","U","0.528","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34"," "
"MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","376-06-
7","PFTeDA","5.34","ng/L","U","0.807","LOD","","TRG","","","8.55","LOQ","YES","-99","","0.117","0.001","5.34", ""
"MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C3-PFBS","13C3-PFBS","141","\%R","","-99","NA","","IS","141","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C2-PFHxA","13C2-PFHxA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C4-PFHpA","13C4-

PFHpA","92.0","\%R","","-99","NA","","IS","92.0","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Dilution","1700856-05","Vista","18O2-PFHxS","18O2-PFHxS","97.7","\%R","D","-99","NA","","IS","97.7","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C2-PFOA","13C2-PFOA","89.7","\%R","","-99","NA","","IS","89.7","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Dilution","1700856-05","Vista","13C8-PFOS","13C8-PFOS","95.3","\%R","D","-99","NA","","IS","95.3","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C5-PFNA","13C5-PFNA","88.2","\%R","","-99","NA","","IS","88.2","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C2-PFDA","13C2-PFDA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","d3-MeFOSAA","d3-MeFOSAA","117","\%R","","-99","NA","","IS","117","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C2-PFUnA","13C2-PFUnA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","d5-EtFOSAA","d5-EtFOSAA","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C2-PFDoA","13C2-PFDoA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-37S-20170711","Modified EPA Method 537","Initial","1700856-05","Vista","13C2-PFTeDA","13C2-PFTeDA","42.5","\%R","H","-99","NA","","IS","42.5","","-99","NA","YES","100","","0.117","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","375-73-5","PFBS","5.21","ng/L","U","1.86","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","307-24-4","PFHxA","5.21","ng/L","U","2.26","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","375-85-9","PFHpA","5.21","ng/L","U","0.613","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","355-46-4","PFHxS","5.21","ng/L","U","0.983","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","335-67-1","PFOA","5.21","ng/L","U","0.676","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","1763-23-1","PFOS","5.21","ng/L","U","0.838","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","375-95-1","PFNA","5.21","ng/L","U","0.841","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","335-76-2","PFDA","5.21","ng/L","U","1.55","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","2355-31-9","MeFOSAA","5.21","ng/L","U","1.71","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21" ""
"ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","2058-94-
8","PFUnA","5.21","ng/L","U","1.09","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21",""
"ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","2991-50-
6","EtFOSAA","5.21","ng/L","U","1.42","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21", ""
"ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","307-55-
1","PFDoA","5.21","ng/L","U","0.822","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21",""
"ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","72629-94-
8","PFTrDA","5.21","ng/L","U","0.513","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21"," "
"ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","376-06-7","PFTeDA","5.21","ng/L","U","0.784","LOD","","TRG","","","8.30","LOQ","YES","-99","","0.120","0.001","5.21", ""
"ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C3-PFBS","13C3-

PFBS","169","\%R","H","-99","NA","","IS","169","","-99","NA","YES","100","","0.120","0.001","-99","'" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C2-PFHxA","13C2-PFHxA","141","\%R","","-99","NA","","IS","141","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C4-PFHpA","13C4-PFHpA","114","\%R","","-99","NA","","IS","114","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","18O2-PFHxS","18O2-PFHxS","150","\%R","","-99","NA","","IS","150","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C2-PFOA","13C2-PFOA","126","\%R","","-99","NA","","IS","126","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C8-PFOS","13C8-PFOS","142","\%R","","-99","NA","","IS","142","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C5-PFNA","13C5-PFNA","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C2-PFDA","13C2-PFDA","128","\%R","","-99","NA","","IS","128","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","d3-MeFOSAA","d3-MeFOSAA","131","\%R","","-99","NA","","IS","131","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C2-PFUnA","13C2-PFUnA","118","\%R","","-99","NA","","IS","118","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","d5-EtFOSAA","d5-EtFOSAA","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C2-PFDoA","13C2-PFDoA","127","\%R","","-99","NA","","IS","127","","-99","NA","YES","100","","0.120","0.001","-99","" "ERB-01-20170711","Modified EPA Method 537","Initial","1700856-06","Vista","13C2-PFTeDA","13C2-PFTeDA","130","\%R","","-99","NA","","IS","130","","-99","NA","YES","100","","0.120","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","375-73-5","PFBS","146","ng/L","","1.95","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","307-24-4","PFHxA","687","ng/L","","2.37","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","' "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","375-85-9","PFHpA","201","ng/L","","0.643","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "11-MW-1-20170710","Modified EPA Method 537","Dilution","1700856-07","Vista","355-46-4","PFHxS","1360","ng/L","D","10.3","LOD","","TRG","","","87.1","LOQ","YES","-99","","0.115","0.001","54.3","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","335-67-1","PFOA","151","ng/L","","0.709","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","' "11-MW-1-20170710","Modified EPA Method 537","Dilution","1700856-07","Vista","1763-23-1","PFOS","3400","ng/L","D","8.79","LOD","","TRG","","","87.1","LOQ","YES","-99","","0.115","0.001","54.3","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","375-95-1","PFNA","18.2","ng/L","","0.882","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","335-76-2","PFDA","4.61","ng/L","J","1.62","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","2355-31-9","MeFOSAA","5.43","ng/L","U","1.80","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43" ""
"11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","2058-94-8","PFUnA","5.43","ng/L","U","1.14","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","2991-50-6","EtFOSAA","5.43","ng/L","U","1.49","LOD",","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43", ""
"11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","307-55-
1","PFDoA","5.43","ng/L","U","0.862","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","72629-94-8","PFTrDA","5.43","ng/L","U","0.538","LOD","","TRG","","","8.71","LOQ","YES","-99","',"0.115","0.001","5.43"," "
"11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","376-06-
7","PFTeDA","5.43","ng/L","U","0.822","LOD","","TRG","","","8.71","LOQ","YES","-99","","0.115","0.001","5.43", ""
"11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C3-PFBS","13C3-PFBS","168","\%R","H","-99","NA","","IS","168","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C2-PFHxA","13C2-PFHxA","134","\%R","","-99","NA","","IS","134","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C4-PFHpA","13C4-PFHpA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Dilution","1700856-07","Vista","18O2-PFHxS","18O2-PFHxS","141","\%R","D","-99","NA","","IS","141","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C2-PFOA","13C2-PFOA","117","\%R","","-99","NA","","IS","117","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Dilution","1700856-07","Vista","13C8-PFOS","13C8-PFOS","112","\%R","D","-99","NA","","IS","112","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C5-PFNA","13C5-PFNA","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C2-PFDA","13C2-PFDA","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","d3-MeFOSAA","d3-MeFOSAA","124","\%R","","-99","NA","","IS","124","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C2-PFUnA","13C2-PFUnA","132","\%R","","-99","NA","","IS","132","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","d5-EtFOSAA","d5-EtFOSAA","130","\%R","","-99","NA","","IS","130","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C2-PFDoA","13C2-PFDoA","134","\%R","","-99","NA","","IS","134","","-99","NA","YES","100","","0.115","0.001","-99","" "11-MW-1-20170710","Modified EPA Method 537","Initial","1700856-07","Vista","13C2-PFTeDA","13C2-PFTeDA","117","\%R","","-99","NA","","IS","117","","-99","NA","YES","100","","0.115","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","375-73-5","PFBS","16.7","ng/L","","1.91","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","307-24-4","PFHxA","35.2","ng/L","","2.33","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","375-85-9","PFHpA","8.14","ng/L","J","0.631","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","355-46-4","PFHxS","153","ng/L","","1.01","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","335-67-1","PFOA","95.9","ng/L","","0.695","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","1763-23-1","PFOS","792","ng/L","","0.861","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","375-95-1","PFNA","5.34","ng/L","U","0.864","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","335-76-2","PFDA","5.34","ng/L","U","1.59","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","2355-31-9","MeFOSAA","5.34","ng/L","U","1.76","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34" ""
"LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","2058-94-8","PFUnA","5.34","ng/L","U","1.12","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","2991-50-6","EtFOSAA","5.34","ng/L","U","1.46","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34", "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","307-55-

1","PFDoA","5.34","ng/L","U","0.845","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","72629-94-8","PFTrDA","5.34","ng/L","U","0.527","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34"," "
"LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","376-06-
7","PFTeDA","5.34","ng/L","U","0.806","LOD","","TRG","","","8.54","LOQ","YES","-99","","0.117","0.001","5.34", ""
"LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C3-PFBS","13C3-PFBS","173","\%R","H","-99","NA","","IS","173","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C2-PFHxA","13C2-PFHxA","136","\%R","","-99","NA","","IS","136","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C4-PFHpA","13C4-PFHpA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","18O2-PFHxS","18O2-PFHxS","141","\%R","","-99","NA","","IS","141","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C2-PFOA","13C2-PFOA","130","\%R","","-99","NA","","IS","130","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C8-PFOS","13C8-PFOS","137","\%R","","-99","NA","","IS","137","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C5-PFNA","13C5-PFNA","126","\%R","","-99","NA","","IS","126","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C2-PFDA","13C2-PFDA","133","\%R","","-99","NA","","IS","133","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","d3-MeFOSAA","d3-MeFOSAA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C2-PFUnA","13C2-PFUnA","95.3","\%R","","-99","NA","","IS","95.3","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","d5-EtFOSAA","d5-EtFOSAA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C2-PFDoA","13C2-PFDoA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.117","0.001","-99","" "LF-MW-54BR-20170710","Modified EPA Method 537","Initial","1700856-08","Vista","13C2-PFTeDA","13C2-PFTeDA","77.1","\%R","","-99","NA","","IS","77.1","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","375-73-5","PFBS","87.6","ng/L","","1.85","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","307-24-4","PFHxA","247","ng/L","","2.26","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","375-85-9","PFHpA","74.4","ng/L","","0.611","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","355-46-4","PFHxS","363","ng/L","","0.980","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","335-67-1","PFOA","55.3","ng/L","","0.673","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","1763-23-1","PFOS","390","ng/L","","0.835","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","375-95-1","PFNA","7.45","ng/L","J","0.838","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","335-76-2","PFDA","5.17","ng/L","U","1.54","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","2355-31-9","MeFOSAA","5.17","ng/L","U","1.71","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17" ""
"MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","2058-94-8","PFUnA","5.17","ng/L","U","1.09","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17",""
"MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","2991-50-
6","EtFOSAA","5.17","ng/L","U","1.42","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","307-55-
1","PFDoA","5.17","ng/L","U","0.819","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17",""
"MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","72629-94-
8","PFTrDA","5.17","ng/L","U","0.511","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","
"MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","376-06-
7","PFTeDA","5.17","ng/L","U","0.781","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C3-PFBS","13C3-PFBS","164","\%R","H","-99","NA","","IS","164","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C2-PFHxA","13C2-PFHxA","123","\%R","","-99","NA","","IS","123","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C4-PFHpA","13C4-PFHpA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","18O2-PFHxS","18O2-PFHxS","138","\%R","","-99","NA","","IS","138","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C2-PFOA","13C2-PFOA","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C8-PFOS","13C8-PFOS","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C5-PFNA","13C5-PFNA","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C2-PFDA","13C2-PFDA","135","\%R","","-99","NA","","IS","135","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","d3-MeFOSAA","d3-MeFOSAA","98.3","\%R","","-99","NA","","IS","98.3","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C2-PFUnA","13C2-PFUnA","95.5","\%R","","-99","NA","","IS","95.5","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","d5-EtFOSAA","d5-EtFOSAA","94.8","\%R","","-99","NA","","IS","94.8","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C2-PFDoA","13C2-PFDoA","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-48BR-20170711","Modified EPA Method 537","Initial","1700856-09","Vista","13C2-PFTeDA","13C2-PFTeDA","88.5","\%R","","-99","NA","","IS","88.5","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","375-73-
5","PFBS","33.1","ng/L","","1.89","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","307-24-4","PFHxA","49.3","ng/L","","2.31","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","375-85-9","PFHpA","11.9","ng/L","","0.625","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","355-46-4","PFHxS","247","ng/L","","1.00","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","335-67-1","PFOA","108","ng/L","","0.689","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","1763-23-1","PFOS","728","ng/L","","0.854","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","375-95-
1","PFNA","5.30","ng/L","U","0.857","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","335-76-2","PFDA","5.30","ng/L","U","1.58","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","2355-31-

9","MeFOSAA","5.30","ng/L","U","1.75","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30" ""
"MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","2058-94-8","PFUnA","5.30","ng/L","U","1.11","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","2991-50-6","EtFOSAA","5.30","ng/L","U","1.45","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30", ""
"MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","307-55-
1","PFDoA","5.30","ng/L","U","0.838","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","72629-94-
8","PFTrDA","5.30","ng/L","U","0.523","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30","
"MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","376-06-
7","PFTeDA","5.30","ng/L","U","0.799","LOD","","TRG","","","8.47","LOQ","YES","-99","","0.118","0.001","5.30", " "
"MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C3-PFBS","13C3-PFBS","155","\%R","H","-99","NA","","IS","155","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C2-PFHxA","13C2-PFHxA","119","\%R","","-99","NA","","IS","119","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C4-PFHpA","13C4-PFHpA","98.1","\%R","","-99","NA","","IS","98.1","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","18O2-PFHxS","18O2-PFHxS","129","\%R","","-99","NA","","IS","129","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C2-PFOA","13C2-PFOA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C8-PFOS","13C8-PFOS","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C5-PFNA","13C5-PFNA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C2-PFDA","13C2-PFDA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","d3-MeFOSAA","d3-MeFOSAA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C2-PFUnA","13C2-PFUnA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","d5-EtFOSAA","d5-EtFOSAA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C2-PFDoA","13C2-PFDoA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-34S-20170711","Modified EPA Method 537","Initial","1700856-10","Vista","13C2-PFTeDA","13C2-PFTeDA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","375-73-5","PFBS","175","ng/L","","1.90","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","307-24-4","PFHxA","695","ng/L","","2.31","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","375-85-9","PFHpA","248","ng/L","","0.627","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Dilution","1700856-11","Vista","355-46-4","PFHxS","1300","ng/L","D","5.03","LOD","","TRG","","","42.5","LOQ","YES","-99","","0.118","0.001","26.5","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","335-67-1","PFOA","123","ng/L","","0.691","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Dilution","1700856-11","Vista","1763-23-
1","PFOS","1830","ng/L","D","4.28","LOD","","TRG","","","42.5","LOQ","YES","-99","","0.118","0.001","26.5","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","375-95-

1","PFNA","27.0","ng/L","","0.860","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","335-76-
2","PFDA","5.80","ng/L","J","1.58","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","2355-31-9","MeFOSAA","5.30","ng/L","U","1.75","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30" ""
"MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","2058-94-
8","PFUnA","5.30","ng/L","U","1.11","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","2991-50-6","EtFOSAA","5.30","ng/L","U","1.45","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30", ""
"MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","307-55-
1","PFDoA","5.30","ng/L","U","0.841","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","72629-94-
8","PFTrDA","5.30","ng/L","U","0.524","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30","
"MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","376-06-
7","PFTeDA","5.30","ng/L","U","0.802","LOD","","TRG","","","8.49","LOQ","YES","-99","","0.118","0.001","5.30", ""
"MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C3-PFBS","13C3-PFBS","159","\%R","H","-99","NA","","IS","159","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C2-PFHxA","13C2-PFHxA","124","\%R","","-99","NA","","IS","124","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C4-PFHpA","13C4-PFHpA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Dilution","1700856-11","Vista","18O2-PFHxS","18O2-PFHxS","127","\%R","D","-99","NA","","IS","127","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C2-PFOA","13C2-PFOA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Dilution","1700856-11","Vista","13C8-PFOS","13C8-PFOS","116","\%R","D","-99","NA","","IS","116","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C5-PFNA","13C5-PFNA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C2-PFDA","13C2-PFDA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","d3-MeFOSAA","d3-MeFOSAA","122","\%R","","-99","NA","","IS","122","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C2-PFUnA","13C2-PFUnA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","d5-EtFOSAA","d5-EtFOSAA","117","\%R","","-99","NA","","IS","117","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C2-PFDoA","13C2-PFDoA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31BR-20170711","Modified EPA Method 537","Initial","1700856-11","Vista","13C2-PFTeDA","13C2-PFTeDA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.118","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","375-73-5","PFBS","161","ng/L","","1.91","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","307-24-4","PFHxA","453","ng/L","","2.32","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","375-85-9","PFHpA","186","ng/L","","0.630","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Dilution","1700856-12","Vista","355-46-4","PFHxS","1040","ng/L","D","5.04","LOD","","TRG","","","42.6","LOQ","YES","-99","","0.117","0.001","26.7","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","335-67-

1","PFOA","118","ng/L","","0.694","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Dilution","1700856-12","Vista","1763-23-
1","PFOS","1470","ng/L","D","4.30","LOD","","TRG","","","42.6","LOQ","YES","-99","","0.117","0.001","26.7","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","375-95-1","PFNA","31.3","ng/L","","0.863","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","335-76-2","PFDA","3.22","ng/L","J","1.59","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","2355-31-9","MeFOSAA","5.34","ng/L","U","1.76","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34" ""
"MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","2058-94-8","PFUnA","5.34","ng/L","U","1.12","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","2991-50-6","EtFOSAA","5.34","ng/L","U","1.46","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34", ""
"MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","307-55-
1","PFDoA","5.34","ng/L","U","0.844","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","72629-94-8","PFTrDA","5.34","ng/L","U","0.526","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34","
"MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","376-06-7","PFTeDA","5.34","ng/L","U","0.804","LOD","","TRG","","","8.52","LOQ","YES","-99","","0.117","0.001","5.34", " "'
"MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C3-PFBS","13C3-PFBS","150","\%R","","-99","NA","","IS","150","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C2-PFHxA","13C2-PFHxA","130","\%R","","-99","NA","","IS","130","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C4-PFHpA","13C4-PFHpA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Dilution","1700856-12","Vista","18O2-PFHxS","18O2-PFHxS","111","\%R","D","-99","NA","","IS","111","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C2-PFOA","13C2-PFOA","117","\%R","","-99","NA","","IS","117","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Dilution","1700856-12","Vista","13C8-PFOS","13C8-PFOS","106","\%R","D","-99","NA","","IS","106","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C5-PFNA","13C5-PFNA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C2-PFDA","13C2-PFDA","114","\%R","","-99","NA","","IS","114","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","d3-MeFOSAA","d3-MeFOSAA","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C2-PFUnA","13C2-PFUnA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","d5-EtFOSAA","d5-EtFOSAA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C2-PFDoA","13C2-PFDoA","119","\%R","","-99","NA","","IS","119","","-99","NA","YES","100","","0.117","0.001","-99","" "MW-31S-20170711","Modified EPA Method 537","Initial","1700856-12","Vista","13C2-PFTeDA","13C2-PFTeDA","91.5","\%R","","-99","NA","","IS","91.5","","-99","NA","YES","100","","0.117","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","375-73-5","PFBS","5.00","ng/L","U","1.79","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","307-24-4","PFHxA","5.00","ng/L","U","2.18","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","375-85-

9","PFHpA","5.00","ng/L","U","0.591","LOD",",",TRG","",","8.00","LOQ","YES","-99",","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","355-46-4","PFHxS","5.00","ng/L","U","0.947","LOD","","TRG","",","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","335-67-1","PFOA","5.00","ng/L","U","0.651","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","1763-23-1","PFOS","5.00","ng/L","U","0.807","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","375-95-1","PFNA","5.00","ng/L","U","0.810","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","335-76-2","PFDA","5.00","ng/L","U","1.49","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","2355-31-9","MeFOSAA","5.00","ng/L","U","1.65","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00" ""
"B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","2058-94-8","PFUnA","5.00","ng/L","U","1.05","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","2991-50-6","EtFOSAA","5.00","ng/L","U","1.37","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00", ""
"B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","307-55-
1","PFDoA","5.00","ng/L","U","0.792","LOD",",",TRG","",","8.00","LOQ","YES","-99",","0.125","0.001","5.00","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","72629-94-8","PFTrDA","5.00","ng/L","U","0.494","LOD","","TRG","",","8.00","LOQ","YES","-99","","0.125","0.001","5.00","
"B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","376-06-
7","PFTeDA","5.00","ng/L","U","0.755","LOD",",",TRG","",","8.00","LOQ","YES","-99",","0.125","0.001","5.00", ""
"B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C3-PFBS","13C3-PFBS","172","\%R","H","-99","NA","","IS","172","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C2-PFHxA","13C2-PFHxA","134","\%R","","-99","NA","","IS","134","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C4-PFHpA","13C4-PFHpA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","18O2-PFHxS","1802-PFHxS","136","\%R","","-99","NA","","IS","136","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C2-PFOA","13C2-PFOA","123","\%R","","-99","NA","","IS","123","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C8-PFOS","13C8-PFOS","131","\%R","","-99","NA","","IS","131","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C5-PFNA","13C5-PFNA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C2-PFDA","13C2-PFDA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","d3-MeFOSAA","d3-MeFOSAA","123","\%R","","-99","NA","","IS","123","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C2-PFUnA","13C2-PFUnA","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","d5-EtFOSAA","d5-EtFOSAA","127","\%R","","-99","NA","","IS","127","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C2-PFDoA","13C2-PFDoA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BLK1","Modified EPA Method 537","Initial","B7G0108-BLK1","Vista","13C2-PFTeDA","13C2-PFTeDA","75.0","\%R","","-99","NA","","IS","75.0","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","375-73-

