Groundwater Sample Results,
Combined Level 2 and Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1700884
Naval Air Warfare Center Trenton
Trenton, New Jersey
August 2019

$$
\text { N62376.SF. } 001176
$$ NAWC TRENTON

5090.3c

LABORATORY DATA PACKAGE, 1700884, NAWC TRENTON, NJ 08/07/2017 VISTA ANALYTICAL LABORATORY

August 07, 2017

Vista Work Order No. 1700884

Ms. Mary Mang
Tetra Tech
661 Andersen Drive, Foster Plaza 7

Pittsburgh, PA 15220
Dear Ms. Mang,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 15, 2017. This sample set was analyzed on a standard turn-around time, under your Project Name 'NAWC Trenton'. The SDG Number is WE08.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Karent.Toperenesta
 for

Martha Maier
Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

SDG Number WE08

Vista Work Order No. 1700884

Case Narrative

Sample Condition on Receipt:

Four aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "MW-37BR-20170714" and "MW-32BR-20170714" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

| LabNumber | SampleName | Analysis | Analyte |
| :--- | :--- | :--- | :--- | :--- |
| B7G0079-BLK1 | B7G0079-BLK1 | Modified EPA Method 537 | 13C2-PFTeDA |
| B7G0079-BS1 | B7G0079-BS1 | Modified EPA Method 537 | 13C2-PFTeDA |

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

In addition, the laboratory QC officer must read and sign a copy of the Quality Assurance Review Form displayed on the next page of this Attachment. Electronic deliverables are not considered to be complete without the accompanying Quality Assurance Review Form.
 all electronic deliverables have been thoroughly reviewed and are in agreement with the associated hardcopy data. The enclosed electronic files have been reviewed for accuracy (including significant figures), completeness and format. The laboratory will be responsible for any labor time necessary to correct enclosed electronic deliverables that have been found to be in error. I can be reached at (916) $673-1520$ If there are any questions or problems with the enclosed electronic deliverables.

Title: QA Mana o, er Date: $08 / 07 / 2017$

Revision 9
IS
08/18/16

TABLE OF CONTENTS

Case Narrative 1
Signed Attestation Statement 3
Table of Contents 4
Sample Inventory 5
Analytical Results 6
Qualifiers 13
Certifications 14
Sample Receipt 17
Correspondence 19
Extraction Information 21
Sample Data - Modified EPA Method 537 27
Continuing Calibration 112
Initial Calibration 175
PFAS Standards 330

Sample Inventory Report

Vista	Client			
Sample ID	Sample ID	Sampled	Received	Components/Containers
1700884-01	MW-37BR-20170714	14-Jul-17 10:50	15-Jul-17 09:16	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700884-02	MW-32BR-20170714	14-Jul-17 11:30	15-Jul-17 09:16	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700884-03	MW-35S-20170714	14-Jul-17 12:20	15-Jul-17 09:16	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700884-04	FRB-02-20170714	14-Jul-17 09:00	15-Jul-17 09:16	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

ANALYTICAL RESULTS

Analytical Laboratory

Vista
Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.125 \mathrm{~L} \end{aligned}$	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7G0079 } \\ & \text { 20-Jul-2017 11:18 } \end{aligned}$			Lab Sample: Date Analyzed:	B7G0079-BS1 31-Jul-17 10:37 Column: BEH C18 31-Jul-17 14:11 Column: BEH C18		
Analyte		Amt Found (ng/L)	Spike Amt	\%R	Limits		Labeled Standard	\%R	LCL-UCL
PFBS		74.1	80.0	92.6	70-130	IS	13C3-PFBS	107	50-150
PFHxA		86.7	80.0	108	70-130	IS	13C2-PFHxA	93.6	50-150
PFHpA		87.0	80.0	109	70-130	IS	13C4-PFHpA	86.2	50-150
PFHxS		83.0	80.0	104	70-130	IS	1802-PFHxS	88.3	50-150
PFOA		90.3	80.0	113	70-130	IS	13C2-PFOA	90.4	50-150
PFOS		76.5	80.0	95.7	70-130	IS	13C8-PFOS	92.9	50-150
PFNA		77.6	80.0	97.0	70-130	IS	13C5-PFNA	91.2	50-150
PFDA		77.5	80.0	96.9	70-130	IS	13C2-PFDA	76.4	50-150
MeFOSAA		94.5	80.0	118	70-130	IS	d3-MeFOSAA	52.0	50-150
PFUnA		87.6	80.0	110	70-130	IS	13C2-PFUnA	61.6	50-150
EtFOSAA		82.3	80.0	103	70-130	IS	d5-EtFOSAA	56.7	50-150
PFDoA		79.7	80.0	99.7	70-130	IS	13C2-PFDoA	57.7	50-150
PFTrDA		75.3	80.0	94.1	60-130	IS	13C2-PFTeDA	36.3	50-150
PFTeDA		95.3	80.0	119	70-130				

LCL-UCL - Lower control limit - upper control limit

Sample ID:	MW-35S-20170714							Modifie	d EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 14-Jul-2017 12:20 NAWC Trenton		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.120 \mathrm{~L} \end{aligned}$	Lab La QC Da	ratory Dat Sample: Batch: Analyzed	Data 1700884-03 B7G0079 ed: 03-Aug-17 31-Jul-17 19:	Date Received: Date Extracted: : BEH C18 BEH C18	$\begin{aligned} & \text { 15-Jul-2017 } \\ & \text { 20-Jul-2017 } \end{aligned}$	$\begin{gathered} 9: 16 \\ 11: 18 \end{gathered}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	26.4	1.87	5.21	8.34		IS 13C	3C3-PFBS	124	50-150	
PFHxA	101	2.27	5.21	8.34		IS 13C	3C2-PFHxA	102	50-150	
PFHpA	34.7	0.616	5.21	8.34		IS 13 C	3C4-PFHpA	92.6	50-150	
PFHxS	170	0.988	5.21	8.34		IS 180	8O2-PFHxS	96.3	50-150	
PFOA	21.6	0.679	5.21	8.34		IS 13 C	3C2-PFOA	97.3	50-150	
PFOS	156	0.842	5.21	8.34		IS 13 C	3C8-PFOS	82.3	50-150	
PFNA	ND	0.845	5.21	8.34		IS 13 C	3C5-PFNA	71.4	50-150	
PFDA	ND	1.55	5.21	8.34		IS 13C	3C2-PFDA	70.6	50-150	
MeFOSAA	ND	1.72	5.21	8.34		IS d3-	d3-MeFOSAA	63.4	50-150	
PFUnA	ND	1.10	5.21	8.34		IS 13C	3C2-PFUnA	61.6	50-150	
EtFOSAA	ND	1.43	5.21	8.34		IS d5-	d5-EtFOSAA	54.4	50-150	
PFDoA	ND	0.826	5.21	8.34		IS 13C	3C2-PFDoA	67.6	50-150	
PFTrDA	ND	0.515	5.21	8.34		IS 13C	3C2-PFTeDA	66.5	50-150	
PFTeDA	ND	0.788	5.21	8.34						
DL - Detection limit RL - Reporting limit					LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.					

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Reporting Limit/LOQ.
M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration
NA Not applicable
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	$17-015-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA 23

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA $8290 / 8290 A$

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

CHAIN OF CUSTODY

Vista Work Order \#:

TAT

If Chlorinated or Drinking Water Samples, Acceptable Preservation?						
Preservation Documented:	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	Trizma	None		Yes,	No
NA						
Shipping Container	Vista	Client	Retain	Return	Dispose	

Comments: Sample label ID: "mW-35\$-20170714"
COCID: MW-35S-20170714

Sample: mW-32BR-20170714; Red brown tint present

Correspondence

Karen Volpendesta

From:	Karen Volpendesta
Sent:	Monday, July 17, 2017 8:43 AM
To:	Mang, Mary; Ritchie, Megan
Cc:	Martha Maier
Subject:	Vista Work Order \#1700884; NAWC Trenton
Attachments:	WO\# 1700884_Acklet.pdf

Mary,

Please find attached the sample receiving acknowledgement for Vista Analytical Work Order: 1700884.

These samples will be analyzed by Modified EPA Method 537 for the list of 14 analytes.

If you have any questions, please contact me or Martha Maier at (916) 673-1520. We appreciate your business.

Best Regards,

Karen L. Volpendesta
(formerly Lopez)
Project Manager

Vista Analytical Laboratory
1104 Windfield Way
El Dorado Hills, CA 95762
Phone: (916) 673-1520
www.vista-analytical.com
*Hours: Monday, Tuesday, \& Thursday, 8am-4:30pm
A woman-owned, small business enterprise.

EXTRACTION INFORMATION

Prep Expiration: 2017-Jul-28
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous

Version: 537 (14 Analyte)
Workorder Due:07-Aug-17 00:00

Initial Sequence: \qquad

LabSampleID		Recon ClientSampleID		Date Received	Location Comments
$1700884-01$	$:$	\square	MW-37BR-20170714	15-Jul-17 09:16	WR-2 E-5
$1700884-02$	$:$	MW-32BR-20170714	15-Jul-17 09:16	WR-2 E-5	
$1700884-03$	$:$	\square	MW-35S-20170714	15-Jul-17 09:16	WR-2 E-5
$1700884-04$	$: \square$	FRB-02-20170714	15-Jul-17 09:16	WR-2 E-5	

WO Comments: Attach balance check doc.
Vista PM:Martha Maier
 1 \qquad

BALANCE CALIBRATION CHECK

	Date		$\begin{gathered} \text { Weight } 1 \\ (0.9900-1.0100) \end{gathered}$	$\begin{gathered} \text { Weight } 2 \\ 100 \mathrm{~g} \\ (99.00-101.00) \\ \hline \end{gathered}$	$\begin{gathered} \text { Weight } 3 \\ 2000 \mathrm{~g} \\ (1980-2020) \end{gathered}$	Initials	Acceptable? (\mathbb{Y})
	$719 / 17$	\checkmark	1.00	100.00	2000.00	KBF	Y
	7120410	CSVC	1:01	. 0100.01	2000.04	BSS	F415?
	7/21/17	\checkmark	0.99	100.00	2000.00	EL	Y
	7.2417	\checkmark	100	100.01	120009	BP	Y
	7124117	$\mathrm{B}, ~ \mathrm{C}$	100	.100.01	2000.00	EL	/ Y
	7125117	$\square \leq$	100	99.99	2000.02	, 13	Mdis
	$7.26 \cdot 17$	\checkmark	100	100.00	2000.01	. BP	y
	7127117	\checkmark	1.00	99.99	2000.00	$H B$	$1 y$
	7/28/17	\checkmark	0.99	100.00	2000.02	KBE	y
	7131117	\checkmark	100	100.01	2000.04	HB	y
	81117	\checkmark	1.00	100.00	2000.00	Hi	y
	$8 / 2117$	\checkmark	0.99	100.00	2000.01	HB	y
	813117	V	1.00	100.00	2000.05	H3	y
	8/4/17	\checkmark	1.00	100.04	2000.06	EL	Y
	8/7/17		1.00	100.00	1999.99	KGF	y
			- .				
Comments: ©calibration weights from air lab used because soil lab wiognts sent out for calibration. +13813117							

Matrix: Aqueous

LabNumber	WetWeight (Initial)	\% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1700875-01	0.11821 ת	NA	Ni	1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700875-02	0.11912		1	1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700875-03	0.11822			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700875-04	0.11793			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700875-05	0.11994			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700884-01	0.11935			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700884-02	0.11989 /			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700884-03	0.11984 /			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700884-04	0.11984			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700887-01	0.08342			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700887-02	0.09939 /			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700887-03	0.11445 -			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700887-04	0.12081 ,			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700887-05	0.11776			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
1700887-06	0.10593			1000	20-Jul-17 11:18	BAP			Aqueous	537M PFAS DOD (LOQ as
B7G0079-BLK1	0.125 /	1		1000	20-Jul-17 11:18	BAP				QC
B7G0079-BS1	0.125	8	$<$	1000	20-Jul-17 11:18	BAP	17D270	$\checkmark 10$ V		QC
			1				$167121 / 7$			

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS DOD (LOO as mRL)

Prepared using: LCMS - SPE Extraction-LCMS

IS Name $\frac{1761307,1 a L}{(6)}$	NS Name $\frac{702705,10 \pi}{a)}$	RS Name $\frac{17 F 3038,10 \mu \mathrm{t}}{(13)}$	SPE ChemiStrata X-AW 33 an $\frac{20044}{6 \sim L}$ Ele SOLV: OS\%. NHyOU in MeOH/Weor Final Volume(s) 1nc \qquad	Check Out: Chemist/Date: \qquad Check in: \quad Ha His 19 A $H B$ Chemist/Date: \qquad effly Balance ID: \qquad HRMS-g pH Adjusted: Chemist/Date: $H B 7 / 18 / 17$

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ (A) Samples were centrifuged to remove particulate. HB 7118117 (B) samples had thick layer of particulate. Hs $\mathrm{z}(811 \mathrm{l}$ Climited sample omount after centrifuging particulate out. H8 7118117

Matrix: Aqueous
Method: 537M PFAS DOD (LOO as mRL)
\square

Chemist: \qquad
Prep Date/Time: ${ }^{20}$ Jul-17 11:18
Prepared using: LCMS - SPE Extraction-LCMS

$$
\text { SAMPLE DATA - MODIFIED EPA METHOD } 537
$$

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	299.0 > 79.7		3.938e3		0.125			
2	4 PFHxA	$312.9>268.9$		4.470 e3		0.125			
3	5 PFHpA	$363>318.9$		5.864e3		0.125			
4	6 PFHxS	$398.9>79.6$		3.430 e 3		0.125			
5	7 PFOA	413.0 > 368.7	6.025 e 1	1.194e4		0.125	4.22		
6	8 PFNA	463.0 > 418.8		5.289 e 3		0.125			
7	9 PFOS	$499.0>79.9$		6.175 e 3		0.125			
8	10 PFDA	$512.7>219.0$	5.251 e 0	9.635 e 3		0.125	4.87		
9	12 13C3-PFBS	$302.0>98.8$	3.938 e 3	1.420 e 4	0.263	0.125	2.89	106	106
10	14 13C2-PFHxA	315.0 > 269.8	4.470 e 3	1.420 e 4	0.361	0.125	3.27	87.3	87.3
11	15 13C4-PFHpA	$367.2>321.8$	5.864 e 3	1.420 e 4	0.475	0.125	3.81	86.9	86.9
12	16 18O2-PFHxS	$403>102.6$	3.430 e 3	9.048 e 3	0.411	0.125	3.93	92.3	92.3
13	17 13C2-PFOA	414.9 > 369.7	1.194 e 4	4.928 e 3	2.843	0.125	4.22	85.3	85.3
14	18 13C5-PFNA	468.2 > 422.9	5.289 e 3	6.794 e 3	0.854	0.125	4.56	91.2	91.2
15	19 13C2-PFDA	$514.8>469.7$	9.635 e 3	7.235 e 3	1.742	0.125	4.86	76.5	76.5
16	20 13C8-PFOS	$507.0>79.9$	6.175 e 3	7.445e3	0.927	0.125	4.63	89.5	89.5
17	22 13C5-PFHxA	$318>272.9$	1.420 e 4	1.420 e 4	1.000	0.125	3.27	100	100
18	23 13C3-PFHxS	$401.9>79.9$	9.048 e 3	9.048 e 3	1.000	0.125	3.93	100	100
19	24 13C8-PFOA	$421.3>376$	4.928 e 3	4.928 e 3	1.000	0.125	4.22	100	100
20	25 13C9-PFNA	$472.2>426.9$	6.794 e 3	6.794e3	1.000	0.125	4.56	100	100
21	26 13C4-PFOS	$503.0>79.9$	7.445 e 3	7.445e3	1.000	0.125	4.63	100	100
22	27 13C6-PFDA	$519.10>473.70$	7.235 e 3	7.235 e 3	1.000	0.125	4.86	100	100
23	28 Total PFBS	$299.0>79.7$		3.938 e 3		0.125			
24	29 Total PFHxS	$398.9>79.6$		3.430 e 3		0.125			
25	30 Total PFOA	413.0 > 368.7		1.194e4		0.125			
26	31 Total PFOS	$499.0>79.9$		6.175 e 3		0.125			

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\20171170731G21170731G2-8.qld
Last Altered:	Monday, July 31, 2017 11:22:46 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39

Total PFBS

Total PFHxS

	\# Name	Trace	RT	Area
1			IS Area Conc.	

Total PFOA

	\# Name	Trace	RT	Area	IS Area
Conc.					
	7 PFOA	$413.0>368.7$	4.22	60.253	11944.127

Total PFOS

	\# Name	Trace	RT	Area
1				IS Area

Printed: Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39, Instrument: , Lab: , User:

Total PFBS

13C3-PFBS

170731G2_8

PFHxA

F3:MRM of 9 channels,ES-
$312.9>268.9$
$1.136 e+003$
170731G2_8 F3:MRM of 9 channels,ES-
$312.9>118.7$ $2.072 \mathrm{e}+002$

13C2-PFHxA

$\begin{array}{rr}\text { 170731G2_8 } & \text { 13C2-PFHxA }\end{array} \quad$ F3:MRM of 9 channels,ES-

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

170731G2_8

Total PFHxS

1802-PFHxS
170731G2_8 F4:MRM of 7 channels,ES$403>102.6$ $1.262 e+005$
Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39, Instrument: , Lab: , User:

Total PFOA

Total PFOS

13C8-PFOS

Dataset:	U:IG1.PRO\Results\2017\170731G21170731G2-8.qld
Last Altered:	Monday, July 31, 2017 11:22:46 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39, Instrument: , Lab: , User:

Dataset:	U:\G1.PRO\Results\2017\170731G2\170731G2-8.qld
Last Altered:	Monday, July 31, 2017 11:22:46 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39, Instrument: , Lab: , User:

Last Altered: Monday, July 31, 2017 11:22:46 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:58:26 Pacific Daylight Time

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G2_8, Date: 31-Jul-2017, Time: 11:02:39, Instrument: , Lab: , User:

Method: U:\G1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.PRO\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1_6, Date: 31-Jul-2017, Time: 14:54:16

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	2 N-MeFOSAA	$570.1>419.0$		2.887e3		0.125			
2	4 PFUnA	$563>518.9$	2.897 e 2	1.446 e 4		0.125	5.12		
3	5 N -EtFOSAA	$584.2>419.0$		3.389 e 3		0.125			
4	6 PFDoA	$612.9>318.8$		1.771 e 4		0.125			
5	7 PFTrDA	$662.9>618.9$		0.000 e 0		0.125			
6	8 PFTeDA	$712.9>668.8$	1.682 e 2	1.496 e 4		0.125	5.73		
7	$10 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	2.887 e 3	1.666 e 4	0.026	0.125	4.99	657	50.5
8	11 13C2-PFUnA	$565>519.8$	1.446 e 4	1.666 e 4	1.471	0.125	5.13	59.0	59.0
9	$12 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419.0$	3.389 e 3	1.666 e 4	0.031	0.125	5.11	654	50.3
10	13 13C2-PFDoA	$615>569.7$	1.771 e 4	1.666 e 4	1.887	0.125	5.36	56.4	56.4
11	14 13C2-PFTeDA	$715>669.7$	1.496 e 4	1.666 e 4	1.990	0.125	5.74	45.1	45.1
12	15 13C7-PFUnA	$570.1>524.8$	1.666 e 4	1.666 e 4	1.000	0.125	5.12	100	100
13	16 Total N-MeFOSAA	$570.1>419.0$		2.887 e 3		0.125			
14	17 Total N-EtFOSAA	$584.2>419.0$		3.389 e 3		0.125			

Quantify Totals Report MassLynx 4.1 SCN815

Dataset: U:IG1.PRO\Resultsl20171170731G1\170731G1-6.qld
Last Altered: Monday, July 31, 2017 16:24:20 Pacific Daylight Time
Printed: Wednesday, August 02, 2017 14:11:20 Pacific Daylight Time

Method: U:|G1.PROMMethDB|PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:|G1.PRO|CurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1_6, Date: 31-Jul-2017, Time: 14:54:16

Total N-MeFOSAA

	\# Name	Trace	RT	Area
1			IS Area	Conc.

Total N-EtFOSAA

	\# Name	Trace	RT	Area
1		IS Area Conc.		

Method: U:IG1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.PRO\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1_6, Date: 31-Jul-2017, Time: 14:54:16, Instrument: , Lab: , User:

d3-N-MeFOSAA

170731G1_6

PFUnA
(170731G1_6

13C2-PFUnA

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1_6, Date: 31-Jul-2017, Time: 14:54:16, Instrument: , Lab: , User:

Total N-EtFOSAA

d5-N-EtFOSAA

170731G1_6

PFDoA

13C2-PFDoA

Dataset: U:IG1.PRO\Results120171170731G11170731G1-6.qld

Last Altered:
Monday, July 31, 2017 16:24:20 Pacific Daylight Time Wednesday, August 02, 2017 14:11:20 Pacific Daylight Time

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1_6, Date: 31-Jul-2017, Time: 14:54:16, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA

170731G1_6

PFTrDA

170731G1_6

13C2-PFDoA

170731G1_6 13C2-PFDoA F4:MRM of 8 channels,ES- $615>569.7$

ID: B7G0079-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170731G1_6, Date: 31-Jul-2017, Time: 14:54:16, Instrument: , Lab: , User: 13C7-PFUnA

Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

Method: U:|G1.prolMethDB|PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.prolCurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	5.126 e 3	4.141 e 3		0.125	2.89	74.1	92.6
2	4 PFHxA	$312.9>268.9$	8.241 e 3	4.969 e 3		0.125	3.27	86.7	108
3	5 PFHpA	$363>318.9$	1.035 e 4	6.038 e 3		0.125	3.81	87.0	109
4	6 PFHxS	$398.9>79.6$	4.500 e 3	3.031 e 3		0.125	3.93	83.0	104
5	7 PFOA	$413.0>368.7$	8.000 e 3	1.100 e 4		0.125	4.23	90.3	113
6	8 PFNA	$463.0>418.8$	8.763 e 3	4.884 e 3		0.125	4.56	77.6	97.0
7	9 PFOS	$499.0>79.9$	2.303 e 3	6.359 e 3		0.125	4.63	76.5	95.7
8	10 PFDA	$512.7>219.0$	1.413 e 3	9.155 e 3		0.125	4.86	77.5	96.9
9	12 13C3-PFBS	$302.0>98.8$	4.141 e 3	1.473 e 4	0.263	0.125	2.89	107	107
10	14 13C2-PFHxA	$315.0>269.8$	4.969 e 3	1.473 e 4	0.361	0.125	3.27	93.6	93.6
11	15 13C4-PFHpA	$367.2>321.8$	6.038 e 3	1.473 e 4	0.475	0.125	3.81	86.2	86.2
12	16 18O2-PFHxS	$403>102.6$	3.031 e 3	8.357e3	0.411	0.125	3.93	88.3	88.3
13	17 13C2-PFOA	414.9 > 369.7	1.100 e 4	4.279 e 3	2.843	0.125	4.22	90.4	90.4
14	18 13C5-PFNA	$468.2>422.9$	4.884 e 3	6.276 e 3	0.854	0.125	4.56	91.2	91.2
15	19 13C2-PFDA	$514.8>469.7$	9.155 e 3	6.876e3	1.742	0.125	4.86	76.4	76.4
16	20 13C8-PFOS	$507.0>79.9$	6.359 e 3	7.385 e 3	0.927	0.125	4.63	92.9	92.9
17	22 13C5-PFHxA	$318>272.9$	1.473 e 4	1.473 e 4	1.000	0.125	3.27	100	100
18	23 13C3-PFHxS	$401.9>79.9$	8.357 e 3	8.357e3	1.000	0.125	3.93	100	100
19	24 13C8-PFOA	$421.3>376$	4.279 e 3	4.279 e 3	1.000	0.125	4.22	100	100
20	25 13C9-PFNA	$472.2>426.9$	6.276 e3	6.276 e 3	1.000	0.125	4.56	100	100
21	26 13C4-PFOS	$503.0>79.9$	7.385 e 3	7.385 e 3	1.000	0.125	4.63	100	100
22	27 13C6-PFDA	$519.10>473.70$	6.876 e 3	6.876e3	1.000	0.125	4.86	100	100
23	28 Total PFBS	$299.0>79.7$		4.141 e 3		0.125		74.1	
24	29 Total PFHxS	$398.9>79.6$		3.031 e 3		0.125		83.0	
25	30 Total PFOA	$413.0>368.7$		1.100 e 4		0.125		90.3	
26	31 Total PFOS	$499.0>79.9$		6.359 e 3		0.125		76.5	

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Resultsl20171170731G2\170731G2-6.qld
Last Altered:	Monday, July 31, 2017 11:16:53 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29

Total PFBS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	3 PFBS	$299.0>79.7$	2.89	5126.127	4140.785	74.1

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	6	$398.9>79.6$	3.93	4500.121	3030.833	83.0

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Conc.
1	7 PFOA	$413.0>368.7$	4.23	8000.339	10997.512	90.3

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	9 PFOS	$499.0>79.9$	4.63	2302.586	6359.301	76.5

Printed: \quad Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29, Instrument: , Lab: , User:

PFHxA

170731G2_6
100

13C2-PFHxA

170731G2_6 13C2-PFHxA F3:MRM of 9 channels,ES

Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-6.qld

Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170731G2_6

Total PFHxS

1802-PFHxS
170731G2_6 F4:MRM of 7 channels,ES-
$403>102.6$
$1.116 \mathrm{e}+005$
Dataset: U:\G1.PRO\Results\2017\170731G2\170731G2-6.qld

Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29, Instrument: , Lab: , User:

Total PFOA

$170731 G 2 _6$	F5:MRM of 12 channels,ES-
$413.0>368.7$	
$2.810 e+005$	

Total PFOS

13C8-PFOS

Dataset:	U:IG1.PRO\Results\2017\170731G21170731G2-6.qld
Last Altered:	Monday, July 31, 2017 11:16:53 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29, Instrument: , Lab: , User:

Dataset:	U:IG1.PRO\Resultsl20171170731G2\170731G2-6.qld
Last Altered:	Monday, July 31, 2017 11:16:53 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results120171170731G2\170731G2-6.qld

Last Altered: Monday, July 31, 2017 11:16:53 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 12:55:43 Pacific Daylight Time

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G2_6, Date: 31-Jul-2017, Time: 10:37:29, Instrument: , Lab: , User:

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time
Printed: Wednesday, August 02, 2017 14:10:37 Pacific Daylight Time

Method: U:|G1.prolMethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.pro\CurveDBIC18 VAL-PFC Q1 7-28-17 B 2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1_4, Date: 31-Jul-2017, Time: 14:11:43

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	2 N-MeFOSAA	$570.1>419.0$	4.623 e 3	2.203 e 3		0.125	4.99	94.5	118
2	4 PFUnA	$563>518.9$	9.547 e 3	1.118 e 4		0.125	5.12	87.6	110
3	5 N -EtFOSAA	$584.2>419.0$	3.102 e 3	2.829 e 3		0.125	5.11	82.3	103
4	6 PFDoA	$612.9>318.8$	1.305 e 3	1.345 e 4		0.125	5.36	79.7	99.7
5	7 PFTrDA	$662.9>618.9$	1.019 e 4	0.000 e 0		0.125	5.56	75.3	94.1
6	8 PFTeDA	$712.9>668.8$	7.787 e 3	8.910 e 3		0.125	5.73	95.3	119
7	$10 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	2.203 e 3	1.234 e 4	0.026	0.125	4.98	677	52.0
8	11 13C2-PFUnA	$565>519.8$	1.118 e 4	1.234 e 4	1.471	0.125	5.12	61.6	61.6
9	$12 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419.0$	2.829 e3	1.234 e 4	0.031	0.125	5.11	737	56.7
10	13 13C2-PFDoA	$615>569.7$	1.345 e 4	1.234 e 4	1.887	0.125	5.35	57.7	57.7
11	14 13C2-PFTeDA	$715>669.7$	8.910e3	1.234 e 4	1.990	0.125	5.73	36.3	36.3
12	15 13C7-PFUnA	$570.1>524.8$	1.234 e 4	1.234 e 4	1.000	0.125	5.11	100	100
13	16 Total N-MeFOSAA	$570.1>419.0$		2.203 e 3		0.125		94.5	
14	17 Total N-EtFOSAA	$584.2>419.0$		2.829 e 3		0.125		82.3	

Quantify Totals Report MassLynx 4.1 SCN815

Dataset: U:IG1.PRO\Resultsl20171170731G1\170731G1-4.qld
Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time
Printed: Wednesday, August 02, 2017 14:10:37 Pacific Daylight Time

Method: U:|G1.prolMethDB|PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.pro\CurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1_4, Date: 31-Jul-2017, Time: 14:11:43

Total N-MeFOSAA

	\# Name	Trace	RT	Area	IS Area	Conc.
1	2 N-MeFOSAA	$570.1>419.0$	4.99	4622.846	2202.750	94.5

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Conc.
1	5 N-EtFOSAA	$584.2>419.0$	5.11	3102.213	2829.002	82.3

Method: U:\G1.pro\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1_4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:

Total N-MeFOSAA
$\begin{array}{r}\text { 170731G1_4 } \\ 100 \text { N-MeFOSAA } \\ 4.99 \\ 4.62 \mathrm{e} 3 \\ \mathrm{bb} \\ 11954.13 \\ \hline\end{array}$

d3-N-MeFOSAA
170731G1_4

PFUnA
170731G1_4

13C2-PFUnA

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time
Printed: Wednesday, August 02, 2017 14:10:37 Pacific Daylight Time

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1_4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:

Total N-EtFOSAA

d5-N-EtFOSAA

170731G1_4

PFDoA

13C2-PFDoA
170731G1_4 13C2-PFDoA F4:MRM of 8 channels,ES-

Dataset: U:\G1.PRO\Results\2017\170731G1\170731G1-4.qld

Last Altered: Monday, July 31, 2017 14:58:08 Pacific Daylight Time
Printed: Wednesday, August 02, 2017 14:10:37 Pacific Daylight Time

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1_4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA

170731G1_4

PFTrDA

13C2-PFDoA

ID: B7G0079-BS1 OPR 0.125, Description: OPR, Name: 170731G1_4, Date: 31-Jul-2017, Time: 14:11:43, Instrument: , Lab: , User:

13C7-PFUnA

Work Order 1700884
Page 55 of 495
Printed: \quad Thursday, August 03, 2017 11:48:25 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.PRO\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170731G3_9, Date: 31-Jul-2017, Time: 18:50:15

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	2 N-MeFOSAA	$570.1>419.0$		2.723 e 3		0.119			
2	4 PFUnA	$563>518.9$	3.224 e 2	1.356 e 4		0.119	5.12	0.313	
3	5 N -EtFOSAA	$584.2>419.0$		3.349 e 3		0.119			
4	6 PFDoA	$612.9>318.8$	8.832e0	1.643 e 4		0.119	5.35	0.422	
5	7 PFTrDA	$662.9>618.9$		0.000 e 0		0.119			
6	8 PFTeDA	$712.9>668.8$	2.016 e 2	1.719 e 4		0.119	5.73		
7	10 d3-N-MeFOSAA	$573.3>419.0$	2.723 e 3	1.304 e 4	0.026	0.119	4.98	829	60.9
8	11 13C2-PFUnA	$565>519.8$	1.356 e 4	1.304 e 4	1.471	0.119	5.12	74.1	70.7
9	$12 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419.0$	3.349 e 3	1.304 e 4	0.031	0.119	5.11	865	63.6
10	13 13C2-PFDoA	$615>569.7$	1.643 e 4	1.304 e 4	1.887	0.119	5.35	69.9	66.8
11	14 13C2-PFTeDA	$715>669.7$	1.719 e 4	1.304 e 4	1.990	0.119	5.73	69.4	66.3
12	15 13C7-PFUnA	$570.1>524.8$	1.304 e 4	1.304 e 4	1.000	0.119	5.12	105	100
13	16 Total N-MeFOSAA	$570.1>419.0$		2.723 e 3		0.119			
14	17 Total N-EtFOSAA	$584.2>419.0$		3.349 e 3		0.119			

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\|2017\170731G3\170731G3-9.qld
Last Altered:	Thursday, August 03, 2017 11:46:53 Pacific Daylight Time
Printed:	Thursday, August 03, 2017 11:48:25 Pacific Daylight Time

Method: U:|G1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.PRO|CurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170731G3_9, Date: 31-Jul-2017, Time: 18:50:15
Total N-MeFOSAA

	\# Name	Trace	RT	Area	IS Area
1					

Total N-EtFOSAA

	\# Name	Trace	RT	Area
1			IS Area Conc.	

Printed: Thursday, August 03, 2017 11:48:25 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170731G3_9, Date: 31-Jul-2017, Time: 18:50:15, Instrument: , Lab: , User:

Total N-MeFOSAA

d3-N-MeFOSAA

170731G3_9

PFUnA
170731G3_9

13C2-PFUnA

Printed: \quad Thursday, August 03, 2017 11:48:25 Pacific Daylight Time

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170731G3_9, Date: 31-Jul-2017, Time: 18:50:15, Instrument: , Lab: , User:

d5-N-EtFOSAA

170731G3_9

PFDoA

170731G3_9

13C2-PFDoA

170731G3_9 13C2-PFDoA F4:MRM of 8 channels,ES- $615>569.7$

Last Altered: Thursday, August 03, 2017 11:46:53 Pacific Daylight Time
Printed:

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170731G3_9, Date: 31-Jul-2017, Time: 18:50:15, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA
170731G3_9

PFTrDA

170731G3_9 | F4:MRM of 8 channels,ES- |
| ---: |
| $662.9>618.9$ |
| $2.094 e+002$ |

13C2-PFDoA

$\begin{array}{lr}\text { 170731G3_9 13C2-PFDoA } & \text { F4:MRM of } 8 \text { channels,ES- } \\ 100 & 615>569.7\end{array}$

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170731G3_9, Date: 31-Jul-2017, Time: 18:50:15, Instrument: , Lab: , User:

13C7-PFUnA

100 | 13C7-PFUnA |
| :---: |
| 5.12 |
| 1.30 e 4 |
| bb |
| 38344.46 |

Last Altered: Friday, August 04, 2017 10:41:57 Pacific Daylight Time Printed: Friday, August 04, 2017 10:42:51 Pacific Daylight Time

Method: U:|G1.PRO\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	299.0 > 79.7	1.241 e 3	3.397e3		0.119	2.89	20.7	
2	4 PFHxA	$312.9>268.9$	3.189 e 3	4.149 e 3		0.119	3.27	41.7	
3	5 PFHpA	$363>318.9$	9.869 e 2	5.014 e 3		0.119	3.80	9.49	
4	6 PFHxS	$398.9>79.6$	1.136 e 4	2.897e3		0.119	3.93	230	
5	7 PFOA	$413.0>368.7$	6.754 e 3	8.728 e 3		0.119	4.23	101	
6	8 PFNA	$463.0>418.8$	7.192 e 1	3.231 e 3		0.119	4.57	0.731	
7	9 PFOS	$499.0>79.9$	1.248 e 4	4.873 e 3		0.119	4.64	570	
8	10 PFDA	$512.7>219.0$	9.281 e 0	6.767e3		0.119	4.87		
9	12 13C3-PFBS	$302.0>98.8$	3.397 e 3	1.147 e 4	0.263	0.119	2.89	118	113
10	14 13C2-PFHxA	$315.0>269.8$	4.149 e 3	1.147 e 4	0.361	0.119	3.27	105	100
11	15 13C4-PFHpA	$367.2>321.8$	5.014 e 3	1.147 e 4	0.475	0.119	3.80	96.3	92.0
12	16 18O2-PFHxS	$403>102.6$	2.897 e 3	6.549 e 3	0.411	0.119	3.93	113	108
13	17 13C2-PFOA	$414.9>369.7$	8.728 e 3	3.061 e 3	2.843	0.119	4.23	105	100
14	18 13C5-PFNA	$468.2>422.9$	3.231 e 3	4.586 e 3	0.854	0.119	4.57	86.5	82.5
15	19 13C2-PFDA	$514.8>469.7$	6.767 e 3	5.514 e 3	1.742	0.119	4.86	73.8	70.5
16	20 13C8-PFOS	$507.0>79.9$	4.873 e 3	5.553 e 3	0.927	0.119	4.64	99.1	94.7
17	22 13C5-PFHxA	$318>272.9$	1.147 e 4	1.147 e 4	1.000	0.119	3.27	105	100
18	23 13C3-PFHxS	$401.9>79.9$	6.549 e 3	6.549 e 3	1.000	0.119	3.93	105	100
19	24 13C8-PFOA	$421.3>376$	3.061 e 3	3.061 e 3	1.000	0.119	4.23	105	100
20	25 13C9-PFNA	$472.2>426.9$	4.586 e 3	4.586 e 3	1.000	0.119	4.57	105	100
21	26 13C4-PFOS	$503.0>79.9$	5.553 e 3	5.553 e 3	1.000	0.119	4.64	105	100
22	27 13C6-PFDA	$519.10>473.70$	5.514 e 3	5.514 e 3	1.000	0.119	4.86	105	100
23	28 Total PFBS	$299.0>79.7$		3.397 e 3		0.119		20.7	
24	29 Total PFHxS	$398.9>79.6$		2.897e3		0.119		230	
25	30 Total PFOA	$413.0>368.7$		8.728 e 3		0.119		120	
26	31 Total PFOS	$499.0>79.9$		4.873 e 3		0.119		570	

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\20171170803G2\170803G2-9.qld
	Last Altered:
Friday, August 04, 2017 10:41:57 Pacific Daylight Time	
Printed:	Friday, August 04, 2017 10:42:51 Pacific Daylight Time

Method: U:|G1.PRO\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.prolCurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05

Total PFBS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	3 PFBS	$299.0>79.7$	2.89	1241.442	3396.710	20.7

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	6 PFHxS	$398.9>79.6$	3.93	11362.411	2896.664	230.5

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Conc.
1	7 PFOA	$413.0>368.7$	4.23	6753.915	8727.558	100.7
2	30 Total PFOA	$413.0>368.7$	4.13	1323.409	8727.558	18.9

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	9 PFOS	$499.0>79.9$	4.64	12481.934	4873.246	570.1

Method: U:\G1.PRO\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05, Instrument: , Lab: , User:

Total PFBS
170803G2_9
100

13C3-PFBS
170803G2_9

PFHXA
170803G2_9
100

PFHxA

13C2-PFHxA
170803G2_9 13C2-PFHxA F3:MRM of 9 channels,ES-

Dataset: U:\G1.PRO\Results\2017\170803G2\170803G2-9.qld

Last Altered: Friday, August 04, 2017 10:41:57 Pacific Daylight Time
Printed:
Friday, August 04, 2017 10:42:51 Pacific Daylight Time

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170803G2_9

Total PFHxS

1802-PFHxS
170803G2_9 18O2-PFHxS F4:MRM of 7 channels,ES$103>102.6$

Dataset: U:\G1.PRO\Results\2017\170803G2\170803G2-9.qld

Last Altered: Friday, August 04, 2017 10:41:57 Pacific Daylight Time
Printed:
Friday, August 04, 2017 10:42:51 Pacific Daylight Time

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

Total PFOS

13C8-PFOS
(130803G2_9

Dataset:	U:IG1.PRO\Results\|2017\170803G21170803G2-9.qld
Last Altered:	Friday, August 04, 2017 10:41:57 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:42:51 Pacific Daylight Time

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05, Instrument: , Lab: , User:

PFNA

13C5-PFNA

170803G2_9

PFDA

13C2-PFDA
170803G2_9 13C2-PFDA F6:MRM of 4 channels,ES-

Dataset:	U:\G1.PRO\Results\2017\170803G2\170803G2-9.qld
Last Altered:	Friday, August 04, 2017 10:41:57 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:42:51 Pacific Daylight Time

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05, Instrument: , Lab: , User:

13C8-PFOA

170803G2_9

1700884

13C3-PFHxS
F4:MRM of 7 channels,ES-
 $401.9>79.9$ $2.327 e+005$

13C4-PFOS
170803G2_9

F5:MRM of 12 channels,ES$503.0>79.9$ $2.071 e+005$

Dataset:	U:IG1.PRO\Results\|2017\170803G21170803G2-9.qld
Last Altered:	Friday, August 04, 2017 10:41:57 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:42:51 Pacific Daylight Time

ID: 1700884-01 MW-37BR-20170714 0.11935, Description: MW-37BR-20170714, Name: 170803G2_9, Date: 03-Aug-2017, Time: 18:35:05, Instrument: , Lab: , User:

| Quantify Sample Summary Report \quad MassLynx 4.1 SCN815 | |
| :--- | :--- | :--- |
| Vista Analytical Laboratory Q1 | |
| Dataset: | U:IG1.PRO\Resultsl2017\170731G3\170731G3-10.qld 1 of 1 |
| Last Altered: | Monday, August 07, 2017 09:57:25 Pacific Daylight Time |
| Printed: | Monday, August 07, 2017 10:01:27 Pacific Daylight Time |

Method: U:|G1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03 Calibration: U:|G1.PRO|CurveDB|C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170731G3_10, Date: 31-Jul-2017, Time: 19:02:54

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	2 N-MeFOSAA	$570.1>419.0$		2.948 e 3		0.119			
2	4 PFUnA	$563>518.9$	1.776 e 2	1.374 e 4		0.119	5.12		
3	5 N -EtFOSAA	$584.2>419.0$		3.720 e 3		0.119			
4	6 PFDoA	$612.9>318.8$	1.491 e 1	1.698 e 4		0.119	5.35	0.718	
5	7 PFTrDA	$662.9>618.9$		0.000 e 0		0.119			
6	8 PFTeDA	$712.9>668.8$	1.467 e 2	1.461 e 4		0.119	5.73		
7	10 d3-N-MeFOSAA	$573.3>419.0$	2.948 e 3	1.334 e 4	0.026	0.119	4.99	880	64.5
8	11 13C2-PFUnA	$565>519.8$	1.374 e 4	1.334 e 4	1.471	0.119	5.12	73.6	70.0
9	$12 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419.0$	3.720 e 3	1.334 e 4	0.031	0.119	5.11	942	69.0
10	13 13C2-PFDoA	$615>569.7$	1.698 e 4	1.334 e 4	1.887	0.119	5.35	70.9	67.5
11	14 13C2-PFTeDA	$715>669.7$	1.461 e 4	1.334 e 4	1.990	0.119	5.73	57.8	55.1
12	15 13C7-PFUnA	$570.1>524.8$	1.334 e 4	1.334 e 4	1.000	0.119	5.12	105	100
13	16 Total N-MeFOSAA	$570.1>419.0$		2.948 e 3		0.119			
14	17 Total N-EtFOSAA	$584.2>419.0$		3.720 e 3		0.119			

Dataset:	U:\G1.PRO\Results\2017\170731G3\170731G3-10.qld
Last Altered:	Monday, August 07, 2017 09:57:25 Pacific Daylight Time
Printed:	Monday, August 07, 2017 10:01:27 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170731G3_10, Date: 31-Jul-2017, Time: 19:02:54

Total N-MeFOSAA

	\# Name	Trace	RT	Area
1			IS Area	Conc.

