Groundwater Sample Results,
Combined Level 2 and Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1700906
Naval Air Warfare Center Trenton
Trenton, New Jersey
August 2019

5090.3c

LABORATORY DATA PACKAGE, 1700906, NAWC TRENTON, NJ 08/09/2017 VISTA ANALYTICAL LABORATORY

August 09, 2017

Vista Work Order No. 1700906

Ms. Mary Mang
Tetra Tech
661 Andersen Drive, Foster Plaza 7

Pittsburgh, PA 15220
Dear Ms. Mang,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 19, 2017. This sample set was analyzed on a standard turn-around time, under your Project Name 'NAWC Trenton'. The SDG Number is WE08.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Kaneng:Toyenemsta

Martha Maier
Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

SDG Number WE08

Vista Work Order No. 1700906

Case Narrative

Sample Condition on Receipt:

Six aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "MW-50BR-20170717", "MW-06BR-20170717", "MW-12BR-20170718", and "MW-02BR-20170718" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag
$1700906-04$	MW-12BR-20170718	Modified EPA Method 537	13C3-PFBS	H
B7G0105-BS1	B7G0105-BS1	Modified EPA Method 537	13C3-PFBS	161

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

In addition, the laboratory QC officer must read and sign a copy of the Quality Assurance Review Form displayed on the next page of this Attachment. Electronic deliverables are not considered to be complete without the accompanying Quality Assurance Review Form.

- Anna Helak

 , as the designated Quality Assurance Officer, hereby attest that all electronic deliverables have been thoroughly reviewed and are in agreement with the associated hardcopy data. The enclosed electronic files have been reviewed for accuracy (including significant figures), completeness and format. The laboratory will be responsible for any labor time necessary to correct enclosed electronic deliverables that have been found to be in error. I can be reached at (916) 673-1520 If there are any questions or problems with the enclosed electronic deliverables.

Revision
ISG
08/18/16

TABLE OF CONTENTS

Case Narrative 1
Signed Attestation Statement 3
Table of Contents 4
Sample Inventory 5
Analytical Results 6
Qualifiers 15
Certifications 16
Sample Receipt 19
Correspondence 21
Extraction Information. 24
Sample Data - Modified EPA Method 537 30
Continuing Calibration 104
Initial Calibration 150
PFAS Standards 412

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1700906-01	MW-50BR-20170717	17-Jul-17 13:55	19-Jul-17 09:15	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700906-02	MW-06BR-20170717	17-Jul-17 16:10	19-Jul-17 09:15	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700906-03	RB-04-20170717	17-Jul-17 18:00	19-Jul-17 09:15	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700906-04	MW-12BR-20170718	18-Jul-17 13:00	19-Jul-17 09:15	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700906-05	MW-02BR-20170718	18-Jul-17 15:15	19-Jul-17 09:15	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1700906-06	RB-05-20170718	18-Jul-17 18:00	19-Jul-17 09:15	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

ANALYTICAL RESULTS

Vista
Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

Matrix: Sample Size:	Aqueous $0.250 \mathrm{~L}$	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7G0105 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$7: 38$		Lab Sample: Date Analyzed:	$\begin{aligned} & \text { B7G0105-BS1 } \\ & \text { 24-Jul-17 23:21 Column: BEH C18 } \end{aligned}$		
Analyte		Amt Found (ng/L)	Spike Amt	\%R	Limits		Labeled Standard	\%R	LCL-UCL
PFBS		37.2	40.0	93.0	70-130	IS	13C3-PFBS	165	50-150
PFHxA		36.8	40.0	92.1	70-130	IS	13C2-PFHxA	114	50-150
PFHpA		38.6	40.0	96.4	70-130	IS	13C4-PFHpA	95.2	50-150
PFHxS		34.7	40.0	86.9	70-130	IS	1802-PFHxS	121	50-150
PFOA		38.1	40.0	95.3	70-130	IS	13C2-PFOA	113	50-150
PFOS		31.0	40.0	77.5	70-130	IS	13C8-PFOS	128	50-150
PFNA		39.1	40.0	97.9	70-130	IS	13C5-PFNA	116	50-150
PFDA		37.3	40.0	93.4	70-130	IS	13C2-PFDA	95.9	50-150
MeFOSAA		39.8	40.0	99.5	70-130	IS	d3-MeFOSAA	94.4	50-150
PFUnA		36.9	40.0	92.2	70-130	IS	13C2-PFUnA	87.9	50-150
EtFOSAA		36.9	40.0	92.2	70-130	IS	d5-EtFOSAA	97.5	50-150
PFDoA		37.2	40.0	93.0	70-130	IS	13C2-PFDoA	92.5	50-150
PFTrDA		39.1	40.0	97.8	60-130	IS	13C2-PFTeDA	83.6	50-150
PFTeDA		38.9	40.0	97.1	70-130				

LCL-UCL - Lower control limit - upper control limit

Sample ID:	MW-06BR-20170717							Modifie	d EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 17-Jul-2017 16:10		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.121 \mathrm{~L} \end{aligned}$	Lab Lab QC Dat	atory Samp Batch Ana	Data e: $1700906-02$ B7G0105 yzed: 25-Jul-17 00:03	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 19-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{aligned} & 9: 15 \\ & 7: 38 \end{aligned}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	ND	1.85	5.17	8.28		IS	13C3-PFBS	147	50-150	
PFHxA	ND	2.26	5.17	8.28		IS	13C2-PFHxA	112	50-150	
PFHpA	ND	0.611	5.17	8.28		IS	13C4-PFHpA	98.4	50-150	
PFHxS	ND	0.980	5.17	8.28		IS	1802-PFHxS	122	50-150	
PFOA	ND	0.673	5.17	8.28		IS	13C2-PFOA	111	50-150	
PFOS	ND	0.835	5.17	8.28			13C8-PFOS	126	50-150	
PFNA	ND	0.838	5.17	8.28		IS	13C5-PFNA	103	50-150	
PFDA	ND	1.54	5.17	8.28		IS	13C2-PFDA	111	50-150	
MeFOSAA	ND	1.71	5.17	8.28			d3-MeFOSAA	116	50-150	
PFUnA	ND	1.09	5.17	8.28		IS	13C2-PFUnA	94.3	50-150	
EtFOSAA	ND	1.42	5.17	8.28			d5-EtFOSAA	107	50-150	
PFDoA	ND	0.819	5.17	8.28			13C2-PFDoA	93.1	50-150	
PFTrDA	ND	0.511	5.17	8.28		IS	13C2-PFTeDA	69.3	50-150	
PFTeDA	ND	0.781	5.17	8.28						
DL - Detection limit RL - Reporting limit					LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.					

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Reporting Limit/LOQ.
M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration
NA Not applicable
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	$17-015-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA 23

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA $8290 / 8290 A$

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

CHAIN OF CUSTODY RECORD

$-{ }^{\circ} \mathrm{C}$

See "Sample Log-in Checklist" for additional sample information

Special Instructions/Comments:
FedEx 661219927209

[^0]$\square \mathrm{O}=$ Other

SEND
DOCUMENTATION AND RESULTS TO:

Name: Mary Mang
Company: Tetra Tech
Address: 234 Mall Blvd Suite 260
City: King of Prussia State: PA Zip: 19406 Phone: $\frac{610-382-1174}{}$ Fax: 610-491-9645
Email: mary.mang@tetratech.com
Matrix Types: $D W=$ Drinking Water, $\mathrm{EF}=\mathrm{Effluent}, \mathrm{PP}=$ Pulp/Paper, SD = Sediment, $\mathrm{SL}=$ Sludge, $\mathrm{SO}=$ Soii, $W W=$ Wastewater, $\mathrm{B}=$ Blood $/$ Serum $O=$ Other $A Q$

Vista Work Order \#:

TAT

Samples Arrival:	Date/Time $7 / 19 / 170915$		Initials: Vuls		Location: \qquad Shelf/Rack: N/2 \qquad	
Logged In:	$\begin{array}{ll} \text { Date/Time } \\ 07 / 19 / 17 & 1337 \end{array}$		Initials:		Location: Shelf/Rack: \qquad	
Delivered By:	FedEx UPS	On Trac	GSO	DHL	Hand Delivered	Other
Preservation:	Ice	Blue Ice			Dry Ice	None
Temp ${ }^{\circ} \mathrm{C}$: 4.4 (uncorrected)		Time: 0030 Probe used: Yes■ Nơ			Thermometer ID: IR-2	

Comments:

Correspondence

Karen Volpendesta

From:	Karen Volpendesta
Sent:	Tuesday, July 25, 2017 7:57 AM
To:	'Ritchie, Megan'
Cc:	Mang, Mary; Martha Maier
Subject:	RE: Vista Work Order \#1700906; NAWC Trenton

Good morning Megan,

Ok, we will keep the Work Orders as is. I will email the sample receiving acknowledgements in separate emails.

Thank you,
Karen

From: Ritchie, Megan [mailto:Megan.Ritchie@tetratech.com]
Sent: Tuesday, July 25, 2017 5:06 AM
To: Karen Volpendesta kvol@vista-analytical.com
Cc: Mang, Mary Mary.Mang@tetratech.com
Subject: RE: Vista Work Order \#1700906; NAWC Trenton

Karen,

That works for us to keep the 6 samples in their own SDG.

Thanks,
Megan

From: Karen Volpendesta [mailto:kvol@vista-analytical.com]
Sent: Monday, July 24, 2017 7:29 PM
To: Mang, Mary Mary.Mang@tetratech.com; Ritchie, Megan Megan.Ritchie@tetratech.com
Subject: FW: Vista Work Order \#1700906; NAWC Trenton

Mary, Megan,

The attached document states that all SDGs must contain 20 samples.

For Vista Work Order \#1700906, there are only 6 samples. Is that ok?

We also received samples on Friday, $7 / 21$ with 17 samples and samples on Saturday, $7 / 22$ with 6 samples. Please advise on the SDGs and I will send out the sample receiving acknowledgement for the samples we recently received.

Thank you,
Karen

From: Karen Volpendesta
Sent: Thursday, July 20, 2017 9:32 AM
To: Mang, Mary Mary.Mang@tetratech.com; Ritchie, Megan Megan.Ritchie@tetratech.com

Cc: Martha Maier mmaier@vista-analytical.com
Subject: Vista Work Order \#1700906; NAWC Trenton

Mary,

Please find attached the sample receiving acknowledgement for Vista Analytical Work Order: 1700906.

These samples will be analyzed by Modified EPA Method 537 for the list of 14 analytes.

If you have any questions, please contact me or Martha Maier at (916) 673-1520. We appreciate your business.

Best Regards,

Karen L. Volpendesta
(formerly Lopez)
Project Manager

Vista Analytical Laboratory 1104 Windfield Way
El Dorado Hills, CA 95762
Phone: (916) 673-1520
www.vista-analytical.com
*Hours: Monday, Tuesday, \& Thursday, 8am-4:30pm
A woman-owned, small business enterprise.

EXTRACTION INFORMATION

Process Sheet
 Workorder: 1700906

Prep Expiration: 2017-Aug-01
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous

Version: 537 (14 Analyte)

LabSampleID	Recon ClientSampleID	Date Received	Location Comments	
$1700906-01$	MW-50BR-20170717	MW-06BR-20170717	19-Jul-17 09:15	WR-2 A-4
$1700906-02$	RB-04-20170717	19-Jul-17 09:15	WR-2 A-4	
$1700906-03$	MW-12BR-20170718	19-Jul-17 09:15	WR-2 A-4	
$1700906-04$	MW-02BR-20170718	19-Jul-17 09:15	WR-2 A-4	
$1700906-05$	RB-05-20170718	19-Jul-17 09:15	WR-2 A-4	
$1700906-06$	19-Jul-17 09:15	WR-2 A-4		

Vista PM:Martha Maier
\qquad 712417 Page 1 of 1

HRMS－ 8

BALANCE CALIBRATION CHECK

Weights \＃＿ 22370 and 7718

Date	\qquad	$\begin{gathered} \text { Weight } 1 \\ 1 \mathrm{~g} \\ (0.9900-1.0100) \end{gathered}$	$\begin{array}{\|c} \text { Weight } 2 \\ 100 \mathrm{~g} \\ (99.00-101.00) \end{array}$	$\begin{gathered} \text { Weight } 3 \\ 2000 \mathrm{~g} \\ (1980-2020) \end{gathered}$	Initials	Acceptable？ （Y／N）
$7 / 19 / 17$	\checkmark	1.00	100.00	2000.00	KBF	y
712019	ciorsi	O11：01	.0100 .01	2.000 .04	BSS	F415：
7／21／17．	\checkmark	0.99	100.00	2000.00	EL	Y
7.2417	Vゾ。	100	100.01	200009	BP	F
71.24117	$\operatorname{sar} \mathrm{C}$	100	100．01	2000.00	UEL	7
7125117	－$冖 2$	1,00	． 99.99	2000.02	H3	Co：
\cdots	\cdots		\cdots		\cdots	－
＊		1.	＊		。	
3						
		$\cdots \quad . \quad$				
4						
Comments：						

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS
B7G0105
Chemist: BP
Method: 537M PFAS DOD (LOO as mRL)
Prepared using: LCMS - SPE Extraction-LCMS

c	VISTA Sample ID	${ }_{\substack{\text { pH } \\ \text { Before }}}$	${ }_{\text {After }}^{\text {pr }}$	Chlorine (Cl)	$\begin{array}{\|l\|l\|} \hline \text { Drops } \\ \text { Added } \end{array}$	$\begin{aligned} & \text { Borle+ } \\ & \text { Sanple } \\ & \text { (E) } \end{aligned}$	$\begin{aligned} & \text { Botle } \\ & \text { Borle } \\ & \hline(y) \end{aligned}$	$\begin{aligned} & \text { Sample } \\ & \text { ample } \\ & \text { Lec c } \end{aligned}$	$\begin{gathered} \text { IS/NS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$	SPE	$\underset{\substack{\text { CHEMWIT } \\ \text { CHANTIT }}}{\mathrm{R}}$
\square	B7GOIOS-BLKI	5	2	0	3	va		(a.2s)		$3_{3} \mathrm{CBEF}$	
\square	${ }^{\text {B7COIOS }}$ - ${ }^{\text {S }}$	5	2	0	3	I	I	J	T	T	T
\square		6	2	0	3	145.15	27.03	0.11812			
\square	${ }^{\text {B7GGOSOSMSD1 }}$	6	2	0	3	148.62	26.97	0.12165			
\square	${ }^{170090960.01}$ @	5	2	0	2	147.83	26.76	0.12107			
\square	${ }^{17009060-02(A)}$	5	2	0	2	147.52	26.69	0.12083			
\square	${ }^{1700096003}$	5	2	0	2	146.92	26.74	0.12018			
\square	${ }^{17009060.04}$ (A)	5	2	0	2	147.98	26.71	0.12127			
\square	${ }^{1700906-05}$ (1)	5	2	0	2	147.58	26.76	0.12082			
\square	1700906-06	5	2	0	2	148.22	26.71	0.12151			
\square	170	5	2	0	2	146.82	27.02	0.11980			
\square	${ }^{1700}$	5	2	0	2	146.82	26.97	0.11985			
\square	${ }^{1700907-17}$	6	2	0	9	17.40	27.00	0.12040			
\square	$1700907-046$	6	2	0	3	147.0	27.10	0.12053			
\square	170097-05	6	2	0	3	149.96		0. 12294			
\square	${ }^{1700907-06}$ (6) ${ }^{\text {(8) }}$	6	2	0	3	143.20	26.93	0. 11627	\checkmark	v	\downarrow
	Name $\frac{176130710.4}{(6)}$			S,100		Ime			Stant x-Aw ${ }^{33}$ $\mathrm{HOH} / \mathrm{O}$ S. $\mathrm{AH} \mathrm{NHO}_{1}$ (s) $\quad \mathrm{mL}$		Check Out: Chemist/Date: 7.24 .17 Check In Chemist/Date: $N A$ Balance ID: HRMS8 pH Adjusted: $1 H$ fhemist/Date: 1 (24 117

Conments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ (A) Samples were antinfuged to remos particulate. MB7/29/17 © Bamples stillds colured atteranndursoostB 712417

PREPARATION BENCH SHEET

Prep Date/Time: 24-Jul-17 07:38

Prepared using: LCMS - SPE Extraction-LCMS

c		${ }_{\text {pref }}^{\text {Before }}$	${ }_{\text {After }}^{\text {PH }}$	$\underset{\substack{\text { Chlorine } \\ \text { (ci) }}}{\text { a }}$	$\begin{aligned} & \text { Drops } \\ & \text { Added } \\ & \text { Adde } \end{aligned}$	$\text { Botile } \text { Sande }$	$\begin{aligned} & \text { Borle } \\ & \text { Boll } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Sample } \\ \text { Ample } \\ \text { (L) } \end{gathered}$	$\underset{\substack{\text { ISNS } \\ \text { CHENMTIT } \\ \text { DATE }}}{\text { Ins. }}$	SPE	$\underset{\substack{\text { CHEMWIT } \\ \text { DATE }}}{\text { Dic }}$
\square	1700907-07	5	2	0	2	47.64	26.95	0.12069		VGf 7 P4, ${ }_{6}$	B3 ${ }^{\text {c }}$ KSF $7 / 2 / 17$
\square	1700907-08	5	2	0	2	146.66	27.05	0.11961	1		
\square	1700907-09 (8)	6	2	0	3	142.91	26.97	0.1594			
\square	170907-10 (b) 6	6	2	0	3	140.91	27.06	0.11385			
\square	1700919.01	5	2	0	3	265.61	25.42	0.24019			
\square	170099902	5	2	0	3	271.98	25.49	0.24649			
\square	${ }^{170099-03}$	5	2	0	3	267.55	25.66	0.24189	\checkmark	\downarrow	\downarrow

(17samples were centufuged to remove particulate. H187/24/17 © Samples still disolored after centmfugi 1 137/24/17 (C) Glas ware matunctori, sample lost doring elution BP 7.24 .17

IS Name $\frac{1761307,10 \mathrm{as}}{(\sqrt{66})}$	NS Name 1102705,10~ (v)	$\begin{aligned} & \text { RS Name } \\ & 17 F 3038,10 \mathrm{ML} \end{aligned}$	SPE Chem:Strata X-Aw $33 \sim$ zoong/ Gen Ele SOLV: $\mathbf{0 . 5 \%}$ NHY OHI in MedilmeOH Final Volume(s) 1 mL \qquad	Check Out: Chemist/Date: \qquad Check In: Chemist/Date: \qquad NA \qquad pH Adjusted: Chemist/Date: HB7/2411 \qquad

Batch: B7G0105

Matrix: Aqueous

LabNumber	WetWeight (Initial)	$\begin{gathered} \text { \% Solids } \\ \text { (Extraction Solids) } \end{gathered}$	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1700906-01	0.12107 /	$N A$	$N A$	1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-02	$0.12083 \checkmark$			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-03	0.12018 /			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-04	0.12127 V			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-05	$0.12082 \checkmark$			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-06	$0.12151 \checkmark$			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700907-01	$0.1198 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-02	0.11985			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-03	$0.1204 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-03	$0.1204 \sqrt{ }$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
1700907-04	$0.12053 \sqrt{ }$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-05	$0.12294 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-06	$0.11627 \sqrt{ }$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-07	0.12069 V			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-08	$0.11961 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-09	$0.11594 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-10	$0.11385 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700919-01	$0.24019 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
1700919-02	$0.24649 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
1700919-03	$0.24189 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
B7G0105-BLK1	$0.25 \checkmark$			1000	24-Jul-17 07:38	BAP				QC
B7G0105-BS1	$0.25 \checkmark$			1000	24-Jul-17 07:38	BAP	17D2705	$\checkmark 10 \checkmark$		QC
B7G0105-MS1	$0.11812 \checkmark$			1000	24-Jul-17 07:38	BAP	17D2705	$\checkmark 10 \sqrt{ }$		QC
B7G0105-MSD1	$0.12165 \checkmark$	$\sqrt{ }$	\checkmark	1000	24-Jul-17 07:38	BAP	17D2705	$\checkmark \quad 10 \checkmark$		QC

$$
\text { SAMPLE DATA - MODIFIED EPA METHOD } 537
$$

Quantify Sample Summary Report

Dataset:
U:IQ4.PRO|results1170724M11170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:50:22 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:IQ4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		3.54e3	0.250		2.96				
2	4 PFHxA	313.2 > 268.9		1.06 e 4	0.250		3.19				
3	5 PFHpA	$363>318.9$		2.23 e4	0.250		3.45				
4	6 PFHxS	$398.9>79.6$	3.90 e0	2.62 e 3	0.250		3.56	3.57	0.0186	0.0704	
5	8 PFOA	$413>368.7$		3.16 e 4	0.250		3.65				
6	10 PFNA	$462.9>418.8$		2.79 e 4	0.250		3.83				
7	12 PFOS	$499>79.9$		5.61e3	0.250		3.89				
8	13 PFDA	$513>468.8$		2.39 e 4	0.250		4.01				
9	15 N-MeFOSAA	$570.1>419$		5.12e3	0.250		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		5.22 e 3	0.250		4.10				
11	17 PFUnA	$562.9>518.9$		2.71 e 4	0.250		4.17				
12	19 PFDoA	$612.9>318.8$		2.69 e 3	0.250		4.34				

Dataset:
 U:IQ4.PRO|results1170724M11170724M1-58.qld
 Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:51:25 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.69 e3	0.250		4.50				
2	22 PFTeDA	$712.9>668.8$		1.69 e 4	0.250		4.68				
3	28 13C3-PFBA	$216.1>171.8$	1.75 e 4	1.96 e 4	0.250	0.820	1.54	1.56	11.1	54.4	108.7
4	29 13C3-PFPeA	$266>221.8$	2.75 e 4	3.53 e 4	0.250	0.248	2.77	2.81	3.90	62.8	125.6
5	30 13C3-PFBS	$302>98.8$	3.54 e 3	3.53 e 4	0.250	0.031	2.96	3.00	0.502	64.5	129.0
6	31 13C2-PFHxA	$315>269.8$	1.06 e 4	3.53 e 4	0.250	0.276	3.19	3.23	1.50	21.7	108.7
7	32 13C4-PFHpA	$367.2>321.8$	2.23 e 4	3.53 e 4	0.250	0.306	3.45	3.49	3.16	41.3	82.6
8	33 1802-PFHxS	$403>102.6$	2.62 e 3	5.59 e 3	0.250	0.393	3.56	3.56	5.86	59.7	119.5
9	34 13C2-6:2 FTS	$429.1>408.9$	4.63 e 3	2.84 e 4	0.250	0.158	3.64	3.68	2.04	51.8	103.6
10	35 13C2-PFOA	$414.9>369.7$	3.16 e 4	2.84 e 4	0.250	1.067	3.65	3.69	13.9	52.2	104.4
11	36 13C5-PFNA	$468.2>422.9$	2.79 e 4	3.42 e 4	0.250	0.852	3.83	3.86	10.2	47.8	95.7
12	37 13C8-PFOSA	$506.1>77.7$	2.42 e 3	3.10 e 4	0.250	0.098	3.84	3.87	0.976	39.7	79.5
13	$3813 C 8-P F O S$	$507>79.9$	5.61 e 3	5.54 e 3	0.250	0.936	3.89	3.91	12.7	54.1	108.3
14	39 13C2-PFDA	$515.1>469.9$	2.39 e 4	3.10 e4	0.250	0.810	4.01	4.03	9.65	47.7	95.3
15	40 13C2-8:2 FTS	$529.1>508.7$	2.78 e 3	3.10 e4	0.250	0.086	4.00	4.03	1.12	52.3	104.6
16	$41 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	5.12 e 3	3.10 e 4	0.250	0.014	4.03	4.06	2.06	603	92.7
17	$42 \mathrm{d5}-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	5.22 e 3	3.10 e4	0.250	0.014	4.12	4.12	2.11	604	92.9
18	43 13C2-PFUnA	$565>519.8$	2.71 e 4	3.10 e 4	0.250	0.962	4.17	4.19	10.9	45.5	91.0
19	44 13C2-PFDoA	$615>569.7$	2.69 e 3	3.10 e4	0.250	0.094	4.34	4.36	1.09	46.0	92.0
20	46 13C2-PFTeDA	$714.8>669.6$	1.69 e 4	3.10 e 4	0.250	0.694	4.68	4.71	6.82	39.3	78.6
21	48 13C2-PFHxDA	$815>769.7$	6.14 e 3	3.10 e 4	0.250	0.843	5.06	5.08	2.48	11.7	58.7
22	51 13C4-PFBA	$217>171.8$	1.96 e 4	1.96 e 4	0.250	1.000	1.54	1.56	12.5	50.0	100.0
23	52 13C5-PFHxA	$318>272.9$	3.53 e 4	3.53 e 4	0.250	1.000	3.19	3.23	5.00	20.0	100.0
24	53 13C3-PFHxS	$401.9>79.9$	5.59 e 3	5.59 e 3	0.250	1.000	3.56	3.56	12.5	50.0	100.0
25	54 13C8-PFOA	$421.3>376$	2.84 e 4	2.84 e 4	0.250	1.000	3.65	3.68	12.5	50.0	100.0
26	55 13C9-PFNA	$472.2>426.9$	3.42e4	3.42 e 4	0.250	1.000	3.83	3.86	12.5	50.0	100.0
27	56 13C4-PFOS	$503>79.9$	5.54 e 3	5.54 e 3	0.250	1.000	3.89	3.91	12.5	50.0	100.0
28	57 13C6-PFDA	$519.1>473.7$	3.10 e 4	3.10 e4	0.250	1.000	4.01	4.03	12.5	50.0	100.0
29	58 13C7-PFUnA	$570.1>524.8$	3.10 e 4	3.10 e4	0.250	1.000	4.17	4.20	12.5	50.0	100.0
30	59 Total PFBS	$299>79.7$	0.00 e 0	3.54 e 3	0.250		2.96		0.000		
31	60 Total PFHxS	$398.9>79.6$	3.90 e 0	2.62 e3	0.250		3.52		0.0186	0.0704	
32	61 Total PFOA	$413>368.7$	0.00 e 0	3.16 e 4	0.250		3.65		0.000		

Quantify Sample Summary Report

Dataset: U:IQ4.PROTresults\170724M1\170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:51:25 Pacific Daylight Time

Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	62 Total PFOS	$499>79.9$	0.00e0	5.61 e3	0.250		3.89		0.000		
34	63 Total N-Me-FOSAA	$570.1>419$	0.00e0	5.12 e 3	0.250		4.03		0.000		
35	64 Total N-EtFOSAA	$584.2>419$	0.00e0	5.22 e 3	0.250		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN945 SCN96

Dataset:
U:IQ4.PRO\results1170724M11170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:50:22 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank
Total PFBS

\# Name	Trace	RT	Area	IS Area	
1			Response Primary Flags		

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	6 PFHxS	$398.9>79.6$	3.57	3.903	2621.499	0.019	MM	0.1

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response

Total PFOS

4	\# Name	Trace	RT	Area	IS Area
1			Response Primary Flags		

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	15 N-MeFOSAA	$570.1>419$		Conc.			

Total N-EtFOSAA

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
16 N-EtFOSAA	$584.2>419$		5220.282		Conc.	

Dataset:

U:\Q4.PRO\results1170724M11170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:50:22 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

Total PFBS

F6:MRM of 2 channels,ES

13C3-PFBS

PFHpA

13C4-PFHpA

Total PFHxS

Dataset:

U:IQ4.PRO|results1170724M11170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:50:22 Pacific Daylight Time

Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

Total PFOA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES- | $499>79.9$ |
| ---: |
| $1.565 \mathrm{e}+002$ |

13C8-PFOS

13C2-PFDA

Dataset:

U:\Q4.PRO\results1170724M11170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:50:22 Pacific Daylight Time

Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Quantify Sample Report

Dataset:

U:IQ4.PRO|results1170724M11170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:50:22 Pacific Daylight Time

Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

PFTeDA

13C2-PFTeDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

13C8-PFOA

13C3-PFHxS

13C9-PFNA

Quantify Sample Report

Dataset: U:IQ4.PRO\results|170724M1\170724M1-58.qld
Last Altered: Tuesday, July 25, 2017 14:50:07 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:50:22 Pacific Daylight Time

Name: 170724M1_58, Date: 24-Jul-2017, Time: 23:42:34, ID: B7G0105-BLK1 Method Blank 0.125, Description: Method Blank

13C4-PFOS

13C7-PFUnA

Quantify Sample Summary Report

Dataset:
U:IQ4.PRO|results1170724M11170724M1-56.qld
Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:01 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	4.90 e 3	3.54 e 3	0.250		2.96	3.00	17.3	37.2	93.0
2	4 PFHxA	313.2 > 268.9	2.45 e 4	8.69 e3	0.250		3.19	3.23	14.1	36.8	92.1
3	5 PFHpA	$363>318.9$	1.95 e 4	2.01 e 4	0.250		3.45	3.49	12.2	38.6	96.4
4	6 PFHxS	$398.9>79.6$	2.97 e 3	2.52 e 3	0.250		3.56	3.56	14.7	34.7	86.9
5	8 PFOA	$413>368.7$	2.29 e 4	3.03 e 4	0.250		3.65	3.68	9.45	38.1	95.3
6	10 PFNA	$462.9>418.8$	2.23 e 4	2.56 e 4	0.250		3.83	3.86	10.9	39.1	97.9
7	12 PFOS	$499>79.9$	4.27 e 3	5.82e3	0.250		3.89	3.91	9.17	31.0	77.5
8	13 PFDA	$513>468.8$	2.28 e 4	2.33 e 4	0.250		4.01	4.03	12.2	37.3	93.4
9	15 N-MeFOSAA	$570.1>419$	5.82 e 3	4.78 e 3	0.250		4.03	4.06	198	39.8	99.5
10	16 N -EtFOSAA	$584.2>419$	4.61 e 3	5.03 e 3	0.250		4.10	4.12	149	36.9	92.2
11	17 PFUnA	$562.9>518.9$	1.57 e 4	2.41 e 4	0.250		4.17	4.20	8.15	36.9	92.2
12	19 PFDoA	$612.9>318.8$	1.75 e 3	2.49 e 3	0.250		4.34	4.36	8.78	37.2	93.0

Dataset:
 U:IQ4.PRO|results1170724M11170724M1-56.qld

Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: \quad Tuesday, July 25, 2017 14:46:39 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$	2.16 e4	2.49 e 3	0.250		4.50	4.53	109	39.1	97.8
2	22 PFTeDA	$712.9>668.8$	1.48 e 4	1.65 e 4	0.250		4.68	4.71	11.2	38.9	97.1
3	28 13C3-PFBA	$216.1>171.8$	1.45 e 4	1.53 e 4	0.250	0.820	1.54	1.56	11.9	57.8	115.6
4	29 13C3-PFPeA	$266>221.8$	2.33 e 4	2.76 e 4	0.250	0.248	2.77	2.80	4.23	68.1	136.3
5	30 13C3-PFBS	$302>98.8$	3.54 e 3	2.76 e 4	0.250	0.031	2.96	3.00	0.641	82.4	164.9
6	31 13C2-PFHxA	$315>269.8$	8.69 e 3	2.76 e 4	0.250	0.276	3.19	3.23	1.58	22.8	114.0
7	32 13C4-PFHpA	$367.2>321.8$	2.01e4	2.76 e 4	0.250	0.306	3.45	3.49	3.64	47.6	95.2
8	33 1802-PFHxS	$403>102.6$	2.52 e 3	5.31 e 3	0.250	0.393	3.56	3.56	5.93	60.4	120.8
9	34 13C2-6:2 FTS	$429.1>408.9$	4.26 e 3	2.51 e 4	0.250	0.158	3.64	3.67	2.12	53.9	107.8
10	35 13C2-PFOA	$414.9>369.7$	3.03 e 4	2.51e4	0.250	1.067	3.65	3.68	15.1	56.6	113.2
11	36 13C5-PFNA	$468.2>422.9$	2.56 e4	2.59 e 4	0.250	0.852	3.83	3.86	12.3	57.9	115.8
12	37 13C8-PFOSA	$506.1>77.7$	1.93 e 3	2.85 e 4	0.250	0.098	3.84	3.87	0.848	34.5	69.1
13	$3813 C 8-P F O S$	$507>79.9$	5.82 e 3	4.88 e 3	0.250	0.936	3.89	3.91	14.9	63.7	127.5
14	39 13C2-PFDA	$515.1>469.9$	2.33 e 4	3.00 e 4	0.250	0.810	4.01	4.03	9.71	47.9	95.9
15	40 13C2-8:2 FTS	$529.1>508.7$	2.75 e 3	3.00 e 4	0.250	0.086	4.00	4.02	1.15	53.5	107.1
16	$41 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	4.78 e 3	2.85 e 4	0.250	0.014	4.03	4.06	2.10	613	94.4
17	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	5.03 e 3	2.85 e 4	0.250	0.014	4.12	4.12	2.21	634	97.5
18	43 13C2-PFUnA	$565>519.8$	2.41 e 4	2.85 e 4	0.250	0.962	4.17	4.19	10.6	43.9	87.9
19	44 13C2-PFDoA	$615>569.7$	2.49 e 3	2.85 e 4	0.250	0.094	4.34	4.36	1.09	46.3	92.5
20	46 13C2-PFTeDA	$714.8>669.6$	1.65 e 4	2.85 e 4	0.250	0.694	4.68	4.71	7.26	41.8	83.6
21	48 13C2-PFHxDA	$815>769.7$	4.97 e 3	2.85 e 4	0.250	0.843	5.06	5.08	2.18	10.4	51.8
22	51 13C4-PFBA	$217>171.8$	1.53 e 4	1.53 e 4	0.250	1.000	1.54	1.56	12.5	50.0	100.0
23	52 13C5-PFHxA	$318>272.9$	2.76 e 4	2.76 e 4	0.250	1.000	3.19	3.23	5.00	20.0	100.0
24	53 13C3-PFHxS	$401.9>79.9$	5.31 e 3	5.31 e 3	0.250	1.000	3.56	3.56	12.5	50.0	100.0
25	54 13C8-PFOA	$421.3>376$	2.51 e 4	2.51 e 4	0.250	1.000	3.65	3.68	12.5	50.0	100.0
26	55 13C9-PFNA	$472.2>426.9$	2.59 e 4	2.59 e 4	0.250	1.000	3.83	3.86	12.5	50.0	100.0
27	56 13C4-PFOS	$503>79.9$	4.88 e 3	4.88 e 3	0.250	1.000	3.89	3.91	12.5	50.0	100.0
28	57 13C6-PFDA	$519.1>473.7$	3.00 e 4	3.00 e 4	0.250	1.000	4.01	4.03	12.5	50.0	100.0
29	58 13C7-PFUnA	$570.1>524.8$	2.85 e 4	2.85 e 4	0.250	1.000	4.17	4.19	12.5	50.0	100.0
30	59 Total PFBS	$299>79.7$	4.90 e 3	3.54 e 3	0.250		2.96		17.3	37.2	
31	60 Total PFHxS	$398.9>79.6$	2.97 e 3	2.52 e 3	0.250		3.52		14.7	34.7	
32	61 Total PFOA	$413>368.7$	2.29 e 4	3.03e4	0.250		3.65		9.45	38.1	

AC 7/25/17
Work Order 1700906

Quantify Sample Summary Report

Dataset: U:IQ4.PROTresults\170724M1\170724M1-56.qld
Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:39 Pacific Daylight Time

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
33	62 Total PFOS	499 > 79.9	4.27 e 3	5.82e3	0.250		3.89		9.17	31.0	
34	63 Total N-Me-FOSAA	$570.1>419$	5.82 e 3	4.78 e 3	0.250		4.03		198	39.8	
35	64 Total N-EtFOSAA	$584.2>419$	4.61 e 3	5.03 e 3	0.250		4.17		149	36.9	

Quantify Totals Report MassLynx MassLynx V4.1 SCN945 SCN960

Dataset:
 U:\Q4.PRO|results1170724M11170724M1-56.qld

Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:01 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	3 PFBS	$299>79.7$	3.00	4895.586	3537.808	17.297	bb	37.2

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	6 PFHxS	$398.9>79.6$	3.56	2968.387	2521.699	14.714	MM	34.7

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	413 > 368.7	3.68	22877.299	30261.107	9.450	bb	38.1

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
12 PFOS	$499>79.9$	3.91	4271.778	5823.700	9.169	$M M$	31.0	

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	$15 ~ N-M e F O S A A ~$	$570.1>419$	4.06	5817.072	4782.984	197.633	bb	39.8

Total N-EtFOSAA

| \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 16 N-EtFOSAA | $584.2>419$ | 4.12 | 4606.583 | 5032.711 | 148.741 | bb | 36.9 |

Dataset:
U:IQ4.PRO|results1170724M11170724M1-56.qld
Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:01 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

\section*{Total PFBS
 | F6:MRM of 2 channels,ES- |
| ---: |
| $299>79.7$ |
| $1.318 \mathrm{e}+005$ |
| PFBS |
| 3.00 |
| 4.90 e 3 |
| 131606 |
| bb |}

13C3-PFBS

13C3-PFBS
100
$13 \mathrm{C} 3-\mathrm{PFBS}$ 3.00 3.54 e 3 89819 bb

PFHxA

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:IQ4.PRO|results1170724M11170724M1-56.qld
Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:01 Pacific Daylight Time

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

Total PFOA

F19:MRM of 2 channels,ES-
100

13C2-PFOA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

13C2-PFDA

Dataset:

U:\Q4.PRO\results1170724M11170724M1-56.qld

Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:01 Pacific Daylight Time

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Quantify Sample Report

Dataset:

U:IQ4.PRO|results1170724M11170724M1-56.qld
Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:01 Pacific Daylight Time

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

PFTeDA

13C2-PFTeDA

PFTrDA

13C2-PFTeDA
F59:MRM of 2 channels,ES-

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

13C9-PFNA

Quantify Sample Report

Dataset: U:IQ4.PRO\results|170724M1\170724M1-56.qld
Last Altered: Tuesday, July 25, 2017 14:45:12 Pacific Daylight Time Printed: Tuesday, July 25, 2017 14:46:01 Pacific Daylight Time

Name: 170724M1_56, Date: 24-Jul-2017, Time: 23:21:17, ID: B7G0105-BS1 OPR 0.125, Description: OPR

13C4-PFOS

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-59.qld
Last Altered:	Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed:	Monday, August 07, 2017 14:57:11 Pacific Daylight Time

Method: U:|Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	2.92 e3	3.86 e 3	0.1211		2.96	3.00	9.46	41.9	
2	4 PFHxA	313.2 > 268.9	3.13 e 4	1.07 e 4	0.1211		3.19	3.23	14.6	78.8	
3	5 PFHpA	$363>318.9$	8.15 e 3	2.56 e 4	0.1211		3.45	3.49	3.97	25.6	
4	6 PFHxS	$398.9>79.6$	8.23 e3	2.61 e 3	0.1211		3.56	3.56	39.4	195	
5	8 PFOA	$413>368.7$	5.83 e 3	3.62e4	0.1211		3.65	3.68	2.02	15.5	
6	10 PFNA	$462.9>418.8$	6.60 e 2	2.94 e 4	0.1211		3.83	3.86	0.280	1.00	
7	12 PFOS	$499>79.9$	6.58 e 3	5.98 e 3	0.1211		3.89	3.86	13.8	96.6	
8	13 PFDA	$513>468.8$	5.44 e 1	2.80 e 4	0.1211		4.01	4.02	0.0243		
9	$15 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		6.41e3	0.1211		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		6.96 e 3	0.1211		4.10				
11	17 PFUnA	$562.9>518.9$		3.23e4	0.1211		4.17				
12	19 PFDoA	$612.9>318.8$		2.87 e 3	0.1211		4.34				

Dataset:	U:IQ4.PROIresults1170724M11170724M1-59.qld
Last Altered:	Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed:	Monday, August 07, 2017 14:57:34 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.87e3	0.1211		4.50				
2	22 PFTeDA	$712.9>668.8$		1.84 e 4	0.1211		4.68				
3	30 13C3-PFBS	$302>98.8$	3.86 e 3	3.54 e 4	0.1211	0.031	2.96	3.00	0.545	145	140.2
4	31 13C2-PFHxA	$315>269.8$	1.07 e 4	3.54 e 4	0.1211	0.276	3.19	3.23	1.52	45.4	109.9
5	32 13C4-PFHpA	367.2 > 321.8	2.56 e 4	3.54 e 4	0.1211	0.306	3.45	3.49	3.62	97.9	94.8
6	33 1802-PFHxS	$403>102.6$	2.61 e 3	6.26 e 3	0.1211	0.393	3.56	3.56	5.22	110	106.3
7	34 13C2-6:2 FTS	$429.1>408.9$	5.11 e 3	3.18 e 4	0.1211	0.158	3.64	3.67	2.01	105	101.8
8	35 13C2-PFOA	$414.9>369.7$	3.62 e 4	3.18 e 4	0.1211	1.067	3.65	3.68	14.2	110	106.5
9	36 13C5-PFNA	468.2 > 422.9	2.94 e 4	3.42 e 4	0.1211	0.852	3.83	3.86	10.8	104	101.0
10	37 13C8-PFOSA	$506.1>77.7$	2.74 e 3	3.53 e 4	0.1211	0.098	3.84	3.87	0.971	81.7	79.1
11	38 13C8-PFOS	$507>79.9$	5.98 e 3	6.53 e3	0.1211	0.936	3.89	3.91	11.4	101	97.8
12	39 13C2-PFDA	$515.1>469.9$	2.80 e 4	3.38 e 4	0.1211	0.810	4.01	4.03	10.4	106	102.3
13	40 13C2-8:2 FTS	$529.1>508.7$	3.60e3	3.38 e 4	0.1211	0.086	4.00	4.03	1.33	128	124.2
14	41 d3-N-MeFOSAA	$573.3>419$	6.41 e 3	3.53 e 4	0.1211	0.014	4.03	4.06	2.27	1370	102.1
15	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	6.96 e 3	3.53 e 4	0.1211	0.014	4.12	4.12	2.47	1460	108.8
16	43 13C2-PFUnA	$565>519.8$	3.23 e4	3.53 e 4	0.1211	0.962	4.17	4.19	11.5	98.4	95.3
17	44 13C2-PFDoA	$615>569.7$	2.87 e 3	3.53 e 4	0.1211	0.094	4.34	4.36	1.02	89.1	86.3
18	46 13C2-PFTeDA	$714.8>669.6$	1.84 e 4	3.53 e 4	0.1211	0.694	4.68	4.71	6.52	77.5	75.1
19	52 13C5-PFHxA	$318>272.9$	3.54 e 4	3.54 e 4	0.1211	1.000	3.19	3.23	5.00	41.3	100.0
20	53 13C3-PFHxS	$401.9>79.9$	$6.26 e 3$	$6.26 e 3$	0.1211	1.000	3.56	3.56	12.5	103	100.0
21	54 13C8-PFOA	$421.3>376$	3.18 e 4	3.18 e 4	0.1211	1.000	3.65	3.68	12.5	103	100.0
22	55 13C9-PFNA	$472.2>426.9$	3.42e4	3.42e4	0.1211	1.000	3.83	3.86	12.5	103	100.0
23	56 13C4-PFOS	$503>79.9$	6.53 e 3	6.53 e 3	0.1211	1.000	3.89	3.91	12.5	103	100.0
24	57 13C6-PFDA	$519.1>473.7$	3.38 e 4	3.38 e 4	0.1211	1.000	4.01	4.03	12.5	103	100.0
25	58 13C7-PFUnA	$570.1>524.8$	3.53 e 4	3.53 e 4	0.1211	1.000	4.17	4.20	12.5	103	100.0
26	59 Total PFBS	$299>79.7$	3.02e3	3.86 e 3	0.1211		2.96		9.77	42.9	
27	60 Total PFHxS	$398.9>79.6$	8.23 e 3	2.61 e 3	0.1211		3.52		39.4	195	
28	61 Total PFOA	$413>368.7$	6.43 e3	3.62e4	0.1211		3.65		2.22	15.5	
29	62 Total PFOS	$499>79.9$	6.58 e 3	5.98 e 3	0.1211		3.89		13.8	96.6	
30	63 Total N-Me-FOSAA	$570.1>419$	0.00 e 0	6.41e3	0.1211		4.03		0.000		
31	64 Total N-EtFOSAA	$584.2>419$	0.00e0	6.96 e 3	0.1211		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-59.qld
Last Altered: Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed: Monday, August 07, 2017 14:57:11 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 01 Aug 2017 09:55:07
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717
Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 PFBS | $299>79.7$ | 3.00 | 2921.536 | 3859.108 | 9.463 | bb | 41.9 |
| 2 | 59 Total PFBS | $299>79.7$ | 2.89 | 93.560 | 3859.108 | 0.303 | bb | 1.0 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	$6 ~ P F H x S$	$398.9>79.6$	3.56	8231.446	2612.834	39.380	MM	194.5

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.68	5834.700	36157.746	2.017	db	15.5
2	61 Total PFOA	$413>368.7$	3.63	593.461	36157.746	0.205	bd	0.0

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	12 PFOS	$499>79.9$	3.86	6582.954	5975.961	13.770	MM	96.6

Total N-Me-FOSAA

| | $\#$ Name | Trace | RT | Area | IS Area |
| :--- | :--- | :--- | :--- | :--- | :--- | Response Primary Flags | Conc. |
| :--- |
| 1 |

Total N-EtFOSAA

	$\#$ Name	Trace	RT	Area	IS Area	Response Primary Flags
1						

Dataset: U:\Q4.PRO\results\170724M1\170724M1-59.qld
Last Altered: Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 14:57:11 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717

Total PFBS

	F6:MRM of 2 channels,ES 299 > 79.7		
	PFBS		$7.335 \mathrm{e}+004$
${ }^{100} 7$	3.00		
	2.92 e 3		
\%-	73191 bb		

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-59.qld
Last Altered: Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 14:57:11 Pacific Daylight Time

Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- | | |
| :---: | :---: | :---: |
| | PFOA | $1.220 \mathrm{e}+005$ |
| 1007 | 3.68 | |
| \%- | 5.83 e 3 | |
| \%- | 118311 $d b$ | |

13C2-PFOA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$

13C8-PFOS

PFDA

Dataset: U:\Q4.PRO\results\170724M1\170724M1-59.qld

Last Altered: Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 14:57:11 Pacific Daylight Time

Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717

PFUnA

PFUnA \quad| F43:MRM of 2 channels,ES- |
| ---: |
| $562.9>518.9$ |
| $1.878 \mathrm{e}+003$ |

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F733>419

N-EtFOSAA

F48:MRM of 2 channels,ES-
$584.2>483$

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170724M1\170724M1-59.qld

Last Altered: Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed: Monday, August 07, 2017 14:57:11 Pacific Daylight Time

Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717

F58:MRM of 4 channels,ES-

13C2-PFTeDA

F59:MRM of 2 channels,ES

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-59.qld
Last Altered: Monday, August 07, 2017 14:55:07 Pacific Daylight Time
Printed: Monday, August 07, 2017 14:57:11 Pacific Daylight Time

Name: 170724M1_59, Date: 24-Jul-2017, Time: 23:53:12, ID: 1700906-01 MW-50BR-20170717 0.125, Description: MW-50BR-20170717

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PRO\results\170724M11170724M1-60.qld
Last Altered:	Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed:	Monday, July 31, 2017 15:23:08 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB|PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		4.32 e 3	0.1208		2.96				
2	4 PFHxA	313.2 > 268.9		1.17e4	0.1208		3.19				
3	5 PFHpA	$363>318.9$		2.84 e 4	0.1208		3.45				
4	6 PFHxS	$398.9>79.6$	1.96 e 0	3.02e3	0.1208		3.56	3.55	0.00809	0.0946	
5	8 PFOA	$413>368.7$		3.81 e 4	0.1208		3.65				
6	10 PFNA	$462.9>418.8$		3.38 e4	0.1208		3.83				
7	12 PFOS	$499>79.9$	3.43 e 1	7.49e3	0.1208		3.89	3.85	0.0573	0.271	
8	13 PFDA	$513>468.8$		3.08 e 4	0.1208		4.01				
9	15 N -MeFOSAA	$570.1>419$		6.83 e 3	0.1208		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		6.41 e 3	0.1208		4.10				
11	17 PFUnA	$562.9>518.9$		3.00 e 4	0.1208		4.17				
12	19 PFDoA	$612.9>318.8$		2.91 e 3	0.1208		4.34				

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Last Altered:	Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed:	Monday, July 31, 2017 15:23:23 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.91 e 3	0.1208		4.50				
2	22 PFTeDA	$712.9>668.8$		1.59 e 4	0.1208		4.68				
3	30 13C3-PFBS	$302>98.8$	4.32 e 3	3.78 e 4	0.1208	0.031	2.96	3.00	0.572	152	147.1
4	31 13C2-PFHxA	$315>269.8$	1.17 e 4	3.78 e4	0.1208	0.276	3.19	3.23	1.55	46.3	$111 . \varepsilon$
5	32 13C4-PFHpA	367.2 > 321.8	2.84 e 4	3.78 e 4	0.1208	0.306	3.45	3.48	3.76	102	98.4
6	33 1802-PFHxS	$403>102.6$	3.02e3	6.29 e 3	0.1208	0.393	3.56	3.56	6.01	127	122.4
7	35 13C2-PFOA	$414.9>369.7$	3.81 e 4	3.22 e 4	0.1208	1.067	3.65	3.69	14.8	115	110.7
8	36 13C5-PFNA	468.2 > 422.9	3.38 e 4	3.86 e 4	0.1208	0.852	3.83	3.86	10.9	106	102.5
9	38 13C8-PFOS	$507>79.9$	7.49 e 3	6.37 e 3	0.1208	0.936	3.89	3.91	14.7	130	125.6
10	39 13C2-PFDA	$515.1>469.9$	3.08 e 4	3.44 e 4	0.1208	0.810	4.01	4.03	11.2	115	110.8

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-60.qld
Last Altered:	Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed:	Monday, July 31, 2017 15:23:40 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	41 d3-N-MeFOSAA	$573.3>419$	6.83 e3	3.31 e 4	0.1208	0.014	4.03	4.06	2.58	1560	116.0
2	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	6.41 e 3	3.31 e 4	0.1208	0.014	4.12	4.12	2.42	1440	107.0
3	43 13C2-PFUnA	$565>519.8$	3.00 e 4	3.31 e 4	0.1208	0.962	4.17	4.20	11.3	97.6	94.3
4	44 13C2-PFDoA	$615>569.7$	2.91 e 3	3.31 e 4	0.1208	0.094	4.34	4.36	1.10	96.3	93.1
5	46 13C2-PFTeDA	$714.8>669.6$	1.59 e 4	3.31 e 4	0.1208	0.694	4.68	4.71	6.02	71.7	69.3
6	52 13C5-PFHxA	$318>272.9$	3.78 e 4	3.78 e 4	0.1208	1.000	3.19	3.22	5.00	41.4	100.0
7	53 13C3-PFHxS	$401.9>79.9$	6.29 e 3	6.29 e 3	0.1208	1.000	3.56	3.56	12.5	103	100.0
8	54 13C8-PFOA	$421.3>376$	$3.22 e 4$	3.22e4	0.1208	1.000	3.65	3.68	12.5	103	100.0
9	55 13C9-PFNA	$472.2>426.9$	3.86 e 4	3.86e4	0.1208	1.000	3.83	3.86	12.5	103	100.0
10	56 13C4-PFOS	$503>79.9$	6.37 e 3	6.37 e 3	0.1208	1.000	3.89	3.91	12.5	103	100.0
11	57 13C6-PFDA	$519.1>473.7$	3.44 e 4	3.44 e 4	0.1208	1.000	4.01	4.03	12.5	103	100.0
12	58 13C7-PFUnA	$570.1>524.8$	3.31 e 4	3.31 e 4	0.1208	1.000	4.17	4.19	12.5	103	100.0
13	59 Total PFBS	$299>79.7$	0.00e0	4.32 e 3	0.1208		2.96		0.000		
14	60 Total PFHxS	$398.9>79.6$	1.96 e 0	3.02e3	0.1208		3.52		0.00809	0.0946	
15	61 Total PFOA	$413>368.7$	0.00e0	3.81 e 4	0.1208		3.65		0.000		
16	62 Total PFOS	$499>79.9$	3.43 e 1	7.49e3	0.1208		3.89		0.0573	0.271	
17	63 Total N-Me-FOSAA	$570.1>419$	0.00e0	6.83e3	0.1208		4.03		0.000		
18	64 Total N-EtFOSAA	$584.2>419$	0.00e0	6.41 e 3	0.1208		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-60.qld
Last Altered:	Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed:	Monday, July 31, 2017 15:23:40 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717
Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	3 PFBS	$299>79.7$		4321.180	Conc.		

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6 PFHxS | $398.9>79.6$ | 3.55 | 1.956 | 3023.027 | 0.008 | MM | 0.1 |

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	8 PFOA	$413>368.7$	38081.078	Conc.			

Total PFOS

\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.	
1	12 PFOS	$499>79.9$	3.85	34.319	7486.628	0.057	MM	0.3

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$15 \mathrm{~N}-$ MeFOSAA	$570.1>419$		6830.442	Conc.		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$16 ~ N-E t F O S A A ~$	$584.2>419$		6414.387	Conc.		

Dataset: U:\Q4.PRO\results\170724M1\170724M1-60.qld
Last Altered: Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed: \quad Monday, July 31, 2017 15:23:40 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

Total PFBS

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES-

13C2-PFHxA

PFHpA

13C4-PFHpA
F15:MRM of 1 channel,ES

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-60.qld
Last Altered: Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed: Monday, July 31, 2017 15:23:40 Pacific Daylight Time

Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

13C8-PFOS

PFDA

F35:MRM of 2 channels,ES-

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-60.qld
Last Altered: Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed:
Monday, July 31, 2017 15:23:40 Pacific Daylight Time

Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

PFUnA

PFUnA \quad F43:MRM of 2 channels,ES- | $562.9>518.9$ |
| ---: |
| $1.826 \mathrm{e}+003$ |

F43:MRM of 2 channels,ES200 PFUnA;4.20;1.02e1;297;bb $\begin{array}{r}562.9>269 \\ 4.105 \mathrm{e}+002\end{array}$

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F47.MAM of $5733>419$

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset: U:\Q4.PRO\results\170724M1\170724M1-60.qld
Last Altered: Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed: Monday, July 31, 2017 15:23:40 Pacific Daylight Time

Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

PFTeDA

F58:MRM of 4 channels,ES-
 13C2-PFTeDA

F59:MRM of 2 channels,ES-

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report
Vista Analytical Laboratory
MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-60.qld
Last Altered:	Monday, July 31, 2017 15:22:18 Pacific Daylight Time
Printed:	Monday, July 31, 2017 15:23:40 Pacific Daylight Time

Name: 170724M1_60, Date: 25-Jul-2017, Time: 00:03:59, ID: 1700906-02 MW-06BR-20170717 0.125, Description: MW-06BR-20170717

13C4-PFOS

Quantify Sample Summary Report

Vista Analytical Laboratory

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-61.qld
Last Altered:	Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:01:21 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		2.96e3	0.1202		2.96				
2	4 PFHxA	313.2 > 268.9		7.38e3	0.1202		3.19				
3	5 PFHpA	$363>318.9$		1.84 e 4	0.1202		3.45				
4	6 PFHxS	$398.9>79.6$		2.17 e 3	0.1202		3.56				
5	8 PFOA	$413>368.7$		2.45 e4	0.1202		3.65				
6	10 PFNA	$462.9>418.8$		2.10 e 4	0.1202		3.83				
7	12 PFOS	$499>79.9$		5.08 e 3	0.1202		3.89				
8	13 PFDA	$513>468.8$		2.33 e 4	0.1202		4.01				
9	15 N -MeFOSAA	$570.1>419$		4.25 e3	0.1202		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		3.96 e3	0.1202		4.10				
11	17 PFUnA	$562.9>518.9$		2.13 e 4	0.1202		4.17				
12	19 PFDoA	$612.9>318.8$		2.18 e 3	0.1202		4.34				

Dataset:	U:IQ4.PROIresults\170724M11170724M1-61.qld
Last Altered:	Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:02:05 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07 Calibration: U:IQ4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	662.9 > 618.9		2.18 e 3	0.1202		4.50				
2	22 PFTeDA	$712.9>668.8$		1.49 e 4	0.1202		4.68				
3	30 13C3-PFBS	$302>98.8$	2.96 e 3	2.54 e 4	0.1202	0.031	2.96	3.00	0.583	156	149.9
4	31 13C2-PFHxA	$315>269.8$	7.38 e 3	2.54 e 4	0.1202	0.276	3.19	3.23	1.45	43.7	105.1
5	32 13C4-PFHpA	$367.2>321.8$	1.84 e 4	2.54 e 4	0.1202	0.306	3.45	3.49	3.62	98.4	94.6
6	33 1802-PFHxS	$403>102.6$	2.17 e 3	5.00 e 3	0.1202	0.393	3.56	3.56	5.41	115	110.2
7	34 13C2-6:2 FTS	$429.1>408.9$	3.73 e3	2.38 e 4	0.1202	0.158	3.64	3.68	1.97	104	99.7
8	35 13C2-PFOA	$414.9>369.7$	2.45 e4	2.38 e 4	0.1202	1.067	3.65	3.68	12.9	101	96.7
9	36 13C5-PFNA	468.2 > 422.9	2.10 e4	2.59 e 4	0.1202	0.852	3.83	3.86	10.1	99.0	95.2
10	37 13C8-PFOSA	$506.1>77.7$	1.60 e 3	2.59 e 4	0.1202	0.098	3.84	3.87	0.772	65.4	62.9
11	38 13C8-PFOS	$507>79.9$	5.08 e 3	5.13 e 3	0.1202	0.936	3.89	3.91	12.4	110	105.8
12	39 13C2-PFDA	$515.1>469.9$	2.33 e4	2.81 e 4	0.1202	0.810	4.01	4.03	10.3	106	102.0
13	40 13C2-8:2 FTS	$529.1>508.7$	2.40 e 3	2.81 e 4	0.1202	0.086	4.00	4.03	1.07	104	99.8
14	41 d3-N-MeFOSAA	$573.3>419$	4.25 e 3	2.59 e 4	0.1202	0.014	4.03	4.06	2.05	1250	92.3
15	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	3.96 e 3	2.59 e 4	0.1202	0.014	4.12	4.12	1.91	1140	84.5
16	43 13C2-PFUnA	$565>519.8$	2.13 e4	2.59 e 4	0.1202	0.962	4.17	4.19	10.3	89.0	85.6
17	44 13C2-PFDoA	$615>569.7$	2.18 e 3	2.59 e 4	0.1202	0.094	4.34	4.36	1.05	92.8	89.2
18	46 13C2-PFTeDA	714.8 > 669.6	1.49 e 4	2.59 e 4	0.1202	0.694	4.68	4.71	7.22	86.5	83.1
19	52 13C5-PFHxA	$318>272.9$	2.54 e 4	2.54 e 4	0.1202	1.000	3.19	3.23	5.00	41.6	100.0
20	53 13C3-PFHxS	$401.9>79.9$	5.00 e 3	5.00 e 3	0.1202	1.000	3.56	3.56	12.5	104	100.0
21	54 13C8-PFOA	$421.3>376$	2.38 e 4	2.38 e 4	0.1202	1.000	3.65	3.69	12.5	104	100.0
22	55 13C9-PFNA	472.2 > 426.9	2.59 e 4	2.59 e 4	0.1202	1.000	3.83	3.86	12.5	104	100.0
23	56 13C4-PFOS	$503>79.9$	5.13 e 3	5.13 e3	0.1202	1.000	3.89	3.91	12.5	104	100.0
24	57 13C6-PFDA	$519.1>473.7$	2.81 e 4	2.81e4	0.1202	1.000	4.01	4.03	12.5	104	100.0
25	58 13C7-PFUnA	$570.1>524.8$	2.59 e 4	2.59 e 4	0.1202	1.000	4.17	4.20	12.5	104	100.0
26	59 Total PFBS	$299>79.7$	0.00e0	2.96 e 3	0.1202		2.96		0.000		
27	60 Total PFHxS	$398.9>79.6$	0.00e0	2.17 e 3	0.1202		3.52		0.000		
28	61 Total PFOA	$413>368.7$	0.00e0	2.45 e 4	0.1202		3.65		0.000		
29	62 Total PFOS	$499>79.9$	0.00e0	5.08 e 3	0.1202		3.89		0.000		
30	63 Total N-Me-FOSAA	$570.1>419$	0.00e0	4.25 e 3	0.1202		4.03		0.000		
31	64 Total N-EtFOSAA	$584.2>419$	0.00e0	3.96e3	0.1202		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-61.qld
Last Altered:	Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:01:21 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1							

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	8 PFOA	$413>368.7$		24521.285	Conc.		