5","PFBS","78.2","ng/L","","1.79","LOD","","TRG","97.8","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00"," "
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","307-24-
4","PFHxA","74.3","ng/L","","2.18","LOD","","TRG","92.8","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","375-85-
9","PFHpA","75.1","ng/L","","0.591","LOD","","TRG","93.9","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00 " ""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","355-46-
4","PFHxS","80.3","ng/L","","0.947","LOD","","TRG","100","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00" ,""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","335-67-
1","PFOA","75.7","ng/L","","0.651","LOD","","TRG","94.6","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","1763-23-
1","PFOS","67.4","ng/L","","0.807","LOD","","TRG","84.3","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","375-95-
1","PFNA","71.7","ng/L","","0.810","LOD","","TRG","89.7","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","335-76-
2","PFDA","75.5","ng/L","","1.49","LOD","","TRG","94.3","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00"," "
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","2355-31-
9","MeFOSAA","74.0","ng/L","","1.65","LOD","","TRG","92.5","","8.00","LOQ","YES","80.0","","0.125","0.001","5. 00",""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","2058-94-
8","PFUnA","71.3","ng/L","","1.05","LOD","","TRG","89.1","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","2991-50-
6","EtFOSAA","82.6","ng/L","","1.37","LOD","","TRG","103","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","307-55-
1","PFDoA","77.1","ng/L","","0.792","LOD","","TRG","96.4","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00 " ""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","72629-94-
8","PFTrDA","64.1","ng/L","","0.494","LOD","","TRG","80.1","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","376-06-
7","PFTeDA","77.2","ng/L","","0.755","LOD","","TRG","96.5","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C3-PFBS","13C3-PFBS","158","\%R","H","-99","NA","","IS","158","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C2-PFHxA","13C2-PFHxA","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C4-PFHpA","13C4-PFHpA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","18O2-PFHxS","18O2-PFHxS","130","\%R","","-99","NA","","IS","130","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C2-PFOA","13C2-PFOA","125","\%R","","-99","NA","","IS","125","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C8-PFOS","13C8-PFOS","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C5-PFNA","13C5-

PFNA","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C2-PFDA","13C2-PFDA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","d3-MeFOSAA","d3-MeFOSAA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C2-PFUnA","13C2-PFUnA","95.1","\%R","","-99","NA","","IS","95.1","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","d5-EtFOSAA","d5-EtFOSAA","96.7","\%R","","-99","NA","","IS","96.7","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C2-PFDoA","13C2-PFDoA","86.2","\%R","","-99","NA","","IS","86.2","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-BS1","Modified EPA Method 537","Initial","B7G0108-BS1","Vista","13C2-PFTeDA","13C2-PFTeDA","47.2","\%R","H","-99","NA","","IS","47.2","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","375-73-5","PFBS","81.6","ng/L","","1.84","LOD","","TRG","99.2","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","307-24-4","PFHxA","78.8","ng/L","","2.24","LOD","","TRG","95.8","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","375-85-
9","PFHpA","78.2","ng/L","","0.607","LOD","","TRG","95.1","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","355-46-4","PFHxS","78.3","ng/L","","0.973","LOD","","TRG","95.2","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","335-67-
1","PFOA","80.1","ng/L","","0.669","LOD","","TRG","97.4","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","1763-23-
1","PFOS","66.1","ng/L","","0.829","LOD","","TRG","80.4","","8.22","LOQ","YES","82.2","EFFLUENT-
20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","375-95-
1","PFNA","79.5","ng/L","","0.833","LOD","","TRG","96.7","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12","'
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","335-76-
2","PFDA","78.3","ng/L","","1.53","LOD","","TRG","95.2","","8.22","LOQ","YES","82.2","EFFLUENT-
20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","2355-31-
9","MeFOSAA","80.5","ng/L","","1.70","LOD","","TRG","97.9","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","2058-94-
8","PFUnA","76.8","ng/L","","1.08","LOD","","TRG","93.1","","8.22","LOQ","YES","82.2","EFFLUENT-
20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","2991-50-
6","EtFOSAA","73.7","ng/L","","1.41","LOD","","TRG","89.7","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","307-55-
1","PFDoA","77.1","ng/L","","0.814","LOD","","TRG","93.8","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","72629-94-
8","PFTrDA","66.7","ng/L","","0.508","LOD","","TRG","81.1","","8.22","LOQ","YES","82.2","EFFLUENT20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","376-06-7","PFTeDA","77.3","ng/L","","0.776","LOD","","TRG","94.0","","8.22","LOQ","YES","82.2","EFFLUENT-

20170710","0.122","0.001","5.12",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C3-PFBS","13C3-PFBS","162","\%R","H","-99","NA","","IS","162","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C2-PFHxA","13C2-PFHxA","125","\%R","","-99","NA","","IS","125","","-99","NA","YES","100","EFFLUENT-
20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C4-PFHpA","13C4-PFHpA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","18O2-PFHxS","18O2-PFHxS","135","\%R","","-99","NA","","IS","135","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C2-PFOA","13C2-PFOA","118","\%R","","-99","NA","","IS","118","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C8-PFOS","13C8-PFOS","145","\%R","","-99","NA","","IS","145","","-99","NA","YES","100","EFFLUENT-
20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C5-PFNA","13C5-PFNA","114","\%R","","-99","NA","","IS","114","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C2-PFDA","13C2-PFDA","122","\%R","","-99","NA","","IS","122","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","d3-MeFOSAA","d3-MeFOSAA","124","\%R","","-99","NA","","IS","124","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C2-PFUnA","13C2-PFUnA","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","d5-EtFOSAA","d5-EtFOSAA","125","\%R","","-99","NA","","IS","125","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C2-PFDoA","13C2-PFDoA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","EFFLUENT-20170710","0.122","0.001","-99",""
"B7G0108-MS1","Modified EPA Method 537","Initial","B7G0108-MS1","Vista","13C2-PFTeDA","13C2-PFTeDA","56.8","\%R","","-99","NA","","IS","56.8","","-99","NA","YES","100","EFFLUENT-
20170710","0.122","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","375-73-
5","PFBS","82.5","ng/L","","1.89","LOD","","TRG","97.8","1.42","8.44","LOQ","YES","84.4","EFFLUENT20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","307-24-
4","PFHxA","77.8","ng/L","","2.30","LOD","","TRG","92.2","3.83","8.44","LOQ","YES","84.4","EFFLUENT20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","375-85-9","PFHpA","75.1","ng/L","","0.623","LOD","","TRG","89.0","6.63","8.44","LOQ","YES","84.4","EFFLUENT20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","355-46-4","PFHxS","74.1","ng/L","","0.999","LOD","","TRG","87.7","8.20","8.44","LOQ","YES","84.4","EFFLUENT20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","335-67-
1","PFOA","87.4","ng/L","","0.687","LOD","","TRG","103","5.59","8.44","LOQ","YES","84.4","EFFLUENT-

20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","1763-23-
1","PFOS","67.8","ng/L","","0.851","LOD","","TRG","80.3","0.124","8.44","LOQ","YES","84.4","EFFLUENT20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","375-95-
1","PFNA","83.4","ng/L","","0.855","LOD","","TRG","98.9","2.25","8.44","LOQ","YES","84.4","EFFLUENT20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","335-76-
2","PFDA","74.8","ng/L","","1.57","LOD","","TRG","88.6","7.18","8.44","LOQ","YES","84.4","EFFLUENT-
20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","2355-31-
9","MeFOSAA","86.5","ng/L","","1.74","LOD","","TRG","103","5.08","8.44","LOQ","YES","84.4","EFFLUENT-
20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","2058-94-
8","PFUnA","81.9","ng/L","","1.11","LOD","","TRG","96.7","3.79","8.44","LOQ","YES","84.4","EFFLUENT-
20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","2991-50-
6","EtFOSAA","82.0","ng/L","","1.45","LOD","","TRG","97.2","8.03","8.44","LOQ","YES","84.4","EFFLUENT-
20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","307-55-
1","PFDoA","75.6","ng/L","","0.836","LOD","","TRG","89.6","4.58","8.44","LOQ","YES","84.4","EFFLUENT-
20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","72629-94-
8","PFTrDA","66.4","ng/L","","0.521","LOD","","TRG","78.7","3.00","8.44","LOQ","YES","84.4","EFFLUENT-
20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","376-06-
7","PFTeDA","78.9","ng/L","","0.796","LOD","","TRG","93.5","0.533","8.44","LOQ","YES","84.4","EFFLUENT-
20170710","0.118","0.001","5.30",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C3-PFBS","13C3-
PFBS","154","\%R","H","-99","NA","","IS","154","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C2-PFHxA","13C2-
PFHxA","131","\%R","","-99","NA","","IS","131","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C4-PFHpA","13C4-
PFHpA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","18O2-PFHxS","18O2-PFHxS","140","\%R","","-99","NA","","IS","140","","-99","NA","YES","100","EFFLUENT-20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C2-PFOA","13C2-PFOA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C8-PFOS","13C8-PFOS","132","\%R","","-99","NA","","IS","132","","-99","NA","YES","100","EFFLUENT-20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C5-PFNA","13C5-PFNA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C2-PFDA","13C2-PFDA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","EFFLUENT-20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","d3-MeFOSAA","d3-MeFOSAA","119","\%R","","-99","NA","","IS","119","","-99","NA","YES","100","EFFLUENT-

20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C2-PFUnA","13C2-PFUnA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","d5-EtFOSAA","d5-EtFOSAA","119","\%R","","-99","NA","","IS","119","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C2-PFDoA","13C2-
PFDoA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"B7G0108-MSD1","Modified EPA Method 537","Initial","B7G0108-MSD1","Vista","13C2-PFTeDA","13C2-PFTeDA","58.2","\%R","","-99","NA","","IS","58.2","","-99","NA","YES","100","EFFLUENT-
20170710","0.118","0.001","-99",""
"NAWC Trenton","NAWC Trenton","INFLUENT-20170710","07/10/2017 12:05","AQ","1700856-
01","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
20:53","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","DUP05-20170710","07/10/2017 12:00","AQ","1700856-
02","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
21:04","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MID-POINT-20170710","07/10/2017 12:30","AQ","1700856-
03","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
21:14","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","EFFLUENT-20170710","07/10/2017 12:45","AQ","1700856-
04","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
21:25","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-37S-20170711","07/11/2017 15:00","AQ","1700856-
05","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
21:57","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-37S-20170711","07/11/2017 15:00","AQ","1700856-
05","NM","","0.20","Modified EPA Method 537","METHOD","Dilution","07/24/2017 10:51","07/28/2017
07:00","Vista","COA","WET","NA","10","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","ERB-01-20170711","07/11/2017 13:50","AQ","1700856-
06","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
22:08","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","11-MW-1-20170710","07/10/2017 15:35","AQ","1700856-
07","NM","","0.20","Modified EPA Method 537","METHOD","Dilution","07/24/2017 10:51","07/28/2017
07:11","Vista","COA","WET","NA","10","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","11-MW-1-20170710","07/10/2017 15:35","AQ","1700856-
07","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
22:19","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","LF-MW-54BR-20170710","07/10/2017 15:10","AQ","1700856-
08","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
22:30","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-48BR-20170711","07/11/2017 09:55","AQ","1700856-

09","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017 22:40","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-34S-20170711","07/11/2017 14:40","AQ","1700856-
10","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
22:51","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-31BR-20170711","07/11/2017 11:50","AQ","1700856-
11","NM","","0.20","Modified EPA Method 537","METHOD","Dilution","07/24/2017 10:51","07/28/2017
07:22","Vista","COA","WET","NA","5","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-31BR-20170711","07/11/2017 11:50","AQ","1700856-
11","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
23:34","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-31S-20170711","07/11/2017 12:00","AQ","1700856-
12","NM","","0.20","Modified EPA Method 537","METHOD","Dilution","07/24/2017 10:51","07/31/2017
18:34","Vista","COA","WET","NA","5","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-31S-20170711","07/11/2017 12:00","AQ","1700856-
12","NM","","0.20","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
23:45","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","07/12/2017 09:12","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0108-BLK1","01/01/1900 00:00","AQ","B7G0108-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
20:43","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","01/01/1900 00:00","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","B7G0108-BS1","01/01/1900 00:00","AQ","B7G0108-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
20:21","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0108-MS1","01/01/1900 00:00","AQ","B7G0108-
MS1","MS","","-99","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
21:36","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0108-MSD1","01/01/1900 00:00","AQ","B7G0108-
MSD1","MSD","","-99","Modified EPA Method 537","METHOD","Initial","07/24/2017 10:51","07/25/2017
21:47","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0108","B7G0108","NA","S7G0065","1700856","01/01/1900 00:00","01/01/1900 00:00",""

TO:	MARY MANG	DATE:	SEPTEMBER 15, 2017
FROM:	MEGAN RITCHIE	COPIES:	DV FILE/
SUBJECT:	ORGANIC DATA VALIDATION - POLYFLUOROAKLYL SUBSTANCES (PFAS) CTO WE08 - FORMER NAWC TRENTON SDG 1700856		

SAMPLES: 12 / Groundwater / PFAS

11-MW-1-20170710	LF-MW-54BR-20170710	MW-37S-20170711
INFLUENT-20170710	MW-31BR-20170711	MW-48BR-20170711
MID-POINT-20170710	MW-31S-20170711	DUP05-20170710
EFFLUENT-20170710	MW-34S-20170711	ERB-20170711

Overview

The sample set for NAWC Trenton, SDG 1700856 consists of eleven (11) groundwater environmental samples and one (1) field quality control blank (designated ERB-). One field duplicate pair (DUP05-20170710/INFLUENT-20170710) was included in this SDG. The samples were analyzed for polyfluoroalkyl substances (PFAS).

The samples were collected by Tetra Tech on July 10 and 11, 2017 and analyzed by Vista Analytical. The analysis was conducted in accordance with modified EPA Method 537 Rev. 1.1 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters:

```
* Data Completeness
* Holding Times/Sample Preservation
* GC/MS Instrument Tuning and System Performance
* Initial and Continuing Calibration Verification Results
* Laboratory Method/Preparation Blank Analyses
* Surrogate Recoveries
* Ongoing Precision and Recovery (OPR) Results
* Matrix Spike/Matrix Spike Duplicate Results
* Laboratory Duplicate Sample Results
    Internal Standard Results
* Field Duplicate Precision
* Detection Limits
```

The symbol (*) indicates that quality control criteria were met for this parameter. Issues affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

TO: M. MANG
PAGE 2
SDG: 1700856

PFAS

The recovery of internal standard 13C2-PFTeDA was below the lower QC limit for sample MW-37S20170711. The non-detected results for PFTeDA in these samples were qualified as estimated (UJ).

The recovery of internal standard 13C2-PFBS exceeded QC limit for samples 11-MW-1-20170710, LF-MW-54BR-20170711, MW-31BR-20170711, MW-34S-20170711, and MW-48BR-20170711. The positive PFBS results for these samples were qualified as biased high (J+).

Detected results reported below the Limit of Quantitation (LOQ) but above the Detection Limit (DL) were qualified as estimated (J).

Notes

The recovery of internal standard 13C2-PFBS exceeded QC limit for samples EFFLUENT-20170710, ERB-01-20170711, and MID-POINT-20170710. No action was taken because the results for PFBS for these samples were non-detect.

Dilutions were required for the following analytes because the concentration in the original analysis exceeded the calibration range of the instrument.

PFHxS	MW-37S-20170711	10X
	$11-M W-1-20170710$	$10 X$
	MW-31BR-20170711	$5 X$
	$M W-31 S-20170711$	$5 X$
PFOS		
	$M W-37 S-20170711$	$10 X$
	$11-M W-1-20170710$	$10 X$
	$M W-31 B R-20170711$	$5 X$
	$M W-31 S-20170711$	$5 X$

The field reagent blank (ERB-20170710) was free of contamination. Please note that "ERB" was incorrectly listed on the COC and was supposed to be "FRB" for field reagent blank.

All analyses were conducted within the hold times specified by the site specific Sampling and Analysis Plan (SAP) and the analytical method.

Sample LF-MW-54BR-20170710 contained particulate and was centrifuged prior to extraction.
Non-detected results were reported to the Limit of Detection (LOD).

TO: M. MANG
PAGE 3 SDG: 1700856

Executive Summary

Laboratory Performance: Internal standard recoveries for were below the lower QC limits in several samples.

Other Factors Affecting Data Quality: Positive results below the LOQ were qualified as estimated.
The data for these analyses were reviewed with reference to the "National Functional Guidelines for Superfund Organic Methods Data Review" (January 2017). The text of this report has been formulated to address only those areas affecting data quality.

Megan Richie
Tetra Tech, Inc.
Megan Richie
Chemist/Data Validator

Tetra Tech, Inc.
Joseph A. Samchuck
Data Validation Manager

Attachments:
Appendix A - Qualified Analytical Results
Appendix B - Results as Reported by the Laboratory
Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
\mathbf{J}	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.
$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
$\mathbf{U J}$	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
\mathbf{R}	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
$\mathbf{U R}$	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 = GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
$\mathrm{G}=$ Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
$J=$ ICP PDS Recovery Noncompliance; MSA's $r<0.995$
$\mathrm{K}=$ ICP Interference - includes ICS \% R Noncompliance
L = Instrument Calibration Range Exceedance
$\mathrm{M}=$ Sample Preservation Noncompliance
$\mathrm{N}=$ Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
$P=$ Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
$\mathrm{Q}=$ Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$\mathrm{U}=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$\mathrm{V}=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
$\mathrm{W}=$ EMPC result
$\mathrm{X}=$ Signal to noise response drop
$Y=$ Percent solids $<30 \%$
$Z \quad=$ Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE08	NSAMPLE	INFLUENT-201	170710		LF-MW-54BR-201	20170		MID-POINT-2017	1707		MW-31BR-201	70711	
SDG: 1700856	LAB_ID	1700856-01			1700856-08			1700856-03			1700856-11		
FRACTION: PFAS	SAMP_DATE	7/10/2017			7/10/2017			7/10/2017			7/11/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	TANE	5.17	U		5.34	U		5.34	U		5.3	U	
N-METHYL PERFLUOROO	CTANE	5.17	U		5.34	U		5.34	U		5.3	U	
PENTADECAFLUOROOC	ANOIC ACID	10.8			95.9			5.34	U		123		
PERFLUOROBUTANESUL	FONIC ACID	14.4			16.7	J+	N	5.34	U		175	J+	N
PERFLUORODECANOIC	CID	5.17	U		5.34	U		5.34	U		5.8	J	P
PERFLUORODODECANO	C ACID	5.17	U		5.34	U		5.34	U		5.3	U	
PERFLUOROHEPTANOIC	ACID	21.7			8.14	J	P	5.34	U		248		
PERFLUOROHEXANESUL	FONIC ACID	58.6			153			5.34	U		1300		
PERFLUOROHEXANOIC	CID	63.1			35.2			5.34	U		695		
PERFLUORONONANOIC	ACID	5.17	U		5.34	U		5.34	U		27		
PERFLUOROOCTANE SU	FONIC ACID	62			792			5.34	U		1830		
PERFLUOROTETRADECA	NOIC ACID	5.17	U		5.34	U		5.34	U		5.3	U	
PERFLUOROTRIDECANO	C ACID	5.17	U		5.34	U		5.34	U		5.3	U	
PERFLUOROUNDECANO	C ACID	5.17	U		5.34	U		5.34	U		5.3	U	

PROJ_NO: 08005-WE08	NSAMPLE	MW-31S-2017071	0711		MW-34S-201707	0711		MW-37S-201707	0711		MW-48BR-201	7071	
SDG: 1700856	LAB_ID	1700856-12			1700856-10			1700856-05			1700856-09		
FRACTION: PFAS	SAMP_DATE	7/11/2017			7/11/2017			7/11/2017			7/11/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	ANE	5.34	U		5.3	U		5.34	U		5.17	U	
N-METHYL PERFLUOROO	CTANE	5.34	U		5.3	U		5.34	U		5.17	U	
SULFONAMIDOACETIC A													
PENTADECAFLUOROOC	ANOIC ACID	118			108			146			55.3		
PERFLUOROBUTANESUL	FONIC ACID	161			33.1	J+	N	161			87.6	J+	N
PERFLUORODECANOIC	CID	3.22	J	P	5.3	U		5.34	U		5.17	U	
PERFLUORODODECANO	C ACID	5.34	U		5.3	U		5.34	U		5.17	U	
PERFLUOROHEPTANOIC	ACID	186			11.9			189			74.4		
PERFLUOROHEXANESUL	FONIC ACID	1040			247			1450			363		
PERFLUOROHEXANOIC	CID	453			49.3			691			247		
PERFLUORONONANOIC	ACID	31.3			5.3	U		8.29	J	P	7.45	J	P
PERFLUOROOCTANE SUL	FONIC ACID	1470			728			2180			390		
PERFLUOROTETRADECA	NOIC ACID	5.34	U		5.3	U		5.34	UJ	N	5.17	U	
PERFLUOROTRIDECANO	C ACID	5.34	U		5.3	U		5.34	U		5.17	U	
PERFLUOROUNDECANO	C ACID	5.34	U		5.3	U		5.34	U		5.17	U	

Appendix B

Results as Reported by the Laboratory

Sample ID:	INFLUENT-20170710							Modifie	EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 10-Jul-2017 12:05 Trenton		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.121 \mathrm{~L} \end{aligned}$	Lab La Q D	rator Sam Batc Ana	Data e: $1700856-01$ B7G0108 zed: 25-Jul-17 20:53	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 12-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{gathered} 9: 12 \\ 10: 51 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	14.4	1.85	5.17	8.26		IS	13C3-PFBS	148	50-150	
PFHxA	63.1	2.25	5.17	8.26		IS	13C2-PFHxA	120	50-150	
PFHpA	21.7	0.611	5.17	8.26		IS	13C4-PFHpA	102	50-150	
PFHxS	58.6	0.978	5.17	8.26		IS	1802-PFHxS	150	50-150	
PFOA	10.8	0.673	5.17	8.26		IS	13C2-PFOA	135	50-150	
PFOS	62.0	0.834	5.17	8.26		IS	13C8-PFOS	134	50-150	
PFNA	ND	0.837	5.17	8.26		IS	13C5-PFNA	125	50-150	
PFDA	ND	1.54	5.17	8.26		IS	13C2-PFDA	126	50-150	
MeFOSAA	ND	1.70	5.17	8.26		IS	d3-MeFOSAA	99.9	50-150	
PFUnA	ND	1.08	5.17	8.26		IS	13C2-PFUnA	86.5	50-150	
EtFOSAA	ND	1.42	5.17	8.26		IS	d5-EtFOSAA	98.6	50-150	
PFDoA	ND	0.818	5.17	8.26		IS	13C2-PFDoA	111	50-150	
PFTrDA	ND	0.510	5.17	8.26		IS	13C2-PFTeDA	103	50-150	
PFTeDA	ND	0.780	5.17	8.26						
DL - Detection limit RL - Reporting limit					LCL-UCL - Lower control limit - upper control limit					
					Only the linear isomer is reported for all other analytes.					