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area Conc.
1					

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170731G3\170731G3-10.qld

Last Altered: Monday, August 07, 2017 09:57:25 Pacific Daylight Time Printed: Monday, August 07, 2017 10:01:27 Pacific Daylight Time

Method: U:\G1.PRO\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:\G1.PRO\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

d3-N-MeFOSAA

170731G3_10

PFUnA
170731G3_10

13C2-PFUnA

170731G3_10 F3:MRM of 12 channels,ES- $565>519.8$

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170731G3\170731G3-10.qld

Last Altered: Monday, August 07, 2017 09:57:25 Pacific Daylight Time Printed: Monday, August 07, 2017 10:01:27 Pacific Daylight Time

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170731G3_10, Date: 31-Jul-2017, Time: 19:02:54, Instrument: , Lab: , User:

Total N-EtFOSAA

d5-N-EtFOSAA

170731G3_10

PFDoA

13C2-PFDoA
170731G3_10 F4:MRM of 8 channels,ES-

Vista Analytical Laboratory Q1

Dataset:	U:\G1.PRO\Results\2017\170731G3\170731G3-10.qld
Last Altered:	Monday, August 07, 2017 09:57:25 Pacific Daylight Time
Printed:	Monday, August 07, 2017 10:01:27 Pacific Daylight Time

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170731G3_10, Date: 31-Jul-2017, Time: 19:02:54, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA
170731G3_10

PFTrDA

13C2-PFDoA

170731G3_10 F4:MRM of 8 channels,ES-

Dataset:	U:IG1.PRO\Results\2017\170731G3\170731G3-10.qld
Last Altered:	Monday, August 07, 2017 09:57:25 Pacific Daylight Time
Printed:	Monday, August 07, 2017 10:01:27 Pacific Daylight Time

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170731G3_10, Date: 31-Jul-2017, Time: 19:02:54, Instrument: , Lab: , User:

13C7-PFUnA

Method: U:|G1.pro\MethDB|PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.prolCurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	299.0 > 79.7	2.686e3	3.471 e 3		0.119	2.89	47.5	
2	4 PFHxA	$312.9>268.9$	1.295 e 4	4.220 e 3		0.119	3.27	169	
3	5 PFHpA	$363>318.9$	5.472 e 3	4.967 e 3		0.119	3.80	58.4	
4	6 PFHxS	$398.9>79.6$	1.705 e 4	3.044e3		0.119	3.93	330	
5	7 PFOA	$413.0>368.7$	2.658 e 3	1.065 e 4		0.119	4.23	31.9	
6	8 PFNA	$463.0>418.8$	4.177 e 2	4.002 e 3		0.119	4.58	4.44	
7	9 PFOS	$499.0>79.9$	7.708 e 3	5.352 e 3		0.119	4.64	321	
8	10 PFDA	$512.7>219.0$	8.008 e 0	7.939e3		0.119	4.87		
9	12 13C3-PFBS	$302.0>98.8$	3.471 e 3	1.270 e 4	0.263	0.119	2.89	109	104
10	14 13C2-PFHxA	$315.0>269.8$	4.220 e 3	1.270 e 4	0.361	0.119	3.27	96.9	92.2
11	15 13C4-PFHpA	$367.2>321.8$	4.967 e 3	1.270 e 4	0.475	0.119	3.80	86.4	82.3
12	16 18O2-PFHxS	$403>102.6$	3.044 e 3	7.586 e 3	0.411	0.119	3.93	103	97.7
13	17 13C2-PFOA	$414.9>369.7$	1.065 e 4	3.822 e 3	2.843	0.119	4.23	103	98.0
14	18 13C5-PFNA	$468.2>422.9$	4.002 e 3	5.112 e 3	0.854	0.119	4.57	96.4	91.7
15	19 13C2-PFDA	$514.8>469.7$	7.939 e 3	5.927e3	1.742	0.119	4.86	80.8	76.9
16	20 13C8-PFOS	$507.0>79.9$	5.352 e 3	6.477 e 3	0.927	0.119	4.64	93.6	89.1
17	22 13C5-PFHxA	$318>272.9$	1.270 e 4	1.270 e 4	1.000	0.119	3.27	105	100
18	23 13C3-PFHxS	$401.9>79.9$	7.586 e 3	7.586 e 3	1.000	0.119	3.93	105	100
19	24 13C8-PFOA	$421.3>376$	3.822 e 3	3.822e3	1.000	0.119	4.23	105	100
20	25 13C9-PFNA	$472.2>426.9$	5.112 e 3	5.112 e 3	1.000	0.119	4.57	105	100
21	26 13C4-PFOS	$503.0>79.9$	6.477 e 3	6.477 e 3	1.000	0.119	4.64	105	100
22	27 13C6-PFDA	$519.10>473.70$	5.927 e 3	5.927e3	1.000	0.119	4.86	105	100
23	28 Total PFBS	$299.0>79.7$		3.471 e 3		0.119		47.5	
24	29 Total PFHxS	$398.9>79.6$		3.044e3		0.119		330	
25	30 Total PFOA	$413.0>368.7$		1.065 e 4		0.119		35.0	
26	31 Total PFOS	$499.0>79.9$		5.352e3		0.119		321	

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\|20171170803G21170803G2-10.qld
Last Altered:	Friday, August 04, 2017 10:49:52 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:50:08 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.prolCurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39

Total PFBS

	\# Name	Trace	RT	Area	IS Area
Conc.					
1	3 PFBS	$299.0>79.7$	2.89	2686.120	3471.255

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	6	$398.9>79.6$	3.93	17052.361	3044.168	330.4

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| 1 | 30 Total PFOA | $413.0>368.7$ | 4.12 | 327.033 | 10647.009 | 3.1 |
| 2 | 7 PFOA | $413.0>368.7$ | 4.23 | 2657.596 | 10647.009 | 31.9 |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	9 PFOS	$499.0>79.9$	4.64	7708.459	5351.650	321.4

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39, Instrument: , Lab: , User:

Total PFBS
170803G2_10
100 PFBS

PFHxA

170803G2_10

13C3-PFBS

170803G2_10

13C2-PFHxA
170803G2_10 13C2-PFHxA F3:MRM of 9 channels,ES-

Dataset: U:\G1.PRO\Results\2017\170803G2\170803G2-10.qld
Last Altered: Friday, August 04, 2017 10:49:52 Pacific Daylight Time
Printed:
Friday, August 04, 2017 10:50:08 Pacific Daylight Time

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170803G2_10

Total PFHxS

1802-PFHxS
170803G2_10 18O2-PFHxS F4:MRM of 7 channels,ES1.072 + +005

Last Altered: Friday, August 04, 2017 10:49:52 Pacific Daylight Time Printed: Friday, August 04, 2017 10:50:08 Pacific Daylight Time

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

Total PFOS

13C8-PFOS
170803G2_10 F5:MRM of 12 channels,ES-

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39, Instrument: , Lab: , User:

PFNA

13C5-PFNA

170803G2_10

PFDA

13C2-PFDA
170803G2_10 13C2-PFDA F6:MRM of 4 channels,ES$2.889 \mathrm{e}+005$

Dataset:	U:IG1.PRO\Resultsl2017\170803G21170803G2-10.qld
Last Altered:	Friday, August 04, 2017 10:49:52 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:50:08 Pacific Daylight Time

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39, Instrument: , Lab: , User:

13C8-PFOA

170803G2_10

13C3-PFHxS
F4:MRM of 7 channels,ES$401.9>79.9$ $2.660 \mathrm{e}+005$

13C4-PFOS

170803G2_10 F5:MRM of 12 channels,ES-

| $13 C 4-P F O S$ |
| :--- | ---: |
| 4.64 |
| 6.48 e 3 |$\quad 503.0>79.9$

Dataset:	U:IG1.PRO\Resultsl2017\170803G21170803G2-10.qld
Last Altered:	Friday, August 04, 2017 10:49:52 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:50:08 Pacific Daylight Time

ID: 1700884-02 MW-32BR-20170714 0.11989, Description: MW-32BR-20170714, Name: 170803G2_10, Date: 03-Aug-2017, Time: 18:47:39, Instrument: , Lab: , User:

Printed: \quad Thursday, August 03, 2017 12:00:28 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170731G3_11, Date: 31-Jul-2017, Time: 19:15:28

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	2 N-MeFOSAA	$570.1>419.0$		3.340 e 3		0.120			
2	4 PFUnA	$563>518.9$	2.476 e 2	1.393 e 4		0.120	5.12		
3	5 N -EtFOSAA	$584.2>419.0$		3.378 e 3		0.120			
4	6 PFDoA	$612.9>318.8$	1.282 e 1	1.959 e 4		0.120	5.35	0.521	
5	7 PFTrDA	$662.9>618.9$		0.000 e 0		0.120			
6	8 PFTeDA	$712.9>668.8$	2.833 e 2	2.034 e 4		0.120	5.73	0.175	
7	10 d3-N-MeFOSAA	$573.3>419.0$	3.340 e 3	1.537 e 4	0.026	0.120	4.98	859	63.4
8	11 13C2-PFUnA	$565>519.8$	1.393 e 4	1.537 e 4	1.471	0.120	5.12	64.3	61.6
9	$12 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419.0$	3.378 e 3	1.537 e 4	0.031	0.120	5.11	737	54.4
10	13 13C2-PFDoA	$615>569.7$	1.959 e 4	1.537 e 4	1.887	0.120	5.35	70.5	67.6
11	14 13C2-PFTeDA	$715>669.7$	2.034 e 4	1.537 e 4	1.990	0.120	5.73	69.4	66.5
12	15 13C7-PFUnA	$570.1>524.8$	1.537 e 4	1.537 e 4	1.000	0.120	5.12	104	100
13	16 Total N-MeFOSAA	$570.1>419.0$		3.340 e 3		0.120			
14	17 Total N-EtFOSAA	$584.2>419.0$		3.378 e 3		0.120			

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\|2017\170731G31170731G3-11.qld
Last Altered:	Thursday, August 03, 2017 11:57:39 Pacific Daylight Time
Printed:	Thursday, August 03, 2017 12:00:28 Pacific Daylight Time

Method: U:|G1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.pro\CurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170731G3_11, Date: 31-Jul-2017, Time: 19:15:28

Total N-MeFOSAA

	\# Name	Trace	RT	Area
1			IS Area	Conc.

Total N-EtFOSAA

1	\# Name	Trace	RT	Area	IS Area

Printed: Thursday, August 03, 2017 12:00:28 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS B 2TRAN 0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170731G3_11, Date: 31-Jul-2017, Time: 19:15:28, Instrument: , Lab: , User:

d3-N-MeFOSAA

170731G3_11

PFUnA
170731G3_11

13C2-PFUnA

Printed: Thursday, August 03, 2017 12:00:28 Pacific Daylight Time

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170731G3_11, Date: 31-Jul-2017, Time: 19:15:28, Instrument: , Lab: , User:

Total N-EtFOSAA

d5-N-EtFOSAA

170731G3_11

PFDoA

170731G3_11

13C2-PFDoA

170731G3_11 F4:MRM of 8 channels,ES-

Last Altered: Thursday, August 03, 2017 11:57:39 Pacific Daylight Time
Printed: Thursday, August 03, 2017 12:00:28 Pacific Daylight Time

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170731G3_11, Date: 31-Jul-2017, Time: 19:15:28, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA
170731G3_11

PFTrDA

13C2-PFDoA

170731G3_11 13C2-PFDoA F4:MRM of 8 channels,ES-
$615>569.7$

Dataset:	U:IG1.PRO\Results\|2017\170731G31170731G3-11.qld
Last Altered:	Thursday, August 03, 2017 11:57:39 Pacific Daylight Time
Printed:	Thursday, August 03, 2017 12:00:28 Pacific Daylight Time

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170731G3_11, Date: 31-Jul-2017, Time: 19:15:28, Instrument: , Lab: , User:

13C7-PFUnA

170731G3_11

F3:MRM of 12 channels,ES$570.1>524.8$ $6.1>524.8$
$6.243 e+005$

100	$\begin{gathered} \text { 13C7-PFUnA } \\ 5.12 \end{gathered}$
	1.54 e 4
	bb
	20993.76

Last Altered: Friday, August 04, 2017 10:51:45 Pacific Daylight Time Printed: Friday, August 04, 2017 10:52:07 Pacific Daylight Time

Method: U:|G1.pro\MethDB|PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.prolCurveDBIC18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	1.811 e 3	3.990 e 3		0.120	2.89	26.4	
2	4 PFHxA	$312.9>268.9$	8.394 e 3	4.524 e 3		0.120	3.27	101	
3	5 PFHpA	$363>318.9$	3.617 e 3	5.408 e 3		0.120	3.80	34.7	
4	6 PFHxS	$398.9>79.6$	9.296 e 3	3.200 e 3		0.120	3.93	170	
5	7 PFOA	$413.0>368.7$	1.665 e 3	9.850 e 3		0.120	4.23	21.1	
6	8 PFNA	$463.0>418.8$		3.178 e 3		0.120			
7	9 PFOS	$499.0>79.9$	3.789 e 3	5.365 e 3		0.120	4.64	156	
8	10 PFDA	$512.7>219.0$	1.259 e 1	7.778 e 3		0.120	4.87		
9	12 13C3-PFBS	$302.0>98.8$	3.990 e 3	1.228 e 4	0.263	0.120	2.89	129	124
10	14 13C2-PFHxA	$315.0>269.8$	4.524 e 3	1.228 e 4	0.361	0.120	3.27	107	102
11	15 13C4-PFHpA	$367.2>321.8$	5.408 e 3	1.228 e 4	0.475	0.120	3.80	96.6	92.6
12	16 18O2-PFHxS	$403>102.6$	3.200 e 3	8.096e3	0.411	0.120	3.93	100	96.3
13	17 13C2-PFOA	$414.9>369.7$	9.850 e 3	3.563 e 3	2.843	0.120	4.23	101	97.3
14	18 13C5-PFNA	$468.2>422.9$	3.178 e 3	5.218 e 3	0.854	0.120	4.57	74.4	71.4
15	19 13C2-PFDA	$514.8>469.7$	7.778 e 3	6.326 e 3	1.742	0.120	4.86	73.6	70.6
16	20 13C8-PFOS	$507.0>79.9$	5.365 e 3	7.030e3	0.927	0.120	4.64	85.9	82.3
17	22 13C5-PFHxA	$318>272.9$	1.228 e 4	1.228 e 4	1.000	0.120	3.26	104	100
18	23 13C3-PFHxS	$401.9>79.9$	8.096 e 3	8.096 e 3	1.000	0.120	3.93	104	100
19	24 13C8-PFOA	$421.3>376$	3.563 e 3	3.563 e 3	1.000	0.120	4.23	104	100
20	25 13C9-PFNA	$472.2>426.9$	5.218 e 3	5.218 e 3	1.000	0.120	4.57	104	100
21	26 13C4-PFOS	$503.0>79.9$	7.030 e 3	7.030 e 3	1.000	0.120	4.64	104	100
22	27 13C6-PFDA	$519.10>473.70$	6.326 e 3	6.326e3	1.000	0.120	4.86	104	100
23	28 Total PFBS	$299.0>79.7$		3.990 e 3		0.120		26.4	
24	29 Total PFHxS	$398.9>79.6$		3.200 e 3		0.120		170	
25	30 Total PFOA	$413.0>368.7$		9.850 e 3		0.120		21.6	
26	31 Total PFOS	$499.0>79.9$		5.365 e 3		0.120		156	

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\20171170803G2\170803G2-11.qld
	Last Altered:
Friday, August 04, 2017 10:51:45 Pacific Daylight Time	
Printed:	Friday, August 04, 2017 10:52:07 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.prolCurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12

Total PFBS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	3 PFBS	$299.0>79.7$	2.89	1810.949	3990.493	26.4

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	6	$398.9>79.6$	3.93	9295.926	3200.427	169.8

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Conc.
1	7 PFOA	$413.0>368.7$	4.23	1664.642	9850.190	21.1
2	30 Total PFOA	$413.0>368.7$	4.12	107.094	9850.190	0.5

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Conc.
1	9 PFOS	$499.0>79.9$	4.64	3788.506	5364.697	156.2

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12, Instrument: , Lab: , User:

13C3-PFBS

170803G2_11

PFHxA

13C2-PFHxA
170803G2_11 13C2-PFHxA F3:MRM of 9 channels,ES-

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170803G2_11

Total PFHxS

1802-PFHxS
170803G2_11 F4:MRM of 7 channels,ES$1.156 \mathrm{e}+005$

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12, Instrument: , Lab: , User:

Total PFOA

Total PFOS

13C8-PFOS
170803G2_11 F5:MRM of 12 channels,ES$507.0>79.9$
4.64
5.36
5.36 e 3
bb
3554780

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12, Instrument: , Lab: , User:

PFNA

13C5-PFNA

170803G2_11

PFDA

13C2-PFDA
170803G2_11 13C2-PFDA F6:MRM of 4 channels,ES$2.788 \mathrm{e}+005$

Dataset:	U:\G1.PRO\Results\2017\170803G2\170803G2-11.qld
Last Altered:	Friday, August 04, 2017 10:51:45 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:52:07 Pacific Daylight Time

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12, Instrument: , Lab: , User:

13C8-PFOA

170803G2_11

13C3-PFHxS

13C4-PFOS
170803G2_11 F5:MRM of 12 channels,ES$503.0>79.9$
$2.562 e+005$

Dataset:	U:IG1.PRO\Results\2017\170803G21170803G2-11.qld
Last Altered:	Friday, August 04, 2017 10:51:45 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:52:07 Pacific Daylight Time

ID: 1700884-03 MW-35S-20170714 0.11984, Description: MW-35S-20170714, Name: 170803G2_11, Date: 03-Aug-2017, Time: 19:00:12, Instrument: , Lab: , User:

Printed: \quad Thursday, August 03, 2017 12:04:14 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.pro\CurveDB\C18 VAL-PFC Q1 7-28-17 B 2Trans NEW.cdb 31 Jul 2017 08:37:52

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170731G3_12, Date: 31-Jul-2017, Time: 19:28:02

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	2 N-MeFOSAA	$570.1>419.0$		2.974 e 3		0.120			
2	4 PFUnA	$563>518.9$	2.691 e 2	1.376 e 4		0.120	5.12		
3	5 N -EtFOSAA	$584.2>419.0$		3.149 e 3		0.120			
4	6 PFDoA	$612.9>318.8$	8.361 e 0	1.697 e 4		0.120	5.35	0.382	
5	7 PFTrDA	$662.9>618.9$		0.000 e 0		0.120			
6	8 PFTeDA	$712.9>668.8$	1.366 e 2	1.765 e 4		0.120	5.73		
7	10 d3-N-MeFOSAA	$573.3>419.0$	2.974 e 3	1.327 e 4	0.026	0.120	4.98	886	65.4
8	11 13C2-PFUnA	$565>519.8$	1.376 e 4	1.327 e 4	1.471	0.120	5.12	73.5	70.5
9	$12 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419.0$	3.149 e 3	$1.327 e 4$	0.031	0.120	5.11	796	58.7
10	13 13C2-PFDoA	$615>569.7$	1.697 e 4	1.327 e 4	1.887	0.120	5.35	70.7	67.8
11	14 13C2-PFTeDA	$715>669.7$	1.765 e 4	$1.327 e 4$	1.990	0.120	5.73	69.7	66.9
12	15 13C7-PFUnA	$570.1>524.8$	1.327 e 4	1.327 e 4	1.000	0.120	5.12	104	100
13	16 Total N-MeFOSAA	$570.1>419.0$		2.974 e 3		0.120			
14	17 Total N-EtFOSAA	$584.2>419.0$		3.149 e 3		0.120			

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\|2017\170731G3\170731G3-12.qld
Last Altered:	Thursday, August 03, 2017 12:01:44 Pacific Daylight Time
Printed:	Thursday, August 03, 2017 12:04:14 Pacific Daylight Time

Method: U:|G1.prolMethDB|PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:|G1.pro\CurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170731G3_12, Date: 31-Jul-2017, Time: 19:28:02

Total N-MeFOSAA

	\# Name	Trace	RT	Area
1			IS Area	Conc.

Total N-EtFOSAA

1	\# Name	Trace	RT	Area	IS Area

Printed: \quad Thursday, August 03, 2017 12:04:14 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170731G3_12, Date: 31-Jul-2017, Time: 19:28:02, Instrument: , Lab: , User:

d3-N-MeFOSAA

170731G3_12

PFUnA
170731G3_12

13C2-PFUnA

170731G3_12 F3:MRM of 12 channels,ES-

Printed: \quad Thursday, August 03, 2017 12:04:14 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170731G3_12, Date: 31-Jul-2017, Time: 19:28:02, Instrument: , Lab: , User:

Total N-EtFOSAA

d5-N-EtFOSAA

170731G3_12

PFDoA

13C2-PFDoA

170731G3_12

Last Altered: Thursday, August 03, 2017 12:01:44 Pacific Daylight Time
Printed: Thursday, August 03, 2017 12:04:14 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170731G3_12, Date: 31-Jul-2017, Time: 19:28:02, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA
170731G3_12

PFTrDA

13C2-PFDoA

Dataset:	U:IG1.PRO\Results\|2017\170731G31170731G3-12.qld
Last Altered:	Thursday, August 03, 2017 12:01:44 Pacific Daylight Time
Printed:	Thursday, August 03, 2017 12:04:14 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170731G3_12, Date: 31-Jul-2017, Time: 19:28:02, Instrument: , Lab: , User: 13C7-PFUnA

Method: U:|G1.pro\MethDB|PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.prolCurveDBIC18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$		3.141 e 3		0.120			
2	4 PFHxA	$312.9>268.9$		4.178 e 3		0.120			
3	5 PFHpA	$363>318.9$		4.437 e 3		0.120			
4	6 PFHxS	$398.9>79.6$		2.689e3		0.120			
5	7 PFOA	$413.0>368.7$	7.503 e 1	9.664 e 3		0.120	4.23	0.0479	
6	8 PFNA	$463.0>418.8$		3.769 e 3		0.120			
7	9 PFOS	$499.0>79.9$		4.991 e 3		0.120			
8	10 PFDA	$512.7>219.0$	1.467 e 1	7.182e3		0.120	4.87		
9	12 13C3-PFBS	$302.0>98.8$	3.141 e 3	1.144 e 4	0.263	0.120	2.89	109	105
10	14 13C2-PFHxA	$315.0>269.8$	4.178 e 3	1.144 e 4	0.361	0.120	3.27	106	101
11	15 13C4-PFHpA	$367.2>321.8$	4.437 e 3	1.144 e 4	0.475	0.120	3.80	85.1	81.6
12	16 18O2-PFHxS	$403>102.6$	2.689 e 3	6.770 e 3	0.411	0.120	3.93	101	96.7
13	17 13C2-PFOA	414.9 > 369.7	9.664 e3	3.172 e 3	2.843	0.120	4.23	112	107
14	18 13C5-PFNA	$468.2>422.9$	3.769 e 3	4.356 e 3	0.854	0.120	4.57	106	101
15	19 13C2-PFDA	$514.8>469.7$	7.182 e 3	5.328 e 3	1.742	0.120	4.87	80.7	77.4
16	20 13C8-PFOS	$507.0>79.9$	4.991 e3	5.313 e 3	0.927	0.120	4.64	106	101
17	22 13C5-PFHxA	$318>272.9$	1.144 e 4	1.144 e 4	1.000	0.120	3.27	104	100
18	23 13C3-PFHxS	$401.9>79.9$	6.770 e 3	6.770 e 3	1.000	0.120	3.93	104	100
19	24 13C8-PFOA	$421.3>376$	3.172 e 3	3.172 e 3	1.000	0.120	4.23	104	100
20	25 13C9-PFNA	$472.2>426.9$	4.356 e 3	4.356 e 3	1.000	0.120	4.57	104	100
21	26 13C4-PFOS	$503.0>79.9$	5.313 e 3	5.313 e 3	1.000	0.120	4.64	104	100
22	27 13C6-PFDA	$519.10>473.70$	5.328 e 3	5.328 e 3	1.000	0.120	4.86	104	100
23	28 Total PFBS	$299.0>79.7$		3.141 e 3		0.120			
24	29 Total PFHxS	$398.9>79.6$		2.689e3		0.120			
25	30 Total PFOA	$413.0>368.7$		9.664 e 3		0.120		0.0479	
26	31 Total PFOS	$499.0>79.9$		4.991 e 3		0.120			

Quantify Totals Report MassLynx 4.1 SCN815

Dataset:	U:IG1.PRO\Results\20171170803G21170803G2-12.qld
Last Altered:	Friday, August 04, 2017 10:54:22 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:54:28 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.prolCurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45 Total PFBS

Total PFHxS

\# Name	Trace	RT	Area	IS Area

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Conc.
7	7 PFOA	$413.0>368.7$	4.23	75.033	9663.883	0.0

Total PFOS

	\# Name	Trace	RT	Area
1			IS Area Conc.	

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45, Instrument: , Lab: , User:

13C3-PFBS

170803G2_12

FHxA

F3:MRM of 9 channels,ES-
$312.9>268.9$
$2.105 \mathrm{e}+003$

13C2-PFHxA
170803G2_12 13C2-PFHxA F3:MRM of 9 channels,ES- $315.0>269.8$

Dataset: U:\G1.PRO\Results\2017\170803G2\170803G2-12.qld
Last Altered: Friday, August 04, 2017 10:54:22 Pacific Daylight Time
Printed:
Friday, August 04, 2017 10:54:28 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170803G2_12

Total PFHxS

1802-PFHxS
170803G2_12 F4:MRM of 7 channels,ES-

Dataset: U:\G1.PRO\Results\2017\170803G2\170803G2-12.qld
Last Altered: Friday, August 04, 2017 10:54:22 Pacific Daylight Time
Printed:
Friday, August 04, 2017 10:54:28 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

Total PFOS

13C8-PFOS
170803G2_12 F5:MRM of 12 channels,ES-

Last Altered: Friday, August 04, 2017 10:54:22 Pacific Daylight Time Printed: Friday, August 04, 2017 10:54:28 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45, Instrument: , Lab: , User:

PFNA

13C5-PFNA

170803G2_12

PFDA

170803G2_12 F6:MRM of 4 channels,ES-
512.7 > 219.0 $5.716 \mathrm{e}+002$

13C2-PFDA
170803G2_12 13C2-PFDA F6:MRM of 4 channels,ES$2.590 \mathrm{e}+005$

Dataset:	U:\G1.PRO\Results\2017\170803G2\170803G2-12.qld
Last Altered:	Friday, August 04, 2017 10:54:22 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:54:28 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45, Instrument: , Lab: , User:

13C8-PFOA

170803G2_12

13C3-PFHxS

13C4-PFOS

170803G2_12 F5:MRM of 12 channels,ES-

Dataset:	U:IG1.PRO\Resultsl2017\170803G21170803G2-12.qld
Last Altered:	Friday, August 04, 2017 10:54:22 Pacific Daylight Time
Printed:	Friday, August 04, 2017 10:54:28 Pacific Daylight Time

ID: 1700884-04 FRB-02-20170714 0.11984, Description: FRB-02-20170714, Name: 170803G2_12, Date: 03-Aug-2017, Time: 19:12:45, Instrument: , Lab: , User:

13C6-PFDA

CONTINUING CALIBRATION

Last Altered: Monday, July 31, 2017 14:37:21 Pacific Daylight Time Monday, July 31, 2017 14:39:02 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS B_2TRAN 0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Name: 170731G1_2, Date: 31-Jul-2017, Time: 13:46:30, ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B

Yea 713:117

Last Altered: Monday, July 31, 2017 16:53:40 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:53:54 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

-		Name	ID	Acq.Date	Acq.Time
1.		170731G1_1	IPA	31-Jul-17	13:33:35
2	4	170731G1_2	ST170731G1-1 PFC CS-1 17G3102	31-Jul-17	13:46:30
3	\%	170731G1_3	IPA	31-Jul-17	13:59:06
4	3:4	170731G1_4	B7G0079-BS1 OPR 0.125	31-Jul-17	14:11:43
5		17073161_5	IPA	31-Jul-17	14:24:17
6		170731G1_6	B7G0079-BLK1 Method Blank 0.125	31-Jul-17	14:54:16
7		170731G1_7	1700887-01 IRPSite 6-GW-06GW01-2017071...	31-Jul-17	15:06:51
8		170731G1_8	1700887-02 IRPSite 6-GW-06GW02-2017071...	31-Jul-17	15:19:26
9		170731G1_9	1700887-03 IRPSite 6-GW-FRB01-20170712 ...	31-Jul-17	15:32:02
10	T	170731G1_10	1700887-04 Site 33-GW-33GW01-20170712 ...	31-Jul-17	15:44:39
11	\pm	170731G1_11	1700887-05 Building 110-GW-110GW01-2017...	31-Jul-17	15:57:16
12		170731G1_12	1700887-06 IRPSite 6-GW-06FD01-20170712...	31-Jul-17	16:09:57
13		170731G1_13	IPA	31-Jul-17	16:22:30
14		170731G1_14	ST170731G1-2 PFC CS3 17G3102	31-Jul-17	16:35:07
15	-	170731G1_15			

Run Log Present:
\# of Samples per Sequence Checked: \square
Reviewed By:

Dataset: U:\G1.PRO\Results\2017\170731G11170731G1-2.qld

Last Altered:
Monday, July 31, 2017 14:37:21 Pacific Daylight Time
Printed: Monday, July 31, 2017 14:38:48 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1_2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User:

d3-N-MeFOSAA

PFUnA

13C2-PFUnA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\20171170731G1\170731G1-2.qld
Last Altered: Monday, July 31, 2017 14:37:21 Pacific Daylight Time
Printed: Monday, July 31, 2017 14:38:48 Pacific Daylight Time

ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1_2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User:

Total N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:	U:IG1.PRO\Results\2017\170731G1\170731G1-2.qld
Last Altered:	Monday, July 31, 2017 14:37:21 Pacific Daylight Time
Printed:	Monday, July 31, 2017 14:38:48 Pacific Daylight Time

ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1_2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User:

13C2-PFTeDA

170731G1_2

PFTrDA
170731G1_2

13C2-PFDoA

170731G1_2	F4:MRM of 8 channels,ES-	
100	13C2-PFDoA	$615>569.7$
	5.35	
	$1.824 \mathrm{e}+006$	

Dataset: U:IG1.PRO\Results\2017\170731G1\170731G1-2.qld

Last Altered: Printed:

Monday, July 31, 2017 14:37:21 Pacific Daylight Time Monday, July 31, 2017 14:38:48 Pacific Daylight Time

ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B, Name: 170731G1_2, Date: 31-Jul-2017, Time: 13:46:30, Instrument: , Lab: , User:

| Quantify Sample Summary Report \quad MassLynx 4.1 SCN815 |
| :--- | :--- | :--- |
| Vista Analytical Laboratory Q1 | | Dataset: | U:IG1.PRO\Results\2017\170731G1\170731G1-14.qld |
| :--- | :--- |
| Last Altered: | Monday, July 31, 2017 |
| 16:52:30 Pacific Daylight Time | |
| Printed: | Monday, July 31, 2017 16:53:26 Pacific Daylight Time |

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Name: 170731G1_14, Date: 31-Jul-2017, Time: 16:35:07, ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B

	\# Name	Trace	Response	IS Resp	RRF	WtVol	RT	\#n Conc. \%Rec	$\left.\right\|^{70-130}$	600 7/3117
1.	1 PFOSA	$498.1>77.7$	2.05 e 4	2.00 e 4		1.000	4.61	10.4103 .8		
2 2 ${ }^{2}$	2 N-MeFOSAA	$570.1>419.0$	1.06 e 4	6.65 e 3		1.000	4.99	8.91 89.1		
3 3.	3 PFDS	$598.8>98.7$	1.10 e 4	2.77 e 4		1.000	5.15	10.8107 .8		
4 -	4 PFUnA	$563>518.9$	2.12 e 4	2.77 e 4		1.000	5.12	$9.79 \quad 97.9$		
5 (TSMe	5 N -EtFOSAA	$584.2>419.0$	7.43 e 3	5.76 e 3		1.000	5.11	12.1 121.3		
$6{ }^{2}$	6 PFDoA	$612.9>318.8$	3.63 e 3	3.50 e 4		1.000	5.35	10.7106 .6		
7	7 PFTrDA	$662.9>618.9$	3.48 e 4	0.00 e 0		1.000	5.56	$9.63 \quad 96.3$		
8.4	8 PFTeDA	$712.9>668.8$	2.96 e 4	3.97 e 4		1.000	5.73	10.1101 .2		
9	9 13C8-PFOSA	$506.1>77.7$	2.00 e 4	1.93 e 4	1.146	1.000	4.61	11.390 .6		
10	$10 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	6.65 e 3	1.93 e 4	0.026	1.000	4.98	163100.5		
	11 13C2-PFUnA	$565>519.8$	2.77 e 4	1.93 e 4	1.471	1.000	5.12	12.297 .8		
12.	12 d5-N-EtFOSAA	$589.3>419.0$	5.76 e 3	1.93 e 4	0.031	1.000	5.11	$120 \quad 73.9$		
13.	13 13C2-PFDoA	$615>569.7$	3.50 e 4	1.93 e 4	1.887	1.000	5.35	$12.0 \quad 96.1$		
14. ${ }^{\text {a }}$,	14 13C2-PFTeDA	$715>669.7$	3.97 e 4	1.93 e 4	1.990	1.000	5.73	$12.9 \quad 103.5$		
15	15 13C7-PFUnA	$570.1>524.8$	1.93 e 4	1.93 e 4	1.000	1.000	5.12	12.5100 .0		

| Quantify Compound Summary Report |
| :--- | MassLynx 4.1 SCN815

Vista Analytical Laboratory VG-11 \quad\begin{tabular}{ll}
Dataset: \& Untitled

Last Attered: \& | Monday, July 31, 2017 |
| :--- |
| 16:53:40 Pacific Daylight Time |
| Printed: |