Total PFOS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	15 N-MeFOSAA	$570.1>419$			4249.606	Conc.	

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	16 N-EtFOSAA	$584.2>419$		3961.533	Conc.		

Dataset: U:\Q4.PRO\results\170724M1\170724M1-61.qld
Last Altered: Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:01:21 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717

Total PFBS

F6:MRM of 2 channels, ES-
$299>79.7$
$8.323 e+001$

13C3-PFBS

PFHxA

F8:MRM of 2 channels,ES-

13C2-PFHxA

PFHpA

13C4-PFHpA

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-61.qld
Last Altered: Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:01:21 Pacific Daylight Time

Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717

Total PFOA
 F19:MRM of 2 channels,ES- $413>368.7$ $8.122 \mathrm{e}+003$

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$

13C8-PFOS

PFDA
F35:MRM of 2 channels,ES- $\begin{array}{r}\text { FADA } \\ 513>468.8 \\ 1.206 \mathrm{e}+003\end{array}$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-61.qld

Last Altered: Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:01:21 Pacific Daylight Time

Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717

PFUnA

F43:MRM of 2 channels,ES- | $562.9>518.9$ |
| ---: |
| $1.889 \mathrm{e}+003$ |

13C2-PFUnA

N-MeFOSAA

N-EtFOSAA

d3-N-MeFOSAA
 $5.163 e+002$

PFDoA

13C2-PFDoA

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-61.qld
Last Altered:	Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:01:21 Pacific Daylight Time

Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717

F58:MRM of 4 channels,ES-
$712.9>369$

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-61.qld
Last Altered: Monday, August 07, 2017 15:01:03 Pacific Daylight Time
Printed: Monday, August 07, 2017 15:01:21 Pacific Daylight Time

Name: 170724M1_61, Date: 25-Jul-2017, Time: 00:14:37, ID: 1700906-03 RB-04-20170717 0.125, Description: RB-04-20170717

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults1170724M11170724M1-62.qld
Last Altered:	Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:08:01 Pacific Daylight Time

Method: U:|Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	2.91 e 3	3.56 e 3	0.1213		2.96	3.00	10.2	45.3	
2	4 PFHxA	313.2 > 268.9	4.64 e 4	9.24 e 3	0.1213		3.19	3.23	25.1	136	
3	5 PFHpA	$363>318.9$	8.18 e 3	2.11 e 4	0.1213		3.45	3.49	4.84	31.3	
4	6 PFHxS	$398.9>79.6$	1.15 e 4	2.52 e 3	0.1213		3.56	3.56	57.2	285	
5	8 PFOA	$413>368.7$	$8.02 e 3$	3.07 e 4	0.1213		3.65	3.69	3.27	26.0	
6	10 PFNA	$462.9>418.8$	7.34 e 2	2.55 e 4	0.1213		3.83	3.86	0.359	1.59	
7	12 PFOS	$499>79.9$	4.80 e 4	5.69 e 3	0.1213		3.89	3.91	105	812	
8	13 PFDA	$513>468.8$	3.60 e 2	2.66 e 4	0.1213		4.01	4.03	0.169	0.261	
9	$15 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		$5.26 e 3$	0.1213		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		5.45 e 3	0.1213		4.10				
11	17 PFUnA	$562.9>518.9$		2.81 e 4	0.1213		4.17				
12	19 PFDoA	$612.9>318.8$		2.59 e 3	0.1213		4.34				

Dataset:	U:IQ4.PROIresults1170724M11170724M1-62.qld
Last Altered:	Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:08:33 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.59 e 3	0.1213		4.50				
2	22 PFTeDA	$712.9>668.8$		1.98 e 4	0.1213		4.68				
3	30 13C3-PFBS	$302>98.8$	3.56 e 3	2.84 e 4	0.1213	0.031	2.96	3.00	0.626	166	161.1
4	31 13C2-PFHxA	$315>269.8$	9.24 e 3	2.84 e 4	0.1213	0.276	3.19	3.23	1.63	48.5	117.7
5	32 13C4-PFHpA	$367.2>321.8$	2.11 e 4	2.84 e 4	0.1213	0.306	3.45	3.49	3.72	100	97.3
6	33 1802-PFHxS	$403>102.6$	2.52 e 3	5.78 e 3	0.1213	0.393	3.56	3.56	5.44	114	110.9
7	34 13C2-6:2 FTS	$429.1>408.9$	5.70 e 3	2.69 e 4	0.1213	0.158	3.64	3.67	2.65	138	134.3
8	35 13C2-PFOA	$414.9>369.7$	3.07 e 4	2.69 e 4	0.1213	1.067	3.65	3.68	14.3	110	106.8
9	36 13C5-PFNA	468.2 > 422.9	2.55 e 4	$3.26 e 4$	0.1213	0.852	3.83	3.86	9.80	94.8	92.0
10	37 13C8-PFOSA	$506.1>77.7$	1.88 e 3	3.03 e 4	0.1213	0.098	3.84	3.87	0.778	65.3	63.3
11	38 13C8-PFOS	$507>79.9$	5.69 e 3	5.42 e 3	0.1213	0.936	3.89	3.91	13.1	116	112.2
12	39 13C2-PFDA	$515.1>469.9$	2.66 e4	3.31 e 4	0.1213	0.810	4.01	4.03	10.0	102	99.2
13	40 13C2-8:2 FTS	$529.1>508.7$	3.01 e 3	3.31 e 4	0.1213	0.086	4.00	4.03	1.14	109	106.2
14	41 d3-N-MeFOSAA	$573.3>419$	5.26 e 3	3.03 e 4	0.1213	0.014	4.03	4.06	2.17	1310	97.6
15	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	5.45 e 3	3.03 e 4	0.1213	0.014	4.12	4.13	2.25	1330	99.4
16	43 13C2-PFUnA	$565>519.8$	2.81 e4	3.03e4	0.1213	0.962	4.17	4.20	11.6	99.6	96.6
17	44 13C2-PFDoA	$615>569.7$	2.59e3	3.03e4	0.1213	0.094	4.34	4.36	1.07	93.3	90.5
18	46 13C2-PFTeDA	714.8 > 669.6	1.98 e 4	3.03 e 4	0.1213	0.694	4.68	4.71	8.17	97.1	94.2
19	52 13C5-PFHxA	$318>272.9$	2.84 e 4	2.84 e 4	0.1213	1.000	3.19	3.23	5.00	41.2	100.0
20	53 13C3-PFHxS	$401.9>79.9$	5.78 e 3	5.78 e 3	0.1213	1.000	3.56	3.56	12.5	103	100.0
21	54 13C8-PFOA	$421.3>376$	2.69 e4	2.69 e 4	0.1213	1.000	3.65	3.68	12.5	103	100.0
22	55 13C9-PFNA	472.2 > 426.9	3.26 e4	3.26 e 4	0.1213	1.000	3.83	3.86	12.5	103	100.0
23	56 13C4-PFOS	$503>79.9$	5.42 e 3	5.42 e 3	0.1213	1.000	3.89	3.91	12.5	103	100.0
24	57 13C6-PFDA	$519.1>473.7$	3.31 e 4	3.31 e 4	0.1213	1.000	4.01	4.03	12.5	103	100.0
25	58 13C7-PFUnA	$570.1>524.8$	3.03 e 4	3.03 e 4	0.1213	1.000	4.17	4.20	12.5	103	100.0
26	59 Total PFBS	$299>79.7$	2.96 e 3	3.56 e 3	0.1213		2.96		10.4	45.6	
27	60 Total PFHxS	$398.9>79.6$	1.15 e 4	2.52 e 3	0.1213		3.52		57.2	285	
28	61 Total PFOA	$413>368.7$	8.71 e 3	3.07 e 4	0.1213		3.65		3.55	26.8	
29	62 Total PFOS	$499>79.9$	4.80 e 4	5.69 e 3	0.1213		3.89		105	812	
30	63 Total N-Me-FOSAA	$570.1>419$	0.00e0	5.26 e 3	0.1213		4.03		0.000		
31	64 Total N-EtFOSAA	$584.2>419$	0.00e0	5.45 e 3	0.1213		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-62.qld
Last Altered: Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed: Monday, August 07, 2017 15:08:01 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 01 Aug 2017 09:55:07
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718
Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 PFBS | $299>79.7$ | 3.00 | 2913.218 | 3556.310 | 10.240 | bb | 45.3 |
| 2 | 59 Total PFBS | $299>79.7$ | 2.89 | 45.931 | 3556.310 | 0.161 | bb | 0.4 |

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	6 PFHxS	$398.9>79.6$	3.56	11515.554	2518.423	57.157	MM	284.7

Total PFOA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1	8 PFOA	$413>368.7$	3.69	8016.772	30684.752	3.266	db	26.0
2	61 Total PFOA	$413>368.7$	3.63	695.436	30684.752	0.283	bd	0.7

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	12 PFOS	$499>79.9$	3.91	47997.828	5692.210	105.402	Conc.

Total N-Me-FOSAA

| | $\#$ Name | Trace | RT | Area | IS Area |
| :--- | :--- | :--- | :--- | :--- | :--- | Response Primary Flags | Conc. |
| :--- |
| 1 |

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$16 ~ N-E t F O S A A ~$	$584.2>419$	5452.733	Conc.			

Dataset: U:\Q4.PRO\results\170724M1\170724M1-62.qld
Last Altered: Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:08:01 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718

Total PFBS

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-62.qld
Last Altered: Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed: Monday, August 07, 2017 15:08:01 Pacific Daylight Time

Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718

\section*{Total PFOA

13C2-PFOA

13C5-PFNA

Total PFOS

13C8-PFOS

13C2-PFDA

Dataset: U:\Q4.PRO\results\170724M1\170724M1-62.qld

Last Altered: Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:08:01 Pacific Daylight Time

Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718

PFUnA

F43:MRM of 2 channels,ES-

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F47.MRM of $573>419$

N-EtFOSAA

d5-N-EtFOSAA

13C2-PFDoA

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-62.qld
Last Altered:	Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:08:01 Pacific Daylight Time

Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718

F58:MRM of 4 channels,ES$712.9>369$
 13C2-PFTeDA

F59:MRM of 2 channels,ES-

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-62.qld
Last Altered: Monday, August 07, 2017 15:07:31 Pacific Daylight Time
Printed: Monday, August 07, 2017 15:08:01 Pacific Daylight Time

Name: 170724M1_62, Date: 25-Jul-2017, Time: 00:25:24, ID: 1700906-04 MW-12BR-20170718 0.125, Description: MW-12BR-20170718

13C4-PFOS

13C6-PFDA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:IQ4.PROIresults1170724M11170724M1-63.qld
Last Altered:	Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:13:00 Pacific Daylight Time

Method: U:|Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$	1.54 e 4	2.96 e3	0.1208		2.96	3.00	65.2	291	
2	4 PFHxA	313.2 > 268.9	2.47 e 5	7.92 e 3	0.1208		3.19	3.22	156	853	
3	5 PFHpA	$363>318.9$	1.10 e 5	2.04 e 4	0.1208		3.45	3.48	67.7	446	
4	6 PFHxS	$398.9>79.6$	$4.22 e 4$	2.15 e3	0.1208		3.56	3.56	245	1400	
5	8 PFOA	$413>368.7$	8.42 e 4	2.66 e 4	0.1208		3.65	3.68	39.6	336	
6	10 PFNA	$462.9>418.8$	2.79 e 4	2.28 e 4	0.1208		3.83	3.86	15.3	114	
7	12 PFOS	$499>79.9$	5.77e4	4.91 e 3	0.1208		3.89	3.91	147	1200	
8	13 PFDA	$513>468.8$	1.12 e 3	2.18 e 4	0.1208		4.01	4.03	0.644	3.29	
9	$15 \mathrm{~N}-\mathrm{MeFOSAA}$	$570.1>419$		5.02e3	0.1208		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOSAA}$	$584.2>419$		4.62 e 3	0.1208		4.10				
11	17 PFUnA	$562.9>518.9$		2.25 e 4	0.1208		4.17				
12	19 PFDoA	$612.9>318.8$		2.40 e 3	0.1208		4.34				

Dataset:	U:IQ4.PROIresults1170724M11170724M1-63.qld
Last Altered:	Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:13:32 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	$662.9>618.9$		2.40 e3	0.1208		4.50				
2	22 PFTeDA	$712.9>668.8$		1.68 e 4	0.1208		4.68				
3	30 13C3-PFBS	$302>98.8$	2.96 e 3	2.68 e 4	0.1208	0.031	2.96	3.00	0.552	147	141.9
4	31 13C2-PFHxA	$315>269.8$	7.92 e 3	2.68 e 4	0.1208	0.276	3.19	3.23	1.48	44.3	107.0
5	32 13C4-PFHpA	$367.2>321.8$	2.04 e 4	2.68 e 4	0.1208	0.306	3.45	3.48	3.80	103	99.6
6	33 1802-PFHxS	$403>102.6$	2.15 e 3	4.70 e 3	0.1208	0.393	3.56	3.56	5.73	121	116.6
7	34 13C2-6:2 FTS	$429.1>408.9$	5.84 e 3	2.30 e 4	0.1208	0.158	3.64	3.67	3.18	167	161.3
8	35 13C2-PFOA	$414.9>369.7$	2.66 e4	2.30 e 4	0.1208	1.067	3.65	3.68	14.5	112	108.4
9	36 13C5-PFNA	468.2 > 422.9	2.28 e4	2.67 e 4	0.1208	0.852	3.83	3.86	10.7	104	100.2
10	37 13C8-PFOSA	$506.1>77.7$	1.96 e 3	2.61 e 4	0.1208	0.098	3.84	3.87	0.937	79.0	76.3
11	38 13C8-PFOS	$507>79.9$	4.91 e3	4.66 e 3	0.1208	0.936	3.89	3.91	13.2	116	112.5
12	39 13C2-PFDA	$515.1>469.9$	2.18 e 4	2.85 e 4	0.1208	0.810	4.01	4.03	9.57	97.8	94.5
13	40 13C2-8:2 FTS	$529.1>508.7$	2.47 e 3	2.85 e 4	0.1208	0.086	4.00	4.02	1.08	105	101.3
14	41 d3-N-MeFOSAA	$573.3>419$	5.02 e 3	2.61 e 4	0.1208	0.014	4.03	4.06	2.41	1450	108.1
15	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	4.62 e 3	2.61 e 4	0.1208	0.014	4.12	4.12	2.21	1310	97.7
16	43 13C2-PFUnA	$565>519.8$	2.25 e4	2.61e4	0.1208	0.962	4.17	4.19	10.8	92.6	89.5
17	44 13C2-PFDoA	$615>569.7$	2.40 e 3	2.61e4	0.1208	0.094	4.34	4.36	1.15	101	97.6
18	46 13C2-PFTeDA	714.8 > 669.6	1.68 e 4	2.61 e 4	0.1208	0.694	4.68	4.71	8.03	95.8	92.6
19	52 13C5-PFHxA	$318>272.9$	2.68 e 4	2.68 e 4	0.1208	1.000	3.19	3.22	5.00	41.4	100.0
20	53 13C3-PFHxS	$401.9>79.9$	4.70 e 3	4.70 e 3	0.1208	1.000	3.56	3.56	12.5	103	100.0
21	54 13C8-PFOA	$421.3>376$	2.30 e 4	2.30 e 4	0.1208	1.000	3.65	3.68	12.5	103	100.0
22	55 13C9-PFNA	472.2 > 426.9	2.67 e 4	2.67 e 4	0.1208	1.000	3.83	3.86	12.5	103	100.0
23	56 13C4-PFOS	$503>79.9$	4.66 e 3	4.66 e 3	0.1208	1.000	3.89	3.91	12.5	103	100.0
24	57 13C6-PFDA	$519.1>473.7$	2.85 e 4	2.85 e 4	0.1208	1.000	4.01	4.03	12.5	103	100.0
25	58 13C7-PFUnA	$570.1>524.8$	2.61 e4	2.61 e 4	0.1208	1.000	4.17	4.20	12.5	103	100.0
26	59 Total PFBS	$299>79.7$	1.58 e 4	2.96 e 3	0.1208		2.96		66.8	298	
27	60 Total PFHxS	$398.9>79.6$	4.22 e 4	2.15 e 3	0.1208		3.52		245	1400	
28	61 Total PFOA	$413>368.7$	8.60e4	2.66 e 4	0.1208		3.65		40.4	341	
29	62 Total PFOS	$499>79.9$	5.77e4	4.91 e 3	0.1208		3.89		147	1200	
30	63 Total N-Me-FOSAA	$570.1>419$	0.00e0	5.02e3	0.1208		4.03		0.000		
31	64 Total N-EtFOSAA	$584.2>419$	0.00e0	4.62 e 3	0.1208		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-63.qld
Last Altered: Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed: Monday, August 07, 2017 15:13:00 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS FULL 7-20-17.mdb 01 Aug 2017 09:55:07
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718
Total PFBS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :---: | :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 3 | $299>79.7$ | 3.00 | 15415.351 | 2956.740 | 65.170 | bb | 290.9 |
| 2 | 59 Total PFBS | $299>79.7$ | 2.89 | 379.568 | 2956.740 | 1.605 | bb | 6.8 |

Total PFHxS

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $6 ~ P F H x S$ | $398.9>79.6$ | 3.56 | 42225.949 | 2152.891 | 245.170 | MM | 1397.6 |

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags | Conc. |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8 PFOA | $413>368.7$ | 3.68 | 84193.797 | 26571.709 | 39.607 | MM | 336.0 |
| 2 | 61 Total PFOA | $413>368.7$ | 3.63 | 1791.302 | 26571.709 | 0.843 | MM | 5.5 |

Total PFOS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	12 PFOS	$499>79.9$	3.91	57735.195	4905.168	147.128	Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$15 ~ N-M e F O S A A ~$	$570.1>419$	5023.183	Conc.			

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	$16 ~ N-E t F O S A A ~$	$584.2>419$		4623.559	Conc.		

Dataset: U:\Q4.PRO\results\170724M1\170724M1-63.qld
Last Altered: Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:13:00 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718

Total PFBS

		F6:MRM of 2 channels,ES- $299>79.7$
	PFBS	$3.983 \mathrm{e}+005$
${ }^{100} 7$	3.00	
\%-	1.5494 396905	

13C3-PFBS

PFHxA

13C2-PFHxA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset:
 U:\Q4.PRO\results\170724M1\170724M1-63.qld

Last Altered: Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:13:00 Pacific Daylight Time

Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718

Total PFOA

Total PFOA
100

13C2-PFOA

13C5-PFNA

Total PFOS
F30:MRM of 2 channels, ES-
$499>79.9$
$6.054 \mathrm{e}+005$

13C8-PFOS

13C2-PFDA

Dataset: U:\Q4.PRO\results\170724M1\170724M1-63.qld

Last Altered: Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed:
Monday, August 07, 2017 15:13:00 Pacific Daylight Time

Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718

PFUnA

F43:MRM of 2 channels,ES-
 13C2-PFUnA

N-MeFOSAA

N-EtFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
F47.MRM $5733>419$
d5-N-EtFOSAA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170724M1\170724M1-63.qld

Last Altered: Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:13:00 Pacific Daylight Time

Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718

F58:MRM of 4 channels,ES712.9 > 369

13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-63.qld
Last Altered: Monday, August 07, 2017 15:12:43 Pacific Daylight Time
Printed: Monday, August 07, 2017 15:13:00 Pacific Daylight Time

Name: 170724M1_63, Date: 25-Jul-2017, Time: 00:36:20, ID: 1700906-05 MW-02BR-20170718 0.125, Description: MW-02BR-20170718

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-56.qld
Last Altered:	Tuesday, August 08, 2017 14:33:39 Pacific Daylight Time
Printed:	Tuesday, August 08, 2017 14:34:35 Pacific Daylight Time

Method: U:|Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 07 Aug 2017 17:59:25 Calibration: U:\Q4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_56, Date: 26-Jul-2017, Time: 00:06:56, ID: 1700906-05@5X MW-02BR-20170718 0.125, Description: MW-02BR-20170718

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	4 PFHxA	313.2 > 268.9	4.90 e 4	1.57e3	0.1208		3.19	3.22	156	852	
2	6 PFHxS	$398.9>79.6$	8.66 e 3	4.17 e 2	0.1208		3.56	3.56	259	1500	
3	12 PFOS	$499>79.9$	1.08 e 4	9.44 e 2	0.1208		3.89	3.91	143	1160	
4	31 13C2-PFHxA	$315>269.8$	1.57 e 3	5.21 e 3	0.1208	0.276	3.19	3.23	1.51	45.2	109.2
5	33 1802-PFHxS	$403>102.6$	4.17 e 2	9.44 e 2	0.1208	0.393	3.56	3.56	5.52	116	112.5
6	38 13C8-PFOS	$507>79.9$	9.44 e 2	9.57 e 2	0.1208	0.936	3.89	3.91	12.3	109	105.4
7	52 13C5-PFHxA	$318>272.9$	5.21 e 3	5.21e3	0.1208	1.000	3.19	3.22	5.00	41.4	100.0
8	53 13C3-PFHxS	$401.9>79.9$	9.44 e 2	9.44 e 2	0.1208	1.000	3.56	3.56	12.5	103	100.0
9	54 13C8-PFOA	$421.3>376$	4.24 e 3	4.24 e 3	0.1208	1.000	3.65	3.69	12.5	103	100.0
10	55 13C9-PFNA	$472.2>426.9$	5.10 e 3	5.10 e 3	0.1208	1.000	3.83	3.86	12.5	103	100.0
11	56 13C4-PFOS	$503>79.9$	9.57 e 2	9.57 e 2	0.1208	1.000	3.89	3.91	12.5	103	100.0
12	57 13C6-PFDA	$519.1>473.7$	5.08 e 3	5.08 e 3	0.1208	1.000	4.01	4.03	12.5	103	100.0
13	58 13C7-PFUnA	$570.1>524.8$	4.33 e3	4.33 e3	0.1208	1.000	4.17	4.20	12.5	103	100.0
14	59 Total PFBS	$299>79.7$	2.74 e 3	5.01 e 2	0.1208		2.96		68.3	304	
15	60 Total PFHxS	398.9 > 79.6	8.66 e 3	4.17 e 2	0.1208		3.52		259	1500	
16	61 Total PFOA	$413>368.7$	1.82 e 4	5.50 e 3	0.1208		3.65		41.1	349	
17	62 Total PFOS	$499>79.9$	1.08 e 4	9.44 e 2	0.1208		3.89		143	1160	

Dataset: U:\Q4.PRO\results\170725M1\170725M1-56.qld
Last Altered: Tuesday, August 08, 2017 14:33:39 Pacific Daylight Time
Printed: Tuesday, August 08, 2017 14:34:35 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 07 Aug 2017 17:59:25

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_56, Date: 26-Jul-2017, Time: 00:06:56, ID: 1700906-05@5X MW-02BR-20170718 0.125, Description: MW-02BR-20170718

Total PFBS

	F6:MRM of 2 channels, ES-
$299>79.7$	
$6.443 e+004$	

13C3-PFBS

PFHxA

13C2-PFHxA

1802-PFHxS

Dataset: U:\Q4.PRO\results\170725M1\170725M1-56.qld

Last Altered: Tuesday, August 08, 2017 14:33:39 Pacific Daylight Time
Printed: Tuesday, August 08, 2017 14:34:35 Pacific Daylight Time

Name: 170725M1_56, Date: 26-Jul-2017, Time: 00:06:56, ID: 1700906-05@5X MW-02BR-20170718 0.125, Description: MW-02BR-20170718

\section*{Total PFOA
 | F19:MRM of 2 channels,ES- |
| ---: |
| $413>368.7$ |
| $3.677 \mathrm{e}+005$ |
| 100 |}

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS

PFDA

Dataset: U:\Q4.PRO\results\170725M1\170725M1-56.qld

Last Altered: Tuesday, August 08, 2017 14:33:39 Pacific Daylight Time
Printed: \quad Tuesday, August 08, 2017 14:34:35 Pacific Daylight Time

Name: 170725M1_56, Date: 26-Jul-2017, Time: 00:06:56, ID: 1700906-05@5X MW-02BR-20170718 0.125, Description: MW-02BR-20170718

PFUnA

13C2-PFUnA

N-MeFOSAA

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-
$5733>419$

N-EtFOSAA

F48:MRM of 2 channels,ES-
$1.186 \mathrm{e}+003$

d5-N-EtFOSAA

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170725M1\170725M1-56.qId

Last Altered: Tuesday, August 08, 2017 14:33:39 Pacific Daylight Time
Printed: Tuesday, August 08, 2017 14:34:35 Pacific Daylight Time

Name: 170725M1_56, Date: 26-Jul-2017, Time: 00:06:56, ID: 1700906-05@5X MW-02BR-20170718 0.125, Description: MW-02BR-20170718

F58:MRM of 4 channels,ES$712.9>369$
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170725M1\170725M1-56.qld
Last Altered: Tuesday, August 08, 2017 14:33:39 Pacific Daylight Time
Printed: Tuesday, August 08, 2017 14:34:35 Pacific Daylight Time

Name: 170725M1_56, Date: 26-Jul-2017, Time: 00:06:56, ID: 1700906-05@5X MW-02BR-20170718 0.125, Description: MW-02BR-20170718

13C4-PFOS

13C6-PFDA

13C7-PFUnA

Quantify Sample Summary Report

Vista Analytical Laboratory

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-64.qld
Last Altered:	Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:19:57 Pacific Daylight Time

Method: U:|Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

 Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	3 PFBS	$299>79.7$		3.48 e 3	0.1215		2.96				
2	4 PFHxA	313.2 > 268.9		8.75 e 3	0.1215		3.19				
3	5 PFHpA	$363>318.9$		2.20 e 4	0.1215		3.45				
4	6 PFHxS	$398.9>79.6$		2.45 e 3	0.1215		3.56				
5	8 PFOA	$413>368.7$		2.69 e 4	0.1215		3.65				
6	10 PFNA	$462.9>418.8$		2.57 e 4	0.1215		3.83				
7	12 PFOS	$499>79.9$		5.75 e3	0.1215		3.89				
8	13 PFDA	$513>468.8$		2.18 e 4	0.1215		4.01				
9	15 N -MeFOSAA	$570.1>419$		4.22 e 3	0.1215		4.03				
10	$16 \mathrm{~N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		$4.22 e 3$	0.1215		4.10				
11	17 PFUnA	$562.9>518.9$		2.20 e 4	0.1215		4.17				
12	19 PFDoA	$612.9>318.8$		2.07 e 3	0.1215		4.34				

Dataset:	U:IQ4.PROIresults1170724M11170724M1-64.qld
Last Altered:	Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:20:45 Pacific Daylight Time

Method: U:\Q4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07 Calibration: U:IQ4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718

	\# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	\%Rec
1	21 PFTrDA	662.9 > 618.9		2.07e3	0.1215		4.50				
2	22 PFTeDA	$712.9>668.8$		1.42 e 4	0.1215		4.68				
3	30 13C3-PFBS	$302>98.8$	3.48 e 3	2.98 e 4	0.1215	0.031	2.96	3.00	0.583	154	149.9
4	31 13C2-PFHxA	$315>269.8$	8.75 e 3	2.98 e 4	0.1215	0.276	3.19	3.23	1.47	43.7	106.1
5	32 13C4-PFHpA	$367.2>321.8$	2.20 e 4	2.98 e 4	0.1215	0.306	3.45	3.48	3.69	99.4	96.7
6	33 1802-PFHxS	$403>102.6$	2.45 e 3	5.12 e 3	0.1215	0.393	3.56	3.55	5.99	125	121.9
7	34 13C2-6:2 FTS	$429.1>408.9$	4.54 e 3	2.69 e 4	0.1215	0.158	3.64	3.67	2.11	110	107.1
8	35 13C2-PFOA	$414.9>369.7$	2.69 e4	2.69 e 4	0.1215	1.067	3.65	3.68	12.5	96.4	93.7
9	36 13C5-PFNA	468.2 > 422.9	2.57 e 4	3.06 e 4	0.1215	0.852	3.83	3.86	10.5	101	98.4
10	37 13C8-PFOSA	$506.1>77.7$	1.80e3	2.88 e 4	0.1215	0.098	3.84	3.87	0.782	65.5	63.7
11	38 13C8-PFOS	$507>79.9$	5.75 e 3	5.10 e 3	0.1215	0.936	3.89	3.91	14.1	124	120.4
12	39 13C2-PFDA	$515.1>469.9$	2.18 e4	2.60 e 4	0.1215	0.810	4.01	4.03	10.5	106	103.3
13	40 13C2-8:2 FTS	$529.1>508.7$	2.81 e 3	2.60 e 4	0.1215	0.086	4.00	4.03	1.35	130	126.3
14	41 d3-N-MeFOSAA	$573.3>419$	4.22 e 3	2.88 e 4	0.1215	0.014	4.03	4.06	1.83	1100	82.3
15	$42 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	4.22 e 3	2.88 e 4	0.1215	0.014	4.12	4.12	1.83	1080	80.7
16	43 13C2-PFUnA	$565>519.8$	2.20 e 4	2.88 e 4	0.1215	0.962	4.17	4.20	9.54	81.6	79.3
17	44 13C2-PFDoA	$615>569.7$	2.07e3	2.88 e 4	0.1215	0.094	4.34	4.35	0.899	78.3	76.2
18	46 13C2-PFTeDA	714.8 > 669.6	1.42 e 4	2.88 e 4	0.1215	0.694	4.68	4.71	6.16	73.0	71.0
19	52 13C5-PFHxA	$318>272.9$	2.98 e 4	2.98 e 4	0.1215	1.000	3.19	3.23	5.00	41.1	100.0
20	53 13C3-PFHxS	$401.9>79.9$	5.12 e 3	5.12 e 3	0.1215	1.000	3.56	3.56	12.5	103	100.0
21	54 13C8-PFOA	$421.3>376$	2.69 e4	2.69 e 4	0.1215	1.000	3.65	3.68	12.5	103	100.0
22	55 13C9-PFNA	472.2 > 426.9	3.06 e4	3.06 e 4	0.1215	1.000	3.83	3.86	12.5	103	100.0
23	56 13C4-PFOS	$503>79.9$	5.10 e 3	5.10 e3	0.1215	1.000	3.89	3.91	12.5	103	100.0
24	57 13C6-PFDA	$519.1>473.7$	2.60 e 4	2.60 e 4	0.1215	1.000	4.01	4.03	12.5	103	100.0
25	58 13C7-PFUnA	$570.1>524.8$	2.88 e 4	2.88 e 4	0.1215	1.000	4.17	4.19	12.5	103	100.0
26	59 Total PFBS	$299>79.7$	0.00e0	3.48 e 3	0.1215		2.96		0.000		
27	60 Total PFHxS	$398.9>79.6$	0.00e0	2.45 e 3	0.1215		3.52		0.000		
28	61 Total PFOA	$413>368.7$	0.00e0	2.69 e 4	0.1215		3.65		0.000		
29	62 Total PFOS	$499>79.9$	0.00e0	5.75 e 3	0.1215		3.89		0.000		
30	63 Total N-Me-FOSAA	$570.1>419$	0.00e0	4.22 e 3	0.1215		4.03		0.000		
31	64 Total N-EtFOSAA	$584.2>419$	0.00e0	4.22 e 3	0.1215		4.17		0.000		

Quantify Totals Report MassLynx MassLynx V4.1 SCN 945

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-64.qld
Last Altered:	Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed:	Monday, August 07, 2017 15:19:57 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07
Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718 Total PFBS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1							

Total PFHxS

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags	Conc.
1								

Total PFOA

| | \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total PFOS

| \# Name | Trace | RT | Area | IS Area | Response | Primary Flags |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | Conc.

Total N-Me-FOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	15 N-MeFOSAA	$570.1>419$		4218.539	Conc.		

Total N-EtFOSAA

	\# Name	Trace	RT	Area	IS Area	Response	Primary Flags
1	16 N-EtFOSAA	$584.2>419$		4215.211	Conc.		

Dataset: U:\Q4.PRO\results\170724M1\170724M1-64.qld
Last Altered: Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:19:57 Pacific Daylight Time

Method: U:\Q4.PRO\MethDB\PFAS_FULL_7-20-17.mdb 01 Aug 2017 09:55:07

Calibration: U:\Q4.PRO\CurveDB\C18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718

Total PFBS

F6:MRM of 2 channels, ES-
$299>79.7$
$2.839 \mathrm{e}+001$

13C3-PFBS

PFHxA

13C2-PFHxA F9:MRM of 1 channel,ES-

13C4-PFHpA
F15:MRM of 1 channel,ES367.2 > 321.8 $100 \quad\left[\begin{array}{r}13 \mathrm{C} 4-\mathrm{PFHpA} 5.270 \mathrm{e}+005 \\ 3.48\end{array}\right.$

Total PFHxS

1802-PFHxS

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-64.qld
Last Altered: Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:19:57 Pacific Daylight Time

Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718

13C2-PFOA

PFNA

13C5-PFNA

Total PFOS

F30:MRM of 2 channels,ES-
$499>99$

13C8-PFOS

Dataset: U:\Q4.PRO\results\170724M1\170724M1-64.qld

Last Altered: Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:19:57 Pacific Daylight Time

Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718

PFUnA

P43:MRM of 2 channels,ES- | F ESA |
| ---: |
| $562.9>518.9$ |
| $2.179 \mathrm{e}+003$ |

13C2-PFUnA

N-MeFOSAA

N-EtFOSAA

d3-N-MeFOSAA

PFDoA

13C2-PFDoA

Dataset:
 U:\Q4.PRO\results\170724M1\170724M1-64.qld

Last Altered: Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed: \quad Monday, August 07, 2017 15:19:57 Pacific Daylight Time

Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718

PFTeDA

F58:MRM of 4 channels,ES 1.349 - 003
 13C2-PFTeDA

PFTrDA

13C2-PFTeDA

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: U:\Q4.PRO\results\170724M1\170724M1-64.qld
Last Altered: Monday, August 07, 2017 15:19:32 Pacific Daylight Time
Printed: Monday, August 07, 2017 15:19:57 Pacific Daylight Time

Name: 170724M1_64, Date: 25-Jul-2017, Time: 00:47:21, ID: 1700906-06 RB-05-20170718 0.125, Description: RB-05-20170718

13C4-PFOS

13C6-PFDA

CONTINUING CALIBRATION

Dataset:	U:\Q4.PRO\results1170724M11170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:06 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

	\# Name	Trace	\% Area	IS Resp	RRF WI Wol	RT	Conc.	\%Rec	$70-130$
1.2	1 L-PFBA	$213.0>168.8$	13717.317	14841.831	1.000	1.56	9.63	96.26	
2 2-4.	2 Br -PFBA	$213.0>168.8$		14841.831	1.000				
3.	3 L-PFPeA	$263.1>218.9$	23137.586	29721.047	1.000	2.81	9.63	96.31	
$4{ }^{\text {W }}$	4 Br -PFPeA	$263.1>218.9$		29721.047	1.000				
5. Wher	5 L-PFBS	$299>79.7$	5388.239	3666.354	1.000	3.00	9.88	98.77	
6 6, ${ }^{\text {a }}$	6 Br -PFBS	$299>79.7$		3666.354	1.000				
	7 L-PFHxA	$313.2>268.9$	38028.445	12560.093	1.000	3.23	9.92	99.24	
8.	$8 \mathrm{Br}-\mathrm{PFH} \times \mathrm{A}$	313.2 > 268.9	29.740	12560.093	1.000	3.15			
	9 L-PFHpA	$363>318.9$	35389.406	35390.621	1.000	3.49	9.91	99.08	
10	$10 \mathrm{Br}-\mathrm{PFHpA}$	$363>318.9$	73.087	35390.621	1.000	3.36			
11. ${ }^{\text {atat. }}$	11 L-PFHxS	$398.9>79.6$	4523.582	3743.138	1.000	3.56	9.38	93.79	
12 \%	12 Br -PFHxS	$398.9>79.6$		3743.138	1.000				
13.4	13 L-6:2 FTS	$427.1>407$	7485.944	9068.308	1.000	3.67	9.75	97.53	
14.3	$14 \mathrm{Br}-6: 2 \mathrm{FTS}$	$427.1>407$		9068.308	1.000				
15.	15 L-PFOA	$413>368.7$	51977.324	63225.359	1.000	3.68	10.38	103.79	
16.	16 Br -PFOA	$413>368.7$	38.392	63225.359	1.000	3.56			
17\%HES家	17 L-PFHpS	$448.9>98.8$	4945.654	63225.359	1.000	3.74	10.85	108.53	
18.	$18 \mathrm{Br}-\mathrm{PFHpS}$	$448.9>98.8$		63225.359	1.000				
19.	19 L-PFNA	$462.9>418.8$	58359.652	65988.719	1.000	3.86	9.94	99.37	
20 \%	20 Br -PFNA	$462.9>418.8$		65988.719	1.000				
21.4. ${ }^{\text {2 }}$	21 L-PFOSA	$498.1>77.8$	6377.556	7101.229	1.000	3.87	10.65	106.52	
22.	$22 \mathrm{Br}-\mathrm{PFOSA}$	$498.1>77.8$		7101.229	1.000				
23 . 2	23 L-PFOS	$499>79.9$	10311.557	12179.149	1.000	3.91	8.92	89.22	
24 【!	24 Br -PFOS	$499>79.9$		12179.149	1.000				
25 -	25 L-PFDA	$513>468.8$	57795.934	63113.398	1.000	4.03	8.72	87.25	
26	$26 \mathrm{Br}-\mathrm{PFDA}$	$513>468.8$		63113.398	1.000				
27. 2\% $^{\text {2 }}$	27 L-8:2 FTS	$527>506.9$	6590.332	5991.518	1.000	4.03	9.38	93.77	
28.	$28 \mathrm{Br}-8: 2 \mathrm{FTS}$	$527>506.9$		5991.518	1.000				
29	29 L-N-MeFOSAA	$570.1>419$	16503.994	13933.809	1.000	4.06	10.01	100.11	
30	$30 \mathrm{Br}-\mathrm{N}-\mathrm{MeFOSAA}$	$570.1>419$		13933.809	1.000				
31. Worko		584.2>419	12592.925	14393.751	1.000	4.13	8.96	89.64	$\sqrt{1}$

Dataset:	U:IQ4.PROlresults1170724M1\170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:06 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Khe	\# Name	Trace	Area	IS Resp	RRF	Wtevol	RT	Conc.	\%Rec	$70-130$
32	32 Br -N-EtFOSAA	$584.2>419$		14393.751		1.000				
33 \%	33 L-PFUnA	$562.9>518.9$	43380.402	66093.086		1.000	4.20	9.29	92.87	
34 .	34 Br -PFUnA	$562.9>518.9$		66093.086		1.000				
35 : ${ }^{\text {a }}$,	35 L-PFDS	$598.9>98.7$	4549.397	66093.086		1.000	4.24	9.66	96.63	
	$36 \mathrm{Br}-\mathrm{PFDS}$	$598.9>98.7$		66093.086		1.000				
37.4	37 L-PFDoA	$612.9>318.8$	5090.924	7241.331		1.000	4.36	9.30	92.99	
38 rta	38 Br-PFDoA	$612.9>318.8$		7241.331		1.000				
39.4 ¢	39 L-N-MeFOSA	$512.1>168.9$	10713.910	30558.729		1.000	4.41	9.47	94.74	
40 .	$40 \mathrm{Br}-\mathrm{N}-\mathrm{MeFOSA}$			30558.729						
41	41 L-PFTrDA	$662.9>618.9$	62943.777	7241.331		1.000	4.53	9.79	97.92	
42 W.	$42 \mathrm{Br}-\mathrm{PFTrDA}$	$662.9>618.9$		49154.664		1.000				
43.4	43 L-PFTeDA	$712.9>668.8$	43981.219	49154.664		1.000	4.71	9.70	97.00	
44 .	44 Br -PFTeDA	$712.9>668.8$		49154.664		1.000				
454 Wen	45 L-N-EtFOSA	$526.1>168.9$	12841.630	41816.922		1.000	4.98	9.86	98.58	
46	$46 \mathrm{Br}-\mathrm{N}$-EtFOSA	$526.1>168.9$	20.190	41816.922		1.000	4.88			
47.	47 L-PFHxDA	$812.8>768.9$	65001.813	24112.928		1.000	5.08	9.85	98.51	
48 W.	$48 \mathrm{Br}-\mathrm{PFH} \times \mathrm{DA}$	$812.8>768.9$		24112.928		1.000				
49,	49 L-PFODA	$912.8>868.8$	61969.875	24112.928		1.000	5.45	9.97	99.68	
50 ,	50 Br -PFODA	$912.8>868.8$		24112.928		1.000				
51.	51 L-N-MeFOSE	$616.1>58.9$	15692.072	46741.930		1.000	5.44	9.51	95.06	
52 \% ${ }^{\text {a }}$ +4,	52 Br - N -MeFOSE	$616.1>58.9$		46741.930		1.000				
53.	53 L-N-EtFOSE	$630.1>58.9$	17749.732	46536.496		1.000	5.61	9.51	95.14	
54	$54 \mathrm{Br}-\mathrm{N}-\mathrm{EtFOSE}$	$630.1>58.9$		46536.496		1.000				\downarrow
$55.3{ }^{\text {a }}$	55 13C3-PFBA	$216.1>171.8$	14841.831	17771.932	0.821	1.000	1.56	12.72	101.77	$50-150$
56,4	56 13C3-PFPeA	$266>221.8$	29721.047	17771.932	1.617	1.000	2.81	12.92	103.40	
57.	57 13C3-PFBS	$302>98.8$	3666.354	17771.932	0.203	1.000	3.00	12.72	101.73	
58 \%	58 13C2-PFHxA	$315>269.8$	12560.093	44936.813	0.276	1.000	3.23	5.06	101.13	
59 . F -	59 13C4-PFHpA	$367.2>321.8$	35390.621	44936.813	0.306	1.000	3.49	12.89	103.11	
60 .	60 1802-PFHxS	$403>102.6$	3743.138	8924.657	0.393	1.000	3.56	13.35	106.76	
61	61 13C2-6:2 FTS	$429.1>408.9$	9068.308	63225.359	0.147	1.000	3.67	12.16	97.25	
62 Wit	62 13C2-PFOA	$414.9>369.7$	63225.359	60232.691	1.067	1.000	3.68	12.29	98.33	
63 ,	63 13C5-PFNA	$468.2>422.9$	65988.719	77770.828	0.852	1.000	3.86	12.45	99.57	
64. ${ }^{\text {a }}$	64 13C8-PFOSA	$506.1>77.7$	7101.229	75659.602	0.098	1.000	3.87	11.94	95.54	
65 -	65 13C8-PFOS	507>79.9	12179.149	12400.646	0.937	1.000	3.91	13.10	104.79	V

Work Order 1700906

Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time

Printed:

 Tuesday, July 25, 2017 10:46:06 Pacific Daylight Time
Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

7. ${ }^{\text {a }}$ (t. \# Name	Trace	Area	IS Resp	RRF	Wt. Nol	RT	Conc.	\%Rec	$50-150$
$66 .{ }^{2} \times 26$ 13C2-PFDA	$515.1>469.9$	63113.398	76913.242	0.810	1.000	4.03	12.67	101.33	
67 , 67 13C2-8:2 FTS	$529.1>508.7$	5991.518	63113.398	0.106	1.000	4.03	11.21	89.64	Δ
68 68 d3-N-MeFOSAA	$573.3>419$	13933.809	75659.602	0.178	1.000	4.06	12.93	103.43	
69.45 d 69 d5-N-EtFOSAA	$589.3>419$	14393.751	75659.602	0.181	1.000	4.12	13.11	104.87	
70.15	$565>519.8$	66093.086	75659.602	0.962	1.000	4.20	11.35	90.80	
71 \% 71 13C2-PFDoA	$615>569.7$	7241.331	75659.602	0.094	1.000	4.36	12.67	101.36	
72.4	$515.2>168.9$	30558.729	75659.602	0.413	1.000	4.44	12.23	97.81	
73. 73 13C2-PFTEDA	$714.8>669.6$	49154.664	75659.602	0.694	1.000	4.71	11.70	93.57	
74.42 d5-N-EtFOSA	$531.1>168.9$	41816.922	75659.602	0.581	1.000	5.02	11.88	95.07	
75.4 ± 75 13C2-PFHxDA	$815>769.7$	24112.928	75659.602	0.843	1.000	5.08	4.73	94.51	
76.	$623.1>58.9$	46741.930	75659.602	0.656	1.000	5.43	11.78	94.24	
77.4	$639.2>58.8$	46536.496	75659.602	0.641	1.000	5.60	11.99	95.95	
78.	$217>171.8$	17771.932	17771.932	1.000	1.000	1.56	12.50	100.00	
79 . 79 13C5-PFHxA	$318>272.9$	44936.813	44936.813	1.000	1.000	3.23	5.00	100.00	
80.w ${ }^{\text {a }}$ 13C3-PFHxS	$401.9>79.9$	8924.657	8924.657	1.000	1.000	3.56	12.50	100.00	
$81.3+2{ }^{\text {d }}$ 13C8-PFOA	$421.3>376$	60232.691	60232.691	1.000	1.000	3.68	12.50	100.00	
82.82 13C9-PFNA	$472.2>426.9$	77770.828	77770.828	1.000	1.000	3.86	12.50	100.00	
83. ${ }^{\text {a }} 83$ 13C4-PFOS	$503>79.9$	12400.646	12400.646	1.000	1.000	3.91	12.50	100.00	
84 -	$519.1>473.7$	76913.242	76913.242	1.000	1.000	4.03	12.50	100.00	
85. . 85 13C7-PFUnA	$570.1>524.8$	75659.602	75659.602	1.000	1.000	4.20	12.50	100.00	

Dataset：Untitled

Last Altered：Tuesday，July 25， 2017 10：51：31 Pacific Daylight Time
Printed：\quad Tuesday，July 25， 2017 10：51：42 Pacific Daylight Time

Method：U：IQ4．PROIMethDBIPFAS＿Full＿7－24－17＿LBT．mdb 25 Jul 2017 09：46：41 Calibration：U：IQ4．PROICurveDBIC18＿VAL－PFAS＿Q4＿7－24－17－FULL＿LBT．cdb 25 Jul 2017 09：59：38

Compound name：L－PFBA

Name	10	Acq．Date	Acq．Time
146mikht	IPA	24－Jul－17	13：40：23
2 Skitutury 170724M1＿3	ST170724M1－1 PFC CS－2 17G2422	24－Jul－17	13：51：04
36atabutry 170724M1＿4	ST170724M1－2 PFC CS－1 17G2119	24－Jul－17	14：01：50
	ST170724M1－3 PFC CSO 17G2423	24－Jul－17	14：12：36
5 Whateme 170724 M 1 ＿6	ST170724M1－4 PFC CS1 17G2424	24－Jul－17	14：23：23
	ST170724M1－5 PFC CS2 17G2425	24－Jul－17	14：34：02
	ST170724M1－6 PFC CS3 17G2118	24－Jul－17	14：44：48
	ST170724M1－7 PFC CS4 17G2426	24－Jul－17	14：55：34
9xkdutw	ST170724M1－8 PFC CS5 17G2427	24－Jul－17	15：06：35
	IPA	24－Jul－17	15：17：30
	SS170724M4－1 PFC SSS 17G2421	24－Jul－17	15：28：15
	IPA	24－Jul－17	15：39：01
	B7G0099－BS1 OPR 0.125	24－Jul－17	15：49：42
	B7G0100－BS1 OPR 1	24－Jul－17	16：00：26
	B7G0102－BS1 OPR 0.125	24－Jul－17	16：11：04
66turk	IPA	24－Jul－17	16：21：42
713ted	B7G0099－BLK1 Method Blank 0.125	24－Jul－17	16：32：21
183紬䊾颠170724M1＿19	B7G0100－BLK1 Method Blank 1	24－Jul－17	16：42：59
	B7G0102－BLK1 Method Blank 0.125	24－Jul－17	16：53：38
	1700732－01RE2 SW－46 0.11925	24－Jul－17	17：04：16
	1700732－02RE1 SW－52 0.1184	24－Jul－17	17：14：54
12	1700732－03RE1 MW PFC 050.12347	24－Jul－17	17：25：33
	1700732－04RE1 MW PFC 030.11929	24－Jul－17	17：36：18
24 Whatuk $170724 \mathrm{M1}$＿25	1700891－01 STEM L1 0.125	24－Jul－17	17：46：58
	1700891－02 STEM L2 0.125	24－Jul－17	17：57：36
	1700891－03 STEM L3 0.125	24－Jul－17	18：08：48
	1700891－04 STEM L4 0.125	24－Jul－17	18：19：41
686tuty	1700891－05 DECON－1M 0.125	24－Jul－17	18：30：28
	1700894－01 POND 2 at PD 0.125	24－Jul－17	18：41：06
300，3yduty 170724M1＿31	IPA	24－Jul－17	18：51：45
31．Work Onitura400926	ST170724M1－9 PFC CS3 17G2118	24－Jul－17	19：02：23

Dataset: Untitled
Last Altered: Tuesday, July 25, 2017 10:51:31 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:51:42 Pacific Daylight Time

Compound name: L.PFBA

Wesersw Name	10	Acq. Date	Acq.Time
32 F FFPM 170724M1_33	IPA	24-Jul-17	19:13:01
	1700894-02 POND 1 at PD 0.125	24-Jul-17	19:23:40
34 \% ${ }^{\text {atherta }}$ 170724M1_35	1700894-03 POND 1 -STAFF 0.125	24-Jul-17	19:34:18
35.	1700894-04 SEED-POND 10.125	24-Jul-17	19:44:56
36.	1700732-05RE1 SD-46 3.2	24-Jul-17	19:55:35
37:	1700732-06RE1 SD-52 1.17	24-Jul-17	20:06:31
	1700732-07RE1 SB-19-01 1.25	24-Jul-17	20:17:32
39 W	1700732-08RE1 SB 25-01 1.15	24-Jul-17	20:28:11
40w whatek 170724M1_41	1700732-09RE1 SB 27-01 1.17	24-Jul-17	20:39:33
	1700732-10RE1 SB-19-4.5-5.5 1.22	24-Jul-17	20:50:13
	1700732-11RE1 SB-25-0506 1.28	24-Jul-17	21:00:51
	IPA	24-Jul-17	21:11:30
	ST170724M1-10 PFC CS3 17G2118	24-Jul-17	21:22:08
45E6metw	IPA	24-Jul-17	21:32:54
	1700732-12RE1 SB-25-0607 1.23	24-Jul-17	21:43:41
67whyux=170724M1_48	1700732-13RE1 SB-27-0708 1.26	24-Jul-17	21:54:19
	1700732-14RE1 SB-27-1213 1.31	24-Jul-17	22:04:58
	1700834-01RE1 82191.051 .17	24-Jul-17	22:15:59
50 Whrwisk 170724M1_51	1700834-02RE1 82191.071 .32	24-Jul-17	22:27:35
51約vaduk 170724M1_52	1700891-06 VEL FOAM 0.125	24-Jul-17	22:38:44
522daskid 170724M1_53	IPA	24-Jul-17	22:49:22
53shever 170724M1_54	ST170724M1-11 PFC CS3 17G2118	24-Jul-17	23:00:00
54934iti 170724M1_55	IPA	24-Jul-17	23:10:39

Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Method: U:IQ4.PROMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

13C3-PFBA

13C3-PFPeA

13C3-PFBS

L-PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17G2118

L-PFHpA

13C4-PFHpA

1802-PFHxS

L-6:2 FTS

13C2-PFOA

L-PFOA

13C2-PFOA

Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G 2118
L-PFNA

F25:MRM of 2 channels, ES-
$462.9>418.8$
100

13C5-PFNA

L-PFOSA

13C8-PFOSA

L-PFOS

13C8-PFOS

L-PFDA

13C2-PFDA

Dataset: U:IQ4.PROVresults\170724M1\170724M1-54.qld

Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

L-8:2 FTS

13C2-8:2 FTS

L-N-MeFOSAA

d3-N-MeFOSAA

L-N-EtFOSAA

F48:MRM of 2 channels,ES-
$584.2>483$

d5-N-EtFOSAA

L-PFUnA

F43:MRM of 2 channels,ES-
$562.9>269$

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$
13C2-PFUnA 1.242e+006

Dataset:	U:IQ4.PROlresults1170724M11170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

L-PFDoA

13C2-PFDoA

 F34:MRM of 2 channels,ES-
 $512.1>219$ $1.176 \mathrm{e}+005$

d3-N-MeFOSA

F57:MRM of 2 channels,ES-
$662.9>319$

13C2-PFDoA
F52:MRM of 1 channel,ES-

Dataset: U:\Q4.PROYresults\170724M1\170724M1-54.qld
Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

13C2-PFTeDA
F59:MRM of 2 channels,ES-

L-N-EtFOSA

d5-N-EtFOSA

L-PFHxDA

13C2-PFHxDA

L-PFODA

13C2-PFHxDA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17G2118

L-N-MeFOSE

d7-N-MeFOSE

d9-N-EtFOSE

13C3-PFHxS

13C5-PFHxA

13C8-PFOA

Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17G2118

13C7-PFUnA

Dataset:
U:IQ4.PRO\results\170724M11170724M1-72.qld
Last Altered: Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17G2118

Dataset:
U:IQ4.PRO\results\170724M11170724M1-72.qld
Last Altered: Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 14:26:59 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:27:19 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Compound name: PFBA

Name	ID	Acq Date ${ }^{\text {a }}$ Acq.Time	
$1.4170724 \mathrm{M} 1 _71$	IPA	25-Jul-17	02:02:09
2 - 170724M1_72	ST170724M1-12 PFC CS3 17G2118	25-Jul-17	02:12:47
3 - 170724 M 1 _73	IPA	25-Jul-17	02:23:26
	1700907-05 AT028-MW17-03-0717	25-Jul-17	02:34:04
$5.170724 \mathrm{M1}$-75	1700907-06 AT028-MW17-07-0717	25-Jul-17	02:44:43
6.	1700907-07 AT028-FB-01-071817-0800	25-Jul-17	02:55:21
	1700907-08 AT028-MW 17-05-07181	25-Jul-17	03:05:59
	1700907-09 AT028-MW17-01-07181	25-Jul-17	03:16:38
9 9 ${ }^{\text {a }}$: $170724 \mathrm{M} 1 _79$	1700907-10 AT028-DUP-01-071717	25-Jul-17	03:27:24
10. ${ }^{\text {a }}$ 170724M1_80	1700919-01 MW-322-071917 0.125	25-Jul-17	03:38:11
	1700919-02 MW-88-0719170.125	25-Jul-17	03:48:49
12. Wet 170724M1_82	1700919-03 MW-44-071917 0.125	25-Jul-17	03:59:36
13 . ${ }^{\text {a }}$, 170724M1_83	IPA	25-Jul-17	04:10:14
14.	ST170724M1-13 PFC CS3 17G2118	25-Jul-17	04:20:52
$15.170{ }^{\text {a }}$ 170724M1_85	IPA	25-Jul-17	04:31:31

LC Calibration Standards Review Checklist

Full Mass Cal. Date: $6 / 21 \mid 1$
Run Log Present:
\# of Samples per Sequence Checked:
Reviewed By:_ $7(25) 17$

Dataset:
U:IQ4.PRO\results\170724M11170724M1-72.qld
Last Altered:
Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G2118

13C3-PFPeA

PFHxA

F8:MRM of 2 channels,ES-

C2-PFHxA

1802-PFHxS

Dataset: U:\Q4.PRO\results\170724M1\170724M1-72.qld
Last Altered: Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17G2118

PFNA

F28:MRM of 2 channels,ES-

F30:MRM of 2 channels,ES

13C8-PFOS
F33:MRM of 1 channel,ES $507>79.9$
$2.448 \mathrm{e}+005$

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-72.qld
Last Altered:	Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G2118

F45:MRM of 2 channels,ES-

F48:MRM of 2 channels,ES-

4.0004 .250

PFDS

13C2-PFUnA
F44:MRM of 1 channel,ES $565>519.8$

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-72.qld
Last Altered:	Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17G2118

F58:MRM of 4 channels, ES-

4.5004 .750

13C2-PFTeDA

PFHxDA

F60:MRM of 2 channels,ES-
$812.8>768.9$
100

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset: U:IQ4.PROVresults\170724M1\170724M1-72.qld

Last Altered:	Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G 2118

d7-N-MeFOSE

d9-N-EtFOSE

13C8-PFOA

13C5-PFHxA
F10:MRM of 1 channel,ES-
$318>272.9$
$1.201 \mathrm{e}+006$

13C2-PFHxDA
Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17G2118

Dataset:
U:IQ4.PRO|results1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Method：U：IQ4．PRO｜MethDBIPFAS＿FULL＿7－20－17．mdb 25 Jul 2017 12：44：55
Calibration：U：IQ4．PROICurveDBIC18＿VAL－PFAS＿Q4＿7－24－17－FULL．cdb 24 Jul 2017 15：32：30