Sample ID:	ERB-01-20170711							Modifie	d EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 11-Jul-2017 13:50 Trenton		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.120 \mathrm{~L} \end{aligned}$	Lab La QC D	ratory Samp Batch Anal	Data e: $1700856-06$ B7G0108 zed: $25-J u l-17$ 22:08	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 12-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{gathered} 9: 12 \\ 10: 51 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	ND	1.86	5.21	8.30		IS	13C3-PFBS	169	50-150	H
PFHxA	ND	2.26	5.21	8.30		IS	13C2-PFHxA	141	50-150	
PFHpA	ND	0.613	5.21	8.30		IS	13C4-PFHpA	114	50-150	
PFHxS	ND	0.983	5.21	8.30		IS	1802-PFHxS	150	50-150	
PFOA	ND	0.676	5.21	8.30		IS	13C2-PFOA	126	50-150	
PFOS	ND	0.838	5.21	8.30		IS	13C8-PFOS	142	50-150	
PFNA	ND	0.841	5.21	8.30		IS	13C5-PFNA	121	50-150	
PFDA	ND	1.55	5.21	8.30			13C2-PFDA	128	50-150	
MeFOSAA	ND	1.71	5.21	8.30		IS	d3-MeFOSAA	131	50-150	
PFUnA	ND	1.09	5.21	8.30		IS	13C2-PFUnA	118	50-150	
EtFOSAA	ND	1.42	5.21	8.30		IS	d5-EtFOSAA	121	50-150	
PFDoA	ND	0.822	5.21	8.30		IS	13C2-PFDoA	127	50-150	
PFTrDA	ND	0.513	5.21	8.30		IS	13C2-PFTeDA	130	50-150	
PFTeDA	ND	0.784	5.21	8.30						
		DL - Detection limit RL - Reporting limit				LCL-UCL - Lower control limit - upper control limit Results reported to DL.	- Lower control limit - upper c orted to DL. orted, PFBS, PFHxS, PFOA and near isomer is reported for all	ontrol limit d PFOS include both linear and b other analytes.	anched isomers.	

Sample ID:	LF-MW-54BR-20170							Modifie	EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 10-Jul-2017 15:10 Trenton		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.117 \mathrm{~L} \end{aligned}$	$\begin{gathered} \hline \text { Labo } \\ \text { Lab } \\ \text { QC } \\ \text { Dat } \end{gathered}$	ator Sam Batch Ana	Data e: $1700856-08$ B7G0108 zed: $25-J u l-17$ 22:30	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 12-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{gathered} 9: 12 \\ 10: 51 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	16.7	1.91	5.34	8.54		IS	13C3-PFBS	173	50-150	H
PFHxA	35.2	2.33	5.34	8.54		IS	13C2-PFHxA	136	50-150	
PFHpA	8.14	0.631	5.34	8.54	J	IS	13C4-PFHpA	109	50-150	
PFHxS	153	1.01	5.34	8.54		IS	1802-PFHxS	141	50-150	
PFOA	95.9	0.695	5.34	8.54		IS	13C2-PFOA	130	50-150	
PFOS	792	0.861	5.34	8.54		IS	13C8-PFOS	137	50-150	
PFNA	ND	0.864	5.34	8.54		IS	13C5-PFNA	126	50-150	
PFDA	ND	1.59	5.34	8.54		IS	13C2-PFDA	133	50-150	
MeFOSAA	ND	1.76	5.34	8.54		IS	d3-MeFOSAA	111	50-150	
PFUnA	ND	1.12	5.34	8.54		IS	13C2-PFUnA	95.3	50-150	
EtFOSAA	ND	1.46	5.34	8.54		IS	d5-EtFOSAA	108	50-150	
PFDoA	ND	0.845	5.34	8.54		IS	13C2-PFDoA	107	50-150	
PFTrDA	ND	0.527	5.34	8.54		IS	13C2-PFTeDA	77.1	50-150	
PFTeDA	ND	0.806	5.34	8.54						
DL - Detection limit RL - Reporting limit						L-UC sults hen re aly the	- Lower control limit - upper orted to DL. rted, PFBS, PFHxS, PFOA and near isomer is reported for all	control limit d PFOS include both linear and b other analytes.	anched isomers.	

Appendix C

Support Documentation

TAT: (Check One) Standard © 21 days

See "Sample Log-in Checklist" for additional sample information

Special Instructions/Comments:
FedEx 661219926853

Container Types: A = 1 Liter Amber, G = Glass Jar
$\mathrm{P}=\mathrm{PUF}, \mathrm{T}=\mathrm{MM} 5$ Train, $\mathrm{O}=$ Other PJ
*Bottle Preservative Type:
$\square \mathrm{O}=$ Other \qquad T = Thiosulfate,
DOCUMENTATION AND RESULTS TO:

Name: Mary Mang
Company: Tetra Tech
Address: $\mathbf{2 3 4}$ Mall Blvd Suite 260
City: King of Prussia \square State: PA Zip: 19406 Phone: 610-382-1174 \qquad Fax: 610-491-9645
Email: mary.mang@tetratech.com \qquad
Matrix Types: DW = Drinking Water, EF = Effluent, $\mathrm{PP}=$ Pulp/Paper,
$\mathrm{SD}=$ Sediment, $\mathrm{SL}=$ Sludge, $\mathrm{SO}=$ Soil, $\mathrm{WW}=$ Wastewater, $\mathrm{B}=$ Blood/Serum $O=O$ ther $A Q$

FOR LABORATORY USE ONLY
Laboratory Project ID: T0 0.2
storage ID WR,
Storage Secured Yes No \square

TAT: (Check One)

See "Sample Log-in Checklist" for additional sample information

SDG Number WE08

Vista Work Order No. 1700856

Case Narrative

Sample Condition on Receipt:

Twelve aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. This report was amended on August 7, 2017 to include an anomaly regarding a sample ID discrepancy for sample "ERB-01-20170711" and revise the labeled standard compound recovery statement.

Analytical Notes:

Modified EPA Method 537

Sample "LF-MW-54BR-20170710" contained particulate and was centrifuged prior to extraction.

The aqueous samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. All OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

As requested, an MS/MSD was performed on sample "EFFLUENT-20170710".

FORMER NAWC TRENTON
1700856

SAMPLE IDENTIFICATION
MW-37S-20170711
COMPOUND PFOS
COMPOUND AREA 9870
INTERNAL STANDARD AMOUNT (ng/ml) 102
DILUTION FACTOR 10
INTERNAL STANDARD AREA 534
AVERAGE RRF 0.951
SAMPLE VOLUME (ml) 117
VOLUME EXTRACT (ml) 0.001
VOLUME INJECTED ($\mu \mathrm{l}$) 15
ml to L 1000
CONCENTRATION =$2541.56 \mathrm{ng} / \mathrm{L}$

Sample ID: OPR

Modified EPA Method 537

Matrix: Sample Size:	Aqueous $0.125 \mathrm{~L}$	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7G0108 } \\ & \text { 24-Jul-20 } \end{aligned}$	$10: 51$		Lab Sample: B7G0108-BS1 Date Analyzed: 25-Jul-17 20:21 Column: BEH C18			
Analyte		Amt Found (ng/L)	Spike Amt	\%R	Limits		Labeled Standar	\%R	LCL-UCL
PFBS		78.2	80.0	97.8	70-130	IS	13C3-PFBS	158	50-150
PFHxA		74.3	80.0	92.8	70-130	IS	13C2-PFHxA	121	50-150
PFHpA		75.1	80.0	93.9	70-130	IS	13C4-PFHpA	106	50-150
PFHxS		80.3	80.0	100	70-130	IS	1802-PFHxS	130	50-150
PFOA		75.7	80.0	94.6	70-130	IS	13C2-PFOA	125	50-150
PFOS		67.4	80.0	84.3	70-130	IS	13C8-PFOS	121	50-150
PFNA		71.1	80.0	89.7	70-130	IS	13C5-PFNA	110	50-150
PFDA		75.5	80.0	94.3	70-130	IS	13C2-PFDA	108	50-150
MeFOSAA		74.0	80.0	92.5	70-130	IS	d3-MeFOSAA	106	50-150
PFUnA		71.3	80.0	89.1	70-130	IS	13C2-PFUnA	95.1	50-150
EtFOSAA		82.6	80.0	103	70-130	IS	d5-EtFOSAA	96.7	50-150
PFDoA		77.1	80.0	96.4	70-130	IS	13C2-PFDoA	86.2	50-150
PFTrDA		64.1	80.0	80.1	60-130	IS	13C2-PFTeDA	(47.2)	50-150
PFTeDA		77.2	80.0	96.5	70-130				

[^3]Vista
Analytical Laboratory

Matrix Spike Results Modified EPA Method 537															
Source Client ID: Source LabNumber: Matrix: Sample Size:	EFFLUENT-20170710 1700856-04 Aqueous $0.122 / 0.118 \mathrm{~L}$			QC Batch: Date Extracted:		$\begin{aligned} & \text { B7G0108 } \\ & \text { 24-Jul-2017 } \end{aligned}$		10:51		$\begin{aligned} & \text { Lab } \\ & \text { Dat } \end{aligned}$	$\begin{array}{lc} \text { ample: } & \text { B7G0 } \\ \text { Analyzed: } & 25-\mathrm{Jul} \\ & 25-\mathrm{Jul} \end{array}$	B7G0108-MS1/B7G0108-MSD1 25-Jul-17 21:36 Column: BEH C18 25-Jul-17 21:47 Column: BEH C18			
Analyte	$\begin{gathered} \text { Spike-MS } \\ (\mathrm{ng} / \mathrm{L}) \end{gathered}$	$\begin{aligned} & \hline \text { MS } \\ & \% R \end{aligned}$	$\begin{gathered} \hline \text { MS } \\ \text { Qual. } \end{gathered}$	$\begin{gathered} \text { Spike-MSD } \\ (\mathrm{ng} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \% \mathrm{R} \end{gathered}$	RPD	$\begin{aligned} & \hline \text { MSD } \\ & \text { Qual. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { \%R } \\ \text { Limit } \end{gathered}$	\%RPD Limit		Labeled Standard	$\begin{gathered} \hline \text { MS } \\ \% R \end{gathered}$	MS Qualifiers	$\begin{gathered} \hline \text { MSD } \\ \% R \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { Qual. } \end{gathered}$
PFBS	82.2	99.2		84.4	97.8	1.42		70-130	25	IS	13C3-PFBS	162	H	154	H
PFHxA	82.2	95.8		84.4	92.2	3.83		70-130	25	IS	13C2-PFHxA	125		131	
PFHpA	82.2	95.1		84.4	89.0	6.63		70-130	25	IS	$13 \mathrm{C} 4-\mathrm{PFHpA}$	104		104	
PFHxS	82.2	95.2		84.4	87.7	8.20		70-130	25	IS	1802-PFHxS	135		140	
PFOA	82.2	97.4		84.4	103	5.59		70-130	25	IS	13C2-PFOA	118		116	
PFOS	82.2	80.4		84.4	80.3	0.124		70-130	25	IS	13C8-PFOS	145		132	
PFNA	82.2	96.7		84.4	98.9	2.25		70-130	25	IS	13C5-PFNA	114		111	
PFDA	82.2	95.2		84.4	88.6	7.18		70-130	25	IS	13C2-PFDA	122		116	
MeFOSAA	82.2	97.9		84.4	103	5.08		70-130	25	IS	d3-MeFOSAA	124		119	
PFUnA	82.2	93.1		84.4	96.7	3.79		70-130	25	IS	13C2-PFUnA	105		103	
EtFOSAA	82.2	89.7		84.4	97.2	8.03		70-130	25	IS	d5-EtFOSAA	125		119	
PFDoA	82.2	93.8		84.4	89.6	4.58		70-130	25	IS	13C2-PFDoA	107		106	
PFTrDA	82.2	81.1		84.4	78.7	3.00		60-130	25	IS	13C2-PFTeDA	56.8		58.2	
PFTeDA	82.2	94.0		84.4	93.5	0.533		70-130	25						

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Prep Expiration: 2017-Jul-24 Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous

Version: 537 (14 Analyte)

WO Comments: Attach balance check doc.

Vista PM:Martha Maier

BALANCE CALIBRATION CHECK

Weights \# _ 22370 and 7718

Date		$\begin{gathered} \text { Weight } 1 \\ 1 g \\ (0.9900-1.0100) \end{gathered}$	$\begin{gathered} \text { Weight } 2 \\ 100 \mathrm{~g} \\ (99.00-101.00) \end{gathered}$	$\begin{gathered} \text { Weight } 3 \\ 2000 \mathrm{~g} \\ (1980-2020) \end{gathered}$	Initials	Acceptable? (YIN)
7/19/17	\checkmark	1.00	100.00	2000.00	KBF	y
712017	Cives	201:01	.0100 .01	2000.04	BSS	FY/15:
$7 / 21 / 17$	\checkmark	0.99	: 100.00	2000.00	EL	Y
7.2417	$\checkmark \times$	100	10001	20000	$B P$	Fys:
71.24117	CN C	100	.100.01	2000.00	EL	FY
$7 / 25117$	$\cdots \sqrt{2}$	1100	99.99	2000.02	HB	-
\cdots	\cdots	Ar. 4 mb	\cdots		.	-
		\therefore 二。	\because		.	
4						
		- . ..				1
4						
Comments:						

Page 24 of 50

PREPARATION BENCH SHEET

Prepared using: LCMS - SPE Extraction-LCMS

c	VISTA Sample ID	${ }_{\substack{\text { pH } \\ \text { Before }}}$	After	$\begin{gathered} \text { Chlorinin } \\ \text { (Ci) } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Hops } \\ \text { Added } \end{array}$	Boalef		$\begin{aligned} & \text { Sample } \\ & \text { nelt } \\ & \text { (1) } \end{aligned}$	$\begin{gathered} \text { IS/NS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$	SPE	$\begin{gathered} \text { CHEM } \\ \text { CHMTIT } \\ \text { DAATE } \end{gathered}$
\square	B7700108-BLK1	5	2	0	2	NA	NA Na	(0.125)	kbs 7	46F F 7 m	$18 P \ggg 1.25 .17$
\square	${ }^{\text {B7G }}$	5	2	0	2	\downarrow	-	\downarrow v	T	-	
\square		6	2	\bigcirc	2	148.39	26.77	0.121621			
\square		6	2	\bigcirc	2	145.30	26.81	0.118490			
\square	${ }^{1700856-018 \mathrm{Cl}}$	6	2	0	2	147.78	26.78	0.12100λ			
\square	${ }^{1700856-02 R E}$	6	2	0	2	143.32	26.85	$0.11647 /$			
\square	${ }^{1700856-03 \mathrm{BEI}}$	7	2	0	2	144.15	26.84	$0.11731 /$			
\square	1700856-048EI	6	2	0	2	147.66	26.82	0.12084			
\square	${ }^{1700856-0.05 R 1}$	6	2	0	2	143.56	26.60	0.116967			
\square	${ }^{1700856-06 R E I}$	-6'5	2	0	2	147.29	26.86	0.120431			
\square	${ }^{1000856-078 E 1}$	6	2	0	2	141.60	26.78	$0 \cdot 11482$			
\square	${ }^{1700886-08851}(4)$	6	2	0	2	144.01	26.87	$0.11713-$			
\square	100885-09REI	6	2	0	2	147.61	26.77	0.120841			
\square	${ }^{1700856-10 R E I}$	6	2	0	"20	144.88	26.76	0.18121			
\square	1700856-112EI	6	2	0	2	144.44	26.70	0.11774 -			
\square	1700856-12REI	6	2	0	2	144.09	26.77	10.11732^{\prime}	V	\downarrow	\downarrow
	$\begin{gathered} (\sqrt{16}) \\ 1761307,10 \mathrm{ml} \end{gathered}$		$7 D=$			$=5038,$			$\begin{aligned} & \text { ata }-X-\mathrm{AN} \\ & \mathrm{H} / 0.5 \% \cdot \mathrm{Nh} \end{aligned}$	$33 \mathrm{~mm} 200 \mathrm{mg} /$ innelit	Check Out: Chemist/Date: 1372417 Check In: ChemistDate: OMPDYNA Balance id: TRMS pH Adiused: ChemisDDe: HB $7 / 2 / 2 / 13$

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ (A) sample was centntuged to remove particul $19 \mathrm{te} \cdot \mathrm{HB} 7124 / 17$

Dataset:
 U:IQ4.PRO\results\170725M11170725M1-33.qld

Last Altered: Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17G2503


```
Dataset: U:\Q4.PRO\results\170725M1\170725M1-33.qld
Last Altered: Wednesday, July 26, 2017 09:54:41 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 09:55:08 Pacific Daylight Time
```

Name: 170725M1_33, Date: 25-Jul-2017, Time: 20:00:29, ID: ST170725M1-3 PFC CS3 17G2503, Description: PFC CS3 17 G2503

	\# Name	Trace	Area	IS Area	RRF	d.RT	RT	sp	onc.	\%Rec	50-150
$32 \times$	32 13C4-PFHpA	367.2 > 321.8	4.12 e 4	5.08 e 4	0.306	3.45	3.48	4.05	13.3	106.1	
33.	33 1802-PFHxS	$403>102.6$	3.97 e3	9.30 e 3	0.393	3.56	3.56	5.33	13.6	108.6	
	34 13C2-6:2 FTS	$429.1>408.9$	9.21 e 3	6.63 e 4	0.158	3.64	3.67	1.74	11.0	88.1	
35.	3513 C 2 -PFOA	$414.9>369.7$	7.29e4	6.63 e 4	1.067	3.65	3.68	13.7	12.9	103.0	
36	36 13C5-PFNA	$468.2>422.9$	7.10e4	8.58 e 4	0.852	3.83	3.86	10.3	12.1	97.1	
37	37 13C8-PFOSA	$506.1>77.7$	7.52e3	6.80 e 4	0.098	3.84	3.87	1.38	14.1	112.6	
$38=$	3813 CB -PFOS	$507>79.9$	1.42e4	1.42 e 4	0.936	3.89	3.91	12.5	13.3	106.5	
39.	39 13C2-PFDA	$515.1>469.9$	6.58e4	8.33 e 4	0.810	4.01	4.03	$9: 88$	12.2	97.6	
40.	40 13C2-8:2 FTS	$529.1>508.7$	7.65 e 3	8.33 e 4	0.086	4.00	4.02	1.15	13.4	107.3	
41 -	41 d3-N-MeFOSAA	$573.3>419$	1.52e4	6.80 e 4	0.014	4.03	4.06	2.79	204	125.4	
$42 . \geq$	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	1.60 e 4	6.80 e 4	0.014	4.12	4.12	2.94	211	129.7	
43 - 3^{4}	43 13C2-PFUnA	$565>519.8$	7.51 e 4	6.80 e 4	0.962	4.17	4.19	13.8	14.3	114.8	
44 -	44 13C2-PFDoA	$615>569.7$	8.10 e 3	6.80 e 4	0.094	4.34	4.36	1.49	15.8	126.2	
45	45 d3-N-MeFOSA	$515.2>168.9$	3.19e4	6.80 e 4	0.034	4.29	4.48	5.87	171	113.7	
46 -	46 13C2-PFTeDA	$714.8>669.6$	5.79e4	6.80 e 4	0.694	4.68	4.70	10.6	15.3	122.7	
47.4	47 d5-N-ETFOSA	$531.1>168.9$	4.40e4	6.80 e 4	0.049	5.01	5.04	8.08	166	110.7	
48 .	48 13C2-PFHxDA	$815>769.7$	2.76e4	6.80 e 4	0.843	5.06	5.08	5.08	6.03	120.5	
$49-2$	49 d7-N-MeFOSE	$623.1>58.9$	4.72 e 4	6.80 e 4	0.055	5.42	5.43	8.68	159	105.9	
$50 \times$	50 d9-N-EtFOSE	$639.2>58.8$	4.69 e 4	6.80 e 4	0.053	5.59	5.60	8.61	161	107.5	V
51.3	51 13C4-PFBA	$217>171.8$	1.99 e 4	1.99 e 4	1.000	1.54	1.57	12.5	12.5	100.0	
	52 13C5-PFHxA	$318>272.9$	5.08 e 4	5.08 e 4	1.000	3.19	3.23	5.00	5.00	100.0	
$53-1$.	53 13C3-PFHxS	$401.9>79.9$	9.30 e 3	9.30 e 3	1.000	3.56	3.56	12.5	12.5	100.0	
$54=$	54 13C8-PFOA	$421.3>376$	6.63 e 4	6.63 e 4	1.000	3.65	3.68	12.5	12.5	100.0	
	55 13C9-PFNA	$472.2>426.9$	8.58 e 4	8.58 e 4	1.000	3.83	3.86	12.5	12.5	100.0	
56 - <	56 13C4-PFOS	$503>79.9$	1.42 e 4	1.42 e 4	1.000	3.89	3.91	12.5	12.5	100.0	
57.4	57 13C6-PFDA	$519.1>473.7$	8.33 e 4	8.33 e 4	1.000	4.01	4.03	12.5	12.5	100.0	
58 -	58 13C7-PFUnA	$570.1>524.8$	6.80e4	6.80 e 4	1.000	4.17	4.20	12.5	12.5	100.0	