\hline
\end{tabular}

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
 Compound name: PFOSA

	10	Acq.Date	AcqTime
	IPA	31-Jul-17	13:33:35
3xather	ST170731G1-1 PFC CS-1 17G3102	31-Jul-17	13:46:30
36 W W Whedz	IPA	31-Jul-17	13:59:06
	B7G0079-BS1 OPR 0.125	31-Jul-17	14:11:43
Wututix 170731G1_5	IPA	31-Jul-17	14:24:17
	B7G0079-BLK1 Method Blank 0.125	31-Jul-17	14:54:16
	1700887-01 IRPSite 6-GW-06GW01-2017071...	31-Jul-17	15:06:51
170731G1_8	1700887-02 IRPSite 6-GW-06GW02-2017071..	31-Jul-17	15:19:26
	1700887-03 IRPSite 6-GW-FRB01-20170712	31-Jul-17	15:32:02
	1700887-04 Site 33-GW-33GW01-20170712 ...	31-Jul-17	15:44:39
170731G1_11	1700887-05 Building 110-GW-110GW01-2017...	31-Jul-17	15:57:16
0731G1_1	1700887-06 IRPSite 6-GW-06FD01-20170712...	31-Jul-17	16:09:57
170731G1_13	IPA	31-Jul-17	16:22:30
	ST170731G1-2 PFC CS3 17G3102	31-Jul-17	16:35:07

Dataset:

Last Altered:
Printed:
Monday, July 31, 2017 16:52:30 Pacific Daylight Time Monday, July 31, 2017 16:53:16 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G1_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User:

Total N-MeFOSAA

d3-N-MeFOSAA

PFUnA

13C2-PFUnA

Dataset:
 U:IG1.PRO\Results\2017\170731G1\170731G1-14.qld

Last Altered:
Monday, July 31, 2017 16:52:30 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:53:16 Pacific Daylight Time

ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G1_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User:

Total N-EtFOSAA

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:

Last Altered: Printed:

Monday, July 31, 2017 16:52:30 Pacific Daylight Time

ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17 G3102 B, Name: 170731G1_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA

PFTrDA

13C2-PFDoA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G1\170731G1-14.qld
Last Altered: Monday, July 31, 2017 16:52:30 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:53:16 Pacific Daylight Time

ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G1_14, Date: 31-Jul-2017, Time: 16:35:07, Instrument: , Lab: , User:

Dataset: U:\G1.PRO\Results\2017\170731G3\170731G3-2.qld
Last Altered: Tuesday, August 01, 2017 13:07:42 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 13:09:20 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Name: 170731G3_2, Date: 31-Jul-2017, Time: 17:22:07, ID: ST170731G3-1 PFC CS3 17G3102, Description: PFC CS3 17G3102 B

Dataset:	Untitled
Last Altered:	Tuesday, August 01, 2017 13:19:59 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 13:20:16 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

LC Calibration Standards Review Checklist \qquad

Run Log Present: \square

Dataset: U:IG1.PROIResults\2017\170731G3\170731G3-2.qld
Last Altered: Tuesday, August 01, 2017 13:07:42 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 13:17:21 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
ID: ST170731G3-1 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G3_2, Date: 31-Jul-2017, Time: 17:22:07, Instrument: , Lab: , User:

13C8-PFOSA
170731G3_2

PFDS

13C2-PFUnA

170731G3_2	F3:MRM of 12 channels,ES-
$100 \quad 13 \mathrm{C} 2-\mathrm{PFUnA}$	$565>519.8$

PFUnA

13C2-PFUnA

170731 G3_2
100
13C2-PFUnA 5.12 $2.87 e 4$ bb 18610.09

Dataset:
U:IG1.PRO\Results\2017\170731G3\170731G3-2.qld
Last Altered: Tuesday, August 01, 2017 13:07:42 Pacific Daylight Time
Printed: . Tuesday, August 01, 2017 13:17:21 Pacific Daylight Time

ID: ST170731G3-1 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G3_2, Date: 31-Jul-2017, Time: 17:22:07, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G3\170731G3-2.qld
Last Altered: Tuesday, August 01, 2017 13:07:42 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 13:17:21 Pacific Daylight Time

ID: ST170731G3-1 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G3_2, Date: 31-Jul-2017, Time: 17:22:07, Instrument: , Lab: , User: 13C7-PFUnA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G3\170731G3-14.qld

Last Altered: Tuesday, August 01, 2017 13:15:50 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 13:16:56 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Name: 170731G3_14, Date: 31-Jul-2017, Time: 19:53:14, ID: ST170731G3-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B

Dataset: Untitled
Last Altered: Tuesday, August 01, 2017 13:19:59 Pacific Daylight Time Printed: Tuesday, August 01, 2017 13:20:16 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

Ma	1 D	Acq:Date	Acq Time
Whatdx whx $170731 \mathrm{G3}$ _1	IPA	31-Jul-17	17:09:02
	ST170731G3-1 PFC CS3 17G3102	31-Jul-17	17:22:07
	IPA	31-Jul-17	17:34:40
	1700875-01 MW-42S-20170713 0.11821	31-Jul-17	17:47:16
	1700875-02 MW-14BR-20170713 0.11912	31-Jul-17	17:59:53
170731G3.	1700875-03 MW-51BR-20170713 0.11822	31-Jul-17	18:12:28
	1700875-04 DUP-06-20170713 0.11793	31-Jul-17	18:25:03
170731G3_8	1700875-05 MW-11S-20170713 0.11994	31-Jul-17	18:37:39
	1700884-01 MW-37BR-20170714 0.11935	31-Jul-17	18:50:15
	1700884-02 MW-32BR-20170714 0.11989	31-Jul-17	19:02:54
170731G3_11	1700884-03 MW-35S-20170714 0.11984	31-Jul-17	19:15:28
170731G3_12	1700884-04 FRB-02-20170714 0.11984	31-Jul-17	19:28:02
170731G3_13	IPA	31-Jul-17	19:40:37
170731G3_14	ST170731G3-2 PFC CS3 17G3102	31-Jul-17	19:53:14
	IPA	31-Jul-17	20:05:47

Dataset:
U:IG1.PRO\Results\2017\170731G3\170731G3-14.qld
Last Altered:
Tuesday, August 01, 2017 13:15:50 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 13:17:15 Pacific Daylight Time

Method: U:IG1.prolMethDB\PFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: ST170731G3-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G3_14, Date: 31-Jul-2017, Time: 19:53:14, Instrument: , Lab: , User:

PFOSA

170731G3_14

13C8-PFOSA
170731G3_14

PFDS

$\begin{array}{lr}\text { 13C2-PFUnA } & \\ \text { 170731G3_14 } & \text { F3:MRM of } 12 \text { channels,ES- } \\ 100 \quad \text { 13C2-PFUnA } & 565>519.8 \\ \end{array}$

PFUnA

13C2-PFUnA

Dataset: U:IG1.PROIResults\2017\170731G3\170731G3-14.qld

Last Altered: Tuesday, August 01, 2017 13:15:50 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 13:17:15 Pacific Daylight Time

ID: ST170731G3-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G3_14, Date: 31-Jul-2017, Time: 19:53:14, Instrument: , Lab: , User:

13C2-PFDoA

13C2-PFTeDA

13C2-PFTeDA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G3\170731G3-14.qld

Last Altered:	Tuesday, August 01, 2017 13:15:50 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 13:17:15 Pacific Daylight Time

ID: ST170731G3-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B, Name: 170731G3_14, Date: 31-Jul-2017, Time: 19:53:14, Instrument: , Lab: , User: 13C7-PFUnA

Dataset:
U:IG1.PRO\Resultsl2017\170731G2\170731G2-4.qld
Last Altered: \quad Monday, July 31, 2017 10:38:20 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:08 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A

Dataset: Untitled

Last Altered: Monday, July 31, 2017 17:00:48 Pacific Daylight Time
Printed: Monday, July 31, 2017 17:00:55 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

	Name	Acq Date Acq.Time	
1 1* ${ }^{\text {a }}$, 170731G2_1	IPA	31-Jul-17	09:32:17
2	(A)ST170731G2-1 PFC CS-1 17G3103	31-Jul-17	09:44:30
	IPA	31-Jul-17	09:57:00
$4 \times 170731 \mathrm{G2} 4$	ST170731G2-2 PFC CSO 17G2609	31-Jul-17	10:12:39
5 - 5 - 170731 G 2 _5	IPA	31-Jul-17	10:24:52
6 \% ${ }^{\text {a }}$, 170731G2_6	B7G0079-BS1 OPR 0.125	31-Jul-17	10:37:29
	IPA	31-Jul-17	10:50:03
8 - W 170731G2_8	B7G0079-BLK1 Method Blank 0.125	31-Jul-17	11:02:39
	1700887-01 IRPSite 6-GW-06GW01-2017071...	31-Jul-17	11:15:11
10 - UK	1700887-02 IRPSite 6-GW-06GW02-2017071...	31-Jul-17	11:27:45
11.	1700887-03 IRPSite 6-GW-FRB01-20170712	31-Jul-17	11:40:15
12 [) Wx 170731G2_12	1700887-04 Site 33-GW-33GW01-20170712 ...	31-Jul-17	11:52:47
13.4	1700887-05 Building 110-GW-110GW01-2017.	31-Jul-17	12:05:21
	IPA	31-Jul-17	12:17:54
15.4 W $170731 \mathrm{G2} 15$	1700887-06 IRPSite 6-GW-06FD01-20170712.	31-Jul-17	12:30:29
16 \% \% $170731 \mathrm{G2}$ _16	1700887-05@5X Building 110-GW-110GW01-.	31-Jul-17	12:43:01
17: \% Wit 170731G2_17	IPA	31-Jul-17	12:55:34
	ST170731G2-3 PFC CS3 17G3104	31-Jul-17	13:08:18
19 . ${ }^{\text {c }}$ - 170731G2_19	IPA	31-Jul-17	13:20:57

LC Calibration Standards Review Checklist \qquad

Run Log Present: $\quad \square$
\# of Samples per Sequence Checked:
Reviewed By:

Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:58:40 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:

Total PFBS

13C3-PFBS

PFHxA

Dataset:
 U:IG1.PRO\ResultsL2017\170731G21170731G2-4.qld

Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:58:40 Pacific Daylight Time

ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CSO 17G2609 A, Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:

PFHPA

PFHPA
170731G2_4
100

13C4-PFHpA

Total PFHxS

170731G2_4

1802-PFHxS

Vista Analytical Laboratory Q1

Dataset:
 U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld

Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time
Printed:
Monday, July 31, 2017 16:58:40 Pacific Daylight Time

ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

Total PFOS

13C8-PFOS

170731 G2_4
100

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G21170731G2-4.qld
Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:58:40 Pacific Daylight Time

ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\20171170731G2l170731G2-4.qld
Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:58:40 Pacific Daylight Time

ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G2\170731G2-4.qld
Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time Printed: Monday, July 31, 2017 16:58:40 Pacific Daylight Time

ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A, Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, Instrument: , Lab: , User:

Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:22 Pacific Daylight Time

Method: U:IG1.prolMethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A

Dataset：Untitled
Last Altered：Monday，July 31， 2017 17：00：48 Pacific Daylight Time
Printed： Monday，July 31， 2017 17：00：55 Pacific Daylight Time

Method：U：IG1．prolMethDB\PFAS＿14or16＿2trans＿0712．mdb 12 Jul 2017 13：38：17 Calibration：U：IG1．prolCurveDBIC18＿VAL－PFC＿Q1＿7－27－17＿L16＿2Trans＿A＿NEW．cdb 27 Jul 2017 14：48：06

Compound name：PFBA

	$\overline{10}$	Acq．Date	Aca Time
	IPA	31－Jul－17	09：32：17
	（A）ST170731G2－1 PFC CS－1 17G3103	31－Jul－17	09：44：30
	IPA	31－Jul－17	09：57：00
	ST170731G2－2 PFC CS0 17G2609	31－Jul－17	10：12：39
3 3 170731G2＿5	IPA	31－Jul－17	10：24：52
1170731G2＿6	B7G0079－BS1 OPR 0.125	31－Jul－17	10：37：29
170731G2_7	IPA	31－Jul－17	10：50：03
8築数170731G2＿8	B7G0079－BLK1 Method Blank 0.125	31－Jul－17	11：02：39
94xdy 170731G2＿9	1700887－01 IRPSite 6－GW－06GW01－2017071．．．	31－Jul－17	11：15：11
170731G2＿10	1700887－02 IRPSite 6－GW－06GW02－2017071．．．	31－Jul－17	11：27：45
170731G2_11	1700887－03 IRPSite 6－GW－FRB01－20170712 ．．．	31－Jul－17	11：40：15
約䜌170731G2＿12	1700887－04 Site 33－GW－33GW01－20170712 ．．．	31－Jul－17	11：52：47
3	1700887－05 Building 110－GW－110GW01－2017．．	31－Jul－17	12：05：21
170731G2_14	IPA	31－Jul－17	12：17：54
170731G2＿15	1700887－06 IRPSite 6－GW－06FD01－20170712．．．	31－Jul－17	12：30：29
170731G2＿16	1700887－05＠5X Building 110－GW－110GW01－．．．	31－Jul－17	12：43：01
3xxa 170731G2＿17	IPA	31－Jul－17	12：55：34
170731G2＿18	ST170731G2－3 PFC CS3 17G3104	31－Jul－17	13：08：18
	IPA	31－Jul－17	13：20：57

（A）INJECTION
Not used．You 713：17

Dataset:
U:IG1.PRO\Results\2017\170731G2\170731G2-18.qld
Last Altered:
Monday, July 31, 2017 13:41:38 Pacific Daylight Time
Printed:
Monday, July 31, 2017 16:59:33 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, Instrument: , Lab: , User:

Dataset:
 U:IG1.PROIResults\2017\170731G2\170731G2-18.qld

Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time

ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS
F4:MRM of 7 channels,ES-
$403>102.6$
$2.207 e^{2}+005$
Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time

ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, Instrument: , Lab: , User:

Total PFOA

170731G2_18	F5:MRM of 12 channels,ES-
$413.0>368.7$	
$5.555 e+005$	

13C2-PFOA

Total PFOS

13CB-PFOS
$\left.\begin{array}{lcr}170731 \mathrm{G2} \text { _18 } & \text { F5:MRM of } 12 \text { channels,ES- } \\ 100 & 13 \mathrm{C} 8-\mathrm{PFOS} & 507.0>79.9 \\ & 4.63\end{array}\right]$

Dataset: U:IG1.PROIResults\2017\170731G2\170731G2-18.qld
Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time

ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, Instrument: , Lab: , User:

PFNA

13C5-PFNA

(130731G2_18

PFDA

13C2-PFDA

170731G2_18		F6:MRM of 4 channels,ES-
	13C2-PFDA	$514.8>469.7$
1007	4.86	$7.225 \mathrm{e}+005$

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G2\170731G2-18.qld
Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time

ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G2\170731G2-18.qld
Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:33 Pacific Daylight Time

ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, Instrument: , Lab: , User:

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A

Sample List: U:IG1.PROISampleDB\170803G2.SPL
Last Modified: \quad Friday, August 04, 2017 11:02:35 Pacific Daylight Time
Printed:
Friday, August 04, 2017 11:04:50 Pacific Daylight Time

File Name	Sample ID	File Text
170803G2_1	IPA	IPA
170803G2_2	ST170803G2-1 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2_3	IPA	IPA
170803G2_4	B7H0015-BS1 OPR 1	OPR
170803G2_5	B7H0018-BS1 OPR 0.125	OPR
170803G2_6	IPA	IPA
170803G2_7	B7H0015-BLK1 Method Blank 1	Method Blank
170803G2 8	B7H0018-BLK1 Method Blank 0.125	Method Blank
170803G2_9	1700884-01 MW-37BR-20170714 0.11935	MW-37BR-20170714
170803G2-10	1700884-02 MW-32BR-20170714 0.11989	MW-32BR-20170714
170803G2_11	1700884-03 MW-35S-20170714 0.11984	MW-35S-20170714
170803G2 12	1700884-04 FRB-02-20170714 0.11984	FRB-02-20170714
170803G2-13	1700942-02@5X BANGR-05-SB03-10-12 1	BANGR-05-SB03-10-12
170803G2-14	1700942-03@5X BANGR-07-SB02-2-4 1	BANGR-07-SB02-2-4
170803G2_15	1700942-04@5X BANGR-07-SB02-8-9 1	BANGR-07-SB02-8-9
170803G2-16	1700942-07@5X BANGR-08-SB03-0-2 1	BANGR-08-SB03-0-2
170803G2-17	1700955-01 BANGR-05-SB01-0-2 1	BANGR-05-SB01-0-2
170803G2-18	1700955-02 BANGR-05-SB01-10-12 1	BANGR-05-SB01-10-12
170803G2_19	IPA	IPA
170803G2-20	ST170803G2-2 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2_21	IPA	IPA
170803G2_22	1700955-03 BANGR-05-SB02-0-2 1	BANGR-05-SB02-0-2
170803G2_23	B7H0015-MS1 Matrix Spike 1	Matrix Spike
170803G2_24	B7H0015-MSD1 Matrix Spike Dup 1	Matrix Spike Dup
170803G2_25	1700955-04 BANGR-05-SB02-10-11 1	BANGR-05-SB02-10-11
170803G2_26	1700955-05 BANGR-05-SO-DUP05-072717 1	BANGR-05-SO-DUP05-072717
170803G2_27	1700955-06 BANGR-06-SB03-0-2 1	BANGR-06-SB03-0-2
170803G2_28	1700955-07 BANGR-06-SB03-9-10 1	BANGR-06-SB03-9-10
170803G2 29	1700955-08 BANGR-08-SB01-0́2 1	BANGR-08-SB01-0-2
170803G2_30	1700955-09 BANGR-08-SB01-13-15 1	BANGR-08-SB01-13-15
170803G2_31	1700955-10 BANGR-08-SB02-0-2 1	BANGR-08-SB02-0-2
170803G2_32	1700955-11 BANGR-08-SB02-13-15 1	BANGR-08-SB02-13-15
170803G2_33	1700955-13 BANGR-03-SB03-0-2 1	BANGR-03-SB03-0-2
170803G2_34	IPA	IPA
170803G2 35	ST170803G2-3 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2_36	IPA	IPA
170803G2 37	1700955-14 BANGR-03-SB03-10-11 1	BANGR-03-SB03-10-11
170803G2_38	1700955-15 BANGR-03-SO-DUP03-072817 1	BANGR-03-SO-DUP03-072817
170803G2 39	1700955-16 BANGR-06-SB01-0-2 1	BANGR-06-SB01-0-2
170803G2_40	1700955-17 BANGR-06-SB01-13-15 1	BANGR-06-SB01-13-15

Work Order 1700884

MS File

PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2 trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16-2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans_0630 PFAS L14or16 - 2 trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans_0630 PFAS_L14or16_2trans_0630

Inlet File
Bottle
PFC 2010enviro 6 2:47 PFC_2010enviro_6 $\quad 2: 46$ PFC_2010enviro_6 $2: 48$ PFC_2010enviro_6 2:1 PFC- 2010enviro 6 2:2 $\begin{array}{ll}\text { PFC_2010 } & \text { enviro_6 } \\ 2: 48\end{array}$ PFC_2010enviro_6 2:3 PFC 2010enviro 6 2:4 PFC- 2010enviro ${ }^{-6} \quad 2: 5$ PFC_2010enviro_6 $2: 6$ PFC_2010enviro_6 2:7 PFC 2010enviro 6 2:8 PFC-2010enviro_6 $\quad 2: 9$ PFC_2010enviro_6 $2: 10$ PFC_2010enviro_6 2:11 PFC 2010enviro 6 2:12 PFC_2010enviro_6 $\quad 2: 13$ PFC_2010enviro_6 $\quad 2: 14$ PFC_2010enviro_6 2:47 PFC 2010enviro 6 2:46 PFC_2010enviro_6 $\quad 2: 48$ PFC_2010enviro_6 $2: 15$ PFC_2010enviro_6 2:16 PFC 2010enviro 6 2:17 PFC_2010enviro_6 $\quad 2: 18$ PFC_2010enviro_6 $\quad 2: 19$ PFC 2010enviro 6 2:20 PFC 2010enviro_6 2:21 PFC_2010enviro_6 2:22 PFC_2010enviro_6 2:23 PFC_2010enviro_6 2:24 PFC 2010enviro_6 2:25 PFC_2010enviro_6 2:26 PFC_2010enviro_6 2:47 PFC_2010enviro_6 2:46 PFC 2010enviro 6 2:48 PFC_2010enviro_6 $\quad 2: 27$ PFC_2010enviro_6 2:28 PFC 2010enviro 6 2:29 PFC 2010enviro $6 \quad 2.30$

Sample List Report

MassLynx 4.1 SCN815

Sample List:	U:IG1.PROISampleDB\170803G2.SPL	Page 3 of 4
Last Modified:	Friday, August 04, 2017 11:02:35 Pacific Daylight Time	
Printed:	Friday, August 04, 2017 11:04:50 Pacific Daylight Time	Page Position (1, 2)

	File Name	Sample ID	File Text	MS File
41	170803G2_41	1700925-04RE1 I001MW52S-170724 0.1192	I001MW52S-170724	PFAS_L14or16_2trans_0630
42	170803G2-42	B7H0018-MSD1 Matrix Spike Dup 0.125	Matrix Spike Dup	PFAS_L14or16_2trans_0630
43	170803G2_43	B7H0018-MS1 Matrix Spike 0.125	Matrix Spike	PFAS_L14or16_2trans_0630
44	170803G2_44	1700925-05RE1 I001MW52X-170724 0.1174	I001MW52X-170724	PFAS_L14or16_2trans_0630
45	170803G2_45	1700962-01 East Tank 0.125	East Tank	PFAS_L14or16_2trans_0630
46	170803G2-46	1700962-02 West Tank 0.125	West Tank	PFAS_L14or16_2trans_0630
47	170803G2_47	1700962-03 MiddleTank 0.125	MiddleTank	PFAS_L14or16_2trans_0630
48	170803G2_48	IPA	IPA	PFAS_L14or16_2trans_0630
49	170803G2_49	ST170803G2-4 PFC CS3 17H0329	PFC CS3 17H0329 A	PFAS_L14or16_2trans_0630
50	170803G2_50	IPA	IPA	PFAS_L14or16_2trans_0630

Inlet File	Bottle
PFC_2010enviro_6	$2: 31$
PFC_2010enviro_6	$2: 32$
PFC_2010enviro_6	$2: 33$
PFC_2010erviro_6	$2: 34$
PFC_2010enviro_6	$2: 35$
PFC_2010enviro_6	$2: 36$
PFC_2010enviro_6	$2: 37$
PFC_2010enviro_6	$2: 48$
PFC_2010enviro_6	$2: 46$
PFC_2010enviro6	$2: 47$

Yel 814117

LC Calibration Standards Review Checklist \qquad

Run Log Present:
\# of Samples per Sequence Checked:

Reviewed By: $\frac{0 M \operatorname{O/417}}{\text { Initials/Date }}$
Comments:
A $\angle 16$ _ $2 \operatorname{Trans}$

Dataset:
U:IG1.PROIResultsL20171170803G21170803G2-2.qld
Last Altered: Friday, August 04, 2017 11:05:45 Pacific Daylight Time
Printed: Friday, August 04, 2017 11:06:10 Pacific Daylight Time

Method: U:IG1.prolMethDB|PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, Instrument: , Lab: , User:

PFBA

13C3-PFBA

PFPeA

13C3-PFPeA
$\begin{array}{lr}170803 G 2 _2 & \text { 13C3-PFPeA }\end{array}$

Dataset: U:IG1.PROIResultsL2017\170803G2\170803G2-2.qld
Last Altered: Friday, August 04, 2017 11:05:45 Pacific Daylight Time
Printed: \quad Friday, August 04, 2017 11:06:10 Pacific Daylight Time

ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, Instrument: , Lab: , User:

Total PFBS

PFHxA
170803G2_2

13C2-PFHxA

Dataset: U:IG1.PROIResultsL2017\170803G2\170803G2-2.qId
Last Altered: Friday, August 04, 2017 11:05:45 Pacific Daylight Time
Printed: \quad Friday, August 04, 2017 11:06:10 Pacific Daylight Time

ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170803G2_2

Total PFHxS

Dataset: U:IG1.PRO\ResultsL2017\170803G2\170803G2-2.qid
Last Altered: Friday, August 04, 2017 11:05:45 Pacific Daylight Time
Printed: \quad Friday, August 04, 2017 11:06:10 Pacific Daylight Time

ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, Instrument: , Lab: , User:

Total PFOA

Total PFOS

170803G2_2

13C8-PFOS

Dataset: U:IG1.PROIResultsL2017\170803G21170803G2-2.qld
Last Altered: Friday, August 04, 2017 11:05:45 Pacific Daylight Time
Printed:
Friday, August 04, 2017 11:06:10 Pacific Daylight Time

ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, Instrument: , Lab: , User:

13C5-PFNA

13C2-PFDA

Dataset: U:IG1.PROIResultsL20171170803G21170803G2-2.qld
Last Altered: Friday, August 04, 2017 11:05:45 Pacific Daylight Time
Printed: \quad Friday, August 04, 2017 11:06:10 Pacific Daylight Time

ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\ResultsL2017\170803G2\170803G2-2.qld
Last Altered:
Friday, August 04, 2017 11:05:45 Pacific Daylight Time
Printed: Friday, August 04, 2017 11:06:10 Pacific Daylight Time

ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, Instrument: , Lab: , User:

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A

Sample List:	U:IG1.PROISampleDB\170803G2.SPL
Last Modified:	Friday, August 04, 2017 11:02:35 Pacific Daylight Time

Printed: \quad Friday, August 04, 2017 11:04:50 Pacific Daylight Time

File Name	Sample ID	File Text
170803G2_1	IPA	IPA
170803G2_2	ST170803G2-1 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2_3	IPA	IPA
170803G2_4	B7H0015-BS1 OPR 1	OPR
170803G2_5	B7H0018-BS1 OPR 0.125	OPR
170803G2_6	IPA	IPA
170803G2_7	B7H0015-BLK1 Method Blank 1	Method Blank
170803G2_8	B7H0018-BLK1 Method Blank 0.125	Method Blank
170803G2-9	1700884-01 MW-37BR-20170714 0.11935	MW-37BR-20170714
170803G2_10	1700884-02 MW-32BR-20170714 0.11989	MW-32BR-20170714
170803G2-11	1700884-03 MW-35S-20170714 0.11984	MW-35S-20170714
170803G2-12	1700884-04 FRB-02-20170714 0.11984	FRB-02-20170714
170803G2_13	1700942-02@5X BANGR-05-SB03-10-12 1	BANGR-05-SB03-10-12
170803G2_14	1700942-03@5X BANGR-07-SB02-2-4 1	BANGR-07-SB02-2-4
170803G2_15	1700942-04@5X BANGR-07-SB02-8-9 1	BANGR-07-SB02-8-9
170803G2-16	1700942-07@5X BANGR-08-SB03-0-2 1	BANGR-08-SB03-0-2
170803G2-17	1700955-01 BANGR-05-SB01-0-2 1	BANGR-05-SB01-0-2
170803G2_18	1700955-02 BANGR-05-SB01-10-12 1	BANGR-05-SB01-10-12
170803G2-19	IPA	IPA
170803G2_20	ST170803G2-2 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2-21	IPA	IPA
170803G2 22	1700955-03 BANGR-05-SB02-0-2 1	BANGR-05-SB02-0-2
170803G2-23	B7H0015-MS1 Matrix Spike 1	Matrix Spike
170803G2_24	B7H0015-MSD1 Matrix Spike Dup 1	Matrix Spike Dup
170803G2 25	1700955-04 BANGR-05-SB02-10-11 1	BANGR-05-SB02-10-11
170803G2_26	1700955-05 BANGR-05-SO-DUP05-072717 1	BANGR-05-SO-DUP05-072717
170803G2_27	1700955-06 BANGR-06-SB03-0-2 1	BANGR-06-SB03-0-2
170803G2_28	1700955-07 BANGR-06-SB03-9-10 1	BANGR-06-SB03-9-10
170803G2 29	1700955-08 BANGR-08-SB01-0̇-2 1	BANGR-08-SB01-0-2
170803G2 30	1700955-09 BANGR-08-SB01-13-15 1	BANGR-08-SB01-13-15
170803G2_31	1700955-10 BANGR-08-SB02-0-2 1	BANGR-08-SB02-0-2
170803G2_32	1700955-11 BANGR-08-SB02-13-15 1	BANGR-08-SB02-13-15
170803G2_33	1700955-13 BANGR-03-SB03-0-2 1	BANGR-03-SB03-0-2
170803G2 34	IPA	IPA
170803G2_35	ST170803G2-3 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2_36	IPA	IPA
170803G2_37	1700955-14 BANGR-03-SB03-10-11 1	BANGR-03-SB03-10-11
170803G2-38	1700955-15 BANGR-03-SO-DUP03-072817 1	BANGR-03-SO-DUP03-072817
170803G2_39	1700955-16 BANGR-06-SB01-0-2 1	BANGR-06-SB01-0-2
170803G2 40	1700955-17 BANGR-06-SB01-13-15 1	BANGR-06-SB01-13-15

MS File

PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14ar16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2 trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS ${ }^{-}$144or16-2trans 0630 PFAS_L14or16_2trans_0630

Inlet File
PFC_2010enviro_6 2:47 PFC 2010enviro 6 2:46 PFC_2010enviro 6 2:48 PFC_2010enviro-6 2:1 PFC_2010enviro_6 2:2 PFC 2010enviro 6 2:48 PFC 2010enviro ${ }^{-} 6 \quad 2: 3$ PFC_2010enviro_6 $2: 4$ PFC_2010enviro_6 2:5 PFC_2010enviro 6 2:6 PFC_2010enviro_6 2:7 PFC_2010enviro_6 2:8 PFC_2010enviro 6 2:9 PFC 2010enviro 6 2:10 PFC-2010enviro 6 2:11 PFC_2010enviro_6 $\quad 2: 12$ PFC_2010enviro_6 2:13 PFC 2010enviro 6 2:14 PFC- 2010enviro ${ }^{-6} \quad 2: 47$ PFC_2010enviro_6 $2: 46$ PFC_2010enviro_6 2:48 PFC_2010enviro 6 2:15 PFC_2010enviro_6 2:16 PFC_2010enviro_6 $\quad 2: 17$ PFC_2010enviro_6 2:18 PFC 2010enviro 6 2:19 PFC_2010enviro_6 2:20 PFC_2010enviro_6 $\quad 2: 21$ PFC_2010enviro_6 2:22 PFC_2010enviro 6 2:23 PFC_2010enviro 6 2:24 PFC_2010enviro_6 2:25 PFC_2010enviro_6 2:26 PFC_2010enviro 6 2:47 PFC 2010enviro 6 2:46 PFC_2010enviro_6 $2: 48$ PFC_2010enviro_6 2:27 PFC_2010enviro_6 2:28 PFC_2010enviro_6 2:29 PFC_2010enviro_6age 166 of 495

Sample List Report

MassLynx 4.1 SCN815

Sample List:	U:IG1.PROISampleDBl170803G2.SPL	Page 3 of 4
Last Modified:	Friday, August 04, 2017 11:02:35 Pacific Daylight Time	
Printed:	Friday, August 04, 2017 11:04:50 Pacific Daylight Time	Page Position (1, 2)

File Name	Sample ID	File Text	MS File	Inlet File	Bottle
170803G2_41	1700925-04RE1 I001MW52S-170724 0.1192	1001MW52S-170724	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:31
170803G2_42	B7H0018-MSD1 Matrix Spike Dup 0.125	Matrix Spike Dup	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:32
170803G2 43	B7H0018-MS1 Matrix Spike 0.125	Matrix Spike	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:33
170803G2_44	1700925-05RE1 I001MW52X-170724 0.1174	1001MW52X-170724	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:34
170803G2_45	1700962-01 East Tank 0.125	East Tank	PFAS_L14or16_2trans_0630	PFC-2010enviro_6	2:35
170803G2-46	1700962-02 West Tank 0.125	West Tank	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:36
170803G2_47	1700962-03 MiddleTank 0.125	MiddleTank	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:37
48 170803G2-48	IPA	IPA	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:48
49 170803G2_49	ST170803G2-4 PFC CS3 17H0329	PFC CS3 17H0329 A	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:46
50 170803G2_50	IPA	IPA	PFAS_L14or16_2trans_0630	PFC_2010enviro_6	2:47

Dataset:
U:IG1.PROIResultsL20171170803G21170803G2-20.qld
Last Altered:
Friday, August 04, 2017 11:30:16 Pacific Daylight Time
Printed: Friday, August 04, 2017 11:30:54 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, Instrument: , Lab: , User:

13C3-PFBA

PFPeA

13C3-PFPeA

Dataset: U:IG1.PRO\ResultsL2017\170803G21170803G2-20.qId
Last Altered: Friday, August 04, 2017 11:30:16 Pacific Daylight Time
Printed: \quad Friday, August 04, 2017 11:30:54 Pacific Daylight Time

ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170803G2\170803G2-20.qld
Last Altered: Friday, August 04, 2017 11:30:16 Pacific Daylight Time
Printed: \quad Friday, August 04, 2017 11:30:54 Pacific Daylight Time

ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:IG1.PRO\ResultsL2017\170803G21170803G2-20.qld

Last Altered:
Friday, August 04, 2017 11:30:16 Pacific Daylight Time
Printed: Friday, August 04, 2017 11:30:54 Pacific Daylight Time

ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, Instrument: , Lab: , User:

Total PFOA

$170803 G 2 _20$	Total PFOA
100	

13C2-PFOA

| $170803 G 2 _20$ |
| :--- | :--- |
| 100 |

Total PFOS

13C8-PFOS

Last Altered:	Friday, August 04, 2017 11:30:16 Pacific Daylight Time
Printed:	Friday, August 04, 2017 11:30:54 Pacific Daylight Time

ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, Instrument: , Lab: , User:

Dataset: U:IG1.PROIResultsL2017\170803G2\170803G2-20.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Friday, August 04, } 2017 \text { 11:30:16 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, August 04, } 2017 \text { 11:30:54 Pacific Daylight Time }\end{array}$ Friday, August 04, 2017 11:30:54 Pacific Daylight Time

ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, Instrument: , Lab: , User:

13C5-PFHXA

13C8-PFOA

170803G2_20

13C3-PFHxS

13C4-PFOS

$170803 G 2 _20$	13C4-PFOS		
100	4.64	\quad	F5:MRM of 12 channels, ES-
---:			

Dataset: U:IG1.PROIResultsL20171170803G21170803G2-20.qld
Last Altered: Friday, August 04, 2017 11:30:16 Pacific Daylight Time
Printed: Friday, August 04, 2017 11:30:54 Pacific Daylight Time

ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A, Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, Instrument: , Lab: , User:

13C6-PFDA

INITIAL CALIBRATION

Vista Analytical Laboratory Q2
Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Method: U:IG1.PROIMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

Correlation coefficient: $r=0.999923, r^{\wedge} 2=0.999847$
Calibration curve: 1.21764 * x +0.142512
Response type: Internal Std (Ref 9), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999599$
Calibration curve: $-0.0288624^{*} x^{\wedge} 2+29.2151^{*} x+0.0851315$
Response type: Internal Std (Ref 10), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\%	\# Name	Std. Conc	+ RT	Resp	IS Resp	Conc.	\%Der	RRF
1. \% $^{\text {\% }}$	1 170728G1_2	0.250	4.97	4.35 e 2	7.62e3	0.315	25.8	37.1
$2-5$	2 170728G1_3	0.500	4.97	4.93 e 2	6.79e3	0.401	-19.8	23.6
$3-3$	3 170728G1_4	1.00	4.97	1.20 e 3	7.24e3	0.920	-8.0	26.9
4 - 4 tre	4 170728G1_5	2.00	4.97	1.56 e 3	4.15 e 3	2.09	4.6	30.5
5	5 170728G1_6	5.00	4.98	5.72e3	6.62e3	4.82	-3.5	28.1
	$6170728 \mathrm{G1} 1$ 7	10.0	4.98	1.13e4	6.31 e 3	10.0	0.5	29.1
	7 170728G1_8	50.0	4.97	5.31e4	6.17 e 3	50.3	0.6	27.9
8. 0^{3}	8 170728G1_9	100	4.97	9.12e4	5.64 e 3	99.8	-0.2	26.3

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qId
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: R^2 $=0.999845$
Calibration curve: $0.00050466^{*} x^{\wedge} 2+0.454912{ }^{*} x+-0.0161039$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name wi me Std. Conc f.e RT Resp				IS Resp	Conc.	SDev	
1×2	1 170728G1_2	0.250	5.14	2.55 e 2	3.18 e 4	0.256	2.3	0.401
$2 \% 40$	2 170728G1_3	0.500	5.14	5.53 e 2	3.12e4	0.522	4.4	0.443
3.	3 170728G1_4	1.00	5.13	1.10e3	3.15 e 4	0.992	-0.8	0.436
\#\#	4 170728G1_5	2.00	5.14	1.16 e 3	1.71e4	1.89	-5.3	0.423
Y	5 170728G1_6	5.00	5.14	5.41e3	3.10 e 4	4.80	-4.0	0.436
6×2	6 170728G1_7	10.0	5.14	1.16e4	3.06e4	10.4	3.7	0.475
	7 170728G1_8	50.0	5.14	4.81e4	2.51e4	49.9	-0.2	0.479
$8{ }^{3}$	8 170728G1_9	100	5.14	8.47e4	2.10e4	100	0.0	0.505