Compound name：PFBA

	IPA	25－Jul－17	14：15：31
	ST170725M1－1 PFC CS－1 17G2502	25－Jul－17	14：26：15
$170725 \mathrm{M1} \text { _3 }$	B7G0107－BS1 OPR 0.125	25－Jul－17	14：36：53
	IPA	25－Jul－17	14：47：39
568	B7G0107－BLK1 Method Blank 0.125	25－Jul－17	14：58：18
	1700851－01RE1 SB 01＿20170710 0.12032	25－Jul－17	15：08：56
170725M1_7	1700851－02RE1 EB 01＿20170710 0.11963	25－Jul－17	15：19：35
6\％	1700851－03RE1 18－GW－18MCAS03－5－20170．．．	25－Jul－17	15：30：13
	1700851－04RE1 18－GW－18MCAS03－2－20170．．．	25－Jul－17	15：40：51
484 紜 170725M1＿10	1700851－05RE1 18－GW－18MCAS02－5－20170．．．	25－Jul－17	15：51：30
	1700851－06RE1 18－GW－18MCAS07－3－20170．．．	25－Jul－17	16：02：08
170725M1_12	1700851－07RE1 24－GW－24MW08B－20170710．	25－Jul－17	16：12：47
	1700851－08RE1 DUP03－20170710 0.12071	25－Jul－17	16：23：25
	1700851－09RE1 24－GW－24EX11－20170710 0.	25－Jul－17	16：34：03
KWk kixidi 170725M1＿15	1700851－10RE1 SGV－GW－SGV Transfer Stati．．．	25－Jul－17	16：44：46
3xd颠變170725M1＿16	B7G0107－MS2 Matrix Spike 0.11945	25－Jul－17	16：55：33
	B7G0107－MSD2 Matrix Spike Dup 0.12098	25－Jul－17	17：06：33
Wevik 170725M1＿18	IPA	25－Jul－17	17：17：45
	ST170725M1－2 PFC CS3 17G2503	25－Jul－17	17：28：43
170725M1＿20	IPA	25－Jul－17	17：39：41
170725M1_21	1700852－01RE1 EB 02＿201707110．12122	25－Jul－17	17：50：30
\％uwh	1700852－02RE1 DUP01－20170711 0.11996	25－Jul－17	18：01：17
170725M1＿2	1700852－03RE1 1－GW－01－MW204－20170711	25－Jul－17	18：12：03
\％170725M1＿2	B7G0107－MS1 Matrix Spike 0.12078	25－Jul－17	18：22：49
170725M1＿25	B7G0107－MSD1 Matrix Spike Dup 0.11599	25－Jul－17	18：33：36
－170725M1＿26	1700852－04RE1 1－GW－01－MW206－20170711	25－Jul－17	18：44：23
170725M1＿27	1700852－05RE1 2－GW－02DGMW59－2017071．．．	25－Jul－17	18：55：10
W积170725M1＿28	1700852－06RE1 2－GW－02NEW16－20170711．	25－Jul－17	19：05：57
170725M1＿29	1700852－07RE1 5－GW－05－DGMW68A－20170．．．	25－Jul－17	19：16：44
W 170725M1＿3	1700852－08RE1 1－GW－01－PZ20－20170711 0．．．	25－Jul－17	19：27：29
	1700852－09RE1 1－GW－02－MW209－20170711 ．．	．25－Jul－17	19：38：30

Last Altered：Wednesday，July 26， 2017 10：28：43 Pacific Daylight Time
Printed：
Wednesday，July 26， 2017 10：29：07 Pacific Daylight Time

Compound name：PFBA

		Acq－Date	Acq．Time
32，	IPA	25－Jul－17	19：49：44
	ST170725M1－3 PFC CS3 17G2503	25－Jul－17	20：00：29
346Sustan 170725M1＿34	IPA	25－Jul－17	20：11：07
35\％Whatkydx 170725M1＿35	B7G0108－BS1 OPR 0.125	25－Jul－17	20：21：46
	IPA	25－Jul－17	20：32：24
	B7G0108－BLK1 Method Blank 0.125	25－Jul－17	20：43：03
36，	1700856－01RE1 INFLUENT－20170710 0.121	25－Jul－17	20：53：41
	1700856－02RE1 DUP05－20170710 0.11647	25－Jul－17	21：04：19
	1700856－03RE1 MID－POINT－20170710 0.11731	25－Jul－17	21：14：58
	1700856－04RE1 EFFLUENT－20170710 0.12084	25－Jul－17	21：25：36
42，	B7G0108－MS1 Matrix Spike 0.12162	25－Jul－17	21：36：14
463guthy	B7G0108－MSD1 Matrix Spike Dup 0.11849	25－Jul－17	21：47：01
	1700856－05RE1 MW－37S－201707110．11696	25－Jul－17	21：57：39
	1700856－06RE1 ERB－01－20170711 0.12043	25－Jul－17	22：08：34
	1700856－07RE1 11－MW－1－20170710 0.11482	25－Jul－17	22：19：33
	1700856－08RE1 LF－MW－54BR－20170710 0．11．．．	25－Jul－17	22：30：16
	1700856－09RE1 MW－48BR－20170711 0.12084	25－Jul－17	22：40：54
	1700856－10RE1 MW－34S－20170711 0.11812	25－Jul－17	22：51：33
509 13stwix 170725M1＿50	IPA	25－Jul－17	23：02：11
516	ST170725M1－4 PFC CS3 17G2503	25－Jul－17	23：12：50
5btudxwndx 170725M1＿52	IPA	25－Jul－17	23：23：36
	1700856－11RE1 MW－31BR－201707110．11774	25－Jul－17	23：34：14
	1700856－12RE1 MW－31S－201707110．11732	25－Jul－17	23：45：01
	1700732－04RE1＠5X MW PFC 030.11929	25－Jul－17	23：55：47
	1700906－05＠5X MW－02BR－201707180．125	26－Jul－17	00：06：56
	1700907－04＠5X AT028－MW17－06－071717－13．．．	26－Jul－17	00：18：17
	1700907－09＠5X AT028－MW 17－01－071817－09．．	26－Jul－17	00：29：47
599, wad 170725M1_59	IPA	26－Jul－17	00：40：33
	ST170725M1－5 PFC CS3 17G2503	26－Jul－17	00：51：21
	IPA	26－Jul－17	01：02：08
170725M1_62	1700845－01＠5X MW－29S－20170707 0.12034	26－Jul－17	01：12：49
$63 \text { 紙x紋納170725M1_63 }$	1700845－02＠5X DUP04－201707070．12279	26－Jul－17	01：23：33
64tw wher 170725M1＿64	1700845－03＠20X MW－27S－20170707 0.11824	26－Jul－17	01：34：11
	B7G0033－MS1＠20X Matrix Spike 0.12283	26－Jul－17	01：44：49

Dataset: Untitled

Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

W\%	10	Acq.Date	Acg. Time
664.SYM	B7G0033-MSD1@20X Matrix Spike Dup 0.124	26-Jul-17	01:55:28
6794Tw $2+170725 \mathrm{M} 1$ _67	1700845-04@5X MW-30S-20170707 0.11933	26-Jul-17	02:06:06
688\%	1700894-02@5X POND 1 at PD 0.125	26-Jul-17	02:16:53
24914 170725M1_69	1700894-03@5X POND 1 -STAFF 0.125	26-Jul-17	02:27:50
45: ${ }^{\text {a }}$ 170725M1_70	1700894-04@10X SEED-POND 10.125	26-Jul-17	02:38:34
324: 170725M1_71	1700732-05RE1 SD-46 3.2	26-Jul-17	02:49:12
FWekidx 170725M1_72	IPA	26-Jul-17	02:59:50
\$4ex 170725M1_73	ST170725M1-6 PFC CS3 17G2503	26-Jul-17	03:10:29
	IPA	26-Jul-17	03:21:15

Dataset: U:IQ4.PRO\results1170725M1\170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

13C3-PFBA

13C3-PFPeA

F5:MRM of 1 channel,ES-

PFBS

F6:MRM of 2 channels,ES

13C3-PFBS
F7:MRM of 1 channel,ES

PFHxA

F8:MRM of 2 channels,ES-

13C2-PFHxA

13C4-PFHpA

PFHxS

F16:MRM of 2 channels,ES

1802-PFHxS

Dataset: U:\Q4.PRO|results\170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

F25:MRM of 2 channels,ES-

13C5-PFNA

F30:MRM of 2 channels,ES-

13C8-PFOS

F33:MRM of 1 channel,ES-
$507>79.9$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-51.qld
Last Altered:	Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

d5-N-EtFOSAA

13C2-PFUnA

F44:MRM of 1 channel,ES-

F50:MRM of 2 channels,ES-

13C2-PFUnA
F44:MRM of 1 channel,ES$565>519.8$

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

F58:MRM of 4 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels,ES$714.8>669.6$

F39:MRM of 2 channels,ES-
F39:MRM of 2 channels,ES-
$526.1>219$

13C2-PFHxDA
F61:MRM of 1 channel,ES-
$815>7697$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-51.qld
Last Altered:	Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

d7-N-MeFOSE
F54:MRM of 1 channel,ES$623.1>58.9$

13C8-PFOA

F21:MRM of 1 channel,ES-
$421.3>376$

13C5-PFHXA
F10:MRM of 1 channel,ES-
$318>272.9$
$1.397 e+006$

4.8005 .0005 .200

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PRO\results\170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

	\# Name	Trace	-ata Area	IS Area	RRF	PrediRT	RT	y Axis Resp.	Conc.	\%Rec	
32 S.	32 13C4-PFHpA	$367.2>321.8$	4.49 e 4	5.68 e 4	0.306	3.45	3.49	3.96	12.9	103.6	$50-15$
$33.1 \geqslant$	33 1802-PFHxS	$403>102.6$	4.53 e 3	1.12 e 4	0.393	3.56	3.56	5.04	12.8	102.6	
34.4	34 13C2-6:2 FTS	$429.1>408.9$	1.07 e 4	7.14 e 4	0.158	3.64	3.68	1.88	11.9	95.1	
35.4	35 13C2-PFOA	$414.9>369.7$	7.43e4	7.14 e 4	1.067	3.65	3.69	13.0	12.2	97.5	
36	36 13C5-PFNA	$468.2>422.9$	7.47 e 4	8.57 e 4	0.852	3.83	3.86	10.9	12.8	102.3	
$37 \times 1 \times$	37 13C8-PFOSA	$506.1>77.7$	7.86 e 3	8.09 e 4	0.098	3.84	3.87	1.21	12.4	98.8	
38 -	38 13C8-PFOS	$507>79.9$	1.42 e 4	1.49 e 4	0.936	3.89	3.91	11.9	12.8	102.1	
39.	39 13C2-PFDA	$515.1>469.9$	7.73 e 4	8.93 e 4	0.810	4.01	4.03	10.8	13.4	106.9	
40 : ${ }^{\text {a }}$	40 13C2-8:2 FTS	$529.1>508.7$	7.56 e 3	8.93 e 4	0.086	4.00	4.03	1.06	12.4	98.9	
41.4	41 d3-N-MeFOSAA	$573.3>419$	1.69 e 4	8.09 e 4	0.014	4.03	4.06	2.60	190	116.9	
42.4	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	1.67 e 4	8.09 e 4	0.014	4.12	4.13	2.58	185	114.0	
43 .r.	43 13C2-PFUnA	$565>519.8$	8.83e4	8.09 e 4	0.962	4.17	4.20	13.6	14.2	113.4	
44.	44 13C2-PFDoA	$615>569.7$	8.53 e 3	8.09 e 4	0.094	4.34	4.36	1.32	14.0	111.7	
45	45 d3-N-MeFOSA	$515.2>168.9$	3.34 e 4	8.09 e 4	0.034	4.29	4.49	5.16	150	100.1	
46 - ${ }^{\text {\% }}$	46 13C2-PFTeDA	$714.8>669.6$	5.93e4	8.09 e 4	0.694	4.68	4.71	9.15	13.2	105.4	
47.4	47 d5-N-ETFOSA	$531.1>168.9$	4.52 e 4	8.09 e 4	0.049	5.01	5.05	6.99	144	95.7	
48.	48 13C2-PFHxDA	$815>769.7$	2.86 e 4	8.09 e 4	0.843	5.06	5.08	4.42	5.24	104.8	
49 , \%	49 d7-N-MeFOSE	$623.1>58.9$	4.88 e 4	8.09 e 4	0.055	5.42	5.43	7.54	138	92.0	,
50.4	50 d9-N-EtFOSE	$639.2>58.8$	4.91 e 4	8.09 e 4	0.053	5.59	5.60	7.58	142	94.5	\checkmark
51 - ${ }^{\text {Pr }}$	51 13C4-PFBA	$217>171.8$	2.04 e 4	2.04 e 4	1.000	1.54	1.59	12.5	12.5	100.0	
52 2.	52 13C5-PFHxA	$318>272.9$	5.68 e 4	5.68 e 4	1.000	3.19	3.23	5.00	5.00	100.0	
53 \%	53 13C3-PFHxS	$401.9>79.9$	1.12 e 4	1.12 e 4	1.000	3.56	3.56	12.5	12.5	100.0	
54.	54 13C8-PFOA	$421.3>376$	7.14 e 4	7.14 e 4	1.000	3.65	3.69	12.5	12.5	100.0	
55	55 13C9-PFNA	$472.2>426.9$	8.57 e 4	8.57 e 4	1.000	3.83	3.86	12.5	12.5	100.0	
56.1 .4	56 13C4-PFOS	$503>79.9$	1.49 e 4	1.49 e 4	1.000	3.89	3.92	12.5	12.5	100.0	
57	57 13C6-PFDA	$519.1>473.7$	8.93 e 4	8.93 e 4	1.000	4.01	4.03	12.5	12.5	100.0	
$58: 4.1$	58 13C7-PFUnA	$570.1>524.8$	8.09 e 4	8.09 e 4	1.000	4.17	4.20	12.5	12.5	100.0	

Dataset: Untitled
Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Method: U:Q4.PROIMethDBIPFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Dataset：Untitled

Last Altered：Wednesday，July 26， 2017 10：28：43 Pacific Daylight Time
Printed：
Wednesday，July 26， 2017 10：29：07 Pacific Daylight Time

Compound name：PFBA

Kg Whe five Name		Acq．Date	Acq Time
	IPA	25－Jul－17	19：49：44
30\％atcteder 170725M1＿33	ST170725M1－3 PFC CS3 17G2503	25－Jul－17	20：00：29
	IPA	25－Jul－17	20：11：07
	B7G0108－BS1 OPR 0.125	25－Jul－17	20：21：46
	IPA	25－Jul－17	20：32：24
	B7G0108－BLK1 Method Blank 0.125	25－Jul－17	20：43：03
35\％	1700856－01RE1 INFLUENT－20170710 0.121	25－Jul－17	20：53：41
	1700856－02RE1 DUP05－20170710 0.11647	25－Jul－17	21：04：19
	1700856－03RE1 MID－POINT－20170710 0.11731	25－Jul－17	21：14：58
	1700856－04RE1 EFFLUENT－20170710 0.12084	25－Jul－17	21：25：36
42，kxtzaxtex 170725M1＿42	B7G0108－MS1 Matrix Spike 0.12162	25－Jul－17	21：36：14
	B7G0108－MSD1 Matrix Spike Dup 0.11849	25－Jul－17	21：47：01
44，Whtwdy 170725M1＿44	1700856－05RE1 MW－37S－20170711 0.11696	25－Jul－17	21：57：39
	1700856－06RE1 ERB－01－20170711 0.12043	25－Jul－17	22：08：34
	1700856－07RE1 11－MW－1－20170710 0.11482	25－Jul－17	22：19：33
	1700856－08RE1 LF－MW－54BR－20170710 0．11．	25－Jul－17	22：30：16
170725M1_48	1700856－09RE1 MW－48BR－20170711 0.12084	25－Jul－17	22：40：54
	1700856－10RE1 MW－34S－20170711 0.11812	25－Jul－17	22：51：33
敉紱新170725M1＿5	IPA	25－Jul－17	23：02：11
	ST170725M1－4 PFC CS3 17G2503	25－Jul－17	23：12：50
170725M1_52	IPA	25－Jul－17	23：23：36
	1700856－11RE1 MW－31BR－20170711 0.11774	25－Jul－17	23：34：14
170725M1_54	1700856－12RE1 MW－31S－201707110．11732	25－Jul－17	23：45：01
	1700732－04RE1＠5X MW PFC 030.11929	25－Jul－17	23：55：47
	1700906－05＠5X MW－02BR－20170718 0.125	26－Jul－17	00：06：56
170725M1_57	1700907－04＠5X AT028－MW17－06－071717－13．．．	26－Jul－17	00：18：17
586axdxa 170725M1_58	1700907－09＠5X AT028－MW17－01－071817－09．	26－Jul－17	00：29：47
	IPA	26－Jul－17	00：40：33
603	ST170725M1－5 PFC CS3 17G2503	26－Jul－17	00：51：21
	IPA	26－Jul－17	01：02：08
（ 6	1700845－01＠5X MW－29S－20170707 0.12034	26－Jul－17	01：12：49
	1700845－02＠5X DUP04－20170707 0.12279	26－Jul－17	01：23：33
	1700845－03＠20X MW－27S－20170707 0.11824	26－Jul－17	01：34：11
65 170725 M 165	B7G0033－MS1＠20X Matrix Spike 0.12283	26－Jul－17	01：44：49

Dataset: Untitled

Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

		Acq Date	Acq Time
	B7G0033-MSD1@20X Matrix Spike Dup 0.124	26-Jul-17	01:55:28
	1700845-04@5X MW-30S-201707070.11933	26-Jul-17	02:06:06
	1700894-02@5X POND 1 at PD 0.125	26-Jul-17	02:16:53
	1700894-03@5X POND 1 -STAFF 0.125	26-Jul-17	02:27:50
	1700894-04@10X SEED-POND 10.125	26-Jul-17	02:38:34
W6ath wes 170725M1_71	1700732-05RE1 SD-46 3.2	26-Jul-17	02:49:12
	IPA	26-Jul-17	02:59:50
	ST170725M1-6 PFC CS3 17G2503	26-Jul-17	03:10:29
	IPA	26-Jul-17	03:21:15

Method: U:IQ4.PROMMethDB\PFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

F8:MRM of 2 channels,ES-

F14:MRM of 2 channels, $\mathrm{ES}-$
$363>169$

PFHxS

1802-PFHxS
F18:MRM of 1 channel,ES-

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-60.qld
Last Altered:	Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17 G 2503

13C8-PFOSA

F32:MRM of 1 channel,ES-

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES507 > 79.9

Dataset:
U:IQ4.PRO|resultsI170725M11170725M1-60.qld

Last Altered:	Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

13C2-8:2 FTS

d3-N-MeFOSAA
d3-N-MeFOSAA
F47:MRM of 1 channel,ES-

d5-N-EtFOSAA

Dataset:
U:IQ4.PRO\results\170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17 G2503

F34:MRM of 2 channels,ES-

d3-N-MeFOSA

13C2-PFTeDA

F59:MRM of 2 channels,ES-

F58:MRM of 4 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels,ES-
714.8 > 669.6

F39:MRM of 2 channels,ES$526.1>219$
$100-1.542 \mathrm{e}+005$

d5-N-ETFOSA

F60:MRM of 2 channels,ES-

13C2-PFHxDA
F61:MRM of 1 channel,ES$815>769.7$ $5.224 e+005$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-60.qld
Last Altered:	Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset: U:IQ4.PROIresults1170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

INITIAL CALIBRATION

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Correlation coefficient: $r=0.999644, ~ \wedge \wedge 2=0.999287$
Calibration curve: $1.1275{ }^{*} \mathrm{x}+0.163356$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999528, \mathrm{r}^{\wedge} 2=0.999056$
Calibration curve: 0.99208 * $x+0.104629$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	td. Conc	RT	Area	IS Area	Response	Conc	\%Dev	c. F	CoD	D	$\mathrm{x}=$ excluded
1.	$1170724 \mathrm{M1}$ _3	Standard	0.250	2.80	607.592	24708.574	0.307	0.2	-18.3	NO	0.999	NO	bb
2 2. ${ }^{2}$	2 170724M1_4	Standard	0.500	2.80	1138.424	24374.584	0.584	0.5	-3.4	NO	0.999	NO	bb
3-w	3 170724M1_5	Standard	1.000	2.80	2230.288	24321.555	1.146	1.0	5.0	NO	0.999	NO	bb
44^{4}	4 170724M1_6	Standard	2.000	2.80	4575.088	25826.396	2.214	2.1	6.3	NO	0.999	NO	bb
$5:$	5 170724M1_7	Standard	5.000	2.80	11044.060	24387.125	5.661	5.6	12.0	NO	0.999	NO	bb
6. ${ }^{\text {a }}$	$6170724 \mathrm{M1}$-8	Standard	10.000	2.81	20066.025	25621.486	9.790	9.8	-2.4	NO	0.999	NO	bb
17	7 170724M1_9	Standard	50.000	2.80	97100.672	23859.781	50.870	51.2	2.3	NO	0.999	NO	bb
8.	$8170724 \mathrm{M1} 10$	Standard	100.000	2.81	190500.000	24378.607	97.678	98.4	-1.6	NO	0.999	NO	bb

Last Altered:

Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999611, \mathrm{r}^{\wedge} 2=0.999223$
Calibration curve: 1.85223 *x + 0.0752948
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name			RT Area			Response Conc. \%Dev Conc. Flag					CoD Flag x =excluded	
1.4. $\mathrm{N}^{\text {a }}$	1 170724M1_3	Standard	0.250	3.00	116.281	3068.403	0.474	0.2	-14.0	NO	0.999	NO	bb
$2+4$ w	2 170724M1_4	Standard	0.500	3.00	214.965	3020.354	0.890	0.4	-12.1	NO	0.999	NO	MM
3.4 LT	3 170724M1_5	Standard	1.000	2.99	512.501	3001.774	2.134	1.1	11.2	NO	0.999	NO	bb
4 . 4 cter	4 170724M1_6	Standard	2.000	3.00	1085.602	3295.993	4.117	2.2	9.1	NO	0.999	NO	bb' ${ }^{\text {c }}$
5.4	5 170724M1_7	Standard	5.000	3.00	2583.207	3132.764	10.307	5.5	10.5	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.00	4677.829	3302.426	17.706	9.5	-4.8	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	3.00	22355.119	2994.649	93.313	50.3	0.7	NO	0.999	NO	bb
8 , ${ }^{\text {a }}$,	8 170724M1_10	Standard	100.000	3.00	43420.234	2946.134	184.225	99.4	-0.6	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: $r=0.999648, r^{\wedge} 2=0.999296$
Calibration curve: $1.50967{ }^{*} \times+0.157344$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4 4 .	\# Name	Type	Std. Conc	RT	Area	IS Area	Response Conc.		\%Dev Conc. Fla		CoD	CoD Flag $x=e x c l u d e d$	
	1 170724M1_3	Standard	0.250	3.22	1079.404	11341.955	0.476	0.2	-15.6	NO	0.999	NO	bb
2	2 170724M1_4	Standard	0.500	3.22	1906.946	10636.292	0.896	0.5	-2.1	NO	0.999	NO	bb
3.1	3 170724M1_5	Standard	1.000	3.22	3807.136	10865.864	1.752	1.1	5.6	NO	0.999	NO	db
4	4 170724M1_6	Standard	2.000	3.22	7912.540	12006.801	3.295	2.1	3.9	NO	0.999	NO	bb
5.4 .26	5 170724M1_7	Standard	5.000	3.22	18325.188	10585.094	8.656	5.6	12.6	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.22	34348.887	11649.966	14.742	9.7	-3.4	NO	0.999	NO	bb
7.	7 170724M1_9	Standard	50.000	3.22	154915.125	10379.170	74.628	49.3	-1.3	NO	0.999	NO	bb
8.4	8 170724M1_10	Standard	100.000	3.22	320392.531	10569.161	151.570	100.3	0.3	NO	0.999	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999811, \mathrm{r}^{\wedge} 2=0.999621$
Calibration curve: 1.25322 * x + 0.0796155
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoD Flag	$x=$ excluded
\#-3/4	1 170724M1_3	Standard	0.250	3.47	835.892	29540.787	0.354	0.2	-12.5	NO	1.000	NO	bb
2	2 170724M1_4	Standard	0.500	3.48	1686.437	28831.211	0.731	0.5	4.0	NO	1.000	NO	db
3 , may	3 170724M1_5	Standard	1.000	3.48	3129.354	30065.992	1.301	1.0	-2.5	NO	1.000	NO	bb
$4 ;-2=$	4 170724M1_6	Standard	2.000	3.48	6923.302	31499.152	2.747	2.1	6.4	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.48	17221.189	31478.633	6.838	5.4	7.9	NO	1.000	NO	bb
6 Wraty	6 170724M1_8	Standard	10.000	3.48	32050.246	32505.703	12.325	9.8	-2.3	NO	1.000	NO	bb
7. ${ }^{\text {a }}$ =	7 170724M1_9	Standard	50.000	3.48	148752.578	30043.684	61.890	49.3	-1.4	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard	100.000	3.48	294885.219	29270.332	125.932	100.4	0.4	NO	1.000	NO	bb

Compound name: PFHxS

Coefficient of Determination: $R^{\wedge} 2=0.999711$
Calibration curve: $-0.00151846{ }^{*} x^{\wedge} 2+1.70838{ }^{*} x+-0.0114403$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	C. F	COD	F	cluded
1	1 170724M1_3	Standard	0.250	3.56	73.733	2957.523	0.312	0.2	-24.3	NO	1.000	NO	MM
	2 170724M1_4	Standard	0.500	3.55	233.030	2945.944	0.989	0.6	17.2	NO	1.000	NO	bb
3	3 170724M1_5	Standard	1.000	3.55	387.605	2882.763	1.681	1.0	-0.9	NO	1.000	NO	bb
4.	4 170724M1_6	Standard	2.000	3.55	883.679	3069.216	3.599	2.1	5.9	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.55	2121.650	3078.477	8.615	5.1	1.4	NO	1.000	NO	MM
	6 170724M1_8	Standard	10.000	3.55	3757.863	2827.577	16.613	9.8	-1.8	NO	1.000	NO	MM
17	7 170724M1_9	Standard	50.000	3.55	19494.768	2990.466	81.487	49.9	-0.2	NO	1.000	NO	MM
8	8 170724M1_10	Standard	100.000	3.55	36940.883	2965.238	155.725	100.1	0.1	NO	1.000	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: -0.00313053 * $x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOA

Correlation coefficient: $r=0.999233, r \wedge 2=0.998466$
Calibration curve: 0.970801 * $x+0.199778$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fla	CoD		
1 1) Water	1 170724M1_3	Standard	0.250	3.67	1654.212	55437.824	0.373	0.2	-28.6	NO	0.998	NO	bb
2	2 170724M1_4	Standard	0.500	3.67	2766.273	52853.566	0.654	0.5	-6.4	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.67	5264.665	53444.164	1.231	1.1	6.3	NO	0.998	NO	bb
4.4.	4 170724M1_6	Standard	2.000	3.68	10233.177	55652.324	2.298	2.2	8.1	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.68	26080.451	55510.707	5.873	5.8	16.9	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.68	45105.969	54392.293	10.366	10.5	4.7	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.67	220048.344	55876.563	49.226	50.5	1.0	NO	0.998	NO	bb
8.	8 170724M1_10	Standard	100.000	3.68	421252.813	55196.383	95.399	98.1	-1.9	NO	0.998	NO	bb

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999150, \mathrm{r}^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * x + 0.014645
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Narne	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD 2 CoDFlag $x=$ excluded		
1.4	$1170724 \mathrm{M} 1 _3$	Standard	0.250	3.74	113.671	55437.824	0.026	0.1	-50.5	NO	0.998	NO	bbX
2	2 170724M1_4	Standard	0.500	3.74	222.089	52853.566	0.053	0.4	-14.6	NO	0.998	NO	bb
3.	3 170724M1_5	Standard	1.000	3.73	522.454	53444.164	0.122	1.2	21.2	NO	0.998	NO	bb
4 \%	4 170724M1_6	Standard	2.000	3.74	936.558	55652.324	0.210	2.2	10.3	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.73	2346.630	55510.707	0.528	5.8	15.8	NO	0.998	NO	bb
	$6170724 \mathrm{M1}$-8	Standard	10.000	3.74	4004.412	54392.293	0.920	10.2	2.0	NO	0.998	NO	bb
7.	$7170724 \mathrm{M1}$ _9	Standard	50.000	3.74	19773.092	55876.563	4.423	49.7	-0.6	NO	0.998	NO	bb
8.	$8170724 \mathrm{M1} 1$ 10	Standard	100.000	3.74	38852.836	55196.383	8.799	99.0	-1.0	NO	0.998	NO	bb

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.998659, \mathrm{r} \wedge 2=0.997320$
Calibration curve: $1.09835{ }^{*} x+0.147218$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	Cob	D	cluded
1. U $^{\text {a }}$	1 170724M1_3	Standard		0.250	3.85	1506.464	55001.828	0.342	0.2	-28.9	NO	0.997	NO	MM
2 2,	2 170724M1_4	Standard		0.500	3.85	2694.965	54762.438	0.615	0.4	-14.8	NO	0.997	NO	bb
3.3	3 170724M1_5	Standard		1.000	3.85	5691.902	55321.512	1.286	1.0	3.7	NO	0.997	NO	bb
4	4 170724M1_6	Standard		2.000	3.85	12559.827	59225.996	2.651	2.3	14.0	NO	0.997	NO	bb
5.	5 170724M1_7	Standard		5.000	3.85	29286.219	53341.520	6.863	6.1	22.3	NO	0.997	NO	bb
6 6.t.	6 170724M1_8	Standard		10.000	3.85	53683.984	56161.168	11.949	10.7	7.4	NO	0.997	NO	bb
	7 170724M1_9	Standard		50.000	3.85	236461.688	55495.742	53.261	48.4	-3.3	NO	0.997	NO	bb
8 8)	8 170724M1_10	Standard		100.000	3.85	475993.000	54308.789	109.557	99.6	-0.4	NO	0.997	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * $x+0.0489398$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOS

Coefficient of Determination: $R^{\wedge} 2=0.999148$
Calibration curve: -0.00122032 * $x^{\wedge} 2+1.19038$ * $x+0.0183073$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name		Std. Conc	RT Area		15 Area	Response Conc. \%Dev Conc. Flag					CoD Flag x-excluded	
11	1 170724M1_3	Standard	0.250	3.90	300.610	10711.932	0.351	0.3	11.8	NO	0.999	NO	MM
2 2-2 ${ }^{2}$	2 170724M1_4	Standard	0.500	3.90	466.042	10010.674	0.582	0.5	-5.3	NO	0.999	NO	bb
	3 170724M1_5	Standard	1.000	3.90	1032.724	10207.536	1.265	1.0	4.8	NO	0.999	NO	MM
4. ${ }^{\text {ata }}$	4 170724M1_6	Standard	2.000	3.90	1981.837	10715.066	2.312	1.9	-3.5	NO	0.999	NO	MM
5 . ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	3.90	5099.578	10217.659	6.239	5.3	5.1	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.90	8336.075	9647.514	10.801	9.1	-8.6	NO	0.999	NO	bb
7.	7 170724M1_9	Standard	50.000	3.91	43091.355	9325.974	57.757	51.2	2.4	NO	0.999	NO	bb
8 田	8 170724M1_10	Standard	100.000	3.90	78910.156	9278.883	106.303	99.4	-0.6	NO	0.999	NO	bb

Dataset: U:IQ4.PRO|results1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $r=0.999397, r^{\wedge} 2=0.998795$
Calibration curve: 1.29731 * $x+0.128184$
Response type: Internal Std (Ref 39), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name = Type		Stc. Conc	$\begin{array}{r} \mathrm{RT} \\ \hline 4.02 \end{array}$	Area IS Area		Response Canc.e \%Dev Conc. Flag				COD COD Flag		x $=$ excluded
1.4.ax+x	1 170724M1_3	Standard			1671.759	55156.438	0.379	0.2	-22.7	NO	0.999	NO	bb
2 c	2 170724M1_4	Standard	0.500	4.02	3226.587	49449.902	0.816	0.5	6.0	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	4.02	6606.647	59736.465	1.382	1.0	-3.3	NO	0.999	NO	db
4 - ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.02	14672.154	61862.684	2.965	2.2	9.3	NO	0.999	NO	bb
5 - ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	4.02	32741.914	53915.461	7.591	5.8	15.1	NO	0.999	NO	bb
6 - ${ }^{2} \mathrm{c}^{2}$	6 170724M1_8	Standard	10.000	4.02	60142.156	58734.430	12.800	9.8	-2.3	NO	0.999	NO	bb
7 -	7 170724M1_9	Standard	50.000	4.03	291430.906	57610.250	63.233	48.6	-2.7	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	4.02	519240.375	49628.984	130.781	100.7	0.7	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996738$
Calibration curve: -0.00420182 * $x^{\wedge} 2+1.49722$ * $x+0.133523$
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

F:	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD CoD Flag $x=$ excluded				
1	1 170724M1_3	Standard	0.250	4.01	116.059	5712.626	0.254	0.1	-67.8	NO	0.997	NO	bbX
2. ${ }^{2}$. ${ }^{\text {a }}$	2 170724M1_4	Standard	0.500	4.02	436.336	5926.817	0.920	0.5	5.2	NO	0.997	NO	bb
3 3 ${ }^{\text {a }}$,	3 170724M1_5	Standard	1.000	4.01	704.575	5605.082	1.571	1.0	-3.7	NO	0.997	NO	bb
4.4	4 170724M1_6	Standard	2.000	4.01	1467.688	6033.180	3.041	2.0	-2.4	NO	0.997	NO	bb
5.2	5 170724M1_7	Standard	5.000	4.02	3942.699	5463.454	9.021	6.0	20.8	NO	0.997	NO	bb
6	6 170724M1_8	Standard	10.000	4.02	6715.274	5614.961	14.950	10.2	1.9	NO	0.997	NO	bb
7. H^{2}	7 170724M1_9	Standard	50.000	4.02	29821.402	6078.795	61.323	47.1	-5.8	NO	0.997	NO	bb
8.2.	8 170724M1_10	Standard	100.000	4.02	56335.957	6441.568	109.321	102.3	2.3	NO	0.997	NO	bb

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999848$
Calibration curve: $-0.01040777^{*} x^{\wedge} 2+19.9194 * x+0.547687$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	: 1	Std. Conc	RT	Area	IS Area	Responise	Conc.	\%Dev	Conc. Flag	CoD		$x=$ excluded
1.	1 170724M1_3	Standard		0.250	4.05	448.925	12099.400	6.029	0.3	10.1	NO	1.000	NO	bb
2	2 170724M1_4	Standard		0.500	4.05	716.809	11504.973	10.124	0.5	-3.8	NO	1.000	NO	bb
	3 170724M1_5	Standard		1.000	4.06	1261.768	11265.637	18.200	0.9	-11.3	NO	1.000	NO	bb
4 \% ${ }^{2}$	4 170724M1_6	Standard		2.000	4.05	3173.830	12505.027	41.243	2.0	2.3	. NO	1.000	NO	bb
5.	5 170724M1_7	Standard		5.000	4.05	7648.363	12072.939	102.946	5.2	3.1	NO	1.000	NO	bb
6.	6 170724M1_8	Standard		10.000	4.05	14431.390	11803.941	198.671	10.0	-0.0	NO	1.000	NO	bb
7 PWere	7 170724M1_9	Standard		50.000	4.05	69860.063	11737.307	967.195	49.8	-0.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard		100.000	4.05	130379.672	11210.404	1889.914	100.1	0.1	NO	1.000	NO	bb

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999908$
Calibration curve: $-0.00439744{ }^{*} x^{\wedge} 2+16.1657 * x+0.0580373$
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	Dev.	c.	CoD	F	cluded
1. 2.2 .4	1 170724M1_3	Standard	0.250	4.12	300.173	12172.007	4.007	0.2	-2.3	NO	1.000	NO	bb
2 , mat	2 170724M1_4	Standard	0.500	4.12	550.297	11615.228	7.699	0.5	-5.5	NO	1.000	NO	bb
3.24	3 170724M1_5	Standard	1.000	4.12	1245.830	11653.344	17.372	1.1	7.1	NO	1.000	NO	bb
$4+1$	4 170724M1_6	Standard	2.000	4.12	2483.220	12504.510	32.270	2.0	-0.3	NO	1.000	NO	bb
	5 170724M1_7	Standard	5.000	4.12	6280.812	12228.059	83.466	5.2	3.3	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.12	12176.978	12339.168	160.364	9.9	-0.6	NO	1.000	NO	bb
7. ${ }^{\text {a }}$,	7 170724M1_9	Standard	50.000	4.12	57061.832	11695.135	792.855	49.7	-0.6	NO	1.000	NO	bb
8.	8 170724M1_10	Standard	100.000	4.12	112917.555	11651.338	1574.849	100.1	0.1	NO	1.000	NO	bb

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998430$
Calibration curve: -0.0020331 * $x^{\wedge} 2+0.901478$ * $x+0.00751751$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

- 4 m a	\# Name		Std. Conc	RT	Area	IS Area	Response	Conce \%Dev Conc. Flag CoD				CoD Flag $x=$ excluded	
1.	1 170724M1_3	Standard	0.250	4.18	1408.556	65735.461	0.268	0.3	15.6	NO	0.998	NO	bb
2	2 170724M1_4	Standard	0.500	4.19	2456.148	63870.914	0.481	0.5	5.1	NO	0.998	NO	bb
3	3 170724M1_5	Standard	1.000	4.19	4367.807	64348.984	0.848	0.9	-6.5	NO	0.998	NO	bb
	- 4 170724M1_6	Standard	2.000	4.19	9271.418	67160.539	1.726	1.9	-4.3	NO	0.998	NO	bb
5 速	5 170724M1_7	Standard	5.000	4.19	22206.646	66089.180	4.200	4.7	-6.0	NO	0.998	NO	bb
6×4.4	6 170724M1_8	Standard	10.000	4.19	40104.945	61335.543	8.173	9.3	-7.5	NO	0.998	NO	bb
7.4	7 170724M1_9	Standard	50.000	4.19	187190.781	55960.629	41.813	52.6	5.2	NO	0.998	NO	bb
8. ${ }^{\text {a }}$	8 170724M1_10	Standard	100.000	4.19	357250.000	64722.215	68.997	98.3	-1.7	NO	0.998	NO	bb

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998889$
Calibration curve: $-0.000220781^{*} x^{\wedge} 2+0.0914068{ }^{*} x+-0.00228704$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	ype	derm	Std. Conc	RT	Area	IS Area	Response						
1.4	1 170724M1_3	Standard		0.250	4.24	125.500	65735.461	0.024	0.3	14.5	NO	0.999	NO	bb
2.,	2 170724M1_4	Standard		0.500	4.24	213.650	63870.914	0.042	0.5	-3.4	NO	0.999	NO	MM
$3 \times+4$	3 170724M1_5	Standard		1.000	4.23	432.153	64348.984	0.084	0.9	-5.4	NO	0.999	NO	bb
4	4 170724M1_6	Standard		2.000	4.24	998.163	67160.539	0.186	2.1	3.4	NO	0.999	NO	bb
5	5 170724M1_7	Standard		5.000	4.23	2251.549	66089.180	0.426	4.7	-5.2	NO	0.999	NO	bb
6	6 170724M1_8	Standard		10.000	4.23	4080.028	61335.543	0.831	9.3	-6.7	NO	0.999	NO	bb
7	7 170724M1_9	Standard		50.000	4.24	18621.564	55960.629	4.160	52.1	4.2	NO	0.999	NO	bb
8.	8 170724M1_10	Standard		100.000	4.23	35549.465	64722.215	6.866	98.6	-1.4	NO	0.999	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999700$
Calibration curve: $-0.000446703^{*} x^{\wedge} 2+0.926687{ }^{*} x+0.203454$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

2	\# Name	Type	\%	Std. Conc	RT	Area	IS Area	Response0.416	Conc. \% \% Dev		Conc. Flag	CoD CoD Flag x-excluded		
	1 170724M1_3	Standard		0.250	4.34	212.884	6396.985		0.2	-8.3		1.000	NO	MM
$2=3$	2 170724M1_4	Standard		0.500	4.35	285.030	5632.353	0.633	0.5	-7.4	NO	1.000	NO	MM
3. ${ }^{\text {a }}$.	3 170724M1_5	Standard		1.000	4.35	576.941	5998.723	1.202	1.1	7.8	NO	1.000	NO	bb
$4-2$	4 170724M1_6	Standard		2.000	4.35	1144.260	6584.378	2.172	2.1	6.3	NO	1.000	, NO	bb
5 2w	5 170724M1_7	Standard		5.000	4.35	2601.126	6419.244	5.065	5.3	5.2	NO	1.000	NO	bb
6 , ${ }^{\text {a }}$ W	6 170724M1_8	Standard		10.000	4.35	4871.013	6690.135	9.101	9.6	-3.5	NO	1.000	NO	bb
7	7 170724M1_9	Standard		50.000	4.35	21850.346	6031.607	45.283	49.8	-0.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard		100.000	4.35	43781.789	6184.443	88.492	100.1	0.1	NO	1.000	NO	bb

Compound name: N-MeFOSA

Correlation coefficient: $\mathrm{r}=0.999273, \mathrm{r}^{\wedge} 2=0.998546$
Calibration curve: 1.0376 * x +0.213391
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

xis	\# Name		Std. Conc	RT	Area	S SArea	Response	Conc. \%Dev Conc. Flag			Con	CoD Flag x -excluded	
	1 170724M1_3	Standard	1.250	4.39	228.733	27834.387	1.233	1.0	-21.4	NO	0.999	NO	MM
$2{ }^{2}$	2 170724M1_4	Standard	2.500	4.39	521.665	26795.877	2.920	2.6	4.3	NO	0.999	NO	db
3. ${ }^{\text {a }}$	3 170724M1_5	Standard	5.000	4.39	1023.477	27001.328	5.686	5.3	5.5	NO	0.999	NO	bb
4×2	4 170724M1_6	Standard	10.000	4.39	2219.793	28178.129	11.817	11.2	11.8	NO	0.999	NO	bb
5 .	5 170724M1_7	Standard	25.000	4.39	5367.556	27075.477	29.737	28.5	13.8	NO	0.999	NO	bb
6	$6170724 \mathrm{M1} 18$	Standard	50.000	4.39	9739.016	27395.363	53.325	51.2	2.4	No	0.999	NO	db
7	7 170724M1_9	Standard	250.000	4.39	46919.371	26470.068	265.882	256.0	2.4	NO	0.999	NO	bb
$8 \cdot \pi=4$	8 170724M1_10	Standard	500.000	4.39	92806.148	27480.182	506.580	488.0	-2.4	No	0.999	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:\Q4.PRO\results\170724M1\170724M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Monday, July 24, 2017 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, 2017 15:40:40 Pacific Daylight Time }\end{array}$

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999414, \mathrm{r}^{\wedge} 2=0.998828$
Calibration curve: 10.9255 * $x+1.79$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Fla	$x=e x c l u d e d$
1.4	1 170724M1_3	Standard	0.250	4.52	1936.804	6396.985	3.785	0.2	-27.0	NO	0.999	NO	MM
2 2.4.ter	$2170724 \mathrm{M1}$ _4	Standard	0.500	4.52	3347.446	5632.353	7.429	0.5	3.2	NO	0.999	NO	bb
3 . ${ }^{2}$	3 170724M1_5	Standard	1.000	4.52	6246.435	5998.723	13.016	1.0	2.8	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	4.52	13537.021	6584.378	25.699	2.2	9.4	NO	0.999	NO	bb
5 . ${ }^{\text {a }}$,	5 170724M1_7	Standard	5.000	4.52	32633.807	6419.244	63.547	5.7	13.1	NO	0.999	NO	bb
6 \% ${ }^{\text {a }}$,	6 170724M1_8	Standard	10.000	4.52	58224.531	6690.135	108.788	9.8	-2.1	NO	0.999	NO	bb
7.emrata	$7170724 \mathrm{M1}$-9	Standard	50.000	4.52	270796.875	6031.607	561.204	51.2	2.4	NO	0.999	NO	bb
8.4 ate	8 170724M1_10	Standard	100.000	4.52	531631.563	6184.443	1074.534	98.2	-1.8	NO	0.999	NO	bb

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999057$
Calibration curve: $-0.000800394^{*} x^{\wedge} 2+1.14875{ }^{*} x+0.111533$
Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name	Type	Std. Conc	RT	- Area	IS Area	Response	onc.	6Dev	Conc. Flag	CoD	D F	$x=e x c l u d e d$
1.	1 170724M1_3	Standard	0.250	4.70	1552.113	52611.504	0.369	0.2	-10.4	NO	0.999	NO	MM
2 2ramas	2 170724M1_4	Standard	0.500	4.70	2285.720	43220.855	0.661	0.5	-4.3	NO	0.999	NO	bb
$3 \times \sim$	3 170724M1_5	Standard	1.000	4.70	4798.681	44254.344	1.355	1.1	8.4	NO	0.999	NO	bb
4 4. ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.70	9477.179	47041.410	2.518	2.1	4.9	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	4.70	23144.785	45392.488	6.374	5.5	9.4	NO	0.999	NO	bb
6.twrin	$6170724 \mathrm{M1}$-8	Standard	10.000	4.70	40819.449	48426.250	10.536	9.1	-8.7	NO	0.999	NO	bb
	7 170724M1_9	Standard	50.000	4.70	191033.828	42647.246	55.992	50.4	0.8	NO	0.999	NO	bb
88	8 170724M1_10	Standard	100.000	4.70	370959.375	43405.691	106.829	99.8	-0.2	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSA

Correlation coefficient: $\mathrm{r}=0.999689, \mathrm{r} \wedge=0.999377$
Calibration curve: 0.904115 * $x+0.326191$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev .Conc. Flag w CoD. CoDFlag x=excluded				
1	1 170724M1_3	Standard	1.250	4.96	337.684	39437.277	1.284	1.1	-15.2	NO	0.999	NO	bb
2.4	2 170724M1_4	Standard	2.500	4.97	613.630	37412.609	2.460	2.4	-5.6	NO	0.999	NO	bb
3	3 170724M1_5	Standard	5.000	4.97	1267.991	37050.801	5.133	5.3	6.3	NO	0.999	NO	bb
$4{ }^{4}$ Wamer	4 170724M.1_6.	Standard	10.000	4.96	2697.465	40104.539	10.089	10.8	8.0	NO,	0.999	NO	bb
5.	5 170724M1_7	Standard	25.000	4.97	6431.737	38083.547	25.333	27.7	10.6	NO	0.999	NO	bb
6.4	6 170724M1_8	Standard	50.000	4.97	11627.879	39916.621	43.696	48.0	-4.1	NO	0.999	NO	db
7	7 170724M1_9	Standard	250.000	4.96	57443.004	37926.309	227.189	250.9	0.4	NO	0.999	NO	db
8 .	8 170724M1_10	Standard	500.000	4.97	116042.914	38657.641	450.272	497.7	-0.5	NO	0.999	NO	db

Compound name: PFHxDA

Coefficient of Determination: $R^{\wedge} 2=0.999358$
Calibration curve: $-0.000715061^{*} x^{\wedge} 2+1.34773$ * $x+0.264398$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFODA

Correlation coefficient: $\mathrm{r}=0.999378, \mathrm{r} \wedge 2=0.998756$
Calibration curve: 1.27561 * $x+0.10098$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

$\sqrt{5 \times 4 \times}$	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD \quad CoDFlag x -excluded				
12	1 170724M1_3	Standard	0.250	5.43	1893.557	25428.396	0.372	0.2	-14.9	NO	0.999	NO	MM
2	2 170724M1_4	Standard	0.500	5.44	3335.536	21542.566	0.774	0.5	5.5	NO	0.999	NO	bb
3.	3 170724M1_5	Standard	1.000	5.44	6573.281	21611.141	1.521	1.1	11.3	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	5.44	13511.143	22044.896	3.064	2.3	16.2	NO	0.999	NO	bb .
5. ${ }^{\text {a }}$.	5 170724M1_7	Standard	5.000	5.44	32601.881	22327.822	7.301	5.6	12.9	NO	0.999	NO	bb
6.	$6170724 \mathrm{M1}$ _8	Standard	10.000	5.44	59011.938	22552.494	13.083	10.2	1.8	NO	0.999	NO	bb
7. 7 $^{\text {a }}$,	7 170724M1_9	Standard	50.000	5.43	274924.375	21452.613	64.077	50.2	0.3	NO	0.999	NO	bb
8. 2 2	8 170724M1_10	Standard	100.000	5.44	534414.688	21228.160	125.874	98.6	-1.4	NO	0.999	NO	bb

Compound name: N -MeFOSE

Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998953$
Calibration curve: 1.01603 * $\mathrm{x}+0.461771$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results1170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.999680, \mathrm{r}^{\wedge} 2=0.999361$
Calibration curve: 1.16673 * $x+0.501898$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	...Type	Std. Conc	RT	Area	IS Area	Respanse	Conc. 1.0	$\begin{gathered} \hline \% \mathrm{Dev} \\ -21.4 \end{gathered}$	Conc. Flag	COD CoD Flag		x-excluded
1 ,	1 170724M1_3	Standard	1.250	5.60	493.408	44922.563	1.648			NO	0.999	NO	bb
2	2 170724M1_4	Standard	2.500	5.61	917.078	40989.961	3.356	2.4	-2.2	NO	0.999	NO	bb
3 , 4	3 170724M1_5	Standard	5.000	5.61	1793.908	40752.352	6.603	5.2	4.6	NO	0.999	NO	bb
4 Natrat	4 170724M1_6	Standard	10.000	5.60	3804.083	43177.285	13.216	10.9	9.0	NO	0.999	NO	bb
5	5 170724M1_7	Standard	25.000	5.61	9310.704	42231.566	33.070	27.9	11.7	NO	0.999	NO	bb
6 \% ${ }^{\text {a }}$ -	6 170724M1_8	Standard	50.000	5.61	16671.494	42902.656	58.288	49.5	-0.9	NO	0.999	NO	bb
7 2-3)	7 170724M1_9	Standard	250.000	5.60	80911.422	41552.719	292.080	249.9	-0.0	NO	0.999	NO	bb
8	8 170724M1_10	Standard	500.000	5.61	163300.031	42219.305	580.185	496.8	-0.6	NO	0.999	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.820483
RRF SD: 0.00867593, Relative SD: 1.05742
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory

Dataset:
U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.248174
RRF SD: 0.00555735 , Relative SD: 2.2393
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

\%	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	$\mathrm{COD}=\mathrm{CoDFl}$	xcluded
12.	1 170724M1_3	Standard	12.500	2.80	24708.574	40367.738	3.060	12.3	-1.3	NO	NO	bb
2 , ${ }^{2}+3$	2 170724M1_4	Standard	12.500	2.80	24374.584	38823.406	3.139	12.6	1.2	NO	NO	bb
	3 170724M1_5	Standard	12.500	2.80	24321.555	37967.629	3.203	12.9	3.2	NO	NO	bb
4 - 4 -	4 170724M1_6	Standard	12.500	2.80	25826.396	42133.270	3.065	12.3	-1.2	NO	NO	bb
tramer	5 170724M1_7	Standard	12.500	2.80	24387.125	39088.754	3.119	12.6	0.6	NO	NO	bb
6 , 4.	6 170724M1_8	Standard	12.500	2.81	25621.486	41725.730	3.070	12.4	-1.0	NO	NO	bb
	7 170724M1_9	Standard	12.500	2.80	23859.781	39920.477	2.988	12.0	-3.7	NO	NO	bb
8 \%	8 170724M1_10	Standard	12.500	2.81	24378.607	38428.922	3.172	12.8	2.2	NO	NO	bb

Compound name: 13C3-PFBS

Response Factor: 0.0311034
RRF SD: 0.000697979 , Relative SD: 2.24406
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

Wertum	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev.	Conc. Flag	CoD CoDFF	xcluded
$12=$	1 170724M1_3	Standard	12.500	3.00	3068.403	40367.738	0.380	12.2	-2.2	NO	NO	bb
2 -	2 170724M1_4	Standard	12.500	3.00	3020.354	38823.406	0.389	12.5	0.0	NO	NO	bb
3.	3 170724M1_5	Standard	12.500	3.00	3001.774	37967.629	0.395	12.7	1.7	NO	NO	bb
$4{ }^{4} \mathrm{max}$.	4 170724M1_6	Standard	12.500	3.00	3295.993	42133.270	0.391	12.6	0.6	NO	NO	bb
5 der a	5 170724M1_7	Standard	12.500	3.00	3132.764	39088.754	0.401	12.9	3.1	NO	NO	bb
6 -	6 170724M1_8	Standard	12.500	3.00	3302.426	41725.730	0.396	12.7	1.8	NO	NO	bb
$7{ }^{\text {a }}$ +4ates	7 170724M1_9	Standard	12.500	3.00	2994.649	39920.477	0.375	12.1	-3.5	NO	NO	bb
8 mat	8 170724M1_10	Standard	12.500	3.00	2946.134	38428.922	0.383	12.3	-1.4	NO	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 0.27639
RRF SD: 0.00850433, Relative SD: 3.07693
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFHpA

Response Factor: 0.305626
RRF SD: 0.0102637, Relative SD: 3.35826
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 1802-PFHxS

Response Factor: 0.392715
RRF SD: 0.0177977, Relative SD: 4.53197
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-6:2 FTS

Response Factor: 0.157694
RRF SD: 0.0188884, Relative SD: 11.9778
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.0675
RRF SD: 0.0457168, Relative SD: 4.28261
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	?	Std. Conc	RT	Area	IS Area	Response	Conc. \% Dev		Conc. Flag CoD CoD Flag x=excluded		
$1: 3$	1 170724M1_3	Standard		12.500	3.67	55437.824	50417.762	13.745	12.9	3.0	NO	NO	bb
2 2-	2 170724M1_4	Standard		12.500	3.67	52853.566	52862.527	12.498	11.7	-6.3	NO	NO	bb
3 Med	3 170724M1_5	Standard		12.500	3.67	53444.164	49459.691	13.507	12.7	1.2	NO	NO	bb
4	4 170724M1_6	Standard		12.500	3.67	55652.324	51986.957	13.381	12.5	0.3	NO	NO	bb
5.	5 170724M1_7	Standard		12.500	3.67	55510.707	54009.070	12.848	12.0	-3.7	NO	NO	bb
6	6 170724M1_8	Standard		12.500	3.68	54392.293	53144.688	12.793	12.0	-4.1	NO	NO	bb
7. Une ${ }^{\text {a }}$	7 170724M1_9	Standard		12.500	3.67	55876.563	49946.758	13.984	13.1	4.8	NO	NO	bb
8.	8 170724M1_10	Standard		12.500	3.67	55196.383	49303.969	13.994	13.1	4.9	NO	NO	bb

Compound name: 13C5-PFNA

Response Factor: 0.852128
RRF SD: 0.0623325, Relative SD: 7.31492
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: RF

2	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD CoD Flag x=excluded			
1 Whas	1 170724M1_3	Standard	12.500	3.85	55001.828	63362.148	10.851	12.7	1.9	No	NO	bb
2 2-14x	2 170724M1_4	Standard	12.500	3.85	54762.438	66233.305	10.335	12.1	-3.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.85	55321.512	62897.914	10.994	12.9	3.2	NO	NO	bb
	4 170724M1_6	Standard	12.500	3.85	59225.996	73098.813	10.128	11.9	-4.9	NO	NO	bb
5.	5 170724M1_7	Standard	12.500	3.85	53341.520	71059.133	9.383	11.0	-11.9	NO	NO	bb
6 - ${ }^{\text {amam }}$	6 170724M1_8	Standard	12.500	3.85	56161.168	60050.086	11.690	13.7	9.8	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	3.85	55495.742	67689.273	10.248	12.0	-3.8	NO	NO	bb
8 -	8 170724M1_10	Standard	12.500	3.85	54308.789	58608.688	11.583	13.6	8.7	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qId
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 0.0982354
RRF SD: 0.00607611 , Relative SD: 6.18526
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C8-PFOS

Response Factor: 0.935738
RRF SD: 0.0307604, Relative SD: 3.28729
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: RF

xustuta	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD CoD	xcluded
1 ditute	1 170724M1_3	Standard	12.500	3.90	10711.932	10984.350	12.190	13.0	4.2	NO	NO	bb
2	2 170724M1_4	Standard	12.500	3.90	10010.674	10756.134	11.634	12.4	-0.5	NO	NO	bb
$3-\mathrm{m}$	3 170724M1_5	Standard	12.500	3.90	10207.536	10707.182	11.917	12.7	1.9	NO	NO	bb
4.4	4 170724M1_6	Standard	12.500	3.90	10715.066	11395.518	11.754	12.6	0.5	NO	NO	bb
5	5 170724M1_7	Standard	12.500	3.90	10217.659	10582.909	12.069	12.9	3.2	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	3.90	9647.514	10701.979	11.268	12.0	-3.7	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	3.91	9325.974	10546.740	11.053	11.8	-5.5	NO	NO	bb
8.840	8 170724M1_10	Standard	12.500	3.90	9278.883	9922.027	11.690	12.5	-0.1	NO	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 0.809787
RRF SD: 0.0475325, Relative SD: 5.86975
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: RF

	4 Name		Std. Conc	RT	Area	IS Area	Response	Conce	Dev	Conc. Flag	CoD \quad CoD Flag	$x=$ excluded
	1 170724M1_3	Standard	12.500	4.02	55156.438	71538.672	9.638	11.9	-4.8	NO	NO	bb
2 , mmat	2 170724M1_4	Standard	12.500	4.02	49449.902	67518.039	9.155	11.3	-9.6	NO	NO	bb
3 3 mam	3 170724M1_5	Standard	12.500	4.02	59736.465	67946.188	10.990	13.6	8.6	NO	NO	bb
4 4, mbers	4 170724M1_6	Standard	12.500	4.02	61862.684	75237.898	10.278	12.7	1.5	NO	NO	bb
5 , ${ }^{\text {a }}$	5 170724M1_7	Standard	12.500	4.02	53915.461	68309.617	9.866	12.2	-2.5	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	4.02	58734.430	69500.219	10.564	13.0	4.4	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	4.03	57610.250	72719.445	9.903	12.2	-2.2	NO	NO	bb
8.,	8 170724M1_10	Standard	12.500	4.02	49628.984	58601.402	10.586	13.1	4.6	NO	NO	bb