Dataset:
U:IQ4.PRO|results1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PRO\results\170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

	\# Name	Trace	-ata Area	IS Area	RRF	PrediRT	RT	y Axis Resp.	Conc.	\%Rec	
32 S.	32 13C4-PFHpA	$367.2>321.8$	4.49 e 4	5.68 e 4	0.306	3.45	3.49	3.96	12.9	103.6	$50-15$
$33.1 \geqslant$	33 1802-PFHxS	$403>102.6$	4.53 e 3	1.12 e 4	0.393	3.56	3.56	5.04	12.8	102.6	
34.4	34 13C2-6:2 FTS	$429.1>408.9$	1.07 e 4	7.14 e 4	0.158	3.64	3.68	1.88	11.9	95.1	
35.4	35 13C2-PFOA	$414.9>369.7$	7.43e4	7.14 e 4	1.067	3.65	3.69	13.0	12.2	97.5	
36	36 13C5-PFNA	$468.2>422.9$	7.47 e 4	8.57 e 4	0.852	3.83	3.86	10.9	12.8	102.3	
$37 \times 1 \times$	37 13C8-PFOSA	$506.1>77.7$	7.86 e 3	8.09 e 4	0.098	3.84	3.87	1.21	12.4	98.8	
38 -	38 13C8-PFOS	$507>79.9$	1.42 e 4	1.49 e 4	0.936	3.89	3.91	11.9	12.8	102.1	
39.	39 13C2-PFDA	$515.1>469.9$	7.73 e 4	8.93 e 4	0.810	4.01	4.03	10.8	13.4	106.9	
40 : ${ }^{\text {a }}$	40 13C2-8:2 FTS	$529.1>508.7$	7.56 e 3	8.93 e 4	0.086	4.00	4.03	1.06	12.4	98.9	
41.4	41 d3-N-MeFOSAA	$573.3>419$	1.69 e 4	8.09 e 4	0.014	4.03	4.06	2.60	190	116.9	
42.4	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	1.67 e 4	8.09 e 4	0.014	4.12	4.13	2.58	185	114.0	
43 .r.	43 13C2-PFUnA	$565>519.8$	8.83e4	8.09 e 4	0.962	4.17	4.20	13.6	14.2	113.4	
44.	44 13C2-PFDoA	$615>569.7$	8.53 e 3	8.09 e 4	0.094	4.34	4.36	1.32	14.0	111.7	
45	45 d3-N-MeFOSA	$515.2>168.9$	3.34 e 4	8.09 e 4	0.034	4.29	4.49	5.16	150	100.1	
46 - ${ }^{\text {\% }}$	46 13C2-PFTeDA	$714.8>669.6$	5.93e4	8.09 e 4	0.694	4.68	4.71	9.15	13.2	105.4	
47.4	47 d5-N-ETFOSA	$531.1>168.9$	4.52 e 4	8.09 e 4	0.049	5.01	5.05	6.99	144	95.7	
48.	48 13C2-PFHxDA	$815>769.7$	2.86 e 4	8.09 e 4	0.843	5.06	5.08	4.42	5.24	104.8	
49 , \%	49 d7-N-MeFOSE	$623.1>58.9$	4.88 e 4	8.09 e 4	0.055	5.42	5.43	7.54	138	92.0	,
50.4	50 d9-N-EtFOSE	$639.2>58.8$	4.91 e 4	8.09 e 4	0.053	5.59	5.60	7.58	142	94.5	\checkmark
51 - ${ }^{\text {Pr }}$	51 13C4-PFBA	$217>171.8$	2.04 e 4	2.04 e 4	1.000	1.54	1.59	12.5	12.5	100.0	
52 2.	52 13C5-PFHxA	$318>272.9$	5.68 e 4	5.68 e 4	1.000	3.19	3.23	5.00	5.00	100.0	
53 \%	53 13C3-PFHxS	$401.9>79.9$	1.12 e 4	1.12 e 4	1.000	3.56	3.56	12.5	12.5	100.0	
54.	54 13C8-PFOA	$421.3>376$	7.14 e 4	7.14 e 4	1.000	3.65	3.69	12.5	12.5	100.0	
55	55 13C9-PFNA	$472.2>426.9$	8.57 e 4	8.57 e 4	1.000	3.83	3.86	12.5	12.5	100.0	
56.1 .4	56 13C4-PFOS	$503>79.9$	1.49 e 4	1.49 e 4	1.000	3.89	3.92	12.5	12.5	100.0	
57	57 13C6-PFDA	$519.1>473.7$	8.93 e 4	8.93 e 4	1.000	4.01	4.03	12.5	12.5	100.0	
$58: 4.1$	58 13C7-PFUnA	$570.1>524.8$	8.09 e 4	8.09 e 4	1.000	4.17	4.20	12.5	12.5	100.0	

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945
Vista Analytical Laboratory

Dataset:	U:IQ4.PROIresults1170727M11170727M1-97.qld
Last Altered:	Tuesday, August 01, 2017 12:26:31 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:27:14 Pacific Daylight Time

Name: 170727M1_97, Date: 28-Jul-2017, Time: 04:51:00, ID: ST170727M1-13 PFC CS3 17G2709, Description: PFC CS3 17G2709 (i) oft of limit cwlerra.

	\# Name	Trace	Area may	IS Area	Wt./Vol.	RRF	d.RT	RT	y Axis Resp.	Conc.	\%Rec	$60-150$
32	32 d5-N-EtFOSAA	$589.3>419$	1.10e4	5.62 e 4	1.000	0.013	4.12	4.05	2.45	193	118.6	
33 -	33 13C2-PFUnA	$565>519.8$	5.05 e 4	5.62 e 4	1.000	0.928	4.17	4.13	11.2	12.1	96.8	
$34 \pm=$	34 13C2-PFDoA	$615>569.7$	3.49 e 3	5.62 e 4	1.000	0.071	4.34	4.29	0.777	10.9	87.4	
35	35 13C2-PFTeDA	$714.8>669.6$	3.06 e 3	5.62 e 4	1.000	0.273	4.68	4.63	0.681		(A) 19.9	\downarrow
36	$3613 C 4-P F B A$	$217>171.8$	2.53 e 4	2.53 e 4	1.000	1.000	1.32	1.35	12.5	12.5	(A00.0	
$37 \times$	37 13C5-PFHxA	$318>272.9$	7.53 e 4	7.53 e 4	1.000	1.000	3.19	3.15	5.00	5.00	100.0	
38	38 13C3-PFHxS	$401.9>79.9$	1.07 e 4	1.07 e 4	1.000	1.000	3.56	3.49	12.5	12.5	100.0	
39	39 13C8-PFOA	$421.3>376$	6.43 e 4	6.43 e 4	1.000	1.000	3.65	3.62	12.5	12.5	100.0	
40	40 13C9-PFNA	$472.2>426.9$	6.88e4	6.88 e 4	1.000	1.000	3.83	3.80	12.5	12.5	100.0	
41.4	41 13C4-PFOS	$503>79.9$	1.01e4	1.01 e 4	1.000	1.000	3.89	3.85	12.5	12.5	100.0	
42	42 13C6-PFDA	$519.1>473.7$	6.46e4	6.46 e 4	1.000	1.000	4.01	3.96	12.5	12.5	100.0	
$43-$	43 13C7-PFUnA	$570.1>524.8$	5.62 e 4	5.62e4	1.000	1.000	4.17	4.13	12.5	12.5	100.0	

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-15 PFC CS3 17G2709, Description: PFC CS3 17G2709

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	Resp:	Core	\%Rec	$10-130$
	1 PFBA	$213.0>168.8$	2.00 e 4	2.26 e 4	1.000		1.32	1.35	11.1	9.59	95.9	
$2, \square$	2 PFPeA	$263.1>218.9$	4.39 e 4	5.60 e 4	1.000		2.77	2.66	9.79	9.71	97.1	
3 Wixtum	3 PFBS	$299>79.7$	9.14 e 3	6.36 e 3	1.000		2.96	2.90	18.0	9.50	95.0	
$4{ }^{4}$	4 PFHxA	313.2 > 268.9	6.28 e 4	2.10 e 4	1.000		3.19	3.15	14.9	10.2	101.7	
5.	5 PFHpA	$363>318.9$	5.05 e 4	$5.25 e 4$	1.000		3.45	3.41	12.0	9.66	96.6	
6 Crimy	6 PFHxS	$398.9>79.6$	6.21 e 3	4.68 e 3	1.000		3.56	3.48	16.6	9.96	99.6	
7 7\% \% \%	7 PFOA	$413>368.7$	5.51e4	6.63 e 4	1.000		3.65	3.62	10.4	10.4	104.4	
	8 PFHpS	$448.9>98.8$	4.96 e 3	6.63 e 4	1.000		3.65	3.67	0.936	10.7	107.4	
9 -	9 PFNA	$462.9>418.8$	4.93 e 4	5.90 e 4	1.000		3.83	3.79	10.4	9.67	96.7	
10 ,	10 PFOSA	$498.1>77.8$	6.80 e 3	8.09 e 3	1.000		3.84	3.80	10.5	9.62	96.2	
11. $\%$	11 PFOS	$499>79.9$	8.85 e 3	1.09 e 4	1.000		3.89	3.84	10.2	9.47	94.7	
12 \%	12 PFDA	$513>468.8$	6.01e4	5.95 e 4	1.000		4.01	3.96	12.6	10.1	101.2	
13 -	13 N -MeFOSAA	$570.1>419$	1.48 e 4	1.17 e 4	1.000		4.03	3.99	204	10.2	102.4	
14. तVm	14 N -EtFOSAA	$584.2>419$	1.07 e 4	1.18 e 4	1.000		4.10	4.05	147	9.58	95.8	
$15 \cdot 4$	15 PFUnA	$562.9>518.9$	3.20 e 4	5.61 e 4	1.000		4.11	4.12	7.14	11.0	110.2	
16	16 PFDS	$598.9>98.7$	2.69 e 3	5.61 e 4	1.000		4.22	4.17	0.598	8.81	88.1	
17: 2 - ${ }^{\text {a }}$	17 PFDoA	$612.9>318.8$	2.27 e 3	3.25 e 3	1.000		4.34	4.29	8.76	9.37	ค 93.7	
18 \% ${ }^{\text {d }}$	18 PFTrDA	$662.9>618.9$	1.09 e 4	3.25 e 3	1.000		4.50	4.45	41.8	4.84	(b) 48.4	
	19 PFTeDA	$712.9>668.8$	2.59 e 3	2.75 e 3	1.000		4.68	4.63	11.8	9.76	97.6	V
20	20 13C3-PFBA	$216.1>171.8$	2.26 e 4	2.73 e 4	1.000	0.823	1.32	1.35	10.3	12.5	100.4	$50-15$
121	21 13C3-PFPeA	$266>221.8$	5.60 e 4	7.62 e 4	1.000	0.264	2.77	2.66	3.67	13.9	111.2	
22.4	22 13C3-PFBS	$302>98.8$	6.36 e 3	7.62 e 4	1.000	0.031	2.96	2.90	0.417	13.6	108.7	
23.4	23 13C2-PFHxA	$315>269.8$	2.10 e 4	7.62 e 4	1.000	0.275	3.19	3.15	1.38	5.01	100.2	
24.4.4.	24 13C4-PFHpA	$367.2>321.8$	5.25 e 4	7.62 e 4	1.000	0.260	3.45	3.42	3.44	13.2	105.9	
25	25 18O2-PFHxS	$403>102.6$	4.68 e 3	1.16 e 4	1.000	0.402	3.56	3.49	5.03	12.5	100.0	
26 \%	26 13C2-PFOA	$414.9>369.7$	6.63 e 4	6.40 e 4	1.000	1.042	3.65	3.61	13.0	12.4	99.5	
27	27 13C5-PFNA	$468.2>422.9$	5.90 e 4	6.76 e4	1.000	0.792	3.83	3.79	10.9	13.8	110.2	
28.	28 13C8-PFOSA	$506.1>77.7$	8.09 e 3	5.36 e 4	1.000	0.175	3.84	3.80	1.89	10.8	86.3	
29.4	29 13C8-PFOS	$507>79.9$	1.09 e 4	1.02 e 4	1.000	0.951	3.89	3.84	13.3	14.0	112.3	
$30^{\circ}+4$.	30 13C2-PFDA	$515.1>469.9$	5.95 e 4	7.06 e 4	1.000	0.869	4.01	3.96	10.5	12.1	97.0	/
31.5	31 d3-N-MeFOSAA	$573.3>419$	1.17 e 4	5.36 e 4	1.000	0.013	4.03	3.99	2.74	211	130.1	\checkmark

Dataset: U:IQ4.PRO|results|170727M11170727M1-113.qld

Last Altered: Thursday, August 03, 2017 13:01:30 Pacific Daylight Time
Printed: \quad Thursday, August 03, 2017 13:02:22 Pacific Daylight Time

14
Name: 170727M1_113, Date: 28-Jul-2017, Time: 07:43:27, ID: ST170727M1-ł PFC CS3 17G2709, Description: PFC CS3 17G2709

	\# Name	Trace	Area	IS Area	Wt./vol.	RRF	PredRT	RT	Resp.	Conc.	\%Ree	$50-150$
32	$32 \mathrm{d5-N-EtFOSAA}$	$589.3>419$	1.18 e 4	5.36 e 4	1.000	0.013	4.12	4.05	2.76	217	133.5	
33 - 4 -	33 13C2-PFUnA	$565>519.8$	5.61 e 4	5.36 e 4	1.000	0.928	4.17	4.12	13.1	14.1	112.7	1
	34 13C2-PFDoA	$615>569.7$	3.25 e 3	5.36 e 4	1.000	0.071	4.34	4.28	0.756	10.6	85.1	
$35 \sim$	35 13C2-PFTeDA	$714.8>669.6$	2.75 e 3	5.36 e 4	1.000	0.273	4.68	4.63	0.641		(b) 18.8	\checkmark
36	36 13C4-PFBA	$217>171.8$	2.73 e 4	2.73 e 4	1.000	1.000	1.32	1.35	12.5	12.5	100.0	
37.2	37 13C5-PFHxA	$318>272.9$	7.62 e4	7.62 e 4	1.000	1.000	3.19	3.15	5.00	5.00	100.0	
38 \%	$3813 \mathrm{C} 3-\mathrm{PFHxS}$	$401.9>79.9$	1.16 e 4	1.16 e 4	1.000	1.000	3.56	3.49	12.5	12.5	100.0	
39.4	39 13C8-PFOA	$421.3>376$	6.40 e 4	6.40e4	1.000	1.000	3.65	3.61	12.5	12.5	100.0	
40 -	40 13C9-PFNA	$472.2>426.9$	6.76 e 4	6.76e4	1.000	1.000	3.83	3.79	12.5	12.5	100.0	
41×2	41 13C4-PFOS	$503>79.9$	1.02 e 4	1.02 e 4	1.000	1.000	3.89	3.84	12.5	12.5	100.0	
$42=3$	42 13C6-PFDA	$519.1>473.7$	7.06 e 4	7.06 e 4	1.000	1.000	4.01	3.96	12.5	12.5	100.0	
$43 \times$	43 13C7-PFUnA	$570.1>524.8$	5.36 e 4	5.36 e 4	1.000	1.000	4.17	4.12	12.5	12.5	100.0	

(A) Notused.

Dataset: U:IQ4.PROXresultsi170731M11170731M1-34.qld
Last Altered: Tuesday, August 01, 2017 10:33:51 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:34:05 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21
Calibration: U:IQ4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19
Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

Quantify Sample Summary Report Vista Analytical Laboratory		MassLynx MassLynx V4.1 SCN 945	Page 2 of 2
Dataset:	U:\Q4.PRO\results\17	1170731M1-34.qld	
Last Altered: Printed:	Tuesday, August 01, Tuesday, August 01,	0:33:51 Pacific Daylight Time 0:34:05 Pacific Daylight Time	

Name: 170731M1_34, Date: 31-Jul-2017, Time: 18:13:24, ID: ST170731M1-3 PFC CS3 17G2729, Description: PFC CS3 17G2729

Method: U:\Q4.PRO\MethDB\PFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19
Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170731M1\170731M1-40.qld
Last Altered: Tuesday, August 01, 2017 10:35:04 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:35:10 Pacific Daylight Time

Name: 170731M1_40, Date: 31-Jul-2017, Time: 19:17:39, ID: ST170731M1-4 PFC CS3 17G2729, Description: PFC CS3 17G2729

	\# Name	Trace maty	Area	IS Area	Vt. Vol	RRF	d. PT			onc	Ofreo	$50-150$
334	33 13C2-PFUnA	$565>519.8$	1.01 e 5	8.45 e4	1.000	1.129	4.17	4.15	15.0	13.3	106.3	
	34 13C2-PFDoA	$615>569.7$	9.84 e 3	8.45 e4	1.000	0.116	4.34	4.30	1.46	12.5	100.4	
35.151	3513 C 2 -PFTeDA	$714.8>669.6$	6.80 e 4	8.45 e 4	1.000	0.762	4.68	4.66	10.1	13.2	105.5	\checkmark
6.rirume	36 13C4-PFBA	$217>171.8$	2.73 e 4	2.73 e 4	1.000	1.000	1.32	1.40	12.5	12.5	100.0	
37.4	37 13C5-PFHxA	$318>272.9$	9.67 e 4	9.67 e 4	1.000	1.000	3.19	3.16	5.00	5.00	100.0	
38:	38 13C3-PFHxS	$401.9>79.9$	1.39 e 4	1.39 e 4	1.000	1.000	3.56	3.50	12.5	12.5	100.0	
139	39 13C8-PFOA	$421.3>376$	8.09 e 4	8.09 e 4	1.000	1.000	3.65	3.63	12.5	12.5	100.0	
40 . ${ }^{\text {a }}$	40 13C9-PFNA	$472.2>426.9$	8.92 e4	8.92 e 4	1.000	1.000	3.83	3.81	12.5	12.5	100.0	
41-methre	41 13C4-PFOS	$503>79.9$	1.50 e 4	1.50 e 4	1.000	1.000	3.89	3.87	12.5	12.5	100.0	
42 Wrem	42 13C6-PFDA	$519.1>473.7$	8.94 e 4	8.94 e 4	1.000	1.000	4.01	3.98	12.5	12.5	100.0	
43	43 13C7-PFUnA	$570.1>524.8$	8.45e4	8.45 e 4	1.000	1.000	4.17	4.14	12.5	12.5	100.0	

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Correlation coefficient: $r=0.999644, ~ \wedge \wedge 2=0.999287$
Calibration curve: $1.1275{ }^{*} \mathrm{x}+0.163356$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999528, \mathrm{r}^{\wedge} 2=0.999056$
Calibration curve: 0.99208 * $x+0.104629$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	td. Conc	RT	Area	IS Area	Response	Conc	\%Dev	c. F	CoD	D	$\mathrm{x}=$ excluded
1.	$1170724 \mathrm{M1}$ _3	Standard	0.250	2.80	607.592	24708.574	0.307	0.2	-18.3	NO	0.999	NO	bb
2 2. ${ }^{2}$	2 170724M1_4	Standard	0.500	2.80	1138.424	24374.584	0.584	0.5	-3.4	NO	0.999	NO	bb
3-w	3 170724M1_5	Standard	1.000	2.80	2230.288	24321.555	1.146	1.0	5.0	NO	0.999	NO	bb
44^{4}	4 170724M1_6	Standard	2.000	2.80	4575.088	25826.396	2.214	2.1	6.3	NO	0.999	NO	bb
$5:$	5 170724M1_7	Standard	5.000	2.80	11044.060	24387.125	5.661	5.6	12.0	NO	0.999	NO	bb
6. ${ }^{\text {a }}$	$6170724 \mathrm{M1}$-8	Standard	10.000	2.81	20066.025	25621.486	9.790	9.8	-2.4	NO	0.999	NO	bb
17	7 170724M1_9	Standard	50.000	2.80	97100.672	23859.781	50.870	51.2	2.3	NO	0.999	NO	bb
8.	$8170724 \mathrm{M1} 10$	Standard	100.000	2.81	190500.000	24378.607	97.678	98.4	-1.6	NO	0.999	NO	bb