Compound name: PFUnA

Correlation coefficient: $r=0.999740, r^{\wedge} 2=0.999481$
Calibration curve: 0.950369 * x + 0.261679
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4 ${ }^{3}$	\# Name	Std Con	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 1.	1 170728G1_2	0.250	5.10	1.12e3	3.18 e 4	0.187	-25.2	1.76
2.3	2 170728G1_3	0.500	5.10	1.99e3	3.12 e 4	0.563	12.6	1.59
3×2	3 170728G1_4	1.00	5.10	3.01e3	3.15 e4	0.982	-1.8	1.19
4	4 170728G1_5	2.00	5.10	3.37e3	1.71e4	2.32	16.0	1.23
$5 \times$	5 170728G1_6	5.00	5.11	1.25 e 4	3.10 e 4	5.03	0.5	1.01
6.4	6 170728G1_7	10.0	5.11	2.34 e 4	3.06 e 4	9.78	-2.2	0.956
7×2	7 170728G1_8	50.0	5.11	9.65 e 4	2.51 e 4	50.3	0.6	0.961
$8 \square$	8 170728G1_9	100	5.11	1.59 e 5	2.10 e4	99.6	-0.4	0.949

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999066$
Calibration curve: $-0.0319951^{*} x^{\wedge} 2+17.7619$ * $x+-1.1299$
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFDoA

Correlation coefficient: $\mathrm{r}=0.999801, \mathrm{r}^{\wedge} 2=0.999601$
Calibration curve: 0.121673 * $x+0.000589951$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1-3	1 170728G1_2	0.250	5.34	1.06 e 2	4.0004	0.268	7.4	0.133
2	2 170728G1_3	0.500	5.34	1.68 e 2	3.98 e 4	0.429	-14.2	0.106
3.	3 170728G1_4	1.00	5.33	3.50 e 2	3.87 e 4	0.924	-7.6	0.113
4	4 170728G1_5	2.00	5.34	4.94e2	2.34 e 4	2.17	8.3	0.132
5.	$5170728 \mathrm{G1}$ _6	5.00	5.34	2.00 e3	4.03 e 4	5.09	1.7	0.124
6 24ix	6 170728G1_7	10.0	5.34	3.90e3	3.82e4	10.5	4.9	0.128
7 \% ${ }^{\text {a }}$	7 170728G1_8	50.0	5.34	1.59 e 4	3.26 e 4	50.2	0.4	0.122
$8 \cdot 6$	817072861 _9	100	5.34	2.62 e 4	2.71 e4	99.2	-0.8	0.121

Dataset: U:IG1.PRO\ResultsL2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999657, \mathrm{r}^{\wedge} 2=0.999315$
Calibration curve: 1.21286 * $x+-0.015692$
Response type: Internal Std (Ref Multiple) , Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
$1 \pm$	1 170728G1_2	0.250	5.54	9.84 e 2	0.00e0	0.261	4.3	1.20
$2-5$	2 170728G1_3	0.500	5.54	2.09 e 3	0.00e0	0.536	7.3	1.27
3 -	3 170728G1_4	1.00	5.54	3.83e3	0.00e0	0.970	-3.0	1.16
$4 \square$	4 170728G1_5	2.00	5.54	4.37 e 3	0.00e0	1.98	-1.0	1.19
$5-5$	5 170728G1_6	5.00	5.55	2.00 e 4	0.00e0	5.06	1.3	1.23
6.4	$6170728 \mathrm{G1}$-7	10.0	5.54	3.43e4	0.00e0	9.02	-9.8	1.09
7.4	$7170728 \mathrm{G1}$-8	50.0	5.54	1.63 e 5	0.00e0	50.0	0.0	1.21
14me	8 170728G1_9	100	5.54	2.78 e 5	0.00e0	101	0.9	1.22

Compound name: PFTeDA

Correlation coefficient: $\mathrm{r}=0.998269, \mathrm{r}^{\wedge} 2=0.996541$
Calibration curve: $0.904178{ }^{*} x+0.15515$
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 1	1 170728G1_2	0.250	5.72	1.15 e 3	4.19 e 4	0.208	-17.0	1.37
2 ma	2 170728G1_3	0.500	5.72	2.48 e 3	4.23 e 4	0.637	27.4	1.46
3 3 ${ }^{\text {a }}$	3 170728G1_4	1.00	5.72	4.25 e 3	4.37 e 4	1.17	17.3	1.22
4×2	4 170728G1_5	2.00	5.72	4.03e3	2.24 e 4	2.32	15.8	1.12
5.3	5 170728G1_6	5.00	5.72	1.83 e 4	4.14 e 4	5.94	18.9	1.11
6 6-4,	6 170728G1_7	10.0	5.72	3.20 e 4	4.03 e 4	10.8	8.1	0.993
7 7-3	7 170728G1_8	50.0	5.72	1.27 e 5	3.47 e 4	50.4	0.9	0.915
8-	8 170728G1_9	100	5.72	2.08 e 5	2.96e4	97.2	-2.8	0.881

Quantify Compound Summary Report \quad MassLynx 4.1 SCN815	
Vista Analytical Laboratory Q2	
Dataset:	U:IG1.PROIResults120171170728G11170728G1-CRV.qld
Last Altered:	Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:51:45 Pacific Daylight Time
Printed:	

Compound name: 13C8-PFOSA

Response Factor: 1.14586
RRF SD: 0.0797179, Relative SD: 6.95702
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: d3-N-MeFOSAA

Response Factor: 0.0263732

RRF SD: 0.0028797, Relative SD: 10.919
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: RF

+ ${ }^{\text {a }}$	\# Name	Co	R	Resp	15 Resp	Conc.	\%Dev	RRF
1 1.	1 170728G1_2	163	4.97	7.62 e 3	2.03 e 4	178	9.6	0.0289
2.4	2 170728G1_3	163	4.97	6.79 e 3	2.24 e 4	144	-11.7	0.0233
	3 170728G1_4	163	4.97	7.24 e 3	2.02 e 4	170	4.4	0.0275
4	4 170728G1_5	163	4.97	4.15 e 3	1.26 e 4	157	-3.6	0.0254
5	5 170728G1_6	163	4.97	6.62e3	2.24 e 4	140	-13.6	0.0228
6.4	6170728 G 1 _7	163	4.97	6.31 e3	1.91 e 4	157	-3.6	0.0254
7	$7170728 \mathrm{G1} 8$	163	4.97	6.17 e 3	1.82 e 4	161	-0.8	0.0262
8: $2 \times \pm$	8 170728G1_9	163	4.97	5.64 e 3	1.38 e 4	194	19.4	0.0315

$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 31, } 2017 \text { 08:37:52 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 31, } 2017 \text { 08:51:45 Pacific Daylight Time }\end{array}$

Compound name: 13C2-PFUnA

Response Factor: 1.47077

RRF SD: 0.0998621, Relative SD: 6.78977
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: RF

5 5	\# Name	Std Conc	RT Resp		IS Resp	- Conc.	\%Dev	RRF
1.4	1 170728G1_2	12.5	5.10	3.18 e 4	2.03 e 4	13.3	6.6	1.57
	2 170728G1_3	12.5	5.10	3.12 e 4	2.24 e 4	11.8	-5.5	1.39
3 l	$3170728 \mathrm{G1}$ _ 4	12.5	5.10	3.15 e4	2.02 e 4	13.2	5.9	1.56
4	. 4 170728G1_5	12.5	5.10	1.71e4	1.26 e 4	11.5	-7.6	1.36
5 5	5 170728G1_6	12.5	5.11	3.10 e 4	2.24 e 4	11.8	-5.6	1.39
6 4inil	$6170728 \mathrm{G1}$-7	12.5	5.10	3.06e4	1.91 e 4	13.6	8.8	1.60
$7 \times$	7 170728G1_8	12.5	5.10	2.51 e 4	1.82 e 4	11.7	-6.0	1.38
8.	$8170728 \mathrm{G1} 1.9$	12.5	5.11	2.10 e 4	1.38 e 4	12.9	3.4	1.52

Compound name: d5-N-EtFOSAA

Response Factor: 0.0310895
RRF SD: 0.00247479 , Relative SD: 7.96021
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: \quad Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: 13C2-PFDoA

Response Factor: 1.88683
RRF SD: 0.0900852, Relative SD: 4.77443
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std. Co	RT	Resp	IS Resp	on	\%ev	RRF
1-4u=	1 170728G1_2	12.5	5.34	4.00 e 4	2.03 e 4	13.1	4.6	1.97
2×4	$2170728 \mathrm{G1}$ _3	12.5	5.34	3.98 e 4	2.24 e 4	11.8	-5.9	1.77
3 3 ${ }^{\text {a }}$	3 170728G1_4	12.5	5.34	3.87e4	2.02 e 4	12.7	1.5	1.91
4.3	4 170728G1_5	12.5	5.34	2.34 e 4	1.26 e 4	12.3	-1.4	1.86
5	5 170728G1_6	12.5	5.34	4.03e 4	2.24 e 4	11.9	-4.5	1.80
6 -	6 170728G1_7	12.5	5.33	3.82e4	$1.91 \mathrm{e}^{4}$	13.3	6.1	2.00
$7 \times$	7 170728G1_8	12.5	5.33	3.26e4	1.82 e 4	11.9	-4.7	1.80
	8 170728G1_9	12.5	5.33	2.71e 4	1.38 e 4	13.1	4.4	1.97

Compound name: 13C2-PFTeDA

Response Factor: 1.9899
RRF SD: 0.148011, Relative SD: 7.43812
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: RF

4 4	\# Name	Std Cone	RT	Resp	IS Resp	- Conc.	4 \% ${ }^{\text {\%ev }}$	W4 RRF
1 112	1 170728G1_2	12.5	5.72	4.19e4	2.03 e 4	13.0	3.8	2.07
2 2	2 170728G1_3	12.5	5.72	4.23 e 4	2.24 e 4	11.9	-5.1	1.89
3.	3 170728G1_4	12.5	5.72	4.37e4	2.02 e 4	13.6	8.5	2.16
$4 \times$	4 170728G1_5	12.5	5.72	2.24 e 4	1.26 e 4	11.2	-10.5	1.78
5	5 170728G1_6	12.5	5.72	4.14 e 4	2.24 e 4	11.6	-6.9	1.85
6	6 170728G1_7	12.5	5.72	4.03e4	1.91 e 4	13.3	6.2	2.11
7	7 170728G1_8	12.5	5.72	3.47e4	1.82 e 4	12.0	-3.8	1.91
$8 \times$	8 170728G1_9	12.5	5.72	2.96 e 4	1.38 e 4	13.5	7.9	2.15

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: 13C7-PFUnA

Response Factor: 1
RRF SD: 4.19625e-017, Relative SD: $4.19625 \mathrm{e}-015$
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: RF

3	\# Name	d. Con	RT	Resp	IS Resp	Conc.	\%Dev	RRF
$4{ }^{+}$	1 170728G1_2	12.5	5.10	2.03 e 4	2.03 e 4	12.5	0.0	1.00
	2 170728G1_3	12.5	5.10	2.24 e 4	2.24 e 4	12.5	0.0	1.00
3 l 3 ${ }^{\text {a }}$	3 170728G1_4	12.5	5.10	2.02 e 4	2.02 e 4	12.5	0.0	1.00
4 Cl	4 170728G1_5	12.5	5.10	1.26e4	1.26 e 4	12.5	0.0	1.00
5 5-4.	5 170728G1_6	12.5	5.11	2.24 e 4	2.24 e4	12.5	0.0	1.00
6	6 170728G1_7	12.5	5.10	1.91e4	1.91 e4	12.5	0.0	1.00
7 7-5	7 170728G1_8	12.5	5.10	1.82 e 4	1.82 e 4	12.5	0.0	1.00
8 CH	8 170728G1_9	12.5	5.10	1.38 e 4	1.38 e 4	12.5	-0.0	1.00

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

 Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Compound name: PFOSA

	Name		Acq. Date	Acq.Time
1.3T:	170728G1_1	IPA	28-Jul-17	16:05:47
2	170728G1_2	ST170728G1-1 PFC CS-2 17G2824	28-Jul-17	16:18:24
3.	170728G1_3	ST170728G1-2 PFC CS-1 17G2825	28-Jul-17	16:30:58
4	170728G1_4	ST170728G1-3 PFC CS0 17G2826	28-Jul-17	16:43:33
5 tita	170728G1_5	ST170728G1-4 PFC CS1 17G2827	28-Jul-17	16:56:09
6	170728G1_6	ST170728G1-5 PFC CS2 17G2828	28-Jul-17	17:09:04
7	170728G1_7	ST170728G1-6 PFC CS3 17 G 2829	28-Jul-17	17:21:42
8.	170728G1_8	ST170728G1-7 PFC CS4 17G2830	28-Jul-17	17:34:20
	170728G1_9	ST170728G1-8 PFC CS5 17G2831	28-Jul-17	17:47:02
10.	170728G1_10	IPA	28-Jul-17	17:59:40
11	170728G1_11	SS170728G1-1 PFC SSS 17G2823	28-Jul-17	18:12:17
12 -	170728G1_12	IPA	28-Jul-17	18:24:50

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Resultsl2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Method: U:IG1.PROMMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Compound name: PFOSA
Correlation coefficient: $\mathrm{r}=0.999923, \mathrm{r}^{\wedge} 2=0.999847$
Calibration curve: 1.21764 * $x+0.142512$
Response type: Internal Std (Ref 9), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 31, 2017 08:37:52 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 31, 2017 08:49:44 Pacific Daylight Time }\end{array}$

Compound name: N-MeFOSAA

Coefficient of Determination: $R^{\wedge} 2=0.999599$
Calibration curve: -0.0288624 * $x^{\wedge} 2+29.2151$ * $x+0.0851315$
Response type: Internal Std (Ref 10), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999845$
Calibration curve: 0.00050466 * $x^{\wedge} 2+0.454912$ * $x+-0.0161039$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFUnA
Correlation coefficient: $\mathbf{r}=0.999740, r^{\wedge} 2=0.999481$
Calibration curve: 0.950369 * $x+0.261679$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered:
Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999066$
Calibration curve: -0.0319951 * $x^{\wedge} 2+17.7619$ * $x+-1.1299$
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFDoA

Correlation coefficient: $\mathrm{r}=0.999801$, $\mathrm{r}^{\wedge} 2=0.999601$
Calibration curve: 0.121673 * $x+0.000589951$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

MassLynx 4.1 SCN815
Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999657, \mathrm{r}^{\wedge} 2=0.999315$
Calibration curve: 1.21286 * $x+-0.015692$
Response type: Internal Std (Ref Multiple), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G11170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:49:44 Pacific Daylight Time

Compound name: PFTeDA
Correlation coefficient: $\mathrm{r}=0.998269, \mathrm{r}^{\wedge} 2=0.996541$
Calibration curve: 0.904178 * x + 0.15515
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PROIResults\2017\170728G1\170728G1-CRV.qld
Last Altered:
Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

Method: U:IG1.PROMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: ST170728G1-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824 B, Name: 170728G1_2, Date: 28-Jul-2017, Time: 16:18:24, Instrument: , Lab: , User:
PFOSA

170728G1_2	F2:MRM of 3 channels,ES-	
${ }^{100}$	PFOSA	498.1 > 77.7
	4.60	$3.218 \mathrm{e}+004$
	8.11 e 2	
	bb 3276.88	

13C8-PFOSA

Total N-MeFOSAA

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

Dataset:	U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered:	Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:	Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824 B, Name: 170728G1_2, Date: 28-Jul-2017, Time: 16:18:24, Instrument: , Lab: , User:

PFDS		
170728		F3:MRM of 12 channels,ES-
1007	PFDS	$598.8>98.7$
	5.14	$1.077 \mathrm{e}+004$
	2.55 e 2 bb	
\%-	1343.61	

170728G1_2 F4:MRM of 8 channels,ES-

13C2-PFDoA

PFTrDA
$170728 \mathrm{G1} 2$

13C2-PFTeDA
 170728G1_2

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\20171170728G11170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824 B, Name: 170728G1_2, Date: 28-Jul-2017, Time: 16:18:24, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-1 PFC CS-2 17G2824, Description: PFC CS-2 17G2824 B, Name: 170728G1_2, Date: 28-Jul-2017, Time: 16:18:24, Instrument: , Lab: , User: 13C7-PFUnA
170728G1_2
F3:MRM of 12 channels,ES-

Dataset: U:IG1.PROIResults\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1_3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User:

13C8-PFOSA

Total N-MeFOSAA

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

170728G1 3

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PRO\Resultsl2017\170728G11170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1_3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1

Dataset:
 U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1_3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User:

PFTeDA

13C2-PFTeDA

ID: ST170728G1-2 PFC CS-1 17G2825, Description: PFC CS-1 17G2825 B, Name: 170728G1_3, Date: 28-Jul-2017, Time: 16:30:58, Instrument: , Lab: , User: 13C7-PFUnA
170728G1_3
F3:MRM of 12 channels,ES-
$100{ }^{-}$

Dataset:
U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 31, } 2017 \text { 08:37:52 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 31, } 2017 \text { 08:50:08 Pacific Daylight Time }\end{array}$ Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-3 PFC CS0 17G2826, Description: PFC CS 017 G2826 B, Name: 170728G1_4, Date: 28-Jul-2017, Time: 16:43:33, Instrument: , Lab: , User:

13C8-PFOSA

Total N-MeFOSAA

170728G1_4 F3:MRM of 12 channels,ES-

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-3 PFC CS0 17G2826, Description: PFC CS 017 G2826 B, Name: 170728G1_4, Date: 28-Jul-2017, Time: 16:43:33, Instrument: , Lab: , User:

13C2-PFDoA

PFTrDA

13C2-PFTeDA

Dataset: U:IG1.PROIResults\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-3 PFC CS0 17G2826, Description: PFC CS 017 G2826 B, Name: 170728G1_4, Date: 28-Jul-2017, Time: 16:43:33, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-3 PFC CS0 17G2826, Description: PFC CS 0 17G2826 B, Name: 170728G1_4, Date: 28-Jul-2017, Time: 16:43:33, Instrument: , Lab: , User:

Dataset:
U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: \quad Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1_5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:

PFOSA

170728G1_5	F2:MRM of 3 channels,ES-
100	PFOSA
	4.60

13C8-PFOSA

Total N-MeFOSAA

d3-N-MeFOSAA

13C2-PFUnA
170728G1_5 F3:MRM of 12 channels,ES-

Total N-EtFOSAA

d5-N-EtFOSAA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G11170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: \quad Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1_5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:

PFDS
F3:MRM of 12 channels,ES-
$598.8>98.7$
$4.788 e+004$

13C2-PFUnA

13C2-PFDoA

13C2-PFTeDA
170728G1_5
100
100
F4:MRM of 8 channels,ES-
$5.72 \quad 715>669.7$ $1.062 \mathrm{e}+006$

91616

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1_5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1

Dataset: U:IG1.PROIResults\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-4 PFC CS1 17G2827, Description: PFC CS1 17G2827 B, Name: 170728G1_5, Date: 28-Jul-2017, Time: 16:56:09, Instrument: , Lab: , User:

13C7-PFUnA

170728G1_5
100
13C7-PFUnA
F3:MRM of 12 channels,ES-
$570.1>524.8$

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\ResultsL20171170728G11170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-5 PFC CS2 17G2828, Description: PFC CS2 17G2828 B, Name: 170728G1_6, Date: 28-Jul-2017, Time: 17:09:04, Instrument: , Lab: , User:

13C8-PFOSA

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

Vista Analytical Laboratory Q1

Dataset:

U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-5 PFC CS2 17G2828, Description: PFC CS2 17G2828 B, Name: 170728G1_6, Date: 28-Jul-2017, Time: 17:09:04, Instrument: , Lab: , User:

PFDS

F3:MRM of 12 channels,ES-
170728G1_6
100

13C2-PFDoA

PFTrDA

13C2-PFTeDA

170728G1 6

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-5 PFC CS2 17G2828, Description: PFC CS2 17G2828 B, Name: 170728G1_6, Date: 28-Jul-2017, Time: 17:09:04, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1

Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-5 PFC CS2 17G2828, Description: PFC CS2 17G2828 B, Name: 170728G1_6, Date: 28-Jul-2017, Time: 17:09:04, Instrument: , Lab: , User:

Dataset:
U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-6 PFC CS3 17G2829, Description: PFC CS3 17G2829 B, Name: 170728G1_7, Date: 28-Jul-2017, Time: 17:21:42, Instrument: , Lab: , User:

13C8-PFOSA

Total N-MeFOSAA

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

$170728 \mathrm{G} 1 _7$	F3:MRM of 12 channels,ES-	
100	$\mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419.0$
	5.10	
	8.84 e 3	
	bb	

d5-N-EtFOSAA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\20171170728G11170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-6 PFC CS3 17G2829, Description: PFC CS3 17G2829 B, Name: 170728G1_7, Date: 28-Jul-2017, Time: 17:21:42, Instrument: , Lab: , User:

13C2-PFDoA

PFTrDA

170728G1_7	F4:MRM of 8 channels,ES-
$662.9>618.9$	
100	$3.560 \mathrm{e}+006$

13C2-PFTeDA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-6 PFC CS3 17G2829, Description: PFC CS3 17G2829 B, Name: 170728G1_7, Date: 28-Jul-2017, Time: 17:21:42, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-6 PFC CS3 17G2829, Description: PFC CS3 17G2829 B, Name: 170728G1_7, Date: 28-Jul-2017, Time: 17:21:42, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PROIResults\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: \quad Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-7 PFC CS4 17G2830, Description: PFC CS4 17G2830 B, Name: 170728G1_8, Date: 28-Jul-2017, Time: 17:34:20, Instrument: , Lab: , User:

13C8-PFOSA

Total N-MeFOSAA

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

170728G1_8

Dataset:
U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered:
Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-7 PFC CS4 17G2830, Description: PFC CS4 17G2830 B, Name: 170728G1_8, Date: 28-Jul-2017, Time: 17:34:20, Instrument: , Lab: , User:

PFDS

13C2-PFUnA

13C2-PFDOA

PFTrDA

13C2-PFTeDA

Vista Analytical Laboratory Q1

Dataset: U:IG1.PROXResults\2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-7 PFC CS4 17G2830, Description: PFC CS4 17G2830 B, Name: 170728G1_8, Date: 28-Jul-2017, Time: 17:34:20, Instrument: , Lab: , User:

Quantify Sample Report \quad MassLynx 4.1 SCN815
Vista Analytical Laboratory Q1

Dataset:	U:IG1.PROIResults120171170728G11170728G1-CRV.qld
Last Altered:	
Monday, July 31, 2017 08:37:52 Pacific Daylight Time	
Printed:	Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-7 PFC CS4 17G2830, Description: PFC CS4 17G2830 B, Name: 170728G1_8, Date: 28-Jul-2017, Time: 17:34:20, Instrument: , Lab: , User: 13C7-PFUnA
(170728G1_8

Dataset:
U:IG1.PROIResults\2017\170728G1\170728G1-CRV.qld
Last Altered:
Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1_9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User:

13C8-PFOSA

Total N-MeFOSAA

170728G1_9

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered:
Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1_9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User:

Dataset:
 U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld

Last Altered:
Printed:

Monday, July 31, 2017 08:37:52 Pacific Daylight Time Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1_9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered:
Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:50:08 Pacific Daylight Time

ID: ST170728G1-8 PFC CS5 17G2831, Description: PFC CS5 17G2831 B, Name: 170728G1_9, Date: 28-Jul-2017, Time: 17:47:02, Instrument: , Lab: , User:

Last Altered: Monday, July 31, 2017 08:57:14 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:57:40 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: IPA, Description: IPA, Name: 170728G1_10, Date: 28-Jul-2017, Time: 17:59:40, Instrument: , Lab: , User:

13C8-PFOSA
170728G1_10
(100)

Total N-MeFOSAA

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

Vista Analytical Laboratory Q1
Dataset: Untitled
Last Altered:
Monday, July 31, 2017 08:57:14 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:57:40 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170728G1_10, Date: 28-Jul-2017, Time: 17:59:40, Instrument: , Lab: , User:

PFDS

13C2-PFUnA

13C2-PFDoA

13C2-PFTeDA

170728G1_10 F4:MRM of 8 channels,ES

Dataset: Untitled

Last Altered:
Monday, July 31, 2017 08:57:14 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:57:40 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170728G1_10, Date: 28-Jul-2017, Time: 17:59:40, Instrument: , Lab: , User:

| Quantify Sample Report | MassLynx 4.1 SCN815 |
| :--- | :--- | :--- |
| Vista Analytical Laboratory Q1 | |

ID: IPA, Description: IPA, Name: 170728G1_10, Date: 28-Jul-2017, Time: 17:59:40, Instrument: , Lab: , User:

13C7-PFUnA

F3:MRM of 12 channels,ES-

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-11.qld
Last Altered: Monday, July 31, 2017 08:57:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:58:52 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Name: 170728G1_11, Date: 28-Jul-2017, Time: 18:12:17, ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17 G2823 B

\%	\# Name	Trace	Response	Resp	RRF	Wtivol	RT	Conc.	\%Rec	$70-130$	
1	1 PFOSA	$498.1>77.7$	2.03 e 4	2.21 e 4		1.000	4.60	9.32	93.2		
2	$2 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419.0$	1.00 e 4	6.76 e 3		1.000	4.98	8.33	83.3	$\text { Yea } 7131117$	
$\left.33^{3}\right)^{4}$	3 PFDS	$598.8>98.7$	9.53 e 3	2.79 e 4		1.000	5.14	9.34	93.4		
$4-3$	4 PFUnA	$563>518.9$	2.08 e 4	2.79 e 4		1.000	5.11	9.55	95.5		
$5-2$	5 N -EtFOSAA	584.2 > 419.0	7.19e3	7.64 e 3		1.000	5.10	8.82	88.2		
-	6 PFDoA	$612.9>318.8$	3.57 e 3	3.74 e 4		1.000	5.34	9.79	97.9		
7 7-ita	7 PFTrDA	$662.9>618.9$	3.40 e 4	0.00 e 0		1.000	5.54	9.17	91.7		
8.	8 PFTeDA	$712.9>668.8$	3.05 e 4	3.91 e 4		1.000	5.72	10.6	106.3		
9.4	9 13C8-PFOSA	$506.1>77.7$	2.21 e 4	1.86 e 4	1.146	1.000	4.60	13.0	103.8		
10.	10 d3-N-MeFOSAA	$573.3>419.0$	6.76 e 3	1.86 e 4	0.026	1.000	4.97	172	106.1		
$11 \times$	11 13C2-PFUnA	$565>519.8$	2.79 e 4	1.86 e 4	1.471	1.000	5.11	12.7	101.9		
$12 \times$	12 d5-N-EtFOSAA	$589.3>419.0$	7.64e3	1.86 e 4	0.031	1.000	5.09	165	101.8		
13	13 13C2-PFDoA	$615>569.7$	3.74 e 4	1.86 e 4	1.887	1.000	5.34	13.3	106.7		
14.	14 13C2-PFTeDA	$715>669.7$	3.91 e 4	1.86 e 4	1.990	1.000	5.72	13.2	105.6		
$15 \times$	15 13C7-PFUnA	$570.1>524.8$	1.86 e 4	1.86 e 4	1.000	1.000	5.10	12.5	100.0		

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PRO\Resultsl2017\170728G11170728G1-11.qld
Last Altered:
Monday, July 31, 2017 08:57:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:58:38 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User:

PFOSA

170728G1_11	F2:MRM of 3 channels,ES-	
100	PFOSA	498.1 > 77.7
	4.60	$8.074 \mathrm{e}+005$
	2.03 e 4	
	bb	

13C8-PFOSA

d3-N-MeFOSAA

13C2-PFUnA

Total N-EtFOSAA

d5-N-EtFOSAA

Last Altered: Monday, July 31, 2017 08:57:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:58:38 Pacific Daylight Time

ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User:

PFDS

13C2-PFDoA

PFTrDA

13C2-PFTeDA

170728G1_11

F4:MRM of 8 channels,ES-	
13C2-PFTeDA	$715>669.7$
5.72	
$3.91 e 4$	$1.908 \mathrm{e}+006$
bb	

100
14686.

Dataset: U:IG1.PROXResults\2017\170728G1\170728G1-11.qld
Last Altered: Monday, July 31, 2017 08:57:52 Pacific Daylight Time
Printed: \quad Monday, July 31, 2017 08:58:38 Pacific Daylight Time

ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-11.qld
Last Altered: Monday, July 31, 2017 08:57:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:58:38 Pacific Daylight Time

ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17G2823 B, Name: 170728G1_11, Date: 28-Jul-2017, Time: 18:12:17, Instrument: , Lab: , User:

13C7-PFUnA

170728G1_11
1007
13C7-PFUnA

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_-Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

Correlation coefficient: $\mathrm{r}=0.999824, \mathrm{r}^{\wedge} 2=0.999647$
Calibration curve: 0.747533 * $x+0.048007$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999667, \mathrm{r}^{\wedge} 2=0.999334$
Calibration curve: 1.10054 * $x+0.0486908$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	-4.4	Sta. Conc	RT	Resp	IS Resp	Conc,	\%Dev	RRF
1	1 170727G1_2		0.250	2.62	1.86 e 2	7.64e3	0.233	-6.8	1.22
2 2-2xtut	2 170727G1_3		0.500	2.63	3.85 e 2	8.33 e 3	0.481	-3.8	1.16
3 \% ${ }^{\text {dem}}$	3 170727G1_4		1.00	2.63	7.66 e 2	7.75e3	1.08	7.8	1.23
4 , mum	4 170727G1_5		2.00	2.63	1.54 e 3	8.54 e3	2.01	0.5	1.13
5×4	5 170727G1_6		5.00	2.63	3.71 e 3	7.82e3	5.34	6.8	1.18
6	6 170727G1_7		10.0	2.63	7.58 e 3	9.10 e3	9.42	-5.8	1.04
7 \% ${ }^{\text {a }}$	7 170727G1_8		50.0	2.63	3.27 e 4	7.23 e 3	51.2	2.5	1.13
8 -	$8170727 \mathrm{G1}$-9		100	2.62	6.37e4	7.31e3	98.9	-1.1	1.09

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999365, \mathrm{r}^{\wedge} 2=0.998731$
Calibration curve: 1.60766 * $x+0.593256$
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999065, \mathrm{r}^{\wedge} 2=0.998131$
Calibration curve: 1.89981 * x + 0.153363
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

19	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev.	RRF
1.4	1 170727G1_2	0.250	3.28	2.81 e 2	5.77e3	0.240	-4.0	2.44
2 2.	2 170727G1_3	0.500	3.28	5.54 e 2	7.04 e 3	0.436	-12.7	1.97
3 3	3 170727G1_4	1.00	3.28	1.13 e 3	6.35 e 3	1.09	8.6	2.22
14	4 170727G1_5	2.00	3.28	2.22 e 3	6.86 e 3	2.04	2.2	2.02
5	5 170727G1_6	5.00	3.28	5.20 e 3	5.84 e 3	5.78	15.6	2.23
6	6 170727G1_7	10.0	3.28	1.11e4	7.89 e 3	9.21	-7.9	1.77
7	7 170727G1_8	50.0	3.28	4.46 e 4	6.09 e 3	48.2	-3.7	1.83
8 8,	8 170727G1_9	100	3.29	8.84e4	5.71 e 3	102	1.8	1.94

Dataset:
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999666, \mathrm{r}^{\wedge} 2=0.999332$
Calibration curve: 1.94658 * x + 0.2548
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

W2	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev mata	RRF
1.4	1 170727G1_2	0.250	3.81	3.78 e 2	7.45e3	0.195	-22.1	2.54
2	2 170727G1_3	0.500	3.82	8.08e2	8.06e3	0.513	2.6	2.51
$3 \times$	3 170727G1_4	1.00	3.81	$1.65{ }^{\text {e }}$	8.77 e 3	1.08	7.5	2.35
4 2	4 170727G1_5	2.00	3.81	3.13 e 3	8.92 e 3	2.13	6.3	$2: 20$
5.4	5 170727G1_6	5.00	3.81	7.12e3	8.20 e 3	5.45	9.0	2.17
6	6 170727G1_7	10.0	3.81	1.60e4	1.05 e4	9.60	-4.0	1.89
7	7 170727G1_8	50.0	3.81	6.42 e 4	8.09 e 3	50.8	1.7	1.98
	8 170727G1_9	100	3.81	1.21e5	7.84e3	99.0	-1.0	1.93

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.999617, \mathrm{r}^{\wedge} 2=0.999233$
Calibration curve: 1.77848 * x + 0.109682
Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Con	Resp		IS Resp			
	1 170727G1_2	0.250	3.94	1.62 e 2	3.88 e 3	0.232	-7.1	2.09
2 , ymat.	2 170727G1_3	0.500	3.95	4.30 e 2	4.68 e 3	0.584	16.7	2.30
3 -	$3170727 \mathrm{G1}$ _4	1.00	3.94	6.02 e 2	4.35 e 3	0.911	-8.9	1.73
4	4 170727G1_5	2.00	3.94	1.37 e 3	4.63 e 3	2.02	1.2	1.85
5	5 170727G1_6	5.00	3.94	3.35 e 3	4.52 e 3	5.15	3.0	1.85
6	$6170727 \mathrm{G1}$-7	10.0	3.94	7.31e3	5.48 e 3	9.31	-6.9	1.67
	7 170727G1_8	50.0	3.94	3.04e4	4.15 e 3	51.4	2.8	1.83
$8 \times$	$8170727 \mathrm{G1}$ _9	100	3.94	5.94e4	4.21 e3	99.1	-0.9	1.76

Quantify Compound Summary Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q2
Dataset:
U:\G1.PROXResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.998786, \mathrm{r}^{\wedge} 2=0.997574$
Calibration curve: $0.797511^{*} x+0.0924786$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name - amat	Std Cone	RT	Resp	\%. IS Resp	- Conc.	\%Dev	RRF
1 -axy	1 170727G1_2	0.250	4.24	3.42 e 2	1.63 e 4	0.213	-15.0	1.05
2 2-m	2 170727G1_3	0.500	4.24	7.66e2	1.67 e 4	0.602	20.4	1.14
3 la	3 170727G1_4	1.00	4.23	1.34 e 3	1.73 e 4	1.10	10.0	0.969
4.20	4 170727G1_5	2.00	4.24	2.75 e 3	1.86 e 4	2.21	10.3	0.926
5	5 170727G1_6	5.00	4.24	7.23e3	1.80 e4	6.16	23.3	1.00
6 .	6 170727G1_7	10.0	4.24	1.44e4	2.24 e 4	9.96	-0.4	0.804
7 Cl W	7 170727G1_8	50.0	4.24	5.59e4	1.77 e 4	49.4	-1.3	0.789
8 . ${ }^{\text {a }}$ -	8 170727G1_9	100	4.24	1.14e5	1.80 e4	99.2	-0.8	0.792

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999639$
Calibration curve: $-0.00237877^{*} x^{\wedge} 2+2.32641^{*} x+0.0752635$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Exam	\# Name	Std Cone	RT	Resp	IS Resp	Conc.	\%Dev	RRF
$1-2$	1 170727G1_2	0.250	4.58	2.70 e 2	4.96 e 3	0.260	4.1	2.72
2, met	2 170727G1_3	0.500	4.58	6.08e2	6.55 e 3	0.466	-6.7	2.32
3 - ${ }^{2}$ 2la	3 170727G1_4	1.00	4.58	1.08 e 3	5.92e3	0.954	-4.6	2.29
4 L -	4 170727G1_5	2.00	4.58	2.72 e 3	6.93 e 3	2.08	4.0	2.45
5 tert	5 170727G1_6	5.00	4.58	6.11 e 3	6.11 e3	5.37	7.3	2.50
\%	$6170727 \mathrm{G1} 1$ 7	10.0	4.58	1.31e4	7.36 e 3	9.60	-4.0	2.22
7×14	7 170727G1_8	50.0	4.58	6.15 e 4	6.96 e 3	50.0	-0.0	2.21
8 -	8 170727G1_9	100	4.58	1.22 e 5	7.32e3	100	0.0	2.09

Vista Analytical Laboratory Q2

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: $\mathbf{r}=0.999145, \mathrm{r}^{\wedge} 2=0.998292$
Calibration curve: 0.470087 * x + 0.0287104
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Na	Std. Conc	RT	Resp	1S Resp	Conc.	,	RRF
1.	1 170727G1_2	0.250	4.64	6.12 e 1	5.46 e 3	0.237	-5.3	0.560
2	2 170727G1_3	0.500	4.64	1.27 e 2	6.34 e 3	0.472	-5.5	0.502
3 -	3 170727G1_4	1.00	4.64	2.59 e 2	6.56 e 3	0.990	-1.0	0.494
	4 170727G1_5	2.00	4.64	5.73 e 2	7.61 e 3	1.94	-2.9	0.471
5 .	5 170727G1_6	5.00	4.64	1.51 e 3	7.06 e 3	5.61	12.2	0.533
6 - ${ }^{\text {a }}$	6 170727G1_7	10.0	4.64	3.08 e 3	8.09 e 3	10.1	0.6	0.476
7	7 170727G1_8	50.0	4.64	1.54 e 4	7.84 e 3	52.4	4.7	0.493
8. ${ }^{\text {a }}$ +	8 170727G1_9	100	4.64	3.11e4	8.50 e 3	97.1	-2.9	0.457

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999346$
Calibration curve: $-0.000179878{ }^{*} x^{\wedge} 2+0.198072$ * $x+0.02746$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

52.	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1	1 170727G1_2	0.250	4.87	4.13 e 1	8.28 e 3	0.176	-29.6	0.249
2×4	2 170727G1_3	0.500	4.87	1.24 e 2	1.08 e 4	0.592	18.3	0.289
3	$3170727 \mathrm{G1} 4$	1.00	4.87	1.85e2	1.06 e 4	0.967	-3.3	0.219
4 -	4 170727G1_5	2.00	4.87	4.71 e 2	1.25 e 4	2.24	11.8	0.235
$5-4$.	$5170727 \mathrm{G1}$ _6	5.00	4.87	9.70 e 2	1.15 e 4	5.23	4.5	0.212
6 W	$6170727 \mathrm{G1}$-7	10.0	4.87	1.93 e 3	1.22 e 4	9.95	-0.5	0.198
7	7 170727G1_8	50.0	4.87	1.03 e 4	1.38 e 4	49.2	-1.7	0.187
8 - tas ${ }^{\text {a }}$	$8170727 \mathrm{G1}$ _9	100	4.87	2.06 e 4	1.42 e 4	100	0.5	0.181

Dataset:
U:|G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFBA

Response Factor: 1.18261
RRF SD: 0.0351574 , Relative SD: 2.97286
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: RF