Compound name: 13C2-8:2 FTS

Response Factor: 0.0855752
RRF SD: 0.010191, Relative SD: 11.9089
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response		\%Dev Conc Fla		CoD . CoD Flag x-excluded	
1. ${ }^{\text {a }}$ +	1 170724M1_3	Standard	12.500	4.01	5712.626	71538.672	0.998	11.7	-6.7	NO	NO	bb
2 . ${ }^{2}$ a	2 170724M1_4	Standard	12.500	4.02	5926.817	67518.039	1.097	12.8	2.6	NO	NO	bb
3	3 170724M1_5	Standard	12.500	4.01	5605.082	67946.188	1.031	12.0	-3.6	NO	NO	bb
4 4.	4 170724M1_6	Standard	12.500	4.01	6033.180	75237.898	1.002	11.7	-6.3	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.02	5463.454	68309.617	1.000	11.7	-6.5	NO	NO	bb
6 :	6 170724M1_8	Standard	12.500	4.02	5614.961	69500.219	1.010	11.8	-5.6	NO	NO	bb
7. 3 W ${ }^{\text {a }}$	7 170724M1_9	Standard	12.500	4.02	6078.795	72719.445	1.045	12.2	-2.3	NO	NO	bb
	8 170724M1_10	Standard	12.500	4.02	6441.568	58601.402	1.374	16.1	28.5	NO	NO	bb

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qId

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.0136964
RRF SD: 0.000727833 , Relative SD: 5.31404
Response type: Internal Std (Ref 58), Area * (IS Conc. I IS Area)
Curve type: RF

Compound name: d5-N-EtFOSAA

Response Factor: 0.0139456
RRF SD: 0.000844744 , Relative SD: 6.05742
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

M,	\# Name	Type	Std Conc	RT	Are	15 Area	ponse	Conc	\%Dev	nc. F		duded
1 Whers	1 170724M1_3	Standard	162.500	4.12	12172.007	66110.742	2.301	165.0	1.6	NO	NO	bb
2	2 170724M1_4	Standard	162.500	4.12	11615.228	63178.059	2.298	164.8	1.4	NO	NO	bb
3	3 170724M1_5	Standard	162.500	4.12	11653.344	65533.590	2.223	159.4	-1.9	NO	NO	bb
4.4	4 170724M1_6	Standard	162.500	4.12	12504.510	74336.992	2.103	150.8	-7.2	NO	NO	bb
5	5 170724M1_7	Standard	162.500	4.12	12228.059	73722.414	2.073	148.7	-8.5	NO	NO	bb
6	$6170724 \mathrm{M1} 18$	Standard	162.500	4.12	12339.168	61426.844	2.511	180.1	10.8	NO	NO	bb
7.	7 170724M1_9	Standard	162.500	4.12	11695.135	63456.004	2.304	165.2	1.7	NO	NO	bb
8.	8 170724M1_10	Standard	162.500	4.12	11651.338	62878.969	2.316	166.1	2.2	NO	NO	bb

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 0.962105
RRF SD: 0.058365, Relative SD: 6.06639
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response Conc. \%Dev Conc. Flag CoD				CoD Flag	$\mathrm{x}=$ excluded
12	1 170724M1_3	Standard	12.500	4.18	65735.461	66110.742	12.429	12.9	3.3	NO	NO	bb
2 L	2 170724M1_4	Standard	12.500	4.18	63870.914	63178.059	12.637	13.1	5.1	No	NO	bb
3 3. ${ }^{\text {a }}$	3 170724M1_5	Standard	12.500	4.19	64348.984	65533.590	12.274	12.8	2.1	NO	NO	bb
$4{ }^{4} \mathrm{c}$	4 170724M1_6	Standard	12.500	4.18	67160.539	74336.992	11.293	11.7	-6.1	NO	NO	bb
5.	5 170724M1_7	Standard	12.500	4.19	66089.180	73722.414	11.206	11.6	-6.8	NO	NO	bb
6	6 170724M1_8	Standard	12.500	4.19	61335.543	61426.844	12.481	13.0	3.8	NO	NO	bb
7 . ${ }^{\text {cta }}$	7 170724M1_9	Standard	12.500	4.18	55960.629	63456.004	11.024	11.5	-8.3	NO	NO	bb
8	8 170724M1_10	Standard	12.500	4.19	64722.215	62878.969	12.866	13.4	7.0	NO	NO	bb

Compound name: 13C2-PFDoA

Response Factor: 0.0944269
RRF SD: 0.00712756, Relative SD: 7.54822
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. Flag	CoD = CoD Flag	$x=e x$ cluded
1	1 170724M1_3	Standard	12.500	4.34	6396.985	66110.742	1.210	12.8	2.5	NO	NO	bb
2×1	2 170724M1_4	Standard	12.500	4.35	5632.353	63178.059	1.114	11.8	-5.6	NO	NO	bb
3.46	3 170724M1_5	Standard	12.500	4.35	5998.723	65533.590	1.144	12.1	-3.1	NO	NO	bb
4	4 170724M1_6	Standard	12.500	4.35	6584.378	74336.992	1.107	11.7	-6.2	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.35	6419.244	73722.414	1.088	11.5	-7.8	NO	NO	bb
6	6 170724M1_8	Standard	12.500	4.35	6690.135	61426.844	1.361	14.4	15.3	NO	NO	bb
7 , , +m-	7 170724M1_9	Standard	12.500	4.35	6031.607	63456.004	1.188	12.6	0.7	NO	NO	bb
8 近	8 170724M1_10	Standard	12.500	4.35	6184.443	62878.969	1.229	13.0	4.2	NO	NO	bd

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d3-N-MeFOSA

Response Factor: 0.0344131
RRF SD: 0.00225283, Relative SD: 6.54642
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

\qquad	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	C. Flag ne CoD	CoD Flag	$\mathrm{x}=$ excluded
$1 \sim \sim 4$	1 170724M1_3	Standard	150.000	4.42	27834.387	66110.742	5.263	152.9	2.0	NO	NO	bb
2	2 170724M1_4	Standard	150.000	4.42	26795.877	63178.059	5.302	154.1	2.7	NO	NO	bb
$3 \text { ytate }$	3 170724M1_5	Standard	150.000	4.42	27001.328	65533.590	5.150	149.7	-0.2	NO	NO	bb
$4 \mathrm{ym}+\mathrm{m}$	4 170724M1_6	Standard	150.000	4.42	28178.129	74336.992	4.738	137.7	-8.2	NO	NO	bb
5 5, mey	5 170724M1_7	Standard	150.000	4.42	27075.477	73722.414	4.591	133.4	-11.1	NO	NO	bb
6.4	$6170724 \mathrm{M1}$ _8	Standard	150.000	4.43	27395.363	61426.844	5.575	162.0	8.0	NO	NO	bb
$7{ }^{2}+87.46$	7 170724M1_9	Standard	150.000	4.42	26470.068	63456.004	5.214	151.5	1.0	NO	NO	bb
8 -	8 170724M1_10	Standard	150.000	4.43	27480.182	62878.969	5.463	158.7	5.8	NO	NO	bb

Compound name: 13C2-PFTeDA

Response Factor: 0.694311

RRF SD: 0.0655535, Relative SD: 9.44152
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IQ4.PROYresultsl170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d5-N-ETFOSA

Response Factor: 0.0486714
RRF SD: 0.00353064, Relative SD: 7.25403
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFHxDA

Response Factor: 0.843007
RRF SD: 0.0734853, Relative SD: 8.71705
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

+6,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc.	D F	xcluded
1 1, medy	1 170724M1_3	Standard	5.000	5.07	25428.396	66110.742	4.808	5.7	14.1	No	NO	bb
2	2 170724M1_4	Standard	5.000	5.07	21542.566	63178.059	4.262	5.1	1.1	NO	NO	bb
3.	3 170724M1_5	Standard	5.000	5.07	21611.141	65533.590	4.122	4.9	-2.2	NO	NO	bb
4	4 170724M1_6	Standard	5.000	5.07	22044.896	74336.992	3.707	4.4	-12.1	NO	NO	bb
5	5 170724M1_7	Standard	5.000	5.07	22327.822	73722.414	3.786	4.5	-10.2	NO	NO	bb
6	6 170724M1_8	Standard	5.000	5.07	22552.494	61426.844	4.589	5.4	8.9	NO	No	bb
$7 \times$	7 170724M1_9	Standard	5.000	5.07	21452.613	63456.004	4.226	5.0	0.3	NO	NO	bb
8.4	8 170724M1_10	Standard	5.000	5.07	21228.160	62878.969	4.220	5.0	0.1	NO	No	bb

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: d7-N-MeFOSE

Response Factor: 0.054631
RRF SD: 0.0039309, Relative SD: 7.19536
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Whather	\# Name	Type		RT	Area	IS Area	Response	Conc.	\%Dey	Conc. Flag te CoD	COD	$x=$ excluded
1-5	1 170724M1_3	Standard	150.000	5.42	45355.609	66110.742	8.576	157.0	4.6	NO	NO	bb
$2{ }^{2}$	2 170724M1_4	Standard	150.000	5.42	42298.965	63178.059	8.369	153.2	2.1	NO	NO	bb
3	3 170724M1_5	Standard	150.000	5.42	42181.715	65533.590	8.046	147.3	-1.8	NO	NO	bb
4. ${ }^{\text {a }}$ -	4 170724M1_6	Standard	150.000	5.42	44882.496	74336.992	7.547	138.1	-7.9	NO	NO	bb
5	5 170724M1_7	Standard	150.000	5.42	42480.406	73722.414	7.203	131.8	-12.1	NO	NO	bb
6	6 170724M1_8	Standard	150.000	5.42	44502.430	61426.844	9.056	165.8	10.5	NO	NO	bb
72×4	7 170724M1_9	Standard	150.000	5.42	42011.336	63456.004	8.276	151.5	1.0	NO	NO	bb
8 8.	8 170724M1_10	Standard	150.000	5.42	42682.813	62878.969	8.485	155.3	3.5	NO	NO	bb

Compound name: d9-N-EtFOSE

Response Factor: 0.0534223
RRF SD: 0.00380471, Relative SD: 7.12196
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 1.02787e-016, Relative SD: 1.02787e-014
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: RF

Sar	\# Name	Type	Std, Conc	RT	- Area	IS Area	Response	Conc. \%Dev		Conc. Flag	CoD CoDFlag x excluded	
+	1 170724M1_3	Standard	12.500	1.55	15090.568	15090.568	12.500	12.5	0.0	NO	NO	bb
2 , matas	2 170724M1_4	Standard	12.500	1.55	14962.116	14962.116	12.500	12.5	0.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	1.55	14894.126	14894.126	12.500	12.5	0.0	NO	NO	bb
4 Cl +	4 170724M1_6	Standard	12.500	1.55	15482.658	15482.658	12.500	12.5	0.0	NO	NO	bb
$5 \times 8{ }^{\text {a }}$	5 170724M1_7	Standard	12.500	1.55	15091.931	15091.931	12.500	12.5	0.0	NO	NO'	bb
6 ,	6 170724M1_8	Standard	12.500	1.55	15599.055	15599.055	12.500	12.5	0.0	NO	NO	bb
7 \%tar	7 170724M1_9	Standard	12.500	1.55	14839.394	14839.394	12.500	12.5	0.0	NO	NO	bb
8.	8 170724M1_10	Standard	12.500	1.56	14929.445	14929.445	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 7.26812e-017, Relative SD: 7.26812e-015
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: RF

Hamame	\# Name	Type	\%	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. F	CoD Fla	xcly
1 1.	1 170724M1_3	Standard		12.500	3.55	7582.089	7582.089	12.500	12.5	0.0	NO	NO	bb
$2 . \quad$ -	2 170724M1_4	Standard		12.500	3.55	7322.380	7322.380	12.500	12.5	0.0	NO	NO	bb
3 m	3 170724M1_5	Standard		12.500	3.55	7368.760	7368.760	12.500	12.5	0.0	NO	NO	bb
4 4, maty	4 170724M1_6	Standard		12.500	3.55	7556.806	7556.806	12.500	12.5	0.0	NO	.. NO	bb
5. ${ }^{\text {a }}$	5 170724M1_7	Standard		12.500	3.55	7669.834	7669.834	12.500	12.5	0.0	NO	NO	bb
	6 170724M1_8	Standard		12.500	3.55	8056.833	8056.833	12.500	12.5	0.0	NO	NO	bb
7. - -	7 170724M1_9	Standard		12.500	3.55	7531.759	7531.759	12.500	12.5	0.0	NO	NO	bb
8 -	8 170724M1_10	Standard		12.500	3.55	7365.456	7365.456	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: 9.3831e-017, Relative SD: 9.3831e-015
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory

Dataset:	U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 9.3831e-017, Relative SD: 9.3831e-015
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: RF

\%	\# Name	Type	,	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD CoD Flag	$x=$ excluded
1 -	1 170724M1_3	Standard		12.500	3.90	10984.350	10984.350	12.500	12.5	0.0	NO	NO	bb
2 , ${ }^{\text {a }}$	2 170724M1_4	Standard		12.500	3.90	10756.134	10756.134	12.500	12.5	0.0	NO	NO	bb
$3-1=2$	3 170724M1_5	Standard		12.500	3.90	10707.182	10707.182	12.500	12.5	0.0	NO	NO	bb
$4 \quad 20$	4 170724M1_6	Standard		12.500	3.90	11395.518	11395.518	12.500	12.5	0.0	No	NO	bb
5	5 170724M1_7	Standard		12.500	3.90	10582.909	10582.909	12.500	12.5	0.0	NO	No	bb
6	6 170724M1_8	Standard		12.500	3.90	10701.979	10701.979	12.500	12.5	0.0	NO	NO	bb
$7-1+8 y^{4}$	7 170724M1_9	Standard		12.500	3.91	10546.740	10546.740	12.500	12.5	0.0	NO	NO	bb
8 ,	8 170724M1_10	Standard		12.500	3.90	9922.027	9922.027	12.500	12.5	0.0	NO	NO	bb

Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:IQ4.PRO\results1170724M11170724M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Monday, July 24, 2017 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, 2017 15:40:40 Pacific Daylight Time }\end{array}$
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	Type	Std. Conc	RT	Area	IS Area	Response Conc.		\%Dev Conc. Flag CoD CoD Flag			$x=$ excluted
12	1 170724M1_3	Standard	12.500	4.02	71538.672	71538.672	12.500	12.5	0.0	NO	NO	bb
$2=$	2 170724M1_4	Standard	12.500	4.02	67518.039	67518.039	12.500	12.5	0.0	No	NO	bb.
3.	3 170724M1_5	Standard	12.500	4.02	67946.188	67946.188	12.500	12.5	0.0	NO	NO	bb
4. W $^{\text {a }}$	4 170724M1_6	Standard	12.500	4.02	75237.898	75237.898	12.500	12.5	0.0	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.02	68309.617	68309.617	12.500	12.5	0.0	NO	NO	bb
6 - 2mb $^{\text {a }}$	6 170724M1_8	Standard	12.500	4.02	69500.219	69500.219	12.500	12.5	0.0	NO	NO	bb
7.	7 170724M1_9	Standard	12.500	4.03	72719.445	72719.445	12.500	12.5	0.0	No	NO	bb
$8 \quad$	8 170724M1_10	Standard	12.500	4.02	58601.402	58601.402	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C7-PFUnA

Response Factor: 1

RRF SD: 1.45362e-016, Relative SD: 1.45362e-014
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: RF

\# Name				RT	$\begin{array}{r} \text { Area } \\ 66110.742 \end{array}$	$\begin{aligned} & \text { IS Area } \\ & 66110.742 \end{aligned}$	Response Conc. \%Dev Conc. Flag				CoD CoD Flag $x=$ excluded	
$14 x^{2}$	1 170724M1_3	Standard	12.500	4.18			12.500	12.5	0.0	NO	NO	bb
2	2 170724M1_4	Standard	12.500	4.19	63178.059	63178.059	12.500	12.5	0.0	NO	NO	bb
3.	3 170724M1_5	Standard	12.500	4.18	65533.590	65533.590	12.500	12.5	0.0	NO	NO	bb
4.	4 170724M1_6	Standard	12.500	4.19	74336.992	74336.992	12.500	12.5	0.0	NO	NO	bb
5 5.4.e.t	5 170724M1_7	Standard	12.500	4.19	73722.414	73722.414	12.500	12.5	0.0	NO	NO	bb
6.4.	6 170724M1_8	Standard	12.500	4.19	61426.844	61426.844	12.500	12.5	0.0	NO	NO	bb
7	7 170724M1_9	Standard	12.500	4.18	63456.004	63456.004	12.500	12.5	0.0	NO	NO	bb
8 8,	8 170724M1_10	Standard	12.500	4.19	62878.969	62878.969	12.500	12.5	0.0	NO	NO	bb

Dataset:	Untitled
Last Altered:	Monday, July 24, 2017 15:48:17 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:50:08 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Dataset:
 U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999644, \mathrm{r}^{\wedge} 2=0.999287$
Calibration curve: $1.1275^{*} x+0.163356$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO|results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999528, \mathrm{r}^{\wedge} 2=0.999056$
Calibration curve: 0.99208 * x + 0.104629
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $r=0.999611, r^{\wedge} 2=0.999223$
Calibration curve: 1.85223 * $x+0.0752948$
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: $r=0.999648, r^{\wedge} 2=0.999296$
Calibration curve: $1.50967^{*} x+0.157344$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $r=0.999811, r^{\wedge} 2=0.999621$
Calibration curve: 1.25322 * $x+0.0796155$
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999711$
Calibration curve: -0.00151846 * $x^{\wedge} 2+1.70838{ }^{*} x+-0.0114403$
Response type: Internal Std (Ref 33), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 24, } 2017 \text { 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, } 2017 \text { 15:37:22 Pacific Daylight Time }\end{array}$

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.00313053^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
 U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFOA
Correlation coefficient: $r=0.999233, r^{\wedge} 2=0.998466$
Calibration curve: $0.970801^{*} x+0.199778$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset:

U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHpS

Correlation coefficient: $r=0.999150, r^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * x +0.014645
Response type: Interna! Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $r=0.998659, r^{\wedge} 2=0.997320$
Calibration curve: 1.09835 * x + 0.147218
Response type: Internal Std (Ref 36), Area * (IS Conc. /IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
U:IQ4.PROVresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * $x+0.0489398$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PROVresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFOS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999148$
Calibration curve: -0.00122032 * $x^{\wedge} 2+1.19038{ }^{*} x+0.0183073$
Response type: Internal Std (Ref 38), Area * (IS Conc. IIS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

Quantify Calibration Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.gld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $r=0.999397, r^{\wedge} 2=0.998795$
Calibration curve: $1.29731^{*} x+0.128184$
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:

U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: 8:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996738$
Calibration curve: $-0.00420182^{*} x^{\wedge} 2+1.49722^{*} x+0.133523$
Response type: Intemal Std (Ref 40), Aree * (is Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999848$
Calibration curve: $-0.0104077^{*} x^{\wedge} 2+19.9194^{*} x+0.547687$
Response type: Internal Std́ (Ref 41), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
 U:\Q4.PROIresults\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed.
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999908$
Calibration curve: $-0.004397444^{*} x^{\wedge} 2+16.1657^{*} x+0.0580373$
Response type: internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFUnA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998430$
Calibration curve: $-0.0020331^{*} x^{\wedge} 2+0.9014788^{*} x+0.00751751$
Response type: Internal Std (Ref 43), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998889$
Calibration curve: $-0.000220781^{*} x^{\wedge} 2+0.0914068$ * $x+-0.00228704$
Response type: Intemal Std (Ref 43), Area* (is Conc. IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset:
 U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999700$
Calibration curve: $-0.000446703^{*} x^{\wedge} 2+0.926687^{*} x+0.203454$
Response type: Iritemai Std (Ref 44), Area* (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO|results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-MeFOSA
Correlation coefficient: $r=0.999273, r^{\wedge} 2=0.998546$
Calibration curve: 1.0376 * $x+0.213391$
Response ype: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset:
 U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999414, \mathrm{r}^{\wedge} 2=0.998828$
Calibration curve: 10.9255 * $x+1.79$
Response type: Internal Std (Ref 44), Area * (IS Conc. IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999057$
Calibration curve: $-0.000800394^{*} x^{\wedge} 2+1.14875^{*} x+0.111533$
Response type: Internal Std (Ref 46), Areá * (15 Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weightirig: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-EtFOSA

Correlation coefficient: $r=0.999689, r^{\wedge} 2=0.999377$
Calibration curve: 0.904115 * $x+0.326191$
Response type: Intemal Std (Ref 47), Area* (is Conc. I is Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999358$
Calibration curve: $-0.000715061^{*} x^{\wedge} 2+1.34773^{*} x+0.254398$
Response type: Internal Std (Ref 48), Aca* (1S Conc. I SS Areá)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Datase
U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: PFODA
Correlation coefficient: $\mathrm{r}=0.999378, \mathrm{r}^{\wedge} 2=0.998756$
Calibration curve: $1.27561^{*} x+0.10098$
Response type: Internal Std (Rei 48), Area* (IS Conc./IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: U:\Q4.PRO\results\170724M1170724M1-CRV.qld
Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-MeFOSE

Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998953$
Calibration curve: 1.01603 * $x+0.461771$
Response type: Interna! Std (Ref 49), Area* (IS Cone. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results $1170724 \mathrm{M} 11170724 \mathrm{M} 1-\mathrm{CRV}$.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:37:22 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $r=0.999680, r^{\wedge} 2=0.99936$
Calibration curve: 1.16673 * $x+0.501898$
Response type: Internal Sid (Ref 50), Area* (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset:	U:IQ4.PROlresults1170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17 G2422

PFPeA

$\begin{array}{r}\text { F4:MRM of } 1 \text { channel,ES- } \\ 263.1>218.9 \\ \left.\text { PFPeA } \begin{array}{c}1.611 \mathrm{e}+004 \\ 2.80 \\ 6.08 \mathrm{e} 2 \\ 15257 \\ \mathrm{bb}\end{array}\right] \\ \hline\end{array}$

13C3-PFPeA

F6:MRM of 2 channels,ES-
$299>99$

PFHxA

F8:MRM of 2 channels,ES-

F14:MRM of 2 channels,ES-

13C4-PFHPA

PFHxS

F16:MRM of 2 channels,ES-

F18:MRM of 1 channel, ES-
$403>102.6$

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

13C2-6:2 FTS
F23:MRM of 1 channel,ES429.1 > 408.9

PFOA

 F19:MRM of 2 channels,ES-
$413>169$

13C2-PFOA

F20:MRM of 1 channel,ES.

PFHpS

F24:MRM of 4 channels,ES-
448.9 > 79.9

13C3-PFBS

PFNA

F25:MRM of 2 channels,ES-

13C5-PFNA

PFOSA

F28:MRM of 2 channels,ES

F28:MRM of 2 channels, ES-
$498.1>478$

13C8-PFOSA

F32:MRM of 1 channel,ES-
$506.1>77.7$

PFOS

F30:MRM of 2 channels,ES $499>79.9$

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES-

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

PFDS

F50:MRM of 2 channels, ES-

F50:MRM of 2 channels,ES-
$598.9>80$

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset:
U:\Q4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17 G2422

PFTeDA

F58:MRM of 4 channels,ES-
$712.9>668.8$
100
PFTeDA
4.70
1.55 e 3
23749
MM
F58:MRM of 4 channels,ES$712.9>369$

13C2-PFTeDA

F59:MRM of 2 channels,ES-

d5-N-ETFOSA

F42:MRM of 1 channel,ES-
$531.1>168.9$

PFHxDA

F60:MRM of 2 channels,ES$812.8>768.9$

F60:MRM of 2 channels,ES

13C2-PFHxDA

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

d7-N-MeFOSE

F54:MRM of 1 channel,ES-
$623.1>58.9$

13C8-PFOA

$$
\text { F21:MRM of } 1 \text { channel,ES- }
$$

13C9-PFNA
F27:MRM of 1 channel,ES$472.2>426.9$

Dataset:	U:IQ4.PROlresults1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

13C3-PFBA

PFPeA
F4:MRM of 1 channel ES

13C3-PFPeA

13C3-PFBS

PFHxA

13C2-PFHxA

PFBS

F6:MRM of 2 channels,ES-

PFHpA

F14:MRM of 2 channels,ES
363>318.9

F14:MRM of 2 channels, ES-
$363>169$

$3.250 \quad 3.500 \quad 3.750$

PFHxS

1802-PFHxS
F18:MRM of 1 channel,ES-
$403>102.6$

Dataset:
 U:IQ4.PRO\results\170724M1 1170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

F22:MRM of 2 channels, ES$427.1>80$

PFOA

F19:MRM of 2 channels,ES-
$413>169$

13C2-PFOA

F24:MRM of 4 channels,ES$448.9>79.9$

13C3-PFBS

F25:MRM of 2 channels,ES

3C5-PFNA

F28:MRM of 2 channels,ES

13C8-PFOSA

PFOS

F30:MRM of 2 channels, ES

13C8-PFOS

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
 Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
 Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

13C2-PFDoA

F34:MRM of 2 channels,ES-

d3-N-MeFOSA

F37:MRM of 1 channel,ES $5.2>168.9$

F59:MRM of 2 channels,ES$714.8>669.6$

F57:MRM of 2 channels,ES 662.9 > 319

3C2-PFTeDA

F58:MRM of 4 channels,ES-

13C2-PFTeDA

F59:MRM of 2 channets, ES
F42:MRM of 1 channel,ES

F60:MRM of 2 channels,ES
$812.8>219$

13C2-PFHxDA

Dataset:	U:IQ4.PROlresults\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

d7-N-MeFOSE
F54:MRM of 1 channel,ES-
F54:MRM of 1 channel, ES
$623.1>58.9$

d9-N-EtFOSE

F56:MRM of 1 channel,ES 39.2 > 58.8 $39.2>58.8$
$6.435 \mathrm{e}+005$

13C3-PFHxS

F17:MRM of 1 channel,ES$401.9>79.9$ $1.528 \mathrm{e}+005$

3.2503 .5003 .750

Dataset:	U:\Q4.PROlresults\170724M1
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17 G 2119

```
13C4-PFOS
F31:MRM of 1 channel,ES\(503>79.9\) \(2.025 \mathrm{e}+005\)
```


Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

13C3-PFPeA

PFBS

$299>99$

13C3-PFBS

PFHxA

13C2-PFHxA

F9:MRM of 1 channel,ES-
$315>269.8$
$2.694 \mathrm{e}+005$

PFHpA

F14:MRM of 2 channels,ES$363>318.9$

$363>169$

13C4-PFHpA

F15:MRM of 1 channel,ES-
$367.2>321.8$

PFHxS

1802-PFHxS

F18:MRM of 1 channel,ES-
$403>102.6$

Dataset: U:\Q4.PRO\resultsi170724M1\170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

13C2-6:2 FTS

F23:MRM of 1 channel,ES-
$429.1>408.9$

F19:MRM of 2 channels,ES-

13C2-PFOA
F20:MRM of 1 channel,ES-

PFHpS

F24:MRM of 4 channels, ES-
$448.9>79.9$

13C3-PFBS
F7:MRM of 1 channel,ES-
$302>98.8$

PFNA

F25:MRM of 2 channels,ES-

13C5-PFNA
F26:MRM of 1 channel,ES-

PFOSA

F28:MRM of 2 channels, ES-

F28:MRM of 2 channels,ES-

13C8-PFOSA

PFOS

F30:MRM of 2 channels,ES

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17 G 2423

d3-N-MeFOSAA

$\begin{array}{rrr}\text { F47:MRM of } 1 \text { channel,ES- } & \text { F49:MRM of } 1 \text { channel,ES- } \\ & 573.3>419 & \\ 2.105 \mathrm{e}+005 & 100- & 289.3>419 \\ 00- & & 2.190 \mathrm{e}+005\end{array}$

F48:MRM of 2 channeis, ES-
$584.2>483$

PFUnA

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$

PFDS

F50:MRM of 2 channels,ES-

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17 G 2423

PFTeDA

F58:MRM of 4 channels, ES-

F58:MRM of 4 channels, ES-

13C2-PFTeDA
F59:MRM of 2 channels,ESFS9.MRM of 2 channels,ES
$714.8>669.6$

N-EtFOSA

F39:MRM of 2 channels, ES-

F39:MRM of 2 channels,ES-
$526.1>219$

d5-N-ETFOSA

F42:MRM of 1 channel,ES-
$531.1>168.9$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

d7-N-MeFOSE

d9-N-EtFOSE

13C8-PFOA
F21:MRM of 1 channel,ES-
$421.3>376$

$$
\begin{aligned}
& 421.3>376 \\
& 100_{-} \quad 1.044 \mathrm{e}+006
\end{aligned}
$$

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CSO 17G2423

13C4-PFOS
 F31:MRM of 1 channel,ES-
 3.7504 .0004 .250 $503>79.9$

13C6-PFDA
F38:MRM of 1 channel,ES$519.1>473.7$
$1.265 \mathrm{e}+006$

13C7-PFUnA

F46:MRM of 1 channel,ES-

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17G2424

13C3-PFBA

13C3-PFPeA

PFBS

13C3-PFBS

PFHpA

F14:MRM of 2 channels,ES-
$363>318.9$
$1.527 \mathrm{e}+005$

13C4-PFHpA
F15:MRM of 1 channel,ES-
$367.2>321.8$
$100-7.476 \mathrm{e}+005$

PFHxS

1802-PFHxS
F18:MRM of 1 channel,ES-

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G 2424

PFNA

F25:MRM of 2 channels, ES-

13C5-PFNA

PFOSA

F28:MRM of 2 channels, ES-

		498.1 > 77.8
100	PFOSA	$2.483 \mathrm{e}+004$
	3.86	
	1.32 e 3	
\% -	24768	
	bb	

F28:MRM of 2 channels, ES

$498.1>478$ $3.884 .557 \mathrm{e}+002$

PFOS

F30:MRM of 2 channels,ES

F30:MRM of 2 channels, ES-

13C8-PFOS
F33:MRM of 1 channel, ES-
$507>79.9$

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

13C2-PFDA

F36:MRM of 1 channel,ES$515.1>469.9$ $1.159 \mathrm{e}+006$

PFDS

$\begin{aligned} & \text { F50:MRM of } 2 \mathrm{ch} \\ & 100 \\ & \text { PFDS } \\ & 4.24 \\ & 9.98 \mathrm{e} 2 \\ & \%-18864 \\ & \mathrm{bb} \end{aligned}$	

F50:MRM of 2 channels,ES-

13C2-PFUnA
F44:MRM of 1 channel,ES$565>519.8$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Monday, July 24, } 2017 \text { 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, } 2017 \text { 15:36:37 Pacific Daylight Time }\end{array}$

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

13C2-PFDoA

F52:MRM of 1 channel, ES$615>569.7$ $1.208 \mathrm{e}+005$

4.2504 .5004 .750

F34:MRM of 2 channels, ES$512.1>219$

d3-N-MeFOSA

F37:MRM of 1 channel,ES$515.2>168.9$ $4.430 \mathrm{e}+005$

F57:MRM of 2 channels, ES-
$662.9>319$

13C2-PFTeDA

F59:MRM of 2 channels,ES-
F59:MRM of 2 channels, ES-
$714.8>669.6$

F58:MRM of 4 channels, ES-
$712.9>369$

13C2-PFTeDA

F39:MRM of 2 channels,ES$526.1>219$
100 2.737e+004

d5-N-ETFOSA

F42:MRM of 1 channel,ESF42.MRM of $531.1>168.9$

F60:MRM of 2 channels,ES-
$812.8>219$

13C2-PFHxDA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G 2424

d7-N-MeFOSE
F54:MRM of 1 channel,ES-

F56:MRM of 1 channel,ES$639.2>58.8$
$6.899 \mathrm{e}+005$

13C3-PFHxS F17:MRM of 1 channel,ES-

 $401.9>79.9$
3.2503 .5003 .750

13C8-PFOA

F21:MRM of 1 channel,ES. $421.3>376$ $1.017 e+006$

Dataset:	U:IQ4.PROVresults\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424
F31:MRM of 1 channel,ES$503>79.9$

```
13C4-PFOS
```


Dataset:	U:IQ4.PROlresults1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

13C3-PFBA

PFPeA

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES

F6:MRM of 2 channels, ES

13C3-PFBS
F7:MRM of 1 channel,ES

PFHxA

F8:MRM of 2 channels,ES

F8:MRM of 2 channels,ES

13C2-PFHxA

PFHpA

F14:MRM of 2 channels, ES $363>318.9$

$363>169$

PFHxS

F16:MRM of 2 channels,ES

F16:MRM of 2 channels, ES

18O2-PFHXS

\section*{Dataset: U:\Q4.PRO\results\170724M1 1170724M1-CRV.qld
 | Last Altered: | Monday, July 24, 2017 15:32:30 Pacific Daylight Time |
| :--- | :--- |
| Printed: | Monday, July 24, 2017 15:36:37 Pacific Daylight Time |}

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

13C2-PFOA

F20:MRM of 1 channel, ES-
$414.9>369.7$

PFHpS

13C3-PFBS

PFNA

13C5-PFNA
F26:MRM of 1 channel,ES-

PFOSA

F28:MRM of 2 channels, ES-

F28:MRM of 2 channels,ES-
$498.1>478$

PFOS

F30:MRM of 2 channels,ES-
$499>79.9$

F30:MRM of 2 channels,ES

13C8-PFOS
F33:MRM of 1 channel,ES-
$507>79.9$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$
$1.366 \mathrm{e}+006$

PFDS

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$
$1.366 \mathrm{e}+006$

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

13C2-PFDoA

F52:MRM of 1 channel,ES-

PFTeDA

$$
4.250 \quad 4.500 \quad 4.750
$$

13C2-PFTeDA
F59:MRM of 2 channels ES-

13C2-PFTeDA

F59:MRM of 2 channels,ES-

F39:MRM of 2 channels,ES-

d5-N-ETFOSA

F42:MRM of 1 channel, ES-
$531.1>168.9$

PFHxDA

F60:MRM of 2 channets,ES

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

PFODA

d7-N-MeFOSE
F54:MRM of 1 channel,ES

13C8-PFOA

F21:MRM of 1 channel,ES-
$421.3>376$

Dataset:	U:IQ4.PROlresults1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

PFPeA

13C3-PFPeA

PFBS

F6:MRM of 2 channels,ES-
$299>99$

13C3-PFBS

PFHXA

13C2-PFHxA

PFHpA

F14:MRM of 2 channels, ES$363>318.9$

F14:MRM of 2 channels,ES-
$363>169$

13C4-PFHpA
F15:MRM of 1 channel,ES-
$367.2>321.8$

PFHxS

F16:MRM of 2 channels,ES

		$398.9>79.6$
	PFHxS	$6.825 e+004$
1007	3.55	
	3.76 e 3	
\%-	68250	
	MM	
	Tm?	Tom

1802-PFHxS

Dataset:	U:IQ4.PROlresults\170724M1
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

13C8-PFOSA

Dataset:	U:\Q4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

d3-N-MeFOSAA

PFDS
F50:MRM of 2 channels,ES598.9 > 98.7

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset:	U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

F52:MRM of 1 channel,ES-

N-MeFOSA

F34:MRM of 2 channels,ES512.1 > 168.9 $1.563 \mathrm{e}+005$

PFTeDA

F58:MRM of 4 channels, ES-

F58:MRM of 4 channels, ES-

13C2-PFTeDA
F59:MRM of 2 channels, ES-

F39:MRM of 2 channels,ES-

d5-N-ETFOSA

F42:MRM of 1 channel,ES-

$$
\begin{array}{r}
531.1>168.9 \\
6.159 \mathrm{e}+005
\end{array}
$$

$$
100
$$

PFHxDA

F60:MRM of 2 channels, ES$812.8>768.9$

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset:	U:\Q4.PRO\results\170724M1 $1170724 M 1-C R V$.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

PFPeA

PFBS

F6:MRM of 2 channels,ES-
$299>99$

PFHxA

F8:MRM of 2 channels,ES-

PFHpA

$3.250 \quad 3.500 \quad 3.750$

13C4-PFHPA

F15:MRM of 1 channel,ES-
$367.2>321.8$
100

PFHxS

F16:MRM of 2 channels,ES$398.9>79.6$

1802-PFHxS
F18:MRM of 1 channel, ES-

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

PFNA

13C5-PFNA

PFOSA
F28:MRM of 2 channels,ES-

F28:MRM of 2 channels,ES-

FOSA

PFOS

13C8-PFOS

Dataset:	U:IQ4.PRO\results1170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426
PFDA
F35:MRM of 2 channels, ES-
$513>468.8$
$5.553 \mathrm{e}+006$

13C2-PFDA
F36.MRM of 1 channei,ES$515.1>469.9$ $1.141 \mathrm{e}+006$

13C2-8:2 FTS
F41:MRM of t channel, ES-

$$
\begin{array}{l}529.1>508.7\end{array}
$$

13C2-PFUnA

F44:MRM of 1 channel, ES-
$565>519.8$

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426
PFDOA
F51:MRM of 2 channels,ES-
$612.9>318.8$
$3.964 \mathrm{e}+005$

$$
\begin{array}{r}
\text { F51:MRM of } 2 \text { channels, ES- } \\
612.9>569 \\
4.970 \mathrm{e}+005
\end{array}
$$

d3-N-MeFOSA
F37.MRM of 1 channel,ES-
$515.2>168.9$ $515.2>168.9$
$4.207 e+005$

$$
\begin{array}{r}
\text { F58:MRM of } 4 \text { channels, ES- } \\
712.9>369 \\
100 \text { PFTeDA } 2.774 \mathrm{e}+005 \\
4.70 \\
1.65 \mathrm{e} 4 \\
276387 \\
\mathrm{bb} \\
\hline
\end{array}
$$

13C2-PFTeDA

$$
\begin{array}{r}
\text { F59:MRM of } 2 \text { channeis, ES- } \\
714.8>669.6
\end{array}
$$

$$
\begin{array}{r}
714.8>669.6 \\
100 \neg \quad 7.151 e+005
\end{array}
$$

d5-N-ETFOSA
F42:MRM of 1 channei, ES-

PFHxDA

13C2-PFHxDA
F61:MRM of 1 channel, ES-

Dataset:	U:IQ4.PROlresults\170724M11170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

13C2-PFHxDA
F61:MRM of 1 channel,ES$815>769.7$ $4.029 \mathrm{e}+005$
$815>769.7$

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17 G2426

Dataset:	U:\Q4.PROlresults\170724M1\170724M1-CRV. qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

13C3-PFBA

13C3-PFPeA
FS:MRM of 1 channel, ES-
$266>221.8$

PFBS

F6:MRM of 2 channels,ES-
$299>99$

13C3-PFBS

PFHxA
F8:MRM of 2 channels, ES$313.2>268.9$

F8:MRM of 2 channels, ES-

3C2-PFHxA

PFHpA

13C4-PFHpA

PFHxS

F16:MRM of 2 channels,ES $398.9>99$

18O2-PFHxS
F18:MRM of 1 channel ES-

Dataset:	U:IQ4.PRO\results1170724M11170724M1-CRV. qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427

13C2-6:2 FTS
F23. MRivi of i channel, ES
$429.1>408.9$

$$
\begin{array}{r}
\text { F2OMPM of A channel, ES- } \\
414.9>369.7
\end{array}
$$

PFNA

F2G:MRMM of channe, EG-

13C8-PFOSA
F32MRM of 1 chamei, ES-

$$
\begin{array}{l}506.1>77.7\end{array}
$$

13C8-PFOS
F33:MRM of 1 channel,ES$507>79.9$
$100-1699+005$

PFOS

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427

F40:MRM of 2 channeis, ES-
$27>80$

12C2-8:2 FTS

F45:MRM of 2 channels.ES$570.1>483$ $1.809 e+005$

-5-N-EtFOSAA.

F43:MRM of 2 channels,ES-
$562.9>269$
$1.851 \mathrm{e}+006$

13C2-PFUnA

PFDS

F50:MRM of 2 channels, ES-
$598.9>80$

13C2-PFUnA
F44:MRIN of 1 channel, ES-
$565>519.8$

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV qid

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427
PFDoA
F51:MRM of 2 channels, ES-
$612.9>318.8$
$7.544 \mathrm{e}+005$

PFTrDA

F57:MRM of 2 channels,ES $662.9>618.9$ $9.092 \mathrm{e}+006$

PFTeDA

F58:MRM of 4 channels, ES$712.9>668.8$

d5-N-ETFOSA.
F42MRM of 1 chanci, ES-
$531.1>168.9$

PFHxDA

1302-PFHxDA
FO1:NRM of 1 channel,ES-
$815>769.7$
3.7558005

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered:	Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G2427

13C2-PFHxDA
F61:MRM of 1 channe!,ES-

Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:36:37 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G 2427

Dataset:
Untitled
Last Altered: Monday, July 24, 2017 15:45:04 Pacific Daylight Time
Printed:

Inst. Blank

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

13C3-PFBA

F2:MRM of 1 channel,ES| | $216.1>171.8$ |
| ---: | ---: |
| 100 | 1.21 |

13C3-PFPeA

PFHxA

F8:MRM of 2 channels,ES

F14:MRM of 2 channels, ES-
$363>169$

Monday, July 24, 2017 15:45:24 Pacific Daylight Time

Name: 170724M1_11, Date: $\mathbf{2 4 - J u l - 2 0 1 7 , ~ T i m e : ~ 1 5 : 1 7 : 3 0 , ~ I D : ~ I P A , ~ D e s c r i p t i o n : ~ I P A ~}$

PFOSA

F28:MRM of 2 channels,ES-
F28:MRM of 2 channels,ES-
$498.1>77.8$

F28:MRM of 2 channels,ES-

PFOS
F30:MRM of 2 channels,ES

F30:MRM of 2 channels,ES
$499>99$

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

PFDA
F35:MRM of 2 channels,ES-
$513>468.8$
$1.227 \mathrm{e}+003$

$$
\begin{array}{r}
\text { F35:MRM of } 2 \text { channels,ES- } \\
513>219
\end{array}
$$

13C2-PFDA

13C2-8:2 FTS

F41:MRM of 1 channel,ES-
$529.1>508.7$

F45:MRM of 2 channels,ES-

PFUnA

13C2-PFUnA

F44:MRM of 1 channel,ES-

PFDS

F50:MRM of 2 channels,ES-
$598.9>80$

13C2-PFUnA
F44:MRM of 1 channel,ES-

13C2-PFDoA
F52:MRM of 1 channel,ES-

F34:MRM of 2 channels,ES-
$512.1>219$

d3-N-MeFOSA

PFTeDA
F58:MRM of 4 channels,ES$712.9>668.8$

F57:MRM of 2 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels,ES-

F58:MRM of 4 channels,ES- F39:MRM of 2 channels,ES-

d5-N-ETFOSA

PFHxDA

F60:MRM of 2 channels,ES-
channels,ES-
$812.8>219$

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset:	Untitled
Last Altered:	Monday, July 24, 2017 15:45:04 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:45:24 Pacific Daylight Time

Name: 170724M1_11, Date: 24 -Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

d7-N-MeFOSE
F54:MRM of 1 channel,ES

13C8-PFOA

13C2-PFHxDA
F61:MRM of 1 channel,ES $815>769.7$

Dataset: Untitled

Last Altered: Monday, July 24, 2017 15:45:04 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:45:24 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

Last Altered:
Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:47:51 Pacific Daylight Time

(A) Not in SS .

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Dataset:	U:\Q4.PRO\results1170724M11170724M1-12.qId
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:51 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G 2421

4	\# Name	3	Trace	Area	IS Resp	RRF	Wt. $\mathrm{Nol}{ }^{\text {a }}$,	RT Conc \%Rec		
$32+1$.	32 13C4-PFHpA		$367.2>321.8$	29688.498	38341.938	0.306	1.000	3.48	12.67	101.34
33 -	33 18O2-PFHxS		$403>102.6$	2850.923	7151.517	0.393	1.000	3.55	12.69	101.51
34.	34 13C2-6:2 FTS		$429.1>408.9$	7715.412	55193.199	0.158	1.000	3.67	11.08	88.65
35 .	$3513 \mathrm{C} 2-\mathrm{PFOA}$		$414.9>369.7$	57527.922	55193.199	1.067	1.000	3.68	12.20	97.64
36	36 13C5-PFNA		$468.2>422.9$	55397.191	58314.438	0.852	1.000	3.85	13.94	111.48
37,4 atw	37 13C8-PFOSA		$506.1>77.7$	6500.262	73602.336	0.098	1.000	3.86	11.24	89.90
38	38 13C8-PFOS		$507>79.9$	10272.242	10242.656	0.936	1.000	3.91	13.40	107.18
39	39 13C2-PFDA		$515.1>469.9$	56205.117	70397.750	0.810	1.000	4.02	12.32	98.59
40 , 5 mat	40 13C2-8:2 FTS		$529.1>508.7$	5254.963	70397.750	0.086	1.000	4.02	10.90	87.23
41	41 d3-N-MeFOSAA		$573.3>419$	11971.411	73602.336	0.014	1.000	4.05	148.44	91.35
42.	42 d5-N-EtFOSAA		$589.3>419$	12068.997	73602.336	0.014	1.000	4.12	146.98	90.45
43 ,	43 13C2-PFUnA		$565>519.8$	59926.145	73602.336	0.962	1.000	4.19	10.58	84.63
44.	44 13C2-PFDoA		$615>569.7$	5849.101	73602.336	0.094	1.000	4.35	10.52	84.16
45.	45 d3-N-MeFOSA		$515.2>168.9$	26376.414	73602.336	0.034	1.000	4.43	130.17	86.78
46.- ${ }^{\text {a }}$,	46 13C2-PFTeDA		$714.8>669.6$	40951.586	73602.336	0.694	1.000	4.70	10.02	80.14
47	47 d5-N-ETFOSA		$531.1>168.9$	6321.303	73602.336	0.049	1.000	5.01	22.06	14.70
48	48 13C2-PFHxDA		$815>769.7$	19848.846	73602.336	0.843	1.000	5.07	4.00	79.97
49	$49 \mathrm{~d} 7-\mathrm{N}-\mathrm{MeFOSE}$		$623.1>58.9$	40883.168	73602.336	0.055	1.000	5.42	127.09	84.73
50.	50 d9-N-EtFOSE		$639.2>58.8$	40456.262	73602.336	0.053	1.000	5.59	128.61	85.74
51. S^{2}, ${ }^{\text {a }}$	51 13C4-PFBA		$217>171.8$	14974.247	14974.247	1.000	1.000	1.55	12.50	100.00
52	52 13C5-PFHxA		$318>272.9$	38341.938	38341.938	1.000	1.000	3.22	5.00	100.00
53	53 13C3-PFHxS		$401.9>79.9$	7151.517	7151.517	1.000	1.000	3.55	12.50	100.00
54 .	54 13C8-PFOA		$421.3>376$	55193.199	55193.199	1.000	1.000	3.68	12.50	100.00
55	55 13C9-PFNA		$472.2>426.9$	58314.438	58314.438	1.000	1.000	3.85	12.50	100.00
56	56 13C4-PFOS		$503>79.9$	10242.656	10242.656	1.000	1.000	3.91	12.50	100.00
57	57 13C6-PFDA		$519.1>473.7$	70397.750	70397.750	1.000	1.000	4.02	12.50	100.00
58 -	58 13C7-PFUnA		$570.1>524.8$	73602.336	73602.336	1.000	1.000	4.19	12.50	100.00

Dataset:
 U:IQ4.PRO|results1170724M11170724M1-12.qld

Last Altered: Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

13C3-PFBA

13C3-PFPeA

F5:MRM of 1 channel,ES-
$266>221.8$
$6.051 \mathrm{e}+005$

13C3-PFBS

13C2-PFHXA
F9:MRM of 1 channel,ES-
$315>269.8$
$2.534 \mathrm{e}+005$

F14:MRM of 2 channels,ES-
$363>169$

13C4-PFHpA

F16:MRM of 2 channels,ES-

18O2-PFHxS

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-12.qld
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

13C3-PFBS
F7:MRM of 1 channel,ES-
$302>98.8$
$7.617 e+004$

PFOS

13C8-PFOS

F33:MRM of 1 channel,ES-

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-12.qld
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

PFTeDA

F60:MRM of 2 channeis,ES$812.8>219$ $1.570 \mathrm{e}+003$

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

F54:MRM of 1 channel,ES-

N-MeFOSE

d9-N-EtFOSE
F56:MRM of 1 channel,ES-

13C5-PFHxA
F10:MRM of 1 channel, ES-
$\quad 318>272.9$
$318>272.9$

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset:	U:IQ4.PRO\|resultsI170724M11170724M1-12.qld
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:38 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Method: U:IQ4.PRO\MethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-PFBA

Correlation coefficient: $\mathrm{r}=0.999344, \mathrm{r}^{\wedge} 2=0.998689$
Calibration curve: 1.18236 * $x+0.171127$

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-PFPeA

Correlation coefficient: $\mathrm{r}=0.999647, \mathrm{r}^{\wedge} 2=0.999293$
Calibration curve: 1.00022 * $x+0.0979501$
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-PFBS

Correlation coefficient: $\mathrm{r}=0.999611, \mathrm{r}^{\wedge} 2=0.999223$
Calibration curve: 1.85223 * x + 0.0753175
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

5			Std. Conc	RT Area IS Area Response				Conc. \%Dev Conc. Flag			COD	CoD Flag $x=$ excluded	
3tib	1 170724M1_3	Standard	0.250	3.00	116.281	3068.403	0.474	0.2	-14.0	NO	0.999	NO	bb
Wex	2 170724M1_4	Standard	0.500	3.00	214.986	3020.354	0.890	0.4	-12.1	NO	0.999	NO	MM
3×1	3 170724M1_5	Standard	1.000	2.99	512.501	3001.774	2.134	1.1	11.2	NO	0.999	NO	bb
	4 170724M1_6	Standard	2.000	3.00	1085.602	3295.993	4.117	2.2	9.1	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	3.00	2583.207	3132.764	10.307	5.5	10.5	NO	0.999	NO	bb
6 6	6 170724M1_8	Standard	10.000	3.00	4677.829	3302.426	17.706	9.5	-4.8	NO	0.999	NO	bb
7.4	7 170724M1_9	Standard	50.000	3.00	22355.119	2994.649	93.313	50.3	0.7	NO	0.999	NO	bb
8.	8 170724M1_10	Standard	100.000	3.00	43420.234	2946.134	184.225	99.4	-0.6	NO	0.999	NO	bb

Compound name: L-PFHxA

Correlation coefficient: $\mathrm{r}=0.999652, \mathrm{r}^{\wedge} 2=0.999303$
Calibration curve: 1.50961 * x + 0.157846
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d ~$
1 134.	1 170724M1_3	Standard	0.250	3.22	1086.304	11341.955	0.479	0.2	-14.9	NO	0.999	NO	db
2	2 170724M1_4	Standard	0.500	3.22	1906.946	10636.292	0.896	0.5	-2.1	NO	0.999	NO	bb
$3-5$	3 170724M1_5	Standard	1.000	3.22	3788.241	10865.864	1.743	1.1	5.0	NO	0.999	NO	bb
4 tex	4 170724M1_6	Standard	2.000	3.22	7912.540	12006.801	3.295	2.1	3.9	NO	0.999	NO	bb
	5 170724M1_7	Standard	5.000	3.22	18325.188	10585.094	8.656	5.6	12.6	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.22	34348.887	11649.966	14.742	9.7	-3.4	NO	0.999	NO	bb
7×3	7 170724M1_9	Standard	50.000	3.22	154915.125	10379.170	74.628	49.3	-1.3	NO	0.999	NO	bb
8 8- 8	8 170724M1_10	Standard	100.000	3.22	320392.531	10569.161	151.570	100.3	0.3	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-PFHpA

Correlation coefficient: $\mathrm{r}=0.999802, \mathrm{r}^{\wedge} 2=0.999604$
Calibration curve: 1.25293 * x + 0.085568
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Mum,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	$\%$ Dev	Conc. F	CoD	CoDF	$x=$ excluded
1.3	1 170724M1_3	Standard	0.250	3.47	835.892	29540.787	0.354	0.2	-14.4	NO	1.000	NO	bb
2 2- ${ }^{2}$	2 170724M1_4	Standard	0.500	3.48	1737.110	28831.211	0.753	0.5	6.6	NO	1.000	NO	dd
3	3 170724M1_5	Standard	1.000	3.48	3129.354	29995.297	1.304	1.0	-2.7	NO	1.000	NO	bb
4	4 170724M1_6	Standard	2.000	3.48	6923.302	31499.152	2.747	2.1	6.2	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.48	17221.189	31478.633	6.838	5.4	7.8	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	3.48	31977.643	32505.703	12.297	9.7	-2.5	NO	1.000	NO	bb
7.15	7170724 M 1.9	Standard	50.000	3.48	148752.578	30043.684	61.890	49.3	-1.3	NO	1.000	NO	bb
	8 170724M1_10	Standard	100.000	3.48	294885.219	29270.332	125.932	100.4	0.4	NO	1.000	NO	bb

Compound name: L-PFHxS

Correlation coefficient: $r=0.999641, r^{\wedge} 2=0.999282$
Calibration curve: 1.58457 * x + 0.244547
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc	RT	44*Area	IS Area	Response	Conc:	\%Dev	Conc. Flag	COD	DFF	$\mathrm{x}=$ excluded
1.	1 170724M1_3	Standard	0.250	3.56	73.733	2948.661	0.313	0.0	-82.8	NO	0.999	NO	MMX
2	$2170724 \mathrm{M1} 14$	Standard	0.500	3.55	233.030	2945.944	0.989	0.5	-6.1	NO	0.999	NO	bb
3 - ${ }^{\text {a }}$	3 170724M1_5	Standard	1.000	3.55	387.605	2882.763	1.681	0.9	-9.4	No	0.999	NO	bb
$4-2$	4 170724M1_6	Standard	2.000	3.55	883.679	3069.216	3.599	2.1	5.8	NO	0.999	NO	bb
5 5, +	5 170724M1_7	Standard	5.000	3.55	2121.650	3078.477	8.615	5.3	5.6	NO	0.999	NO	MM
6 2 4	6 170724M1_8	Standard	10.000	3.55	3756.667	2827.577	16.607	10.3	3.3	NO	0.999	NO	MM
3	7 170724M1_9	Standard	50.000	3.55	19497.047	2990.466	81.497	51.3	2.6	NO	0.999	NO	MM
83	8 170724M1_10	Standard	100.000	3.55	36940.883	2965.238	155.725	98.1	-1.9	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed
Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.00313053^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	* RT	Area	IS Area	Response ${ }^{\text {a }}$. Conc.		\%Dev Conc. Flag CoD			CoD Flag $\mathrm{x}=$ excluded	
1	1 170724M1_3	Standard	0.250	3.67	204.440	7589.777	0.337	0.2	-24.7	NO	0.998	NO	bb
2 2. L	2 170724M1_4	Standard	0.500	3.67	400.907	7687.979	0.652	0.5	-3.6	NO	0.998	NO	bb
3 3 ${ }^{2}$,	3 170724M1_5	Standard	1.000	3.67	747.740	7427.477	1.258	1.0	4.9	NO	0.998	NO	bb
	4 170724M1_6	Standard	2.000	3.66	1573.173	7868.375	2.499	2.2	10.7	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.66	3802.596	7544.070	6.301	5.8	16.7	NO	0.998	NO	bb
6 W, +	6 170724M1_8	Standard	10.000	3.67	6777.476	8079.142	10.486	9.9	-0.8	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.67	31001.344	8775.410	44.159	47.5	-4.9	NO	0.998	NO	bb
$8 \quad 3$	8 170724M1_10	Standard	100.000	3.66	59887.281	9696.150	77.205	102.0	2.0	NO	0.998	NO	bb

Compound name: L-PFOA

Correlation coefficient: $\mathrm{r}=0.999233, \mathrm{r}^{\wedge} 2=0.998466$
Calibration curve: $0.970801^{*} x+0.199778$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name - Type		Std. Conc ${ }^{\text {a }}$	RT	Area	IS Area	Response	Conc. \%Der		Conc.Flag CoD CoD Flag x =excluded			
1. ${ }^{\text {a }}$	1 170724M1_3	Standard	0.250	3.67	1654.212	55437.824	0.373	0.2	-28.6	NO	0.998	NO	bb
2.4	2 170724M1_4	Standard	0.500	3.67	2766.273	52853.566	0.654	0.5	-6.4	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.67	5264.665	53444.164	1.231	1.1	6.3	NO	0.998	NO	bb
4 , ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	3.68	10233.177	55652.324	2.298	2.2	8.1	NO	0.998	NO	bb
5.	5 170724M1_7	Standard	5.000	3.68	26080.451	55510.707	5.873	5.8	16.9	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.68	45105.969	54392.293	10.366	10.5	4.7	NO	0.998	NO	bb
7.	7 170724M1_9	Standard	50.000	3.67	220048.344	55876.563	49.226	50.5	1.0	NO	0.998	NO	bb
8 8.3.	8 170724M1_10	Standard	100.000	3.68	421252.813	55196.383	95.399	98.1	-1.9	NO	0.998	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-PFHpS

Correlation coefficient: $\mathrm{r}=0.999150, \mathrm{r}^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * $x+0.014645$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc ${ }^{\text {R }}$ T		- Area	IS Area	Response	Conc.	\%Dev Conc, Flag		COD	CoD Flag $x=e x c l u d e d$	
1.	1 170724M1_3	Standard	0.250	3.74	113.671	55437.824	0.026	0.1	-50.5	NO	0.998	NO	bbX
2.	2 170724M1_4	Standard	0.500	3.74	222.089	52853.566	0.053	0.4	-14.6	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.73	522.454	53444.164	0.122	1.2	21.2	NO	0.998	NO	bb
4 - ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	3.74	936.558	55652.324	0.210	2.2	10.3	NO	0.998	NO	bb
5 wut	5 170724M1_7	Standard	5.000	3.73	2346.630	55510.707	0.528	5.8	15.8	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.74	4004.412	54392.293	0.920	10.2	2.0	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.74	19773.092	55876.563	4.423	49.7	-0.6	NO	0.998	NO	bb
$84 \times$	8 170724M1_10	Standard	100.000	3.74	38852.836	55196.383	8.799	99.0	-1.0	NO	0.998	NO	bb

Compound name: L-PFNA

Correlation coefficient: $r=0.998636, r^{\wedge} 2=0.997274$
Calibration curve: $1.0977{ }^{*} \times+0.147355$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

\%	\# Name	Type	Std. Conc	RT	4 Area	15 Area	Response	Conc:	\%Dev	Conc. Flag	COD	CoD Flag	x excluded
1.	1 170724M1_3	Standard	0.250	3.85	1504.301	55001.828	0.342	0.2	-29.1	NO	0.997	NO	MM
2 -	2 170724M1_4	Standard	0.500	3.85	2694.965	54762.438	0.615	0.4	-14.8	NO	0.997	NO	bb
3 -	3 170724M1_5	Standard	1.000	3.85	5691.902	55321.512	1.286	1.0	3.7	NO	0.997	NO	bb
4	4 170724M1_6	Standard	2.000	3.85	12559.827	59225.996	2.651	2.3	14.0	NO	0.997	NO	bb
5	5 170724M1_7	Standard	5.000	3.85	29286.219	53341.520	6.863	6.1	22.4	NO	0.997	NO	bb
6.	6 170724M1_8	Standard	10.000	3.85	53683.984	56161.168	11.949	10.8	7.5	NO	0.997	NO	bb
7 T	7 170724M1_9	Standard	50.000	3.85	235981.688	55495.742	53.153	48.3	-3.4	NO	0.997	NO	bb
$8 \times$	8 170724M1_10	Standard	100.000	3.85	475993.000	54308.789	109.557	99.7	-0.3	NO	0.997	NO	bb