Last Altered:

Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999611, \mathrm{r}^{\wedge} 2=0.999223$
Calibration curve: 1.85223 *x + 0.0752948
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name			RT Area			Response Conc. \%Dev Conc. Flag					CoD Flag x =excluded	
1.4. $\mathrm{N}^{\text {a }}$	1 170724M1_3	Standard	0.250	3.00	116.281	3068.403	0.474	0.2	-14.0	NO	0.999	NO	bb
$2+4$ w	2 170724M1_4	Standard	0.500	3.00	214.965	3020.354	0.890	0.4	-12.1	NO	0.999	NO	MM
3.4 LT	3 170724M1_5	Standard	1.000	2.99	512.501	3001.774	2.134	1.1	11.2	NO	0.999	NO	bb
4 . 4 cter	4 170724M1_6	Standard	2.000	3.00	1085.602	3295.993	4.117	2.2	9.1	NO	0.999	NO	bb' ${ }^{\text {c }}$
5.4	5 170724M1_7	Standard	5.000	3.00	2583.207	3132.764	10.307	5.5	10.5	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.00	4677.829	3302.426	17.706	9.5	-4.8	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	3.00	22355.119	2994.649	93.313	50.3	0.7	NO	0.999	NO	bb
8 , ${ }^{\text {a }}$,	8 170724M1_10	Standard	100.000	3.00	43420.234	2946.134	184.225	99.4	-0.6	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: $r=0.999648, r^{\wedge} 2=0.999296$
Calibration curve: $1.50967{ }^{*} \times+0.157344$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD CoD Flag x=excluded				
	1 170724M1_3	Standard	0.250	3.22	1079.404	11341.955	0.476	0.2	-15.6	NO	0.999	NO	bb
2	2 170724M1_4	Standard	0.500	3.22	1906.946	10636.292	0.896	0.5	-2.1	NO	0.999	NO	bb
3.1	3 170724M1_5	Standard	1.000	3.22	3807.136	10865.864	1.752	1.1	5.6	NO	0.999	NO	db
4 . ${ }^{\text {a }}$.	4 170724M1_6	Standard	2.000	3.22	7912.540	12006.801	3.295	2.1	3.9	NO	0.999	NO	bb
5 . ${ }^{\text {a }}$ +	5 170724M1_7	Standard	5.000	3.22	18325.188	10585.094	8.656	5.6	12.6	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.22	34348.887	11649.966	14.742	9.7	-3.4	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	3.22	154915.125	10379.170	74.628	49.3	-1.3	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	3.22	320392.531	10569.161	151.570	100.3	0.3	NO	0.999	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999811, \mathrm{r}^{\wedge} 2=0.999621$
Calibration curve: 1.25322 * x + 0.0796155
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoD Flag	$x=$ excluded
\#-3/4	1 170724M1_3	Standard	0.250	3.47	835.892	29540.787	0.354	0.2	-12.5	NO	1.000	NO	bb
2	2 170724M1_4	Standard	0.500	3.48	1686.437	28831.211	0.731	0.5	4.0	NO	1.000	NO	db
3 , may	3 170724M1_5	Standard	1.000	3.48	3129.354	30065.992	1.301	1.0	-2.5	NO	1.000	NO	bb
$4 ;-2=$	4 170724M1_6	Standard	2.000	3.48	6923.302	31499.152	2.747	2.1	6.4	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.48	17221.189	31478.633	6.838	5.4	7.9	NO	1.000	NO	bb
6 Wraty	6 170724M1_8	Standard	10.000	3.48	32050.246	32505.703	12.325	9.8	-2.3	NO	1.000	NO	bb
7. ${ }^{\text {a }}$ =	7 170724M1_9	Standard	50.000	3.48	148752.578	30043.684	61.890	49.3	-1.4	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard	100.000	3.48	294885.219	29270.332	125.932	100.4	0.4	NO	1.000	NO	bb

Compound name: PFHxS

Coefficient of Determination: $R^{\wedge} 2=0.999711$
Calibration curve: $-0.00151846{ }^{*} x^{\wedge} 2+1.70838{ }^{*} x+-0.0114403$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	C. F	COD	F	cluded
1	1 170724M1_3	Standard	0.250	3.56	73.733	2957.523	0.312	0.2	-24.3	NO	1.000	NO	MM
	2 170724M1_4	Standard	0.500	3.55	233.030	2945.944	0.989	0.6	17.2	NO	1.000	NO	bb
3	3 170724M1_5	Standard	1.000	3.55	387.605	2882.763	1.681	1.0	-0.9	NO	1.000	NO	bb
4.	4 170724M1_6	Standard	2.000	3.55	883.679	3069.216	3.599	2.1	5.9	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.55	2121.650	3078.477	8.615	5.1	1.4	NO	1.000	NO	MM
	6 170724M1_8	Standard	10.000	3.55	3757.863	2827.577	16.613	9.8	-1.8	NO	1.000	NO	MM
17	7 170724M1_9	Standard	50.000	3.55	19494.768	2990.466	81.487	49.9	-0.2	NO	1.000	NO	MM
8	8 170724M1_10	Standard	100.000	3.55	36940.883	2965.238	155.725	100.1	0.1	NO	1.000	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.003130533^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOA

Correlation coefficient: $r=0.999233, r^{\wedge} 2=0.998466$
Calibration curve: 0.970801 * $x+0.199778$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fla	CoD		
1 1) Water	1 170724M1_3	Standard	0.250	3.67	1654.212	55437.824	0.373	0.2	-28.6	NO	0.998	NO	bb
2	2 170724M1_4	Standard	0.500	3.67	2766.273	52853.566	0.654	0.5	-6.4	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.67	5264.665	53444.164	1.231	1.1	6.3	NO	0.998	NO	bb
4.4.	4 170724M1_6	Standard	2.000	3.68	10233.177	55652.324	2.298	2.2	8.1	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.68	26080.451	55510.707	5.873	5.8	16.9	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.68	45105.969	54392.293	10.366	10.5	4.7	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.67	220048.344	55876.563	49.226	50.5	1.0	NO	0.998	NO	bb
8.	8 170724M1_10	Standard	100.000	3.68	421252.813	55196.383	95.399	98.1	-1.9	NO	0.998	NO	bb

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999150, \mathrm{r}^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * x + 0.014645
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Narne	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD 2 CoDFlag $x=$ excluded		
1.4	$1170724 \mathrm{M} 1 _3$	Standard	0.250	3.74	113.671	55437.824	0.026	0.1	-50.5	NO	0.998	NO	bbX
2	2 170724M1_4	Standard	0.500	3.74	222.089	52853.566	0.053	0.4	-14.6	NO	0.998	NO	bb
3.	3 170724M1_5	Standard	1.000	3.73	522.454	53444.164	0.122	1.2	21.2	NO	0.998	NO	bb
4 \%	4 170724M1_6	Standard	2.000	3.74	936.558	55652.324	0.210	2.2	10.3	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.73	2346.630	55510.707	0.528	5.8	15.8	NO	0.998	NO	bb
	$6170724 \mathrm{M1}$-8	Standard	10.000	3.74	4004.412	54392.293	0.920	10.2	2.0	NO	0.998	NO	bb
7.	$7170724 \mathrm{M1}$ _9	Standard	50.000	3.74	19773.092	55876.563	4.423	49.7	-0.6	NO	0.998	NO	bb
8.	$8170724 \mathrm{M1} 1$ 10	Standard	100.000	3.74	38852.836	55196.383	8.799	99.0	-1.0	NO	0.998	NO	bb

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.998659, \mathrm{r} \wedge 2=0.997320$
Calibration curve: $1.09835{ }^{*} x+0.147218$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	Cob	D	cluded
1. U $^{\text {a }}$	1 170724M1_3	Standard		0.250	3.85	1506.464	55001.828	0.342	0.2	-28.9	NO	0.997	NO	MM
2 2,	2 170724M1_4	Standard		0.500	3.85	2694.965	54762.438	0.615	0.4	-14.8	NO	0.997	NO	bb
3.3	3 170724M1_5	Standard		1.000	3.85	5691.902	55321.512	1.286	1.0	3.7	NO	0.997	NO	bb
4	4 170724M1_6	Standard		2.000	3.85	12559.827	59225.996	2.651	2.3	14.0	NO	0.997	NO	bb
5.	5 170724M1_7	Standard		5.000	3.85	29286.219	53341.520	6.863	6.1	22.3	NO	0.997	NO	bb
6 6.t.	6 170724M1_8	Standard		10.000	3.85	53683.984	56161.168	11.949	10.7	7.4	NO	0.997	NO	bb
	7 170724M1_9	Standard		50.000	3.85	236461.688	55495.742	53.261	48.4	-3.3	NO	0.997	NO	bb
8 8)	8 170724M1_10	Standard		100.000	3.85	475993.000	54308.789	109.557	99.6	-0.4	NO	0.997	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * $x+0.0489398$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOS

Coefficient of Determination: $R^{\wedge} 2=0.999148$
Calibration curve: -0.00122032 * $x^{\wedge} 2+1.19038$ * $x+0.0183073$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name		Std. Conc	RT Area		15 Area	Response Conc. \%Dev Conc. Flag					CoD Flag x-excluded	
11	1 170724M1_3	Standard	0.250	3.90	300.610	10711.932	0.351	0.3	11.8	NO	0.999	NO	MM
2 2-2 ${ }^{2}$	2 170724M1_4	Standard	0.500	3.90	466.042	10010.674	0.582	0.5	-5.3	NO	0.999	NO	bb
	3 170724M1_5	Standard	1.000	3.90	1032.724	10207.536	1.265	1.0	4.8	NO	0.999	NO	MM
4. ${ }^{\text {ata }}$	4 170724M1_6	Standard	2.000	3.90	1981.837	10715.066	2.312	1.9	-3.5	NO	0.999	NO	MM
5 . ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	3.90	5099.578	10217.659	6.239	5.3	5.1	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.90	8336.075	9647.514	10.801	9.1	-8.6	NO	0.999	NO	bb
7.	7 170724M1_9	Standard	50.000	3.91	43091.355	9325.974	57.757	51.2	2.4	NO	0.999	NO	bb
8 田	8 170724M1_10	Standard	100.000	3.90	78910.156	9278.883	106.303	99.4	-0.6	NO	0.999	NO	bb

Dataset: U:IQ4.PRO|results1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $r=0.999397, r^{\wedge} 2=0.998795$
Calibration curve: 1.29731 * $x+0.128184$
Response type: Internal Std (Ref 39), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name = Type		Stc. Conc	$\begin{array}{r} \mathrm{RT} \\ \hline 4.02 \end{array}$	Area IS Area		Response Canc.e \%Dev Conc. Flag				COD COD Flag		x $=$ excluded
1.4.ax+x	1 170724M1_3	Standard			1671.759	55156.438	0.379	0.2	-22.7	NO	0.999	NO	bb
2 c	2 170724M1_4	Standard	0.500	4.02	3226.587	49449.902	0.816	0.5	6.0	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	4.02	6606.647	59736.465	1.382	1.0	-3.3	NO	0.999	NO	db
4 - ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.02	14672.154	61862.684	2.965	2.2	9.3	NO	0.999	NO	bb
5 - ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	4.02	32741.914	53915.461	7.591	5.8	15.1	NO	0.999	NO	bb
6 - ${ }^{2} \mathrm{c}^{2}$	6 170724M1_8	Standard	10.000	4.02	60142.156	58734.430	12.800	9.8	-2.3	NO	0.999	NO	bb
7 -	7 170724M1_9	Standard	50.000	4.03	291430.906	57610.250	63.233	48.6	-2.7	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	4.02	519240.375	49628.984	130.781	100.7	0.7	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996738$
Calibration curve: -0.00420182 * $x^{\wedge} 2+1.49722$ * $x+0.133523$
Response type: Internal Std ($\operatorname{Ref} 40$), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag \% CoD CoD Flag $x=$ excluded				
1	1 170724M1_3	Standard	0.250	4.01	116.059	5712.626	0.254	0.1	-67.8	NO	0.997	NO	bbX
2.4	2 170724M1_4	Standard	0.500	4.02	436.336	5926.817	0.920	0.5	5.2	NO	0.997	NO	bb
3.	3 170724M1_5	Standard	1.000	4.01	704.575	5605.082	1.571	1.0	-3.7	NO	0.997	NO	bb
4.	4 170724M1_6	Standard	2.000	4.01	1467.688	6033.180	3.041	2.0	-2.4	NO	0.997	NO	bb
5×4	5 170724M1_7	Standard	5.000	4.02	3942.699	5463.454	9.021	6.0	20.8	NO	0.997	NO	bb
6	6 170724M1_8	Standard	10.000	4.02	6715.274	5614.961	14.950	10.2	1.9	NO	0.997	NO	bb
7.4	7 170724M1_9	Standard	50.000	4.02	29821.402	6078.795	61.323	47.1	-5.8	NO	0.997	NO	bb
8,-3*	8 170724M1_10	Standard	100.000	4.02	56335.957	6441.568	109.321	102.3	2.3	NO	0.997	NO	bb

Dataset:
U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999848$
Calibration curve: $-0.01040777^{*} x^{\wedge} 2+19.9194 * x+0.547687$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	: 1	Std. Conc	RT	Area	IS Area	Responise	Conc.	\%Dev	Conc. Flag	CoD		$x=$ excluded
1.	1 170724M1_3	Standard		0.250	4.05	448.925	12099.400	6.029	0.3	10.1	NO	1.000	NO	bb
2	2 170724M1_4	Standard		0.500	4.05	716.809	11504.973	10.124	0.5	-3.8	NO	1.000	NO	bb
	3 170724M1_5	Standard		1.000	4.06	1261.768	11265.637	18.200	0.9	-11.3	NO	1.000	NO	bb
4 \% ${ }^{2}$	4 170724M1_6	Standard		2.000	4.05	3173.830	12505.027	41.243	2.0	2.3	. NO	1.000	NO	bb
5.	5 170724M1_7	Standard		5.000	4.05	7648.363	12072.939	102.946	5.2	3.1	NO	1.000	NO	bb
6.	6 170724M1_8	Standard		10.000	4.05	14431.390	11803.941	198.671	10.0	-0.0	NO	1.000	NO	bb
7 PWere	7 170724M1_9	Standard		50.000	4.05	69860.063	11737.307	967.195	49.8	-0.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard		100.000	4.05	130379.672	11210.404	1889.914	100.1	0.1	NO	1.000	NO	bb

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999908$
Calibration curve: $-0.00439744{ }^{*} x^{\wedge} 2+16.1657 * x+0.0580373$
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	Dev.	c.	CoD	F	cluded
1. 2.2 .4	1 170724M1_3	Standard	0.250	4.12	300.173	12172.007	4.007	0.2	-2.3	NO	1.000	NO	bb
2 , mat	2 170724M1_4	Standard	0.500	4.12	550.297	11615.228	7.699	0.5	-5.5	NO	1.000	NO	bb
3.24	3 170724M1_5	Standard	1.000	4.12	1245.830	11653.344	17.372	1.1	7.1	NO	1.000	NO	bb
$4+1$	4 170724M1_6	Standard	2.000	4.12	2483.220	12504.510	32.270	2.0	-0.3	NO	1.000	NO	bb
	5 170724M1_7	Standard	5.000	4.12	6280.812	12228.059	83.466	5.2	3.3	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.12	12176.978	12339.168	160.364	9.9	-0.6	NO	1.000	NO	bb
7. ${ }^{\text {a }}$,	7 170724M1_9	Standard	50.000	4.12	57061.832	11695.135	792.855	49.7	-0.6	NO	1.000	NO	bb
8.	8 170724M1_10	Standard	100.000	4.12	112917.555	11651.338	1574.849	100.1	0.1	NO	1.000	NO	bb

Compound name: PFUnA

Coefficient of Determination: R^2 $=0.998430$
Calibration curve: -0.0020331 * $x^{\wedge} 2+0.901478$ * $x+0.00751751$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std, Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Fla	xcluded
1 \%	1 170724M1_3	Standard	0.250	4.18	1408.556	65735.461	0.268	0.3	15.6	NO	0.998	NO	bb
2.	$2170724 \mathrm{M1}$ _4	Standard	0.500	4.19	2456.148	63870.914	0.481	0.5	5.1	NO	0.998	NO	bb
3 atar	3 170724M1_5	Standard	1.000	4.19	4367.807	64348.984	0.848	0.9	-6.5	NO	0.998	NO	bb
	- 4 170724M1_6	Standard	2.000	4.19	9271.418	67160.539	1.726	1.9	-4.3	NO	0.998	NO	bb
5	$5170724 \mathrm{M1} 1$ 7	Standard	5.000	4.19	22206.646	66089.180	4.200	4.7	-6.0	NO	0.998	NO	bb
6 - ${ }^{\text {a }}$	$6170724 \mathrm{M1} 18$	Standard	10.000	4.19	40104.945	61335.543	8.173	9.3	-7.5	NO	0.998	NO	bb
7 Werta	$7170724 \mathrm{M1} 19$	Standard	50.000	4.19	187190.781	55960.629	41.813	52.6	5.2	NO	0.998	NO	bb
8 -	8 170724M1_10	Standard	100.000	4.19	357250.000	64722.215	68.997	98.3	-1.7	NO	0.998	NO	bb

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998889$
Calibration curve: $-0.000220781^{*} x^{\wedge} 2+0.0914068^{*} x+-0.00228704$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	ype	derm	Std. Conc	RT	Area	IS Area	Response						
1.4	1 170724M1_3	Standard		0.250	4.24	125.500	65735.461	0.024	0.3	14.5	NO	0.999	NO	bb
2.,	2 170724M1_4	Standard		0.500	4.24	213.650	63870.914	0.042	0.5	-3.4	NO	0.999	NO	MM
$3 \times+4$	3 170724M1_5	Standard		1.000	4.23	432.153	64348.984	0.084	0.9	-5.4	NO	0.999	NO	bb
4	4 170724M1_6	Standard		2.000	4.24	998.163	67160.539	0.186	2.1	3.4	NO	0.999	NO	bb
5	5 170724M1_7	Standard		5.000	4.23	2251.549	66089.180	0.426	4.7	-5.2	NO	0.999	NO	bb
6	6 170724M1_8	Standard		10.000	4.23	4080.028	61335.543	0.831	9.3	-6.7	NO	0.999	NO	bb
7	7 170724M1_9	Standard		50.000	4.24	18621.564	55960.629	4.160	52.1	4.2	NO	0.999	NO	bb
8.	8 170724M1_10	Standard		100.000	4.23	35549.465	64722.215	6.866	98.6	-1.4	NO	0.999	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999700$
Calibration curve: $-0.000446703^{*} x^{\wedge} 2+0.926687{ }^{*} x+0.203454$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

2	\# Name	Type	\%	Std. Conc	RT	Area	IS Area	Response0.416	Conc. \% \% Dev		Conc. Flag	CoD CoD Flag x-excluded		
	1 170724M1_3	Standard		0.250	4.34	212.884	6396.985		0.2	-8.3		1.000	NO	MM
$2=3$	2 170724M1_4	Standard		0.500	4.35	285.030	5632.353	0.633	0.5	-7.4	NO	1.000	NO	MM
3. ${ }^{\text {a }}$.	3 170724M1_5	Standard		1.000	4.35	576.941	5998.723	1.202	1.1	7.8	NO	1.000	NO	bb
$4-2$	4 170724M1_6	Standard		2.000	4.35	1144.260	6584.378	2.172	2.1	6.3	NO	1.000	, NO	bb
5 2w	5 170724M1_7	Standard		5.000	4.35	2601.126	6419.244	5.065	5.3	5.2	NO	1.000	NO	bb
6 , ${ }^{\text {a }}$ W	6 170724M1_8	Standard		10.000	4.35	4871.013	6690.135	9.101	9.6	-3.5	NO	1.000	NO	bb
7	7 170724M1_9	Standard		50.000	4.35	21850.346	6031.607	45.283	49.8	-0.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard		100.000	4.35	43781.789	6184.443	88.492	100.1	0.1	NO	1.000	NO	bb