War	\# Name	, Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1.	1 170727G1_2	12.5	1.67	2.10e4	1.77e4	12.5	0.2	1.18
2 L	2 170727G1_3	12.5	1.67	2.27e4	1.84 e 4	13.1	4.6	1.24
3 -	3 170727G1_4	12.5	1.67	2.13e4	1.76 e4	12.8	2.6	1.21
4×4	4.170727G1_5	12.5	1.67	2.25 e 4	1.91 e4	12.5	-0.2	1.18
	$5170727 \mathrm{G1}$ ¢ 6	12.5	1.67	2.07 e 4	1.79 e 4	12.3	-1.9	1.16
6.	6 170727G1_7	12.5	1.67	2.55e4	2,11e4	12.8	2.0	1.21
7	$7170727 \mathrm{G1}$ _8	12.5	1.67	2.11e4	1.85 e 4	12.1	-3.5	1.14
8 \%	8 170727G1_9	12.5	1.67	2.19e4	1.93 e 4	12.0	-3.8	1.14

Compound name: 13C3-PFBS

Response Factor: 0.262761
RRF SD: 0.0164175, Relative SD: 6.24805
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name - Std Conc		RT	Resp IS Resp		Conc. $\%$ Rev		
1 -	1 170727G1_2	12.5	2.91	4.70 e 3	1.73 e 4	12.9	3.2	0.271
2	2 170727G1_3	12.5	2.91	4.48 e 3	1.90 e 4	11.2	-10.1	0.236
3	3 170727G1_4	12.5	2.91	4.63 e 3	1.62 e 4	13.6	8.6	0.285
4. ${ }^{\text {a }}$	4 170727G1_5	12.5	2.91	5.33 e 3	1.95 e 4	13.0	4.2	0.274
	5 170727G1_6	12.5	2.91	4.48 e 3	1.70 e 4	12.5	0.1	0.263
6 \% ${ }^{3}$	$6170727 \mathrm{G1}$ _7	12.5	2.91	5.40 e 3	2.04 e 4	12.6	0.8	0.265
7	7 170727G1_8	12.5	2.91	4.38 e 3	1.64 e 4	12.7	1.4	0.266
8	8 170727G1_9	12.5	2.91	4.10e3	1.70e4	11.5	-8.1	0.241

Quantify Compound Summary Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory Q2	
Dataset:	U:IG1.PROIResults\|2017\170727G11170727G1-CRV.qld
Last Altered:	Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.446443

RRF SD: 0.0151073, Relative SD: 3.38392
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

Whas	\# Name	Std. Conc	RT Resp		IS Resp	Conc.	W, \%Dev"	M RRF
$1{ }^{\text {anew }}$	1 170727G1_2	12.5	2.63	7.64e3	1.73 e 4	12.3	-1.2	0.441
2 2	2 170727G1_3	12.5	2.63	8.33e3	1.90 e 4	12.3	-1.6	0.439
3. ${ }^{\text {a }}$,	3 170727G1_4	12.5	2.63	7.75 e 3	1.62 e 4	13.4	7.0	0.478
4. ${ }^{\text {ar }}$, ,	4 170727G1_5	12.5	2.63	8.54e3	1.95 e 4	12.3	-1.6	0.439
5	5 170727G1_6	12.5	2.63	7.82e3	1.70 e 4	12.9	2.9	0.459
6 \%rys	6 170727G1_7	12.5	2.63	9.10 e 3	2.04 e 4	12.5	-0.1	0.446
7 - ${ }^{\text {d }}$	7 170727G1_8	12.5	2.63	7.23e3	1.64 e 4	12.3	-1.5	0.440
8 -	8 170727G1_9	12.5	2.62	7.31e3	1.70 e 4	12.0	-3.7	0.430

Compound name: 13C2-PFHxA

Response Factor: 0.360561
RRF SD: 0.0226683, Relative SD: 6.28695
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

5 ${ }^{2}$	\# Name	Std Conc	RT	Resp	IS Resp	Conc	\%Dev	RRF
2ext	1 170727G1_2	12.5	3.28	5.77 e 3	1.73 e 4	11.5	-7.6	0.333
2 -	2 170727G1_3	12.5	3.28	7.04e3	1.90e4	12.9	3.0	0.372
3.48	3 170727G1_4	12.5	3.28	6.35 e 3	1.62 e 4	13.6	8.6	0.391
- 4x	4 170727G1_5	12.5	3.28	6.86e3	1.95 e 4	12.2	-2.2	0.353
5 +4.4x	5 170727G1_6	12.5	3.28	5.84e3	1.70 e4	11.9	-5.0	0.343
6 - ${ }^{\text {a }}$	6 170727G1_7	12.5	3.28	7.89e3	2.04 e 4	13.4	7.3	0.387
7×2	7 170727G1_8	12.5	3.28	6.09 e 3	1.64 e 4	12.8	2.7	0.370
8 - ${ }^{\text {ctem }}$	8 170727G1_9	12.5	3.28	5.71 e 3	1.70 e4	11.6	-6.8	0.336

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C4-PFHpA

Response Factor: 0.475457
RRF SD: 0.0400935, Relative SD: 8.43262
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 120	1 170727G1_2	12.5	3.81	7.45 e 3	1.73 e 4	11.3	-9.6	0.430
2 2-x	2 170727G1_3	12.5	3.81	8.06e3	1.90 e 4	11.2	-10.6	0.425
$3-n t y$	3 170727G1_4	12.5	3.81	8.77 e 3	1.62 e 4	14.2	13.6	0.540
4 - titht	$4170727 \mathrm{G1}$-5	12.5	3.81	8.92e3	1.95 e 4	12.0	-3.6	0.458
5	5 170727G1_6	12.5	3.81	8.20 e 3	1.70 e4	12.7	1.2	0.481
2	$6170727 \mathrm{G1}$-7	12.5	3.81	1.05 e 4	2.04e4	13.6	8.5	0.516
7 , 6 ce	7 170727G1_8	12.5	3.81	8.09 e 3	1.64 e 4	12.9	3.4	0.492
8 +	8 170727G1_9	12.5	3.81	7.84e3	1.70 e 4	12.1	-3.0	0.461

Compound name: 1802-PFHxS

Response Factor: 0.41062
RRF SD: 0.0152633, Relative SD: 3.71715
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

		Std. Conc	RT	Resp	IS Resp	Conc.	\% \% Dev	- RRF
1.	1 170727G1_2	12.5	3.94	3.88 e 3	9.33 e 3	12.7	1.3	0.416
2	2 170727G1_3	12.5	3.94	4.68 e 3	1.09 e 4	13.1	4.9	0.431
$3-2$	3 170727G1_4	12.5	3.94	4.35 e 3	1.09 e 4	12.1	-3.3	0.397
4 Ca	4 170727G1_5	12.5	3.94	4.63 e 3	1.19 e 4	11.8	-5.4	0.388
$5 \times$	5 170727G1_6	12.5	3.94	4.52e3	1.07 e 4	12.8	2.7	0.422
6 6 ${ }^{\text {a }}$	6 170727G1_7	12.5	3.94	5.48 e 3	1.30 e 4	12.8	2.5	0.421
7 \% 4 ter	7 170727G1_8	12.5	3.94	4.15 e 3	1.05 e 4	12.0	-3.9	0.395
8 -	8 170727G1_9	12.5	3.94	4.21 e 3	1.01 e 4	12.6	1.1	0.415

Dataset: U:|G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 2.84292
RRF SD: 0.169045, Relative SD: 5.94617
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

Werwis	\# Name	Std Conc	RT Resp		IS Resp	Conc.	\% Dev	RRF
1 Remer	1 170727G1_2	12.5	4.23	1.63 e 4	5.56 e 3	12.9	3.2	2.94
$2{ }^{2}+$	2 170727G1_3	12.5	4.24	1.67 e 4	6.24 e 3	11.8	-5.6	2.68
3	3 170727G1_4	12.5	4.24	1.73 e 4	6.06 e 3	12.5	0.3	2.85
$5 \square$	4 170727G1_5	12.5	4.24	1.86e4	6.19 e 3	13.2	5.6	3.00
5	5 170727G1_6	12.5	4.23	1.80 e 4	5.76 e 3	13.8	10.1	3.13
6	6 170727G1_7	12.5	4.24	2.24 e 4	8.45 e3	11.6	-7.0	2.64
7 \%	$7170727 \mathrm{G1} 18$	12.5	4.24	1.77 e 4	6.39 e 3	12.2	-2.5	2.77
8 -	8 170727G1_9	12.5	4.24	1.80e4	6.59 e 3	12.0	-4.1	2.73

Compound name: 13C5-PFNA

Response Factor: 0.853546
RRF SD: 0.0383372, Relative SD: 4.49152
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	Std Conc		Resp	IS Resp	Conc.	\%Dev	RRF
1 -	1 170727G1_2	12.5	4.58	4.96 e 3	5.69e3	12.8	2.1	0.872
$2 \times$	2 170727G1_3	12.5	4.58	6.55 e 3	7.13 e 3	13.5	7.6	0.919
3 , +	3 170727G1_4	12.5	4.58	5.92e3	7.07e3	12.3	-1.9	0.838
4 - 4	4 170727G1_5	12.5	4.58	6.93e3	8.26 e 3	12.3	-1.7	0.839
5	5 170727G1_6	12.5	4.57	6.11 e 3	6.89 e 3	13.0	3.8	0.886
6 - ${ }^{2}$	6 170727G1_7	12.5	4.58	7.36 e 3	9.28 e 3	11.6	-7.0	0.794
7 \%	$7170727 \mathrm{G1}$-8	12.5	4.58	6.96e3	8.18 e 3	12.5	-0.3	0.851
8 ,	8 170727G1_9	12.5	4.58	7.32e3	8.82e3	12.2	-2.8	0.830

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 1.74189

RRF SD: 0.0344803 , Relative SD: 1.97948
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
	1 170727G1_2	12.5	4.87	8.28 e 3	4.70e3	12.6	1.0	1.76
2 2	2 170727G1_3	12.5	4.87	1.08 e 4	6.26 e 3	12.3	-1.4	1.72
3.	3 170727G1_4	12.5	4.87	1.06e4	6.00 e 3	12.7	1.3	1.76
4.5	4 170727G1_5	12.5	4.87	1.25 e 4	7.21 e 3	12.5	-0.1	1.74
5	$5170727 \mathrm{G1}$-6	12.5	4.87	1.15 e 4	6.64 e 3	12.4	-0.8	1.73
6 r ${ }^{\text {a }}$	$6170727 \mathrm{G1}$-7	12.5	4.87	1.22e4	7.25 e 3	12.0	-3.7	1.68
	7 170727G1_8	12.5	4.87	1.38 e 4	7.73 e 3	12.8	2.8	1.79
8 ,	$8170727 \mathrm{G1}$-9	12.5	4.87	1.42e4	8.08e3	12.6	0.9	1.76

Compound name: 13C8-PFOS

Response Factor: 0.927146
RRF SD: 0.0309514 , Relative SD: 3.33836
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	Dev	RRE
1 \% M	1 170727G1_2	12.5	4.64	5.46e3	6.02 e 3	12.2	-2.1	0.907
2	2 170727G1_3	12.5	4.64	6.34e3	6.85 e 3	12.5	-0.1	0.927
3 3 ${ }^{2}+$	3 170727G1_4	12.5	4.64	6.56e3	7.35 e 3	12.0	-3.7	0.893
4	4 170727G1_5	12.5	4.64	7.61e3	8.50 e 3	12.1	-3.4	0.895
5 5	5 170727G1_6	12.5	4.64	7.06 e 3	7.46e3	12.8	2.1	0.947
$6 \mathrm{c} / \mathrm{c}$ +	$6170727 \mathrm{G1}$-7	12.5	4.64	8.09 e 3	8.74 e 3	12.5	-0.2	0.925
$7{ }^{2}+5$	7 170727G1_8	12.5	4.64	7.84e3	8.39 e 3	12.6	0.7	0.934
8	$8170727 \mathrm{G1}$ 9	12.5	4.64	8.50e3	8.61e3	13.3	6.6	0.988

Vista Analytical Laboratory Q2

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: RF

\because	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 .	1 170727G1_2	12.5	1.66	1.77 e 4	1.77 e 4	12.5	0.0	1.00
2.	2 170727G1_3	12.5	1.67	1.84 e 4	1.84 e 4	12.5	0.0	1.00
3.	$3170727 \mathrm{G1}$-4	12.5	1.67	1.76 e 4	1.76 e 4	12.5	0.0	1.00
4	4 170727G1_5	12.5	1.67	1.91 e 4	1.91 e 4	12.5	0.0	1.00
5. ${ }^{\text {a }}$ (2)	5 170727G1_6	12.5	1.68	1.79 e 4	1.79 e 4	12.5	0.0	1.00
6 \% ${ }^{3} \times$	6 170727G1_7	12.5	1.67	2.11 e 4	2.11 e 4	12.5	0.0	1.00
7 m	$7170727 \mathrm{G1}$-8	12.5	1.67	1.85 e 4	1.85 e 4	12.5	0.0	1.00
8 8,	8 170727G1_9	12.5	1.67	1.93 e 4	1.93 e 4	12.5	0.0	1.00

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

\cdots	\# Name	Std Conc ${ }^{\text {as }}$	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 . ${ }^{\text {anem }}$	1 170727G1_2	12.5	3.28	1.73 e 4	1.73 e 4	12.5	0.0	1.00
2 2-	2 170727G1_3	12.5	3.28	1.90e 4	1.90 e 4	12.5	0.0	1.00
text	3 170727G1_4	12.5	3.28	1.62 e 4	1.62 e 4	12.5	0.0	1.00
4.	4 170727G1_5	12.5	3.28	1.95 e 4	1.95 e 4	12.5	0.0	1.00
5 .	5 170727G1_6	12.5	3.28	1.70 e 4	1.70 e 4	12.5	0.0	1.00
6 -	6 170727G1_7	12.5	3.28	2.04 e 4	2.04 e 4	12.5	0.0	1.00
7.2	7 170727G1_8	12.5	3.28	1.64 e 4	1.64 e4	12.5	0.0	1.00
8×4	8 170727G1_9	12.5	3.28	1.70e4	1.70 e 4	12.5	0.0	1.00

Dataset:
U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std Conc	R RT	Resp	IS Resp	Conc:	\%Dev \%	RRF
1, matam	1 170727G1_2	12.5	3.94	9.33 e 3	9.33 e 3	12.5	0.0	1.00
2 2,	2 170727G1_3	12.5	3.94	1.09 e 4	1.09 e 4	12.5	0.0	1.00
3	$3170727 \mathrm{G1}$-4	12.5	3.94	1.09 e 4	1.09 e 4	12.5	0.0	1.00
4 4, ymay	4 170727G1_5	1.2 .5	3.94	1.19 e 4	1.19 e 4	12.5	0.0	1.00
5 \% ${ }^{3}$	5 170727G1_6	12.5	3.94	1.07 e 4	1.07 e 4	12.5	0.0	1.00
6	6170727 G 1 -7	12.5	3.94	1.30 e 4	1.30 e 4	12.5	0.0	1.00
	7 170727G1_8	12.5	3.94	1.05 e 4	1.05 e 4	12.5	0.0	1.00
8 8,	8 170727G1_9	12.5	3.94	1.01 e 4	1.01 e 4	12.5	0.0	1.00

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	- Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
	1 170727G1_2	12.5	4.23	5.56e3	5.56e3	12.5	0.0	1.00
2	$2170727 \mathrm{G1}$ _3	12.5	4.24	6.24e3	6.24 e3	12.5	0.0	1.00
3 -	3 170727G1_4	12.5	4.23	6.06e3	6.06 e 3	12.5	0.0	1.00
4 -	4 170727G1_5	12.5	4.23	6.19 e 3	6.19 e 3	12.5	0.0	1.00
5	$5170727 \mathrm{G1}$ 6	12.5	4.23	5.76 e 3	5.76 e 3	12.5	0.0	1.00
6 m W	6 170727G1_7	12.5	4.24	8.45 e 3	8.45 e 3	12.5	0.0	1.00
	7 170727G1_8	12.5	4.24	6.39 e 3	6.39 e 3	12.5	0.0	1.00
8 ctat	$8170727 \mathrm{G1}$-9	12.5	4.24	6.59 e 3	6.59 e 3	12.5	0.0	1.00

Dataset:
U:IG1.PRO\Resultsi2017\170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 4.19625e-017, Relative SD: $4.19625 \mathrm{e}-015$
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev -	RRF
1.	1 170727G1_2	12.5	4.57	5.69 e 3	5.69 e 3	12.5	0.0	1.00
2	2 170727G1_3	12.5	4.58	7.13e3	7.13 e 3	12.5	0.0	1.00
3×4	3 170727G1_4	12.5	4.58	7.07e3	7.07 e 3	12.5	0.0	1.00
4 -	$4170727 \mathrm{G1} 5$.	12.5	4.58	8.26 e 3	8.26 e 3	12.5	0.0	1.00
5 +4xter	5 170727G1_6	12.5	4.57	6.89e3	6.89 e 3	12.5	-0.0	1.00
6 \%twer	6 170727G1_7	12.5	4.58	9.28 e 3	9.28 e 3	12.5	0.0	1.00
7 - ${ }^{\text {atere}}$	7 170727G1_8	12.5	4.58	8.18e3	8.18 e 3	12.5	0.0	1.00
8	$8170727 \mathrm{G1}$ _9	12.5	4.57	8.82e3	8.82e3	12.5	0.0	1.00

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 5.93439e-017, Relative SD: $5.93439 \mathrm{e}-015$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory Q2
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: RF

Sumer	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRE
1.	1 170727G1_2	12.5	4.87	4.70e3	4.70 e 3	12.5	0.0	1.00
2 Le -	2 170727G1_3	12.5	4.87	6.26 e3	6.26 e 3	12.5	0.0	1.00
3 Cm	3 170727G1_4	12.5	4.87	6.00e3	6.00 e 3	12.5	0.0	1.00
4 4	4 170727G1_5	12.5	4.87	7.21e3	7.21 e 3	12.5	0.0	1.00
5 .	5 170727G1_6	12.5	4.87	6.64 e 3	6.64 e 3	12.5	0.0	1.00
6	6 170727G1_7	12.5	4.87	7.25e3	7.25 e 3	12.5	0.0	1.00
$7{ }^{2}$	7 170727G1_8	12.5	4.87	7.73 e 3	7.73 e 3	12.5	0.0	1.00
88	8 170727G1_9	12.5	4.87	8.08 e 3	8.08 e 3	12.5	0.0	1.00

Vista Analytical Laboratory VG-11

Dataset:	Untitled
Last Altered:	Thursday, July 27, 2017 15:00:56 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:01:11 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Compound name: PFBA

		Acq.Date	Acg.Time
	IPA	27-Jul-17	11:32:09
$2.170727 \mathrm{G1}$ 2	ST170727G1-1 PFC CS-2 17G2714	27-Jul-17	11:44:22
3 - - 170727G1_3	ST170727G1-2 PFC CS-1 17G2715	27-Jul-17	11:56:54
	ST170727G1-3 PFC CS0 17G2716	27-Jul-17	12:09:31
5 W	ST170727G1-4 PFC CS1 17G2717	27-Jul-17	12:21:58
$6.4170727 \mathrm{G1}$ 6	ST170727G1-5 PFC CS2 17G2718	27-Jul-17	12:34:32
14: ${ }^{\text {b }}$ 170727G1_7	ST170727G1-6 PFC CS3 17G2719	27-Jul-17	12:47:11
-170727G1_8	ST170727G1-7 PFC CS4 17G2720	27-Jul-17	12:59:35
170727G1_9	ST170727G1-8 PFC CS5 17G2721	27-Jul-17	13:12:08
10 -	IPA	27-Jul-17	13:24:41
11 - 170727G1_11	SS170727G1-1 PFC SSS 17G2713	27-Jul-17	13:37:14
$12 \times 170727 \mathrm{G} 1$ _12	IPA	27-Jul-17	13:49:43

Dataset:
 U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

 Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999824, \mathrm{r}^{\wedge} 2=0.999647$
Calibration curve: 0.747533 * $x+0.048007$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999667, \mathrm{r}^{\wedge} 2=0.999334$
Calibration curve: 1.10054 * $x+0.0486908$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $\mathrm{r}=0.999365, \mathrm{r}^{\wedge} 2=0.998731$
Calibration curve: 1.60766 * x + 0.593256
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: $r=0.999065, r^{\wedge} 2=0.998131$
Calibration curve: 1.89981 * x + 0.153363
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1
Dataset:
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHpA
Correlation coefficient: $\mathrm{r}=0.999666, \mathrm{r}^{\wedge} 2=0.999332$
Calibration curve: 1.94658 * $x+0.2548$
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700884
Page 253 of 495

Quantify Calibration Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.999617, \mathrm{r}^{\wedge} 2=0.999233$
Calibration curve: 1.77848 * x + 0.109682
Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:
Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.998786, \mathrm{r}^{\wedge} 2=0.997574$
Calibration curve: 0.797511 * $x+0.0924786$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999639$
Calibration curve: $-0.00237877^{*} x^{\wedge} 2+2.32641^{*} x+0.0752635$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report
 Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: $\mathrm{r}=0.999145, \mathrm{r}^{\wedge} 2=0.998292$
Calibration curve: 0.470087 * x + 0.0287104
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999346$
Calibration curve: -0.000179878 * $x^{\wedge} 2+0.198072$ * $x+0.02746$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Total PFBS

Total PFBS	
170727G1_2	
100	Total PFBS

13C3-PFBS

PFHxA

170727G1_2
100

13C2-PFHxA
$170727 \mathrm{G} 1 _2$
100

Dataset:

U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS
$170727 \mathrm{G} 1 _2$
100

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

13C2-PFOA

170727G1_2

13C8-PFOS

Dataset:
 U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

PFNA
170727G1_2
100

| 170727G1_2 |
| :--- | :--- | :--- | :--- |
| 100 |

13C2-PFDA

Dataset:
 U:IG1.PRO\Resultsi2017\170727G1\170727G1-CRV.qld

Last Altered:
Printed:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Datase
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

1802-PFHxS

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

13C2-PFOA

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResultsl2017\170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17 G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\20171170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 27, } 2017 \text { 14:48:06 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 27, } 2017 \text { 14:52.56 Pacific Daylight Time }\end{array}$
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Total PFBS

 13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

13C4-PFHpA
170727G1_4

Total PFHxS

Total PFHxS
170727G1_4
100

1802-PFHxS

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Total PFOA
170727G1_4

13C8-PFOS

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

13C5-PFNA

13C2-PFDA		
170727G1_4	F6:MRM of 4 channels,ES-	
100	13C2-PFDA	$514.8>469.7$
	4.87	$3.804 \mathrm{e}+005$

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17 G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Total PFBS

13C3-PFBS
170727G1_5

PFHxA

13C2-PFHxA

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

170727G1_5

Total PFOS

13C8-PFOS
\(\left.\begin{array}{lcr}170727 \mathrm{G} 1 _5 \& 13C8-PFOS \& F5:MRM of 12 channels,ES-

100 \& 4.64\end{array}\right] \quad\)| $507.0>79.9$ | |
| ---: | :--- |
| | $2.753 \mathrm{e}+005$ |

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

13C8-PFOA
170727G1_5

| 100 |
| :--- | :--- |

13C3-PFHxS

13C4-PFOS

170727G1_5
100
100

F5:MRM of 12 channels,ES-
$503.0>79.9$
$3.115 e+005$

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Total PFBS

 13C3-PFBS

\section*{PFHxA

13C2-PFHxA

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

13C4-PFHpA

170727G1_6

1802-PFHxS

Vista Analytical Laboratory Q1
Dataset: U:\G1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Total PFOA

 13C2-PFOA

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Total PFBS

13C3-PFBS

PFHxA

170727G1_7 | F3:MRM of 9 channels,ES- |
| ---: |
| $312.9>268.9$ |
| $4.232 e+005$ |

13C2-PFHxA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\ResultsL2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17 G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Total PFOA
170727 G 1 _7
100

13C2-PFOA

13C8-PFOS

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

13C5-PFHxA

 13C8-PFOA

13C3-PFHxS

13C4-PFOS

$170727 \mathrm{G1} 1$		F5:MRM of 12 channels,ES-
100	13C4-PFOS	$503.0>79.9$
	4.64	

| Quantify Sample Report
 Vista Analytical Laboratory Q1 | MassLynx 4.1 SCN815 |
| :--- | :--- | :--- |
| Dataset: | U:IG1.PROIResults\|20171170727G11170727G1-CRV.qld |
| Last Altered: | Thursday, July 27, 2017 14:48:06 Pacific Daylight Time |
| Printed: | Thursday, July 27, 2017 14:52:56 Pacific Daylight Time |

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

13C3-PFBS

PFHxA

13C2-PFHxA

$170727 \mathrm{G} 1 _8$		F3:MRM of 9 channels,ES-
100	13C2-PFHxA	$315.0>269.8$
	3.28	$2.232 \mathrm{e}+005$

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170727G1_8

1802-PFHxS

$170727 \mathrm{G} 1 _8$
100

Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:

 Thursday, July 27, 2017 14:52:56 Pacific Daylight TimeID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Total PFOA

Total PFOA
170727G1_8
100

13C2-PFOA

170727G1_8
100

Total PFOS

13C8-PFOS

| Quantify Sample Report |
| :--- | :--- |
| Vista Analytical Laboratory Q1 |

Dataset:	U:IG1.PROIResults\|20171170727G11170727G1-CRV.qld
Last Altered:	Thursday, July 27, 2017
14:48:06 Pacific Daylight Time	
Printed:	Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Dataset:	U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:	Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Last Altered:	Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:

 Thursday, July 27, 2017 14:52:56 Pacific Daylight TimeID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

13C3-PFBS

170727G1_9

| 100 |
| :--- | :--- | :--- |

PFHxA

13C2-PFHxA

$170727 G 1 _9$	F3:MRM of 9 channels,ES:	
$100-$	$315.0>269.8$	
	3.28	$2.004 \mathrm{e}+005$

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

170727G1_9

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:
PFNA
170727G1_9
100
F5:MRM of 12 channels,ES-
$463.0>418.8$

$4.292 \mathrm{e}+006$$\quad$| PFNA |
| ---: |

PFDA

13C2-PFDA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Resultsi2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST'170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: IPA, Description: IPA, Name: 170727G1_10, Date: 27-Jul-2017, Time: 13:24:41, Instrument: , Lab: , User:

PFBA

13C3-PFBA
170727G1_10
$100-$

PFPeA

Dataset: Untitled
Last Altered: Thursday, July 27, 2017 14:53:43 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:53:47 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170727G1_10, Date: 27-Jul-2017, Time: 13:24:41, Instrument: , Lab: , User:
Total PFBS
170727G1_10
100 (2.52

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset: Untitled

Last Altered:
Thursday, July 27, 2017 14:53:43 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:53:47 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170727G1_10, Date: 27-Jul-2017, Time: 13:24:41, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

170727G1_10

Total PFHxS

1802-PFHxS

ID: IPA, Description: IPA, Name: 170727G1_10, Date: 27 -Jul-2017, Time: 13:24:41, Instrument: , Lab: , User:

13C2-PFOA
 170727G1_10
 100

Total PFOS

13C8-PFOS

$170727 \mathrm{G1} 10$		F5:MRM of 12 channels, ES-
100	4.43	$507.0>79.9$
		$5.180 \mathrm{e}+001$

ID: IPA, Description: IPA, Name: 170727G1_10, Date: 27-Jul-2017, Time: 13:24:41, Instrument: , Lab: , User:

PFNA

13C5-PFNA

170727G1_10

PFDA

13C2-PFDA

170727G1_10	F6:MRM of 4 channels,ES-	
100	4.89	$514.8>469.7$
	$6.260 \mathrm{e}^{+001}$	

ID: IPA, Description: IPA, Name: 170727G1_10, Date: 27 -Jul-2017, Time: 13:24:41, Instrument: , Lab: , User:

Dataset: Untitled

Last Altered: Thursday, July 27, 2017 14:53:43 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:53:47 Pacific Daylight Time

ID: IPA, Description: IPA, Name: 170727G1_10, Date: 27-Jul-2017, Time: 13:24:41, Instrument: , Lab: , User:

Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:55:09 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713

Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

13C3-PFBA

PFPeA

13C3-PFPeA

| 170727G1_11 | F3:MRM of 9 channels, ES- |
| :--- | :---: | ---: |
| 100 | $266.0>221.8$ |
| | 2.63 |

Dataset: U:IG1.PRO\Results\2017\170727G11170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

Total PFBS

Total PFBS
170727G1_11
100

13C3-PFBS

PFHxA

13C2-PFHxA

$170727 \mathrm{G} 1 _11$	13C2-PFHxA	F3:MRM of 9 channels, ES-
100	3.29	$2.404 \mathrm{e}+005$

Dataset:

U:IG1.PROIResults\2017\170727G1\170727G1-11.qld
Last Altered:
Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

13C4-PFHpA

Total PFHxS

1802-PFHxS

$170727 \mathrm{G} 1 _11$	$1802-\mathrm{PFHxS}$		
100	3.95		
	4.53 e 3	\quad	F4:MRM of 7 channels, ES-
---:			

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

Total PFOS

13C8-PFOS

Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

13C8-PFOA

13C4-PFOS

170727G1_11	13C4-PFOS
100	4.64
	$7.78:$ MRM of 12 channels,ES-
	$503.0>79.9$
$2.822 \mathrm{e}+005$	

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

Analytical Standard Record

Vista Analytical Laboratory
17G1307

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
16 I 1432	13C2-PFHxDA	14-Sep-16	** Vendor **	07-Jan-21	14-Sep-16 14:19 by TLD	0.2
1611433	13C2-PFHxA	14-Sep-16	** Vendor **	08-Apr-21	14-Sep-16 14:22 by TLD	0.2
17B2809	d3-N-Me-FOSAA	28-Feb-17	** Vendor **	28-Feb-18	28-Feb-17 13:24 by EMS	0.5
17B2811	d5-N-EtFOSAA	28-Feb-17	** Vendor **	22-Nov-21	28-Feb-17 13:33 by EMS	0.5
17E1718	18O2-PFHxS	17-May-17	** Vendor **	17-Feb-22	17-May-17 12:46 by INJ	0.529
17 E 2412	13C8-PFOS	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:19 by INJ	0.539
17 E 2413	13C3-PFBS	24-May-17	** Vendor **	02-Aug-21	24-May-17 11:20 by INJ	0.538
17 E 2414	13C3-PFBA	24-May-17	** Vendor **	27-May-21	24-May-17 11:20 by INJ	0.5
17 E 2415	13C2-8:2 FTS	24-May-17	** Vendor **	22-Aug-21	24-May-17 11:21 by INJ	0.522
$17 \mathrm{E} 2416$	13C2-6:2 FTS	24-May-17	** Vendor **	17-Feb-22	24-May-17 11:21 by INJ	0.526
17 E 2417	13C5-PFNA	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:22 by INJ	0.5
17E2418	13C2-PFTeDA	24-May-17	** Vendor **	01-Mar-22	24-May-17 11:22 by INJ	0.5
17 E 2419	13C2-PFUdA	24-May-17	** Vendor **	22-Nov-21	24-May-17 11:23 by INJ	0.5
$17 \mathrm{E} 2420$	13C4-PFHpA	24-May-17	** Vendor **	27-May-21	24-May-17 11:23 by INJ	0.5
17E2421	13C2-PFDoA	24-May-17	** Vendor **	08-Apr-21	24-May-17 11:24 by INJ	0.5
17 G 1303	13C3-PFPeA	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:18 by INJ	0.5
17G1304	13C2-PFOA	13-Jul-17	** Vendor **	12-Feb-21	13-Jul-17 09:25 by INJ	0.5
17G1305	13C8-FOSA-I	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:33 by INJ	0.5
$17 \mathrm{G1306}$	13C2-PFDA	13-Jul-17	** Vendor **	30-Sep-21	13-Jul-17 09:36 by INJ	0.5

Description:	PFC - IS	Expires:	28-Feb-18
Standard Type:	Reagent	Prepared:	13-Jul-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	13-Jul-17 $09: 58$ by INJ

Analyte	CAS Number	Concentration
13C3-PFBS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFTeDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-6:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFPeA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFHpA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFNA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOS	1.25	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory

17G1307

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611432	13C2-PFHxDA	14-Sep-16	** Vendor **	07-Jan-21	14-Sep-16 14:19 by TLD	0.2
1611433	13C2-PFHxA	14-Sep-16	** Vendor **	08-Apr-21	14-Sep-16 14:22 by TLD	0.2
17B2809	d3-N-Me-FOSAA	28-Feb-17	** Vendor **	28-Feb-18	28-Feb-17 13:24 by EMS	0.5
17B2811	d5-N-EtFOSAA	28-Feb-17	** Vendor **	22-Nov-21	28-Feb-17 13:33 by EMS	0.5
17E1718	18O2-PFHxS	17-May-17	** Vendor **	17-Feb-22	17-May-17 12:46 by INJ	0.529
17 E 2412	13C8-PFOS	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:19 by INJ	0.539
17 E 2413	13C3-PFBS	24-May-17	** Vendor **	02-Aug-21	24-May-17 11:20 by INJ	0.538
17E2414	13C3-PFBA	24-May-17	** Vendor **	27-May-21	24-May-17 11:20 by INJ	0.5
17E2415	13C2-8:2 FTS	24-May-17	** Vendor **	22-Aug-21	24-May-17 11:21 by INJ	0.522
17E2416	13C2-6:2 FTS	24-May-17	** Vendor **	17-Feb-22	24-May-17 11:21 by INJ	0.526
17 E 2417	13C5-PFNA	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:22 by INJ	0.5
17 E 2418	13C2-PFTeDA	24-May-17	** Vendor **	01-Mar-22	24-May-17 11:22 by INJ	0.5
17 E 2419	13C2-PFUdA	24-May-17	** Vendor **	22-Nov-21	24-May-17 11:23 by INJ	0.5
17 E 2420	13C4-PFHpA	24-May-17	** Vendor **	27-May-21	24-May-17 11:23 by INJ	0.5
17 E 2421	13C2-PFDoA	24-May-17	** Vendor **	08-Apr-21	24-May-17 11:24 by INJ	0.5
17G1303	13C3-PFPeA	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:18 by INJ	0.5
17G1304	13C2-PFOA	13-Jul-17	** Vendor **	12-Feb-21	13-Jul-17 09:25 by INJ	0.5
17G1305	13C8-FOSA-I	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:33 by INJ	0.5
17 G 1306	13C2-PFDA	13-Jul-17	** Vendor **	30-Sep-21	13-Jul-17 09:36 by INJ	0.5

Description:	PFC - IS	Expires:	28-Feb-18
Standard Type:	Reagent	Prepared:	13-Jul-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	20	Department:	LCMS
Vials:	1	Last Edit:	13-Jul-17 $09: 58$ by INJ

Analyte	CAS Number	Concentration	Units
13C8-PFOSA	1.25	$\mathrm{ug} / \mathrm{mL}$	
18O2-PFHxS	1.25	$\mathrm{ug} / \mathrm{mL}$	
d3-MeFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-PFUnA	1.25	$\mathrm{ug} / \mathrm{mL}$	

M2PFHxDA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexadecanoic acid

LOT NUMBER: M2PFHxDA1112

CAS \#:

Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/ysy)
EXPIRY DATE: (mm/dd/ysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \sqrt{ }$
>98\%
01/07/2016 01/07/2021

MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
816.11

Methanol Water ($<1 \%$) $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)
29nov2012_M2PFHxDA_004
M2PFHxDA1112 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-1200 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 100% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2PFHxDA)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=15 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MPFHxA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexanoic acid

LOT NUMBER: MPFHxA0416

CAS \#: Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n-hexanoic acid and $\sim 0.3 \%$ of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFHxA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions over 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: MPFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ MPFHxA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=10 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By

Date: \qquad

INTENDED USE

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC:
MS:

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=50$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{d} 3-\mathrm{N}-\mathrm{MeFOSAA}$)	
		Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

d5-N-EtFOSAA

LOT NUMBER: d5NEtFOSAA1116
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid

STRUCTURE:

CAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrysy)
EXPIRY DATE: (mmddryyy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: $\quad 590.26$
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 98 \%{ }^{2} \mathrm{H}_{5}$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: $\quad \mathrm{d} 5-\mathrm{N}-E t F O S A A ;$ LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ d5-N-EtFOSAA)	
		Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=20$
Flow:	$300 \mu 1 / m i n$	

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

MPFHxS
Sodium perfluoro-1-hexane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate

LOT NUMBER: MPFHxS0217

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{18} \mathrm{ONa}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFHxS anion)
>98\%
02/17/2017
02/17/2022

MOLECULAR WEIGHT: 426.10
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>94 \%\left({ }^{18} \mathrm{O}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- The response factor for MPFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)$ has been observed to be up to 10% lower than for $\mathrm{PFHxS}\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)$ when both compounds are injected together. This difference may vary between instruments.
- Contains $\sim 1.0 \%$ of sodium perfluoro-1-octane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate $\left({ }^{18} \mathrm{O}_{2}-\mathrm{PFOS}\right)$.
- Due to the isotopic purity of the starting material ($\left.{ }^{18} \mathrm{O}_{2}>94 \%\right)$, MPFHxS contains $\sim 0.3 \%$ of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

M8PFOS

Sodium perfluoro-1-[$\left[{ }^{13} \mathrm{C}_{8}\right]$ octanesulfonate

LOT NUMBER: M8PFOS0916

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddaymy)
EXPIRY DATE: (mmddoryny)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}
$$

$48.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M8PFOS anion) >97\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 530.05 SOLVENT(S): Methanol

ISOTOPIC PURITY:
$>99 \%{ }^{13} \mathrm{C}$
${ }_{\left({ }^{13} \mathrm{C}_{8}\right)}$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.6 \%$ of sodium perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonate (${ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}$), $\sim 1.0 \%$ of chlorohexadecafluoro-1-[$\left.{ }^{13} \mathrm{C}_{8}\right]$ octanesulfonate, and $\sim 1.5 \%$ of sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

STRUCTURE:

M3PFBS
Sodium perfluoro-1-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate
LOT NUMBER: M3PFBS0815

GAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduryw)
EXPIRY DATE: (mmodrysy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.5 \pm 2.3 \mu \mathrm{gg} / \mathrm{ml}$ (M3PFBS anion)
>98\%
08/02/2016
08/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$ $\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

M3PFBA
Perfluoro-n-[2,3,4- ${ }^{13} \mathrm{C}_{3}$ butanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoddymy
EXPIRY DATE: (midadmys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/27/2016
05/27/2021
Store ampoule in a cool, dark place

LOT NUMBER: M3PFBA0516

CAS \#: Not available

MOLECULAR WEIGHT: 217.02 SOLVENT(S): Methanol Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro- $n-\left[{ }^{13} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

$17 E 2415$

PRODUCT CODE:	M2-8:2FTS	LOT NUMBER:	M282FTS0816
COMPOUND:	Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ decane sulfonate		
STRUCTURE:		CAS\#:	Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2$ FTS contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE:

COMPOUND:

M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ octane sulfonate

M262FTS0217

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dodyyy)
RECOMMENDED STORAGE:
$\left.\begin{array}{ll}{ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na} & \text { MOLECULAR WEIGHT: } \\ 50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} & \text { (Na salt) }\end{array}\right)$ SOLVENT(S):
452.13

Methanol
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $6: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\quad 02 / 24 / 2017$
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

MPFNA
Perfluoro-n-[1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$]nonanoic acid

LOT NUMBER: MPFNA0916

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mmiddyyny)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

$7 E 24-18$

CERTIFICATE OF ANALYSIS DOCUMENTATION*

PRODUCT CODE:
COMPOUND:
M2PFTeDA Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ tetradecanoic acid

LOT NUMBER: M2PFTeDA0217

STRUCTURE:
CAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED; (mm/dodyy)
EXPIRY DATE: (mmodrymy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
03/01/2017
03/01/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
ISOTOPIC PURITY:
716.10 Methanol Water (<1\%) $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE: COMPOUND:

MPFUdA
Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right.$]undecanoic acid

LOT NUMBER: MPFUdA1116

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dolyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{9} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/22/2016
11/22/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT (S):

ISOTOPIC PURITY:
566.08

Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1-{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\sim 1 \%$; see Figure 2$), 2-{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\left.\sim 1 \%\right)$, and PFUdA $(\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{12 / 07 / 2016}{(m m / d d / y y y y)}$

WELLINGTON LA B OR ATORIES

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M4PFHpA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$]heptanoic acid

LOT NUMBER: M4PFHpA0516

CAS \#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mmodilym)	05/27/2016
EXPIRY DATE: (mnddumy	05/27/2021

MOLECULAR WEIGHT:	368.03 SOLVENT(S):
Methanol Water $(<1 \%)$ ISOTOPIC PURITY: $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$	

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 07/05/2016
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

$7 E 2421$

WELLINGTON
LA B OR A TORIES

CERTIFICATE OF ANALYSIS
 DOCUMENTATION.