Dataset
U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * x + 0.0489398
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

S 4.	\#Name Type		Std. Conc	RT	$\mathrm{F}^{\text {+ }}$ Area	IS Area	Response	Conc.	\%Dev	C. F	Cob	CoD Flag	$x=e x c l u d e d$
14.2	1 170724M1_3	Standard	0.250	3.86	163.860	6633.945	0.309	0.2	-1.0	NO	0.998	NO	bb
2 2 ${ }^{2}$	2 170724M1_4	Standard	0.500	3.85	301.866	6613.513	0.571	0.5	-0.6	NO	0.998	NO	bb
3.2	3 170724M1_5	Standard	1.000	3.85	477.914	6491.109	0.920	0.8	-17.0	NO	0.998	NO	bb
4 Wris	4 170724M1_6	Standard	2.000	3.86	1315.264	7021.902	2.341	2.2	9.2	NO	0.998	NO	bb
5\%4.5]	5 170724M1_7	Standard	5.000	3.86	2927.381	6519.732	5.613	5.3	6.0	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.86	5570.263	6576.866	10.587	10.0	0.4	NO	0.998	NO	bb
7.2.	7 170724M1_9	Standard	50.000	3.86	26459.754	5926.425	55.809	53.1	6.3	NO	0.998	NO	bb
8 \%	8 170724M1_10	Standard	100.000	3.86	50171.699	6190.267	101.312	96.5	-3.5	NO	0.998	NO	bb

Compound name: L-PFOS

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999053$
Calibration curve: $-0.00141568{ }^{*} x^{\wedge} 2+1.19711^{*} x+0.0153867$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

\%	\# Name		Wed	Std. Cone	, RT	Area	IS Area	Response	Conc. \%Dev Conc. Flag = CoD				CoD Flag $x=$ excluted	
2-	1 170724M1_3	Standard		0.250	3.90	300.610	10711.932	0.351	0.3	12.1	NO	0.999	NO	MM
2 2-4	2 170724M1_4	Standard		0.500	3.90	466.042	10010.674	0.582	0.5	-5.3	NO	0.999	NO	bb
3	3 170724M1_5	Standard		1.000	3.90	1032.631	10207.536	1.265	1.0	4.5	NO	0.999	NO	MM
4 \% $4=$	4 170724M1_6	Standard		2.000	3.90	1981.837	10715.066	2.312	1.9	-3.9	NO	0.999	NO	MM
5	5 170724M1_7	Standard		5.000	3.90	5099.578	10217.659	6.239	5.2	4.6	NO	0.999	NO	bb
6	$6170724 \mathrm{M1}$ _8	Standard		10.000	3.90	8336.075	9647.514	10.801	9.1	-8.9	NO	0.999	NO	bb
7.	7 170724M1_9	Standard		50.000	3.91	43091.355	9325.974	57.757	51.4	2.7	NO	0.999	NO	bb
8. \% $^{\text {a }}$	8 170724M1_10	Standard		100.000	3.90	78910.156	9398.647	104.949	99.3	-0.7	NO	0.999	NO	bb

```
Quantify Compound Summary Report
```


Vista Analytical Laboratory

```
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time
```


Compound name: L-PFDA

Correlation coefficient: $\mathrm{r}=0.999397, \mathrm{r}^{\wedge} 2=0.998794$
Calibration curve: 1.29731 * $x+0.12788$
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996879$
Calibration curve: $-0.004017122^{*} x^{\wedge} 2+1.47948$ * $x+0.229305$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc	RT	Area	IS Area Response, Conc. \%Dev Conc. Flag CoD						F	exclu
	1 170724M1_3	Standard	0.250	4.01	116.059	5712.626	0.254	0.0	-93.3	NO	0.997	NO	bbX
2.WU?	2 170724M1_4	Standard	0.500	4.02	436.336	5926.817	0.920	0.5	-6.5	NO	0.997	NO	bb
3.	3 170724M1_5	Standard	1.000	4.01	704.575	5605.082	1.571	0.9	-9.1	NO	0.997	NO	bb
4	4 170724M1_6	Standard	2.000	4.01	1476.953	6044.566	3.054	1.9	-4.0	NO	0.997	NO	db
5. ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	4.02	3942.699	5463.454	9.021	6.0	20.8	NO	0.997	NO	bb
6.	6 170724M1_8	Standard	10.000	4.02	6715.274	5614.961	14.950	10.2	2.3	NO	0.997	NO	$b b$
7. 7, 1 a	7 170724M1_9	Standard	50.000	4.02	29821.402	6078.795	61.323	47.4	-5.2	NO	0.997	NO	bb
8 8	8170724 M 1 _10	Standard	100.000	4.02	56335.957	6441.568	109.321	102.0	2.0	NO	0.997	NO	$b b$

Dataset:
U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time

Compound name: L-N-MeFOSAA

Correlation coefficient: $\mathrm{r}=0.999780, \mathrm{r}^{\wedge} 2=0.999560$
Calibration curve: 1.47015 * x + 0.088336
Response type: Internal Std (Ref 68), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-N-EtFOSAA

Correlation coefficient: $\mathrm{r}=0.999919, \mathrm{r}^{2} 2=0.999838$
Calibration curve: $1.21714^{*} \mathrm{x}+0.0255867$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time

Compound name: L-PFUnA

Coefficient of Determination: $R^{\wedge} 2=0.998430$
Calibration curve: $-0.0020331^{*} x^{\wedge} 2+0.901478$ * $x+0.00751751$
Response type: Internal Std (Ref 70), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc RT		Area	IS Area	Response Conc.		\%Dev Conc. Flag		- CoD \times CoD Flag $x=$ excluded		
	1 170724M1_3	Standard	0.250	4.18	1408.556	65735.461	0.268	0.3	15.6	NO	0.998	NO	bb
	2 170724M1_4	Standard	0.500	4.19	2456.148	63870.914	0.481	0.5	5.1	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	4.19	4367.807	64348.984	0.848	0.9	-6.5	NO	0.998	NO	bb
	4 170724M1_6	Standard	2.000	4.19	9271.418	67160.539	1.726	1.9	-4.3	NO	0.998	NO	bb
	5 170724M1_7	Standard	5.000	4.19	22206.646	66089.180	4.200	4.7	-6.0	NO	0.998	NO	bb
	6 170724M1_8	Standard	10.000	4.19	40104.945	61335.543	8.173	9.3	-7.5	NO	0.998	NO	bb
	7 170724M1_9	Standard	50.000	4.19	187190.781	55960.629	41.813	52.6	5.2	NO	0.998	NO	bb
	8 170724M1_10	Standard	100.000	4.19	357250.000	64722.215	68.997	98.3	-1.7	NO	0.998	NO	bb

Compound name: L-PFDS

Coefficient of Determination: $R^{\wedge} 2=0.998893$
Calibration curve: -0.00022062 * $x^{\wedge} 2+0.0913899$ * $x+-0.00210506$
Response type: Internal Std (Ref 70), Area * (IS Conc. / IS Area)
Curve type: 2 nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	\# Name \quad Type		Std. Conc	RT	Area	IS Área	Response	Conc.	\%Dev Conc Flag CoD			CoD Flag $x=$ excluded	
1. 2. $^{\text {a }}$	1 170724M1_3	Standard	0.250	4.24	125.500	65735.461	0.024	0.3	13.7	NO	0.999	NO	bb
2 2, mem	2 170724M1_4	Standard	0.500	4.24	217.016	63870.914	0.042	0.5	-2.3	NO	0.999	NO	MM
	3 170724M1_5	Standard	1.000	4.23	432.153	64348.984	0.084	0.9	-5.6	NO	0.999	NO	bb
4.	4 170724M1_6	Standard	2.000	4.24	998.163	67160.539	0.186	2.1	3.3	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	4.23	2251.549	66089.180	0.426	4.7	-5.3	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	4.23	4080.028	61335.543	0.831	9.3	-6.7	NO	0.999	NO	bb
7.4	7 170724M1_9	Standard	50.000	4.24	18621.564	55960.629	4.160	52.1	4.2	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	4.23	35549.465	64722.215	6.866	98.6	-1.4	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROiresults\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-PFDOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999677$
Calibration curve: $-0.000480882^{*} x^{\wedge} 2+0.928226$ * $x+0.197542$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

			Std Conc RT Mrea			"IS Area	Response	Conc. 0.2	\%Dev Conc Flag = CoD CoD Flag x=excluded				
1	1 170724M1_3	Standard	0.250	4.34	212.884	6396.985	0.416		-5.9	NO	1.000	NO	MM
2	2 170724M1_4	Standard	0.500	4.35	275.894	5619.458	0.614	0.4	-10.3	NO	1.000	NO	bb
$3=4$	3 170724M1_5	Standard	1.000	4.35	576.941	5998.723	1.202	1.1	8.3	NO	1.000	NO	bb
4	4 170724M1_6	Standard	2.000	4.35	1144.260	6584.378	2.172	2.1	6.5	NO	1.000	NO	bb
5 5 mix	5 170724M1_7	Standard	5.000	4.35	2601.126	6419.244	5.065	5.3	5.2	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.35	4871.013	6690.135	9.101	9.6	-3.6	NO	1.000	NO	bb
7	7 170724M1_9	Standard	50.000	4.35	21850.346	6031.607	45.283	49.9	-0.3	NO	1.000	NO	bb
$8+2$	8 170724M1_10	Standard	100.000	4.35	43781.789	6198.479	88.291	100.1	0.1	NO	1.000	NO	bb

Compound name: L-N-MeFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999627$
Calibration curve: -0.00044986 * $x^{\wedge} 2+0.466744$ * $x+0.00081322$
Response type: Internal Std (Ref 72), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc	RT	Area	IS Area	Response Conc.		\%Dev Conc. Flag		COD	oD Flag $x=$ excluded	
	1 170724M1_3	Standard	0.250	4.39	226.279	27834.387	0.102	0.2	-13.6	NO	1.000	NO	bb
	2 170724M1_4	Standard	0.500	4.39	521.665	26795.877	0.243	0.5	4.0	NO	1.000	NO	db
	3 170724M1_5	Standard	1.000	4.39	1023.477	27001.328	0.474	1.0	1.4	NO	1.000	NO	bb
	4 170724M1_6	Standard	2.000	4.39	2223.965	28178.129	0.987	2.1	5.8	NO	1.000	NO	db
	5 170724M1_7	Standard	5.000	4.39	5367.556	27075.477	2.478	5.3	6.7	NO	1.000	NO	bb
	6 170724M1_8	Standard	10.000	4.39	9714.126	27395.363	4.432	9.6	-4.2	NO	1.000	NO	db
	7 170724M1_9	Standard	50.000	4.39	46919.371	26470.068	22.157	49.9	-0.3	NO	1.000	NO	bb
	8 170724M1_10	Standard	100.000	4.39	92806.148	27480.182	42.215	100.1	0.1	NO	1.000	NO	bb

Dataset: U:IQ4.PROlresults\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Compound name: L-PFTrDA

Correlation coefficient: $\mathrm{r}=0.999380, \mathrm{r}^{\wedge} 2=0.998761$
Calibration curve: 10.9107 * x + 1.81788
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999027$
Calibration curve: -0.000821655 * $x^{\wedge} 2+1.15082$ * $x+0.0988466$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

-	\# Name	Type	Std Conc	RT	\% ${ }^{\text {Pex }}$ Area	W4 15 Area	Response	Conc.	\%Der	Conc. Flag	CoD	D Fl	xclud
1 M	1 170724M1_3	Standard	0.250	4.70	1461.198	52611.504	0.347	0.2	-13.7	NO	0.999	NO	MM
2.	2 170724M1_4	Standard	0.500	4.70	2285.720	43220.855	0.661	0.5	-2.3	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	4.70	4798.681	44254.344	1.355	1.1	9.3	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	4.70	9477.179	47041.410	2.518	2.1	5.3	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	4.70	23144.785	45392.488	6.374	5.5	9.5	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	4.70	40819.449	48426.250	10.536	9.1	-8.7	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	4.70	191033.828	42647.246	55.992	50.4	0.8	NO	0.999	NO	bb
8 - 8	8 170724M1_10	Standard	100.000	4.70	370959.375	43405.691	106.829	99.9	-0.1	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO|results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Compound name: L-N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999522$
Calibration curve: $-0.000124307{ }^{*} x^{\wedge} 2+0.388553 * x+0.0202947$
Response type: Internal Std (Ref 74), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. F	Cob	D F	xcluded
1.	1 170724M1_3	Standard	0.250	4.96	337.684	39336.785	0.107	0.2	-10.4	NO	1.000	NO	bb
2 c	2 170724M1_4	Standard	0.500	4.97	613.630	37178.340	0.206	0.5	-4.2	NO	1.000	NO	bb
3 m	3 170724M1_5	Standard	1.000	4.97	1267.991	36953.465	0.429	1.1	5.2	NO	1.000	NO	bb
4×2	4 170724M1_6	Standard	2.000	4.96	2697.465	39886.242	0.845	2.1	6.2	NO	1.000	NO	bb
$5 \sim$	5 170724M1_7	Standard	5.000	4.97	6431.737	37896.902	2.121	5.4	8.3	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.97	11778.675	39747.004	3.704	9.5	-4.9	NO	1.000	NO	MM
7	7 170724M1_9	Standard	50.000	4.96	57443.004	37648.063	19.072	49.8	-0.3	NO	1.000	NO	db
8 -	8 170724M1_10	Standard	100.000	4.97	116042.914	38501.617	37.675	100.1	0.1	NO	1.000	NO	db

Compound name: L-PFHxDA

Coefficient of Determination: $R^{\wedge} 2=0.999355$
Calibration curve: -0.000723556 * $x^{\wedge} 2+1.34849$ * $x+0.265371$
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type		RT ${ }^{\text {a }}$ Area ${ }^{\text {a }}$ Area			Response	Conc, \%Dev Conc. Flag				- CoD Flag $x=$ excluded	
1.4.4.	1 170724M1_3	Standard	0.250	5.07	2816.818	25428.396	0.554	0.2	-14.4	NO	0.999	NO	bb
2	2 170724M1_4	Standard	0.500	5.07	3873.513	21542.566	0.899	0.5	-6.0	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	5.07	7123.665	21611.141	1.648	1.0	2.6	NO	0.999	NO	db
4.4×4	4 170724M1_6	Standard	2.000	5.07	14417.972	22044.896	3.270	2.2	11.5	NO	0.999	NO	bb
5.	$5170724 \mathrm{M} 1 _7$	Standard	5.000	5.07	33676.410	22327.822	7.541	5.4	8.2	NO	0.999	NO	bb
6.	6 170724M1_8	Standard	10.000	5.07	61569.332	22552.494	13.650	10.0	-0.2	NO	0.999	NO	bb
7.	7 170724M1_9	Standard	50.000	5.07	276231.906	21452.613	64.382	48.8	-2.3	NO	0.999	NO	bb
8 -	8 170724M1_10	Standard	100.000	5.07	545977.438	21228.160	128.597	100.6	0.6	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Compound name: L-PFODA

Correlation coefficient: $\mathrm{r}=0.999510, \mathrm{r}^{\wedge} 2=0.999020$
Calibration curve: 1.27272 * x + 0.164132
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

(3.	\# Name	Type	Std. Conc	RT	Area	IS Area	ponse		Dev		CoD	DF	xcluded
-	1 170724M1_3	Standard	0.250	5.43	1979.263	25428.396	0.389	0.2	-29.3	NO	0.999	NO	db
2.4	2 170724M1_4	Standard	0.500	5.44	3335.536	21542.566	0.774	0.5	-4.1	NO	0.999	NO	bb
3. ${ }^{\text {a }}$ (ty	3 170724M1_5	Standard	1.000	5.44	6573.281	21611.141	1.521	1.1	6.6	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	5.44	13511.143	22044.896	3.064	2.3	13.9	NO	0.999	NO	bb
	5 170724M1_7	Standard	5.000	5.44	32601.881	22327.822	7.301	5.6	12.1	NO	0.999	NO	bb
6 , ${ }^{\text {atw }}$	6 170724M1_8	Standard	10.000	5.44	59011.938	22552.494	13.083	10.2	1.5	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	5.43	274924.375	21452.613	64.077	50.2	0.4	NO	0.999	NO	bb
8 - mex	8 170724M1_10	Standard	100.000	5.44	534414.688	21228.160	125.874	98.8	-1.2	NO	0.999	NO	bb

Compound name: L-N-MeFOSE

Coefficient of Determination: $R^{\wedge} 2=0.999231$
Calibration curve: $-0.0002267^{*} x^{\wedge} 2+0.440935^{*} x+0.0253969$
Response type: Internal Std (Ref 76), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Method: U:IQ4.PROIMethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-N-EtFOSE

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999487$
Calibration curve: -0.000178806 * $x^{\wedge} 2+0.499525 * x+0.0314909$
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT Area IS Area			Response Conc. \%Dev Conc. Flag CoD CODFlag x=excluded						
1.	1 170724M1_3	Standard	0.250	5.60	493.408	44922.563	0.137	0.2	-15.3	NO	0.999	NO	bb
$2 \times$	2 170724M1_4	Standard	0.500	5.61	913.176	40989.961	0.278	0.5	-1.1	NO	0.999	NO	bb
3 - ${ }^{3}$	3 170724M1_5	Standard	1.000	5.61	1793.908	40752.352	0.550	1.0	3.9	NO	0.999	NO	bb
4.4	4 170724M1_6	Standard	2.000	5.60	3804.083	43177.285	1.101	2.1	7.2	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	5.61	9310.704	42231.566	2.756	5.5	9.3	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	5.61	16671.494	42902.656	4.857	9.7	-3.1	NO	0.999	NO	bb
	7 170724M1_9	Standard	50.000	5.60	80642.430	41552.719	24.259	49.4	-1.3	NO	0.999	NO	bb
8.	8 170724M1_10	Standard	100.000	5.61	163300.031	42219.305	48.349	100.3	0.3	NO	0.999	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.820565
RRF SD: 0.00859343, Relative SD: 1.04726
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

- 7. Name Type \quad T	7. Name Type wrw		Std. Conc	RT	Area	IS Area	Response	onc.	\%Dev	c. F	CoD F	$x=e x c l u d e d$
1.4.ters	1 170724M1_3	Standard	12.500	1.54	12468.349	15228.836	10.234	12.5	-0.2	NO	NO	bb
2.4	2 170724M1_4	Standard	12.500	1.55	12306.770	15122.477	10.173	12.4	-0.8	NO	NO	bb
3.14 ,	3 170724M1_5	Standard	12.500	1.54	12270.478	15004.507	10.222	12.5	-0.3	NO	NO	bb
$4 . \square$	4 170724M1_6	Standard	12.500	1.55	12997.952	15657.887	10.377	12.6	1.2	NO	NO	bb
5	5 170724M1_7	Standard	12.500	1.55	12360.005	15236.371	10.140	12.4	-1.1	NO	NO	bb
6 \% $2+4$	6 170724M1_8	Standard	12.500	1.55	13099.017	15723.977	10.413	12.7	1.5	NO	NO	bb
	7 170724M1_9	Standard	12.500	1.55	12396.041	14974.953	10.347	12.6	0.9	NO	NO	bb
8 crems	$8170724 \mathrm{M1} 10$	Standard	12.500	1.56	12273.032	15114.404	10.150	12.4	-1.0	NO	NO	bb

Dataset: U:IQ4.PRO\results|170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 1.61743
RRF SD: 0.0173613, Relative SD: 1.07339
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	onc	RT	Area	IS Area	Response	Conc.	\%Dev		F1	x=excluded
1.3.4.	1 170724M1_3	Standard	12.500	2.80	24685.725	15228.836	20.262	12.5	0.2	NO	NO	bb
$2.4 x^{*}$	2 170724M1_4	Standard	12.500	2.80	24374.584	15122.477	20.148	12.5	-0.3	NO	NO	bb
3.	3 170724M1_5	Standard	12.500	2.80	24321.555	15004.507	20.262	12.5	0.2	NO	NO	bb
4. ${ }^{\text {a }}$ +	4 170724M1_6	Standard	12.500	2.80	25826.396	15657.887	20.618	12.7	2.0	NO	NO	bb
$3+3,$	5 170724M1_7	Standard	12.500	2.80	24387.125	15236.371	20.007	12.4	-1.0	NO	NO	bb
$6{ }^{3}$	6 170724M1_8	Standard	12.500	2.81	25621.486	15723.977	20.368	12.6	0.7	NO	NO	bb
7	7 170724M1_9	Standard	12.500	2.80	23859.781	14974.953	19.916	12.3	-1.5	NO	NO	bb
8-30	8 170724M1_10	Standard	12.500	2.81	24378.607	15114.404	20.162	12.5	-0.3	NO	NO	bb

Compound name: 13C3-PFBS

Response Factor: 0.202788
RRF SD: 0.00545259 , Relative SD: 2.68881
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFHxA
Response Factor: 0.27639
RRF SD: 0.00850433, Relative SD: 3.07693
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFHpA

Response Factor: 0.305533

RRF SD: 0.0101511, Relative SD: 3.32243
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area IS Area Response Conc. \% Mev. Conc. Fla						CoD CoDFlag x=excluded	
	1 170724M1_3	Standard	12.500	3.48	29540.787	40367.738	3.659	12.0	-4.2	NO	NO	bb
2	2 170724M1_4	Standard	12.500	3.48	28831.211	38823.406	3.713	12.2	-2.8	NO	NO	bb
3,4	3 170724M1_5	Standard	12.500	3.48	29995.297	37967.629	3.950	12.9	3.4	NO	NO	bb
	4 170724M1_6	Standard	12.500	3.48	31499.152	42133.270	3.738	12.2	-2.1	NO	NO	bb
5.	5 170724M1_7	Standard	12.500	3.48	31478.633	39088.754	4.027	13.2	5.4	NO	NO	bb
6.5	$6170724 \mathrm{M1}$ _8	Standard	12.500	3.48	32505.703	41725.730	3.895	12.7	2.0	NO	NO	bb
7.4	7 170724M1_9	Standard	12.500	3.48	30043.684	39920.477	3.763	12.3	-1.5	NO	NO	bb
8.48	8 170724M1_10	Standard	12.500	3.48	29270.332	38428.922	3.808	12.5	-0.3	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 1802-PFHxS

Response Factor: 0.392856
RRF SD: 0.017909, Relative SD: 4.55867
Response type: Internal Std (Ref 80), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	ponse	onc	Dev			D	cl
1 1. k	1 170724M1_3	Standard	12.500	3.55	2948.661	7582.089	4.861	12.4	-1.0	NO		NO	bb
2	2 170724M1_4	Standard	12.500	3.55	2945.944	7302.217	5.043	12.8	2.7	NO		NO	bb
3.4	3 170724M1_5	Standard	12.500	3.55	2882.763	7346.485	4.905	12.5	-0.1	NO		NO	bb
4.4	4 170724M1_6	Standard	12.500	3.55	3069.216	7556.806	5.077	12.9	3.4	NO	...	NO	bb
5.	5 170724M1_7	Standard	12.500	3.55	3078.477	7669.834	5.017	12.8	2.2	NO		NO	bb
6 , 4 , ${ }^{\text {a }}$	$6170724 \mathrm{M1}$-8	Standard	12.500	3.55	2827.577	8056.833	4.387	11.2	-10.7	NO		NO	bb
7.	7 170724M1_9	Standard	12.500	3.55	2990.466	7531.759	4.963	12.6	1.1	NO		NO	bb
$8{ }^{4}+4$	8 170724M1_10	Standard	12.500	3.55	2965.238	7365.456	5.032	12.8	2.5	NO		NO	bb

Compound name: 13C2-6:2 FTS

Response Factor: 0.147485
RRF SD: 0.0133447, Relative SD: 9.04815
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: RF

\%	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Cone Flag	CoD CoDFlag	$\mathrm{x}=$ excluded
	1 170724M1_3	Standard	12.500	3.66	7589.777	55437.824	1.711	11.6	-7.2	NO	NO	bb
2 T	2 170724M1_4	Standard	12.500	3.66	7687.979	52853.566	1.818	12.3	-1.4	NO	NO	bb
$3 \times 4 \times$	3 170724M1_5	Standard	12.500	3.66	7427.477	53444.164	1.737	11.8	-5.8	NO	NO	bb
4	4 170724M1_6	Standard	12.500	3.67	7868.375	55652.324	1.767	12.0	-4.1	NO	NO	bb
5	5 170724M1_7	Standard	12.500	3.66	7544.070	55510.707	1.699	11.5	-7.9	NO	NO	bb
6×1	6 170724M1_8	Standard	12.500	3.67	8079.142	54392.293	1.857	12.6	0.7	NO	NO	bb
7	7 170724M1_9	Standard	12.500	3.67	8775.410	55876.563	1.963	13.3	6.5	NO	NO	bb
	8 170724M1_10	Standard	12.500	3.67	9696.150	55196.383	2.196	14.9	19.1	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults $1170724 \mathrm{M} 11170724 \mathrm{M1} 1-\mathrm{CRV}$ _LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.0675
RRF SD: 0.0457168, Relative SD: 4.28261
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name Type		Std. Conc	RT	Area	IS Area	Response Conc \% Dev Conc. Flag				CoDFlag $x=$ excluded	
4xTlu	1 170724M1_3	Standard	12.500	3.67	55437.824	50417.762	13.745	12.9	3.0	NO	NO	bb
2 2, ${ }^{2}$	2 170724M1_4	Standard	12.500	3.67	52853.566	52862.527	12.498	11.7	-6.3	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.67	53444.164	49459.691	13.507	12.7	1.2	NO	NO	bb
4	4.170724M1_6	Standard	12.500	3.67	55652.324	51986.957	13.381	12.5	0.3	NO	NO	- bb
5 , ${ }^{\text {a }}$	5 170724M1_7	Standard	12.500	3.67	55510.707	54009.070	12.848	12.0	-3.7	NO	NO	bb
$6:-2$	6 170724M1_8	Standard	12.500	3.68	54392.293	53144.688	12.793	12.0	-4.1	NO	NO	bb
	7 170724M1_9	Standard	12.500	3.67	55876.563	49946.758	13.984	13.1	4.8	NO	NO	bb
8 - ${ }^{4}$	8 170724M1_10	Standard	12.500	3.67	55196.383	49303.969	13.994	13.1	4.9	NO	NO	bb

Compound name: 13C5-PFNA

Response Factor: 0.852128
RRF SD: 0.0623325, Relative SD: 7.31492
Response type: Internal Std (Ref 82), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	二29?	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD COD Flag	$\mathrm{x}=$ excluded
1	1 170724M1_3	Standard		12.500	3.85	55001.828	63362.148	10.851	12.7	1.9	NO	NO	bb
2 2 $2=$	2 170724M1_4	Standard		12.500	3.85	54762.438	66233.305	10.335	12.1	-3.0	NO	No	bb
$3-12$	3 170724M1_5	Standard		12.500	3.85	55321.512	62897.914	10.994	12.9	3.2	NO	NO	bb
	4 170724M1_6	Standard		12.500	3.85	59225.996	73098.813	10.128	11.9	-4.9	NO	NO	bb
$5-2$	5 170724M1_7	Standard		12.500	3.85	53341.520	71059.133	9.383	11.0	-11.9	NO	NO	bb
	6 170724M1_8	Standard		12.500	3.85	56161.168	60050.086	11.690	13.7	9.8	NO	NO	bb
7.4	7 170724M1_9	Standard		12.500	3.85	55495.742	67689.273	10.248	12.0	-3.8	NO	NO	bb
8 - ${ }^{2}$	8 170724M1_10	Standard		12.500	3.85	54308.789	58608.688	11.583	13.6	8.7	NO	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 0.0982354
RRF SD: 0.00607611, Relative SD: 6.18526
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C8-PFOS

Response Factor: 0.937247
RRF SD: 0:0310241, Relative SD: 3.31013
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 0.809787
RRF SD: 0.0475325, Relative SD: 5.86975
Response type: Internal Std (Ref 84), Area * (IS Conc. / IS Area)
Curve type: RF

,	\# Name ${ }^{\text {andex }}$ Type		Std. Conc	RT	Area	IS Area	Response	Conc.	Dev	nc. F	F	cluded
	1 170724M1_3	Standard	12.500	4.02	55156.438	71538.672	9.638	11.9	-4.8	NO	NO	bb
2 m	2 170724M1_4	Standard	12.500	4.02	49449.902	67518.039	9.155	11.3	-9.6	NO	NO	bb
$3-12$	3 170724M1_5	Standard	12.500	4.02	59736.465	67946.188	10.990	13.6	8.6	NO	NO	bb
4.	4 170724M1_6	Standard	12.500	4.02	61862.684	75237.898	10.278	12.7	1.5	NO	NO	bb
5 .	5 170724M1_7	Standard	12.500	4.02	53915.461	68309.617	9.866	12.2	-2.5	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	4.02	58734.430	69500.219	10.564	13.0	4.4	NO	NO	bb
7	7 170724M1_9	Standard	12.500	4.03	57610.250	72719.445	9.903	12.2	-2.2	NO	NO	bb
8 8-	8 170724M1_10	Standard	12.500	4.02	49628.984	58601.402	10.586	13.1	4.6	NO	NO	bb

Compound name: 13C2-8:2 FTS

Response Factor: 0.105901
RRF SD: 0.0125981, Relative SD: 11.8961
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: RF

what wim	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc,	\%Dev Conc. Flag CoD CoD Flag x=excluded			
$1 \times$	1 170724M1_3	Standard	12.500	4.01	5712.626	55156.438	1.295	12.2	-2.2	NO	NO	bb
2	2 170724M1_4	Standard	12.500	4.02	5926.817	49449.902	1.498	14.1	13.2	NO	NO	bb
$3-5$	3 170724M1_5	Standard	12.500	4.01	5605.082	59736.465	1.173	11.1	-11.4	NO	NO	bb
$4 \leq \square$	4 170724M1_6	Standard	12.500	4.01	6044.566	61862.684	1.221	11.5	-7.7	NO	NO	bb
$5 \times$	5 170724M1_7	Standard	12.500	4.02	5463.454	53915.461	1.267	12.0	-4.3	No	NO	bb
	6 170724M1_8	Standard	12.500	4.02	5614.961	58734.430	1.195	11.3	-9.7	NO	NO	bb
7	7 170724M1_9	Standard	12.500	4.02	6078.795	57610.250	1.319	12.5	-0.4	No	NO	bb
8	$8170724 \mathrm{M1} 1$ _10	Standard	12.500	4.02	6441.568	49628.984	1.622	15.3	22.6	NO	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.178053
RRF SD: 0.00946183 , Relative SD: 5.31404
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT ${ }^{\text {cose }}$ Area		IS Area	Response	Conc. \% $\%$ Dev		Conc. Flag CoD $\operatorname{CoD~Flag~}$		$\mathrm{x}=$ excluded
1 -	1 170724M1_3	Standard	12.500	4.05	12099.400	66110.742	2.288	12.8	2.8	NO	NO	bb
2 2,	2 170724M1_4	Standard	12.500	4.05	11504.973	63178.059	2.276	12.8	2.3	NO	NO	bb
3 -	3 170724M1_5	Standard	12.500	4.05	11265.637	65533.590	2.149	12.1	-3.5	NO	NO	bb
4 - ${ }^{\text {a }}$	4 170.724M1_6	Standard	12.500	4.05	12505.027	74336.992	2.103	11.8	-5.5	NO	NO.	bb
$5{ }^{-3}+$	5 170724M1_7	Standard	12.500	4.05	12072.939	73722.414	2.047	11.5	-8.0	NO	NO	bb
6×2	6 170724M1_8	Standard	12.500	4.05	11803.941	61426.844	2.402	13.5	7.9	NO	NO	bb
$7 \quad 4 \mathrm{c}$,	7 170724M1_9	Standard	12.500	4.05	11737.307	63456.004	2.312	13.0	3.9	NO	NO	bb
8 \%	8 170724M1_10	Standard	12.500	4.05	11210.404	62878.969	2.229	12.5	0.1	NO	NO	bb

Compound name: d5-N-EtFOSAA

Response Factor: 0.181401

RRF SD: 0.0108902 , Relative SD: 6.0034
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset: U:IQ4.PRO|results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 0.962105
RRF SD: 0.058365, Relative SD: 6.06639
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDoA

Response Factor: 0.0944293
RRF SD: 0.00716752 , Relative SD: 7.59035
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name - \quad Type		\cdots	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. Flag	D Fl	xcluded
+ 0	1 170724M1_3	Standard		12.500	4.34	6396.985	66110.742	1.210	12.8	2.5	NO	NO	bb
$2 \mathrm{~L}-\mathrm{L}$	2 170724M1_4	Standard		12.500	4.35	5619.458	63178.059	1.112	11.8	-5.8	NO	NO	bb
3.2	3 170724M1_5	Standard		12.500	4.35	5998.723	65533.590	1.144	12.1	-3.1	NO	NO	bb
	4 170724M1_6	Standard		12.500	4.35	6584.378	74336.992	1.107	11.7	-6.2	NO	NO	bb
5	5 170724M1_7	Standard		12.500	4.35	6419.244	73722.414	1.088	11.5	-7.8	NO	NO	bb
	6 170724M1_8	Standard		12.500	4.35	6690.135	61426.844	1.361	14.4	15.3	NO	NO	bb
7	7 170724M1_9	Standard		12.500	4.35	6031.607	63456.004	1.188	12.6	0.7	NO	NO	bb
8 -	8 170724M1_10	Standard		12.500	4.35	6198.479	62878.969	1.232	13.0	4.4	NO	NO	bd

Compound name: d3-N-MeFOSA

Response Factor: 0.412958

RRF SD: 0.0270339, Relative SD: 6.54642
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

\%armame			Std. Conc	RT	Area	IS Area	Response Conc. \%Dev Conc. Flag				CoD ${ }^{\text {CoD Flag }} \mathrm{x}=$ excluded	
1.4.	1 170724M1_3	Standard	12.500	4.42	27834.387	66110.742	5.263	12.7	2.0	NO	NO	bb
2×4	2 170724M1_4	Standard	12.500	4.42	26795.877	63178.059	5.302	12.8	2.7	NO	NO	bb
3×4	3 170724M1_5	Standard	12.500	4.42	27001.328	65533.590	5.150	12.5	-0.2	NO	NO	bb
4.4	4 170724M1_6	Standard	12.500	4.42	28178.129	74336.992	4.738	11.5	-8.2	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.42	27075.477	73722.414	4.591	11.1	-11.1	NO	NO	bb
$6.4 .4 x^{4}$	6 170724M1_8	Standard	12.500	4.43	27395.363	61426.844	5.575	13.5	8.0	NO	NO	bb
7. ${ }^{\text {a }}$,	7 170724M1_9	Standard	12.500	4.42	26470.068	63456.004	5.214	12.6	1.0	NO	NO	bb
8 8,	8 170724M1_10	Standard	12.500	4.43	27480.182	62878.969	5.463	13.2	5.8	NO	NO	bb

Compound name: 13C2-PFTeDA

Response Factor: 0.694311
RRF SD: 0.0655535 , Relative SD: 9.44152
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: d5-N-EtFOSA

Response Factor: 0.581331
RRF SD: 0.0422535, Relative SD: 7.26841
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFHxDA

Response Factor: 0.843007
RRF SD: 0.0734853, Relative SD: 8.71705
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: d7-N-MeFOSE

Response Factor: 0.655572
RRF SD: 0.0471708, Relative SD: 7.19536
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc 12.500	$\begin{array}{r} \mathrm{RT} \\ 5.42 \end{array}$	Area45355.609	IS Area Response Conc. \%Dev Conc. Flag					COD CODFlag . x -excluded	
1. ${ }^{\text {a }}$. ${ }^{\text {a }}$	1 170724M1_3	Standard				66110.742	8.576	13.1	4.6	NO	NO	bb
2 L	2 170724M1_4	Standard	12.500	5.42	42298.965	63178.059	8.369	12.8	2.1	NO	NO	bb
3.	3 170724M1_5	Standard	12.500	5.42	42181.715	65533.590	8.046	12.3	-1.8	NO	NO	bb
4.4 W	4 170724M1_6	Standard	12.500	5.42	44882.496	74336.992	7.547	11.5	-7.9	NO	NO	bb
5	5 170724M1_7	Standard	12.500	5.42	42480.406	73722.414	7.203	11.0	-12.1	NO	NO	bb
6	6170724 M 1 -8	Standard	12.500	5.42	44502.430	61426.844	9.056	13.8	10.5	NO	NO	bb
7 \% ex	7 170724M1_9	Standard	12.500	5.42	42011.336	63456.004	8.276	12.6	1.0	NO	NO	bb
8 ,	8 170724M1_10	Standard	12.500	5.42	42682.813	62878.969	8.485	12.9	3.5	NO	NO	bb

Compound name: d9-N-EtFOSE

Response Factor: 0.641067
RRF SD: 0.0456565, Relative SD: 7.12196
Response type: Internal Std (Ref 85), Area * (IS Conc. I IS Area)
Curve type: RF

Quantify Compound Summary Report	MassLynx MassLynx V4.1
Vista Analytical Laboratory	
Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 1.11022e-016, Relative SD: 1.11022e-014
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name Type		Std. Conc	RT	Area	1S Area	Response	Conc.	\%Dev	Cone Flag CoD	CODFlag	$x=$ excluded
14.4	1 170724M1_3	Standard	5.000	3.22	40367.738	40367.738	5.000	5.0	0.0	NO	NO	bb
	2 170724M1_4	Standard	5.000	3.22	38823.406	38823.406	5.000	5.0	0.0	NO	NO	bb
	3 170724M1_5	Standard	5.000	3.22	37967.629	37967.629	5.000	5.0	0.0	NO	NO	bb
$4-4 \times$	4 170724M1_6	Standard	5.000	3.22	42133.270	42133.270	5.000	5.0	0.0	NO	NO	bb
5 +24	5 170724M1_7	Standard	5.000	3.22	39088.754	39088.754	5.000	5.0	0.0	NO	NO	bb
6 6xum	6 170724M1_8	Standard	5.000	3.22	41725.730	41725.730	5.000	5.0	0.0	NO	NO	bb
7	7 170724M1_9	Standard	5.000	3.23	39920.477	39920.477	5.000	5.0	0.0	NO	NO	bb
$8 \times$	8 170724M1_10	Standard	5.000	3.22	38428.922	38428.922	5.000	5.0	0.0	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 80), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT Area 15 Area			Response	Conc.	\%Dev Conc. Flag CoD CoD Flag			$x=e x c l u d e d ~$
1.2	1 170724M1_3	Standard	12.500	3.55	7582.089	7582.089	12.500	12.5	0.0	NO	NO	bb
2	2 170724M1_4	Standard	12.500	3.55	7302.217	7302.217	12.500	12.5	0.0	NO	No	bb
3	3 170724M1_5	Standard	12.500	3.55	7346.485	7346.485	12.500	12.5	0.0	NO	NO	bb
4×5	4 170724M1_6	Standard	12.500	3.55	7556.806	7556.806	12.500	12.5	0.0	NO	NO	bb
5 +	5 170724M1_7	Standard	12.500	3.55	7669.834	7669.834	12.500	12.5	0.0	NO	No	bb
6	6 170724M1_8	Standard	12.500	3.55	8056.833	8056.833	12.500	12.5	0.0	NO	NO	bb
7 mex	7 170724M1_9	Standard	12.500	3.55	7531.759	7531.759	12.500	12.5	0.0	NO	NO	bb
$8-5$	8170724 M 1 _10	Standard	12.500	3.55	7365.456	7365.456	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 9.3831e-017, Relative SD: $9.3831 \mathrm{e}-015$
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT Area IS Area Response				Conc. $\% \mathrm{Dev}$		Conc. Flag CoD CoDFlag x =excluded		
1.4	1 170724M1_3	Standard	12.500	3.67	50417.762	50417.762	12.500	12.5	0.0	NO	NO	bb
$2 \sim 4$.	2 170724M1_4	Standard	12.500	3.67	52862.527	52862.527	12.500	12.5	0.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.67	49459.691	49459.691	12.500	12.5	0.0	NO	NO	bb
$43^{3} \times{ }^{\text {a }}$	4 170724M1_6	Standard	12.500	3.67	51986.957	51986.957	12.500	12.5	0.0	NO	NO	bb
5	5 170724M1_7	Standard	12.500	3.68	54009.070	54009.070	12.500	12.5	0.0	NO	NO	bb
6	6 170724M1_8	Standard	12.500	3.68	53144.688	53144.688	12.500	12.5	0.0	NO	NO	bb
7	7 170724M1_9	Standard	12.500	3.67	49946.758	49946.758	12.500	12.5	0.0	NO	NO	bb
8	8 170724M1_10	Standard	12.500	3.67	49303.969	49303.969	12.500	12.5	0.0	NO	NO	bb

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 9.3831e-017, Relative SD: $9.3831 \mathrm{e}-015$
Response type: Internal Std (Ref 82), Area * (IS Conc. / IS Area)
Curve type: RF

,	\# Name		Std. Conc RT		Area	IS Area	Response Conc. \%Dev Conc. Flag CoD				CoD Flag $x=$ excluded	
P-4	1 170724M1_3	Standard	12.500	3.85	63362.148	63362.148	12.500	12.5	0.0	NO	NO	bb
2 L	2 170724M1_4	Standard	12.500	3.85	66233.305	66233.305	12.500	12.5	0.0	NO	NO	bb
$3-2$	3 170724M1_5	Standard	12.500	3.85	62897.914	62897.914	12.500	12.5	0.0	NO	NO	bb
	4 170724M1_6	Standard	12.500	3.85	73098.813	73098.813	12.500	12.5	0.0	NO	NO	bb
5 - ${ }^{2}$	$5170724 \mathrm{M1} 1$ 7	Standard	12.500	3.85	71059.133	71059.133	12.500	12.5	0.0	NO	NO	bb
6.4	6 170724M1_8	Standard	12.500	3.85	60050.086	60050.086	12.500	12.5	0.0	NO	NO	bb
7 .	7 170724M1_9	Standard	12.500	3.86	67689.273	67689.273	12.500	12.5	0.0	NO	NO	bb
8 8,	8 170724M1_10	Standard	12.500	3.85	58608.688	58608.688	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD CODFl	xcluded
1. ${ }^{\text {a }}$	1 170724M1_3	Standard	12.500	3.90	10984.350	10984.350	12.500	12.5	0.0	NO	NO	bb
2 2.	2 170724M1_4	Standard	12.500	3.90	10756.134	10756.134	12.500	12.5	0.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.90	10707.182	10707.182	12.500	12.5	0.0	NO	NO	bb
4×1	4 170724M1_6	Standard	12.500	3.90	11395.518	11395.518	12.500	12.5	0.0	NO	NO	bb
5 \%	5 170724M1_7	Standard	12.500	3.90	10582.909	10582.909	12.500	12.5	0.0	NO	NO	bb
$6 \mathrm{mex}=2$	6 170724M1_8	Standard	12.500	3.90	10701.979	10701.979	12.500	12.5	0.0	NO	NO	bb
7×2	7 170724M1_9	Standard	12.500	3.91	10546.740	10546.740	12.500	12.5	0.0	NO	NO	bb
$8 \times$	8 170724M1_10	Standard	12.500	3.90	9922.027	9922.027	12.500	12.5	0.0	NO	NO	bb

Dataset:
U:IQ4.PRO\resultsl170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Campound name: 13C6-PFDA

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 84), Area * (IS Conc. / IS Area)
Curve type: RF

Ca	\# Name	Type	Std. Conc	RT Area IS Area			Response	Conc \%Dev Conc. Flag CoD CoD Flag				$x=$ excluded
1	1 170724M1_3	Standard	12.500	4.02	71538.672	71538.672	12.500	12.5	0.0	NO	NO	bb
2 2,	2 170724M1_4	Standard	12.500	4.02	67518.039	67518.039	12.500	12.5	0.0	NO	NO	bb
3 What	3 170724M1_5	Standard	12.500	4.02	67946.188	67946.188	12.500	12.5	0.0	NO	NO	bb
4 -	4 170724M1_6	Standard	12.500	4.02	75237.898	75237.898	12.500	12.5	0.0	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.02	68309.617	68309.617	12.500	12.5	0.0	NO	NO	bb
6	6 170724M1_8	Standard	12.500	4.02	69500.219	69500.219	12.500	12.5	0.0	NO	NO	bb
Y HE	7 170724M1_9	Standard	12.500	4.03	72719.445	72719.445	12.500	12.5	0.0	NO	NO	bb
8 ,	8 170724M1_10	Standard	12.500	4.02	58601.402	58601.402	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C7-PFUnA

Response Factor: 1
RRF SD: 1.45362e-016, Relative SD: $1.45362 \mathrm{e}-014$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 10:21:43 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:22:48 Pacific Daylight Time

Method: U:IQ4.PROWethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Compound name: L-PFBA

Name	D , manay	Acq.Date	Acq. Time
1^. ${ }^{\text {and }} 170724 \mathrm{M1}$ _2	IPA	24-Jul-17	13:40:23
2 170724M1_3	ST170724M1-1 PFC CS-2 17G2422	24-Jul-17	13:51:04
3.	ST170724M1-2 PFC CS-1 17G2119	24-Jul-17	14:01:50
4 -	ST170724M1-3 PFC CS0 17G2423	24-Jul-17	14:12:36
5 : $=$ \% $170724 \mathrm{M} 1 _6$	ST170724M1-4 PFC CS1 17G2424	24-Jul-17	14:23:23
6.1	ST170724M1-5 PFC CS2 17G2425	24-Jul-17	14:34:02
THE 170724M1_8	ST170724M1-6 PFC CS3 17G2118	24-Jul-17	14:44:48
	ST170724M1-7 PFC CS4 17G2426	24-Jul-17	14:55:34
	ST170724M1-8 PFC CS5 17G2427	24-Jul-17	15:06:35
10 (IPA	24-Jul-17	15:17:30
11 [1	SS170724M4-1 PFC SSS 17G2421	24-Jul-17	15:28:15
12. ${ }^{\text {a }}$ 170724M1_13	IPA	24-Jul-17	15:39:01

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PROYresults\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Method: U:IQ4.PROIMethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Compound name: L-PFBA
Correlation coefficient: $\mathrm{r}=0.999344, \mathrm{r}^{\wedge} 2=0.998689$
Calibration curve: 1.18236 * $x+0.171127$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFPeA

Correlation coefficient: $\mathrm{r}=0.999647, \mathrm{r}^{\wedge} 2=0.999293$
Calibration curve: 1.00022 * x + 0.0979501
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFBS
Correlation coefficient: $\mathrm{r}=0.999611, \mathrm{r}^{\wedge} 2=0.999223$
Calibration curve: 1.85223 * x + 0.0753175
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFHxA
Correlation coefficient: $\mathrm{r}=0.999652, \mathrm{r}^{\wedge} 2=0.999303$
Calibration curve: 1.50961 * x + 0.157846
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qid
$\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, July 25, } 2017 \text { 09:59:38 Pacific Daylight Time } \\ \text { Printed: } & \text { Tuesday, July 25, } 2017 \text { 10:13:40 Pacific Daylight Time }\end{array}$
Printed: Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFHpA
Correlation coefficient: $\mathrm{r}=0.999802, \mathrm{r}^{\wedge} 2=0.999604$
Calibration curve: 1.25293 * x + 0.085568
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFHxS
Correlation coefficient: $\mathrm{r}=0.999641, \mathrm{r}^{\wedge} 2=0.999282$
Calibration curve: 1.58457 * x + 0.244547
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-6:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.003130533^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFOA
Correlation coefficient: $\mathrm{r}=0.999233, \mathrm{r}^{\wedge} 2=0.998466$
Calibration curve: 0.970801 * $x+0.199778$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset:
U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFHpS
Correlation coefficient: $\mathrm{r}=0.999150, \mathrm{r}^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * $x+0.014645$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed
Tuesday, July 25, 2017 10:13:40 Pacific Daylight Time

Compound name: L-PFNA

Correlation coefficient: $\mathrm{r}=0.998636, \mathrm{r}^{\wedge} 2=0.997274$
Calibration curve: 1.0977 * x + 0.147355
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Compound name: L-PFOSA
Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * $x+0.0489398$
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: U:IQ4.PRO|results\170724M11170724M1-CRV_LBT.qld

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Compound name: L-PFOS
Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999053$
Calibration curve: $-0.00141568{ }^{*} x^{\wedge} 2+1.19711$ * x + 0.0153867
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Compound name: L-PFDA
Correlation coefficient: $\mathrm{r}=0.999397, \mathrm{r}^{\wedge} 2=0.998794$
Calibration curve: 1.29731 * x + 0.12788
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Compound name: L-8:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996879$
Calibration curve: -0.00401712 * $x^{\wedge} 2+1.47948$ * $x+0.229305$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Compound name: L-N-MeFOSAA
Correlation coefficient: $\mathrm{r}=0.999780, \mathrm{r}^{\wedge} 2=0.999560$
Calibration curve: 1.47015 * $x+0.088336$
Response type: Internal Std (Ref 68), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PROIresults\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Compound name: L-N-EtFOSAA
Correlation coefficient: $\mathrm{r}=0.999919, \mathrm{r}^{\wedge} 2=0.999838$
Calibration curve: 1.21714 *x + 0.0255867
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Compound name: L-PFUnA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998430$
Calibration curve: -0.0020331 * $x^{\wedge} 2+0.901478{ }^{*} x+0.00751751$
Response type: Internal Std (Ref 70), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:28 Pacific Daylight Time

Compound name: L-PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998893$
Calibration curve: -0.00022062 * $x^{\wedge} 2+0.0913899$ * $x+-0.00210506$
Response type: Internal Std (Ref 70), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Compound name: L-PFDoA
Coefficient of Determination: $R^{\wedge} 2=0.999677$
Calibration curve: $-0.000480882^{*} x^{\wedge} 2+0.928226{ }^{*} x+0.197542$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PROIresults1170724M11170724M1-CRV LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Compound name: L-N-MeFOSA
Coefficient of Determination: $R^{\wedge} 2=0.999627$
Calibration curve: $-0.00044986{ }^{*} x^{\wedge} 2+0.466744 * x+0.00081322$
Response type: Internal Std (Ref 72), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700906

Vista Analytical Laboratory Q1
Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Compound name: L-PFTrDA
Correlation coefficient: $\mathrm{r}=0.999380, \mathrm{r}^{\wedge} 2=0.998761$
Calibration curve: $10.9107{ }^{*} x+1.81788$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Compound name: L-PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999027$
Calibration curve: $-0.000821655^{*} x^{\wedge} 2+1.15082{ }^{*} x+0.0988466$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Compound name: L-N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999522$
Calibration curve: $-0.000124307^{*} x^{\wedge} 2+0.3885533^{*} x+0.0202947$
Response type: Internal Std (Ref 74), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Compound name: L-PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999355$
Calibration curve: $-0.000723556{ }^{*} x^{\wedge} 2+1.34849$ * $x+0.265371$
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results $1170724 \mathrm{M} 1 \backslash 170724 \mathrm{M} 1-\mathrm{CRV}$ _LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Compound name: L-PFODA
Correlation coefficient: $\mathrm{r}=0.999510, \mathrm{r}^{\wedge} 2=0.999020$
Calibration curve: 1.27272 * $x+0.164132$
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Work Order 1700906

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:49 Pacific Daylight Time

Compound name: L-N-MeFOSE

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999231$
Calibration curve: $-0.0002267^{*} x^{\wedge} 2+0.440935^{*} x+0.0253969$
Response type: Internal Std (Ref 76), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:14:54 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Compound name: L-N-EtFOSE
Coefficient of Determination: $R^{\wedge} 2=0.999487$
Calibration curve: $-0.000178806^{*} x^{\wedge} 2+0.499525$ * $x+0.0314909$
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

13C3-PFBA

13C3-PFPeA

13C3-PFBS

L-PFHxA

$\begin{array}{rr}\text { 13C2-PFHxA } \\ & \\ & \text { F9:MRM of } 1 \text { channel,ES- } \\ 315>269.8\end{array}$

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422
L-PFHpA

13C4-PFHpA

18O2-PFHxS

13C2-PFOA

L-PFOA

13C2-PFOA

| Dataset: | U:\|Q4.PROIresults|170724M11170724M1-CRV_LBT.qld |
| :--- | :--- |
| | |
| Last Altered: | Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time |
| Printed: | Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time |

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

13C5-PFNA

13C8-PFOSA

13C8-PFOS

L-PFDA

13C2-PFDA

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

d3-N-MeFOSAA

Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

13C2-PFUnA

13C2-PFDoA

d3-N-MeFOSA

L-PFTrDA

F57:MRM of 2 channels,ES $662.9>319$

13C2-PFDoA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

Dataset:	U:IQ4.PROIresults 1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_3, Date: 24-Jul-2017, Time: 13:51:04, ID: ST170724M1-1 PFC CS-2 17G2422, Description: PFC CS-2 17G2422

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

13C3-PFBA

13C3-PFPeA

L-PFBS

13C3-PFBS

L-PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17 G2119

13C4-PFHpA

L-6:2 FTS

22:MRM of 2 channels,ES 427.1>80

13C2-PFOA

L-PFOA

F19:MRM of 2 channels,ES
$413>169$

13C2-PFOA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

L-PFNA

	F25:MRM of 2 channels,ES-	
	$462.9>418.8$	
	L-PFNA	$4.981 \mathrm{e}+004$
100	3.85	

13C5-PFNA

L-PFOSA

13C8-PFOSA

F30:MRM of 2 channels,ES-

13C8-PFOS

L-PFDA

13C2-PFDA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

13C2-PFUnA
F44:MRM of 1 channel,ES
$565>519.8$

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17 G2119

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

13C2-PFHxDA

13C2-PFHxDA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_4, Date: 24-Jul-2017, Time: 14:01:50, ID: ST170724M1-2 PFC CS-1 17G2119, Description: PFC CS-1 17G2119

d7-N-MeFOSE

d9-N-EtFOSE

13C3-PFHxS

13C5-PFHxA

13C8-PFOA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Dataset:	U:IQ4.PROIresults1170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

13C3-PFBA

13C3-PFPeA

F6:MRM of 2 channels,ES-
$299>99$

13C3-PFBS

L-PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PROIresults\170724M11170724M1-CRV_LBT. qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17 G 2423

L-PFHxS

1802-PFHxS

L-6:2 FTS

13C2-PFOA

L-PFOA

F19:MRM of 2 channels,ES

13C2-PFOA

Dataset:	U:IQ4.PROIresults\170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

\section*{L-PFNA

F25:MRM of 2 channels,ES-

L-PFOSA

13C8-PFOSA

L-PFOS

30:MRM of 2 channels,ES-
$499>99$
$8.945 \mathrm{e}+003$

13C8-PFOS

L-PFDA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

13C2-8:2 FTS

L-N-MeFOSAA
 F45:MRM of 2 channels,ES$570.1>419$ $2.298 \mathrm{e}+004$

d3-N-MeFOSAA

L-N-EtFOSAA

d5-N-EtFOSAA

F43:MRM of 2 channels,ES-
$562.9>269$

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$
13C2-PFUnA $1.304 \mathrm{e}+006$

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17G2423

L-PFDoA

F51:MRM of 2 channels,ES$612.9>569$ $1.338 \mathrm{e}+004$

13C2-PFDoA

L-N-MeFOSA

F34:MRM of 2 channels,ES$512.1>219$ $9.903 \mathrm{e}+003$

d3-N-MeFOSA

L-PFTrDA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17 G2423

d9-N-EtFOSE

13C4-PFBA

13C3-PFHxS

13C5-PFHxA

13C8-PFOA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_5, Date: 24-Jul-2017, Time: 14:12:36, ID: ST170724M1-3 PFC CS0 17G2423, Description: PFC CS0 17 G2423

13C7-PFUnA
F46:MRM of 1 channel,ES$570.1>524.8$

Dataset:	U:IQ4.PROIresultsI170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17G2424

13C3-PFBA

L-PFPeA

13C3-PFPeA

L-PFBS

13C3-PFBS

L-PFHxA

FB:MRM of 2 channels,ES-
$313.2>119$

13C2-PFHxA F9:MRM of 1 channel,ES$315>269.8$ $3.054 \mathrm{e}+005$

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17G2424

13C4-PFHpA

L-PFHxS

1802-PFHxS

L-6:2 FTS

13C2-PFOA

L-PFOA

13C2-PFOA

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

L-PFOSA

13C8-PFOSA

L-PFOS

13C8-PFOS

L-PFDA

13C2-PFDA

Dataset:	U:IQ4.PROlresults\170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

\section*{L-8:2 FTS
 | | F40:MRM of 2 channels,ES- |
| ---: | ---: |
| | $527>506.9$ |
| $2.751 \mathrm{e}+004$ | |
| 100 | |}

13C2-8:2 FTS

L-N-MeFOSAA

d3-N-MeFOSAA

L-N-EtFOSAA

d5-N-EtFOSAA

L-PFUnA

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

L-N-MeFOSA

d3-N-MeFOSA

L-PFTrDA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17 G2424

13C2-PFTeDA
F59:MRM of 2 channels,ES-

d5-N-EtFOSA

L-PFHxDA

 F60:MRM of 2 channels,ES
 $812.8>219$

13C2-PFHxDA

L-PFODA

13C2-PFHxDA
F61:MRM of 1 channel,ES-

Dataset:	U:IQ4.PROIresults\170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_6, Date: 24-Jul-2017, Time: 14:23:23, ID: ST170724M1-4 PFC CS1 17G2424, Description: PFC CS1 17G2424

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17 G2425

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

L-PFHpA

F14:MRM of 2 channels,ES

L-PFHxS

1802-PFHxS

L-6:2 FTS

13C2-PFOA

L-PFOA

F19:MRM of 2 channels,ES
413 > 368.7 $5.433 e+005$

	L-PFOA	$5.433 \mathrm{e}+005$
$100{ }^{-}$	3.68	
	2.61 e 4	
\%-	$\begin{gathered} 539048 \\ \text { bb } \end{gathered}$	

13C2-PFOA

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17 G2425

L-PFNA

| | F25:MRM of 2 channels,ES- |
| ---: | ---: | ---: |
| | $462.9>418.8$ |
| 100 | $5.763 \mathrm{e}+005$ |