Compound name: N-MeFOSA

Correlation coefficient: $\mathrm{r}=0.999273, \mathrm{r}^{\wedge} 2=0.998546$
Calibration curve: 1.0376 * x +0.213391
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

xex	\# Name		Std. Conc	RT	Area	15 Área	Response	Conc.	\%Dev	nc.	CoD	CoD Flag x=excluded	
1 Humbet	1 170724M1_3	Standard	1.250	4.39	228.733	27834.387	1.233	1.0	-21.4	NO	0.999	NO	MM
2 - N.	2 170724M1_4	Standard	2.500	4.39	521.665	26795.877	2.920	2.6	4.3	NO	0.999	NO	db
$3 \times 2 \mathrm{tax}$	3 170724M1_5	Standard	5.000	4.39	1023.477	27001.328	5.686	5.3	5.5	NO	0.999	NO	bb
	4 170724M1_6	Standard	10.000	4.39	2219.793	28178.129	11.817	11.2	11.8	NO	0.999	NO	bb
5 -	5 170724M1_7	Standard	25.000	4.39	5367.556	27075.477	29.737	28.5	13.8	NO	0.999	NO	bb
6 -	6 170724M1_8	Standard	50.000	4.39	9739.016	27395.363	53.325	51.2	2.4	No	0.999	NO	db
	7 170724M1_9	Standard	250.000	4.39	46919.371	26470.068	265.882	256.0	2.4	NO	0.999	NO	bb
$8 \times \pm$	8 170724M1_10	Standard	500.000	4.39	92806.148	27480.182	506.580	488.0	-2.4	NO	0.999	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:\Q4.PRO\results\170724M1\170724M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Monday, July 24, 2017 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, 2017 15:40:40 Pacific Daylight Time }\end{array}$

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999414, \mathrm{r}^{\wedge} 2=0.998828$
Calibration curve: 10.9255 * $x+1.79$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Fla	$x=e x c l u d e d$
1.4	1 170724M1_3	Standard	0.250	4.52	1936.804	6396.985	3.785	0.2	-27.0	NO	0.999	NO	MM
2 2.4.ter	$2170724 \mathrm{M1}$ _4	Standard	0.500	4.52	3347.446	5632.353	7.429	0.5	3.2	NO	0.999	NO	bb
3 . ${ }^{2}$	3 170724M1_5	Standard	1.000	4.52	6246.435	5998.723	13.016	1.0	2.8	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	4.52	13537.021	6584.378	25.699	2.2	9.4	NO	0.999	NO	bb
5 . ${ }^{\text {a }}$,	5 170724M1_7	Standard	5.000	4.52	32633.807	6419.244	63.547	5.7	13.1	NO	0.999	NO	bb
6 \% ${ }^{\text {a }}$,	6 170724M1_8	Standard	10.000	4.52	58224.531	6690.135	108.788	9.8	-2.1	NO	0.999	NO	bb
7.emrata	$7170724 \mathrm{M1}$-9	Standard	50.000	4.52	270796.875	6031.607	561.204	51.2	2.4	NO	0.999	NO	bb
8.4 ate	8 170724M1_10	Standard	100.000	4.52	531631.563	6184.443	1074.534	98.2	-1.8	NO	0.999	NO	bb

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999057$
Calibration curve: $-0.000800394^{*} x^{\wedge} 2+1.14875{ }^{*} x+0.111533$
Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name	Type	Std. Conc	RT	- Area	IS Area	Response	onc.	6Dev	Conc. Flag	CoD	D F	$x=e x c l u d e d$
1.	1 170724M1_3	Standard	0.250	4.70	1552.113	52611.504	0.369	0.2	-10.4	NO	0.999	NO	MM
2 2ramas	2 170724M1_4	Standard	0.500	4.70	2285.720	43220.855	0.661	0.5	-4.3	NO	0.999	NO	bb
$3 \times \sim$	3 170724M1_5	Standard	1.000	4.70	4798.681	44254.344	1.355	1.1	8.4	NO	0.999	NO	bb
4 4. ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.70	9477.179	47041.410	2.518	2.1	4.9	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	4.70	23144.785	45392.488	6.374	5.5	9.4	NO	0.999	NO	bb
6.twrin	$6170724 \mathrm{M1}$-8	Standard	10.000	4.70	40819.449	48426.250	10.536	9.1	-8.7	NO	0.999	NO	bb
	7 170724M1_9	Standard	50.000	4.70	191033.828	42647.246	55.992	50.4	0.8	NO	0.999	NO	bb
88	8 170724M1_10	Standard	100.000	4.70	370959.375	43405.691	106.829	99.8	-0.2	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSA

Correlation coefficient: $\mathrm{r}=0.999689, \mathrm{r} \wedge=0.999377$
Calibration curve: 0.904115 * $x+0.326191$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev .Conc. Flag w CoD. CoDFlag x=excluded				
1	1 170724M1_3	Standard	1.250	4.96	337.684	39437.277	1.284	1.1	-15.2	NO	0.999	NO	bb
2.4	2 170724M1_4	Standard	2.500	4.97	613.630	37412.609	2.460	2.4	-5.6	NO	0.999	NO	bb
3	3 170724M1_5	Standard	5.000	4.97	1267.991	37050.801	5.133	5.3	6.3	NO	0.999	NO	bb
$4{ }^{4}$ Wamer	4 170724M.1_6.	Standard	10.000	4.96	2697.465	40104.539	10.089	10.8	8.0	NO,	0.999	NO	bb
5.	5 170724M1_7	Standard	25.000	4.97	6431.737	38083.547	25.333	27.7	10.6	NO	0.999	NO	bb
6.4	6 170724M1_8	Standard	50.000	4.97	11627.879	39916.621	43.696	48.0	-4.1	NO	0.999	NO	db
7	7 170724M1_9	Standard	250.000	4.96	57443.004	37926.309	227.189	250.9	0.4	NO	0.999	NO	db
8 .	8 170724M1_10	Standard	500.000	4.97	116042.914	38657.641	450.272	497.7	-0.5	NO	0.999	NO	db

Compound name: PFHxDA

Coefficient of Determination: $R^{\wedge} 2=0.999358$
Calibration curve: $-0.000715061^{*} x^{\wedge} 2+1.34773$ * $x+0.264398$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFODA

Correlation coefficient: $\mathrm{r}=0.999378, \mathrm{r} \wedge 2=0.998756$
Calibration curve: 1.27561 * $x+0.10098$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

$\sqrt{5 \times 4 \times}$	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD \quad CoDFlag x -excluded				
12	1 170724M1_3	Standard	0.250	5.43	1893.557	25428.396	0.372	0.2	-14.9	NO	0.999	NO	MM
2	2 170724M1_4	Standard	0.500	5.44	3335.536	21542.566	0.774	0.5	5.5	NO	0.999	NO	bb
3.	3 170724M1_5	Standard	1.000	5.44	6573.281	21611.141	1.521	1.1	11.3	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	5.44	13511.143	22044.896	3.064	2.3	16.2	NO	0.999	NO	bb .
5. ${ }^{\text {a }}$.	5 170724M1_7	Standard	5.000	5.44	32601.881	22327.822	7.301	5.6	12.9	NO	0.999	NO	bb
6.	$6170724 \mathrm{M1}$ _8	Standard	10.000	5.44	59011.938	22552.494	13.083	10.2	1.8	NO	0.999	NO	bb
7. 7 $^{\text {a }}$,	7 170724M1_9	Standard	50.000	5.43	274924.375	21452.613	64.077	50.2	0.3	NO	0.999	NO	bb
8. 2 2	8 170724M1_10	Standard	100.000	5.44	534414.688	21228.160	125.874	98.6	-1.4	NO	0.999	NO	bb

Compound name: N -MeFOSE

Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998953$
Calibration curve: 1.01603 * $\mathrm{x}+0.461771$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results1170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.999680, \mathrm{r}^{\wedge} 2=0.999361$
Calibration curve: 1.16673 * $x+0.501898$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 13C3-PFBA

Response Factor: 0.820483
RRF SD: 0.00867593, Relative SD: 1.05742
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered:
Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:47:51 Pacific Daylight Time

(A) Not in SS .

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Dataset:	U:\Q4.PRO\results1170724M11170724M1-12.qId
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:51 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G 2421

	\# Name	**	Trace	Area	IS Resp	RRF	Wt./Vol	RT	Conc.	\%Rec
32×1	32 13C4-PFHpA		$367.2>321.8$	29688.498	38341.938	0.306	1.000	3.48	12.67	101.34
33 -	33 1802-PFHxS		$403>102.6$	2850.923	7151.517	0.393	1.000	3.55	12.69	101.51
34 .	$3413 \mathrm{C} 2-6: 2 \mathrm{FTS}$		$429.1>408.9$	7715.412	55193.199	0.158	1.000	3.67	11.08	88.65
35 -	$3513 \mathrm{C} 2-\mathrm{PFOA}$		$414.9>369.7$	57527.922	55193.199	1.067	1.000	3.68	12.20	97.64
36	36 13C5-PFNA		$468.2>422.9$	55397.191	58314.438	0.852	1.000	3.85	13.94	111.4ε
37 , 相	37 13C8-PFOSA		$506.1>77.7$	6500.262	73602.336	0.098	1.000	3.86	11.24	89.90
38.	3813 C 8 -PFOS		$507>79.9$	10272.242	10242.656	0.936	1.000	3.91	13.40	107.18
39 -	39 13C2-PFDA		$515.1>469.9$	56205.117	70397.750	0.810	1.000	4.02	12.32	98.59
40 , \quad 2	40 13C2-8:2 FTS		$529.1>508.7$	5254.963	70397.750	0.086	1.000	4.02	10.90	87.23
41	41 d3-N-MeFOSAA		$573.3>419$	11971.411	73602.336	0.014	1.000	4.05	148.44	91.35
42	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA		$589.3>419$	12068.997	73602.336	0.014	1.000	4.12	146.98	90.45
43	43 13C2-PFUnA		$565>519.8$	59926.145	73602.336	0.962	1.000	4.19	10.58	84.63
44	44 13C2-PFDoA		$615>569.7$	5849.101	73602.336	0.094	1.000	4.35	10.52	84.16
	45 d3-N-MeFOSA		$515.2>168.9$	26376.414	73602.336	0.034	1.000	4.43	130.17	86.78
46 .	46 13C2-PFTeDA		714.8 > 669.6	40951.586	73602.336	0.694	1.000	4.70	10.02	80.14
47	47 d5-N-ETFOSA		$531.1>168.9$	6321.303	73602.336	0.049	1.000	5.01	22.06	14.70
48	48 13C2-PFHxDA		$815>769.7$	19848.846	73602.336	0.843	1.000	5.07	4.00	79.97
49	$49 \mathrm{d7}$-N-MeFOSE		$623.1>58.9$	40883.168	73602.336	0.055	1.000	5.42	127.09	84.73
50	50 d9-N-EtFOSE		$639.2>58.8$	40456.262	73602.336	0.053	1.000	5.59	128.61	85.74
51	51 13C4-PFBA		$217>171.8$	14974.247	14974.247	1.000	1.000	1.55	12.50	100.00
52	52 13C5-PFHxA		318 > 272.9	38341.938	38341.938	1.000	1.000	3.22	5.00	100.00
53	53 13C3-PFHxS		$401.9>79.9$	7151.517	7151.517	1.000	1.000	3.55	12.50	100.00
	54 13C8-PFOA		$421.3>376$	55193.199	55193.199	1.000	1.000	3.68	12.50	100.00
55 -	55 13C9-PFNA		$472.2>426.9$	58314.438	58314.438	1.000	1.000	3.85	12.50	100.00
56	56 13C4-PFOS		$503>79.9$	10242.656	10242.656	1.000	1.000	3.91	12.50	100.00
57.	57 13C6-PFDA		$519.1>473.7$	70397.750	70397.750	1.000	1.000	4.02	12.50	100.00
58.8	58 13C7-PFUnA		$570.1>524.8$	73602.336	73602.336	1.000	1.000	4.19	12.50	100.00

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results1170727M11170727M1-CRV.qld
Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51

Compound name: PFBA
Coefficient of Determination: $R^{\wedge} 2=0.999016$
Calibration curve: $-0.000148745^{*} x^{\wedge} 2+1.144{ }^{*} x+0.0934277$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

-	\# Name		Std Conc	RT	Area - IS Area		Response Conc. \%Dev Conc. Flag				COD COD Flag $x=$ excluded		
12	1 170727M1 6	Standard	0.250	1.32	402.541	13153.632	0.383	0.3	1.1	NO	0.999	NO	MM
2. $4 \times$	2 170727M1_7	Standard	0.500	1.32	900.679	16229.239	0.694	0.5	5.0	NO	0.999	NO	bb
3.15	3 170727M1_8	Standard	1.000	1.32	1532.875	13631.894	1.406	1.1	14.7	NO	0.999	NO	bb
4.2	4 170727M1_9	Standard	2.000	1.32	3476.482	17379.277	2.500	2.1	5.2	NO	0.999	NO	bb
5	5 170727M1_10	Standard	5.000	1.32	7094.940	13706.406	6.470	5.6	11.6	NO	0.999	NO	bb
$\stackrel{1}{4}$	6 170727M1_11	Standard	10.000	1.32	14607.091	16386.203	11.143	9.7	-3.3	NO	0.999	NO	bb
$7 \times$	7 170727M1_12	Standard	50.000	1.32	69465.063	15585.783	55.712	48.9	-2.1	NO	0.999	NO	bb
$8 \div$	8 170727M1_13	Standard	100.000	1.32	120916.445	13303.807	113.611	100.5	0.5	NO	0.999	NO	bb

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999743, \mathrm{r}^{\wedge} 2=0.999486$
Calibration curve: 0.998566 * $x+0.0863273$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	15 Area	pons	onc.	\%Dev		C	D F	xclu
3.	1 170727M1_6	Standard	0.250	2.62	977.753	42840.023	0.285	0.2	-20.3	NO	0.999	NO	MM
2.	2 170727M1_7	Standard	0.500	2.63	2278.154	48017.777	0.593	0.5	1.5	NO	0.999	NO	MM
3.	3 170727M1_8	Standard	1.000	2.63	4013.757	44080.910	1.138	1.1	5.3	NO	0.999	NO	MM
4	4 170727M1_9	Standard	2.000	2.63	8123.328	46122.711	2.202	2.1	5.9	NO	0.999	NO	MM
5.4	5 170727M1_10	Standard	5.000	2.63	19398.813	43342.047	5.595	5.5	10.3	NO	0.999	NO	MM
6. ${ }^{\text {a }}$	6 170727M1_11	Standard	10.000	2.63	35041.879	44586.609	9.824	9.8	-2.5	NO	0.999	NO	MM
7	7 170727M1_12	Standard	50.000	2.63	167534.391	41776.168	50.129	50.1	0.2	NO	0.999	NO	MM
8 8.	8 170727M1_13	Standard	100.000	2.63	297744.313	37430.172	99.433	99.5	-0.5	NO	0.999	NO	MM

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999583, \mathrm{r}^{\wedge} 2=0.999166$
Calibration curve: 1.87908 * $x+0.124036$
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

\# Name			Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc Flag CoD			CoD Flag	$x=$ excluded
1- W W W	1 170727M1_6	Standard	0.250	2.86	216.161	5089.555	0.531	0.2	-13.4	NO	0.999	NO	MM
2	2 170727M1_7	Standard	0.500	2.88	430.884	5384.093	1.000	0.5	-6.7	NO	0.999	NO	bb
3	3 170727M1_8	Standard	1.000	2.88	835.393	5220.958	2.000	1.0	-0.2	NO	0.999	NO	bb
4	4 170727M1_9	Standard	2.000	2.88	1775.403	5238.489	4.236	2.2	9.4	NO	0.999	NO	bb
5	5 170727M1_10	Standard	5.000	2.87	4544.860	5270.990	10.778	5.7	13.4	NO	0.999	NO	bb
6 E ¢ ${ }^{\text {a }}$	6 170727M1_11	Standard	10.000	2.87	7856.220	5320.907	18.456	9.8	-2.4	NO	0.999	NO	bb
7	7 170727M1_12	Standard	50.000	2.88	35191.227	4634.577	94.915	50.4	0.9	NO	0.999	NO	bb
8	8 170727M1_13	Standard	100.000	2.88	64080.703	4302.573	186.170	99.0	-1.0	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: $r=0.999556, r^{\wedge} 2=0.999111$
Calibration curve: $1.45287^{*} \times+0.152663$
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	COD	D Fla	$x=$ excluded
1.3	1 170727M1_6	Standard	0.250	3.13	1523.459	18704.734	0.407	0.2	-29.9	NO	0.999	NO	bb
2	2 170727M1_7	Standard	0.500	3.14	3349.999	19036.875	0.880	0.5	0.1	NO	0.999	NO	bb
$3 \times$	3 170727M1_8	Standard	1.000	3.13	6240.815	17953.455	1.738	1.1	9.1	NO	0.999	NO	bb
$4{ }^{4}+{ }^{2}+5$	4 170727M1_9	Standard	2.000	3.14	12461.357	18121.797	3.438	2.3	13.1	NO	0.999	NO	bb
	5 170727M1_10	Standard	5.000	3.13	30436.348	18473.457	8.238	5.6	11.3	NO	0.999	NO	bb
	6 170727M1_11	Standard	10.000	3.13	54673.695	19237.354	14.210	9.7	-3.2	NO	0.999	NO	bb
7.5	7 170727M1_12	Standard	50.000	3.14	251307.063	17235.859	72.902	50.1	0.1	NO	0.999	NO	bb
8×3	8 170727M1_13	Standard	100.000	3.14	465411.344	16095.404	144.579	99.4	-0.6	NO	0.999	NO	bb

Quantify Compound Summary Report	MassLynx MassLynx V4
Vista Analytical Laboratory	
Datase::	U:IQ4.PROIresults 1170727 M1 1170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:08:22 Pacific Daylight Time

$\begin{array}{ll}\text { Last Altered: } & \text { Friday, July 28, } 2017 \text { 08:49:51 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, July 28, } 2017 \text { 09:08:22 Pacific Daylight Time }\end{array}$
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999612, \mathrm{r}^{\wedge} 2=0.999224$
Calibration curve: 1.23238 * x +0.112392
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

5-			Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	c.	Cob	D Fl	xcluded
1 ,	1 170727M1_6	Standard	0.250	3.40	1192.731	43063.793	0.346	0.2	-24.1	NO	0.999	NO	bb
2.4	2 170727M1_7	Standard	0.500	3.41	2552.004	45204.484	0.706	0.5	-3.7	NO	0.999	NO	bb
3.	3 170727M1_8	Standard	1.000	3.40	5112.497	44567.395	1.434	1.1	7.2	NO	0.999	NO	bb
4	4 170727M1_9	Standard	2.000	3.40	9742.448	43767.641	2.782	2.2	8.3	NO	0.999	NO	bb
5 .	5 170727M1_10	Standard	5.000	3.40	25370.670	44912.559	7.061	5.6	12.8	NO	0.999	NO	bb
6 , ${ }^{\text {ata }}$	6 170727M1_11	Standard	10.000	3.40	42822.836	42955.043	12.462	10.0	0.2	NO	0.999	NO	bb
7	7 170727M1_12	Standard	50.000	3.40	198742.078	40157.961	61.863	50.1	0.2	NO	0.999	NO	bb
8. ${ }^{\text {a }}$,	8 170727M1_13	Standard	100.000	3.41	369376.406	37780.906	122.210	99.1	-0.9	NO	0.999	NO	bb

Compound name: PFHxS

Correlation coefficient: $r=0.999353, r \wedge 2=0.998707$
Calibration curve: 1.63949 * x +0.27697
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	COD	CoD Flag	$x=$ excluded
1. 2 2 ?	1 170727M1_6	Standard	0.250	3.47	96.020	3850.929	0.312	0.0	-91.5	NO	0.999	NO	MMX
2	2 170727M1_7	Standard	0.500	3.49	280.310	3764.178	0.931	0.4	-20.2	NO	0.999	NO	MM
3 3,tw	3 170727M1_8	Standard	1.000	3.47	582.460	3967.092	1.835	1.0	-5.0	NO	0.999	NO	MM
14	4 170727M1_9	Standard	2.000	3.48	1200.082	3867.868	3.878	2.2	9.8	NO	0.999	NO	bb
5.	5 170727M1_10	Standard	5.000	3.47	3145.393	3971.926	9.899	5.9	17.4	NO	0.999	NO	bb
6	6 170727M1_11	Standard	10.000	3.47	4979.415	3753.762	16.581	9.9	-0.6	NO	0.999	NO	bb
7	7 170727M1_12	Standard	50.000	3.47	23568.961	3626.088	81.248	49.4	-1.2	NO	0.999	NO	bb
8.	8 170727M1_13	Standard	100.000	3.48	43767.965	3339.629	163.820	99.8	-0.2	NO	0.999	NO	MM

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.999168, \mathrm{r}^{\wedge} 2=0.998337$
Calibration curve: $0.97941^{*} \mathrm{x}+0.169979$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD			CoD Flag $x=e x c l u d e d$	
1	1 170727M1_6	Standard	0.250	3.60	1650.811	59865.938	0.345	0.2	-28.6	NO	0.998	NO	MM
2.	2 170727M1_7	Standard	0.500	3.60	3196.288	59919.949	0.667	0.5	1.4	NO	0.998	NO	bb
3 3 ${ }^{\text {a }}$	3 170727M1_8	Standard	1.000	3.60	5374.311	55415.613	1.212	1.1	6.4	NO	0.998	NO	MM
4.4	4-170727M1_9	Standard	2.000	3.60	10962.036	59868.074	2.289	2.2	8.2	NO	0.998	NO	bb
5 -	5 170727M1_10	Standard	5.000	3.60	27432.125	58695.875	5.842	5.8	15.8	NO	0.998	NO	bb
6	6 170727M1_11	Standard	10.000	3.60	46826.324	61262.559	9.554	9.6	-4.2	NO	0.998	NO	bb
7.42 L	7 170727M1_12	Standard	50.000	3.60	221201.672	54632.066	50.612	51.5	3.0	NO	0.998	NO	bb
8.	8 170727M1_13	Standard	100.000	3.60	393668.469	51197.766	96.115	98.0	-2.0	NO	0.998	NO	bb