PRODUCT CODE:	MPFDoA	LOT NUMBER:	MPFDoA0416
COMPOUND:	Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ dodecanoic acid		
STRUCTURE:		CAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	616.08
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: $(m m / d d y y y)$	$04 / 08 / 2016$		$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$
EXPIRY DATE: $(m m / d d / y y y)$	$04 / 08 / 2021$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE: COMPOUND:

Perfluoro-n-[3,4,5- $-^{13} \mathrm{C}_{3}$]pentanoic acid

LOT NUMBER: M3PFPeA0417

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiduysys)
EXPIRY DATE: (mnddusw)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/20/2017

MOLECULAR WEIGHT: 267.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(3,4,5-{ }_{-13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro-n- $\left[{ }^{13} \mathrm{C}_{3}\right.$ butanoic acid and 0.05% of perfluoro- 1 -pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyy)
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (l/hr) $=60$
	2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{~L}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 3 \mathrm{PFPeA})$	MS Parameters

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
COMPOUND:

Perfluoro-n-[1,2- $-^{13} \mathrm{C}_{2}$]octanoic acid

LOT NUMBER: M2PFOA0216

GAS \#: \quad Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

$$
17 G 1304
$$

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M2PFOA $)$

Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

 COMPOUND:LOT NUMBER: M8FOSA04171

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmiddryw)
EXPIRY DATE: (mmuddrmys)
RECOMMENDED STORAGE: Refrigerate ampoule
${ }^{13} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
04/20/2017
04/20/2022

MOLECULAR WEIGHT:
SOLVENTS):
ISOTOPIC PURITY:
507.09 Isopropanol $\geq 99 \%{ }^{13} \mathrm{C}$ $\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.1 \%$ of perfluoro- $1-\left[{ }^{33} \mathrm{C}_{4}\right]$ octanesulfonamide and $\sim 0.01 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right.$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)

| 20apr2017_M8FOSA_001 |
| :--- | :--- | :--- |
| M8FOSA0417l $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: Micromass Quattro micro API MS

Chromatograp	ic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 85% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.50$ Cone Voltage (V) $=40.00$ Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$17 G 1305$

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M8FOSA-I) $)$
Mobile phase:socratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	
Flow:	$300 \mu / / \mathrm{min}$

$17 G 1306$

WELLINGTON

LABORATORIES

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
COMPOUND:

Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]decanoic acid

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodyyyy
EXPIRY DATE: (mmddolsyys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:

LOT NUMBER: MPFDA0916

GAS \#:
Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of ${ }^{13} \mathrm{C}_{1}$-PENA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAC}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow ($/ / h r$) $=750$

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFDA)}$
Mobile ph	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)
Flow:	$300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=13$

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFDS		1	$\mathrm{ug} / \mathrm{mL}$	
6:2 FTS	$27619-97-2$	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFTeDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFPeA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOSA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOS		0.788	$\mathrm{ug} / \mathrm{mL}$	
L-PFODA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOA		1	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFNA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHxS			0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHxA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFUnA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpA			1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA		$51506-32-8$		$\mathrm{ug} / \mathrm{mL}$
L-PFDoA		1	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFBS		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFBA		1	$\mathrm{ug} / \mathrm{mL}$	
L-8:2FTS		1	$\mathrm{ug} / \mathrm{mL}$	
L-6:2 FTS		$1691-99-2$	1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE	$2991-50-6$	5	$\mathrm{ug} / \mathrm{mL}$	
EtFOSAA	$4151-50-2$	1	$\mathrm{ug} / \mathrm{mL}$	
EtFOSA		5	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
Br-PFHxS	$3871-99-6$	0.189	$\mathrm{ug} / \mathrm{mL}$	
8:2 FTS	$70887-84-2$	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpS		1	$\mathrm{ug} / \mathrm{mL}$	
PFHxS	$355-46-4$	1	$\mathrm{ug} / \mathrm{mL}$	
Total PFHxS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS			1	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record
Vista Analytical Laboratory
17D2705

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFUnA	$2058-94-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFTrDA	$72629-94-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFTeDA	$376-06-7$	1	$\mathrm{ug} / \mathrm{mL}$	
PFPeA	$2706-90-3$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOSA	$754-91-6$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOS	$1763-23-1$	1	$\mathrm{ug} / \mathrm{mL}$	
PFODA	$16517-11-6$		1	$\mathrm{ug} / \mathrm{mL}$
L-PFTrDA		1	$\mathrm{ug} / \mathrm{mL}$	

Analytical Standard Record
Vista Analytical Laboratory
17D2705

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFNA	$375-95-1$	1	$\mathrm{ug} / \mathrm{mL}$	
Total PFUnA		1	$\mathrm{ug} / \mathrm{mL}$	
PFHxDA	$67905-19-5$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHxA	$307-24-4$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHpS	$375-92-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHpA	$375-85-9$	1	$\mathrm{ug} / \mathrm{mL}$	
PFDS	$335-77-3$	1	$\mathrm{ug} / \mathrm{mL}$	
PFDoA	$307-55-1$	1	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
16 I 3001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17C1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17D2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17D2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17D2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFDA	$335-76-2$	1	$\mathrm{ug} / \mathrm{mL}$	
PFBS	$375-73-5$	1	$\mathrm{ug} / \mathrm{mL}$	
PFBA	$375-22-4$	1	$\mathrm{ug} / \mathrm{mL}$	
MeFOSE	$24448-09-7$	5	$\mathrm{ug} / \mathrm{mL}$	
MeFOSAA	$2355-31-9$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOA	$335-67-1$	1	$\mathrm{ug} / \mathrm{mL}$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

Perfluoro-n-decanoic acid

LOT NUMBER: PFDA0516

CAS \#:
335-76-2

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	514.08
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ ノ	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmodyyy)	05/31/2016		
EXPIRY DATE: (mmddy ${ }^{\text {Prys) }}$	05/31/2021		
RECOMMENDED STORAGE			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of Perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)

31may2016_PFDA_001	31-May-2016	13:43:26
PFDA0516 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:
 $\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
Source: Electrospray (negative)
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OA}$ buffer)
Ramp to 90% organic over 7.5 min and hold for
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow $(1 / \mathrm{hr})=50$
Desolvation Gas Flow (l/hr) $=750$

Flow:
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

MS Parameters

Capillary Voltage (kV) $=2.00$

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { PFDA) }\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH} \\ 4\end{array} \mathrm{OAc} \text { buffer) }\end{array}\right\}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=13$

LA B OR A T ORIES

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: PFHXA1215

CAS \#: 307-24-4

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurym)
EXPIRY DATE: (mmdadsys)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5^{11} \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/22/2015
12/22/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
314.05

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of Perfluoro-n-pentanoic acid (PFPeA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxA; LC/MS Data (TIC and Mass Spectrum)
22dec2015_PFHxA_002
PFHXA1215 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:			
LC:	Waters Acquity Ultra Performance LC		
MS:	Micromass Quattro micro API MS		

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (150-850 amu)

Mobile phase: Gradient Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow (1/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: \quad PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFHxA)
Mobile pha	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

PRODUCT CODE:

 COMPOUND:STRUCTURE:

LOT NUMBER: NMeFOSAA0116V
N -methylperfluoro-1-octanesulfonamidoacetic acid

MOLECULAR FORMULA:	$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$		
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	MOLECULAR WEIGHT:	571.21 Methanol Water
CHEMICAL PURITY:	$>98 \%$	SOLVENT (S):	
LAST TESTED: $(m m / d d / y m y)$	$01 / 20 / 2016$		
EXPIRY DATE: $(m m / d d y y y)$	$01 / 20 / 2021$		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

20jan2016_NMeFOSAA_003	20-Jan-2016	17:01:32
NMeFOSAA0116 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column: A	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: $\quad \mathrm{N}-\mathrm{MeFOSAA}$; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ N-MeFOSAA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters
 Collision Gas (mbar) $=3.66 \mathrm{e}-3$
 Collision Energy (eV) $=25$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

ETFOSAA

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

N -ethylperfluoro-1-octanesulfonamidoacetic acid

LOT NUMBER: NETFOSAA0116

CAS \#:
2991-50-6

MOLECULAR FORMULA: CONCENTRATION:	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \mathrm{~J} \end{aligned}$	MOLECULAR WEIGHT: SOLVENT(S):	585.23 Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmuddyys)	01/20/2016		
EXPIRY DATE: (mmuddrysy)	01/20/2021		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

20jan2016_NEtFOSAA_002	20-Jan-2016	17:12:28
NEtFOSAA0116 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters
Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=35.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Note: N-EtFOSA is formed by fragmentation of N-EtFOSAA.

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{N}$-EtFOSAA)	
		Collision Gas (mbar) $=3.66 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Collision Energy (eV) $=25$
Flow:	$300 \mu / / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: PFTeDA1215

GAS \#:
376-06-7

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$ and $\sim 0.2 \%$ of PFPeDA $\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

MS: \quad Micromass Quattro micro API MS
Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 65% ($80: 20 \mathrm{MeOH}: A C N$) / 35\% $\mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (250-1250 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE: COMPOUND:

PFTrDA
Perfluoro-n-tridecanoic acid

LOT NUMBER: PFTrDA0216

STRUCTURE:
CAS \#:
72629-94-8

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/darym)
EXPIRY DATE: (mmbduryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/12/2016
02/12/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
664.11

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of PFUdA $\left(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\right), \sim 0.4 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)

Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=22.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow ($1 / h r$) $=650$
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFTDA)}$	MS Parameters
Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$	Collision Gas (mbar) $=3.35 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=15$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

PRODUCT CODE:

COMPOUND:

PFDoA
Perfluoro-n-dodecanoic acid

LOT NUMBER: PFDoA0516

CAS \#: 307-55-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidduyy)
EXPIRY DATE: (mmldodsyy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

>98\%

$$
05 / 31 / 2016
$$

$$
05 / 31 / 2021
$$

MOLECULAR WEIGHT:
SOLVENTS):
614.10

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad (mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFDoA; LC/MS Data (TIC and Mass Spectrum)

\section*{Conditions for Figure 1:
 | LC: | Waters Acquity Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

Chromatographic Conditions
 Column:
 Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
 Mobile phase: Gradient

Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NAAc}^{2}$ buffer)
Ramp to 90% organic over 7.5 min and hold for
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=20.00$
Cone Gas Flow (I / hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: PFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFDoA)

Mobile phase: Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=13$

Flow: $\quad 300 \mu / / m i n$

PRODUCT CODE:

 COMPOUND:FOSA-I
Perfluoro-1-octanesulfonamide

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mmmddrymy)	$09 / 02 / 2015$
EXPIRY DATE: (mmmddyyy)	$09 / 02 / 2017$
RECOMMENDED STORAGE:	Refrigerate ampoule

LOT NUMBER: FOSA0815I

CAS \#: 754-91-6

MOLECULAR WEIGHT: 499.14
SOLVENT(S): Isopropanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

nertacioc mutrnal
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
	Time: 10 min (
Flow:	$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage (V) $=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ FOSA-I)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)

Flow: $300 \mu 1 /$ min

MS Parameters

Collision Gas (mbar) $=3.54 \mathrm{e}-3$
Collision Energy (eV) $=30$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PFNA
Perfluoro-n-nonanoic acid

LOT NUMBER: PFNA1015

CAS \#:
375-95-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (muddismes)
EXPIRY DATE: (mmbdaryys)
RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/23/2015
10/23/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
464.08

SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of perfluoro-n-octanoic acid (PFOA) and $<0.1 \%$ of perfluoro-n-heptanoic acid (PFHpA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)
23oct2015_PFNA_002
PFNA1015 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \begin{array}{l}\text { Acquity UPLC BEH Shield RP } \\ \\ \\ \\ \\ \text { Mobile phase: }\end{array} \\ & \text { Gradient }\end{array}$
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFNA $)$

Mobile phase: Isocratic 80\% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=11$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0516

GAS \#:
2706-90-3

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/syy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:

MOLECULAR WEIGHT: SOLVENT(S): Methanol Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydride - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad 06/02/2016
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: \quad PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 $\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 30% ($80: 20 \mathrm{MeOH}: A C N$) / 70\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFPeA)}$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.20 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=9$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

PEBA
Perfluoro-n-butanoic acid

LOT NUMBER: PFBA0516

GAS \#:
375-22-4

MOLECULAR FORMULA:

 CONCENTRATION:
CHEMICAL PURITY:

LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/spy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/27/2016
05/27/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 214.04
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{(\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy})}{\text { (}}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5	Cone Gas Flow (l/hr) $=100$
	min before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFBA)	
		Collision Gas (mbar) $=3.62 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=10$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

WELLINGTON

LAB OR A TORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/29/2016
04/29/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
05/20/2016
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:		
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1000 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 70\% (80:20 MeOH:ACN) / 30\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 95% organic over 6 min and hold for 2.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFODA})$	MS Parameters

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PROA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0716

GAS \#:

335-67-1

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	414.07
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT (S):	Methanol CHEMICAL PURITY:
LAST TESTED: $(m m / d d / y s y)$	$>98 \%$		Water $(<1 \%)$
EXPIRY DATE: $(m m / d d / y m y)$	$08 / 02 / 2016$	$08 / 02 / 2021$	
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)
02aug2016_PFOA_001
PFOA0716 $25 \mathrm{ug} / \mathrm{ml}$
100

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFOA})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=10$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

N-MeFOSA-M
N -methylperfluoro-1-octanesulfonamide

LOT NUMBER: NMeFOSA0516M

CAS \#: 31506-32-8

MOLECULAR FORMULA:		$\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:		$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:		$>98 \%$
LAST TESTED: (mm/dd/myy)		$05 / 24 / 2016$
EXPIRY DATE: (mm/dd/yny)	$05 / 24 / 2021$	
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place	

MOLECULAR WEIGHT: 513.17
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0516M

GAS \#:
4151-50-2

MOLECULAR FORMULA:		$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	
CHEMICAL PURITY:	$>98 \%$	
LAST TESTED: (mm/dd/yyy)	$05 / 24 / 2016$	
EXPIRY DATE: $(m \mathrm{~mm} / \mathrm{d} / \mathrm{yyy})$	$05 / 24 / 2021$	
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place	

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:
MOLECULAR WEIGHT: 527.20
SOLVENT(S): Methanol

ADD IT

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

N-EtFOSE-M 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol

STRUCTURE:

GAS \#:
1691-99-2

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodshyy)
EXPIRY DATE: (mmiddsmy)
RECOMMENDED STORAGE
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{11} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
$11 / 10 / 2015$ (HRGC/LRMS)
$11 / 09 / 2015$ (LC/MS)
$11 / 10 / 2020$

MOLECULAR WEIGHT:
571.25

SOLVENTS):
Methanol

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE:

COMPOUND:

PFUdA

Perfluoro-n-undecanoic acid

LOT NUMBER: PFUdA1016

CAS \#: 2058-94-8

MOLECULAR FORMULA:
$\mathrm{C}_{n} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmidolmwn)

PRODUCT CODE:

 COMPOUND:PFHxDA
Perfluoro-n-hexadecanoic acid

STRUCTURE:

LOT NUMBER: PFHxDA0516

CAS \#:

67905-19-5

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodryyy)
EXPIRY DATE: (mmddd hyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/25/2016
05/25/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 814.13
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.4 \%$ of PFODA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 05/27/2016 (mm/dd/yyyy)

CERTIFICATE OF ANALYSIS DOCUMENTATION*

PRODUCT CODE: COMPOUND:

PFHpA
Perfluoro-n-heptanoic acid

LOT NUMBER: PFHpA1216

CAS \#:

375-85-9

MOLECULAR FORMULA:
CONCENTRATION:
$\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
CHEMICAL PURITY:
LAST TESTED: (mmodymy)
EXPIRY DATE: (mmddymy)
RECOMMENDED STORAGE:

12/02/2016
12/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

17D2621

PRODUCT CODE: COMPOUND:

STRUCTURE:

N-MeFOSE-M
2-(N-methylperfluoro-1-octanesulfonamido)-ethanol

CAS \#:
24448-09-7

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)

EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/10/2015 (HRGC/LRMS)
11/09/2015 (LC/MS)
11/10/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 557.22
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17D2706

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 C 1027 | PFBS anion | $10-M a r-17$ | Jamie C. Stockman | 02-Dec-21 | 10-Mar-17 15:27 by JCS |

Description:	L-PFBS anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	Methanol	Prepared By:	Emilie Schneider
Final Volume $(\mathrm{mls}):$	1.326	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 13:48 by EMS

| Analyte | CAS Number | Concentration | Units |
| :--- | :---: | :---: | :---: | :---: |
| PFBS | $375-73-5$ | 25 | $\mathrm{ug} / \mathrm{mL}$ |
| L-PFBS | | 25 | $\mathrm{ug} / \mathrm{mL}$ |

PRODUCT CODE:
COMPOUND:

L-PFBS
Potassium perfluoro-1-butanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddrymy)
EXPIRY DATE: (mmpddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{~F}_{\mathrm{g}} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
12/02/2016
12/02/2021
Store ampoule in a cool, dark place

LOT NUMBER: LPFBS1116

CAS \#: 29420-49-3

MOLECULAR WEIGHT: 338.19
 SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFBS})$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH

Flow: $300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=25$

Analytical Standard Record

Vista Analytical Laboratory

17D2709

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 16 I 1427 | $8: 2$ FTS anion | $14-$ Sep-16 | $* *$ Vendor $* *$ | 22-Aug-21 | 15-Dec-16 08:53 by AEW |

Description:	$8: 2 \mathrm{FTS}$ anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	$27-A p r-17$
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.958	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 14:28 by INJ

Analyte	CAS Number	Concentration	Units
L-8:2FTS		25	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS	$70887-84-2$	25	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: 82FTS0816
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate

CAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyys)
EXPIRY DATE: (mmbdodyw)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
MOLECULAR WEIGHT:
SOLVENT(S):
550.16
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1:
8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Agilent Zorbax Bonus-RP
$1.8 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $55 \%(80: 20 \mathrm{MeOH} / \mathrm{ACN}) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min
before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (250-850 amu)
Source:Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=30.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: $\quad 8: 2 F T S ;$ LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ 8:2FTS)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} 4{ }_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.31 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=30 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Analytical Standard Record

Vista Analytical Laboratory

17D2715

Parent Standards used in this standard:							
Standard Description	Description	Prepared	Prepared By	Expires	Last Edit		(mls)
17D2622 6:2FTS	6:2FTS	26-Apr-17	** Vendor **	25-Jun-21	12-Jun-1	9:01 by AEW	0.5
Description:	6:2 FTS anion DIL		Expires:		27-Apr-18		
Standard Type:	Other		Prepared:		27-Apr-17		
Solvent:	MeOH		Prepared By:		Isaac N . Johnson		
Final Volume (mls):	0.948		Department:		LCMS		
Vials:	1		Last Edit:		12-Jun-17 09:01 by AEW		
Analyte				CAS Number	Concentration	Units	
Total 6:2 FTS					25	$\mathrm{ug} / \mathrm{mL}$	
L-6:2 FTS					25	$\mathrm{ug} / \mathrm{mL}$	
6:2 FTS				27619-97-2	25	$\mathrm{ug} / \mathrm{mL}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmddymm)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 450.15
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory

17D2716

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:
L-PFDS

Sodium perfluoro-1-decanesulfonate

STRUCTURE:

LOT NUMBER: LPFDS0217

GAS \#:
2806-15-7

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrymm)
EXPIRY DATE: (mmodormys)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDS anion)
>98\%
02/17/2017
02/17/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):
622.13

Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro- 1 -dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17D2717

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 16 J 0431 | br-PFOSK | $04-$ Oct-16 | $* *$ Vendor $* *$ | $14-$ Oct-20 | 03 -Feb-17 13:33 by AEW |

Description:	Br-PFOSK anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.928	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 14:46 by INJ

Analyte	CAS Number	Concentration	Units
PFOS	$1763-23-1$	25	$\mathrm{ug} / \mathrm{mL}$
L-PFOS		19.7	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS DOCUMENTATION

br-PFOSK

Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:
 LOT NUMBER:
 CONCENTRATION:
 SOLVENT(S):
 DATE PREPARED: (mm/dd/yyy)
 LAST TESTED: (mm/ddymy)
 EXPIRY DATE: (mmlddyyyy)
 RECOMMENDED STORAGE:

br-PFOSK
brPFOSK1015
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
Methanol
10/13/2015
10/14/2015
10/14/2020
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

> FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^0]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
1	Potassium perfluoro-1-octanesulfonate	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}$	78.8
2	Potassium 1-trifluoromethylperfluoroheptanesulfonate**		1.2
3	Potassium 2-trifluoromethylperfluoroheptanesulfonate		0.6
4	Potassium 3-trifluoromethylperfluoroheptanesulfonate		1.9
5	Potassium 4-trifluoromethylperfluoroheptanesulfonate		2.2
6	Potassium 5-trifluoromethylperfluoroheptanesulfonate		4.5
7	Potassium 6-trifluoromethylperfluoroheptanesulfonate		10.0
8	Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate		0.2
9	Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate		0.03
10	Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate		0.4
11	Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate		0.07

** Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:

Date: \qquad (mm/dd/yyyy)

Figure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	$\begin{aligned} & \text { Acquity UPLC BEH Shield RP }{ }_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \end{aligned}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 45\% (80:20 MeOH:ACN) / 55\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with 10 mM NH 4 OAc buffer)	Cone Voltage (V) $=60.00$
	Ramp to 90% organic over 12 min and hold for 2 min .	Cone Gas Flow (1/hr) $=50$
	Return to initial conditions over 0.5 min .	Desolvation Gas Flow (l/hr) $=750$
	Time: 16 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: br-PFOSK; LC/MS Data (SIR)

140ct2015_brPFOSK_003

Conditions for Figure 2:
 LC: Waters Acquity Ultra Performance LC
 MS: Micromass Quattro micro API MS

Chromatographic Conditions:

Column:	Acquity UPLC BEH Shield $\mathrm{RP}_{18}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})$		
Injection:	$1.0 \mu \mathrm{~g} / \mathrm{ml}$ of br-PFOSK		
Mobile Phase:	Gradient $45 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 55 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)		
	Ramp to 90% organic over 15 min and hold for 3 min. Return to initial conditions over 1 min. Time: 20 min		
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$		
MS Conditions:		\quad	SIR (ES)Source $=110^{\circ} \mathrm{C}$ Desolvation $=325^{\circ} \mathrm{C}$ Cone Voltage $=60 \mathrm{~V}$
:---			

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:
Injection: On-column

Mobile phase: Same as Figure 2

MS Parameters

Collision Gas (mbar) $=3.06 \mathrm{e}-3$
Collision Energy (eV) $=11-50$ (variable)

Analytical Standard Record

Vista Analytical Laboratory

17D2718

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 D 2615 | br-PFHxSK | $26-$ Apr-17 | $* *$ Vendor $* *$ | 04-Jan-22 | 12-Jun-17 08:51 by AEW |

Description:	Br-PFHxSK anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.91	Department:	LCMS
Vials:	1	Last Edit:	12-Jun-17 08:51 by AEW

Analyte	CAS Number	Concentration	Units
Total PFHxS		25	$\mathrm{ug} / \mathrm{mL}$
PFHxS	$355-46-4$	25	$\mathrm{ug} / \mathrm{mL}$
L-PFHxS	$3871-99-6$	20.3	$\mathrm{ug} / \mathrm{mL}$
Br-PFHxS		4.72	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS DOCUMENTATION'

br-PFHxSK

Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers

```
PRODUCT CODE: br-PFHxSK
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED: (mmudilyyy)
LAST TESTED: (mm/dimyy)
EXPIRY DATE: (mnldilywy)
RECOMMENDED STORAGE:
    brPFHxSK0117
    50.0\pm2.5 \mug/ml (total potassium salt)
    45.5\pm2.3 \mu\textrm{g}/\textrm{ml}}\mathrm{ (total PFHxS anion)
    Methanol
    01/03/2017
    01/04/2017
    01/04/2022
    Store ampoule in a cool, dark place
```


DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-$ NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ of perfluoro-1-pentanesulfonate and $\sim 0.2 \%$ of perfluoro-1-octanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 - info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

| Isomer | $\begin{array}{c}\text { Name }\end{array}$ | $\begin{array}{c}\text { Percent } \\ \text { Composition } \\ \text { by }\end{array}$ |
| :---: | :--- | :--- | :---: |
| 1 | Potassium perfluoro-1-hexanesulfonate | |$]$

** Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Certified By:

Date: 01/20/2017 $\frac{01 / 20 / 2017}{(m m / d d / y y y)}$

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 20\% (80:20 MeOH:ACN) / 80\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=50.00$
	Ramp to 50% organic over 14 min . Ramp to	Cone Gas Flow (1/hr) $=60$
	90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 20 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: br-PFHxSK; LC/MS Data (SIR)

04jan2017_brPFHxSK_002
brPFHxSKO117 $25 \mathrm{ug} / \mathrm{ml}$
100

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

\(\left.$$
\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\
10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { br-PFHxSK) }\end{array}
$$

Mobile phase: \& Isocratic 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}

\& (both with 10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc} buffer)\end{array}\right\}\)| | $300 \mu \mathrm{l} / \mathrm{min}$ |
| :--- | :--- |

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=30$

Form\#:13, Issued 2004-11-10
Revision\#:3, Revised 2015-03-24

Analytical Standard Record

Vista Analytical Laboratory

17D2813

Parent Standards used in this standard:								
Standard Description	Description	Prepared	Prepared By		Expires	Last Edit		(mls)
17 D 2619 L-PFHpS	L-PFHpS	26-Apr-17	** Vendor **		18-Oct-21	12-Jun-1	9:07 by AEW	0.5
Description:	L-PFHpS anion DIL		Expires:			28-Apr-18		
Standard Type:	Other		Prepared:			28-Apr-17		
Solvent:	Methanol/		Prepared By:			Isaac N. Johnson		
Final Volume (mls):	0.952		Department:			LCMS		
Vials:	1		Last Edit:			12-Jun-17 09:07 by AEW		
Analyte				CAS N	mber	Concentration	Units	
Total PFHpS						25	ug/mL	
PFHpS				375-9	2-8	25	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpS						25	$\mathrm{ug} / \mathrm{mL}$	

PRODUCT CODE:

COMPOUND:

L-PFHpS
Sodium perfluoro-1-heptanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmiddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.6 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFHpS anion)
>98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

LOT NUMBER: LPFHpS1016

CAS \#: Not available

MOLECULAR WEIGHT: 472.10
SOLVENT(S):
Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of L-PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)$ and $\sim 0.1 \%$ of $\mathrm{L}-\mathrm{PFOS}\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: 10/20/2016
(mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory
17F3038

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
17D0605	13C6-PFDA	06-Apr-17	Jamie C. Stockman	06-May-21	06-Apr-17 09:43 by JCS	0.375
17 E 1717	13C2-FOUEA	17-May-17	** Vendor **	02-Aug-18	17-May-17 12:46 by INJ	0.375
17E2411	13C5-PFHxA	24-May-17	** Vendor **	27-Aug-19	24-May-17 11:19 by INJ	0.375
17F3031	13C4-PFOS dil.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:31 by INJ	0.468
17F3032	13C3-PFHxS DIL.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:35 by INJ	0.416
17F3034	13C8-PFOA dil.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:40 by INJ	0.468
17F3035	13C9-PFNA	30-Jun-17	** Vendor **	27-Aug-19	03-Jul-17 13:07 by INJ	0.375
17F3036	13C4-PFBA	30-Jun-17	** Vendor **	12-Apr-22	03-Jul-17 13:08 by INJ	0.375
17F3037	13C7-PFUdA	30-Jun-17	** Vendor ${ }^{* *}$	22-Jan-21	03-Jul-17 13:09 by INJ	0.375

Description:	PFC-RS	Expires:	19-May-18
Standard Type:	Reagent	Prepared:	30-Jun-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	15	Department:	LCMS
Vials:	1	Last Edit:	03-Jul-17 13:09 by INJ

Analyte	CAS Number	Concentration
13C9-PFNA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C7-PFUnA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C6-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFHxA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFOS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFHxS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-FOUEA	1.25	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE: COMPOUND:

STRUCTURE:

GAS \#: \quad Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	$\begin{aligned} & \text { Cone Gas Flow }(1 / h r)=50 \\ & \text { Desolvation Gas Flow }(1 / h r)=750 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M6PFDA)		
		Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Mobile ph	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=13$
Flow:	$300 \mu / / \mathrm{min}$	

CERTIFICATE OF ANALYSIS
 DOCUMENTATION.

PRODUCT CODE:
 COMPOUND:

MFOUEA
2H-Perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid

LOT NUMBER: MFOUEA0716

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{16} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mm/ddyyy)	08/02/2016
EXPIRY DATE: (mm/didysyy)	08/02/2018
RECOMMENDED STORAGE:	Refrigerate ampoule

MOLECULAR WEIGHT:	460.08
SOLVENT(S):	Anhydrous Isopropanol
	$\geq 99 \%{ }^{13} \mathrm{C}$
ISOTOPIC PURITY:	$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

LOT NUMBER: M5PFHxA0814

GAS \#: \quad Not available

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,6- ${ }^{13} \mathrm{C}_{5}$)

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/ymy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
08/27/2014
08/27/2019
Store ampoule in a cool, dark place

M5PFHxA
Perfluoro-n-[1,2,3,4,6- ${ }^{13} \mathrm{C}_{5}$]hexanoic acid

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17F3031

WELLINGTON
LA B OR A T ORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:

COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate

STRUCTURE:

LOT NUMBER: MPFOS1216

CAS \#: \quad Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	526.08
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol
CHEMICAL PURITY:	$47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFOS anion)		
LAST TESTED: $($ mm/ddrysy)	$>98 \%$	$12 / 12 / 2016$	ISOTOPIC PURITY:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.8 \%$ Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory
17F3032

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 E 2410 | $13 \mathrm{C} 3-\mathrm{PFHxS}$ | $24-\mathrm{May}-17$ | $* *$ Vendor $* *$ | 31-May-21 | 24-May-17 11:18 by INJ |

Description:	13C3-PFHxS DIL.	Expires:	30-Jun-18
Standard Type:	Reagent	Prepared:	30-Jun-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	0.473	Department:	LCMS
Vials:	1	Last Edit:	30-Jun-17 13:35 by INJ
Analyte		CAS Number	Concentration
$13 \mathrm{C} 3-\mathrm{PFHxS}$			45

$17 E$
 2
 410

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION.

PRODUCT CODE:

 COMPOUND:STRUCTURE:

M3PFHxS
Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ hexanesulfonate

GAS \#:
Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Analytical Standard Record

Vista Analytical Laboratory
17F3034

WELLINGTON

LA B OR A TORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION.