13C5-PFNA

13C8-PFOSA

L-PFOS

F30:MRM of 2 channels,ES-
$499>99$
$4.346 \mathrm{e}+004$

13C8-PFOS

L-PFDA

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17 G2425

L-8:2 FTS

F40:MRM of 2 channels,ES-
527

F40:MRM of 2 channels,ES-
$527>80$

13C2-8:2 FTS

L-N-MeFOSAA

F45:MRM of 2 channels,ES-
$570.1>483$

d3-N-MeFOSAA

L-N-EtFOSAA

d5-N-EtFOSAA

43:MRM of 2 channels,ES $562.9>269$

13C2-PFUnA

Dataset: U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

L-PFDS

L-PFDoA

13C2-PFDoA

L-N-MeFOSA

d3-N-MeFOSA
F37:MRM of 1 channel,ES-

L-PFTrDA

13C2-PFDoA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

L-N-EtFOSA

d5-N-EtFOSA

L-PFHxDA

13C2-PFHxDA
F61:MRM of 1 channel,ES-

L-PFODA

13C2-PFHxDA

Dataset:	U:IQ4.PROTresults11 70724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_7, Date: 24-Jul-2017, Time: 14:34:02, ID: ST170724M1-5 PFC CS2 17G2425, Description: PFC CS2 17G2425

L-N-MeFOSE

d7-N-MeFOSE
F54:MRM of 1 channel,ES

L-N-EtFOSE

d9-N-EtFOSE

13C4-PFBA

13C3-PFHxS

13C5-PFHxA
F10:MRM of 1 channel,ES
$318>272.9$ $9.800 \mathrm{e}+005$

13C8-PFOA

Dataset:	U:IQ4.PROIresultst170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

13C3-PFBA

13C3-PFPeA

L-PFBS

F6:MRM of 2 channels,ES-
$299>99$

13C3-PFBS

L-PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

13C4-PFHpA

L-PFHxS

1802-PFHxS

L-6:2 FTS

F22:MRM of 2 channels,ES-
$427.1>407$
100

13C2-PFOA

L-PFOA

13C2-PFOA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G 2118

F25:MRM of 2 channels,ES-

L-PFOSA

13C8-PFOSA

L-PFOS

13C8-PFOS

L-PFDA

13C2-PFDA

Dataset:	U:IQ4.PROlresults\170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17G2118

L-N-EtFOSAA

d5-N-EtFOSAA

L-PFUnA

F43:MRM of 2 channels,ES

13C2-PFUnA

Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G2118

L-PFDS

13C2-PFUnA

13C2-PFDoA

L-N-MeFOSA

F34:MRM of 2 channels,ES-

F34:MRM of 2 channels,ES$512.1>219$ $1.097 e+005$

d3-N-MeFOSA

L-PFTrDA

F57:MRM of 2 channels,ES-
$662.9>319$

13C2-PFDoA

Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G2118

L-PFTeDA

 13C2-PFTeDA

L-N-EtFOSA

d5-N-EtFOSA

L-PFHxDA

13C2-PFHxDA

L-PFODA

13C2-PFHxDA

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_8, Date: 24-Jul-2017, Time: 14:44:48, ID: ST170724M1-6 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Dataset:	U:\Q4.PROIresults\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

13C3-PFBA

L-PFPeA

13C3-PFPeA

L-PFBS

F6:MRM of 2 channels,ES-
$299>99$

13C3-PFBS

L-PFHxA

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

L-PFHpA

F14:MRM of 2 channels,ES$363>169$

13C4-PFHpA

1802-PFHxS

13C2-PFOA

13C2-PFOA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17 G2426

L-PFNA

13C5-PFNA

L-PFOSA

13C8-PFOSA

L-PFOS

13C8-PFOS

L-PFDA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

\section*{L-8:2 FTS

F40:MRM of 2 channels,ES
$527>80$

13C2-8:2 FTS

L-N-MeFOSAA

L-N-EtFOSAA

d5-N-EtFOSAA

L-PFUnA

13C2-PFUnA
F44:MRM of 1 channel,ES$565>519.8$

Dataset:	U:IQ4.PROVresults\170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV LBT.qld
 Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
 Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17 G2426

13C2-PFTeDA

d5-N-EtFOSA

13C2-PFHxDA

L-PFODA

13C2-PFHxDA

Dataset:	U:IQ4.PRO\|results1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_9, Date: 24-Jul-2017, Time: 14:55:34, ID: ST170724M1-7 PFC CS4 17G2426, Description: PFC CS4 17G2426

L-N-MeFOSE

d7-N-MeFOSE

L-N-EtFOSE

d9-N-EtFOSE

13C4-PFBA

13C3-PFHxS

13C5-PFHxA
F10:MRM of 1 channel,ES $318>272.9$ $9.821 \mathrm{e}+005$

13C8-PFOA

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

13C3-PFBA

L-PFPeA

13C3-PFPeA

L-PFBS

L-PFHxA

13C3-PFBS

13C2-PFHxA
F9:MRM of 1 channel,ES$315>269.8$ $2.536 \mathrm{e}+005$

Dataset:	U:IQ4.PROlresults\170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

L-PFHpA

F14:MRM of 2 channels,ES-
$363>318.9$

13C4-PFHpA

L-PFHxS

1802-PFHxS

L-6:2 FTS

13C2-PFOA

L-PFOA

13C2-PFOA

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17 G2427

L-PFNA

F25:MRM of 2 channels,ES-

13C5-PFNA

L-PFOSA

13C8-PFOSA
F32:MRM of 1 channel,ES-

L-PFOS

F30:MRM of 2 channels,ES-

13C8-PFOS

L-PFDA

13C2-PFDA

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

13C2-8:2 FTS

L-N-MeFOSAA

d3-N-MeFOSAA

L-N-EtFOSAA

d5-N-EtFOSAA
F49:MRM of 1 channel,ES-
$589.3>419$ $2.214 e+005$

L-PFUnA

 F43:MRM of 2 channels, ES-
 $562.9>269$ $1.851 \mathrm{e}+006$

13C2-PFUnA
F44:MRM of 1 channel,ES-

Dataset: U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

13C2-PFUnA

13C2-PFDoA

L-N-MeFOSA

F34:MRM of 2 channels,ES
$512.1>219$ $1.030 \mathrm{e}+006$

d3-N-MeFOSA

L-PFTrDA

13C2-PFDoA

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

d5-N-EtFOSA

L-PFHxDA

F60:MRM of 2 channels,ES-
$812.8>219$ $9.716 \mathbf{e}+005$

13C2-PFHxDA

L-PFODA

13C2-PFHxDA

Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:11:42 Pacific Daylight Time

Name: 170724M1_10, Date: 24-Jul-2017, Time: 15:06:35, ID: ST170724M1-8 PFC CS5 17G2427, Description: PFC CS5 17G2427

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

$A_{1 / 25 / 17}$

13C2-PFHxA
IPA IPA

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 10:25:21 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:25:34 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

1802-PFHxS
$\begin{aligned} & \text { IPA IPA } \text { F18:MRM of } 1 \text { channel,ES- } \\ & 403>102.6\end{aligned}$

13C2-PFOA
IPA IPA F20:MRM of 1 channel,ES$14.9>369.7$ $1.000 \mathrm{e}-003$
Dataset: Untitled

Last Altered: Tuesday, July 25, 2017 10:25:21 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:25:34 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

13C8-PFOSA
IPA IPA \quad F32:MRM of 1 channel, ES-
$506.1>77.7$

$\begin{array}{lr}\text { 13C8-PFOS } \\ \text { IPA IPA } & \\ & 507>79.9\end{array}$

13C2-PFDA
IPA IPA
F36:MRM of 1 channel,ES-

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 10:25:21 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:25:34 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

L-8:2 FTS
IPA IPA
F40:MRM of 2 channels,ES-
$527>506.9$
$5.011 \mathrm{e}+002$

L-N-MeFOSAA

d3-N-MeFOSAA

IPA IPA F47:MRM of 1 channel,ES-

L-N-EtFOSAA

L-PFUnA

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 10:25:21 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:25:34 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

d3-N-MeFOSA

L-PFTrDA

IPA IPA F57:MRM of 2 channels,ES$662.9>618.9$

13C2-PFDoA

Dataset: Untitled

Last Altered: Tuesday, July 25, 2017 10:25:21 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:25:34 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

d5-N-EtFOSA
IPA IPA F42:MRM of 1 channel,ES-

13C2-PFHxDA

IPA IPA \quad F61:MRM of 1 channel,ES
$815>769.7$

13C2-PFHxDA

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 10:25:21 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:25:34 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

d7-N-MeFOSE

IPA IPA F54:MRM of 1 channel,ES-

d9-N-EtFOSE
IPA IPA F56:MRM of 1 channel,ES-

$\begin{array}{lr}\text { 13C3-PFHxS } & \\ \text { IPA IPA } & \text { F17:MRM of } 1 \text { channel,ES- } \\ - & 401.9>79.9\end{array}$

13C5-PFHxA	
IPAIPA	F10:MRM of 1 channel,ES-
$318>272.9$	
$1.000 \mathrm{e}-003$	

13C8-PFOA
IPA IPA

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 10:25:21 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:25:34 Pacific Daylight Time

Name: 170724M1_11, Date: 24-Jul-2017, Time: 15:17:30, ID: IPA, Description: IPA

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-12_LBT.qld
Last Altered:	Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:29:57 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

Dataset: U:IQ4.PRO\results\170724M11170724M1-12_LBT.qld

Last Altered:	Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:30:17 Pacific Daylight Time

Method: U:IQ4.PROIMethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

	\# Name	4,	Trace	We Area	IS Resp	RRF	Wt Nol	RT	Conc.	\%Rec	
1 1	21 L-PFOSA		$498.1>77.8$	5708.063	6500.262		1.000	3.86	10.41	104.14	70-130
2	23 L-PFOS		$499>79.9$	8177.322	10272.242		1.000	3.90	8.38	83.83	
3×4	25 L-PFDA		$513>468.8$	54158.824	56205.117		1.000	4.02	9.19	91.86	
4.	27 L-8:2 FTS		$527>506.9$	6486.744	5254.963		1.000	4.02	10.58	105.78	
5	29 L-N-MeFOSAA		$570.1>419$	14470.231	11971.411		1.000	4.06	10.22	102.17	
6	31 L-N-EtFOSAA		$584.2>419$	12443.312	12068.997		1.000	4.12	10.57	105.67	
7	33 L-PFUnA		$562.9>518.9$	37650.797	59926.145		1.000	4.19	8.88	88.81	
8 -	35 L-PFDS		$598.9>98.7$	3869.410	59926.145		1.000	4.24	9.05	90.52	V

Dataset: U:IQ4.PRO\results1170724M11170724M1-12_LBT.qld

Last Altered: Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:30:36 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS Full 7-24-17 LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

	\# Name	Trace	Area	IS Resp	RRF Wt Nol	RT	Conc.	\%Re\%	
1: $2=4$	37 L-PFDoA	$612.9>318.8$	4450.692	5849.101	1.000	4.35	10.09	100.87	$70-130$
2	39 L-N-MeFOSA	$512.1>168.9$		26376.414	1.000			((
3 3 \% ${ }^{\text {a }}$	41 L-PFTrDA	$662.9>618.9$	52553.016	5849.101	1.000	4.52	10.13	101.27	$70-130$
	43 L-PFTeDA	$712.9>668.8$	38350.820	40951.586	1.000	4.70	10.16	101.60	\downarrow
5	$45 \mathrm{~L}-\mathrm{N}-\mathrm{EtFOSA}$	$526.1>168.9$	12.455	37573.375	1.000	4.97		()	
6	47 L-PFHxDA	$812.8>768.9$	608.407	19865.295	1.000	5.07			
17	49 L-PFODA	$912.8>868.8$	230.613	19865.295	1.000	5.44		,	
	51 L-N-MeFOSE	$616.1>58.9$	26.252	40883.168	1.000	5.45			

Dataset::	U:IQ4.PROlresults1170724M11170724M1-12_LBT.qld
Last Altered:	Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:30:43 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

$$
\begin{aligned}
& \text { (A) Not included in } \\
& \text { SS. } \\
& \text { AC } 7 / 25 / 17
\end{aligned}
$$

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M11170724M1-12_LBT.qld
Last Altered: Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:30:43 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Dataset:	U:IQ4.PROIresults1170724M11170724M1-12_LBT.qld
Last Altered:	Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:29:30 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL LBT.cdb 25 Jul 2017 09:59:38

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

13C3-PFBA

13C3-PFPeA

13C3-PFBS

L-PFHxA

13C2-PFHxA

Printed: \quad Tuesday, July 25, 2017 10:29:30 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

L-PFHpA

F14:MRM of 2 channels,ES-			
	$363>318.9$		
$6.321 e+005$			

13C4-PFHpA

L-PFHxS

1802-PFHxS

L-6:2 FTS

13C2-PFOA

L-PFOA

F19:MRM of 2 channels,ES-
413 > 368.7

13C2-PFOA

Dataset: U:IQ4.PROIresults|170724M11170724M1-12_LBT.qld
Last Altered: Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:29:30 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

L-PFNA

13C5-PFNA

L-PFOSA

13C8-PFOSA

L-PFOS

30:MRM of 2 channels,ES
$499>99$

13C8-PFOS

L-PFDA

Dataset: U:IQ4.PRO\results\170724M11170724M1-12_LBT.qld
Last Altered: Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:29:30 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G 2421

d3-N-MeFOSAA

L-N-EtFOSAA

d5-N-EtFOSAA

L-PFUnA

F43:MRM of 2 channels,ES-
$562.9>269$

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$
13C2-PFUnA 1.114e+006
4.19
599
5.99 e 4
1111329

1111329
bb
Printed: Tuesday, July 25, 2017 10:29:30 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

13C2-PFUnA

13C2-PFDoA

d3-N-MeFOSA

L-PFTrDA

13C2-PFDoA

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

13C2-PFTeDA

L-PFODA

13C2-PFHxDA

Dataset: U:IQ4.PRO\results\170724M1\170724M1-12_LBT.qld
Last Altered: Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:29:30 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

d7-N-MeFOSE

d9-N-EtFOSE

13C4-PFBA

13C3-PFHxS

13C5-PFHxA

13C8-PFOA

Printed: \quad Tuesday, July 25, 2017 10:29:30 Pacific Daylight Time

Analytical Standard Record

Vista Analytical Laboratory
17G1307

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
16 I 1432	13C2-PFHxDA	14-Sep-16	** Vendor **	07-Jan-21	14-Sep-16 14:19 by TLD	0.2
1611433	13C2-PFHxA	14-Sep-16	** Vendor **	08-Apr-21	14-Sep-16 14:22 by TLD	0.2
17B2809	d3-N-Me-FOSAA	28-Feb-17	** Vendor **	28-Feb-18	28-Feb-17 13:24 by EMS	0.5
17B2811	d5-N-EtFOSAA	28-Feb-17	** Vendor **	22-Nov-21	28-Feb-17 13:33 by EMS	0.5
17E1718	18O2-PFHxS	17-May-17	** Vendor **	17-Feb-22	17-May-17 12:46 by INJ	0.529
17 E 2412	13C8-PFOS	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:19 by INJ	0.539
17 E 2413	13C3-PFBS	24-May-17	** Vendor **	02-Aug-21	24-May-17 11:20 by INJ	0.538
17 E 2414	13C3-PFBA	24-May-17	** Vendor **	27-May-21	24-May-17 11:20 by INJ	0.5
17 E 2415	13C2-8:2 FTS	24-May-17	** Vendor **	22-Aug-21	24-May-17 11:21 by INJ	0.522
$17 \mathrm{E} 2416$	13C2-6:2 FTS	24-May-17	** Vendor **	17-Feb-22	24-May-17 11:21 by INJ	0.526
17 E 2417	13C5-PFNA	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:22 by INJ	0.5
17E2418	13C2-PFTeDA	24-May-17	** Vendor **	01-Mar-22	24-May-17 11:22 by INJ	0.5
17 E 2419	13C2-PFUdA	24-May-17	** Vendor **	22-Nov-21	24-May-17 11:23 by INJ	0.5
$17 \mathrm{E} 2420$	13C4-PFHpA	24-May-17	** Vendor **	27-May-21	24-May-17 11:23 by INJ	0.5
17E2421	13C2-PFDoA	24-May-17	** Vendor **	08-Apr-21	24-May-17 11:24 by INJ	0.5
17 G 1303	13C3-PFPeA	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:18 by INJ	0.5
17G1304	13C2-PFOA	13-Jul-17	** Vendor **	12-Feb-21	13-Jul-17 09:25 by INJ	0.5
17G1305	13C8-FOSA-I	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:33 by INJ	0.5
$17 \mathrm{G1306}$	13C2-PFDA	13-Jul-17	** Vendor **	30-Sep-21	13-Jul-17 09:36 by INJ	0.5

Description:	PFC - IS	Expires:	28-Feb-18
Standard Type:	Reagent	Prepared:	13-Jul-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	13-Jul-17 $09: 58$ by INJ

Analyte	CAS Number	Concentration
13C3-PFBS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFTeDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-6:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFPeA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFHpA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFNA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOS	1.25	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory

17G1307

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611432	13C2-PFHxDA	14-Sep-16	** Vendor **	07-Jan-21	14-Sep-16 14:19 by TLD	0.2
1611433	13C2-PFHxA	14-Sep-16	** Vendor **	08-Apr-21	14-Sep-16 14:22 by TLD	0.2
17B2809	d3-N-Me-FOSAA	28-Feb-17	** Vendor **	28-Feb-18	28-Feb-17 13:24 by EMS	0.5
17B2811	d5-N-EtFOSAA	28-Feb-17	** Vendor **	22-Nov-21	28-Feb-17 13:33 by EMS	0.5
17E1718	18O2-PFHxS	17-May-17	** Vendor **	17-Feb-22	17-May-17 12:46 by INJ	0.529
17 E 2412	13C8-PFOS	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:19 by INJ	0.539
17 E 2413	13C3-PFBS	24-May-17	** Vendor **	02-Aug-21	24-May-17 11:20 by INJ	0.538
17E2414	13C3-PFBA	24-May-17	** Vendor **	27-May-21	24-May-17 11:20 by INJ	0.5
17E2415	13C2-8:2 FTS	24-May-17	** Vendor **	22-Aug-21	24-May-17 11:21 by INJ	0.522
17E2416	13C2-6:2 FTS	24-May-17	** Vendor **	17-Feb-22	24-May-17 11:21 by INJ	0.526
17 E 2417	13C5-PFNA	24-May-17	** Vendor **	30-Sep-21	24-May-17 11:22 by INJ	0.5
17 E 2418	13C2-PFTeDA	24-May-17	** Vendor **	01-Mar-22	24-May-17 11:22 by INJ	0.5
17 E 2419	13C2-PFUdA	24-May-17	** Vendor **	22-Nov-21	24-May-17 11:23 by INJ	0.5
17 E 2420	13C4-PFHpA	24-May-17	** Vendor **	27-May-21	24-May-17 11:23 by INJ	0.5
17 E 2421	13C2-PFDoA	24-May-17	** Vendor **	08-Apr-21	24-May-17 11:24 by INJ	0.5
17G1303	13C3-PFPeA	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:18 by INJ	0.5
17G1304	13C2-PFOA	13-Jul-17	** Vendor **	12-Feb-21	13-Jul-17 09:25 by INJ	0.5
17G1305	13C8-FOSA-I	13-Jul-17	** Vendor **	20-Apr-22	13-Jul-17 09:33 by INJ	0.5
17 G 1306	13C2-PFDA	13-Jul-17	** Vendor **	30-Sep-21	13-Jul-17 09:36 by INJ	0.5

Description:	PFC - IS	Expires:	28-Feb-18
Standard Type:	Reagent	Prepared:	13-Jul-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	20	Department:	LCMS
Vials:	1	Last Edit:	13-Jul-17 $09: 58$ by INJ

Analyte	CAS Number	Concentration	Units
13C8-PFOSA	1.25	$\mathrm{ug} / \mathrm{mL}$	
18O2-PFHxS	1.25	$\mathrm{ug} / \mathrm{mL}$	
d3-MeFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-PFUnA	1.25	$\mathrm{ug} / \mathrm{mL}$	

M2PFHxDA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexadecanoic acid

LOT NUMBER: M2PFHxDA1112

CAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/ysy)
EXPIRY DATE: (mm/dd/ysy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \sqrt{ }$
>98\%
01/07/2016 01/07/2021

MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
816.11

Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)
29nov2012_M2PFHxDA_004
M2PFHxDA1112 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-1200 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 100% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2PFHxDA)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=15 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MPFHxA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexanoic acid

LOT NUMBER: MPFHxA0416

CAS \#: Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n-hexanoic acid and $\sim 0.3 \%$ of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/da/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFHxA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions over 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: MPFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFHxA)}$	MS Parameters
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Flow:	Collision Gas (mbar) $=3.39 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=10$
	$300 \mu \mathrm{l} / \mathrm{min}$	

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By

Date: \qquad

INTENDED USE

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC:
MS:

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time. 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: $\quad \mathrm{d} 3-\mathrm{N}-\mathrm{MeFOSAA}$; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{d3-N-MeFOSAA)}$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.43 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=20$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

d5-N-EtFOSAA

LOT NUMBER: d5NEtFOSAA1116
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid

STRUCTURE:

CAS \#:
Not available

MOLECULAR FORMULA:	$\mathrm{C}_{12} \mathrm{D}_{5} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$	MOLECULAR WEIGHT:	590.26
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 98 \%{ }^{2} \mathrm{H}_{5}$
LAST TESTED: (mmodabys)	11/22/2016		
EXPIRY DATE: (mmldotyys)	11/22/2021		
RECOMMENDED STORAGE	Refrigerate amp		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(\cdot x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: $\quad \mathrm{d} 5-\mathrm{N}-E t F O S A A ;$ LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) = 50
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu 1 / \mathrm{min}$	

Figure 2: \quad d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

MPFHxS
Sodium perfluoro-1-hexane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate

LOT NUMBER: MPFHxS0217

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{18} \mathrm{ONa}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFHxS anion)
>98\%
02/17/2017
02/17/2022

MOLECULAR WEIGHT: 426.10
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>94 \%\left({ }^{18} \mathrm{O}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- The response factor for MPFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)$ has been observed to be up to 10% lower than for PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)$ when both compounds are injected together. This difference may vary between instruments.
- Contains $\sim 1.0 \%$ of sodium perfluoro-1-octane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate $\left({ }^{18} \mathrm{O}_{2}-\mathrm{PFOS}\right)$.
- Due to the isotopic purity of the starting material ($\left.{ }^{18} \mathrm{O}_{2}>94 \%\right)$, MPFHxS contains $\sim 0.3 \%$ of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

M8PFOS

Sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{8}\right]$ loctanesulfonate

LOT NUMBER: M8PFOS0916

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddaymy)
EXPIRY DATE: (mmddoryny)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}
$$

$48.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M8PFOS anion) >97\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 530.05 SOLVENT(S): Methanol

ISOTOPIC PURITY:
$>99 \%{ }^{13} \mathrm{C}$
${ }_{\left({ }^{13} \mathrm{C}_{8}\right)}$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.6 \%$ of sodium perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonate (${ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}$), $\sim 1.0 \%$ of chlorohexadecafluoro-1-[$\left.{ }^{13} \mathrm{C}_{8}\right]$ octanesulfonate, and $\sim 1.5 \%$ of sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

STRUCTURE:

M3PFBS
Sodium perfluoro-1-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate
LOT NUMBER: M3PFBS0815

CHS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduryw)
EXPIRY DATE: (mmodrysy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.5 \pm 2.3 \mu \mathrm{gg} / \mathrm{ml}$ (M3PFBS anion)
>98\%
08/02/2016
08/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$ $\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

M3PFBA
Perfluoro-n- $\left[2,3,4-{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$

CHEMICAL PURITY:
LAST TESTED: (mmoddymy
>98\%
05/27/2016
EXPIRY DATE: (midday)
05/27/2021
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

LOT NUMBER: M3PFBA0516

CAS \#: Not available

MOLECULAR WEIGHT: 217.02 SOLVENT(S): Methanol Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro- $n-\left[{ }^{13} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

$17 E 2415$

PRODUCT CODE:	M2-8:2FTS	LOT NUMBER:	M282FTS0816
COMPOUND:	Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ decane sulfonate		
STRUCTURE:		CAS\#:	Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2$ FTS contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE:

COMPOUND:

M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ octane sulfonate

M262FTS0217

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dolyyy)
RECOMMENDED STORAGE:
$\left.\begin{array}{ll}{ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na} & \text { MOLECULAR WEIGHT: } \\ 50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} & \text { (Na salt) }\end{array}\right)$ SOLVENT(S):
452.13

Methanol
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $6: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\quad 02 / 24 / 2017$
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

MPFNA
Perfluoro-n-[1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$]nonanoic acid

LOT NUMBER: MPFNA0916

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mmiddyyny)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

$7 E 24-18$

CERTIFICATE OF ANALYSIS DOCUMENTATION ${ }^{*}$

PRODUCT CODE:
COMPOUND:
M2PFTeDA Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ tetradecanoic acid

LOT NUMBER: M2PFTeDA0217

STRUCTURE:
CAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrymy)
EXPIRY DATE: (mmodryms)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
03/01/2017
03/01/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
ISOTOPIC PURITY:
716.10 Methanol Water (<1\%) $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE: COMPOUND:

MPFUdA
Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right.$]undecanoic acid

LOT NUMBER: MPFUdA1116

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{9} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/22/2016
11/22/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 566.08
SOLVENT(S): Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1-{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\sim 1 \%$; see Figure 2$), 2-{ }^{13} \mathrm{C}_{1}-$ PFUdA $(\sim 1 \%)$, and PFUdA $(\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\frac{12 / 07 / 2016}{(\mathrm{~mm} / \mathrm{d} / \mathrm{lyyy})}$

$7 E$
 2420

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M4PFHpA
Perfluoro-n-[1,2,3,4- ${ }^{-13} \mathrm{C}_{4}$]heptanoic acid

LOT NUMBER: M4PFHpA0516

CAS \#: Not available

MOLECULAR WEIGHT: 368.03 SOLVENT(S): Methanol Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

$7 E 2421$

WELLINGTON
LA B OR A TORIES

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:	MPFDoA	LOT NUMBER:	MPFDoA0416
COMPOUND:	Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ dodecanoic acid		
STRUCTURE:		CAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	616.08
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: $(m m / d d y y y)$	$04 / 08 / 2016$		$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$
EXPIRY DATE: $(m m / d d / y y y)$	$04 / 08 / 2021$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE: COMPOUND:

Perfluoro-n-[3,4,5- $-^{13} \mathrm{C}_{3}$]pentanoic acid

LOT NUMBER: M3PFPeA0417

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA:

CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduyny)
EXPIRY DATE: (mnddurys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/20/2017
04/20/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol

ISOTOPIC PURITY:

Water (<1\%)
267.02
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(3,4,5-{ }_{-13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro-n- $\left[{ }^{13} \mathrm{C}_{3}\right.$ butanoic acid and 0.05% of perfluoro- 1 -pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (l/hr) $=60$
	2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{~L}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 3 \mathrm{PFPeA})$	MS Parameters

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
COMPOUND:

Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]octanoic acid

LOT NUMBER: M2PFOA0216

GAS \#: \quad Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

$$
17 G 1304
$$

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M2PFOA $)$

Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

LOT NUMBER: M8FOSA04171

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmiddymy)
EXPIRY DATE: (mmuddrmys)
RECOMMENDED STORAGE: Refrigerate ampoule
${ }^{13} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
04/20/2017
04/20/2022

MOLECULAR WEIGHT:
SOLVENTS):
ISOTOPIC PURITY:
507.09 Isopropanol $\geq 99 \%{ }^{13} \mathrm{C}$ $\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.1 \%$ of perfluoro- $1-\left[{ }^{[3} \mathrm{C}_{4}\right]$ octanesulfonamide and $\sim 0.01 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right.$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)

| 20apr2017_M8FOSA_001 |
| :--- | :--- | :--- |
| M8FOSA0417l $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: Micromass Quattro micro API MS

Chromatograp	ic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 85% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.50$ Cone Voltage (V) $=40.00$ Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M8FOSA-I) $)$
Mobile phase:socratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH $\mathrm{A}_{4} \mathrm{OAc}$ buffer)	
Flow:	$300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.17 \mathrm{e}-3$
Collision Energy (eV) $=30$

$17 G 1306$

WELLINGTON

LABORATORIES

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
COMPOUND:

Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]decanoic acid

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodyyyy
EXPIRY DATE: (mmddolsyys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/30/2016
09/30/2021

MOLECULAR WEIGHT:
SOLVENTS):

ISOTOPIC PURITY:

LOT NUMBER: MPFDA0916

GAS \#:
Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of ${ }^{13} \mathrm{C}_{1}$-PENA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAC}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow ($/ / h r$) $=750$

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFDA)}$
Mobile ph	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)
Flow:	$300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=13$

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFDS		1	$\mathrm{ug} / \mathrm{mL}$	
6:2 FTS	$27619-97-2$	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFTeDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFPeA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOSA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOS		0.788	$\mathrm{ug} / \mathrm{mL}$	
L-PFODA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFOA		1	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFNA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHxS			0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHxA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFUnA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpA			1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA			$51506-32-8$	
L-PFDoA			1	$\mathrm{ug} / \mathrm{mL}$

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
L-PFDA		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFBS		1	$\mathrm{ug} / \mathrm{mL}$	
L-PFBA		1	$\mathrm{ug} / \mathrm{mL}$	
L-8:2FTS		1	$\mathrm{ug} / \mathrm{mL}$	
L-6:2 FTS		$1691-99-2$	1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE	$2991-50-6$	5	$\mathrm{ug} / \mathrm{mL}$	
EtFOSAA	$4151-50-2$	1	$\mathrm{ug} / \mathrm{mL}$	
EtFOSA		5	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
Br-PFHxS	$3871-99-6$	0.189	$\mathrm{ug} / \mathrm{mL}$	
8:2 FTS	$70887-84-2$	1	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpS		1	$\mathrm{ug} / \mathrm{mL}$	
PFHxS	$355-46-4$	1	$\mathrm{ug} / \mathrm{mL}$	
Total PFHxS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS			1	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record
Vista Analytical Laboratory
17D2705

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFUnA	$2058-94-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFTrDA	$72629-94-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFTeDA	$376-06-7$	1	$\mathrm{ug} / \mathrm{mL}$	
PFPeA	$2706-90-3$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOSA	$754-91-6$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOS	$1763-23-1$	1	$\mathrm{ug} / \mathrm{mL}$	
PFODA	$16517-11-6$		1	$\mathrm{ug} / \mathrm{mL}$
L-PFTrDA		1	$\mathrm{ug} / \mathrm{mL}$	

Analytical Standard Record
Vista Analytical Laboratory
17D2705

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
1613001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17 C 1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17 D 2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17 D 2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17 D 2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFNA	$375-95-1$	1	$\mathrm{ug} / \mathrm{mL}$	
Total PFUnA		1	$\mathrm{ug} / \mathrm{mL}$	
PFHxDA	$67905-19-5$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHxA	$307-24-4$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHpS	$375-92-8$	1	$\mathrm{ug} / \mathrm{mL}$	
PFHpA	$375-85-9$	1	$\mathrm{ug} / \mathrm{mL}$	
PFDS	$335-77-3$	1	$\mathrm{ug} / \mathrm{mL}$	
PFDoA	$307-55-1$	1	$\mathrm{ug} / \mathrm{mL}$	

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
1611414	PFDA	14-Sep-16	** Vendor **	31-May-21	15-Dec-16 08:38 by AEW	0.4
1611415	PFHxA	14-Sep-16	** Vendor **	22-Dec-20	15-Dec-16 08:41 by AEW	0.4
1611416	MeFOSAA	14-Sep-16	** Vendor **	20-Jan-21	04-Oct-16 08:25 by EMS	0.4
1611417	EtFOSAA	14-Sep-16	** Vendor **	20-Jan-21	14-Sep-16 14:10 by TLD	0.4
1611418	PFTeDA	14-Sep-16	** Vendor **	09-Dec-20	15-Dec-16 08:46 by AEW	0.4
16 I 3001	PFTrDA	30-Sep-16	** Vendor **	12-Feb-21	23-Jan-17 17:44 by AEW	0.4
16J0422	PFDoA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:22 by AEW	0.4
16J0423	FOSA-I	04-Oct-16	** Vendor **	02-Sep-17	23-Jan-17 17:49 by AEW	0.4
16J0424	PFNA	04-Oct-16	** Vendor **	23-Oct-20	23-Jan-17 17:40 by AEW	0.4
16J0425	PFPeA	04-Oct-16	** Vendor **	31-May-21	23-Jan-17 17:38 by AEW	0.4
16J0426	PFBA	04-Oct-16	** Vendor **	27-May-21	23-Jan-17 17:18 by AEW	0.4
16L0512	PFODA	05-Dec-16	** Vendor **	29-Apr-21	23-Jan-17 17:35 by AEW	0.4
17C1026	PFOA	10-Mar-17	Jamie C. Stockman	02-Feb-21	10-Mar-17 15:25 by JCS	0.4
17D2612	N-MeFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:56 by INJ	2
17D2613	N-EtFOSA-M	26-Apr-17	** Vendor **	24-May-21	27-Apr-17 10:54 by INJ	2
17D2614	N-EtFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:54 by INJ	2
17D2616	PFUdA	26-Apr-17	** Vendor **	18-Oct-21	12-Jun-17 09:32 by AEW	0.4
17D2617	PFHxDA	26-Apr-17	** Vendor **	25-May-21	12-Jun-17 16:08 by AEW	0.4
17D2618	PFHpA	26-Apr-17	** Vendor **	02-Dec-21	09-Jun-17 14:56 by AEW	0.4
17D2621	N-MeFOSE-M	26-Apr-17	** Vendor **	10-Nov-20	27-Apr-17 10:47 by INJ	2
17D2706	L-PFBS anion DIL	27-Apr-17	Emilie Schneider	27-Apr-18	27-Apr-17 13:48 by EMS	0.8
17D2709	8:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:28 by INJ	0.8
17D2715	6:2 FTS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:01 by AEW	0.8
17D2716	L-PFDS anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 09:34 by AEW	0.8
17D2717	Br-PFOSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	27-Apr-17 14:46 by INJ	0.8
17D2718	Br-PFHxSK anion DIL	27-Apr-17	Isaac N. Johnson	27-Apr-18	12-Jun-17 08:51 by AEW	0.8
17D2813	L-PFHpS anion DIL	28-Apr-17	Isaac N. Johnson	28-Apr-18	12-Jun-17 09:07 by AEW	0.8

Description:	PFC NS Stock	Expires:	27-Apr-18	
Standard Type:	Analyte Spike	Prepared:	27-Apr-17	
Solvent:	MeOH	Prepared By:	Isaac N. Johnson	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-Jun-17 16:08 by AEW	
PFOS and PFHxS branched components				
Analyte	CAS Number	Concentration	Units	
PFDA	$335-76-2$	1	$\mathrm{ug} / \mathrm{mL}$	
PFBS	$375-73-5$	1	$\mathrm{ug} / \mathrm{mL}$	
PFBA	$375-22-4$	1	$\mathrm{ug} / \mathrm{mL}$	
MeFOSE	$24448-09-7$	5	$\mathrm{ug} / \mathrm{mL}$	
MeFOSAA	$2355-31-9$	1	$\mathrm{ug} / \mathrm{mL}$	
PFOA	$335-67-1$	1	$\mathrm{ug} / \mathrm{mL}$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

Perfluoro-n-decanoic acid

LOT NUMBER: PFDA0516

CAS \#:
335-76-2

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	514.08
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ ノ	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmodyyy)	05/31/2016		
EXPIRY DATE: (mmddy ${ }^{\text {drys) }}$	05/31/2021		
RECOMMENDED STORAGE			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of Perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)

31may2016_PFDA_001	31-May-2016	13:43:26
PFDA0516 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:
 $\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
Source: Electrospray (negative)
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OA}$ buffer)
Ramp to 90% organic over 7.5 min and hold for
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow $(1 / \mathrm{hr})=50$
Desolvation Gas Flow (l/hr) $=750$

Flow:
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

MS Parameters

Capillary Voltage (kV) $=2.00$

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFDA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=13$

LA B OR A T ORIES

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: PFHXA1215

CAS \#: 307-24-4

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddypm)
EXPIRY DATE: (mmbdaryys)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5^{11} \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/22/2015
12/22/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
314.05

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of Perfluoro-n-pentanoic acid (PFPeA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:			
LC:	Waters Acquity Ultra Performance LC		
MS:	Micromass Quattro micro API MS		

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)

Mobile phase: Gradient Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow (1/hr) $=750$

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: \quad PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFHxA)
Mobile pha	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

PRODUCT CODE:

 COMPOUND:STRUCTURE:

LOT NUMBER: NMeFOSAA0116V
N -methylperfluoro-1-octanesulfonamidoacetic acid

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

20jan2016_NMeFOSAA_003	20-Jan-2016	17:01:32
NMeFOSAA0116 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60% ($80: 20 \mathrm{MeOH}: A C N$) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=50$
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: $\quad \mathrm{N}-\mathrm{MeFOSAA}$; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

Conditions for Figure 2:

$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{N}-\mathrm{MeFOSAA})\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array} 4 \mathrm{OAc} \text { buffer) }\end{array}\right\}$

MS Parameters
 Collision Gas (mbar) $=3.66 \mathrm{e}-3$
 Collision Energy (eV) $=25$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

 COMPOUND:STRUCTURE:

CAS \#:
2991-50-6

MOLECULAR FORMULA: CONCENTRATION.	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \end{aligned}$	MOLECULAR WEIGHT: SOLVENT(S):	585.23
CONCENTRATION:		SOLVENT(S):	Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mm/d/lyyy)	01/20/2016		
EXPIRY DATE: (mm/dodysy)	01/20/2021		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

20jan2016_NEtFOSAA_002	20-Jan-2016	17:12:28
NEtFOSAA0116 $25 \mathrm{ug} / \mathrm{ml}$		
100		

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatograp	ic Conditions
Column:	Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters
Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=35.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Note: N-EtFOSA is formed by fragmentation of N-EtFOSAA.

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{N}$-EtFOSAA)	
		Collision Gas (mbar) $=3.66 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Collision Energy (eV) $=25$
Flow:	$300 \mu / / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: PFTeDA1215

CAS \#:
376-06-7

MOLECULAR FORMULA:	$\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mm/dolyyy)	12/09/2015		
EXPIRY DATE: (mm/ddysyy)	12/09/2020		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$ and $\sim 0.2 \%$ of PFPeDA $\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTeDA; LC/MS Data (TIC and Mass Spectrum)
09dec2015_PFTeDA_006
PFTeDA1215 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

MS: \quad Micromass Quattro micro API MS
Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 65% ($80: 20 \mathrm{MeOH}: A C N$) / 35\% $\mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (250-1250 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE: COMPOUND:

PFTrDA
Perfluoro-n-tridecanoic acid

LOT NUMBER: PFTrDA0216

STRUCTURE:
CAS \#:
72629-94-8

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/darym)
EXPIRY DATE: (mmbduryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/12/2016
02/12/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
664.11

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of PFUdA $\left(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\right), \sim 0.4 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)

Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=22.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow ($1 / h r$) $=650$
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFTDA)}$	MS Parameters
Mobile phase: Isocratic $80 \% \mathrm{MeOH} / 20 \% \mathrm{H}_{2} \mathrm{O}$	Collision Gas (mbar) $=3.35 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=15$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

PRODUCT CODE:

COMPOUND:

PFDoA
Perfluoro-n-dodecanoic acid

LOT NUMBER: PFDoA0516

CAS \#: 307-55-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidduyy)
EXPIRY DATE: (mmldoryyy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

>98\%

$$
05 / 31 / 2016
$$

$$
05 / 31 / 2021
$$

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad (mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFDoA; LC/MS Data (TIC and Mass Spectrum)

\section*{Conditions for Figure 1:
 | LC: | Waters Acquity Ultra Performance LC |
| :--- | :--- |
| MS: | Micromass Quattro micro API MS |}

Chromatographic Conditions
 Column:
 Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
 Mobile phase: Gradient

Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NAAc}^{2}$ buffer)
Ramp to 90% organic over 7.5 min and hold for
1.5 min before returning to initial conditions in 0.5 min .

Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=20.00$
Cone Gas Flow (I / hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: PFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFDoA)

Mobile phase: Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=13$

Flow: $\quad 300 \mu / / m i n$

PRODUCT CODE:

 COMPOUND:FOSA-I
Perfluoro-1-octanesulfonamide

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mmmddrymy)	$09 / 02 / 2015$
EXPIRY DATE: (mmmddyyy)	$09 / 02 / 2017$
RECOMMENDED STORAGE:	Refrigerate ampoule

LOT NUMBER: FOSA0815I

CAS \#: 754-91-6

MOLECULAR WEIGHT: 499.14
SOLVENT(S): Isopropanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

nertionecmatrmal
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatograp	phic Conditions
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
	Time: 10 min (
Flow:	$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage (V) $=40.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ FOSA-I)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)

Flow: $300 \mu 1 /$ min

MS Parameters

Collision Gas (mbar) $=3.54 \mathrm{e}-3$
Collision Energy (eV) $=30$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PFNA
Perfluoro-n-nonanoic acid
Perluon-nana
LOT NUMBER: PFNA1015

CAS \#:
375-95-1

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of perfluoro-n-octanoic acid (PFOA) and $<0.1 \%$ of perfluoro-n-heptanoic acid (PFHpA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)
23oct2015_PFNA_002
PFNA1015 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions

Column:	Acquity UPLC BEH Shield RP Mobile phase:
	Gradient

Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFNA $)$

Mobile phase: Isocratic 80\% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=11$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0516

GAS \#:
2706-90-3

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/syy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:

MOLECULAR WEIGHT: SOLVENT(S): Methanol Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydride - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad 06/02/2016
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com*»

Figure 1: PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 $\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 30% ($80: 20 \mathrm{MeOH}: A C N$) / $70 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFPeA)}$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.20 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=9$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE: COMPOUND:

PEBA
Perfluoro-n-butanoic acid

LOT NUMBER: PFBA0516

GAS \#:

375-22-4

MOLECULAR FORMULA:

 CONCENTRATION:
CHEMICAL PURITY:

LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dod/mys)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/27/2016
05/27/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 214.04
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{(\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy})}{\text { (}}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{OAc}_{4}$ buffer)
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
	Time: 10 min
Flow:	$300 \mu / / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=10.00$
Cone Gas Flow (I/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFBA)	
		Collision Gas (mbar) $=3.62 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=10$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

WELLINGTON

LAB OR A TORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/29/2016
04/29/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
05/20/2016
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1000 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 70\% (80:20 MeOH:ACN) / 30\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 95% organic over 6 min and hold for	Cone Gas Flow (l/hr) $=50$
	2.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFODA})$	MS Parameters

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PROA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0716

GAS \#:

335-67-1

MOLECULAR WEIGHT: 414.07
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)
02aug2016_PFOA_001
PFOA0716 $25 \mathrm{ug} / \mathrm{ml}$
100

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFOA})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=10$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

N-MeFOSA-M
N -methylperfluoro-1-octanesulfonamide

LOT NUMBER: NMeFOSA0516M

CAS \#: 31506-32-8

MOLECULAR FORMULA:		$\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:		$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:		$>98 \%$
LAST TESTED: (mm/dd/myy)		$05 / 24 / 2016$
EXPIRY DATE: (mm/dd/yny)	$05 / 24 / 2021$	
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place	

MOLECULAR WEIGHT: 513.17
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0516M

GAS \#:

4151-50-2

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:
MOLECULAR WEIGHT: 527.20
SOLVENT(S): Methanol

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

N-EtFOSE-M 2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol

STRUCTURE:

GAS \#:
1691-99-2

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodshyy)
EXPIRY DATE: (mmiddsmy)
RECOMMENDED STORAGE
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{11} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
$11 / 10 / 2015$ (HRGC/LRMS)
$11 / 09 / 2015$ (LC/MS)
$11 / 10 / 2020$

MOLECULAR WEIGHT:
571.25

SOLVENTS):
Methanol

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE:

COMPOUND:

PFUdA
Perfluoro-n-undecanoic acid

STRUCTURE:

GAS \#:
2058-94-8

MOLECULAR FORMULA:

$$
\mathrm{C}_{n} \mathrm{HF}_{21} \mathrm{O}_{2}
$$

MOLECULAR WEIGHT: 564.09
CONCENTRATION:

$$
50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
$$

SOLVENTS):
Methanol
Water (<1\%)
CHEMICAL PURITY:
>98\%
LAST TESTED: (mmidadym)
10/18/2016
EXPIRY DATE: (mmddoryyy)
10/18/2021
RECOMMENDED STORAGE:
Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmidolmwn)

PRODUCT CODE:

 COMPOUND:
PFHxDA

Perfluoro-n-hexadecanoic acid

STRUCTURE:

LOT NUMBER: PFHxDA0516

CAS \#:

67905-19-5

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodumy)
EXPIRY DATE: (mmddolyw)
RECOMMENDED STORAGE:
$\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/25/2016
05/25/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 814.13
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.4 \%$ of PFODA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 05/27/2016 (mm/dd/yyyy)

CERTIFICATE OF ANALYSIS DOCUMENTATION*

PRODUCT CODE: COMPOUND:

PFHpA
Perfluoro-n-heptanoic acid

LOT NUMBER: PFHpA1216

CAS \#:

375-85-9

MOLECULAR FORMULA:
CONCENTRATION:
$\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
CHEMICAL PURITY:
LAST TESTED: (mmodymy)
EXPIRY DATE: (mmddrym)
RECOMMENDED STORAGE:

12/02/2016
12/02/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

17D2621

PRODUCT CODE: COMPOUND:

STRUCTURE:

N-MeFOSE-M
2-(N-methylperfluoro-1-octanesulfonamido)-ethanol

CAS \#:
24448-09-7

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)

EXPIRY DATE: (mmlddyyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/10/2015 (HRGC/LRMS)
11/09/2015 (LC/MS)
11/10/2020
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 557.22
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17D2706

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 C 1027 | PFBS anion | $10-M a r-17$ | Jamie C. Stockman | 02-Dec-21 | 10-Mar-17 15:27 by JCS |

Description:	L-PFBS anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	Methanol	Prepared By:	Emilie Schneider
Final Volume $(\mathrm{mls}):$	1.326	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 13:48 by EMS

| Analyte | CAS Number | Concentration | Units |
| :--- | :---: | :---: | :---: | :---: |
| PFBS | $375-73-5$ | 25 | $\mathrm{ug} / \mathrm{mL}$ |
| L-PFBS | | 25 | $\mathrm{ug} / \mathrm{mL}$ |

WELLINGTON
LA B OR AT ORES

PRODUCT CODE:

COMPOUND:

L-PFBS
Potassium perfluoro-1-butanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddrlys)
EXPIRY DATE: (mmbdalyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{~F}_{8} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
12/02/2016
12/02/2021
Store ampoule in a cool, dark place

LOT NUMBER: LPFBS1116

CAS \#: 29420-49-3

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: \quad Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP ${ }_{18}$	Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
(both with 10 mM NH	Cone Voltage (V) $=40.00$
Ramp to 90% organic over 7 min and hold for 2 min	Cone Gas Flow (1/hr) $=50$
before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFBS})$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH

Flow: $300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=25$

Analytical Standard Record

Vista Analytical Laboratory

17D2709

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 16 I 1427 | $8: 2$ FTS anion | $14-$ Sep-16 | $* *$ Vendor $* *$ | 22-Aug-21 | 15-Dec-16 08:53 by AEW |

Description:	$8: 2 \mathrm{FTS}$ anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	$27-A p r-17$
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.958	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 14:28 by INJ

Analyte	CAS Number	Concentration	Units
L-8:2FTS		25	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS	$70887-84-2$	25	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate

STRUCTURE:
CAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyys)
EXPIRY DATE: (mmbdodyw)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (8:2FTS anion)
>98\%
08/22/2016
08/22/2021
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1:
8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Agilent Zorbax Bonus-RP
$1.8 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $55 \%(80: 20 \mathrm{MeOH} / \mathrm{ACN}) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min
before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (250-850 amu)
Source:Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=30.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: $\quad 8: 2 F T S ;$ LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ 8:2FTS)	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} 4{ }_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.31 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=30 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Analytical Standard Record

Vista Analytical Laboratory

17D2715

Parent Standards used in this standard:							
Standard Description	Description	Prepared	Prepared By	Expires	Last Edit		(mls)
17D2622 6:2FTS	6:2FTS	26-Apr-17	** Vendor **	25-Jun-21	12-Jun-1	9:01 by AEW	0.5
Description:	6:2 FTS anion DIL		Expires:		27-Apr-18		
Standard Type:	Other		Prepared:		27-Apr-17		
Solvent:	MeOH		Prepared By:		Isaac N . Johnson		
Final Volume (mls):	0.948		Department:		LCMS		
Vials:	1		Last Edit:		12-Jun-17 09:01 by AEW		
Analyte				CAS Number	Concentration	Units	
Total 6:2 FTS					25	$\mathrm{ug} / \mathrm{mL}$	
L-6:2 FTS					25	$\mathrm{ug} / \mathrm{mL}$	
6:2 FTS				27619-97-2	25	$\mathrm{ug} / \mathrm{mL}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmddymm)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 450.15
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory

17D2716

PRODUCT CODE: COMPOUND:

L-PFDS

Sodium perfluoro-1-decanesulfonate

STRUCTURE:

LOT NUMBER: LPFDS0217

GAS \#:
2806-15-7

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrymm)
EXPIRY DATE: (mmodormys)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDS anion)
>98\%
02/17/2017
02/17/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENTS):
622.13

Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro- 1 -dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17D2717

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 16 J 0431 | br-PFOSK | $04-$ Oct-16 | $* *$ Vendor $* *$ | 14-Oct-20 | 03-Feb-17 13:33 by AEW |

Description:	Br-PFOSK anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.928	Department:	LCMS
Vials:	1	Last Edit:	27-Apr-17 14:46 by INJ

Analyte	CAS Number	Concentration	Units
PFOS	$1763-23-1$	25	$\mathrm{ug} / \mathrm{mL}$
L-PFOS		19.7	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS DOCUMENTATION

br-PFOSK

Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:
 LOT NUMBER:
 CONCENTRATION:
 SOLVENT(S):
 DATE PREPARED: (mm/dd/yyy)
 LAST TESTED: (mm/ddymy)
 EXPIRY DATE: (mmlddyyyy)
 RECOMMENDED STORAGE:

br-PFOSK
brPFOSK1015
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
Methanol
10/13/2015
10/14/2015
10/14/2020
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

> FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^1]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
1	Potassium perfluoro-1-octanesulfonate	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}$	78.8
2	Potassium 1-trifluoromethylperfluoroheptanesulfonate**		1.2
3	Potassium 2-trifluoromethylperfluoroheptanesulfonate		0.6
4	Potassium 3-trifluoromethylperfluoroheptanesulfonate		1.9
5	Potassium 4-trifluoromethylperfluoroheptanesulfonate		2.2
6	Potassium 5-trifluoromethylperfluoroheptanesulfonate		4.5
7	Potassium 6-trifluoromethylperfluoroheptanesulfonate		10.0
8	Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate		0.2
9	Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate		0.03
10	Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate		0.4
11	Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate		0.07

** Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:

Date: \qquad (mm/dd/yyyy)

Figure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)

Figure 2: br-PFOSK; LC/MS Data (SIR)

Conditions for Fiqure 2:
 LC: Waters Acquity Ultra Performance LC
 MS: Micromass Quattro micro API MS

Chromatographic Conditions:

Column:	Acquity UPLC BEH Shield $\mathrm{RP}_{18}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})$		
Injection:	$1.0 \mu \mathrm{~g} / \mathrm{ml}$ of br-PFOSK		
Mobile Phase:	Gradient $45 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 55 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)		
	Ramp to 90% organic over 15 min and hold for 3 min. Return to initial conditions over 1 min. Time: 20 min		
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$		
MS Conditions:		\quad	SIR (ES)Source $=110^{\circ} \mathrm{C}$ Desolvation $=325^{\circ} \mathrm{C}$ Cone Voltage $=60 \mathrm{~V}$
:---			

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:
Injection: On-column

Mobile phase: Same as Figure 2

MS Parameters

Collision Gas (mbar) $=3.06 \mathrm{e}-3$
Collision Energy (eV) $=11-50$ (variable)

Analytical Standard Record

Vista Analytical Laboratory

17D2718

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 D 2615 | br-PFHxSK | $26-$ Apr-17 | $* *$ Vendor $* *$ | 04-Jan-22 | 12-Jun-17 08:51 by AEW |

Description:	Br-PFHxSK anion DIL	Expires:	27-Apr-18
Standard Type:	Other	Prepared:	27-Apr-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume $(\mathrm{mls}):$	0.91	Department:	LCMS
Vials:	1	Last Edit:	12-Jun-17 08:51 by AEW

Analyte	CAS Number	Concentration	Units
Total PFHxS		25	$\mathrm{ug} / \mathrm{mL}$
PFHxS	$355-46-4$	25	$\mathrm{ug} / \mathrm{mL}$
L-PFHxS	$3871-99-6$	20.3	$\mathrm{ug} / \mathrm{mL}$
Br-PFHxS		4.72	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS DOCUMENTATION'

br-PFHxSK

Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers

```
PRODUCT CODE: br-PFHxSK
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED: (mmudilyyy)
LAST TESTED: (mm/dimyy)
EXPIRY DATE: (mnldilywy)
RECOMMENDED STORAGE:
    brPFHxSK0117
    50.0\pm2.5 \mug/ml (total potassium salt)
    45.5\pm2.3 \mu\textrm{g}/\textrm{ml}}\mathrm{ (total PFHxS anion)
    Methanol
    01/03/2017
    01/04/2017
    01/04/2022
    Store ampoule in a cool, dark place
```


DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ of perfluoro-1-pentanesulfonate and $\sim 0.2 \%$ of perfluoro-1-octanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 - info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

| Isomer | $\begin{array}{c}\text { Name }\end{array}$ | $\begin{array}{c}\text { Percent } \\ \text { Composition } \\ \text { by }\end{array}$ |
| :---: | :--- | :--- | :---: |
| 1 | Potassium perfluoro-1-hexanesulfonate | |$]$

** Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Certified By:

Date: 01/20/2017 $\frac{01 / 20 / 2017}{(m m / d / d y y y y)}$

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 20\% (80:20 MeOH:ACN) / 80\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=50.00$
	Ramp to 50% organic over 14 min . Ramp to	Cone Gas Flow (1/hr) $=60$
	90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 20 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: br-PFHxSK; LC/MS Data (SIR)

04jan2017_brPFHxSK_002
brPFHxSKO117 $25 \mathrm{ug} / \mathrm{ml}$
100

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ (500 ng/ml br-PFHxSK)
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH CAc buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=30$

Form\#:13, Issued 2004-11-10
Revision\#:3, Revised 2015-03-24

Analytical Standard Record

Vista Analytical Laboratory

17D2813

Parent Standards used in this standard:								
Standard Description	Description	Prepared	Prepared By		Expires	Last Edit		(mls)
17 D 2619 L-PFHpS	L-PFHpS	26-Apr-17	** Vendor **		18-Oct-21	12-Jun-1	9:07 by AEW	0.5
Description:	L-PFHpS anion DIL		Expires:			28-Apr-18		
Standard Type:	Other		Prepared:			28-Apr-17		
Solvent:	Methanol/		Prepared By:			Isaac N. Johnson		
Final Volume (mls):	0.952		Department:			LCMS		
Vials:	1		Last Edit:			12-Jun-17 09:07 by AEW		
Analyte				CAS N	mber	Concentration	Units	
Total PFHpS						25	ug/mL	
PFHpS				375-9	2-8	25	$\mathrm{ug} / \mathrm{mL}$	
L-PFHpS						25	$\mathrm{ug} / \mathrm{mL}$	

PRODUCT CODE:

COMPOUND:

L-PFHpS
Sodium perfluoro-1-heptanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrym)
EXPIRY DATE: (mmiddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.6 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFHpS anion)
>98\%
10/18/2016
10/18/2021
Store ampoule in a cool, dark place

LOT NUMBER: LPFHpS1016

CAS \#: Not available

MOLECULAR WEIGHT: 472.10
SOLVENT(S):
Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of L-PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)$ and $\sim 0.1 \%$ of $\mathrm{L}-\mathrm{PFOS}\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: 10/20/2016
(mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory
17F3038

Parent Standards used in this standard:						
Standard	Description	Prepared	Prepared By	Expires	Last Edit	(mls)
17D0605	13C6-PFDA	06-Apr-17	Jamie C. Stockman	06-May-21	06-Apr-17 09:43 by JCS	0.375
17 E 1717	13C2-FOUEA	17-May-17	** Vendor **	02-Aug-18	17-May-17 12:46 by INJ	0.375
17E2411	13C5-PFHxA	24-May-17	** Vendor **	27-Aug-19	24-May-17 11:19 by INJ	0.375
17F3031	13C4-PFOS dil.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:31 by INJ	0.468
17F3032	13C3-PFHxS DIL.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:35 by INJ	0.416
17F3034	13C8-PFOA dil.	30-Jun-17	Isaac N. Johnson	30-Jun-18	30-Jun-17 13:40 by INJ	0.468
17F3035	13C9-PFNA	30-Jun-17	** Vendor **	27-Aug-19	03-Jul-17 13:07 by INJ	0.375
17F3036	13C4-PFBA	30-Jun-17	** Vendor **	12-Apr-22	03-Jul-17 13:08 by INJ	0.375
17F3037	13C7-PFUdA	30-Jun-17	** Vendor ${ }^{* *}$	22-Jan-21	03-Jul-17 13:09 by INJ	0.375

Description:	PFC-RS	Expires:	19-May-18
Standard Type:	Reagent	Prepared:	30-Jun-17
Solvent:	MEOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	15	Department:	LCMS
Vials:	1	Last Edit:	03-Jul-17 13:09 by INJ

Analyte	CAS Number	Concentration
13C9-PFNA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C7-PFUnA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C6-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFHxA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFOS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFHxS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-FOUEA	1.25	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE: COMPOUND:

STRUCTURE:

GAS \#: \quad Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	$\begin{aligned} & \text { Cone Gas Flow }(1 / h r)=50 \\ & \text { Desolvation Gas Flow }(1 / h r)=750 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION.