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999393, \mathrm{r} \wedge 2=0.998786$
Calibration curve: $0.0865329 * x+0.00638428$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999135, \mathrm{r} \wedge 2=0.998270$
Calibration curve: 1.06404 * $x+0.151731$
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

$4 \times$	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD CoD Flag x=excluded		
1 -	1 170727M1_6	Standard	0.250	3.77	1418.062	51114.008	0.347	0.2	-26.7	NO	0.998	NO	bb
2	2 170727M1_7	Standard	0.500	3.78	2579.519	51529.840	0.626	0.4	-10.9	NO	0.998	NO	bd
	3 170727M1_8	Standard	1.000	3.78	4744.847	46721.047	1.269	1.1	5.0	NO	0.998	NO	bb
4 ,	4 170727M1_9	Standard	2.000	3.78	10626.438	50271.816	2.642	2.3	17.0	NO	0.998	No	bb
5 514.tes	5 170727M1_10	Standard	5.000	3.78	25077.686	48716.914	6.435	5.9	18.1	NO	0.998	No	bb
6 k - $\mathrm{c}^{\text {d }}$	6 170727M1_11	Standard	10.000	3.78	43029.453	49942.039	10.770	10.0	-0.2	NO	0.998	NO	bb
7 , Eat	7 170727M1_12	Standard	50.000	3.78	190384.000	45725.195	52.046	48.8	-2.5	NO	0.998	No	bb
8 \% ${ }^{\text {a }}$,	8 170727M1_13	Standard	100.000	3.78	355715.094	41697.215	106.636	100.1	0.1	NO	0.998	No	bb

Compound name: PFOSA

Correlation coefficient: $r=0.999394,{ }^{\wedge} \wedge 2=0.998789$
Calibration curve: 1.06848 * $x+0.223419$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

-			Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc, Flag CoD			CoD Flag x =excluded	
$1.4 \times$	1 170727M1_6	Standard	0.250	3.79	250.989	11862.194	0.264	0.0	-84.6	NO	0.999	NO	bbX
$2+3$	2 170727M1_7	Standard	0.500	3.78	698.528	11221.438	0.778	0.5	3.8	NO	0.999	NO	bb
3 3 ${ }^{\text {a }}$	3 170727M1_8	Standard	1.000	3.78	996.158	11168.887	1.115	0.8	-16.6	NO	0.999	NO	bb
4 ,	4 170727M1_9	Standard	2.000	3.79	2339.715	11376.144	2.571	2.2	9.8	NO	0.999	NO	bb
5 \%	5 170727M1_10	Standard	5.000	3.79	5314.163	10985.451	6.047	5.5	9.0	NO	0.999	NO	bb
6 . ${ }^{\text {a }}$.	6 170727M1_11	Standard	10.000	3.79	9316.069	11154.32¢	10.440	9.6	-4.4	NO	0.999	NO	bb
7 -	7 170727M1_12	Standard	50.000	3.79	38523.172	9284.536	51.865	48.3	-3.3	NO	0.999	NO	bb
	8 170727M1_13	Standard	100.000	3.79	69731.266	8012.283	108.788	101.6	1.6	NO	0.999	NO	bb

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960
 Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170727M1\170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999093$
Calibration curve: -0.000652924 * $x^{\wedge} 2+1.07342$ * x + 0.0667583
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

- x^{2}. x^{2}	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	Dev	Conc. Flag	CoD CoD Flag $x=$ excluded		
1.	1 170727M1_6	Standard	0.250	3.83	246.486	9351.420	0.329	0.2	-2.1	NO	0.999	NO	bb
2	2 170727M1_7	Standard	0.500	3.84	477.693	9058.424	0.659	0.6	10.4	NO	0.999	NO	bb
3	3 170727M1_8	Standard	1.000	3.83	942.525	9156.141	1.287	1.1	13.7	NO	0.999	NO	bb
$4+4 \mathrm{ta}$	4 170727M1_9	Standard	2.000	3.83	1601.983	8775.251	2.282	2.1	3.3	NO	0.999	NO	.. bb
5	5 170727M1_10	Standard	5.000	3.83	3988.879	8595.392	5.801	5.4	7.2	NO	0.999	NO	bb
6.t.un*	6 170727M1_11	Standard	10.000	3.83	7578.040	9601.248	9.866	9.2	-8.2	NO	0.999	NO	bb
7. What ${ }^{\text {a }}$	7 170727M1_12	Standard	50.000	3.83	34494.703	8226.863	52.412	50.3	0.6	NO	0.999	NO	bb
8 8.	8 170727M1_13	Standard	100.000	3.83	63517.383	7877.385	100.791	99.9	-0.1	NO	0.999	NO	bb

Compound name: PFDA

Correlation coefficient: $\mathrm{r}=0.999716, \mathrm{r}^{\wedge} 2=0.999431$
Calibration curve: 1.23228 * $x+0.147279$
Response type: Internal Std (Ref 30), Area * (IS Conc. /IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

merer	\# Name		\pm Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	OD Fla	xcluded
	1 170727M1_6	Standard	0.250	3.95	1756.771	52030.340	0.422	0.2	-10.8	NO	0.999	NO	bb
2	2 170727M1_7	Standard	0.500	3.95	3265.883	57299.637	0.712	0.5	-8.3	NO	0.999	NO	bb
3 B	3 170727M1_8	Standard	1.000	3.95	6418.463	54266.875	1.478	1.1	8.0	NO	0.999	NO	bb
4	4 170727M1_9	Standard	2.000	3.95	12635.267	56721.223	2.785	2.1	7.0	NO	0.999	NO	bb
	5 170727M1_10	Standard	5.000	3.95	32229.738	60391.582	6.671	5.3	5.9	NO	0.999	NO	bb
6 -	6 170727M1_11	Standard	10.000	3.95	55974.184	56074.902	12.478	10.0	0.1	NO	0.999	NO	bb
7 4, 4 ar	7 170727M1_12	Standard	50.000	3.95	250603.625	52224.242	59.983	48.6	-2.9	NO	0.999	NO	bb
8 -	8 170727M1_13	Standard	100.000	3.95	494240.344	49584.195	124.596	101.0	1.0	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset:	U:IQ4.PROlresults1170727M1\170727M1-CRV.qld
Last Altered:	Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:	Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $R^{\wedge} 2=0.999665$
Calibration curve: $0.00022775^{*} x^{\wedge} 2+19.9472$ * x + 0.0898127
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998879$
Calibration curve: $0.00266631^{*} x^{\wedge} 2+15.33533^{*} x+0.19972$
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Quantify Compound Summary Report
Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:IQ4.PROIresults1170727M1\170727M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Friday, July 28, 2017 08:49:51 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, July 28, 2017 09:08:22 Pacific Daylight Time }\end{array}$

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999664$
Calibration curve: -0.000726299 * $x^{\wedge} 2+0.648776$ * $x+0.0756752$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type ${ }^{\text {and }}$	Std. Conc	RT	Area	, IS Area	Response	Conc.	\%Dev	Conc.	Co	F	cexcluded
1. der $^{\text {a }}$	1 170727M1_6	Standard	0.250	4.11	937.638	53937.508	0.217	0.2	-12.7	NO	1.000	NO	bb
2 .	2170727 M 1 _7	Standard	0.500	4.11	1856.364	57651.277	0.402	0.5	0.8	NO	1.000	NO	bb
3	3 170727M1_8	Standard	1.000	4.11	3381.308	53976.422	0.783	1.1	9.2	NO	1.000	NO	bb
4.4 Larandx	4 170727M1_9	Standard	2.000	4.11	6702.618	60891.270	1.376	2.0	0.4	NO	1.000	NO	bb
5. ${ }^{\text {a }}$,	5 170727M1_10	Standard	5.000	4.11	15902.064	56820.336	3.498	5.3	6.1	NO	1.000	NO	bb
6	6 170727M1_11	Standard	10.000	4.11	29007.316	58040.508	6.247	9.6	-3.8	NO	1.000	NO	bb
17	7 170727M1_12	Standard	50.000	4.11	135465.156	55210.184	30.670	50.0	-0.1	NO	1.000	NO	bb
8.	8 170727M1_13	Standard	100.000	4.11	249990.313	54140.109	57.718	100.1	0.1	NO	1.000	NO	bb

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998629$
Calibration curve: $-1.32982 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.0672039$ * $\mathrm{x}+0.00706292$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\% 2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc. \%Dev		Conc, Flag COD		CoD Flag x-excluded	
1. ${ }^{\text {a }}$,	1 170727M1_6	Standard	0.250	4.16	86.766	53937.508	0.020	0.2	-22.4	NO	0.999	NO	MM
2. ${ }^{\text {a }}$	2 170727M1_7	Standard	0.500	4.16	172.141	57651.277	0.037	0.5	-9.9	NO	0.999	NO	MM
3.2	3 170727M1_8	Standard	1.000	4.15	388.743	53976.422	0.090	1.2	23.5	NO	0.999	NO	bb
4.42	4 170727M1_9	Standard	2.000	4.16	690.005	60891.270	0.142	2.0	0.2	NO	0.999	NO	bb
5 -	5 170727M1_10	Standard	5.000	4.16	1779.465	56820.336	0.391	5.7	14.5	NO	0.999	NO	bb
6.412×4	6 170727M1_11	Standard	10.000	4.16	3001.466	58040.508	0.646	9.5	-4.7	NO	0.999	NO	bb
7.3.	7 170727M1_12	Standard	50.000	4.16	14488.668	55210.184	3.280	49.2	-1.6	NO	0.999	NO	bb
8	8 170727M1_13	Standard	100.000	4.16	28680.693	54140.109	6.622	100.4	0.4	NO	0.999	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results\170727M11170727M1-CRV.qld
Last Altered:
Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997867$
Calibration curve: 0.000108363 * $x^{\wedge} 2+0.920945$ * x + 0.119714
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc. \% \% Dev		Conc. Flag COD		CoD Flag x-excluded	
1.	1 170727M1_6	Standard	0.250	4.28	107.979	4359.285	0.310	0.2	-17.5	NO	0.998	NO	MM
2 2-m	2 170727M1_7	Standard	0.500	4.27	187.376	4725.039	0.496	0.4	-18.4	NO	0.998	NO	MM
3	3 170727M1_8	Standard	1.000	4.28	387.923	4065.133	1.193	1.2	16.5	NO	0.998	NO	bd
4.	4 170727M1_9	Standard	2.000	4.27	764.237	4580.176	2.086	2.1	6.7	NO	0.998	NO	bd
5 ,	5 170727M1_10	Standard	5.000	4.27	1877.270	4125.885	5.687	6.0	20.8	NO	0.998	NO	bb
	6 170727M1_11	Standard	10.000	4.27	2974.082	4254.241	8.739	9.3	-6.5	NO	0.998	NO	bb
7.4.4.	7 170727M1_12	Standard	50.000	4.28	15238.717	4195.593	45.401	48.9	-2.2	NO	0.998	NO	bb
8 8.4.	8 170727M1_13	Stȧndard	100.000	4.28	31571.641	4206.188	93.825	100.6	0.6	NO	0.998	NO	bb

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999051, \mathrm{r}^{\wedge} 2=0.998103$
Calibration curve: $8.39255{ }^{*} x+1.22744$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name ${ }^{\text {a }}$, Type		Std. Conc	RT	Area	IS Area	Response	Conc. \% \% ev Conc. Flag			CoD CoD Flag $x=$ excluded		
14.4 ${ }^{\text {a }}$	1 170727M1_6	Standard	0.250	4.43	949.985	4359.285	2.724	0.2	-28.7	NO	0.998	NO	bb
2 2*, x^{2} \%	2 170727M1_7	Standard	0.500	4.44	2085.832	4725.039	5.518	0.5	2.2	NO	0.998	NO	bb
3	3 170727M1_8	Standard	1.000	4.44	3568.302	4065.133	10.972	1.2	16.1	NO	0.998	NO	bb
4 4, wat	4 170727M1_9	Standard	2.000	4.44	6820.030	4580.176	18.613	2.1	3.6	NO	0.998	NO	bb
5*	5 170727M1_10	Standard	5.000	4.44	16192.957	4125.885	49.059	5.7	14.0	NO	0.998	NO	bb
	6 170727M1_11	Standard	10.000	4.44	27675.627	4254.241	81.318	9.5	-4.6	NO	0.998	NO	bb
7	7 170727M1_12	Standard	50.000	4.43	134870.219	4195.593	401.821	47.7	-4.5	NO	0.998	NO	bb
8	8 170727M1_13	Standard	100.000	4.44	288052.313	4206.188	856.037	101.9	1.9	NO	0.998	NO	bb

Dataset: U:IQ4.PRO\results\170727M11170727M1-CRV.qld
Last Altered: Friday, July 28, 2017 08:49:51 Pacific Daylight Time
Printed:
Friday, July 28, 2017 09:08:22 Pacific Daylight Time

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999478$
Calibration curve: -0.00104256 * $x^{\wedge} 2+1.20262$ * $x+0.131178$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: 2 nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Kxam	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag CoD CoD Flag x-excluded			
1 l +	1 170727M1_6	Standard	0.250	4.61	648.233	20264.934	0.400	0.2	-10.6	NO	0.999	NO	MM
2 ,	2 170727M1_7	Standard	0.500	4.62	1160.108	20001.139	0.725	0.5	-1.2	NO	0.999	NO	MM
$3 \text {. }$	3 170727M1_8	Standard	1.000	4.61	1839.107	16096.357	1.428	1.1	8.0	NO	0.999	NO	bb
4 - Wu	4 170727M1_9	Standard	2.000	4.61	3400.659	15958.571	2.664	2.1	5.5	NO	0.999	NO	bb
5 . 5	5 170727M1_10	Standard	5.000	4.61	7239.503	14196.442	6.374	5.2	4.3	NO	0.999	NO	bb
	6 170727M1_11	Standard	10.000	4.61	13249.020	14711.492	11.257	9.3	-6.7	NO	0.999	NO	bb
$7 . \quad$ erther	7 170727M1_12	Standard	50.000	4.61	64597.203	13866.051	58.233	50.5	1.1	NO	0.999	NO	bb
8 \%	8 170727M1_13	Standard	100.000	4.61	152598.266	17381.359	109.743	99.8	-0.2	NO	0.999	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.823368
RRF SD: 0.0102963 , Relative SD: 1.25051
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-27-17-L14_L17.cdb 28 Jul 2017 08:49:51
Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS $17 \mathrm{G2703}$

	\# Name	Trace	Area	, IS Resp	RRF	Wt. Nol	RT	Conc.	\%Rec	$70-130$
	1 PFBA	$213.0>168.8$	15072.896	16053.381		1.000	1.32	10.19	101.91	
2	2 PFPeA	$263.1>218.9$	35956.582	44314.332		1.000	2.63	10.07	100.71	
3 ,	3 PFBS	$299>79.7$	6769.659	4858.718		1.000	2.88	9.20	92.03	
4 4, ${ }^{2}$	4 PFHxA	$313.2>268.9$	53387.461	17954.670		1.000	3.14	10.13	101.28	
5 . Nixtm	5 PFHpA	$363>318.9$	44124.266	40823.363		1.000	3.41	10.87	108.72	
6 6 \% . ${ }^{\text {a }}$	6 PFHxS	$398.9>79.6$	4501.415	3639.156		1.000	3.47	9.26	92.62	
7. $\mathrm{T}^{\text {a }}$	7 PFOA	$413>368.7$	46273.188	56263.316		1.000	3.61	10.32	103.23	
$8.4+5$	8 PFHpS	$448.9>98.8$	3813.298	56263.316		1.000	3.67	9.72	97.17	
9 9, ${ }^{2}$	9 PFNA	$462.9>418.8$	44301.281	47976.594		1.000	3.79	10.71	107.05	
10 .	10 PFOSA	$498.1>77.8$	9025.501	10158.539		1.000	3.79	10.18	101.85	
11	11 PFOS	$499>79.9$	7022.120	8620.282		1.000	3.83	9.48	94.79	
12.	12 PFDA	$513>468.8$	53575.969	53813.082		1.000	3.95	9.98	99.80	
13.	$13 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$	12994.350	9958.847		1.000	3.98	10.62	106.24	
14.	14 N-EtFOSAA	$584.2>419$	9767.218	9591.058		1.000	4.05	10.76	107.58	
15 -	15 PFUnA	$562.9>518.9$	29004.047	53532.066		1.000	4.11	10.44	104.44	
16	16 PFDS	$598.9>98.7$	2966.187	53532.066		1.000	4.17	10.22	102.22	
17 Wmy	17 PFDoA	$612.9>318.8$	3426.855	4293.898		1.000	4.29	10.69	106.89	
18.	18 PFTrDA	$662.9>618.9$	30729.227	4293.898		1.000	4.44	10.51	105.13	
19 He	19 PFTeDA	$712.9>668.8$	13853.436	14573.548		1.000	4.61	9.86	98.55	\checkmark
20 , m	20 13C3-PFBA	$216.1>171.8$	16053.381	19378.115	0.823	1.000	1.33	12.58	100.61	
21.4	21 13C3-PFPeA	$266>221.8$	44314.332	65249.512	0.264	1.000	2.63	12.85	102.82	
22	22 13C3-PFBS	$302>98.8$	4858.718	65249.512	0.031	1.000	2.88	12.13	97.06	
23.	23 13C2-PFHxA	$315>269.8$	17954.670	65249.512	0.275	1.000	3.14	5.00	100.07	
24	24 13C4-PFHpA	$367.2>321.8$	40823.363	65249.512	0.260	1.000	3.41	12.03	96.28	
25.4	25 18O2-PFHxS	$403>102.6$	3639.156	9129.876	0.402	1.000	3.47	12.39	99.13	
26	26 13C2-PFOA	$414.9>369.7$	56263.316	55490.434	1.042	1.000	3.60	12.16	97.31	
27	27 13C5-PFNA	$468.2>422.9$	47976.594	60366.590	0.792	1.000	3.79	12.54	100.34	
28	28 13C8-PFOSA	$506.1>77.7$	10158.539	59968.848	0.175	1.000	3.79	12.12	96.98	
29 .	29 13C8-PFOS	$507>79.9$	8620.282	9061.870	0.951	1.000	3.84	12.51	100.07	
30. We mat	$3013 \mathrm{C} 2-\mathrm{PFDA}$	$515.1>469.9$	53813.082	64909.809	0.869	1.000	3.95	11.92	95.40	
31 Work A		$573.3>419$	9958.847	59968.848	0.013	1.000	3.98	160.37	98.69	

Dataset
U:IQ4.PRO\results\170727M11170727M1-15.qld
Last Altered:
Friday, July 28, 2017 09:19:12 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:20:31 Pacific Daylight Time

Name: 170727M1_15, Date: 27-Jul-2017, Time: 13:24:13, ID: SS170727M1-1 PFC SSS 17G2703, Description: PFC SSS 17 G2703

	\# Name	Trace	Area	IS Resp	RRF	Wt./Vol	RT	Conc	\%Rec
32	32 d5-N-EtFOSAA	$589.3>419$	9591.058	59968.848	0.013	1.000	4.04	157.30	96.80
$33:+$	33 13C2-PFUnA	$565>519.8$	53532.066	59968.848	0.928	1.000	4.12	12.02	96.17
34	34 13C2-PFDoA	$615>569.7$	4293.898	59968.848	0.071	1.000	4.28	12.59	100.72
35	35 13C2-PFTeDA	$714.8>669.6$	14573.548	59968.848	0.273	1.000	4.62	11.12	88.95
36	36 13C4-PFBA	$217>171.8$	19378.115	19378.115	1.000	1.000	1.32	12.50	100.00
37.	37 13C5-PFHxA	$318>272.9$	65249.512	65249.512	1.000	1.000	3.14	5.00	100.00
38 .	38 13C3-PFHxS	$401.9>79.9$	9129.876	9129.876	1.000	1.000	3.47	12.50	100.00
39 \% ${ }^{\text {a }}$	39 13C8-PFOA	$421.3>376$	55490.434	55490.434	1.000	1.000	3.60	12.50	100.00
40.	40 13C9-PFNA	$472.2>426.9$	60366.590	60366.590	1.000	1.000	3.79	12.50	100.00
41.	41 13C4-PFOS	$503>79.9$	9061.870	9061.870	1.000	1.000	3.84	12.50	100.00
42 , \%	42 13C6-PFDA	$519.1>473.7$	64909.809	64909.809	1.000	1.000	3.95	12.50	100.00
43 ,	43 13C7-PFUnA	$570.1>524.8$	59968.848	59968.848	1.000	1.000	4.12	12.50	100.00

Dataset:
U:\Q4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 28 Jul 2017 08:40:43
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Compound name: PFBA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999678$
Calibration curve: $0.000110804{ }^{*} x^{\wedge} 2+1.07999{ }^{*} x+0.11163$
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999801, \mathrm{r}^{2} 2=0.999602$
Calibration curve: 0.958373 * $x+0.0576289$
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Work Order 1700856 Revision 1