PRODUCT CODE:

COMPOUND:

M8PFOA
Perfluoro-n-[$\left[{ }^{13} \mathrm{C}_{8}\right]$ octanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED: (mm/ddryyy)
${ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$
$49 \pm 2.45 \mu \mathrm{~g} / \mathrm{ml}$
97.9\% (M8PFOA)
2.1\% (MPFOA [M+4])

EXPIRY DATE: (mmiddyyyy)
02/12/2016

RECOMMENDED STORAGE:
02/12/2021
Store ampoule in a cool, dark place

LOT NUMBER: M8PFOA0216

CAS \#: \quad Not available

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of native perfluoro-n-octanoic acid (PFOA) and $\sim 2.1 \%$ of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{02 / 24 / 2016}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:STRUCTURE:

M9PFNA
Perfluoro- $n-\left[{ }^{13} \mathrm{C}_{9}\right]$ nonanoic acid

LOT NUMBER: M9PFNA0814

CIS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidaryw)
EXPIRY DATE: (mnldodryy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
08/27/2014
08/27/2019

MOLECULAR WEIGHT:
SOLVENTS):
ISOTOPIC PURITY:
473.01

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$ $\left({ }^{13} \mathrm{C}_{9}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.9 \%$ of ${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additiorial information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } \quad \text { Acquity UPLC BEH Shield } R P_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

17F3035

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

MPFBA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ butanoic acid
LOT NUMBER: MPFBA0417

GAS \#: \quad Not available

MOLECULAR WEIGHT: 218.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)

MOLECULAR FORM
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoddryyy)
EXPIRY DATE: (mmddasyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
${ }^{13} \mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/12/2017
04/12/2022

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
$\frac{4 / 20 / 2017}{(m m / d d / y y y)}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value (s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{\prime \prime} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)

| 12apr2017_MPFBA_001 |
| :--- | :--- | :--- |
| MPFBA0417 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

romatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{S}_{4} \mathrm{OAC}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (1/hr) $=100$
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFBA})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=10$

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION
PRODUCT CODE:
COMPOUND:
STRUCTURE:

M7PFUdA	LOT NUMBER:	M7PFUdA0116
Perfluoro- $n-\left[1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right.$] undecanoic acid		
	CAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{7}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	571.04
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmmadyme)	01/22/2016		(1,2,3,4,5,6,7- ${ }^{13} \mathrm{C}_{7}$)
EXPIRY DATE: (mmbduhyy)	01/22/2021		
RECOMMENDED STORAGE:	Store ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .	Cone Gas Flow (l/hr) $=65$ Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M7PFUdA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Collision Energy (eV) $=11$
"MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","375-73-5","PFBS","20.7","ng/L","","1.87","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","307-24-4","PFHxA","41.7","ng/L","","2.28","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","375-85-9","PFHpA","9.49","ng/L","","0.619","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","355-46-4","PFHxS","230","ng/L","","0.992","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","335-67-1","PFOA","120","ng/L","","0.682","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","1763-23-1","PFOS","570","ng/L","","0.845","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","375-95-1","PFNA","5.25","ng/L","U","0.848","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","335-76-2","PFDA","5.25","ng/L","U","1.56","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","2355-31-9","MeFOSAA","5.25","ng/L","U","1.73","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25" ""
"MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","2058-94-
8","PFUnA","5.25","ng/L","U","1.10","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","2991-50-6","EtFOSAA","5.25","ng/L","U","1.43","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25", ""
"MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","307-55-
1","PFDoA","5.25","ng/L","U","0.829","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","72629-94-8","PFTrDA","5.25","ng/L","U","0.517","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25","
"MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","376-06-
7","PFTeDA","5.25","ng/L","U","0.791","LOD","","TRG","","","8.38","LOQ","YES","-99","","0.119","0.001","5.25", ""
"MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C3-PFBS","13C3-PFBS","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C2-PFHxA","13C2-PFHxA","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C4-PFHpA","13C4-PFHpA","92.0","\%R","","-99","NA","","IS","92.0","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","18O2-PFHxS","18O2-PFHxS","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C2-PFOA","13C2-PFOA","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C8-PFOS","13C8-PFOS","94.7","\%R","","-99","NA","","IS","94.7","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C5-PFNA","13C5-PFNA","82.5","\%R","","-99","NA","","IS","82.5","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C2-PFDA","13C2-PFDA","70.5","\%R","","-99","NA","","IS","70.5","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","d3-MeFOSAA","d3-MeFOSAA","60.9","\%R","","-99","NA","","IS","60.9","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C2-PFUnA","13C2-PFUnA","70.7","\%R","","-99","NA","","IS","70.7","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","d5-EtFOSAA","d5-

EtFOSAA","63.6","\%R","","-99","NA","","IS","63.6","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C2-PFDoA","13C2-PFDoA","66.8","\%R","","-99","NA","","IS","66.8","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-37BR-20170714","Modified EPA Method 537","Initial","1700884-01","Vista","13C2-PFTeDA","13C2-PFTeDA","66.3","\%R","","-99","NA","","IS","66.3","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","375-73-5","PFBS","47.5","ng/L","","1.88","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","307-24-4","PFHxA","169","ng/L","","2.29","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","375-85-9","PFHpA","58.4","ng/L","","0.621","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","355-46-4","PFHxS","330","ng/L","","0.995","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","335-67-
1","PFOA","35.0","ng/L","","0.684","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","1763-23-1","PFOS","321","ng/L","","0.848","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","375-95-1","PFNA","4.44","ng/L","J","0.851","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","335-76-2","PFDA","5.25","ng/L","U","1.57","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","2355-31-9","MeFOSAA","5.25","ng/L","U","1.73","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25" ""
"MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","2058-94-
8","PFUnA","5.25","ng/L","U","1.10","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","2991-50-6","EtFOSAA","5.25","ng/L","U","1.44","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25", ""
"MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","307-55-
1","PFDoA","5.25","ng/L","U","0.832","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","72629-94-8","PFTrDA","5.25","ng/L","U","0.519","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25","
"MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","376-06-
7","PFTeDA","5.25","ng/L","U","0.793","LOD","","TRG","","","8.40","LOQ","YES","-99","","0.119","0.001","5.25", ""
"MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C3-PFBS","13C3-PFBS","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C2-PFHxA","13C2-PFHxA","92.2","\%R","","-99","NA","","IS","92.2","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C4-PFHpA","13C4-PFHpA","82.3","\%R","","-99","NA","","IS","82.3","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","18O2-PFHxS","18O2-PFHxS","97.7","\%R","","-99","NA","","IS","97.7","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C2-PFOA","13C2-PFOA","98.0","\%R","","-99","NA","","IS","98.0","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C8-PFOS","13C8-PFOS","89.1","\%R","","-99","NA","","IS","89.1","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C5-PFNA","13C5-PFNA","91.7","\%R","","-99","NA","","IS","91.7","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C2-PFDA","13C2-PFDA","76.9","\%R","","-99","NA","","IS","76.9","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","d3-MeFOSAA","d3-

MeFOSAA","64.5","\%R","","-99","NA","","IS","64.5","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C2-PFUnA","13C2-PFUnA","70.0","\%R","","-99","NA","","IS","70.0","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","d5-EtFOSAA","d5-EtFOSAA","69.0","\%R","","-99","NA","","IS","69.0","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C2-PFDoA","13C2-PFDoA","67.5","\%R","","-99","NA","","IS","67.5","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-32BR-20170714","Modified EPA Method 537","Initial","1700884-02","Vista","13C2-PFTeDA","13C2-PFTeDA","55.1","\%R","","-99","NA","","IS","55.1","","-99","NA","YES","100","","0.119","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","375-73-5","PFBS","26.4","ng/L","","1.87","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","307-24-4","PFHxA","101","ng/L","","2.27","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","375-85-9","PFHpA","34.7","ng/L","","0.616","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","355-46-4","PFHxS","170","ng/L","","0.988","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","335-67-1","PFOA","21.6","ng/L","","0.679","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","1763-23-
1","PFOS","156","ng/L","","0.842","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","375-95-1","PFNA","5.21","ng/L","U","0.845","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","335-76-2","PFDA","5.21","ng/L","U","1.55","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","2355-31-9","MeFOSAA","5.21","ng/L","U","1.72","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21" ""
"MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","2058-94-8","PFUnA","5.21","ng/L","U","1.10","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","2991-50-6","EtFOSAA","5.21","ng/L","U","1.43","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21", ""
"MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","307-55-
1","PFDoA","5.21","ng/L","U","0.826","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","72629-94-
8","PFTrDA","5.21","ng/L","U","0.515","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","
"MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","376-06-
7","PFTeDA","5.21","ng/L","U","0.788","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21", ,
"MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C3-PFBS","13C3-PFBS","124","\%R","","-99","NA","","IS","124","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C2-PFHxA","13C2-PFHxA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C4-PFHpA","13C4-PFHpA","92.6","\%R","","-99","NA","","IS","92.6","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","18O2-PFHxS","18O2-PFHxS","96.3","\%R","","-99","NA","","IS","96.3","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C2-PFOA","13C2-PFOA","97.3","\%R","","-99","NA","","IS","97.3","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C8-PFOS","13C8-PFOS","82.3","\%R","","-99","NA","","IS","82.3","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C5-PFNA","13C5-

PFNA","71.4","\%R","","-99","NA","","IS","71.4","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C2-PFDA","13C2-PFDA","70.6","\%R","","-99","NA","","IS","70.6","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","d3-MeFOSAA","d3-MeFOSAA","63.4","\%R","","-99","NA","","IS","63.4","","-99","NA","YES","100","',"0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C2-PFUnA","13C2-PFUnA","61.6","\%R","","-99","NA","","IS","61.6","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","d5-EtFOSAA","d5-EtFOSAA","54.4","\%R","","-99","NA","","IS","54.4","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C2-PFDoA","13C2-PFDoA","67.6","\%R","","-99","NA","","IS","67.6","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-35S-20170714","Modified EPA Method 537","Initial","1700884-03","Vista","13C2-PFTeDA","13C2-PFTeDA","66.5","\%R","","-99","NA","","IS","66.5","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","375-73-5","PFBS","5.21","ng/L","U","1.87","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","307-24-4","PFHxA","5.21","ng/L","U","2.27","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","375-85-9","PFHpA","5.21","ng/L","U","0.616","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","355-46-4","PFHxS","5.21","ng/L","U","0.988","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","' "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","335-67-1","PFOA","5.21","ng/L","U","0.679","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","1763-23-1","PFOS","5.21","ng/L","U","0.842","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","375-95-
1","PFNA","5.21","ng/L","U","0.845","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","335-76-2","PFDA","5.21","ng/L","U","1.55","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","2355-31-9","MeFOSAA","5.21","ng/L","U","1.72","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21" ""
"FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","2058-94-8","PFUnA","5.21","ng/L","U","1.10","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","2991-50-6","EtFOSAA","5.21","ng/L","U","1.43","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21", ""
"FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","307-55-
1","PFDoA","5.21","ng/L","U","0.826","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","72629-94-8","PFTrDA","5.21","ng/L","U","0.515","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21","
"FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","376-06-7","PFTeDA","5.21","ng/L","U","0.788","LOD","","TRG","","","8.34","LOQ","YES","-99","","0.120","0.001","5.21", ""
"FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C3-PFBS","13C3-PFBS","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C2-PFHxA","13C2-PFHxA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C4-PFHpA","13C4-PFHpA","81.6","\%R","","-99","NA","","IS","81.6","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","18O2-PFHxS","18O2-PFHxS","96.7","\%R","","-99","NA","","IS","96.7","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C2-PFOA","13C2-

PFOA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C8-PFOS","13C8-PFOS","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C5-PFNA","13C5-PFNA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C2-PFDA","13C2-PFDA","77.4","\%R","","-99","NA","","IS","77.4","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","d3-MeFOSAA","d3-MeFOSAA","65.4","\%R","","-99","NA","","IS","65.4","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C2-PFUnA","13C2-PFUnA","70.5","\%R","","-99","NA","","IS","70.5","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","d5-EtFOSAA","d5-EtFOSAA","58.7","\%R","","-99","NA","","IS","58.7","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C2-PFDoA","13C2-PFDoA","67.8","\%R","","-99","NA","","IS","67.8","","-99","NA","YES","100","","0.120","0.001","-99","" "FRB-02-20170714","Modified EPA Method 537","Initial","1700884-04","Vista","13C2-PFTeDA","13C2-PFTeDA","66.9","\%R","","-99","NA","","IS","66.9","","-99","NA","YES","100","","0.120","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","375-73-5","PFBS","5.00","ng/L","U","1.79","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","307-24-4","PFHxA","5.00","ng/L","U","2.18","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","375-85-9","PFHpA","5.00","ng/L","U","0.591","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","355-46-4","PFHxS","5.00","ng/L","U","0.947","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","335-67-1","PFOA","5.00","ng/L","U","0.651","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","1763-23-1","PFOS","5.00","ng/L","U","0.807","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","375-95-1","PFNA","5.00","ng/L","U","0.810","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","335-76-2","PFDA","5.00","ng/L","U","1.49","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","2355-31-9","MeFOSAA","5.00","ng/L","U","1.65","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00" ""
"B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","2058-94-8","PFUnA","5.00","ng/L","U","1.05","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","2991-50-6","EtFOSAA","5.00","ng/L","U","1.37","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00",
"B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","307-55-
1","PFDoA","5.00","ng/L","U","0.792","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","72629-94-8","PFTrDA","5.00","ng/L","U","0.494","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00"," "
"B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","376-06-
7","PFTeDA","5.00","ng/L","U","0.755","LOD","","TRG","","","8.00","LOQ","YES","-99","","0.125","0.001","5.00", ""
"B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C3-PFBS","13C3-PFBS","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C2-PFHxA","13C2-PFHxA","87.3","\%R","","-99","NA","","IS","87.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C4-PFHpA","13C4-

[^1]"B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","307-55-
1","PFDoA","79.7","ng/L","","0.792","LOD","","TRG","99.7","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00 " ""
"B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","72629-94-
8","PFTrDA","75.3","ng/L","","0.494","LOD","","TRG","94.1","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","376-06-
7","PFTeDA","95.3","ng/L","","0.755","LOD","","TRG","119","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""
"B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C3-PFBS","13C3-PFBS","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C2-PFHxA","13C2-PFHxA","93.6","\%R","","-99","NA","","IS","93.6","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C4-PFHpA","13C4-PFHpA","86.2","\%R","","-99","NA","","IS","86.2","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","18O2-PFHxS","18O2-PFHxS","88.3","\%R","","-99","NA","","IS","88.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C2-PFOA","13C2-PFOA","90.4","\%R","","-99","NA","","IS","90.4","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C8-PFOS","13C8-PFOS","92.9","\%R","","-99","NA","","IS","92.9","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C5-PFNA","13C5-PFNA","91.2","\%R","","-99","NA","","IS","91.2","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C2-PFDA","13C2-PFDA","76.4","\%R","","-99","NA","","IS","76.4","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","d3-MeFOSAA","d3-MeFOSAA","52.0","\%R","","-99","NA","","IS","52.0","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C2-PFUnA","13C2-PFUnA","61.6","\%R","","-99","NA","","IS","61.6","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","d5-EtFOSAA","d5-EtFOSAA","56.7","\%R","","-99","NA","","IS","56.7","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C2-PFDoA","13C2-PFDoA","57.7","\%R","","-99","NA","","IS","57.7","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","13C2-PFTeDA","13C2-PFTeDA","36.3","\%R","H","-99","NA","","IS","36.3","","-99","NA","YES","100","","0.125","0.001","-99","" "NAWC Trenton","NAWC Trenton","MW-37BR-20170714","07/14/2017 10:50","AQ","170088401","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","08/03/2017 18:35","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-37BR-20170714","07/14/2017 10:50","AQ","170088401","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017 18:50","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-32BR-20170714","07/14/2017 11:30","AQ","170088402","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","08/03/2017 18:47","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-32BR-20170714","07/14/2017 11:30","AQ","170088402","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017 19:02","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-35S-20170714","07/14/2017 12:20","AQ","170088403","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","08/03/2017 19:00","Vista","COA","WET","NA","1","NA","NA","01/01/1900

00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-35S-20170714","07/14/2017 12:20","AQ","170088403","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017 19:15","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","FRB-02-20170714","07/14/2017 09:00","AQ","170088404","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","08/03/2017
19:12","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","FRB-02-20170714","07/14/2017 09:00","AQ","1700884-
04","NM","","3.80","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017
19:28","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","07/15/2017 09:16","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0079-BLK1","01/01/1900 00:00","AQ","B7G0079-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017
14:54","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0079-BLK1","01/01/1900 00:00","AQ","B7G0079-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017
11:02","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0079-BS1","01/01/1900 00:00","AQ","B7G0079-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017
14:11","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","01/01/1900 00:00","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","B7G0079-BS1","01/01/1900 00:00","AQ","B7G0079-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","07/20/2017 11:18","07/31/2017
10:37","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0079","B7G0079","NA","S7G0062","1700884","01/01/1900 00:00","01/01/1900 00:00",""

TO:	MARY MANG	DATE:	SEPTEMBER 15, 2017
FROM:	MEGAN RITCHIE	COPIES:	DV FILE/
SUBJECT:	ORGANIC DATA VALIDATION - POLYFLUOROAKLYL SUBSTANCES (PFAS)		
	CTO WE08 - FORMER NAWC TRENTON		
	SDG 1700884		

SAMPLES: 4 / Groundwater / PFAS
MW-32BR-20170714 MW-37BR-20170714
MW-35S-20170714 FRB-02-20170714

Overview

The sample set for NAWC Trenton, SDG 1700884 consists of three (3) groundwater environmental samples and one field reagent blank (designated FRB-). No field duplicate pairs were included in this SDG. The samples were analyzed for polyfluoroalkyl substances (PFAS).

The samples were collected by Tetra Tech on July 14, 2017 and analyzed by Vista Analytical. The analysis was conducted in accordance with modified EPA Method 537 Rev. 1.1 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters:

```
* Data Completeness
* Holding Times/Sample Preservation
* GC/MS Instrument Tuning and System Performance
* Initial and Continuing Calibration Verification Results
* Laboratory Method/Preparation Blank Analyses
* Surrogate Recoveries
* Ongoing Precision and Recovery (OPR) Results
* Matrix Spike/Matrix Spike Duplicate Results
* Laboratory Duplicate Sample Results
    Internal Standard Results
* Field Duplicate Precision
* Detection Limits
```

The symbol (*) indicates that quality control criteria were met for this parameter. Issues affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

TO: M. MANG
PAGE 2
SDG: 1700884
PFAS

Detected results reported below the Limit of Quantitation (LOQ) but above the Detection Limit (DL) were qualified as estimated (J).

Notes

The recoveries of internal standard 13C2-PFTeDA was below the lower QC limit for the method blank and OPR. No action was taken because the OPR recoveries of associated analytes PFTrDA and PFTeDA were within the QC recovery limits.

Samples MW-37BR-20170714 and MW-32BR-20170714 were centrifuged to remove particulates prior to extraction.

All analyses were conducted within the hold times specified by the site specific Sampling and Analysis Plan (SAP) and the analytical method.

Non-detected results were reported to the Limit of Detection (LOD).

TO: M. MANG
PAGE 3 SDG: 1700884

Executive Summary

Laboratory Performance: Internal standard recoveries for were below the lower QC limits in several samples.

Other Factors Affecting Data Quality: Positive results below the LOQ were qualified as estimated.
The data for these analyses were reviewed with reference to the "National Functional Guidelines for Superfund Organic Methods Data Review" (January 2017). The text of this report has been formulated to address only those areas affecting data quality.

Megan Ritcmic
Tetra Tech, Inc.
Megan Richie
Chemist/Data Validator

Attachments:
Appendix A - Qualified Analytical Results
Appendix B - Results as Reported by the Laboratory
Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
\mathbf{J}	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.
$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
$\mathbf{U J}$	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
\mathbf{R}	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
$\mathbf{U R}$	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 = GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
$\mathrm{G}=$ Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
$J=$ ICP PDS Recovery Noncompliance; MSA's $r<0.995$
$\mathrm{K}=$ ICP Interference - includes ICS \% R Noncompliance
$\mathrm{L}=$ Instrument Calibration Range Exceedance
$\mathrm{M}=$ Sample Preservation Noncompliance
$\mathrm{N}=$ Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
$P=$ Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
$\mathrm{Q}=$ Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$\mathrm{U}=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$\mathrm{V}=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
$\mathrm{W}=$ EMPC result
$\mathrm{X}=$ Signal to noise response drop
$Y=$ Percent solids $<30 \%$
$Z \quad=$ Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE08	NSAMPLE	FRB-02-20170	714		MW-32BR-201	70714		MW-35S-201707	0714		MW-37BR-201	70714	
SDG: 1700884	LAB_ID	1700884-04			1700884-02			1700884-03			1700884-01		
FRACTION: PFAS	SAMP_DATE	7/14/2017			7/14/2017			7/14/2017			7/14/2017		
MEDIA: WATER	QC_TYPE	FB			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	TANE	5.21	U		5.25	U		5.21	U		5.25	U	
N-METHYL PERFLUOROO	CTANE	5.21	U		5.25	U		5.21	U		5.25	U	
SULFONAMIDOACETIC A													
PENTADECAFLUOROOC	ANOIC ACID	5.21	U		35			21.6			120		
PERFLUOROBUTANESUL	FONIC ACID	5.21	U		47.5			26.4			20.7		
PERFLUORODECANOIC	CID	5.21	U		5.25	U		5.21	U		5.25	U	
PERFLUORODODECANO	C ACID	5.21	U		5.25	U		5.21	U		5.25	U	
PERFLUOROHEPTANOIC	ACID	5.21	U		58.4			34.7			9.49		
PERFLUOROHEXANESUL	FONIC ACID	5.21	U		330			170			230		
PERFLUOROHEXANOIC A	CID	5.21	U		169			101			41.7		
PERFLUORONONANOIC	ACID	5.21	U		4.44	J	P	5.21	U		5.25	U	
PERFLUOROOCTANE SU	FONIC ACID	5.21	U		321			156			570		
PERFLUOROTETRADECA	NOIC ACID	5.21	U		5.25	U		5.21	U		5.25	U	
PERFLUOROTRIDECANO	C ACID	5.21	U		5.25	U		5.21	U		5.25	U	
PERFLUOROUNDECANO	C ACID	5.21	U		5.25	U		5.21	U		5.25	U	

Appendix B

Results as Reported by the Laboratory

Appendix C

Support Documentation

CHAIN OF CUSTODY

SDG Number WE08

Vista Work Order No. 1700884

Case Narrative

Sample Condition on Receipt:

Four aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "MW-37BR-20170714" and "MW-32BR-20170714" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

| LabNumber | SampleName | Analysis | Analyte |
| :--- | :--- | :--- | :--- | :--- |
| B7G0079-BLK1 | B7G0079-BLK1 | Modified EPA Method 537 | 13C2-PFTeDA |
| B7G0079-BS1 | B7G0079-BS1 | Modified EPA Method 537 | 13C2-PFTeDA |

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

FORMER NAWC TRENTON

1700884

SAMPLE IDENTIFICATION
MW-37BR-20170714

COMPOUND
 PFOS

COMPOUND AREA 12481.934
INTERNAL STANDARD AMOUNT (ng/ml) 99.1
DILUTION FACTOR 1
INTERNAL STANDARD AREA 4873.246
AVERAGE RRF 0.927
SAMPLE VOLUME (ml) 119.35
VOLUME EXTRACT (ml) 0.05
VOLUME INJECTED ($\mu \mathrm{l}) \quad 5$
ml to L 1000

CONCENTRATION = $574 \mathrm{ng} / \mathrm{L}$
$12481.934 \times 99.1 \mathrm{ng} / \mathrm{ml} \times 5 \mathrm{uL} \times 1000 \mathrm{ml} \times 1 /(4873.246 \times 0.05 \times 119.35 \mathrm{ml} \times 1 \mathrm{~L})$

Analytical Laboratory

Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

LCL-UCL - Lower control limit - upper control limit

Prep Expiration: 2017-Jul-28
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mR) Matrix: Aqueous

Version: 537 (14 Analyse)

WO Comments: Attach balance check doc.
Vista PM:Martha Meier
 1 \qquad
Page 1 of 1

BALANCE CALIBRATION CHECK

	Date		$\begin{gathered} \text { Weight } 1 \\ (0.9900-1.0100) \end{gathered}$	$\begin{gathered} \text { Weight } 2 \\ 100 \mathrm{~g} \\ (99.00-101.00) \\ \hline \end{gathered}$	$\begin{gathered} \text { Weight } 3 \\ 2000 \mathrm{~g} \\ (1980-2020) \end{gathered}$	Initials	Acceptable? (\mathbb{Y})
	$719 / 17$	\checkmark	1.00	100.00	2000.00	KBF	Y
	7120410	CSVC	1:01	. 0100.01	2000.04	BSS	F415?
	7/21/17	\checkmark	0.99	100.00	2000.00	EL	Y
	7.2417	\checkmark	100	100.01	120009	BP	Y
	7124117	$\mathrm{B}, ~ \mathrm{C}$	100	.100.01	2000.00	EL	/ Y
	7125117	$\square \leq$	100	99.99	2000.02	, 13	Mdis
	$7.26 \cdot 17$	\checkmark	100	100.00	2000.01	. BP	y
	7127117	\checkmark	1.00	99.99	2000.00	$H B$	$1 y$
	7/28/17	\checkmark	0.99	100.00	2000.02	KBE	y
	7131117	\checkmark	100	100.01	2000.04	HB	y
	81117	\checkmark	1.00	100.00	2000.00	Hi	y
	$8 / 2117$	\checkmark	0.99	100.00	2000.01	HB	y
	813117	V	1.00	100.00	2000.05	H3	y
	8/4/17	\checkmark	1.00	100.04	2000.06	EL	Y
	8/7/17		1.00	100.00	1999.99	KGF	y
			- .				
Comments: ©calibration weights from air lab used because soil lab wiognts sent out for calibration. +13813117							

Matrix: Aqueous

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS DOD (LOO as mRL)

Prepared using: LCMS - SPE Extraction-LCMS

IS Name $\frac{1761307,1 a L}{(6)}$	NS Name $\frac{702705,10 \pi}{a)}$	RS Name $\frac{17 F 3038,10 \mu \mathrm{t}}{(13)}$	SPE ChemiStrata X-AW 33 an $\frac{20044}{6 \sim L}$ Ele SOLV: OS\%. NHyOU in MeOH/Weor Final Volume(s) 1nc \qquad	Check Out: Chemist/Date: \qquad Check in: \quad Ha His 19 A $H B$ Chemist/Date: \qquad effly Balance ID: \qquad HRMS-g pH Adjusted: Chemist/Date: $H B 7 / 18 / 17$

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ (A) samples were centrifuged to remove particulate $M B 718117$ (B) samples had thick layer of particulate. HB 7181 l Climited sample amount after centrifuging particulate out. H8 7118117

Matrix: Aqueous
Method: 537M PFAS DOD (LOO as meL)
\square

Chemist: \qquad
Prep Date/Time: ${ }^{20}$ Jul-17 11:18
Prepared using: LCMS - SPE Extraction-LCMS

Last Altered: Monday, July 31, 2017 14:37:21 Pacific Daylight Time Monday, July 31, 2017 14:39:02 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS B_2TRAN 0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Name: 170731G1_2, Date: 31-Jul-2017, Time: 13:46:30, ID: ST170731G1-1 PFC CS-1 17G3102, Description: PFC CS-1 17G3102 B

4	\# Name	Trace	Response	IS Resp	RRF	Wt/Vol	RT	Conc.	\%Rec	-70-130
	1 PFOSA	498.1 > 77.7	1.28 e 3	2.20 e 4		1.000	4.61	0.479	95.9	
$2{ }^{2}$	2 N-MeFOSAA	$570.1>419.0$	4.90 e 2	6.46 e 3		1.000	4.99	0.419	83.7	
3.4.	3 PFDS	$598.8>98.7$	6.36 e 2	2.91e4		1.000	5.15	0.636	127.1	
4	4 PFUnA	$563>518.9$	1.88 e 3	2.91 e 4		1.000	5.12	0.572	114.4	
5.	$5 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419.0$	2.71 e 2	8.21 e 3		1.000	5.12	0.366	73.2	
6	6 PFDoA	$612.9>318.8$	1.45 e 2	3.92e4		1.000	5.35	0.375	75.1	
7	7 PFTrDA	$662.9>618.9$	1.94 e 3	0.00 e 0		1.000	5.56	0.517	103.4	
8	8 PFTeDA	$712.9>668.8$	2.22e3	4.01 e 4		1.000	5.73	0.595	118.9	
9 W Wex	9 13C8-PFOSA	$506.1>77.7$	2.20 e 4	2.13 e 4	1.146	1.000	4.61	11.2	90.0	
10	10 d3-N-MeFOSAA	$573.3>419.0$	6.46 e 3	2.13 e 4	0.026	1.000	4.98	144	88.5	
11 Wer	11 13C2-PFUnA	$565>519.8$	2.91 e4	2.13 e 4	1.471	1.000	5.12	11.6	93.0	
12.4	$12 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419.0$	8.21 e 3	2.13 e 4	0.031	1.000	5.11	155	95.3	
13. (E)	13 13C2-PFDoA	$615>569.7$	3.92e4	2.13 e 4	1.887	1.000	5.35	12.2	97.5	
	14 13C2-PFTeDA	$715>669.7$	4.01 e 4	2.13 e 4	1.990	1.000	5.73	11.8	94.6	
	15 13C7-PFUnA	$570.1>524.8$	2.13 e 4	2.13 e 4	1.000	1.000	5.12	12.5	100.0	

Yea 713:117

Last Altered: Monday, July 31, 2017 16:53:40 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:53:54 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

-		Name	ID	Acq.Date	Acq.Time
1.		170731G1_1	IPA	31-Jul-17	13:33:35
2	1	170731G1_2	ST170731G1-1 PFC CS-1 17G3102	31-Jul-17	13:46:30
3	\%	170731G1_3	IPA	31-Jul-17	13:59:06
4	3:4	170731G1_4	B7G0079-BS1 OPR 0.125	31-Jul-17	14:11:43
5		17073161_5	IPA	31-Jul-17	14:24:17
6		170731G1_6	B7G0079-BLK1 Method Blank 0.125	31-Jul-17	14:54:16
7		170731G1_7	1700887-01 IRPSite 6-GW-06GW01-2017071...	31-Jul-17	15:06:51
8		170731G1_8	1700887-02 IRPSite 6-GW-06GW02-2017071...	31-Jul-17	15:19:26
9		170731G1_9	1700887-03 IRPSite 6-GW-FRB01-20170712 ...	31-Jul-17	15:32:02
10	T	170731G1_10	1700887-04 Site 33-GW-33GW01-20170712 ...	31-Jul-17	15:44:39
11	\pm	170731G1_11	1700887-05 Building 110-GW-110GW01-2017...	31-Jul-17	15:57:16
12		170731G1_12	1700887-06 IRPSite 6-GW-06FD01-20170712...	31-Jul-17	16:09:57
13		170731G1_13	IPA	31-Jul-17	16:22:30
14		170731G1_14	ST170731G1-2 PFC CS3 17G3102	31-Jul-17	16:35:07
15	-	170731G1_15			

| Quantify Sample Summary Report \quad MassLynx 4.1 SCN815 |
| :--- | :--- | :--- |
| Vista Analytical Laboratory Q1 | | Dataset: | U:IG1.PRO\Results\2017\170731G1\170731G1-14.qld |
| :--- | :--- |
| Last Altered: | Monday, July 31, 2017 |
| 16:52:30 Pacific Daylight Time | |
| Printed: | Monday, July 31, 2017 16:53:26 Pacific Daylight Time |

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Name: 170731G1_14, Date: 31-Jul-2017, Time: 16:35:07, ID: ST170731G1-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B

	\# Name ${ }^{\text {a }}$	Trace	Response	IS Resp	RRF	WtVol	RT	Wenc.	\%Rec	70-130	$5 \operatorname{Sen} 7 / 3117$
	1 PFOSA	$498.1>77.7$	2.05 e 4	2.00 e 4		1.000	4.61	10.4	103.8		
2 ,	2 N -MeFOSAA	$570.1>419.0$	1.06 e 4	6.65 e 3		1.000	4.99	8.91	89.1		
$3 \quad 3$	3 PFDS	$598.8>98.7$	1.10 e 4	2.77e4		1.000	5.15	10.8	107.8		
4	4 PFUnA	$563>518.9$	2.12 e 4	2.77e4		1.000	5.12	9.79	97.9		
5.	5 N -EtFOSAA	$584.2>419.0$	7.43 e 3	5.76 e 3		1.000	5.11	12.1	121.3		
$6{ }^{6}+{ }^{2}$	6 PFDoA	$612.9>318.8$	3.63 e 3	3.50 e 4		1.000	5.35	10.7	106.6		
7	7 PFTrDA	$662.9>618.9$	3.48 e 4	0.00e0		1.000	5.56	9.63	96.3		
8 -	8 PFTeDA	$712.9>668.8$	2.96 e 4	3.97 e 4		1.000	5.73	10.1	101.2	\downarrow	
	9 13C8-PFOSA	$506.1>77.7$	2.00 e 4	1.93 e 4	1.146	1.000	4.61	11.3	90.6	50-150	
10	$10 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	6.65 e 3	1.93 e 4	0.026	1.000	4.98	163	100.5		
11.	11 13C2-PFUnA	$565>519.8$	2.77e4	1.93 e 4	1.471	1.000	5.12	12.2	97.8		
12.4	12 d5-N-EtFOSAA	$589.3>419.0$	5.76 e 3	1.93 e 4	0.031	1.000	5.11	120	73.9		
$13 \times$	13 13C2-PFDoA	$615>569.7$	3.50e4	1.93 e 4	1.887	1.000	5.35	12.0	96.1		
14.	14 13C2-PFTeDA	$715>669.7$	3.97 e 4	1.93 e 4	1.990	1.000	5.73	12.9	103.5	\downarrow	
15 ?	15 13C7-PFUnA	$570.1>524.8$	1.93 e 4	1.93 e 4	1.000	1.000	5.12	12.5	100.0		

| Quantify Compound Summary Report |
| :--- | MassLynx 4．1 SCN815

Vista Analytical Laboratory VG－11 \quad\begin{tabular}{ll}
Dataset： \& Untitled

Last Attered： \& | Monday，July 31， 2017 |
| :--- |
| 16：53：40 Pacific Daylight Time |
| Printed： |

\hline
\end{tabular}

Method：U：IG1．prolMethDBIPFAS＿B＿2TRAN＿0714．mdb 14 Jul 2017 15：36：03
Calibration：U：IG1．prolCurveDBIC18＿VAL－PFC＿Q1＿7－28－17＿B＿2Trans＿NEW．cdb 31 Jul 2017 08：37：52
Compound name：PFOSA

	ID	e	AcqTime
	IPA	31－Jul－17	13：33：35
	ST170731G1－1 PFC CS－1 17G3102	31－Jul－17	13：46：30
	IPA	31－Jul－17	13：59：06
170731G1_4	B7G0079－BS1 OPR 0.125	31－Jul－17	14：11：43
	IPA	31－Jul－17	14：24：17
	B7G0079－BLK1 Method Blank 0.125	31－Jul－17	14：54：16
46Txy 170731G1＿7	1700887－01 IRPSite 6－GW－06GW01－2017071．．．	31－Jul－17	15：06：51
170731G1_8	1700887－02 IRPSite 6－GW－06GW02－2017071．．	31－Jul－17	15：19：26
170731G1_9	1700887－03 IRPSite 6－GW－FRB01－20170712	31－Jul－17	15：32：02
W相約紜170731G1＿10	1700887－04 Site 33－GW－33GW01－20170712	31－Jul－17	15：44：39
3 ${ }^{\text {dx }}$ 170731G1＿11	1700887－05 Building 110－GW－110GW01－2017．．．	31－Jul－17	15：57：16
170731G1＿1	1700887－06 IRPSite 6－GW－06FD01－20170712．．．	31－Jul－17	16：09：57
170731G1_13	IPA	31－Jul－17	16：22：30
6ky	ST170731G1－2 PFC CS3 17G3102	31－Jul－17	16：35：07

Dataset: U:\G1.PRO\Results\2017\170731G3\170731G3-2.qld
Last Altered: Tuesday, August 01, 2017 13:07:42 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 13:09:20 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Name: 170731G3_2, Date: 31-Jul-2017, Time: 17:22:07, ID: ST170731G3-1 PFC CS3 17G3102, Description: PFC CS3 17 G 3102 B

Dataset:	Untitled
Last Altered:	Tuesday, August 01, 2017 13:19:59 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 13:20:16 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G3\170731G3-14.qld

Last Altered: Tuesday, August 01, 2017 13:15:50 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 13:16:56 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Name: 170731G3_14, Date: 31-Jul-2017, Time: 19:53:14, ID: ST170731G3-2 PFC CS3 17G3102, Description: PFC CS3 17G3102 B

Dataset: Untitled
Last Altered: Tuesday, August 01, 2017 13:19:59 Pacific Daylight Time Printed: Tuesday, August 01, 2017 13:20:16 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

Ma	1 D	Acq:Date	Acq Time
Whatdx whx $170731 \mathrm{G3}$ _1	IPA	31-Jul-17	17:09:02
	ST170731G3-1 PFC CS3 17G3102	31-Jul-17	17:22:07
	IPA	31-Jul-17	17:34:40
	1700875-01 MW-42S-20170713 0.11821	31-Jul-17	17:47:16
	1700875-02 MW-14BR-20170713 0.11912	31-Jul-17	17:59:53
170731G3.	1700875-03 MW-51BR-20170713 0.11822	31-Jul-17	18:12:28
	1700875-04 DUP-06-201707130.11793	31-Jul-17	18:25:03
170731G3_8	1700875-05 MW-11S-20170713 0.11994	31-Jul-17	18:37:39
	1700884-01 MW-37BR-20170714 0.11935	31-Jul-17	18:50:15
	1700884-02 MW-32BR-20170714 0.11989	31-Jul-17	19:02:54
170731G3_11	1700884-03 MW-35S-20170714 0.11984	31-Jul-17	19:15:28
170731G3_12	1700884-04 FRB-02-20170714 0.11984	31-Jul-17	19:28:02
170731G3_13	IPA	31-Jul-17	19:40:37
170731G3_14	ST170731G3-2 PFC CS3 17G3102	31-Jul-17	19:53:14
	IPA	31-Jul-17	20:05:47

Dataset:
U:\G1.PRO\Results\2017\170731G2\170731G2-4.qld
Last Altered: Monday, July 31, 2017 10:38:20 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:08 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170731G2_4, Date: 31-Jul-2017, Time: 10:12:39, ID: ST170731G2-2 PFC CS0 17G2609, Description: PFC CS0 17G2609 A

Dataset: Untitled

Last Altered: Monday, July 31, 2017 17:00:48 Pacific Daylight Time
Printed: Monday, July 31, 2017 17:00:55 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

	Name	Acq Date Acq.Time	
1 1* ${ }^{\text {a }}$, 170731G2_1	IPA	31-Jul-17	09:32:17
2	(A)ST170731G2-1 PFC CS-1 17G3103	31-Jul-17	09:44:30
	IPA	31-Jul-17	09:57:00
$4 \times 170731 \mathrm{G2} 4$	ST170731G2-2 PFC CSO 17G2609	31-Jul-17	10:12:39
5. ${ }^{\text {a }}$, 170731G2_5	IPA	31-Jul-17	10:24:52
6 \% ${ }^{\text {a }}$, 170731G2_6	B7G0079-BS1 OPR 0.125	31-Jul-17	10:37:29
$7, Y+170731 \mathrm{G} 2 _7$	IPA	31-Jul-17	10:50:03
8.	B7G0079-BLK1 Method Blank 0.125	31-Jul-17	11:02:39
$9 \rightarrow 4170731 \mathrm{G2}$ _9	1700887-01 IRPSite 6-GW-06GW01-2017071...	31-Jul-17	11:15:11
10 .	1700887-02 IRPSite 6-GW-06GW02-2017071...	31-Jul-17	11:27:45
11. ${ }^{\text {a }}$ 170731G2_11	1700887-03 IRPSite 6-GW-FRB01-20170712	31-Jul-17	11:40:15
$12: *$ 170731G2_12	1700887-04 Site 33-GW-33GW01-20170712 ...	31-Jul-17	11:52:47
13. ${ }^{*}$ (${ }^{\text {a }}$ 170731G2_13	1700887-05 Building 110-GW-110GW01-2017.	31-Jul-17	12:05:21
14 - ${ }^{\text {a }}$ 170731G2_14	IPA	31-Jul-17	12:17:54
	1700887-06 IRPSite 6-GW-06FD01-20170712.	31-Jul-17	12:30:29
16. ${ }^{\text {a }}$ ($170731 \mathrm{G2}$ _16	1700887-05@5X Building 110-GW-110GW01-.	31-Jul-17	12:43:01
17 : \% . 170731 G 2 _17	IPA	31-Jul-17	12:55:34
	ST170731G2-3 PFC CS3 17G3104	31-Jul-17	13:08:18
19 \% 4 - 170731G2_19	IPA	31-Jul-17	13:20:57

Last Altered: Monday, July 31, 2017 13:41:38 Pacific Daylight Time
Printed: Monday, July 31, 2017 16:59:22 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170731G2_18, Date: 31-Jul-2017, Time: 13:08:18, ID: ST170731G2-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A

Dataset: Untitled
Last Altered: Monday, July 31, 2017 17:00:48 Pacific Daylight Time
Printed: Monday, July 31, 2017 17:00:55 Pacific Daylight Time

Method: U:IG1.prolMethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

	$\overline{10}$	Acq.Date	Aca Time
	IPA	31-Jul-17	09:32:17
	(A)ST170731G2-1 PFC CS-1 17G3103	31-Jul-17	09:44:30
	IPA	31-Jul-17	09:57:00
	ST170731G2-2 PFC CS0 17G2609	31-Jul-17	10:12:39
3 3 170731G2_5	IPA	31-Jul-17	10:24:52
程170731G2_6	B7G0079-BS1 OPR 0.125	31-Jul-17	10:37:29
170731G2_7	IPA	31-Jul-17	10:50:03
170731G2_8	B7G0079-BLK1 Method Blank 0.125	31-Jul-17	11:02:39
94xdy 170731G2_9	1700887-01 IRPSite 6-GW-06GW01-2017071...	31-Jul-17	11:15:11
731G2_10	1700887-02 IRPSite 6-GW-06GW02-2017071...	31-Jul-17	11:27:45
170731G2_11	1700887-03 IRPSite 6-GW-FRB01-20170712 ...	31-Jul-17	11:40:15
	1700887-04 Site 33-GW-33GW01-20170712 ...	31-Jul-17	11:52:47
3	1700887-05 Building 110-GW-110GW01-2017..	31-Jul-17	12:05:21
170731G2_14	IPA	31-Jul-17	12:17:54
170731G2_15	1700887-06 IRPSite 6-GW-06FD01-20170712...	31-Jul-17	12:30:29
170731G2_16	1700887-05@5X Building 110-GW-110GW01-...	31-Jul-17	12:43:01
	IPA	31-Jul-17	12:55:34
170731G2_18	ST170731G2-3 PFC CS3 17G3104	31-Jul-17	13:08:18
	IPA	31-Jul-17	13:20:57