PRODUCT CODE:
 COMPOUND:

MFOUEA
2H-Perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid

LOT NUMBER: MFOUEA0716

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{16} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mm/ddyyy)	08/02/2016
EXPIRY DATE: (mm/didysyy)	08/02/2018
RECOMMENDED STORAGE:	Refrigerate ampoule

MOLECULAR WEIGHT:	460.08
SOLVENT(S):	Anhydrous Isopropanol
	$\geq 99 \%{ }^{13} \mathrm{C}$
ISOTOPIC PURITY:	$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

LOT NUMBER: M5PFHxA0814

GAS \#: \quad Not available

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,6- $\left.{ }^{13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Analytical Standard Record

Vista Analytical Laboratory
17F3031

WELLINGTON
LA B OR A T ORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION ${ }^{\prime}$

PRODUCT CODE:

COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate

STRUCTURE:
LOT NUMBER: MPFOS1216

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyyys)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
>98\%
12/12/2016
12/12/2021

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.8 \%$ Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $12 / 14 / 2016$ (mm/dd/yyyy)

Analytical Standard Record

Vista Analytical Laboratory
17F3032

| Parent Standards used in this standard: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Standard | Description | Prepared | Prepared By | Expires | Last Edit |
| 17 E 2410 | $13 \mathrm{C} 3-\mathrm{PFHxS}$ | $24-\mathrm{May}-17$ | $* *$ Vendor $* *$ | 31-May-21 | 24-May-17 11:18 by INJ |

Description:	13C3-PFHxS DIL.	Expires:	30-Jun-18
Standard Type:	Reagent	Prepared:	30-Jun-17
Solvent:	MeOH	Prepared By:	Isaac N. Johnson
Final Volume (mls):	0.473	Department:	LCMS
Vials:	1	Last Edit:	30-Jun-17 13:35 by INJ
Analyte		CAS Number	Concentration
$13 \mathrm{C} 3-\mathrm{PFHxS}$			45

$17 E$
 2
 410

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION.

PRODUCT CODE:

 COMPOUND:STRUCTURE:

M3PFHxS
Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ hexanesulfonate

GAS \#:
Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Analytical Standard Record

Vista Analytical Laboratory
17F3034

WELLINGTON

LA B OR A TORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION.

PRODUCT CODE:

COMPOUND:

M8PFOA
Perfluoro-n-[$\left[{ }^{13} \mathrm{C}_{8}\right]$ octanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED: (mm/ddryyy)
${ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$
$49 \pm 2.45 \mu \mathrm{~g} / \mathrm{ml}$
97.9\% (M8PFOA)
2.1\% (MPFOA [M+4])

EXPIRY DATE: (mmiddyyyy)
02/12/2016

RECOMMENDED STORAGE:
02/12/2021
Store ampoule in a cool, dark place

LOT NUMBER: M8PFOA0216

CAS \#: \quad Not available

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of native perfluoro-n-octanoic acid (PFOA) and $\sim 2.1 \%$ of [M+4] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{02 / 24 / 2016}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:STRUCTURE:

M9PFNA
Perfluoro- $n-\left[{ }^{13} \mathrm{C}_{9}\right]$ nonanoic acid

LOT NUMBER: M9PFNA0814

CIS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidaryw)
EXPIRY DATE: (mnldodryy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
08/27/2014
08/27/2019

MOLECULAR WEIGHT:
SOLVENTS):
ISOTOPIC PURITY:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.9 \%$ of ${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additiorial information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } \quad \text { Acquity UPLC BEH Shield } R P_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

17F3035

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

MPFBA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ butanoic acid
LOT NUMBER: MPFBA0417

GAS \#: \quad Not available

MOLECULAR WEIGHT: 218.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)

MOLECULAR FORM
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoddryyy)
EXPIRY DATE: (mmddasyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
${ }^{13} \mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/12/2017
04/12/2022

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
4/20/2017

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value (s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)

| 12apr2017_MPFBA_001 |
| :--- | :--- | :--- |
| MPFBA0417 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

romatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{S}_{4} \mathrm{OAC}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (1/hr) $=100$
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFBA})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=10$

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION
PRODUCT CODE:
COMPOUND:
STRUCTURE:

M7PFUdA	LOT NUMBER:	M7PFUdA0116
Perfluoro- $n-\left[1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right.$] undecanoic acid		
	CAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{7}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	571.04
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmmadyme)	01/22/2016		(1,2,3,4,5,6,7- ${ }^{13} \mathrm{C}_{7}$)
EXPIRY DATE: (mmbduhyy)	01/22/2021		
RECOMMENDED STORAGE:	Store ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	ent: Full Scan (225
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	
	before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu / / m i n$	

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M7PFUdA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Collision Energy (eV) $=11$
"MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","375-73-
5","PFBS","42.9","ng/L","","1.85","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","307-24-4","PFHxA","78.8","ng/L","","2.25","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","375-85-9","PFHpA","25.6","ng/L","","0.610","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","355-46-4","PFHxS","195","ng/L","","0.978","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","335-67-1","PFOA","15.5","ng/L","","0.672","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","1763-23-1","PFOS","96.6","ng/L","","0.833","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","375-95-1","PFNA","1.00","ng/L","J","0.836","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","335-76-2","PFDA","5.17","ng/L","U","1.54","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","2355-31-9","MeFOSAA","5.17","ng/L","U","1.70","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17" ""
"MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","2058-94-
8","PFUnA","5.17","ng/L","U","1.08","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","2991-50-6","EtFOSAA","5.17","ng/L","U","1.41","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","307-55-
1","PFDoA","5.17","ng/L","U","0.818","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","72629-94-8","PFTrDA","5.17","ng/L","U","0.510","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17","
"MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","376-06-
7","PFTeDA","5.17","ng/L","U","0.780","LOD","","TRG","","","8.26","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C3-PFBS","13C3-PFBS","140","\%R","","-99","NA","","IS","140","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C2-PFHxA","13C2-PFHxA","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C4-PFHpA","13C4-PFHpA","94.8","\%R","","-99","NA","","IS","94.8","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","18O2-PFHxS","18O2-PFHxS","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C2-PFOA","13C2-PFOA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C8-PFOS","13C8-PFOS","97.8","\%R","","-99","NA","","IS","97.8","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C5-PFNA","13C5-PFNA","101","\%R","","-99","NA","","IS","101","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C2-PFDA","13C2-PFDA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","d3-MeFOSAA","d3-MeFOSAA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C2-PFUnA","13C2-PFUnA","95.3","\%R","","-99","NA","","IS","95.3","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","d5-EtFOSAA","d5-

EtFOSAA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C2-PFDoA","13C2-PFDoA","86.3","\%R","","-99","NA","","IS","86.3","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-50BR-20170717","Modified EPA Method 537","Initial","1700906-01","Vista","13C2-PFTeDA","13C2-PFTeDA","75.1","\%R","","-99","NA","","IS","75.1","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","375-73-5","PFBS","5.17","ng/L","U","1.85","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","307-24-4","PFHxA","5.17","ng/L","U","2.26","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","375-85-9","PFHpA","5.17","ng/L","U","0.611","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","355-46-4","PFHxS","5.17","ng/L","U","0.980","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","335-67-1","PFOA","5.17","ng/L","U","0.673","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","1763-23-1","PFOS","5.17","ng/L","U","0.835","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","375-95-1","PFNA","5.17","ng/L","U","0.838","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","335-76-2","PFDA","5.17","ng/L","U","1.54","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","2355-31-9","MeFOSAA","5.17","ng/L","U","1.71","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17" ""
"MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","2058-94-8","PFUnA","5.17","ng/L","U","1.09","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","2991-50-6","EtFOSAA","5.17","ng/L","U","1.42","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","307-55-
1","PFDoA","5.17","ng/L","U","0.819","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","72629-94-8","PFTrDA","5.17","ng/L","U","0.511","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","
"MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","376-06-
7","PFTeDA","5.17","ng/L","U","0.781","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C3-PFBS","13C3-PFBS","147","\%R","","-99","NA","","IS","147","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C2-PFHxA","13C2-PFHxA","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C4-PFHpA","13C4-PFHpA","98.4","\%R","","-99","NA","","IS","98.4","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","18O2-PFHxS","18O2-PFHxS","122","\%R","","-99","NA","","IS","122","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C2-PFOA","13C2-PFOA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C8-PFOS","13C8-PFOS","126","\%R","","-99","NA","","IS","126","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C5-PFNA","13C5-PFNA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C2-PFDA","13C2-PFDA","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","d3-MeFOSAA","d3-

MeFOSAA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C2-PFUnA","13C2-PFUnA","94.3","\%R","","-99","NA","","IS","94.3","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","d5-EtFOSAA","d5-EtFOSAA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C2-PFDoA","13C2-PFDoA","93.1","\%R","","-99","NA","","IS","93.1","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-06BR-20170717","Modified EPA Method 537","Initial","1700906-02","Vista","13C2-PFTeDA","13C2-PFTeDA","69.3","\%R","","-99","NA","","IS","69.3","","-99","NA","YES","100","","0.121","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","375-73-5","PFBS","5.21","ng/L","U","1.86","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","307-24-4","PFHxA","5.21","ng/L","U","2.27","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","375-85-9","PFHpA","5.21","ng/L","U","0.615","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","355-46-4","PFHxS","5.21","ng/L","U","0.985","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","335-67-1","PFOA","5.21","ng/L","U","0.677","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","1763-23-1","PFOS","5.21","ng/L","U","0.839","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","375-95-1","PFNA","5.21","ng/L","U","0.842","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","335-76-2","PFDA","5.21","ng/L","U","1.55","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","2355-31-9","MeFOSAA","5.21","ng/L","U","1.72","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21" ""
"RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","2058-94-8","PFUnA","5.21","ng/L","U","1.09","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","2991-50-6","EtFOSAA","5.21","ng/L","U","1.42","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21", ""
"RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","307-55-1","PFDoA","5.21","ng/L","U","0.824","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","72629-94-8","PFTrDA","5.21","ng/L","U","0.514","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21"," "
"RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","376-06-
7","PFTeDA","5.21","ng/L","U","0.785","LOD","","TRG","","","8.32","LOQ","YES","-99","","0.120","0.001","5.21", ""
"RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C3-PFBS","13C3-PFBS","150","\%R","","-99","NA","","IS","150","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C2-PFHxA","13C2-PFHxA","105","\%R","","-99","NA","","IS","105","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C4-PFHpA","13C4-PFHpA","94.6","\%R","","-99","NA","","IS","94.6","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","18O2-PFHxS","18O2-PFHxS","110","\%R","","-99","NA","","IS","110","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C2-PFOA","13C2-PFOA","96.7","\%R","","-99","NA","","IS","96.7","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C8-PFOS","13C8-PFOS","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C5-PFNA","13C5-

PFNA","95.2","\%R","","-99","NA","","IS","95.2","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C2-PFDA","13C2-PFDA","102","\%R","","-99","NA","","IS","102","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","d3-MeFOSAA","d3-MeFOSAA","92.3","\%R","","-99","NA","","IS","92.3","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C2-PFUnA","13C2-PFUnA","85.6","\%R","","-99","NA","","IS","85.6","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","d5-EtFOSAA","d5-EtFOSAA","84.5","\%R","","-99","NA","","IS","84.5","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C2-PFDoA","13C2-PFDoA","89.2","\%R","","-99","NA","","IS","89.2","","-99","NA","YES","100","","0.120","0.001","-99","" "RB-04-20170717","Modified EPA Method 537","Initial","1700906-03","Vista","13C2-PFTeDA","13C2-PFTeDA","83.1","\%R","","-99","NA","","IS","83.1","","-99","NA","YES","100","","0.120","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","375-73-5","PFBS","45.6","ng/L","","1.85","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","307-24-4","PFHxA","136","ng/L","","2.25","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","375-85-9","PFHpA","31.3","ng/L","","0.609","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","355-46-4","PFHxS","285","ng/L","","0.976","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","335-67-1","PFOA","26.8","ng/L","","0.671","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","1763-23-1","PFOS","812","ng/L","","0.832","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","375-95-1","PFNA","1.59","ng/L","J","0.835","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","335-76-2","PFDA","5.17","ng/L","U","1.54","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","2355-31-9","MeFOSAA","5.17","ng/L","U","1.70","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17" ""
"MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","2058-94-8","PFUnA","5.17","ng/L","U","1.08","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","2991-50-6","EtFOSAA","5.17","ng/L","U","1.41","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","307-55-
1","PFDoA","5.17","ng/L","U","0.816","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","72629-94-8","PFTrDA","5.17","ng/L","U","0.509","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17","
"MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","376-06-7","PFTeDA","5.17","ng/L","U","0.778","LOD","","TRG","","","8.25","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C3-PFBS","13C3-PFBS","161","\%R","H","-99","NA","","IS","161","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C2-PFHxA","13C2-PFHxA","118","\%R","","-99","NA","","IS","118","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C4-PFHpA","13C4-PFHpA","97.3","\%R","","-99","NA","","IS","97.3","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","18O2-PFHxS","18O2-PFHxS","111","\%R","","-99","NA","","IS","111","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C2-PFOA","13C2-

PFOA","107","\%R","","-99","NA","","IS","107","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C8-PFOS","13C8-PFOS","112","\%R","","-99","NA","","IS","112","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C5-PFNA","13C5-PFNA","92.0","\%R","","-99","NA","","IS","92.0","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C2-PFDA","13C2-PFDA","99.2","\%R","","-99","NA","","IS","99.2","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","d3-MeFOSAA","d3-MeFOSAA","97.6","\%R","","-99","NA","","IS","97.6","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C2-PFUnA","13C2-PFUnA","96.6","\%R","","-99","NA","","IS","96.6","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","d5-EtFOSAA","d5-EtFOSAA","99.4","\%R","","-99","NA","","IS","99.4","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C2-PFDoA","13C2-PFDoA","90.5","\%R","","-99","NA","","IS","90.5","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-12BR-20170718","Modified EPA Method 537","Initial","1700906-04","Vista","13C2-PFTeDA","13C2-PFTeDA","94.2","\%R","","-99","NA","","IS","94.2","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","375-73-5","PFBS","298","ng/L","","1.85","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-02BR-20170718","Modified EPA Method 537","Dilution","1700906-05","Vista","307-24-4","PFHxA","852","ng/L","D","11.3","LOD","","TRG","","","41.4","LOQ","YES","-99","","0.121","0.001","25.8","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","375-85-9","PFHpA","446","ng/L","","0.611","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-02BR-20170718","Modified EPA Method 537","Dilution","1700906-05","Vista","355-46-4","PFHxS","1500","ng/L","D","4.90","LOD","","TRG","","","41.4","LOQ","YES","-99","","0.121","0.001","25.8","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","335-67-1","PFOA","341","ng/L","","0.674","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-02BR-20170718","Modified EPA Method 537","Dilution","1700906-05","Vista","1763-23-1","PFOS","1160","ng/L","D","4.17","LOD","","TRG","","","41.4","LOQ","YES","-99","","0.121","0.001","25.8","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","375-95-1","PFNA","114","ng/L","","0.838","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","335-76-2","PFDA","3.29","ng/L","J","1.54","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","2355-31-9","MeFOSAA","5.17","ng/L","U","1.71","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17" ""
"MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","2058-94-8","PFUnA","5.17","ng/L","U","1.09","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","2991-50-6","EtFOSAA","5.17","ng/L","U","1.42","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17",
"MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","307-55-
1","PFDoA","5.17","ng/L","U","0.819","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","72629-94-8","PFTrDA","5.17","ng/L","U","0.511","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17"," "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","376-06-7","PFTeDA","5.17","ng/L","U","0.781","LOD","","TRG","","","8.28","LOQ","YES","-99","","0.121","0.001","5.17", ""
"MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C3-PFBS","13C3-PFBS","142","\%R","","-99","NA","","IS","142","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Dilution","1700906-05","Vista","13C2-PFHxA","13C2-PFHxA","109","\%R","D","-99","NA","","IS","109","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C4-PFHpA","13C4-

PFHpA","99.6","\%R","","-99","NA","","IS","99.6","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Dilution","1700906-05","Vista","18O2-PFHxS","18O2-PFHxS","113","\%R","D","-99","NA","","IS","113","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C2-PFOA","13C2-PFOA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Dilution","1700906-05","Vista","13C8-PFOS","13C8-PFOS","105","\%R","D","-99","NA","","IS","105","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C5-PFNA","13C5-PFNA","100","\%R","","-99","NA","","IS","100","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C2-PFDA","13C2-PFDA","94.5","\%R","","-99","NA","","IS","94.5","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","d3-MeFOSAA","d3-MeFOSAA","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C2-PFUnA","13C2-PFUnA","89.5","\%R","","-99","NA","","IS","89.5","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","d5-EtFOSAA","d5-EtFOSAA","97.7","\%R","","-99","NA","","IS","97.7","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C2-PFDoA","13C2-PFDoA","97.6","\%R","","-99","NA","","IS","97.6","","-99","NA","YES","100","","0.121","0.001","-99","" "MW-02BR-20170718","Modified EPA Method 537","Initial","1700906-05","Vista","13C2-PFTeDA","13C2-PFTeDA","92.6","\%R","","-99","NA","","IS","92.6","","-99","NA","YES","100","","0.121","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","375-73-5","PFBS","5.12","ng/L","U","1.84","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","307-24-4","PFHxA","5.12","ng/L","U","2.24","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","375-85-9","PFHpA","5.12","ng/L","U","0.608","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","355-46-4","PFHxS","5.12","ng/L","U","0.974","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","335-67-1","PFOA","5.12","ng/L","U","0.670","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","1763-23-1","PFOS","5.12","ng/L","U","0.830","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","375-95-1","PFNA","5.12","ng/L","U","0.833","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","335-76-2","PFDA","5.12","ng/L","U","1.53","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","2355-31-
9","MeFOSAA","5.12","ng/L","U","1.70","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12" ""
"RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","2058-94-
8","PFUnA","5.12","ng/L","U","1.08","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","2991-50-6","EtFOSAA","5.12","ng/L","U","1.41","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12", ""
"RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","307-55-
1","PFDoA","5.12","ng/L","U","0.815","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","72629-94-8","PFTrDA","5.12","ng/L","U","0.508","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12","
"RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","376-06-
7","PFTeDA","5.12","ng/L","U","0.777","LOD","","TRG","","","8.23","LOQ","YES","-99","","0.122","0.001","5.12", ,
"RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C3-PFBS","13C3-

PFBS","150","\%R","","-99","NA","","IS","150","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C2-PFHxA","13C2-PFHxA","106","\%R","","-99","NA","","IS","106","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C4-PFHpA","13C4-PFHpA","96.7","\%R","","-99","NA","","IS","96.7","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","18O2-PFHxS","18O2-PFHxS","122","\%R","","-99","NA","","IS","122","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C2-PFOA","13C2-PFOA","93.7","\%R","","-99","NA","","IS","93.7","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C8-PFOS","13C8-PFOS","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C5-PFNA","13C5-PFNA","98.4","\%R","","-99","NA","","IS","98.4","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C2-PFDA","13C2-PFDA","103","\%R","","-99","NA","","IS","103","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","d3-MeFOSAA","d3-MeFOSAA","82.3","\%R","","-99","NA","","IS","82.3","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C2-PFUnA","13C2-PFUnA","79.3","\%R","","-99","NA","","IS","79.3","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","d5-EtFOSAA","d5-EtFOSAA","80.7","\%R","","-99","NA","","IS","80.7","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C2-PFDoA","13C2-PFDoA","76.2","\%R","","-99","NA","","IS","76.2","","-99","NA","YES","100","","0.122","0.001","-99","" "RB-05-20170718","Modified EPA Method 537","Initial","1700906-06","Vista","13C2-PFTeDA","13C2-PFTeDA","71.0","\%R","","-99","NA","","IS","71.0","","-99","NA","YES","100","","0.122","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","375-73-5","PFBS","2.50","ng/L","U","0.895","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","307-24-4","PFHxA","2.50","ng/L","U","1.09","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","375-85-9","PFHpA","2.50","ng/L","U","0.296","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","355-46-4","PFHxS","2.50","ng/L","U","0.474","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","335-67-1","PFOA","2.50","ng/L","U","0.326","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","1763-23-1","PFOS","2.50","ng/L","U","0.404","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","375-95-1","PFNA","2.50","ng/L","U","0.405","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","335-76-2","PFDA","2.50","ng/L","U","0.745","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","2355-31-9","MeFOSAA","2.50","ng/L","U","0.825","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50 " ""
"B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","2058-94-8","PFUnA","2.50","ng/L","U","0.525","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","2991-50-6","EtFOSAA","2.50","ng/L","U","0.685","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50" ""
"B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","307-55-
1","PFDoA","2.50","ng/L","U","0.396","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","72629-94-8","PFTrDA","2.50","ng/L","U","0.247","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50","
"B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","376-06-
7","PFTeDA","2.50","ng/L","U","0.378","LOD","","TRG","","","4.00","LOQ","YES","-99","","0.250","0.001","2.50", ""
"B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C3-PFBS","13C3-PFBS","129","\%R","","-99","NA","","IS","129","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C2-PFHxA","13C2-PFHxA","109","\%R","","-99","NA","","IS","109","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C4-PFHpA","13C4-PFHpA","82.6","\%R","","-99","NA","","IS","82.6","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","18O2-PFHxS","18O2-PFHxS","120","\%R","","-99","NA","","IS","120","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C2-PFOA","13C2-PFOA","104","\%R","","-99","NA","","IS","104","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C8-PFOS","13C8-PFOS","108","\%R","","-99","NA","","IS","108","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C5-PFNA","13C5-PFNA","95.7","\%R","","-99","NA","","IS","95.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C2-PFDA","13C2-PFDA","95.3","\%R","","-99","NA","","IS","95.3","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","d3-MeFOSAA","d3-MeFOSAA","92.7","\%R","","-99","NA","","IS","92.7","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C2-PFUnA","13C2-PFUnA","91.0","\%R","","-99","NA","","IS","91.0","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","d5-EtFOSAA","d5-EtFOSAA","92.9","\%R","","-99","NA","","IS","92.9","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C2-PFDoA","13C2-PFDoA","92.0","\%R","","-99","NA","","IS","92.0","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BLK1","Modified EPA Method 537","Initial","B7G0105-BLK1","Vista","13C2-PFTeDA","13C2-PFTeDA","78.6","\%R","","-99","NA","","IS","78.6","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","375-735","PFBS","37.2","ng/L","","0.895","LOD","","TRG","93.0","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","307-244","PFHxA","36.8","ng/L","","1.09","LOD","","TRG","92.1","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","375-85-
9","PFHpA","38.6","ng/L","","0.296","LOD","","TRG","96.4","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50 " ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","355-464","PFHxS","34.7","ng/L","","0.474","LOD","","TRG","86.9","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50 ",""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","335-67-
1","PFOA","38.1","ng/L","","0.326","LOD","","TRG","95.3","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","1763-23-
1","PFOS","31.0","ng/L","","0.404","LOD","","TRG","77.5","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","375-95-
1","PFNA","39.1","ng/L","","0.405","LOD","","TRG","97.9","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","335-76-
2","PFDA","37.3","ng/L","","0.745","LOD","","TRG","93.4","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50", ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","2355-31-

9","MeFOSAA","39.8","ng/L","","0.825","LOD","","TRG","99.5","","4.00","LOQ","YES","40.0","","0.250","0.001"," 2.50",""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","2058-94-
8","PFUnA","36.9","ng/L","","0.525","LOD","","TRG","92.2","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50 " ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","2991-50-
6","EtFOSAA","36.9","ng/L","","0.685","LOD","","TRG","92.2","","4.00","LOQ","YES","40.0","","0.250","0.001","2. 50",""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","307-55-
1","PFDoA","37.2","ng/L","","0.396","LOD","","TRG","93.0","","4.00","LOQ","YES","40.0","","0.250","0.001","2.50 " ""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","72629-94-
8","PFTrDA","39.1","ng/L","","0.247","LOD","","TRG","97.8","","4.00","LOQ","YES","40.0","","0.250","0.001","2.5 0",""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","376-06-
7","PFTeDA","38.9","ng/L","","0.378","LOD","","TRG","97.1","","4.00","LOQ","YES","40.0","","0.250","0.001","2.5 0",""
"B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C3-PFBS","13C3-PFBS","165","\%R","H","-99","NA","","IS","165","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C2-PFHxA","13C2-PFHxA","114","\%R","","-99","NA","","IS","114","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C4-PFHpA","13C4-PFHpA","95.2","\%R","","-99","NA","","IS","95.2","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","18O2-PFHxS","1802-PFHxS","121","\%R","","-99","NA","","IS","121","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C2-PFOA","13C2-PFOA","113","\%R","","-99","NA","","IS","113","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C8-PFOS","13C8-PFOS","128","\%R","","-99","NA","","IS","128","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C5-PFNA","13C5-PFNA","116","\%R","","-99","NA","","IS","116","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C2-PFDA","13C2-PFDA","95.9","\%R","","-99","NA","","IS","95.9","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","d3-MeFOSAA","d3-MeFOSAA","94.4","\%R","","-99","NA","","IS","94.4","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C2-PFUnA","13C2-PFUnA","87.9","\%R","","-99","NA","","IS","87.9","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","d5-EtFOSAA","d5-EtFOSAA","97.5","\%R","","-99","NA","","IS","97.5","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C2-PFDoA","13C2-PFDoA","92.5","\%R","","-99","NA","","IS","92.5","","-99","NA","YES","100","","0.250","0.001","-99","" "B7G0105-BS1","Modified EPA Method 537","Initial","B7G0105-BS1","Vista","13C2-PFTeDA","13C2-PFTeDA","83.6","\%R","","-99","NA","","IS","83.6","","-99","NA","YES","100","","0.250","0.001","-99","" "NAWC Trenton","NAWC Trenton","MW-50BR-20170717","07/17/2017 13:55","AQ","170090601","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/24/2017 23:53","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","07/19/2017 09:15","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-06BR-20170717","07/17/2017 16:10","AQ","170090602","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/25/2017 00:03","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","07/19/2017 09:15","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","RB-04-20170717","07/17/2017 18:00","AQ","1700906-
03","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/25/2017 00:14","Vista","COA","WET","NA","1","NA","NA","01/01/1900

00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","07/19/2017 09:15","01/01/1900 00:00","" "NAWC Trenton","NAWC Trenton","MW-12BR-20170718","07/18/2017 13:00","AQ","170090604","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/25/2017 00:25","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","07/19/2017 09:15","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-02BR-20170718","07/18/2017 15:15","AQ","1700906-
05","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/25/2017
00:36","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","07/19/2017 09:15","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","MW-02BR-20170718","07/18/2017 15:15","AQ","1700906-
05","NM","","4.00","Modified EPA Method 537","METHOD","Dilution","07/24/2017 07:38","07/26/2017
00:06","Vista","COA","WET","NA","5","NA","NA","01/01/1900
00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","07/19/2017 09:15","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","RB-05-20170718","07/18/2017 18:00","AQ","1700906-
06","NM","","4.00","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/25/2017
00:47","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","07/19/2017 09:15","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0105-BLK1","01/01/1900 00:00","AQ","B7G0105-
BLK1","MB","","-99","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/24/2017
23:42","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","01/01/1900 00:00","01/01/1900 00:00",""
"NAWC Trenton","NAWC Trenton","B7G0105-BS1","01/01/1900 00:00","AQ","B7G0105-
BS1","LCS","","-99","Modified EPA Method 537","METHOD","Initial","07/24/2017 07:38","07/24/2017
23:21","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B7G0105","B7G0105","NA","S7G0059","1700906","01/01/1900 00:00","01/01/1900 00:00",""

TO:	MARY MANG	DATE:	SEPTEMBER 15, 2017
FROM:	MEGAN RITCHIE	COPIES:	DV FILE/
SUBJECT:	ORGANIC DATA VALIDATION - POLYFLUOROAKLYL SUBSTANCES (PFAS)		
	CTO WE08 - FORMER NAWC TRENTON		
	SDG 1700906		

SAMPLES: $6 /$ Groundwater / PFAS
MW-02BR-20170718
MW-12BR-20170718
RB-04-20170717
MW-06BR-20170717 MW-50BR-20170717 RB-05-20170718

Overview

The sample set for NAWC Trenton, SDG 1700906 consists of four (4) groundwater environmental samples and two (2) field quality control rinsate blanks (designated RB-). No field duplicate pairs were included in this SDG. The samples were analyzed for polyfluoroalkyl substances (PFAS).

The samples were collected by Tetra Tech on July 17 and 18, 2017 and analyzed by Vista Analytical. The analysis was conducted in accordance with modified EPA Method 537 Rev. 1.1 analytical and reporting protocols.

The data contained in this SDG were validated with regard to the following parameters:

```
* Data Completeness
* Holding Times/Sample Preservation
* GC/MS Instrument Tuning and System Performance
* Initial and Continuing Calibration Verification Results
* Laboratory Method/Preparation Blank Analyses
* Surrogate Recoveries
* Ongoing Precision and Recovery (OPR) Results
* Matrix Spike/Matrix Spike Duplicate Results
* Laboratory Duplicate Sample Results
    Internal Standard Results
* Field Duplicate Precision
* Detection Limits
```

The symbol (*) indicates that quality control criteria were met for this parameter. Issues affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

TO: M. MANG
PAGE 2
SDG: 1700906

PFAS

The recovery of internal standard 13C3-PFBS exceeded the QC limit of 150% for sample MW-12BR20170718. The positive PFBS result for sample MW-12BR-20170718 was qualified as biased high (J+).

Detected results reported below the Limit of Quantitation (LOQ) but above the Detection Limit (DL) were qualified as estimated (J).

Notes

The recovery of internal standard 13C3-PFBS exceeded the QC limit of 150% for the OPR. No action was taken because the OPR recovery of PFBS was within the QC recovery limits.

Sample MW-02BR-20170718 was reanalyzed at a 5 X dilution for PFHxA, PFHxS, and PFOS because the concentrations of these analytes exceeded the concentration range of the instrument in the original analysis.

Samples MW-50BR-20170717, MW-06BR-20170717, MW-12BR-20170718, and MW-02BR-20170718 were centrifuged to remove particulates prior to extraction.

All analyses were conducted within the hold times specified by the site specific Sampling and Analysis Plan (SAP) and the analytical method.

Non-detected results were reported to the Limit of Detection (LOD).

TO: M. MANG
PAGE 3 SDG: 1700906

Executive Summary

Laboratory Performance: Internal standard recoveries for exceeded QC limits in two samples.
Other Factors Affecting Data Quality: Positive results below the LOQ were qualified as estimated.
The data for these analyses were reviewed with reference to the "National Functional Guidelines for Superfund Organic Methods Data Review" (January 2017). The text of this report has been formulated to address only those areas affecting data quality.

Megan Richie
Tetra Tech, Inc.
Megan Richie
Chemist/Data Validator

Attachments:
Appendix A - Qualified Analytical Results
Appendix B - Results as Reported by the Laboratory
Appendix C - Support Documentation

Appendix A

Qualified Analytical Results

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
\mathbf{J}	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.
$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
$\mathbf{U J}$	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
\mathbf{R}	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
$\mathbf{U R}$	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 = GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
$\mathrm{G}=$ Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
$J=$ ICP PDS Recovery Noncompliance; MSA's $r<0.995$
$\mathrm{K}=$ ICP Interference - includes ICS \% R Noncompliance
$\mathrm{L}=$ Instrument Calibration Range Exceedance
$\mathrm{M}=$ Sample Preservation Noncompliance
$\mathrm{N}=$ Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
$P=$ Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
$\mathrm{Q}=$ Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$\mathrm{U}=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$\mathrm{V}=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
$\mathrm{W}=$ EMPC result
$\mathrm{X}=$ Signal to noise response drop
$Y=$ Percent solids $<30 \%$
$Z \quad=$ Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE08	NSAMPLE	MW-02BR-201	70718		MW-06BR-201	70717		MW-12BR-201	70718		MW-50BR-201	70717	
SDG: 1700906	LAB_ID	1700906-05			1700906-02			1700906-04			1700906-01		
FRACTION: PFAS	SAMP_DATE	7/18/2017			7/17/2017			7/18/2017			7/17/2017		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L			NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD									
N-ETHYL PERFLUOROO	TANE	5.17	U										
N-METHYL PERFLUOROO	CTANE	5.17	U										
SULFONAMIDOACETIC A													
PENTADECAFLUOROOC	ANOIC ACID	341			5.17	U		26.8			15.5		
PERFLUOROBUTANESUL	FONIC ACID	298			5.17	U		45.6	J+	N	42.9		
PERFLUORODECANOIC	ACID	3.29	J	P	5.17	U		5.17	U		5.17	U	
PERFLUORODODECANO	C ACID	5.17	U		5.17	U		5.17	\cup		5.17	U	
PERFLUOROHEPTANOIC	ACID	446			5.17	U		31.3			25.6		
PERFLUOROHEXANESUL	FONIC ACID	1500			5.17	U		285			195		
PERFLUOROHEXANOIC	CID	852			5.17	U		136			78.8		
PERFLUORONONANOIC	ACID	114			5.17	U		1.59	J	P	1	J	P
PERFLUOROOCTANE SU	FONIC ACID	1160			5.17	U		812			96.6		
PERFLUOROTETRADECA	NOIC ACID	5.17	U										
PERFLUOROTRIDECANO	C ACID	5.17	U										
PERFLUOROUNDECANO	C ACID	5.17	U										

PROJ_NO: 08005-WE08	NSAMPLE	RB-04-201707			RB-05-201707		
SDG: 1700906	LAB_ID	1700906-03			1700906-06		
FRACTION: PFAS	SAMP_DATE	7/17/2017			7/18/2017		
MEDIA: WATER	QC_TYPE	RB			RB		
	UNITS	NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
N-ETHYL PERFLUORO	TANE	5.21	U		5.12	U	
N-METHYL PERFLUOROO	CTANE	5.21	U		5.12	U	
PENTADECAFLUOROOC	ANOIC ACID	5.21	\cup		5.12	\cup	
PERFLUOROBUTANESUL	FONIC ACID	5.21	U		5.12	U	
PERFLUORODECANOIC	CID	5.21	U		5.12	U	
PERFLUORODODECANO	ACID	5.21	U		5.12	U	
PERFLUOROHEPTANOIC	ACID	5.21	U		5.12	U	
PERFLUOROHEXANESUL	ONIC ACID	5.21	U		5.12	U	
PERFLUOROHEXANOIC	CID	5.21	U		5.12	U	
PERFLUORONONANOIC	CID	5.21	U		5.12	U	
PERFLUOROOCTANE SU	FONIC ACID	5.21	U		5.12	U	
PERFLUOROTETRADEC	NOIC ACID	5.21	U		5.12	U	
PERFLUOROTRIDECANO	C ACID	5.21	U		5.12	U	
PERFLUOROUNDECANO	ACID	5.21	U		5.12	U	

Appendix B

Results as Reported by the Laboratory

Sample ID:	MW-50BR-20170717							Modifie	d EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 17-Jul-2017 13:55		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.121 \mathrm{~L} \end{aligned}$	Lab La Q D	atory Samp Batch Ana	Data e: $1700906-01$ B7G0105 yzed: 24-Jul-17 23:53	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 19-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{aligned} & 9: 15 \\ & 7: 38 \end{aligned}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	42.9	1.85	5.17	8.26		IS	13C3-PFBS	140	50-150	
PFHxA	78.8	2.25	5.17	8.26			13C2-PFHxA	110	50-150	
PFHpA	25.6	0.610	5.17	8.26			13C4-PFHpA	94.8	50-150	
PFHxS	195	0.978	5.17	8.26		IS	1802-PFHxS	106	50-150	
PFOA	15.5	0.672	5.17	8.26		IS	13C2-PFOA	107	50-150	
PFOS	96.6	0.833	5.17	8.26		IS	13C8-PFOS	97.8	50-150	
PFNA	1.00	0.836	5.17	8.26	J	IS	13C5-PFNA	101	50-150	
PFDA	ND	1.54	5.17	8.26		IS	13C2-PFDA	102	50-150	
MeFOSAA	ND	1.70	5.17	8.26			d3-MeFOSAA	102	50-150	
PFUnA	ND	1.08	5.17	8.26		IS	13C2-PFUnA	95.3	50-150	
EtFOSAA	ND	1.41	5.17	8.26			d5-EtFOSAA	109	50-150	
PFDoA	ND	0.818	5.17	8.26		IS	13C2-PFDoA	86.3	50-150	
PFTrDA	ND	0.510	5.17	8.26		IS	13C2-PFTeDA	75.1	50-150	
PFTeDA	ND	0.780	5.17	8.26						
		DL - Detection limit RL - Reporting limit				LCL-UCL - Lower control limit - upper control limit Results reported to DL.				

Sample ID:	MW-06BR-20170717							Modifie	d EPA Me	thod 537
Client Data Name: Project: Date Collected: Location:	Tetra Tech NAWC Trenton 17-Jul-2017 16:10		Sample Data Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.121 \mathrm{~L} \end{aligned}$	Lab Lab QC Dat	atory Samp Batch Ana	Data e: $1700906-02$ B7G0105 yzed: 25-Jul-17 00:03	Date Received: Date Extracted: Column: BEH C18	$\begin{aligned} & \text { 19-Jul-2017 } \\ & \text { 24-Jul-2017 } \end{aligned}$	$\begin{aligned} & 9: 15 \\ & 7: 38 \end{aligned}$
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Labeled Standard	\%R	LCL-UCL	Qualifiers
PFBS	ND	1.85	5.17	8.28		IS	13C3-PFBS	147	50-150	
PFHxA	ND	2.26	5.17	8.28		IS	13C2-PFHxA	112	50-150	
PFHpA	ND	0.611	5.17	8.28		IS	13C4-PFHpA	98.4	50-150	
PFHxS	ND	0.980	5.17	8.28		IS	1802-PFHxS	122	50-150	
PFOA	ND	0.673	5.17	8.28		IS	13C2-PFOA	111	50-150	
PFOS	ND	0.835	5.17	8.28			13C8-PFOS	126	50-150	
PFNA	ND	0.838	5.17	8.28		IS	13C5-PFNA	103	50-150	
PFDA	ND	1.54	5.17	8.28		IS	13C2-PFDA	111	50-150	
MeFOSAA	ND	1.71	5.17	8.28			d3-MeFOSAA	116	50-150	
PFUnA	ND	1.09	5.17	8.28		IS	13C2-PFUnA	94.3	50-150	
EtFOSAA	ND	1.42	5.17	8.28			d5-EtFOSAA	107	50-150	
PFDoA	ND	0.819	5.17	8.28			13C2-PFDoA	93.1	50-150	
PFTrDA	ND	0.511	5.17	8.28		IS	13C2-PFTeDA	69.3	50-150	
PFTeDA	ND	0.781	5.17	8.28						
DL - Detection limit RL - Reporting limit					LCL-UCL - Lower control limit - upper control limit Results reported to DL. When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.					

Appendix C

Support Documentation

CHAIN OF CUSTODY RECORD

${ }^{\circ} \mathrm{C}$

See "Sample Log-in Checklist" for additional sample information

Special Instructions/Comments:
FedEx 661219927209

[^2]$\square \mathrm{O}=$ Other

SEND
DOCUMENTATION AND RESULTS TO:

Name: Mary Mang
Company: Tetra Tech
Address: 234 Mall Blvd Suite 260
City: King of Prussia State: PA Zip: 19406 Phone: $\frac{610-382-1174}{}$ Fax: 610-491-9645
Email: mary.mang@tetratech.com
Matrix Types: $D W=$ Drinking Water, $\mathrm{EF}=\mathrm{Effluent}, \mathrm{PP}=$ Pulp/Paper, $S D=$ Sediment, $S L=$ Sludge, $S O=$ Soii, $W W=$ Wastewater, $B=$ Blood $/$ Serum $O=$ Other $A Q$

SDG Number WE08

Vista Work Order No. 1700906

Case Narrative

Sample Condition on Receipt:

Six aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "MW-50BR-20170717", "MW-06BR-20170717", "MW-12BR-20170718", and "MW-02BR-20170718" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of 14 PFAS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag
$1700906-04$	MW-12BR-20170718	Modified EPA Method 537	13C3-PFBS	H
B7G0105-BS1	B7G0105-BS1	Modified EPA Method 537	13C3-PFBS	161

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

FORMER NAWC TRENTON
1700906

SAMPLE IDENTIFICATION
COMPOUND PFOS
COMPOUND AREA 10800
INTERNAL STANDARD AMOUNT (ng/ml) 109
DILUTION FACTOR 1
INTERNAL STANDARD AREA 944
AVERAGE RRF 0.936
SAMPLE VOLUME (ml) 120.82
VOLUME EXTRACT (ml) 1
VOLUME INJECTED ($\mu \mathrm{l}$) 0.1
ml to L 1000
CONCENTRATION = 1103 ng/L
$10800 \times 109 \mathrm{ng} / \mathrm{ml} \times 0.1 \mathrm{uL} \times 1000 \mathrm{ml} \times 1 /(944 \times 1 \times 12.082 \mathrm{ml} \times 1 \mathrm{~L})$

Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.250 \mathrm{~L} \end{aligned}$	QC Batch: Date Extracted:	$\begin{aligned} & \text { B7G0105 } \\ & \text { 24-Jul-2017 } \end{aligned}$			Lab Sample: Date Analyzed:	$\begin{array}{ll} & \mathrm{B} 7 \mathrm{G} 0105-\mathrm{BS} 1 \\ 24-\mathrm{Jul}-17 & 23: 21 \end{array}$	Column: BEH C18	
Analyte		Amt Found (ng/L)	Spike Amt	\%R	Limits	Labeled Standard		\%R	LCL-UCL
PFBS		37.2	40.0	93.0	70-130	IS	13C3-PFBS	165	50-150
PFHxA		36.8	40.0	92.1	70-130	IS	13C2-PFHxA	114	50-150
PFHpA		38.6	40.0	96.4	70-130	IS	13C4-PFHpA	95.2	50-150
PFHxS		34.7	40.0	86.9	70-130	IS	18O2-PFHxS	121	50-150
PFOA		38.1	40.0	95.3	70-130	IS	13C2-PFOA	113	50-150
PFOS		31.0	40.0	77.5	70-130	IS	13C8-PFOS	128	50-150
PFNA		39.1	40.0	97.9	70-130	IS	13C5-PFNA	116	50-150
PFDA		37.3	40.0	93.4	70-130	IS	13C2-PFDA	95.9	50-150
MeFOSAA		39.8	40.0	99.5	70-130	IS	d3-MeFOSAA	94.4	50-150
PFUnA		36.9	40.0	92.2	70-130	IS	13C2-PFUnA	87.9	50-150
EtFOSAA		36.9	40.0	92.2	70-130	IS	d5-EtFOSAA	97.5	50-150
PFDoA		37.2	40.0	93.0	70-130	IS	13C2-PFDoA	92.5	50-150
PFTrDA		39.1	40.0	97.8	60-130	IS	13C2-PFTeDA	83.6	50-150
PFTeDA		38.9	40.0	97.1	70-130				

LCL-UCL - Lower control limit - upper control limit

Process Sheet
 Workorder: 1700906

Prep Expiration: 2017-Aug-01
Client: Tetra Tech

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous

Version: 537 (14 Analyte)

LabSampleID	Recon ClientSampleID	Date Received	Location Comments	
$1700906-01$	MW-50BR-20170717	MW-06BR-20170717	19-Jul-17 09:15	WR-2 A-4
$1700906-02$	RB-04-20170717	19-Jul-17 09:15	WR-2 A-4	
$1700906-03$	MW-12BR-20170718	19-Jul-17 09:15	WR-2 A-4	
$1700906-04$	MW-02BR-20170718	19-Jul-17 09:15	WR-2 A-4	
$1700906-05$	RB-05-20170718	19-Jul-17 09:15	WR-2 A-4	
$1700906-06$	19-Jul-17 09:15	WR-2 A-4		

Vista PM:Martha Maier
\qquad 712417

HRMS - 8

BALANCE CALIBRATION CHECK

Weights \# _ 22370 and 7718

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537M PFAS
B7G0105
Chemist: BP
Method: 537M PFAS DOD (LOO as mRL)
Prepared using: LCMS - SPE Extraction-LCMS

 after antojurusposiB 712417

PREPARATION BENCH SHEET

Prep Date/Time: 24-Jul-17 07:38

Prepared using: LCMS - SPE Extraction-LCMS

c		${ }_{\text {pref }}^{\text {Before }}$	${ }_{\text {After }}^{\text {PH }}$	$\underset{\substack{\text { Chlorine } \\ \text { (ci) }}}{\text { a }}$	$\begin{aligned} & \text { Drops } \\ & \text { Added } \\ & \text { Adde } \end{aligned}$	$\text { Botile } \text { Sande }$	$\begin{aligned} & \text { Borle } \\ & \text { Boll } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Sample } \\ \text { Ample } \\ \text { (L) } \end{gathered}$	$\underset{\substack{\text { ISNS } \\ \text { CHENMTIT } \\ \text { DATE }}}{\text { Ins. }}$	SPE	$\underset{\substack{\text { CHEMWIT } \\ \text { DATE }}}{\text { Dic }}$
\square	1700907-07	5	2	0	2	47.64	26.95	0.12069		164774×1	B3 ${ }^{\text {c }}$ KSF $7 / 2 / 17$
\square	1700907-08	5	2	0	2	146.66	27.05	0.11961	1		
\square	1700907-09 (8)	6	2	0	3	142.91	26.97	0.1594			
\square	170907-10 (b) 6	6	2	0	3	140.91	27.06	0.11385			
\square	1700919.01	5	2	0	3	265.61	25.42	0.24019			
\square	170099902	5	2	0	3	271.98	25.49	0.24649			
\square	${ }^{170099-03}$	5	2	0	3	267.55	25.66	0.24189	\checkmark	\downarrow	\downarrow

(17samples were centufuged to remove particulate. H187/24/17 © Samples still disolored after centmfugi 1 137/24/17 (C) Glas ware matunctori, sample lost doring elution BP 7.24 .17

IS Name $\frac{1761307,10 \mathrm{al}}{(\sqrt{6})}$	NS Name $1102705,10 \%$ (vi)	RS Name $17 F-3038,10 \mathrm{~mL}$	SPE Chem:Strata X-Aw $33 N$ roony/6nl Ele SOLV: 0.5% NHY OHin MeatheOH Final Volume(s) \qquad 1 mL	Check Out: $7 \cdot 24 \cdot 17$ Chemist/Date: \qquad Check In: Chemist/Date: \qquad NA Balance ID: \qquad HRMs. 8 pH Adjusted: Chemist/Date: \qquad HB7/24117

Batch: B7G0105

Matrix: Aqueous

LabNumber	WetWeight (Initial)	$\begin{gathered} \text { \% Solids } \\ \text { (Extraction Solids) } \end{gathered}$	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1700906-01	0.12107 /	$N A$	$N A$	1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-02	$0.12083 \checkmark$			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-03	0.12018 /			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-04	0.12127 V			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-05	$0.12082 \checkmark$			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700906-06	$0.12151 \checkmark$			1000	24-Jul-17 07:38	BAP			Aqueous	537M PFAS DOD (LOQ as
1700907-01	$0.1198 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-02	0.11985			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-03	$0.1204 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-03	$0.1204 \sqrt{ }$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
1700907-04	$0.12053 \sqrt{ }$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-05	$0.12294 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-06	$0.11627 \sqrt{ }$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-07	0.12069 V			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-08	$0.11961 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-09	$0.11594 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700907-10	$0.11385 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS DOD (LOQ as
1700919-01	$0.24019 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
1700919-02	$0.24649 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
1700919-03	$0.24189 \checkmark$			1000	24-Jul-17 07:38	BAP			Water	537M PFAS
B7G0105-BLK1	$0.25 \checkmark$			1000	24-Jul-17 07:38	BAP				QC
B7G0105-BS1	$0.25 \checkmark$			1000	24-Jul-17 07:38	BAP	17D2705	$\checkmark 10 \checkmark$		QC
B7G0105-MS1	$0.11812 \checkmark$			1000	24-Jul-17 07:38	BAP	17D2705	$\checkmark 10 \sqrt{ }$		QC
B7G0105-MSD1	$0.12165 \checkmark$	$\sqrt{ }$	\checkmark	1000	24-Jul-17 07:38	BAP	17D2705	$\checkmark \quad 10 \checkmark$		QC

Dataset:	U:\Q4.PRO\results1170724M11170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:06 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

	\# Name	Trace	\% Area	IS Resp	RRF WI Wol	RT	Conc.	\%Rec	70-130
1 -	1 L-PFBA	$213.0>168.8$	13717.317	14841.831	1.000	1.56	9.63	96.26	
2 2- ${ }^{2}$	2 Br -PFBA	$213.0>168.8$		14841.831	1.000				
3.	3 L-PFPeA	$263.1>218.9$	23137.586	29721.047	1.000	2.81	9.63	96.31	
4 4. ${ }^{\text {a }}$,	4 Br -PFPeA	$263.1>218.9$		29721.047	1.000				
5. We mix	5 L-PFBS	$299>79.7$	5388.239	3666.354	1.000	3.00	9.88	98.77	
6.4	6 Br -PFBS	$299>79.7$		3666.354	1.000				
7 \% 2×4	7 L-PFHxA	$313.2>268.9$	38028.445	12560.093	1.000	3.23	9.92	99.24	
8.4	$8 \mathrm{Br}-\mathrm{PFH} \times \mathrm{A}$	313.2 > 268.9	29.740	12560.093	1.000	3.15			
	9 L-PFHpA	$363>318.9$	35389.406	35390.621	1.000	3.49	9.91	99.08	
10	$10 \mathrm{Br}-\mathrm{PFHpA}$	$363>318.9$	73.087	35390.621	1.000	3.36			
11. ${ }^{\text {a }}$.	11 L-PFHxS	$398.9>79.6$	4523.582	3743.138	1.000	3.56	9.38	93.79	
12.	12 Br -PFHxS	$398.9>79.6$		3743.138	1.000				
13.4	13 L-6:2 FTS	$427.1>407$	7485.944	9068.308	1.000	3.67	9.75	97.53	
14.	$14 \mathrm{Br}-6: 2 \mathrm{FTS}$	$427.1>407$		9068.308	1.000				
15.	15 L-PFOA	$413>368.7$	51977.324	63225.359	1.000	3.68	10.38	103.79	
16.	16 Br -PFOA	$413>368.7$	38.392	63225.359	1.000	3.56			
17:	17 L-PFHpS	$448.9>98.8$	4945.654	63225.359	1.000	3.74	10.85	108.53	
18.	$18 \mathrm{Br}-\mathrm{PFHpS}$	$448.9>98.8$		63225.359	1.000				
19.	19 L-PFNA	$462.9>418.8$	58359.652	65988.719	1.000	3.86	9.94	99.37	
20.	20 Br -PFNA	$462.9>418.8$		65988.719	1.000				
21.	21 L-PFOSA	$498.1>77.8$	6377.556	7101.229	1.000	3.87	10.65	106.52	
22.4	$22 \mathrm{Br}-\mathrm{PFOSA}$	$498.1>77.8$		7101.229	1.000				
23.	23 L-PFOS	$499>79.9$	10311.557	12179.149	1.000	3.91	8.92	89.22	
24 【"	24 Br -PFOS	$499>79.9$		12179.149	1.000				
25.4	25 L-PFDA	$513>468.8$	57795.934	63113.398	1.000	4.03	8.72	87.25	
26	$26 \mathrm{Br}-\mathrm{PFDA}$	$513>468.8$		63113.398	1.000				
	27 L-8:2 FTS	$527>506.9$	6590.332	5991.518	1.000	4.03	9.38	93.77	
28 \%	$28 \mathrm{Br}-8: 2 \mathrm{FTS}$	$527>506.9$		5991.518	1.000				
29	29 L-N-MeFOSAA	$570.1>419$	16503.994	13933.809	1.000	4.06	10.01	100.11	
30	$30 \mathrm{Br}-\mathrm{N}-\mathrm{MeFOSAA}$	$570.1>419$		13933.809	1.000				
31 Work	$31.2-N-E t F O S A A$ Order 170008	584.2>419	12592.925	14393.751	1.000	4.13	8.96	89.64	$\sqrt{1}$

Dataset:	U:IQ4.PROlresults1170724M1\170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:06 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

	\# Name	Trace ${ }^{\text {a }}$	Area	IS Resp	RRF	Wtivel	RT	Conc.	\%Rec	$70-130$
32	$32 \mathrm{Br}-\mathrm{N}-\mathrm{EtFOS} A \mathrm{~A}$	$584.2>419$		14393.751		1.000				
33	33 L-PFUnA	$562.9>518.9$	43380.402	66093.086		1.000	4.20	9.29	92.87	
34	$34 \mathrm{Br}-\mathrm{PF}$ UnA	$562.9>518.9$		66093.086		1.000				
35 : +]	35 L-PFDS	$598.9>98.7$	4549.397	66093.086		1.000	4.24	9.66	96.63	
36 ret m kr	$36 \mathrm{Br}-\mathrm{PFDS}$	$598.9>98.7$		66093.086		1.000				
37.4	37 L-PFDoA	$612.9>318.8$	5090.924	7241.331		1.000	4.36	9.30	92.99	
38 rta	38 Br -PFDoA	$612.9>318.8$		7241.331		1.000				
39 . 7 \%	39 L-N-MeFOSA	$512.1>168.9$	10713.910	30558.729		1.000	4.41	9.47	94.74	
40 .	$40 \mathrm{Br}-\mathrm{N}-\mathrm{MeFOSA}$			30558.729						
41. H ,, m	41 L-PFTrDA	$662.9>618.9$	62943.777	7241.331		1.000	4.53	9.79	97.92	
42 W.	42 Br -PFTrDA	$662.9>618.9$		49154.664		1.000				
43.	43 L-PFTeDA	$712.9>668.8$	43981.219	49154.664		1.000	4.71	9.70	97.00	
144	44 Br -PFTeDA	$712.9>668.8$		49154.664		1.000				
45	45 L-N-EtFOSA	$526.1>168.9$	12841.630	41816.922		1.000	4.98	9.86	98.58	
46	$46 \mathrm{Br}-\mathrm{N}$-EtFOSA	$526.1>168.9$	20.190	41816.922		1.000	4.88			
$47 \times$	47 L-PFHxDA	$812.8>768.9$	65001.813	24112.928		1.000	5.08	9.85	98.51	
48 . ${ }^{\text {a }}$	48 Br -PFHxDA	$812.8>768.9$		24112.928		1.000				
49 ,	49 L-PFODA	$912.8>868.8$	61969.875	24112.928		1.000	5.45	9.97	99.68	
50	50 Br -PFODA	$912.8>868.8$		24112.928		1.000				
51	51 L-N-MeFOSE	$616.1>58.9$	15692.072	46741.930		1.000	5.44	9.51	95.06	
52.4	$52 \mathrm{Br}-\mathrm{N}-\mathrm{MeFOSE}$	$616.1>58.9$		46741.930		1.000				
53.4	53 L-N-EtFOSE	$630.1>58.9$	17749.732	46536.496		1.000	5.61	9.51	95.14	\}
54	$54 \mathrm{Br}-\mathrm{N}$-EtFOSE	$630.1>58.9$		46536.496		1.000				
55.	55 13C3-PFBA	$216.1>171.8$	14841.831	17771.932	0.821	1.000	1.56	12.72	101.77	$50-150$
$56, \ldots$	56 13C3-PFPeA	$266>221.8$	29721.047	17771.932	1.617	1.000	2.81	12.92	103.40	
57.	57 13C3-PFBS	$302>98.8$	3666.354	17771.932	0.203	1.000	3.00	12.72	101.73	
58	58 13C2-PFHxA	$315>269.8$	12560.093	44936.813	0.276	1.000	3.23	5.06	101.13	
59 . TH.	59 13C4-PFHpA	$367.2>321.8$	35390.621	44936.813	0.306	1.000	3.49	12.89	103.11	
60 *	60 18O2-PFHxS	$403>102.6$	3743.138	8924.657	0.393	1.000	3.56	13.35	106.76	
61	61 13C2-6:2 FTS	$429.1>408.9$	9068.308	63225.359	0.147	1.000	3.67	12.16	97.25	
62	62 13C2-PFOA	$414.9>369.7$	63225.359	60232.691	1.067	1.000	3.68	12.29	98.33	
63.4	63 13C5-PFNA	$468.2>422.9$	65988.719	77770.828	0.852	1.000	3.86	12.45	99.57	
64. ${ }^{\text {a }}$ \%	64 13C8-PFOSA	$506.1>77.7$	7101.229	75659.602	0.098	1.000	3.87	11.94	95.54	
65 .	65 13C8-PFOS	$507>79.9$	12179.149	12400.646	0.937	1.000	3.91	13.10	104.79	V

Work Order 1700906

Quantify Sample Summary Report	MassLynx MassLynx V4.1 SCN945 SCN960	Page 3 of 3
Vista Analytical Laboratory		

Usta Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-54.qld
Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:46:06 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

1. \# Name	Trace	Area	IS Resp	RRF	Wt. Nol	RT	Conc.	\%Rec	$50-150$
66 , 66 13C2-PFDA	$515.1>469.9$	63113.398	76913.242	0.810	1.000	4.03	12.67	101.33	
67 , 6^{2} 13C2-8:2 FTS	$529.1>508.7$	5991.518	63113.398	0.106	1.000	4.03	11.21	89.64	\downarrow
68 68 d3-N-MeFOSAA	$573.3>419$	13933.809	75659.602	0.178	1.000	4.06	12.93	103.43	
69.	$589.3>419$	14393.751	75659.602	0.181	1.000	4.12	13.11	104.87	
70.70 13C2-PFUnA	$565>519.8$	66093.086	75659.602	0.962	1.000	4.20	11.35	90.80	
71 \% 71 13C2-PFDoA	$615>569.7$	7241.331	75659.602	0.094	1.000	4.36	12.67	101.36	
$72.42 \mathrm{~d}-\mathrm{N}-\mathrm{MeFOSA}$	$515.2>168.9$	30558.729	75659.602	0.413	1.000	4.44	12.23	97.81	
73.	$714.8>669.6$	49154.664	75659.602	0.694	1.000	4.71	11.70	93.57	
74.44 d5-N-EtFOSA	$531.1>168.9$	41816.922	75659.602	0.581	1.000	5.02	11.88	95.07	
75.475 13C2-PFHxDA	$815>769.7$	24112.928	75659.602	0.843	1.000	5.08	4.73	94.51	
76.	$623.1>58.9$	46741.930	75659.602	0.656	1.000	5.43	11.78	94.24	
77. ${ }^{\text {a }}$ \% 77 d9-N-EtFOSE	$639.2>58.8$	46536.496	75659.602	0.641	1.000	5.60	11.99	95.95	
78 W	$217>171.8$	17771.932	17771.932	1.000	1.000	1.56	12.50	100.00	
79.779 13C5-PFHxA	$318>272.9$	44936.813	44936.813	1.000	1.000	3.23	5.00	100.00	
80.w ${ }^{\text {a }} 80$ 13C3-PFHxS	$401.9>79.9$	8924.657	8924.657	1.000	1.000	3.56	12.50	100.00	
	$421.3>376$	60232.691	60232.691	1.000	1.000	3.68	12.50	100.00	
82.82 13C9-PFNA	$472.2>426.9$	77770.828	77770.828	1.000	1.000	3.86	12.50	100.00	
83. ${ }^{\text {a }} 83$ 13C4-PFOS	$503>79.9$	12400.646	12400.646	1.000	1.000	3.91	12.50	100.00	
84 -	$519.1>473.7$	76913.242	76913.242	1.000	1.000	4.03	12.50	100.00	
85.	$570.1>524.8$	75659.602	75659.602	1.000	1.000	4.20	12.50	100.00	