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999861, \mathrm{r}^{\wedge} 2=0.999721$
Calibration curve: 1.85784 * x + - 0.00404936
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name =		td. Conc	RT Area 1 Area Response				Conc. \%Dev Conc. Flag \% CoD				CoD Flag x xexcluded	
1.	1 170728M2_2	Standard	0.250	2.90	124.236	3725.665	0.417	0.2	-9.4	NO	1.000	NO	bb
24.4 .3	2 170728M2_3	Standard	0.500	2.89	287.609	3680.041	0.977	0.5	5.6	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	2.90	605.269	3805.429	1.988	1.1	7.2	NO	1.000	NO	bb
4	4 170728M2_5	Standard	2.000	2.89	650.990	2141.663	3.800	2.0	2.4	NO	1.000	NO	bb
5	5 170728M2_6	Standard	5.000	2.90	2677.018	3529.564	9.481	5.1	2.1	NO	1.000	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	2.89	5207.783	3732.698	17.440	9.4	-6.1	NO	1.000	NO	bb
7	$7170728 \mathrm{M} 2 _8$	Standard	50.000	2.90	25941.150	3533.129	91.778	49.4	-1.2	NO	1.000	NO	bb
8	8170728 M 2 _9	Standard	100.000	2.90	52001.789	3559.104	182.637	98.3	-1.7	NO	1.000	NO	bb
9 9,	9 170728M2_10	Standard	250.000	2.90	109519.203	2916.369	469.416	252.7	1.1	NO	1.000	NO	bb

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999860, \mathrm{r} \wedge=0.999719$
Calibration curve: $1.39516{ }^{*} x+0.138496$
Response type: Internal Std (Ref 23), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999957, \mathrm{r}^{\wedge} 2=0.999914$
Calibration curve: 1.17847 * $x+0.0681471$
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	$R \mathrm{R}$	Area	IS Area	Response	Conc.	Dev	I	CoD	D F	$x=$ excluded
1 nrumax	1 170728M2_2	Standard	0.250	3.40	1204.282	43061.438	0.350	0.2	-4.5	NO	1.000	NO	bb
2 2rita	2 170728M2_3	Standard	0.500	3.40	2014.244	38433.738	0.655	0.5	-0.4	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	3.40	3878.673	40909.711	1.185	0.9	-5.2	NO	1.000	NO	bb
4	4 170728M2_5	Standard	2.000	3.40	4962.255	24182.768	2.565	2.1	5.9	NO	1.000	NO	bb
	5 170728M2_6	Standard	5.000	3.41	19800.123	39156.566	6.321	5.3	6.1	NO	1.000	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	3.41	37646.004	40354.555	11.661	9.8	-1.6	NO	1.000	NO	bb
17	7 170728M2_8	Standard	50.000	3.41	183598.906	38873.176	59.038	50.0	0.1	NO	1.000	NO	bb
8	8 170728M2_9	Standard	100.000	3.41	381024.406	40612.637	117.274	99.5	-0.5	NO	1.000	NO	bb
9. 9	9 170728M2_10	Standard	250.000	3.41	849145.438	35974.605	295.050	250.3	0.1	NO	1.000	NO	bb

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.999604, \mathrm{r}^{\wedge} 2=0.999209$
Calibration curve: $1.66642{ }^{*} x+0.0527668$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		W, ma	Std. Conc		Area173.816	IS Area	Response 0.588	Conc. \%Dev Conc.Flag CoD CoD Flag x=excluded					
1	1 170728M2_2	Standard		0.250	3.48				0.3	28.5	NO	0.999	NO	MM
2	2 170728M2_3	Standard		0.500	3.48	211.907	3400.828	0.779	0.4	-12.9	NO	0.999	NO	MM
3	3 170728M2_4	Standard		1.000	3.47	425.566	3811.290	1.396	0.8	-19.4	NO	0.999	NO	MM
4 W	4 170728M2_5	Standard		2.000	3.47	583.868	1965.832	3.713	2.2	9.8	NO	0.999	NO	bb
5.	5 170728M2_6	Standard		5.000	3.47	2141.738	3173.995	8.435	5.0	0.6	NO	0.999	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard		10.000	3.48	4660.597	3599.749	16.184	9.7	-3.2	NO	0.999	NO	bb
17	7 170728M2_8	Standard		50.000	3.48	23173.209	3541.580	81.790	49.0	-1.9	NO	0.999	NO	bb
8	$8170728 \mathrm{M} 2 _9$	Standard		100.000	3.48	46227.219	3591.229	160.903	96.5	-3.5	NO	0.999	NO	bb
9.	9 170728M2_10	Standard		250.000	3.48	96280.008	2835.098	424.500	254.7	1.9	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO|results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.999602, \mathrm{r}^{\wedge} 2=0.999203$
Calibration curve: 0.972567 * $x+0.119743$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999698, \mathrm{r}^{\wedge} 2=0.999396$
Calibration curve: $0.0834866{ }^{*} x+0.000361382$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	WISArea	Response	Conc.	\%Dev	Conc.	Cob	CoD Flag	$x=e x c l u d e d$
+ $)^{2}$	1 170728M2_2	Standard	0.250	3.66	129.349	67432.422	0.024	0.3	13.1	NO	0.999	NO	bb
2	2 170728M2_3	Standard	0.500	3.66	184.534	69121.398	0.033	0.4	-20.9	NO	0.999	NO	bb
3	3 170728M2_4	Standard	1.000	3.65	440.810	65175.223	0.085	1.0	0.8	NO	0.999	NO	MM
4	4 170728M2_5	Standard	2.000	3.67	446.333	37231.426	0.150	1.8	-10.5	NO	0.999	NO	bb
5	5 170728M2_6	Standard	5.000	3.66	2501.044	65033.895	0.481	5.8	15.1	NO	0.999	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	3.67	4417.773	65066.762	0.849	10.2	1.6	NO	0.999	NO	bb
7	7 170728M2_8	Standard	50.000	3.67	22320.723	65231.879	4.277	51.2	2.5	NO	0.999	NO	bb
8	8 170728M2_9	Standard	100.000	3.67	43490.797	64313.508	8.453	101.2	1.2	NO	0.999	NO	bb
9.4	9 170728M2_10	Standard	250.000	3.67	88324.172	53563.473	20.612	246.9	-1.2	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset:
U:IQ4.PRO\results\170728M21170728M2-CRV.qld
Last Altered: \quad Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999774, \mathrm{r}^{\wedge} 2=0.999549$
Calibration curve: 1.0688 * x + 0.0838738
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998852, \mathrm{r}^{\wedge} 2=0.997705$
Calibration curve: 1.09922 * $x+0.0380461$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cob Flag	x=excluded
1.4.	1 170728M2_2	Standard	0.250	3.79	212.952	7534.616	0.353	0.3	14.7	NO	0.998	NO	bb
2	2 170728M2_3	Standard	0.500	3.79	402.743	7838.506	0.642	0.5	9.9	NO	0.998	NO	bb
3 LH	3 170728M2_4	Standard	1.000	3.78	641.875	7863.147	1.020	0.9	-10.6	NO	0.998	NO	bb
4 4TMM.	4 170728M2_5	Standard	2.000	3.79	796.114	4067.927	2.446	2.2	9.5	NO	0.998	NO	bb
5.4*	5 170728M2_6	Standard	5.000	3.79	3167.917	8322.412	4.758	4.3	-14.1	NO	0.998	NO	bb
6	6 170728M2_7	Standard	10.000	3.80	6695.482	7844.739	10.669	9.7	-3.3	NO	0.998	NO	bb
17	7 170728M2_8	Standard	50.000	3.80	31041.506	7294.865	53.191	48.4	-3.3	NO	0.998	NO	bb
8	8 170728M2_9	Standard	100.000	3.79	58226.086	7074.365	102.882	93.6	-6.4	NO	0.998	NO	bb
$9: 3$	9 170728M2_10	Standard	250.000	3.79	126557.727	5557.022	284.680	258.9	3.6	NO	0.998	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170728M2\170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999381$
Calibration curve: $-8.2411 \mathrm{e}-005{ }^{*} x^{\wedge} 2+0.991329$ * $x+0.038537$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFDA

Correlation coefficient: $\mathrm{r}=0.999404, \mathrm{r}^{\wedge} 2=0.998807$
Calibration curve: 1.20688 * $x+0.163006$
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	\cdots Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	c. F	CoD		$x=e x c l u d e d$,
1	1 170728M2_2	Standard	0.250	3.95	1834.598	60003.141	0.382	0.2	-27.4	NO	0.999	NO	bb
$2=4$	2 170728M2_3	Standard	0.500	3.95	3284.270	55549.078	0.739	0.5	-4.5	NO	0.999	NO	bb
3	3 170728M2_4	Standard	1.000	3.95	6330.603	53618.211	1.476	1.1	8.8	NO	0.999	NO	bb
14	4 170728M2_5	Standard	2.000	3.95	6936.152	30851.922	2.810	2.2	9.7	NO	0.999	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	5.000	3.95	31825.025	59808.203	6.651	5.4	7.5	NO	0.999	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	3.96	63066.832	64638.613	12.196	10.0	-0.3	NO	0.999	NO	bb
7	7 170728M2_8	Standard	50.000	3.96	307105.938	58663.914	65.438	54.1	8.2	NO	0.999	NO	bb
8	8 170728M2_9	Standard	100.000	3.96	539413.000	55892.832	120.636	99.8	-0.2	NO	0.999	NO	bb
9 W*s	9 170728M2_10	Standard	250.000	3.96	1346063.625	56744.188	296.520	245.6	-1.8	NO	0.999	NO	bb

Dataset: U:IQ4.PROIresults1170728M21170728M2-CRV.ald
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999878$
Calibration curve: $-0.00407341{ }^{*} x^{\wedge} 2+19.807{ }^{*} x+-0.260375$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fir	CoD	D F	cla
1\%24xite	1 170728M2_2	Standard	0.250	3.96	435.997	12883.249	5.499	0.3	16.3	NO	1.000	NO	bd
2 20,	2 170728M2_3	Standard	0.500	3.98	741.759	12942.593	9.313	0.5	-3.3	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	3.98	1500.287	13619.269	17.901	0.9	-8.3	NO	1.000	NO	bb
4 , 4^{3}	4 170728M2_5	Standard	2.000	3.98	1869.939	7508.003	40.472	2.1	2.9	NO	1.000	NO	bb
	$5170728 \mathrm{M} 2 _6$	Standard	5.000	3.98	8162.221	14192.388	93.456	4.7	-5.3	NO	1.000	NO	bb
6 6, ${ }^{2}$	6170728 M 2 _7	Standard	10.000	3.98	16022.469	13644.029	190.827	9.7	-3.3	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	3.99	73798.828	12178.927	984.677	50.2	0.5	NO	1.000	NO	bb
	8 170728M2_9	Standard	100.000	3.99	144718.797	12044.903	1952.428	100.7	0.7	NO	1.000	NO	bb
	9170728 M 2 _10	Standard	250.000	3.99	311738.625	10798.391	4691.211	249.7	-0.1	NO	1.000	NO	bb

Compound name: N-ETFOSAA

Coefficient of Determination: $R^{\wedge} 2=0.999787$
Calibration curve: $-0.00107779{ }^{*} x^{\wedge} 2+15.2465{ }^{*} x+0.807358$
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Coric.	\%Dev	nc. Flag	CoD	CoDFlag	$x=$ excluded
1-4tse	1 170728M2_2	Standard	0.250	4.04	379.553	13002.753	4.743	0.3	3.3	NO	1.000	NO	bb
2	2 170728M2_3	Standard	0.500	4.04	831.407	13332.326	10.134	0.6	22.3	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	4.04	1236.473	13734.974	14.629	0.9	-9.3	NO	1.000	NO	bb
4	4 170728M2_5	Standard	2.000	4.04	1479.109	7359.929	32.657	2.1	4.5	NO	1.000	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	5.000	4.05	6354.800	13694.013	75.409	4.9	-2.1	NO	1.000	NO	bb
6	$6170728 \mathrm{M} 2 _7$	Standard	10.000	4.05	12531.979	12997.170	156.684	10.2	2.3	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	4.05	60396.695	12723.811	771.346	50.7	1.4	NO	1.000	NO	bb
8	8170728 M 2 _9	Standard	100.000	4.05	113763.313	12372.299	1494.188	98.6	-1.4	NO	1.000	NO	bb
9×4	$9170728 \mathrm{M} 2 _10$	Standard	250.000	4.05	260195.766	11272.279	3750.955	250.4	0.2	NO	1.000	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults\170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed: \quad Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999945$
Calibration curve: $-0.000352587^{*} x^{\wedge} 2+0.738655 * x+0.0923596$
Response type: Internal Std (Ref 33), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	d.	RT	\% Area	IS Area	Response	Conc \%Dev Conc. Flag			CoD. Con Flag $x=$ excluded		
1. H Hix	1 170728M2_2	Standard	0.250	4.11	1300.977	57359.027	0.284	0.3	3.5	NO	1.000	NO	bb
2.4	2 170728M2_3	Standard	0.500	4.11	2222.104	62862.797	0.442	0.5	-5.3	NO	1.000	NO	bb
3	3 170728M2_4	Standard	1.000	4.11	4280.404	62925.098	0.850	1.0	2.7	NO	1.000	NO	bb
4 \% ${ }^{\text {a }}$. 4 170728M2_5	Standard	2.000	4.11	4679.629	38112.383	1.535	2.0	-2.3	NO	1.000	NO	bb
5	$5170728 \mathrm{M} 2 _6$	Standard	5.000	4.11	20068.451	65242.195	3.845	5.1	1.9	NO	1.000	NO	bb
6	6 170728M2_7	Standard	10.000	4.12	38402.559	64369.324	7.457	10.0	0.2	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	4.12	181049.781	63436.871	35.675	49.3	-1.3	NO	1.000	NO	bb
8	8 170728M2_9	Standard	100.000	4.12	354982.063	62525.133	70.968	100.8	0.8	NO	1.000	NO	bb
9 , < ${ }^{\text {a }}$	9170728 M 2	Standard	250.000	4.12	806806.375	62024.961	162.597	249.8	-0.1	NO	1.000	NO	bb

Compound name: PFDS

Coefficient of Determination: $R^{\wedge} 2=0.999598$
Calibration curve: $-4.79281 \mathrm{e}-005{ }^{*} \mathrm{x}^{\wedge} 2+0.0714733 * x+-0.00107069$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	CoD	CoDFlag	$\mathrm{x}=$ excluded
	1 170728M2_2	Standard	0.250	4.15	96.159	57359.027	0.021	0.3	23.3	NO	1.000	NO	MM
$2=4$	$2170728 \mathrm{M} 2 _3$	Standard	0.500	4.17	132.913	62862.797	0.026	0.4	-23.0	NO	1.000	NO	MM
3 \%	3 170728M2_4	Standard	1.000	4.17	352.819	62925.098	0.070	1.0	-0.4	NO	1.000	NO	bb
$4{ }^{4}$	$4170728 \mathrm{M} 2 \ldots 5$	Standard	2.000	4.15	460.965	38112.383	0.151	2.1	6.7	NO	1.000	NO	bb
5 .	5 170728M2_6	Standard	5.000	4.16	1773.629	65242.195	0.340	4.8	-4.3	NO	1.000	NO	bb
6.	$6170728 \mathrm{M} 2 _7$	Standard	10.000	4.16	3496.559	64369.324	0.679	9.6	-4.2	NO	1.000	NO	bb
7	7 170728M2_8	Standard	50.000	4.17	18043.170	63436.871	3.555	51.5	3.1	NO	1.000	NO	bb
8	8 170728M2_9	Standard	100.000	4.17	32985.578	62525.133	6.594	98.8	-1.2	NO	1.000	NO	bb
9 -	9 170728M2_10	Standard	250.000	4.17	73842.891	62024.961	14.882	250.2	0.1	NO	1.000	NO	bb

Dataset:
U:IQ4.PRO\results\170728M2\170728M2-CRV.ald
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998624$
Calibration curve: 0.000483062 * $x^{\wedge} 2+0.770384 * x+0.341437$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999451, \mathrm{r}^{\wedge} 2=0.998903$
Calibration curve: 9.7472 * x + 1.17215
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	ne	CoD	F	xcluded
- ${ }^{\text {a }}$	1 170728M2_2	Standard	0.250	4.43	1587.994	5962.159	3.329	0.2	-11.5	NO	0.999	NO	bb
2 2-	2 170728M2_3	Standard	0.500	4.43	3275.602	6995.869	5.853	0.5	-4.0	NO	0.999	NO	MM
3 \%	3 170728M2_4	Standard	1.000	4.43	5908.142	6271.752	11.775	1.1	8.8	NO	0.999	NO	bb
4	4 170728M2_5	Standard	2.000	4.44	6200.105	3674.716	21.090	2.0	2.2	NO	0.999	NO	bd
5	5 170728M2_6	Standard	5.000	4.44	28220.949	6599.834	53.450	5.4	7.3	NO	0.999	NO	bb
6.3	6 170728M2_7	Standard	10.000	4.44	54049.188	6719.549	100.545	10.2	1.9	NO	0.999	NO	bb
7	7 170728M2_8	Standard	50.000	4.45	253970.109	6608.889	480.357	49.2	-1.7	NO	0.999	NO	bb
8	8 170728M2_9	Standard	100.000	4.45	504655.469	6820.428	924.897	94.8	-5.2	NO	0.999	NO	bb
9*R\%	9 170728M2_10	Standard	250.000	4.44	1158187.375	5812.105	2490.895	255.4	2.2	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults|170728M21170728M2-CRV.qld
Last Altered: Sunday, July 30, 2017 08:10:19 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:11:02 Pacific Daylight Time

Compound name: PFTeDA

Coefficient of Determination: $R^{\wedge} 2=0.999781$
Calibration curve: -0.000168072 * $x^{\wedge} 2+1.03773 * x+0.147897$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 13C3-PFBA

Response Factor: 1.06832
RRF SD: 0.0716737 , Relative SD: 6.70898
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed:
Sunday, July 30, 2017 08:16:04 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_L17_L14_7-27-17.mdb 30 Jul 2017 07:47:21

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-28-17-L14_L17.cdb 30 Jul 2017 08:10:19

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17G2823

Dataset:	U:IQ4.PROIresults1170728M21170728M2-13.qld
Last Altered:	Sunday, July 30, 2017 08:15:10 Pacific Daylight Time
Printed:	Sunday, July 30, 2017 08:16:04 Pacific Daylight Time

Name: 170728M2_13, Date: 28-Jul-2017, Time: 18:18:40, ID: SS170728M2-1 PFC SSS 17G2823, Description: PFC SSS 17G2823

	\# Name	Trace	Area	IS Resp	RRF	Wt/Vol RT Conc \%Rec			
32.	$32 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	12473.139	56361.164	0.018	1.000	4.05	155.65	95.79
33.	33 13C2-PFUnA	$565>519.8$	63778.582	56361.164	1.129	1.000	4.12	12.53	100.21
34.4	34 13C2-PFDoA	$615>569.7$	6412.423	56361.164	0.116	1.000	4.28	12.26	98.07
35.	35 13C2-PFTeDA	$714.8>669.6$	42185.617	56361.164	0.762	1.000	4.63	12.28	98.21
	36 13C4-PFBA	$217>171.8$	13338.616	13338.616	1.000	1.000	1.37	12.50	100.00
37.4	37 13C5-PFHxA	$318>272.9$	41541.566	41541.566	1.000	1.000	3.15	5.00	100.00
38.	38 13C3-PFHxS	$401.9>79.9$	7683.510	7683.510	1.000	1.000	3.49	12.50	100.00
39.	39 13C8-PFOA	$421.3>376$	47325.004	47325.004	1.000	1.000	3.61	12.50	100.00
40 \%	40 13C9-PFNA	$472.2>426.9$	52466.008	52466.008	1.000	1.000	3.79	12.50	100.00
41	41 13C4-PFOS	$503>79.9$	8480.035	8480.035	1.000	1.000	3.84	12.50	100.00
42.	42 13C6-PFDA	$519.1>473.7$	53553.129	53553.129	1.000	1.000	3.96	12.50	100.00
43.	43 13C7-PFUnA	$570.1>524.8$	56361.164	56361.164	1.000	1.000	4.13	12.50	100.00

FIELD DUPLICATE PRECISION
SDG 1700856

ANALYTE	ORIGINAL	DUPLICATE	RL	RPD	RPD > 30\%	ORIGINAL SAMPLE CONC > $\mathbf{2 x R L}$	DUPLICATE SAMPLE CONC > $2 \times$ RL	DIFFERENCE >RL
PFOA	10.8	11.5	8.26	6	FALSE	FALSE	FALSE	FALSE
PFBS	14.4	14.3	8.26	1	FALSE	FALSE	FALSE	FALSE
PFHpA	21.7	21.3	8.26	2	FALSE	TRUE	TRUE	FALSE
PFHxS	58.6	62.8	8.26	7	FALSE	TRUE	TRUE	FALSE
PFHxA	63.1	63.9	8.26	1	FALSE	TRUE	TRUE	FALSE
PFOS	62	63.5	8.26	2	FALSE	TRUE	TRUE	FALSE

[^0]: LCL-UCL - Lower control limit - upper control limit

[^1]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^2]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^3]: LCL-UCL - Lower control limit - upper control limit