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170803G2_2, Date: 03-Aug-2017, Time: 17:07:10, ID: ST170803G2-1 PFC CS3 17H0329, Description: PFC CS3 17H0329 A

Sample List: U:IG1.PROISampleDB\170803G2.SPL
Last Modified: \quad Friday, August 04, 2017 11:02:35 Pacific Daylight Time
Printed: Friday, August 04, 2017 11:04:50 Pacific Daylight Time

File Name	Sample ID	File Text
170803G2_1	IPA	IPA
170803G2_2	ST170803G2-1 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2_3	IPA	IPA
170803G2_4	B7H0015-BS1 OPR 1	OPR
170803G2_5	B7H0018-BS1 OPR 0.125	OPR
170803G2_6	IPA	IPA
170803G2_7	B7H0015-BLK1 Method Blank 1	Method Blank
170803G2_8	B7H0018-BLK1 Method Blank 0.125	Method Blank
170803G2_9	1700884-01 MW-37BR-20170714 0.11935	MW-37BR-20170714
170803G2-10	1700884-02 MW-32BR-20170714 0.11989	MW-32BR-20170714
170803G2_11	1700884-03 MW-35S-20170714 0.11984	MW-35S-20170714
170803G2 12	1700884-04 FRB-02-20170714 0.11984	FRB-02-20170714
170803G2_13	1700942-02@5X BANGR-05-SB03-10-12 1	BANGR-05-SB03-10-12
170803G2-14	1700942-03@5X BANGR-07-SB02-2-4 1	BANGR-07-SB02-2-4
170803G2-15	1700942-04@5X BANGR-07-SB02-8-9 1	BANGR-07-SB02-8-9
170803G2-16	1700942-07@5X BANGR-08-SB03-0-2 1	BANGR-08-SB03-0-2
170803G2-17	1700955-01 BANGR-05-SB01-0-2 1	BANGR-05-SB01-0-2
170803G2_18	1700955-02 BANGR-05-SB01-10-12 1	BANGR-05-SB01-10-12
170803G2_19	IPA	IPA
170803G2-20	ST170803G2-2 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2-21	IPA	IPA
170803G2-22	1700955-03 BANGR-05-SB02-0-2 1	BANGR-05-SB02-0-2
170803G2_23	B7H0015-MS1 Matrix Spike 1	Matrix Spike
170803G2-24	B7H0015-MSD1 Matrix Spike Dup 1	Matrix Spike Dup
170803G2 25	1700955-04 BANGR-05-SB02-10-11 1	BANGR-05-SB02-10-11
170803G2_26	1700955-05 BANGR-05-SO-DUP05-072717 1	BANGR-05-SO-DUP05-072717
170803G2-27	1700955-06 BANGR-06-SB03-0-2 1	BANGR-06-SB03-0-2
170803G2_28	1700955-07 BANGR-06-SB03-9-10 1	BANGR-06-SB03-9-10
170803G2_29	1700955-08 BANGR-08-SB01-0́-2 1	BANGR-08-SB01-0-2
170803G2_30	1700955-09 BANGR-08-SB01-13-15 1	BANGR-08-SB01-13-15
170803G2-31	1700955-10 BANGR-08-SB02-0-2 1	BANGR-08-SB02-0-2
170803G2-32	1700955-11 BANGR-08-SB02-13-15 1	BANGR-08-SB02-13-15
170803G2_33	1700955-13 BANGR-03-SB03-0-2 1	BANGR-03-SB03-0-2
170803G2-34	IPA	IPA
170803G2_35	ST170803G2-3 PFC CS3 17H0329	PFC CS3 17H0329 A
170803G2_36	IPA	IPA
170803G2-37	1700955-14 BANGR-03-SB03-10-11 1	BANGR-03-SB03-10-11
170803G2_38	1700955-15 BANGR-03-SO-DUP03-072817 1	BANGR-03-SO-DUP03-072817
170803G2_39	1700955-16 BANGR-06-SB01-0-2 1	BANGR-06-SB01-0-2
170803G2_40	1700955-17 BANGR-06-SB01-13-15 1	BANGR-06-SB01-13-15

MS File

PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2 trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16-2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16-2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans_0630 PFAS_L14or16_2trans_0630

Inlet File
PFC 2010enviro 6 2:47 PFC_2010enviro_6 $2: 46$ PFC_2010enviro_6 2:48 PFC_2010enviro_6 2:1 PFC- 2010enviro 6 2:2 $\begin{array}{ll}\text { PFC_2010 } & \text { enviro_6 } \\ 2: 48\end{array}$ PFC_2010enviro_6 2:3 PFC 2010enviro 6 2:4 PFC-2010enviro $6 \quad 2: 5$ PFC_2010enviro_6 $2: 6$ PFC_2010enviro_6 2:7 PFC 2010enviro 6 2:8 PFC_2010enviro_6 2:9 PFC_2010enviro_6 $2: 10$ PFC_2010enviro_6 2:11 PFC 2010enviro 6 2:12 PFC_2010enviro_6 $\quad 2: 13$ PFC_2010enviro_6 $\quad 2: 14$ PFC_2010enviro_6 2:47 PFC 2010enviro 6 2:46 PFC_2010enviro_6 $\quad 2: 48$ PFC_2010enviro_6 $\quad 2: 15$ PFC_2010enviro_6 2:16 PFC 2010enviro 6 2:17 PFC_2010enviro_6 $\quad 2: 18$ PFC_2010enviro_6 $\quad 2: 19$ PFC 2010enviro 6 2:20 PFC 2010enviro 6 2:21 PFC_2010enviro_6 2:22 PFC_2010enviro_6 2:23 PFC_2010enviro_6 2:24 PFC 2010enviro 6 2:25 PFC_2010enviro_6 2:26 PFC_2010enviro_6 $2: 47$ PFC 2010enviro 6 2:48 PFC_2010enviro_6 $\quad 2: 27$ PFC_2010enviro_6 2:28 PFC_2010enviro_6 2:29 PFC_2010enviro_6 2:30

Bottle

4

2
\qquad
. 5
7

[^2]10

$$
2
$$

$$
12
$$ PFC 2010enviro 6 2:46

13

46
48

$$
16
$$

$$
0
$$

18
:1921
23

5

$2: 47$

48
2:27
2:29

Sample List Report

MassLynx 4.1 SCN815

Sample List:	U:IG1.PROISampleDB\170803G2.SPL	Page 3 of 4
Last Modified:	Friday, August 04, 2017 11:02:35 Pacific Daylight Time	
Printed:	Friday, August 04, 2017 11:04:50 Pacific Daylight Time	Page Position (1, 2)

	File Name	Sample ID	File Text	MS File
41	170803G2_41	1700925-04RE1 I001MW52S-170724 0.1192	I001MW52S-170724	PFAS_L14or16_2trans_0630
42	170803G2-42	B7H0018-MSD1 Matrix Spike Dup 0.125	Matrix Spike Dup	PFAS_L14or16_2trans_0630
43	170803G2_43	B7H0018-MS1 Matrix Spike 0.125	Matrix Spike	PFAS_L14or16_2trans_0630
44	170803G2_44	1700925-05RE1 I001MW52X-170724 0.1174	I001MW52X-170724	PFAS_L14or16_2trans_0630
45	170803G2_45	1700962-01 East Tank 0.125	East Tank	PFAS_L14or16_2trans_0630
46	170803G2-46	1700962-02 West Tank 0.125	West Tank	PFAS_L14or16_2trans_0630
47	170803G2_47	1700962-03 MiddleTank 0.125	MiddleTank	PFAS_L14or16_2trans_0630
48	170803G2_48	IPA	IPA	PFAS_L14or16_2trans_0630
49	170803G2_49	ST170803G2-4 PFC CS3 17H0329	PFC CS3 17H0329 A	PFAS_L14or16_2trans_0630
50	170803G2_50	IPA	IPA	PFAS_L14or16_2trans_0630

Inlet File	Bottle
PFC_2010enviro_6	$2: 31$
PFC_2010enviro_6	$2: 32$
PFC_2010enviro_6	$2: 33$
PFC_2010erviro_6	$2: 34$
PFC_2010enviro_6	$2: 35$
PFC_2010enviro_6	$2: 36$
PFC_2010enviro_6	$2: 37$
PFC_2010enviro_6	$2: 48$
PFC_2010enviro_6	$2: 46$
PFC_2010enviro6	$2: 47$

Cell 814117

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170803G2_20, Date: 03-Aug-2017, Time: 20:53:06, ID: ST170803G2-2 PFC CS3 17H0329, Description: PFC CS3 17H0329 A

Sample List:	U:IG1.PROISampleDB\170803G2.SPL
Last Modified:	Friday, August 04, 2017 11:02:35 Pacific Daylight Time

Printed: \quad Friday, August 04, 2017 11:04:50 Pacific Daylight Time

MS File

PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14ar16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS L14or16 2 trans 0630 PFAS_L14or16_2trans_0630 PFAS_L14or16_2trans_0630 PFAS L14or16 2trans 0630 PFAS ${ }^{-}$144or16-2trans 0630 PFAS_L14or16_2trans_0630

Inlet
PFC_2010enviro_6 2:4 PFC 2010enviro 6 2:46 PFC_2010enviro 6 2:48 PFC_2010enviro_6 2:1 PFC_2010enviro_6 2:2 PFC_2010enviro_6 2:48 PFC 2010enviro ${ }^{-} 6 \quad 2: 3$ PFC_2010enviro_6 $2: 4$ PFC_2010enviro_6 2:5 PFC 2010enviro 6 2:6 PFC_2010enviro_6 2:7 PFC_2010enviro_6 2:8 PFC_2010enviro 6 2:9 PFC 2010enviro 6 2:10 PFC-2010enviro 6 2:11 PFC_2010enviro_6 $\quad 2: 12$ PFC_2010enviro_6 2:13 PFC 2010enviro 6 2:14 PFC- 2010enviro ${ }^{-6} \quad 2: 47$ PFC_2010enviro_6 $\quad 2: 46$ PFC_2010enviro_6 2:48 PFC_2010enviro 6 2:15 PFC_2010enviro_6 2:16 PFC_2010enviro_6 $\quad 2: 17$ PFC_2010enviro_6 2:18 PFC 2010enviro 6 2:19 PFC_2010enviro_6 2:20 PFC_2010enviro_6 $2: 21$ PFC_2010enviro_6 2:22 PFC_2010enviro 6 2:23 PFC_2010enviro_6 2:24 PFC_2010enviro_6 2:25 PFC_2010enviro_6 2:26 PFC_2010enviro 6 2:47 PFC 2010enviro 6 2:46 PFC_2010enviro_6 $\quad 2: 48$ PFC_2010enviro_6 2:27 PFC_2010enviro_6 2:28 PFC_2010enviro_6 2:29 PFC_2010enviro_6

Bottle

47

48
2
:3 $2: 4$
$2: 5$

$$
\begin{aligned}
& 0 \\
& 6 \\
& 7
\end{aligned}
$$

> n

$$
\begin{aligned}
& : 10 \\
& : 11 \\
& : 10
\end{aligned}
$$

13
14
46

$$
\begin{aligned}
& 48 \\
& 15 \\
& 16
\end{aligned}
$$

$$
\begin{align*}
& 16 \tag{18}\\
& 17
\end{align*}
$$

$$
\begin{aligned}
& : 19 \\
& : 20 \\
& : 11
\end{aligned}
$$

$$
\begin{aligned}
& 2: 20 \\
& 2: 21 \\
& 2: 20
\end{aligned}
$$

$$
2: 22
$$

\qquad
$2: 24$
$2: 25$
$2: 26$
2:26
2:46 2:48
2:28
2:30 44 of 58

Sample List Report

MassLynx 4.1 SCN815

Sample List:	U:IG1.PROISampleDBl170803G2.SPL	Page 3 of 4
Last Modified:	Friday, August 04, 2017 11:02:35 Pacific Daylight Time	
Printed:	Friday, August 04, 2017 11:04:50 Pacific Daylight Time	Page Position (1, 2)

	File Name	Sample ID	File Text
41	170803G2_41	1700925-04RE1 I001MW52S-170724 0.1192	I001MW52S-170724
42	170803G2_42	B7H0018-MSD1 Matrix Spike Dup 0.125	Matrix Spike Dup
43	170803G2_43	B7H0018-MS1 Matrix Spike 0.125	Matrix Spike
44	170803G2_44	1700925-05RE1 I001MW52X-170724 0.1174	I001MW52X-170724
45	170803G2_45	1700962-01 East Tank 0.125	East Tank
46	170803G2_46	1700962-02 West Tank 0.125	West Tank
47	170803G2_47	1700962-03 MiddleTank 0.125	MiddleTank
48	170803G2_48	IPA	IPA
49	170803G2_49	ST170803G2-4 PFC CS3 17H0329	PFC CS3 17H0329 A
50	170803G2_50	IPA	IPA

MS File	Inlet File	Bottle
PFAS_L14or16_2trans_0630_	PFC_2010enviro_6	$2: 31$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 32$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 33$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 34$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 35$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 36$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 37$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 48$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 46$
PFAS_L14or16_2trans_0630	PFC_2010enviro_6	$2: 47$

- Yel 8/4117

Vista Analytical Laboratory Q2
Dataset: U:\G1.PRO\Results\2017\170728G1\170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Method: U:IG1.PROIMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52

Compound name: PFOSA

Correlation coefficient: $r=0.999923, r^{\wedge} 2=0.999847$
Calibration curve: 1.21764 * x +0.142512
Response type: Internal Std (Ref 9), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999599$
Calibration curve: $-0.0288624^{*} x^{\wedge} 2+29.2151^{*} x+0.0851315$
Response type: Internal Std (Ref 10), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Std. Conc	+ RT	Resp	IS Resp	Conc	\%Dev	RRF
43:	1 170728G1_2	0.250	4.97	4.35 e 2	7.62e3	0.315	25.8	37.1
$2-$	2 170728G1_3	0.500	4.97	4.93 e 2	6.79 e 3	0.401	-19.8	23.6
	3 170728G1_4	1.00	4.97	1.20 e 3	7.24 e 3	0.920	-8.0	26.9
4	4 170728G1_5	2.00	4.97	1.56 e 3	4.15 e 3	2.09	4.6	30.5
5	5 170728G1_6	5.00	4.98	5.72 e 3	6.62e3	4.82	-3.5	28.1
6.	$6170728 \mathrm{G1} 1{ }^{\text {¢ }}$	10.0	4.98	1.13 e 4	6.31 e 3	10.0	0.5	29.1
7	7 170728G1_8	50.0	4.97	5.31e4	6.17 e 3	50.3	0.6	27.9
8.8	8 170728G1_9	100	4.97	9.12 e 4	5.64e3	99.8	-0.2	26.3

Vista Analytical Laboratory Q2
Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-CRV.qId
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: R^2 $=0.999845$
Calibration curve: $0.00050466^{*} x^{\wedge} 2+0.454912{ }^{*} x+-0.0161039$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFUnA

Correlation coefficient: $r=0.999740, r^{\wedge} 2=0.999481$
Calibration curve: 0.950369 * x + 0.261679
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4 ${ }^{3}$	\# Name	Std Con	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 1.	1 170728G1_2	0.250	5.10	1.12e3	3.18 e 4	0.187	-25.2	1.76
2.3	2 170728G1_3	0.500	5.10	1.99e3	3.12 e 4	0.563	12.6	1.59
3×2	3 170728G1_4	1.00	5.10	3.01e3	3.15 e4	0.982	-1.8	1.19
4	4 170728G1_5	2.00	5.10	3.37e3	1.71e4	2.32	16.0	1.23
$5 \times$	5 170728G1_6	5.00	5.11	1.25 e 4	3.10 e 4	5.03	0.5	1.01
6.4	6 170728G1_7	10.0	5.11	2.34 e 4	3.06 e 4	9.78	-2.2	0.956
7×2	7 170728G1_8	50.0	5.11	9.65 e 4	2.51 e 4	50.3	0.6	0.961
$8 \square$	8 170728G1_9	100	5.11	1.59 e 5	2.10 e4	99.6	-0.4	0.949

Dataset: U:IG1.PROIResults120171170728G11170728G1-CRV.qld
Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed:
Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999066$
Calibration curve: $-0.0319951^{*} x^{\wedge} 2+17.7619$ * $x+-1.1299$
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFDoA

Correlation coefficient: $\mathrm{r}=0.999801, \mathrm{r}^{\wedge} 2=0.999601$
Calibration curve: 0.121673 * $x+0.000589951$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1-3	1 170728G1_2	0.250	5.34	1.06 e 2	4.00 e 4	0.268	7.4	0.133
2	2 170728G1_3	0.500	5.34	1.68 e 2	3.98 e 4	0.429	-14.2	0.106
3.	3 170728G1_4	1.00	5.33	3.50 e 2	3.87e4	0.924	-7.6	0.113
4	4 170728G1_5	2.00	5.34	4.94e2	2.34 e 4	2.17	8.3	0.132
5.	$5170728 \mathrm{G1}$ _6	5.00	5.34	2.00 e3	4.03 e 4	5.09	1.7	0.124
6 24ix	6 170728G1_7	10.0	5.34	3.90e3	3.82 e 4	10.5	4.9	0.128
7 \% ${ }^{\text {a }}$	7 170728G1_8	50.0	5.34	1.59 e 4	3.26 e 4	50.2	0.4	0.122
$8 \cdot 6$	817072861 _9	100	5.34	2.62 e 4	2.71 e 4	99.2	-0.8	0.121

Dataset: U:IG1.PRO\Resultsl2017\170728G1\170728G1-CRV.qld

Last Altered: Monday, July 31, 2017 08:37:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:51:45 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999657, \mathrm{r}^{\wedge} 2=0.999315$
Calibration curve: 1.21286 * $x+-0.015692$
Response type: Internal Std (Ref Multiple) , Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
	1 170728G1_2	0.250	5.54	9.84 e 2	0.00e0	0.261	4.3	1.20
$2-5$	2 170728G1_3	0.500	5.54	2.09 e 3	0.00e0	0.536	7.3	1.27
3 -	3 170728G1_4	1.00	5.54	3.83e3	0.00e0	0.970	-3.0	1.16
$4 \geq$	4 170728G1_5	2.00	5.54	4.37 e 3	0.00e0	1.98	-1.0	1.19
$5-5$	5 170728G1_6	5.00	5.55	2.00 e 4	0.00e0	5.06	1.3	1.23
6.4	$6170728 \mathrm{G1}$-7	10.0	5.54	3.43e4	0.00e0	9.02	-9.8	1.09
7.4	$7170728 \mathrm{G1}$-8	50.0	5.54	1.63 e 5	0.00e0	50.0	0.0	1.21
14me	8 170728G1_9	100	5.54	2.78 e 5	0.00e0	101	0.9	1.22

Compound name: PFTeDA

Correlation coefficient: $\mathrm{r}=0.998269, \mathrm{r}^{\wedge} 2=0.996541$
Calibration curve: $0.904178{ }^{*} x+0.15515$
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name -	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 1	1 170728G1_2	0.250	5.72	1.15 e 3	4.19 e 4	0.208	-17.0	1.37
2 ma	2 170728G1_3	0.500	5.72	2.48 e 3	4.23 e 4	0.637	27.4	1.46
3 3 ${ }^{\text {a }}$	3 170728G1_4	1.00	5.72	4.25 e 3	4.37 e 4	1.17	17.3	1.22
4×2	4 170728G1_5	2.00	5.72	4.03e3	2.24 e 4	2.32	15.8	1.12
5.3	5 170728G1_6	5.00	5.72	1.83 e 4	4.14 e 4	5.94	18.9	1.11
6 chem	6 170728G1_7	10.0	5.72	3.20 e 4	4.03 e 4	10.8	8.1	0.993
7 7-3	7 170728G1_8	50.0	5.72	1.27 e 5	3.47 e 4	50.4	0.9	0.915
8-	8 170728G1_9	100	5.72	2.08 e 5	2.96e4	97.2	-2.8	0.881

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03

 Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Compound name: PFOSA

	Name	ID W -	Acq. Date	Acq.Time
1.3T:	170728G1_1	IPA	28-Jul-17	16:05:47
2	170728G1_2	ST170728G1-1 PFC CS-2 17G2824	28-Jul-17	16:18:24
3.	170728G1_3	ST170728G1-2 PFC CS-1 17G2825	28-Jul-17	16:30:58
4	170728G1_4	ST170728G1-3 PFC CS0 17G2826	28-Jul-17	16:43:33
5 tita	170728G1_5	ST170728G1-4 PFC CS1 17G2827	28-Jul-17	16:56:09
6	170728G1_6	ST170728G1-5 PFC CS2 17G2828	28-Jul-17	17:09:04
7	170728G1_7	ST170728G1-6 PFC CS3 17 G 2829	28-Jul-17	17:21:42
8.	170728G1_8	ST170728G1-7 PFC CS4 17G2830	28-Jul-17	17:34:20
	170728G1_9	ST170728G1-8 PFC CS5 17G2831	28-Jul-17	17:47:02
10.	170728G1_10	IPA	28-Jul-17	17:59:40
11	170728G1_11	SS170728G1-1 PFC SSS 17G2823	28-Jul-17	18:12:17
12 -	170728G1_12	IPA	28-Jul-17	18:24:50

Dataset: U:IG1.PRO\Results\2017\170728G1\170728G1-11.qld
Last Altered: Monday, July 31, 2017 08:57:52 Pacific Daylight Time
Printed: Monday, July 31, 2017 08:58:52 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_B_2TRAN_0714.mdb 14 Jul 2017 15:36:03
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-28-17_B_2Trans_NEW.cdb 31 Jul 2017 08:37:52
Name: 170728G1_11, Date: 28-Jul-2017, Time: 18:12:17, ID: SS170728G1-1 PFC SSS 17G2823, Description: PFC SSS 17 G2823 B

5	\# Name	Trace	Response	IS Resp	RRF	WtVol	RT	Waci Conc.	\%Rec	$\underbrace{70-130}$	60, 713117
1	1 PFOSA	$498.1>77.7$	2.03 e 4	2.21 e 4		1.000	4.60	9.32	93.2		
$2+3$	$2 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419.0$	1.00 e 4	6.76 e 3		1.000	4.98	8.33	83.3		
3×5	3 PFDS	$598.8>98.7$	9.53 e 3	2.79 e 4		1.000	5.14	9.34	93.4		
$4{ }^{\text {a }}$	4 PFUnA	$563>518.9$	2.08e4	2.79 e 4		1.000	5.11	9.55	95.5		
5 5	5 N -EtFOSAA	584.2 > 419.0	7.19 e 3	7.64e3		1.000	5.10	8.82	88.2		
$6-2$	6 PFDoA	$612.9>318.8$	3.57e3	3.74 e 4		1.000	5.34	9.79	97.9		
7 T	7 PFTrDA	$662.9>618.9$	3.40e4	0.00 e 0		1.000	5.54	9.17	91.7		
8 8	8 PFTeDA	$712.9>668.8$	3.05 e 4	3.91 e 4		1.000	5.72	10.6	106.3		
9 9.4.	9 13C8-PFOSA	$506.1>77.7$	2.21 e 4	1.86 e 4	1.146	1.000	4.60	13.0	103.8		
10.	$10 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419.0$	6.76 e 3	1.86 e 4	0.026	1.000	4.97	172	106.1		
11	11 13C2-PFUnA	$565>519.8$	2.79 e 4	1.86 e 4	1.471	1.000	5.11	12.7	101.9		
12.	12 d5-N-EtFOSAA	$589.3>419.0$	7.64e3	1.86 e 4	0.031	1.000	5.09	165	101.8		
$13 \times$	13 13C2-PFDoA	$615>569.7$	3.74 e 4	1.86 e 4	1.887	1.000	5.34	13.3	106.7		
14.	14 13C2-PFTeDA	$715>669.7$	3.91e4	1.86 e 4	1.990	1.000	5.72	13.2	105.6		
$15 \times$	15 13C7-PFUnA	$570.1>524.8$	1.86 e 4	1.86 e 4	1.000	1.000	5.10	12.5	100.0		

Dataset:
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

Correlation coefficient: $r=0.999824, r^{\wedge} 2=0.999647$
Calibration curve: 0.747533 * $x+0.048007$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999667, \mathrm{r}^{\wedge} 2=0.999334$
Calibration curve: 1.10054 * $x+0.0486908$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	-4.4	Sta. Conc	RT	Resp	IS Resp	Conc,	\%Dev	RRF
1	1 170727G1_2		0.250	2.62	1.86 e 2	7.64e3	0.233	-6.8	1.22
2 2-2xtut	2 170727G1_3		0.500	2.63	3.85 e 2	8.33 e 3	0.481	-3.8	1.16
3 \% ${ }^{\text {dem}}$	3 170727G1_4		1.00	2.63	7.66 e 2	7.75e3	1.08	7.8	1.23
4 , mum	4 170727G1_5		2.00	2.63	1.54 e 3	8.54 e3	2.01	0.5	1.13
5×4	5 170727G1_6		5.00	2.63	3.71 e 3	7.82e3	5.34	6.8	1.18
6	6 170727G1_7		10.0	2.63	7.58 e 3	9.10 e3	9.42	-5.8	1.04
7 \% ${ }^{\text {a }}$	7 170727G1_8		50.0	2.63	3.27 e 4	7.23 e 3	51.2	2.5	1.13
8 -	$8170727 \mathrm{G1}$-9		100	2.62	6.37e4	7.31e3	98.9	-1.1	1.09

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999365, \mathrm{r}^{\wedge} 2=0.998731$
Calibration curve: 1.60766 * $x+0.593256$
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999065, \mathrm{r}^{\wedge} 2=0.998131$
Calibration curve: 1.89981 * x + 0.153363
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

19	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev.	RRF
1.4	1 170727G1_2	0.250	3.28	2.81 e 2	5.77e3	0.240	-4.0	2.44
2 2.	2 170727G1_3	0.500	3.28	5.54 e 2	7.04 e 3	0.436	-12.7	1.97
3 3	3 170727G1_4	1.00	3.28	1.13 e 3	6.35 e 3	1.09	8.6	2.22
14	4 170727G1_5	2.00	3.28	2.22 e 3	6.86 e 3	2.04	2.2	2.02
5	5 170727G1_6	5.00	3.28	5.20 e 3	5.84 e 3	5.78	15.6	2.23
6	6 170727G1_7	10.0	3.28	1.11e4	7.89 e 3	9.21	-7.9	1.77
7	7 170727G1_8	50.0	3.28	4.46 e 4	6.09 e 3	48.2	-3.7	1.83
8 8,	8 170727G1_9	100	3.29	8.84e4	5.71 e 3	102	1.8	1.94

Dataset:
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999666, \mathrm{r}^{\wedge} 2=0.999332$
Calibration curve: 1.94658 * x + 0.2548
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

W2	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev mata	RRF
1.4	1 170727G1_2	0.250	3.81	3.78 e 2	7.45e3	0.195	-22.1	2.54
2	2 170727G1_3	0.500	3.82	8.08e2	8.06e3	0.513	2.6	2.51
$3 \times$	3 170727G1_4	1.00	3.81	$1.65{ }^{\text {e }}$	8.77 e 3	1.08	7.5	2.35
4 2	4 170727G1_5	2.00	3.81	3.13 e 3	8.92 e 3	2.13	6.3	$2: 20$
5.4	5 170727G1_6	5.00	3.81	7.12e3	8.20 e 3	5.45	9.0	2.17
6	6 170727G1_7	10.0	3.81	1.60e4	1.05 e4	9.60	-4.0	1.89
7	7 170727G1_8	50.0	3.81	6.42 e 4	8.09 e 3	50.8	1.7	1.98
	8 170727G1_9	100	3.81	1.21e5	7.84e3	99.0	-1.0	1.93

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.999617, \mathrm{r}^{\wedge} 2=0.999233$
Calibration curve: 1.77848 * x + 0.109682
Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Con	Resp		IS Resp			
	1 170727G1_2	0.250	3.94	1.62 e 2	3.88 e 3	0.232	-7.1	2.09
2 . ymat.	2 170727G1_3	0.500	3.95	4.30 e 2	4.68 e 3	0.584	16.7	2.30
3 -	$3170727 \mathrm{G1}$ _4	1.00	3.94	6.02 e 2	4.35 e 3	0.911	-8.9	1.73
4	4 170727G1_5	2.00	3.94	1.37 e 3	4.63 e 3	2.02	1.2	1.85
5	5 170727G1_6	5.00	3.94	3.35 e 3	4.52 e 3	5.15	3.0	1.85
6	$6170727 \mathrm{G1}$-7	10.0	3.94	7.31e3	5.48 e 3	9.31	-6.9	1.67
	7 170727G1_8	50.0	3.94	3.04e4	4.15 e 3	51.4	2.8	1.83
$8 \times$	$8170727 \mathrm{G1}$ _9	100	3.94	5.94e4	4.21 e3	99.1	-0.9	1.76

Quantify Compound Summary Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q2
Dataset:
U:\G1.PROXResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.998786, \mathrm{r}^{\wedge} 2=0.997574$
Calibration curve: $0.797511^{*} x+0.0924786$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name - amat	Std Cone	RT	Resp	\%. IS Resp	- Conc.	\%Dev	RRF
1 -axy	1 170727G1_2	0.250	4.24	3.42 e 2	1.63 e 4	0.213	-15.0	1.05
2 2-m	2 170727G1_3	0.500	4.24	7.66e2	1.67 e 4	0.602	20.4	1.14
3 la	3 170727G1_4	1.00	4.23	1.34 e 3	1.73 e 4	1.10	10.0	0.969
4.20	4 170727G1_5	2.00	4.24	2.75 e 3	1.86 e 4	2.21	10.3	0.926
5	5 170727G1_6	5.00	4.24	7.23e3	1.80 e4	6.16	23.3	1.00
6 .	6 170727G1_7	10.0	4.24	1.44e4	2.24 e 4	9.96	-0.4	0.804
7 Cl W	7 170727G1_8	50.0	4.24	5.59e4	1.77 e 4	49.4	-1.3	0.789
8 . ${ }^{\text {a }}$ -	8 170727G1_9	100	4.24	1.14e5	1.80 e4	99.2	-0.8	0.792

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999639$
Calibration curve: $-0.00237877^{*} x^{\wedge} 2+2.32641^{*} x+0.0752635$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Exicter	\# Name	Std Cone	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1.	1 170727G1_2	0.250	4.58	2.70 e 2	4.96 e 3	0.260	4.1	2.72
2, ${ }^{\text {a }}$ + ${ }^{\text {a }}$	2 170727G1_3	0.500	4.58	6.08 e 2	6.55 e 3	0.466	-6.7	2.32
3 c +	3 170727G1_4	1.00	4.58	1.08 e 3	5.92e3	0.954	-4.6	2.29
4. ${ }^{\text {a }}$.	$4170727 \mathrm{G1}$-5	2.00	4.58	2.72 e 3	6.93 e 3	2.08	4.0	2.45
5 ctert	$5170727 \mathrm{G1}$ ¢ 6	5.00	4.58	6.11 e 3	6.11 e 3	5.37	7.3	2.50
6	$6170727 \mathrm{G1} 1$ 7	10.0	4.58	1.31 e 4	7.36 e 3	9.60	-4.0	2.22
7 7, yme	$7170727 \mathrm{G1}$-8	50.0	4.58	6.15 e 4	6.96 e3	50.0	-0.0	2.21
8 -	$8170727 \mathrm{G1}$-9	100	4.58	1.22 e 5	7.32 e 3	100	0.0	2.09

Vista Analytical Laboratory Q2

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: $\mathbf{r}=0.999145, \mathrm{r}^{\wedge} 2=0.998292$
Calibration curve: 0.470087 * x + 0.0287104
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Na	Std. Conc	RT	Resp	1S Resp	Conc.	,	RRF
1.	1 170727G1_2	0.250	4.64	6.12 e 1	5.46 e 3	0.237	-5.3	0.560
2	2 170727G1_3	0.500	4.64	1.27 e 2	6.34 e 3	0.472	-5.5	0.502
3 -	3 170727G1_4	1.00	4.64	2.59 e 2	6.56 e 3	0.990	-1.0	0.494
	4 170727G1_5	2.00	4.64	5.73 e 2	7.61 e 3	1.94	-2.9	0.471
5 .	5 170727G1_6	5.00	4.64	1.51 e 3	7.06 e 3	5.61	12.2	0.533
6 - ${ }^{\text {a }}$	6 170727G1_7	10.0	4.64	3.08 e 3	8.09 e 3	10.1	0.6	0.476
7	7 170727G1_8	50.0	4.64	1.54 e 4	7.84 e 3	52.4	4.7	0.493
8. ${ }^{\text {a }}$ +	8 170727G1_9	100	4.64	3.11e4	8.50 e 3	97.1	-2.9	0.457

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999346$
Calibration curve: $-0.000179878{ }^{*} x^{\wedge} 2+0.198072$ * $x+0.02746$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

52.	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1	1 170727G1_2	0.250	4.87	4.13 e 1	8.28 e 3	0.176	-29.6	0.249
2×4	2 170727G1_3	0.500	4.87	1.24 e 2	1.08 e 4	0.592	18.3	0.289
3	$3170727 \mathrm{G1} 4$	1.00	4.87	1.85e2	1.06 e 4	0.967	-3.3	0.219
4 -	4 170727G1_5	2.00	4.87	4.71 e 2	1.25 e 4	2.24	11.8	0.235
$5-4$.	$5170727 \mathrm{G1}$ _6	5.00	4.87	9.70 e 2	1.15 e 4	5.23	4.5	0.212
6 W	$6170727 \mathrm{G1}$-7	10.0	4.87	1.93 e 3	1.22 e 4	9.95	-0.5	0.198
7	7 170727G1_8	50.0	4.87	1.03 e 4	1.38 e 4	49.2	-1.7	0.187
8 - tas ${ }^{\text {a }}$	$8170727 \mathrm{G1}$ _9	100	4.87	2.06 e 4	1.42 e 4	100	0.5	0.181

Vista Analytical Laboratory VG-11

Dataset:	Untitled
Last Altered:	Thursday, July 27, 2017 15:00:56 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:01:11 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Compound name: PFBA

		Acq.Date	Acg.Time
	IPA	27-Jul-17	11:32:09
$2.170727 \mathrm{G1}$ 2	ST170727G1-1 PFC CS-2 17G2714	27-Jul-17	11:44:22
3 - - 170727G1_3	ST170727G1-2 PFC CS-1 17G2715	27-Jul-17	11:56:54
	ST170727G1-3 PFC CS0 17G2716	27-Jul-17	12:09:31
5 W	ST170727G1-4 PFC CS1 17G2717	27-Jul-17	12:21:58
6.4 170727G1_6	ST170727G1-5 PFC CS2 17G2718	27-Jul-17	12:34:32
14: ${ }^{\text {b }}$ 170727G1_7	ST170727G1-6 PFC CS3 17G2719	27-Jul-17	12:47:11
-170727G1_8	ST170727G1-7 PFC CS4 17G2720	27-Jul-17	12:59:35
170727G1_9	ST170727G1-8 PFC CS5 17G2721	27-Jul-17	13:12:08
10 -	IPA	27-Jul-17	13:24:41
11 - 170727G1_11	SS170727G1-1 PFC SSS 17G2713	27-Jul-17	13:37:14
$12 \times 170727 \mathrm{G} 1$ _12	IPA	27-Jul-17	13:49:43

Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:55:09 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713

[^0]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^1]: PFHpA","86.9","\%R","","-99","NA","","IS","86.9","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","18O2-PFHxS","18O2-PFHxS","92.3","\%R","","-99","NA","","IS","92.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C2-PFOA","13C2-PFOA","85.3","\%R","","-99","NA","","IS","85.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C8-PFOS","13C8-PFOS","89.5","\%R","","-99","NA","","IS","89.5","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C5-PFNA","13C5-PFNA","91.2","\%R","","-99","NA","","IS","91.2","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C2-PFDA","13C2-PFDA","76.5","\%R","","-99","NA","","IS","76.5","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","d3-MeFOSAA","d3-MeFOSAA","50.5","\%R","","-99","NA","","IS","50.5","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C2-PFUnA","13C2-PFUnA","59.0","\%R","","-99","NA","","IS","59.0","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","d5-EtFOSAA","d5-EtFOSAA","50.3","\%R","","-99","NA","","IS","50.3","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C2-PFDoA","13C2-PFDoA","56.4","\%R","","-99","NA","","IS","56.4","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BLK1","Modified EPA Method 537","Initial","B7G0079-BLK1","Vista","13C2-PFTeDA","13C2-PFTeDA","45.1","\%R","H","-99","NA","","IS","45.1","","-99","NA","YES","100","","0.125","0.001","-99","" "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","375-735","PFBS","74.1","ng/L","","1.79","LOD","","TRG","92.6","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00"," "
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","307-24-
 4","PFHxA","86.7","ng/L","","2.18","LOD","","TRG","108","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","375-85-
 9","PFHpA","87.0","ng/L","","0.591","LOD","","TRG","109","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00" ""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","355-46-
 4","PFHxS","83.0","ng/L","","0.947","LOD","","TRG","104","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00" ""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","335-67-
 1","PFOA","90.3","ng/L","","0.651","LOD","","TRG","113","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","1763-23-
 1","PFOS","76.5","ng/L","","0.807","LOD","","TRG","95.7","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","375-95-
 1","PFNA","77.6","ng/L","","0.810","LOD","","TRG","97.0","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","335-76-
 2","PFDA","77.5","ng/L","","1.49","LOD","","TRG","96.9","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00"," "
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","2355-31-
 9","MeFOSAA","94.5","ng/L","","1.65","LOD","","TRG","118","","8.00","LOQ","YES","80.0","","0.125","0.001","5. 00",""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","2058-94-
 8","PFUnA","87.6","ng/L","","1.05","LOD","","TRG","110","","8.00","LOQ","YES","80.0","","0.125","0.001","5.00", ""
 "B7G0079-BS1","Modified EPA Method 537","Initial","B7G0079-BS1","Vista","2991-50-
 6","EtFOSAA","82.3","ng/L","","1.37","LOD","","TRG","103","","8.00","LOQ","YES","80.0","","0.125","0.001","5.0 0",""

[^2]: 8