Dataset：Untitled

Last Altered：Tuesday，July 25， 2017 10：51：31 Pacific Daylight Time
Printed：\quad Tuesday，July 25， 2017 10：51：42 Pacific Daylight Time

Method：U：IQ4．PROIMethDBIPFAS＿Full＿7－24－17＿LBT．mdb 25 Jul 2017 09：46：41 Calibration：U：IQ4．PROICurveDBIC18＿VAL－PFAS＿Q4＿7－24－17－FULL＿LBT．cdb 25 Jul 2017 09：59：38

Compound name：L－PFBA

Name	10	Acq．Date	Acq．Time
146mikht	IPA	24－Jul－17	13：40：23
2 Skitutury 170724M1＿3	ST170724M1－1 PFC CS－2 17G2422	24－Jul－17	13：51：04
36atabutry 170724M1＿4	ST170724M1－2 PFC CS－1 17G2119	24－Jul－17	14：01：50
	ST170724M1－3 PFC CSO 17G2423	24－Jul－17	14：12：36
5Wutasenit 170724M1＿6	ST170724M1－4 PFC CS1 17G2424	24－Jul－17	14：23：23
	ST170724M1－5 PFC CS2 17G2425	24－Jul－17	14：34：02
	ST170724M1－6 PFC CS3 17G2118	24－Jul－17	14：44：48
	ST170724M1－7 PFC CS4 17G2426	24－Jul－17	14：55：34
9xtaskuk	ST170724M1－8 PFC CS5 17G2427	24－Jul－17	15：06：35
	IPA	24－Jul－17	15：17：30
	SS170724M4－1 PFC SSS 17G2421	24－Jul－17	15：28：15
	IPA	24－Jul－17	15：39：01
	B7G0099－BS1 OPR 0.125	24－Jul－17	15：49：42
	B7G0100－BS1 OPR 1	24－Jul－17	16：00：26
	B7G0102－BS1 OPR 0.125	24－Jul－17	16：11：04
66turk	IPA	24－Jul－17	16：21：42
713ted	B7G0099－BLK1 Method Blank 0.125	24－Jul－17	16：32：21
183紬䊾颠170724M1＿19	B7G0100－BLK1 Method Blank 1	24－Jul－17	16：42：59
	B7G0102－BLK1 Method Blank 0.125	24－Jul－17	16：53：38
	1700732－01RE2 SW－46 0.11925	24－Jul－17	17：04：16
	1700732－02RE1 SW－52 0.1184	24－Jul－17	17：14：54
12	1700732－03RE1 MW PFC 050.12347	24－Jul－17	17：25：33
	1700732－04RE1 MW PFC 030.11929	24－Jul－17	17：36：18
24 Whatuk $170724 \mathrm{M1}$＿25	1700891－01 STEM L1 0.125	24－Jul－17	17：46：58
	1700891－02 STEM L2 0.125	24－Jul－17	17：57：36
	1700891－03 STEM L3 0.125	24－Jul－17	18：08：48
	1700891－04 STEM L4 0.125	24－Jul－17	18：19：41
686tuty	1700891－05 DECON－1M 0.125	24－Jul－17	18：30：28
	1700894－01 POND 2 at PD 0.125	24－Jul－17	18：41：06
309k5wdyd 170724M1＿31	IPA	24－Jul－17	18：51：45
31．W01k Ond＇er $44 \mathrm{NOOP36}$	ST170724M1－9 PFC CS3 17G2118	24－Jul－17	19：02：23

Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Tuesday, July 25, 2017 10:51:31 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:51:42 Pacific Daylight Time

Compound name: L.PFBA

Weseruxt Name	10	Acq. Date	Acq.Time
32 ritictun 170724M1_33	IPA	24-Jul-17	19:13:01
	1700894-02 POND 1 at PD 0.125	24-Jul-17	19:23:40
34 \% ${ }^{\text {ather }}$ 170724M1_35	1700894-03 POND 1 -STAFF 0.125	24-Jul-17	19:34:18
35.	1700894-04 SEED-POND 10.125	24-Jul-17	19:44:56
	1700732-05RE1 SD-46 3.2	24-Jul-17	19:55:35
37. WKxmid 170724M1_38	1700732-06RE1 SD-52 1.17	24-Jul-17	20:06:31
38.tw Vke 170724M1_39	1700732-07RE1 SB-19-01 1.25	24-Jul-17	20:17:32
	1700732-08RE1 SB 25-01 1.15	24-Jul-17	20:28:11
40 Whywevit 170724M1_41	1700732-09RE1 SB 27-01 1.17	24-Jul-17	20:39:33
41Ftistrys 170724M1_42	1700732-10RE1 SB-19-4.5-5.5 1.22	24-Jul-17	20:50:13
42\%dwivix	1700732-11RE1 SB-25-0506 1.28	24-Jul-17	21:00:51
	IPA	24-Jul-17	21:11:30
44 Whatrsken 170724M1_45	ST170724M1-10 PFC CS3 17G2118	24-Jul-17	21:22:08
45W6wturxek 170724M1_46	IPA	24-Jul-17	21:32:54
	1700732-12RE1 SB-25-0607 1.23	24-Jul-17	21:43:41
67whyux=170724M1_48	1700732-13RE1 SB-27-0708 1.26	24-Jul-17	21:54:19
	1700732-14RE1 SB-27-1213 1.31	24-Jul-17	22:04:58
486mbisuta 170724M1_50	1700834-01RE1 82191.051 .17	24-Jul-17	22:15:59
	1700834-02RE1 82191.071 .32	24-Jul-17	22:27:35
515stuxik 170724M1_52	1700891-06 VEL FOAM 0.125	24-Jul-17	22:38:44
52dwask 170724M1_53	IPA	24-Jul-17	22:49:22
53shever 170724M1_54	ST170724M1-11 PFC CS3 17G2118	24-Jul-17	23:00:00
54.twita 170724M1_55	IPA	24-Jul-17	23:10:39

Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Method: U:IQ4.PROMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

13C3-PFBA

13C3-PFPeA

13C3-PFBS

L-PFHxA

13C2-PFHxA

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17G2118

L-PFHpA

13C4-PFHpA

1802-PFHxS

L-6:2 FTS

13C2-PFOA

L-PFOA

13C2-PFOA

Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G 2118
L-PFNA

F25:MRM of 2 channels, ES-
$462.9>418.8$
100

13C5-PFNA

L-PFOSA

13C8-PFOSA

L-PFOS

13C8-PFOS

L-PFDA

13C2-PFDA

Dataset: U:IQ4.PROVresults\170724M1\170724M1-54.qld

Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

L-8:2 FTS

13C2-8:2 FTS

L-N-MeFOSAA

d3-N-MeFOSAA

L-N-EtFOSAA

F48:MRM of 2 channels,ES-
$584.2>483$

d5-N-EtFOSAA

L-PFUnA

13C2-PFUnA
F44:MRM of 1 channel,ES-
$565>519.8$
13C2-PFUnA $1.242 \mathrm{e}+006$

Dataset:	U:IQ4.PROlresults1170724M11170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

L-PFDoA

13C2-PFDoA

d3-N-MeFOSA

F57:MRM of 2 channels,ES-

13C2-PFDoA
F52:MRM of 1 channel,ES-

Dataset: U:\Q4.PROYresults\170724M1\170724M1-54.qld
Last Altered: Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17 G2118

13C2-PFTeDA
F59:MRM of 2 channels,ES-

L-N-EtFOSA

d5-N-EtFOSA

L-PFHxDA

13C2-PFHxDA

13C2-PFHxDA

Dataset:	U:\Q4.PRO\results\170724M1\170724M1-54.qld
Last Altered:	Tuesday, July 25, 2017 10:45:03 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17G2118

L-N-MeFOSE

d7-N-MeFOSE

d9-N-EtFOSE

13C3-PFHxS

13C5-PFHxA

13C8-PFOA

Printed: \quad Tuesday, July 25, 2017 10:46:20 Pacific Daylight Time

Name: 170724M1_54, Date: 24-Jul-2017, Time: 23:00:00, ID: ST170724M1-11 PFC CS3 17G2118, Description: PFC CS3 17G2118

13C7-PFUnA

Dataset:
U:IQ4.PRO|resultsI170724M11170724M1-72.qld
Last Altered: Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17G2118

Dataset:
U:IQ4.PRO\results\170724M11170724M1-72.qld
Last Altered: Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G2118

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 14:26:59 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:27:19 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Compound name: PFBA

Name	ID	Acq Date ${ }^{\text {a }}$ Acq.Time	
$1.4170724 \mathrm{M} 1 _71$	IPA	25-Jul-17	02:02:09
2 \% 170724M1_72	ST170724M1-12 PFC CS3 17G2118	25-Jul-17	02:12:47
3 - 170724 M 1 _73	IPA	25-Jul-17	02:23:26
	1700907-05 AT028-MW17-03-0717	25-Jul-17	02:34:04
$5.170724 \mathrm{M1}$-75	1700907-06 AT028-MW17-07-0717	25-Jul-17	02:44:43
6.	1700907-07 AT028-FB-01-071817-0800	25-Jul-17	02:55:21
	1700907-08 AT028-MW 17-05-07181	25-Jul-17	03:05:59
8. ${ }^{\text {a }}$ 170724M1_78	1700907-09 AT028-MW17-01-07181	25-Jul-17	03:16:38
9 9 ${ }^{\text {a }}$: $170724 \mathrm{M} 1 _79$	1700907-10 AT028-DUP-01-071717	25-Jul-17	03:27:24
10. ${ }^{\text {a }}$ 170724M1_80	1700919-01 MW-322-071917 0.125	25-Jul-17	03:38:11
	1700919-02 MW-88-0719170.125	25-Jul-17	03:48:49
12. Wet 170724M1_82	1700919-03 MW-44-071917 0.125	25-Jul-17	03:59:36
13 . ${ }^{\text {a }}$, 170724M1_83	IPA	25-Jul-17	04:10:14
14.	ST170724M1-13 PFC CS3 17G2118	25-Jul-17	04:20:52
$15.170{ }^{\text {a }}$ 170724M1_85	IPA	25-Jul-17	04:31:31

LC Calibration Standards Review Checklist

Full Mass Cal. Date: $6 / 21 \mid 1$
Run Log Present: \square
\# of Samples per Sequence Checked: \square
Reviewed By:_. $7 / 25 / 17$

Dataset:
U:IQ4.PRO\results\170724M11170724M1-72.qld
Last Altered:
Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G2118

13C3-PFPeA

F6:MRM of 2 channels,ES-

13C2-PFHxA
F9:MRM of 1 channel,ES-
$315>269.8$
$3.460 \mathrm{e}+005$

1802-PFHxS

Dataset: U:\Q4.PRO\results\170724M1\170724M1-72.qld
Last Altered: Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17G2118

PFNA

F28:MRM of 2 channels,ES-

13C8-PFOSA
F32:MRM of 1 channel,ES $506.1>77.7$

F30:MRM of 2 channels,ES-

13C8-PFOS
F33:MRM of 1 channel,ES $507>79.9$
$2.448 \mathrm{e}+005$

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-72.qld
Last Altered:	Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G2118

F45:MRM of 2 channels,ES-

3.8004 .0004 .200

F48:MRM of 2 channels,ES-

F43:MRM of 2 channels,ES-
F43:MRM of 2 channels,ES-
$562.9>269$
$2.489 e+005$

13C2-PFUnA
F44:MRM of 1 channel,ES
$565>519.8$

Dataset:	U:IQ4.PRO\results\170724M11170724M1-72.qld
Last Altered:	Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G 2118

F34:MRM of 2 channels, ES-
$512.1>219$

13C2-PFTeDA

13C2-PFTeDA

F59:MRM of 2 channels,ES-

F39:MRM of 2 channels,ES-
$526.1>219$

d5-N-ETFOSA

F42:MRM of 1 channel,ES-
$531.1>168.9$

PFHxDA

F60:MRM of 2 channels,ES-
$812.8>768.9$
100

13C2-PFHxDA
F61:MRM of 1 channel,ES-
$815>769,7$

Dataset: U:IQ4.PROVresults\170724M1\170724M1-72.qld

Last Altered:	Tuesday, July 25, 2017 14:19:54 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17 G 2118

d7-N-MeFOSE

d9-N-EtFOSE

13C8-PFOA

Printed: Tuesday, July 25, 2017 14:20:46 Pacific Daylight Time

Name: 170724M1_72, Date: 25-Jul-2017, Time: 02:12:47, ID: ST170724M1-12 PFC CS3 17G2118, Description: PFC CS3 17G2118

Dataset:
U:IQ4.PRO|results1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Printed: \quad Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Method: U:IQ4.PRO|MethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

	IPA	25-Jul-17	14:15:31
	ST170725M1-1 PFC CS-1 17G2502	25-Jul-17	14:26:15
	B7G0107-BS1 OPR 0.125	25-Jul-17	14:36:53
	IPA	25-Jul-17	14:47:39
568	B7G0107-BLK1 Method Blank 0.125	25-Jul-17	14:58:18
6xaw	1700851-01RE1 SB 01_20170710 0.12032	25-Jul-17	15:08:56
170725M1_7	1700851-02RE1 EB 01_20170710 0.11963	25-Jul-17	15:19:35
63x	1700851-03RE1 18-GW-18MCAS03-5-20170...	25-Jul-17	15:30:13
	1700851-04RE1 18-GW-18MCAS03-2-20170...	25-Jul-17	15:40:51
/170725M1_10	1700851-05RE1 18-GW-18MCAS02-5-20170...	25-Jul-17	15:51:30
	1700851-06RE1 18-GW-18MCAS07-3-20170	25-Jul-17	16:02:08
170725M1_12	1700851-07RE1 24-GW-24MW08B-20170710	25-Jul-17	16:12:47
	1700851-08RE1 DUP03-20170710 0.12071	25-Jul-17	16:23:25
	1700851-09RE1 24-GW-24EX11-20170710 0.	25-Jul-17	16:34:03
	1700851-10RE1 SGV-GW-SGV Transfer Stati..	25-Jul-17	16:44:46
	B7G0107-MS2 Matrix Spike 0.11945	25-Jul-17	16:55:33
	B7G0107-MSD2 Matrix Spike Dup 0.12098	25-Jul-17	17:06:33
	IPA	25-Jul-17	17:17:45
	ST170725M1-2 PFC CS3 17G2503	25-Jul-17	17:28:43
170725M1_20	IPA	25-Jul-17	17:39:41
170725M1_21	1700852-01RE1 EB 02_201707110.12122	25-Jul-17	17:50:30
31170725M1_2	1700852-02RE1 DUP01-20170711 0.11996	25-Jul-17	18:01:17
170725M1_2	1700852-03RE1 1-GW-01-MW204-20170711	25-Jul-17	18:12:03
9t170725M1_2	B7G0107-MS1 Matrix Spike 0.12078	25-Jul-17	18:22:49
170725M1_25	B7G0107-MSD1 Matrix Spike Dup 0.11599	25-Jul-17	18:33:36
\%170725M1_26	1700852-04RE1 1-GW-01-MW206-20170711	25-Jul-17	18:44:23
170725M1_27	1700852-05RE1 2-GW-02DGMW59-2017071..	25-Jul-17	18:55:10
枚170725M1_28	1700852-06RE1 2-GW-02NEW16-20170711.	25-Jul-17	19:05:57
170725M1_29	1700852-07RE1 5-GW-05-DGMW68A-20170...	25-Jul-17	19:16:44
[$170725 \mathrm{M1}$ _3	1700852-08RE1 1-GW-01-PZ20-20170711 0...	25-Jul-17	19:27:29
	1700852-09RE1 1-GW-02-MW209-20170711.	.. 25-Jul-17	19:38:30

Last Altered：Wednesday，July 26， 2017 10：28：43 Pacific Daylight Time
Printed：
Wednesday，July 26， 2017 10：29：07 Pacific Daylight Time

Compound name：PFBA

	WMID	Acq－Date	Acq．Time
32，	IPA	25－Jul－17	19：49：44
	ST170725M1－3 PFC CS3 17G2503	25－Jul－17	20：00：29
346Sustan 170725M1＿34	IPA	25－Jul－17	20：11：07
35\％Whatkydx 170725M1＿35	B7G0108－BS1 OPR 0.125	25－Jul－17	20：21：46
	IPA	25－Jul－17	20：32：24
	B7G0108－BLK1 Method Blank 0.125	25－Jul－17	20：43：03
36，	1700856－01RE1 INFLUENT－20170710 0.121	25－Jul－17	20：53：41
	1700856－02RE1 DUP05－20170710 0.11647	25－Jul－17	21：04：19
	1700856－03RE1 MID－POINT－20170710 0.11731	25－Jul－17	21：14：58
	1700856－04RE1 EFFLUENT－20170710 0.12084	25－Jul－17	21：25：36
	B7G0108－MS1 Matrix Spike 0.12162	25－Jul－17	21：36：14
463guthy	B7G0108－MSD1 Matrix Spike Dup 0.11849	25－Jul－17	21：47：01
	1700856－05RE1 MW－37S－201707110．11696	25－Jul－17	21：57：39
	1700856－06RE1 ERB－01－20170711 0.12043	25－Jul－17	22：08：34
	1700856－07RE1 11－MW－1－20170710 0.11482	25－Jul－17	22：19：33
	1700856－08RE1 LF－MW－54BR－20170710 0．11．．．	25－Jul－17	22：30：16
	1700856－09RE1 MW－48BR－20170711 0.12084	25－Jul－17	22：40：54
	1700856－10RE1 MW－34S－20170711 0.11812	25－Jul－17	22：51：33
	IPA	25－Jul－17	23：02：11
512uk	ST170725M1－4 PFC CS3 17G2503	25－Jul－17	23：12：50
527x	IPA	25－Jul－17	23：23：36
	1700856－11RE1 MW－31BR－20170711 0.11774	25－Jul－17	23：34：14
	1700856－12RE1 MW－31S－201707110．11732	25－Jul－17	23：45：01
5⿹\zh26灬hux	1700732－04RE1＠5X MW PFC 030.11929	25－Jul－17	23：55：47
	1700906－05＠5X MW－02BR－20170718 0.125	26－Jul－17	00：06：56
5ekextuxtedu 170725M1＿57	1700907－04＠5X AT028－MW17－06－071717－13．．．	26－Jul－17	00：18：17
	1700907－09＠5X AT028－MW 17－01－071817－09．．	26－Jul－17	00：29：47
	IPA	26－Jul－17	00：40：33
	ST170725M1－5 PFC CS3 17G2503	26－Jul－17	00：51：21
CMMW W約䋦170725M1＿61	IPA	26－Jul－17	01：02：08
170725M1_62	1700845－01＠5X MW－29S－20170707 0.12034	26－Jul－17	01：12：49
	1700845－02＠5X DUP04－201707070．12279	26－Jul－17	01：23：33
64tw wher 170725M1＿64	1700845－03＠20X MW－27S－20170707 0.11824	26－Jul－17	01：34：11
65 6ky	B7G0033－MS1＠20X Matrix Spike 0.12283	26－Jul－17	01：44：49

Dataset: Untitled

Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

W\%	10	Acq.Date	Acg. Time
664.SYM	B7G0033-MSD1@20X Matrix Spike Dup 0.124	26-Jul-17	01:55:28
6794Tw $2+170725 \mathrm{M} 1$ _67	1700845-04@5X MW-30S-20170707 0.11933	26-Jul-17	02:06:06
688\%	1700894-02@5X POND 1 at PD 0.125	26-Jul-17	02:16:53
24914 170725M1_69	1700894-03@5X POND 1 -STAFF 0.125	26-Jul-17	02:27:50
45: ${ }^{\text {a }}$ 170725M1_70	1700894-04@10X SEED-POND 10.125	26-Jul-17	02:38:34
324: 170725M1_71	1700732-05RE1 SD-46 3.2	26-Jul-17	02:49:12
FWekidx 170725M1_72	IPA	26-Jul-17	02:59:50
\$4ex 170725M1_73	ST170725M1-6 PFC CS3 17G2503	26-Jul-17	03:10:29
	IPA	26-Jul-17	03:21:15

Dataset: U:IQ4.PRO\results1170725M1\170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55

Calibration: U:IQ4.PROICurveDBIC18 VAL-PFAS Q4 7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

13C3-PFBA

13C3-PFPeA

F5:MRM of 1 channel,ES-

PFBS

F6:MRM of 2 channels,ES

13C3-PFBS
F7:MRM of 1 channel,ES

PFHxA

F8:MRM of 2 channels,ES

13C2-PFHxA

13C4-PFHpA

F16:MRM of 2 channels,ES-

1802-PFHxS
F18:MRM of 1 channel,ES$403>102.6$

Dataset: U:\Q4.PRO\results\170725M1\170725M1-51.qld
Last Altered: Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

F25:MRM of 2 channels,ES-

13C5-PFNA

F30:MRM of 2 channels,ES-

13C8-PFOS

F33:MRM of 1 channel,ES-
$507>79.9$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-51.qld
Last Altered:	Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

F58:MRM of 4 channels,ES-

13C2-PFTeDA
F59:MRM of 2 channels,ES$714.8>669.6$

F39:MRM of 2 channels,ES-
F39:MRM of 2 channels,ES-
$526.1>219$

13C2-PFHxDA
F61:MRM of 1 channel,ES-
$815>7697$

Dataset:	U:\Q4.PRO\results\170725M1\170725M1-51.qld
Last Altered:	Wednesday, July 26, 2017 09:59:30 Pacific Daylight Time
Printed:	Wednesday, July 26, 2017 10:00:02 Pacific Daylight Time

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

d7-N-MeFOSE
F54:MRM of 1 channel,ES-
FS4.MRM of 1 channel,ES
$623.1>58.9$

13C8-PFOA

F21:MRM of 1 channel,ES-
$421.3>376$

13C5-PFHXA
F10:MRM of 1 channel,ES-
$318>272.9$
$1.397 e+006$

4.8005 .0005 .200

Name: 170725M1_51, Date: 25-Jul-2017, Time: 23:12:50, ID: ST170725M1-4 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PRO\results\170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 25 Jul 2017 12:44:55 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset:
U:IQ4.PROIresults1170725M11170725M1-60.qld
Last Altered: Wednesday, July 26, 2017 10:00:49 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:01:15 Pacific Daylight Time

Name: 170725M1_60, Date: 26-Jul-2017, Time: 00:51:21, ID: ST170725M1-5 PFC CS3 17G2503, Description: PFC CS3 17G2503

Dataset: Untitled
Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed: Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Method: U:Q4.PROIMethDBIPFAS FULL 7-20-17.mdb 25 Jul 2017 12:44:55
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Dataset：Untitled

Last Altered：Wednesday，July 26， 2017 10：28：43 Pacific Daylight Time
Printed：
Wednesday，July 26， 2017 10：29：07 Pacific Daylight Time

Compound name：PFBA

		Acq．Date	Acq Time
	IPA	25－Jul－17	19：49：44
	ST170725M1－3 PFC CS3 17G2503	25－Jul－17	20：00：29
	IPA	25－Jul－17	20：11：07
	B7G0108－BS1 OPR 0.125	25－Jul－17	20：21：46
365dxtwix 170725M1＿36	IPA	25－Jul－17	20：32：24
407約	B7G0108－BLK1 Method Blank 0.125	25－Jul－17	20：43：03
	1700856－01RE1 INFLUENT－20170710 0.121	25－Jul－17	20：53：41
	1700856－02RE1 DUP05－20170710 0.11647	25－Jul－17	21：04：19
县約䜌170725M1＿40	1700856－03RE1 MID－POINT－20170710 0.11731	25－Jul－17	21：14：58
	1700856－04RE1 EFFLUENT－20170710 0.12084	25－Jul－17	21：25：36
	B7G0108－MS1 Matrix Spike 0.12162	25－Jul－17	21：36：14
	B7G0108－MSD1 Matrix Spike Dup 0.11849	25－Jul－17	21：47：01
43xakhtryu170725M1＿44	1700856－05RE1 MW－37S－20170711 0.11696	25－Jul－17	21：57：39
84	1700856－06RE1 ERB－01－20170711 0.12043	25－Jul－17	22：08：34
	1700856－07RE1 11－MW－1－20170710 0.11482	25－Jul－17	22：19：33
24	1700856－08RE1 LF－MW－54BR－20170710 0．11．．．	25－Jul－17	22：30：16
	1700856－09RE1 MW－48BR－20170711 0.12084	25－Jul－17	22：40：54
	1700856－10RE1 MW－34S－20170711 0.11812	25－Jul－17	22：51：33
2變約数170725M1＿50	IPA	25－Jul－17	23：02：11
W4dxak 170725M1＿5	ST170725M1－4 PFC CS3 17G2503	25－Jul－17	23：12：50
93xay	IPA	25－Jul－17	23：23：36
Whtw	1700856－11RE1 MW－31BR－20170711 0.11774	25－Jul－17	23：34：14
	1700856－12RE1 MW－31S－20170711 0.11732	25－Jul－17	23：45：01
170725M1_55	1700732－04RE1＠5X MW PFC 030.11929	25－Jul－17	23：55：47
170725M1_56	1700906－05＠5X MW－02BR－20170718 0.125	26－Jul－17	00：06：56
KiskMy 170725M1＿57	1700907－04＠5X AT028－MW17－06－071717－13．．．	26－Jul－17	00：18：17
䋝 170725M1＿58	1700907－09＠5X AT028－MW17－01－071817－09．	26－Jul－17	00：29：47
［170725M1＿59	IPA	26－Jul－17	00：40：33
Wixt 170725M1＿60	ST170725M1－5 PFC CS3 17G2503	26－Jul－17	00：51：21
	IPA	26－Jul－17	01：02：08
	1700845－01＠5X MW－29S－20170707 0.12034	26－Jul－17	01：12：49
	1700845－02＠5X DUP04－20170707 0.12279	26－Jul－17	01：23：33
	1700845－03＠20X MW－27S－20170707 0.11824	26－Jul－17	01：34：11
	B7G0033－MS1＠20X Matrix Spike 0.12283	26－Jul－17	01：44：49

Work Order 1700906
B7G0033－MS1＠20X Matrix Spike 0.12283 20 Jul
01：44：49

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Wednesday, July 26, 2017 10:28:43 Pacific Daylight Time
Printed:
Wednesday, July 26, 2017 10:29:07 Pacific Daylight Time

Compound name: PFBA

		Acq Date	Acq.Time
	B7G0033-MSD1@20X Matrix Spike Dup 0.124	26-Jul-17	01:55:28
	1700845-04@5X MW-30S-201707070.11933	26-Jul-17	02:06:06
	1700894-02@5X POND 1 at PD 0.125	26-Jul-17	02:16:53
	1700894-03@5X POND 1 -STAFF 0.125	26-Jul-17	02:27:50
	1700894-04@10X SEED-POND 10.125	26-Jul-17	02:38:34
	1700732-05RE1 SD-46 3.2	26-Jul-17	02:49:12
	IPA	26-Jul-17	02:59:50
	ST170725M1-6 PFC CS3 17G2503	26-Jul-17	03:10:29
	IPA	26-Jul-17	03:21:15

Dataset: U:IQ4.PROIresults\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:22:13
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Correlation coefficient: $r=0.999644, ~ \wedge \wedge 2=0.999287$
Calibration curve: $1.1275{ }^{*} \mathrm{x}+0.163356$
Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999528, \mathrm{r}^{\wedge} 2=0.999056$
Calibration curve: 0.99208 * $x+0.104629$
Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	td. Conc	RT	Area	IS Area	Response	Conc	\%Dev	c. F	CoD	D	$\mathrm{x}=$ excluded
1.	$1170724 \mathrm{M1}$ _3	Standard	0.250	2.80	607.592	24708.574	0.307	0.2	-18.3	NO	0.999	NO	bb
2 2. ${ }^{2}$	2 170724M1_4	Standard	0.500	2.80	1138.424	24374.584	0.584	0.5	-3.4	NO	0.999	NO	bb
3-w	3 170724M1_5	Standard	1.000	2.80	2230.288	24321.555	1.146	1.0	5.0	NO	0.999	NO	bb
44^{4}	4 170724M1_6	Standard	2.000	2.80	4575.088	25826.396	2.214	2.1	6.3	NO	0.999	NO	bb
$5:$	5 170724M1_7	Standard	5.000	2.80	11044.060	24387.125	5.661	5.6	12.0	NO	0.999	NO	bb
6. ${ }^{\text {a }}$	$6170724 \mathrm{M1}$-8	Standard	10.000	2.81	20066.025	25621.486	9.790	9.8	-2.4	NO	0.999	NO	bb
17	7 170724M1_9	Standard	50.000	2.80	97100.672	23859.781	50.870	51.2	2.3	NO	0.999	NO	bb
8.	$8170724 \mathrm{M1} 10$	Standard	100.000	2.81	190500.000	24378.607	97.678	98.4	-1.6	NO	0.999	NO	bb

Last Altered:

Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999611, \mathrm{r}^{\wedge} 2=0.999223$
Calibration curve: 1.85223 * x + 0.0752948
Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name			RT Area IS Area			Response Conc. \%Dev Conc. Flag					CoD Flag $x=$ excluded	
1.4. $\mathrm{N}^{\text {a }}$	1 170724M1_3	Standard	0.250	3.00	116.281	3068.403	0.474	0.2	-14.0	NO	0.999	NO	bb
$2+4$ w	2 170724M1_4	Standard	0.500	3.00	214.965	3020.354	0.890	0.4	-12.1	NO	0.999	NO	MM
3.4 LT	3 170724M1_5	Standard	1.000	2.99	512.501	3001.774	2.134	1.1	11.2	NO	0.999	NO	bb
4 . 4 cter	4 170724M1_6	Standard	2.000	3.00	1085.602	3295.993	4.117	2.2	9.1	NO	0.999	NO	bb' ${ }^{\text {c }}$
5.4	5 170724M1_7	Standard	5.000	3.00	2583.207	3132.764	10.307	5.5	10.5	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.00	4677.829	3302.426	17.706	9.5	-4.8	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	3.00	22355.119	2994.649	93.313	50.3	0.7	NO	0.999	NO	bb
8 , ${ }^{\text {a }}$	8 170724M1_10	Standard	100.000	3.00	43420.234	2946.134	184.225	99.4	-0.6	NO	0.999	NO	bb

Compound name: PFHxA

Correlation coefficient: $r=0.999648, r^{\wedge} 2=0.999296$
Calibration curve: $1.50967{ }^{*} \times+0.157344$
Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name		Std. Conc			IS Area	Response Conc.		\%Dev Conc. Flag			CoD Flag $x=e$ xcluded	
1: C + 4	1 170724M1_3	Standard	0.250	3.22	1079.404	11341.955	0.476	0.2	-15.6	NO	0.999	NO	bb
2.4	2 170724M1_4	Standard	0.500	3.22	1906.946	10636.292	0.896	0.5	-2.1	NO	0.999	NO	bb
3.1 .4	3 170724M1_5	Standard	1.000	3.22	3807.136	10865.864	1.752	1.1	5.6	NO	0.999	NO	db
4 . 4 +	4 170724M1_6	Standard	2.000	3.22	7912.540	12006.801	3.295	2.1	3.9	NO	0.999	NO	bb
$5:+4$.	5 170724M1_7	Standard	5.000	3.22	18325.188	10585.094	8.656	5.6	12.6	NO	0.999	NO	bb
6.	6 170724M1_8	Standard	10.000	3.22	34348.887	11649.966	14.742	9.7	-3.4	NO	0.999	NO	bb
7	7 170724M1_9	Standard	50.000	3.22	154915.125	10379.170	74.628	49.3	-1.3	NO	0.999	NO	bb
	8 170724M1_10	Standard	100.000	3.22	320392.531	10569.161	151.570	100.3	0.3	NO	0.999	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld

Last Altered:
Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999811, \mathrm{r}^{\wedge} 2=0.999621$
Calibration curve: 1.25322 * x + 0.0796155
Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoD Flag	$x=$ excluded
\#-3/4	1 170724M1_3	Standard	0.250	3.47	835.892	29540.787	0.354	0.2	-12.5	NO	1.000	NO	bb
2	2 170724M1_4	Standard	0.500	3.48	1686.437	28831.211	0.731	0.5	4.0	NO	1.000	NO	db
3 , may	3 170724M1_5	Standard	1.000	3.48	3129.354	30065.992	1.301	1.0	-2.5	NO	1.000	NO	bb
$4 ;-2=$	4 170724M1_6	Standard	2.000	3.48	6923.302	31499.152	2.747	2.1	6.4	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.48	17221.189	31478.633	6.838	5.4	7.9	NO	1.000	NO	bb
6 Wraty	6 170724M1_8	Standard	10.000	3.48	32050.246	32505.703	12.325	9.8	-2.3	NO	1.000	NO	bb
7. ${ }^{\text {a }}$ =	7 170724M1_9	Standard	50.000	3.48	148752.578	30043.684	61.890	49.3	-1.4	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard	100.000	3.48	294885.219	29270.332	125.932	100.4	0.4	NO	1.000	NO	bb

Compound name: PFHxS

Coefficient of Determination: $R^{\wedge} 2=0.999711$
Calibration curve: $-0.00151846{ }^{*} x^{\wedge} 2+1.70838{ }^{*} x+-0.0114403$
Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	c.	COD	D Fl	excluded:
1	1 170724M1_3	Standard	0.250	3.56	73.733	2957.523	0.312	0.2	-24.3	NO	1.000	NO	MM
	2 170724M1_4	Standard	0.500	3.55	233.030	2945.944	0.989	0.6	17.2	NO	1.000	NO	bb
3.	3 170724M1_5	Standard	1.000	3.55	387.605	2882.763	1.681	1.0	-0.9	NO	1.000	NO	bb
4.	4 170724M1_6	Standard	2.000	3.55	883.679	3069.216	3.599	2.1	5.9	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.55	2121.650	3078.477	8.615	5.1	1.4	NO	1.000	NO	MM
6 \% ${ }^{2}+4 \times 2$	6 170724M1_8	Standard	10.000	3.55	3757.863	2827.577	16.613	9.8	-1.8	NO	1.000	NO	MM
7.3 ,	7 170724M1_9	Standard	50.000	3.55	19494.768	2990.466	81.487	49.9	-0.2	NO	1.000	NO	MM
8	8 170724M1_10	Standard	100.000	3.55	36940.883	2965.238	155.725	100.1	0.1	NO	1.000	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.003130533^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOA

Correlation coefficient: $r=0.999233, r \wedge 2=0.998466$
Calibration curve: 0.970801 * $x+0.199778$
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fla	CoD		
1 1) Water	1 170724M1_3	Standard	0.250	3.67	1654.212	55437.824	0.373	0.2	-28.6	NO	0.998	NO	bb
2	2 170724M1_4	Standard	0.500	3.67	2766.273	52853.566	0.654	0.5	-6.4	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.67	5264.665	53444.164	1.231	1.1	6.3	NO	0.998	NO	bb
4.4.	4 170724M1_6	Standard	2.000	3.68	10233.177	55652.324	2.298	2.2	8.1	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.68	26080.451	55510.707	5.873	5.8	16.9	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.68	45105.969	54392.293	10.366	10.5	4.7	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.67	220048.344	55876.563	49.226	50.5	1.0	NO	0.998	NO	bb
8.	8 170724M1_10	Standard	100.000	3.68	421252.813	55196.383	95.399	98.1	-1.9	NO	0.998	NO	bb

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFHpS

Correlation coefficient: $\mathrm{r}=0.999150, \mathrm{r}^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * x + 0.014645
Response type: Internal Std (Ref 35), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Narne	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD - CoDFlag x eexcluded		
1.4	$1170724 \mathrm{M} 1 _3$	Standard	0.250	3.74	113.671	55437.824	0.026	0.1	-50.5	NO	0.998	NO	bbX
2	2 170724M1_4	Standard	0.500	3.74	222.089	52853.566	0.053	0.4	-14.6	NO	0.998	NO	bb
3.	3 170724M1_5	Standard	1.000	3.73	522.454	53444.164	0.122	1.2	21.2	NO	0.998	NO	bb
4 \%	4 170724M1_6	Standard	2.000	3.74	936.558	55652.324	0.210	2.2	10.3	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.73	2346.630	55510.707	0.528	5.8	15.8	NO	0.998	NO	bb
	$6170724 \mathrm{M1}$-8	Standard	10.000	3.74	4004.412	54392.293	0.920	10.2	2.0	NO	0.998	NO	bb
7.	$7170724 \mathrm{M1}$ _9	Standard	50.000	3.74	19773.092	55876.563	4.423	49.7	-0.6	NO	0.998	NO	bb
8.	$8170724 \mathrm{M1} 1$ 10	Standard	100.000	3.74	38852.836	55196.383	8.799	99.0	-1.0	NO	0.998	NO	bb

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.998659, \mathrm{r} \wedge 2=0.997320$
Calibration curve: $1.09835{ }^{*} x+0.147218$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	-	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	D	xcluded
$1 .$	1 170724M1_3	Standard		0.250	3.85	1506.464	55001.828	0.342	0.2	-28.9	NO	0.997	NO	MM
2. x^{+}, T^{2}	2 170724M1_4	Standard		0.500	3.85	2694.965	54762.438	0.615	0.4	-14.8	NO	0.997	NO	bb
3.3	$3170724 \mathrm{M1}$-5	Standard		1.000	3.85	5691.902	55321.512	1.286	1.0	3.7	NO	0.997	NO	bb
4	4 170724M1_6	Standard		2.000	3.85	12559.827	59225.996	2.651	2.3	14.0	NO	0.997	NO	bb
5.	5 170724M1_7	Standard		5.000	3.85	29286.219	53341.520	6.863	6.1	22.3	NO	0.997	NO	bb
$6{ }^{\text {W }}$	6 170724M1_8	Standard		10.000	3.85	53683.984	56161.168	11.949	10.7	7.4	NO	0.997	NO	bb
7. W. P ,	7 170724M1_9	Standard		50.000	3.85	236461.688	55495.742	53.261	48.4	-3.3	NO	0.997	NO	bb
8 隹	8 170724M1_10	Standard		100.000	3.85	475993.000	54308.789	109.557	99.6	-0.4	NO	0.997	NO	bb

Vista Analytical Laboratory
Dataset:
U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * $x+0.0489398$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOS

Coefficient of Determination: $R^{\wedge} 2=0.999148$
Calibration curve: -0.00122032 * $x^{\wedge} 2+1.19038$ * $x+0.0183073$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name		Std. Conc	RT Area		15 Area	Response Conc. \%Dev Conc. Flag					CoD Flag x-excluded	
11	1 170724M1_3	Standard	0.250	3.90	300.610	10711.932	0.351	0.3	11.8	NO	0.999	NO	MM
2 2-2 ${ }^{2}$	2 170724M1_4	Standard	0.500	3.90	466.042	10010.674	0.582	0.5	-5.3	NO	0.999	NO	bb
	3 170724M1_5	Standard	1.000	3.90	1032.724	10207.536	1.265	1.0	4.8	NO	0.999	NO	MM
4. ${ }^{\text {ata }}$	4 170724M1_6	Standard	2.000	3.90	1981.837	10715.066	2.312	1.9	-3.5	NO	0.999	NO	MM
5 ,	5 170724M1_7	Standard	5.000	3.90	5099.578	10217.659	6.239	5.3	5.1	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	3.90	8336.075	9647.514	10.801	9.1	-8.6	NO	0.999	NO	bb
7.	7 170724M1_9	Standard	50.000	3.91	43091.355	9325.974	57.757	51.2	2.4	NO	0.999	NO	bb
8 田	8 170724M1_10	Standard	100.000	3.90	78910.156	9278.883	106.303	99.4	-0.6	NO	0.999	NO	bb

Dataset:
U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $r=0.999397, r^{\wedge} 2=0.998795$
Calibration curve: 1.29731 * $x+0.128184$
Response type: Internal Std (Ref 39), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name = Type		Stc. Conc	$\begin{array}{r} \mathrm{RT} \\ \hline 4.02 \end{array}$	Area IS Area		Response Canc.e \%Dev Conc. Flag				COD COD Flag		x $=$ excluded
1.4.ax+4	1 170724M1_3	Standard			1671.759	55156.438	0.379	0.2	-22.7	NO	0.999	NO	bb
2 c	2 170724M1_4	Standard	0.500	4.02	3226.587	49449.902	0.816	0.5	6.0	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	4.02	6606.647	59736.465	1.382	1.0	-3.3	NO	0.999	NO	db
4 - ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.02	14672.154	61862.684	2.965	2.2	9.3	NO	0.999	NO	bb
5 - ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	4.02	32741.914	53915.461	7.591	5.8	15.1	NO	0.999	NO	bb
6 - ${ }^{2} \mathrm{c}^{2}$	6 170724M1_8	Standard	10.000	4.02	60142.156	58734.430	12.800	9.8	-2.3	NO	0.999	NO	bb
7 -	7 170724M1_9	Standard	50.000	4.03	291430.906	57610.250	63.233	48.6	-2.7	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	4.02	519240.375	49628.984	130.781	100.7	0.7	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996738$
Calibration curve: -0.00420182 * $x^{\wedge} 2+1.49722^{*} x+0.133523$
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	IC. F	-	D Fi	xelu
	1 170724M1_3	Standard	0.250	4.01	116.059	5712.626	0.254	0.1	-67.8	NO	0.997	NO	bbX
2.4	2 170724M1_4	Standard	0.500	4.02	436.336	5926.817	0.920	0.5	5.2	NO	0.997	NO	bb
3.4	3 170724M1_5	Standard	1.000	4.01	704.575	5605.082	1.571	1.0	-3.7	NO	0.997	NO	bb
4.	4 170724M1_6	Standard	2.000	4.01	1467.688	6033.180	3.041	2.0	-2.4	NO	0.997	NO	bb
5 - 4	5 170724M1_7	Standard	5.000	4.02	3942.699	5463.454	9.021	6.0	20.8	NO	0.997	NO	bb
6 - ${ }^{\text {a }}$	6 170724M1_8	Standard	10.000	4.02	6715.274	5614.961	14.950	10.2	1.9	NO	0.997	NO	bb
7.4	7 170724M1_9	Standard	50.000	4.02	29821.402	6078.795	61.323	47.1	-5.8	NO	0.997	NO	bb
8, ${ }^{2}$	8 170724M1_10	Standard	100.000	4.02	56335.957	6441.568	109.321	102.3	2.3	NO	0.997	NO	bb

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999848$
Calibration curve: $-0.01040777^{*} x^{\wedge} 2+19.9194 * x+0.547687$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: N-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999908$
Calibration curve: $-0.00439744{ }^{*} x^{\wedge} 2+16.1657 * x+0.0580373$
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	Dev	c.	CoD	F	cluded
1. 2.2 .4	1 170724M1_3	Standard	0.250	4.12	300.173	12172.007	4.007	0.2	-2.3	NO	1.000	NO	bb
2 , mat	2 170724M1_4	Standard	0.500	4.12	550.297	11615.228	7.699	0.5	-5.5	NO	1.000	NO	bb
3.24	3 170724M1_5	Standard	1.000	4.12	1245.830	11653.344	17.372	1.1	7.1	NO	1.000	NO	bb
$4+1$	4 170724M1_6	Standard	2.000	4.12	2483.220	12504.510	32.270	2.0	-0.3	NO	1.000	NO	bb
	5 170724M1_7	Standard	5.000	4.12	6280.812	12228.059	83.466	5.2	3.3	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.12	12176.978	12339.168	160.364	9.9	-0.6	NO	1.000	NO	bb
7. ${ }^{\text {a }}$,	7 170724M1_9	Standard	50.000	4.12	57061.832	11695.135	792.855	49.7	-0.6	NO	1.000	NO	bb
8.	8 170724M1_10	Standard	100.000	4.12	112917.555	11651.338	1574.849	100.1	0.1	NO	1.000	NO	bb

Compound name: PFUnA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998430$
Calibration curve: -0.0020331 * $x^{\wedge} 2+0.901478$ * $x+0.00751751$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

-	\# Name	Type	Std, Conc	RT	Area	IS Area	Response	Cones	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1.	1 170724M1_3	Standard	0.250	4.18	1408.556	65735.461	0.268	0.3	15.6	NO	0.998	NO	bb
2 , 4	2 170724M1_4	Standard	0.500	4.19	2456.148	63870.914	0.481	0.5	5.1	NO	0.998	NO	bb
3 3 ${ }^{\text {a }}$ E	3 170724M1_5	Standard	1.000	4.19	4367.807	64348.984	0.848	0.9	-6.5	NO	0.998	NO	bb
4 W	- 4 170724M1_6	Standard	2.000	4.19	9271.418	67160.539	1.726	1.9	-4.3	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	4.19	22206.646	66089.180	4.200	4.7	-6.0	NO	0.998	NO	bb
6 - ${ }^{\text {a }}$,	6 170724M1_8	Standard	10.000	4.19	40104.945	61335.543	8.173	9.3	-7.5	NO	0.998	NO	bb
7	7 170724M1 9	Standard	50.000	4.19	187190.781	55960.629	41.813	52.6	5.2	NO	0.998	NO	bb
8.4	8 170724M1_10	Standard	100.000	4.19	357250.000	64722.215	68.997	98.3	-1.7	NO	0.998	NO	bb

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998889$
Calibration curve: $-0.000220781^{*} x^{\wedge} 2+0.0914068{ }^{*} x+-0.00228704$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	ype	-3,	Std. Conc	RT	Area	IS Area	Response						
1.4	1 170724M1_3	Standard		0.250	4.24	125.500	65735.461	0.024	0.3	14.5	NO	0.999	NO	bb
2.,	2 170724M1_4	Standard		0.500	4.24	213.650	63870.914	0.042	0.5	-3.4	NO	0.999	NO	MM
$3 \times+4$	3 170724M1_5	Standard		1.000	4.23	432.153	64348.984	0.084	0.9	-5.4	NO	0.999	NO	bb
4	4 170724M1_6	Standard		2.000	4.24	998.163	67160.539	0.186	2.1	3.4	NO	0.999	NO	bb
5	5 170724M1_7	Standard		5.000	4.23	2251.549	66089.180	0.426	4.7	-5.2	NO	0.999	NO	bb
6	6 170724M1_8	Standard		10.000	4.23	4080.028	61335.543	0.831	9.3	-6.7	NO	0.999	NO	bb
7	7 170724M1_9	Standard		50.000	4.24	18621.564	55960.629	4.160	52.1	4.2	NO	0.999	NO	bb
8.	8 170724M1_10	Standard		100.000	4.23	35549.465	64722.215	6.866	98.6	-1.4	NO	0.999	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999700$
Calibration curve: $-0.000446703^{*} x^{\wedge} 2+0.926687{ }^{*} x+0.203454$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

2	\# Name	Type	\cdots	Std. Conc	RT	Area	IS Area	Response0.416	Conc. \% \% Dev		Conc. Flag	CoD CoD Flag x-excluded		
	1 170724M1_3	Standard		0.250	4.34	212.884	6396.985		0.2	-8.3		1.000	NO	MM
$2=3$	2 170724M1_4	Standard		0.500	4.35	285.030	5632.353	0.633	0.5	-7.4	NO	1.000	NO	MM
3. ${ }^{\text {a }}$.	3 170724M1_5	Standard		1.000	4.35	576.941	5998.723	1.202	1.1	7.8	NO	1.000	NO	bb
$4-2$	4 170724M1_6	Standard		2.000	4.35	1144.260	6584.378	2.172	2.1	6.3	NO	1.000	, NO	bb
5 2w	5 170724M1_7	Standard		5.000	4.35	2601.126	6419.244	5.065	5.3	5.2	NO	1.000	NO	bb
6 , ${ }^{\text {a }}$ W	6 170724M1_8	Standard		10.000	4.35	4871.013	6690.135	9.101	9.6	-3.5	NO	1.000	NO	bb
7	7 170724M1_9	Standard		50.000	4.35	21850.346	6031.607	45.283	49.8	-0.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard		100.000	4.35	43781.789	6184.443	88.492	100.1	0.1	NO	1.000	NO	bb

Compound name: N-MeFOSA

Correlation coefficient: $\mathrm{r}=0.999273, \mathrm{r}^{\wedge} 2=0.998546$
Calibration curve: 1.0376 * x +0.213391
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

E	\# Name		Std. Conc	RT	Area	ISArea	Response	Conc. \%Dev Conc. Flag			CoD	CoD Flag x-excluded	
	1 170724M1_3	Standard	1.250	4.39	228.733	27834.387	1.233	1.0	-21.4	NO	0.999	NO	MM
$2-5$	2 170724M1_4	Standard	2.500	4.39	521.665	26795.877	2.920	2.6	4.3	NO	0.999	NO	db
3. + Wam	3 170724M1_5	Standard	5.000	4.39	1023.477	27001.328	5.686	5.3	5.5	NO	0.999	NO	bb
4 4y	4 170724M1_6	Standard	10.000	4.39	2219.793	28178.129	11.817	11.2	11.8	NO	0.999	NO	bb
5 .	5 170724M1_7	Standard	25.000	4.39	5367.556	27075.477	29.737	28.5	13.8	NO	0.999	NO	bb
6	6 170724M1_8	Standard	50.000	4.39	9739.016	27395.363	53.325	51.2	2.4	NO	0.999	NO	db
	7 170724M1_9	Standard	250.000	4.39	46919.371	26470.068	265.882	256.0	2.4	NO	0.999	NO	bb
$8 \pm$	8 170724M1_10	Standard	500.000	4.39	92806.148	27480.182	506.580	488.0	-2.4	NO	0.999	NO	bb

Quantify Compound Summary Report
Vista Analytical Laboratory
$\begin{array}{ll}\text { Dataset: } & \text { U:\Q4.PRO\results\170724M1\170724M1-CRV.qld } \\ & \\ \text { Last Altered: } & \text { Monday, July 24, 2017 15:32:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Monday, July 24, 2017 15:40:40 Pacific Daylight Time }\end{array}$

Compound name: PFTrDA

Correlation coefficient: $\mathrm{r}=0.999414, \mathrm{r}^{\wedge} 2=0.998828$
Calibration curve: 10.9255 * $x+1.79$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Fla	$x=e x c l u d e d$
1.4	1 170724M1_3	Standard	0.250	4.52	1936.804	6396.985	3.785	0.2	-27.0	NO	0.999	NO	MM
2 2.4 4 ,	$2170724 \mathrm{M1}$ _4	Standard	0.500	4.52	3347.446	5632.353	7.429	0.5	3.2	NO	0.999	NO	bb
3 . ${ }^{2}$	3 170724M1_5	Standard	1.000	4.52	6246.435	5998.723	13.016	1.0	2.8	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	4.52	13537.021	6584.378	25.699	2.2	9.4	NO	0.999	NO	bb
5 . ${ }^{\text {a }}$ dem	5 170724M1_7	Standard	5.000	4.52	32633.807	6419.244	63.547	5.7	13.1	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	4.52	58224.531	6690.135	108.788	9.8	-2.1	NO	0.999	NO	bb
	7 170724M1_9	Standard	50.000	4.52	270796.875	6031.607	561.204	51.2	2.4	NO	0.999	NO	bb
8.4 ate	8 170724M1_10	Standard	100.000	4.52	531631.563	6184.443	1074.534	98.2	-1.8	NO	0.999	NO	bb

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999057$
Calibration curve: $-0.000800394^{*} x^{\wedge} 2+1.14875{ }^{*} x+0.111533$
Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name	Type	Std. Conc	RT	- Area	IS Area	Response	onc.	6Dev	Conc. Flag	CoD	D F	$x=e x c l u d e d$
1.	1 170724M1_3	Standard	0.250	4.70	1552.113	52611.504	0.369	0.2	-10.4	NO	0.999	NO	MM
2 2ramas	2 170724M1_4	Standard	0.500	4.70	2285.720	43220.855	0.661	0.5	-4.3	NO	0.999	NO	bb
$3 \times \sim$	3 170724M1_5	Standard	1.000	4.70	4798.681	44254.344	1.355	1.1	8.4	NO	0.999	NO	bb
4 4. ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	4.70	9477.179	47041.410	2.518	2.1	4.9	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	4.70	23144.785	45392.488	6.374	5.5	9.4	NO	0.999	NO	bb
6.twrin	$6170724 \mathrm{M1}$-8	Standard	10.000	4.70	40819.449	48426.250	10.536	9.1	-8.7	NO	0.999	NO	bb
	7 170724M1_9	Standard	50.000	4.70	191033.828	42647.246	55.992	50.4	0.8	NO	0.999	NO	bb
88	8 170724M1_10	Standard	100.000	4.70	370959.375	43405.691	106.829	99.8	-0.2	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults1170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSA

Correlation coefficient: $\mathrm{r}=0.999689, \mathrm{r} \wedge=0.999377$
Calibration curve: 0.904115 * $x+0.326191$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

4,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev .Conc. Flag w CoD. CoDFlag x=excluded				
1	1 170724M1_3	Standard	1.250	4.96	337.684	39437.277	1.284	1.1	-15.2	NO	0.999	NO	bb
2.4	2 170724M1_4	Standard	2.500	4.97	613.630	37412.609	2.460	2.4	-5.6	NO	0.999	NO	bb
3	3 170724M1_5	Standard	5.000	4.97	1267.991	37050.801	5.133	5.3	6.3	NO	0.999	NO	bb
$4{ }^{4}$ Wamer	4 170724M.1_6.	Standard	10.000	4.96	2697.465	40104.539	10.089	10.8	8.0	NO,	0.999	NO	bb
5.	5 170724M1_7	Standard	25.000	4.97	6431.737	38083.547	25.333	27.7	10.6	NO	0.999	NO	bb
6.4	6 170724M1_8	Standard	50.000	4.97	11627.879	39916.621	43.696	48.0	-4.1	NO	0.999	NO	db
7	7 170724M1_9	Standard	250.000	4.96	57443.004	37926.309	227.189	250.9	0.4	NO	0.999	NO	db
8 .	8 170724M1_10	Standard	500.000	4.97	116042.914	38657.641	450.272	497.7	-0.5	NO	0.999	NO	db

Compound name: PFHxDA

Coefficient of Determination: $R^{\wedge} 2=0.999358$
Calibration curve: -0.000715061 * $\mathrm{x}^{\wedge} 2+1.34773$ * $x+0.264398$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: PFODA

Correlation coefficient: $\mathrm{r}=0.999378, \mathrm{r} \wedge 2=0.998756$
Calibration curve: 1.27561 * $x+0.10098$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

$\sqrt{5 \times 4 \times}$	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev Conc. Flag CoD \quad CoDFlag x -excluded				
12	1 170724M1_3	Standard	0.250	5.43	1893.557	25428.396	0.372	0.2	-14.9	NO	0.999	NO	MM
2	2 170724M1_4	Standard	0.500	5.44	3335.536	21542.566	0.774	0.5	5.5	NO	0.999	NO	bb
3 3	3 170724M1_5	Standard	1.000	5.44	6573.281	21611.141	1.521	1.1	11.3	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	5.44	13511.143	22044.896	3.064	2.3	16.2	NO	0.999	NO	bb .
5.	5 170724M1_7	Standard	5.000	5.44	32601.881	22327.822	7.301	5.6	12.9	NO	0.999	NO	bb
6.	$6170724 \mathrm{M1}$ _8	Standard	10.000	5.44	59011.938	22552.494	13.083	10.2	1.8	NO	0.999	NO	bb
7. 7 $^{\text {a }}$,	7 170724M1_9	Standard	50.000	5.43	274924.375	21452.613	64.077	50.2	0.3	NO	0.999	NO	bb
8. 2 2	8 170724M1_10	Standard	100.000	5.44	534414.688	21228.160	125.874	98.6	-1.4	NO	0.999	NO	bb

Compound name: N -MeFOSE

Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998953$
Calibration curve: 1.01603 * $\mathrm{x}+0.461771$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results1170724M1\170724M1-CRV.qld
Last Altered: Monday, July 24, 2017 15:32:30 Pacific Daylight Time
Printed: \quad Monday, July 24, 2017 15:40:40 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.999680, \mathrm{r}^{\wedge} 2=0.999361$
Calibration curve: 1.16673 * $x+0.501898$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	...Type	Std. Conc	RT	Area	IS Area	Respanse	Conc. 1.0	$\begin{gathered} \hline \% \mathrm{Dev} \\ -21.4 \end{gathered}$	Conc. Flag	COD CoD Flag		x-excluded
1 ,	1 170724M1_3	Standard	1.250	5.60	493.408	44922.563	1.648			NO	0.999	NO	bb
2	2 170724M1_4	Standard	2.500	5.61	917.078	40989.961	3.356	2.4	-2.2	NO	0.999	NO	bb
3 , 4	3 170724M1_5	Standard	5.000	5.61	1793.908	40752.352	6.603	5.2	4.6	NO	0.999	NO	bb
4 Natrat	4 170724M1_6	Standard	10.000	5.60	3804.083	43177.285	13.216	10.9	9.0	NO	0.999	NO	bb
5	5 170724M1_7	Standard	25.000	5.61	9310.704	42231.566	33.070	27.9	11.7	NO	0.999	NO	bb
6 W, mata	6 170724M1_8	Standard	50.000	5.61	16671.494	42902.656	58.288	49.5	-0.9	NO	0.999	NO	bb
7 2-3)	7 170724M1_9	Standard	250.000	5.60	80911.422	41552.719	292.080	249.9	-0.0	NO	0.999	NO	bb
8	8 170724M1_10	Standard	500.000	5.61	163300.031	42219.305	580.185	496.8	-0.6	NO	0.999	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.820483

RRF SD: 0.00867593, Relative SD: 1.05742
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset:	Untitled
Last Altered:	Monday, July 24, 2017 15:48:17 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:50:08 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30

Compound name: PFBA

Last Altered:
Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:
Monday, July 24, 2017 15:47:51 Pacific Daylight Time

(A) Not in SS .

Method: U:IQ4.PRO\MethDBIPFAS_FULL_7-20-17.mdb 24 Jul 2017 15:34:12

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL.cdb 24 Jul 2017 15:32:30
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Dataset:	U:\Q4.PRO\results1170724M11170724M1-12.qId
Last Altered:	Monday, July 24, 2017 15:46:59 Pacific Daylight Time
Printed:	Monday, July 24, 2017 15:47:51 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G 2421

	\# Name	**	Trace	Area	IS Resp	RRF	Wt./Vol	RT	Conc.	\%Rec
32×1	32 13C4-PFHpA		$367.2>321.8$	29688.498	38341.938	0.306	1.000	3.48	12.67	101.34
33 -	33 1802-PFHxS		$403>102.6$	2850.923	7151.517	0.393	1.000	3.55	12.69	101.51
34 .	34 13C2-6:2 FTS		$429.1>408.9$	7715.412	55193.199	0.158	1.000	3.67	11.08	88.65
35 -	$3513 \mathrm{C} 2-\mathrm{PFOA}$		$414.9>369.7$	57527.922	55193.199	1.067	1.000	3.68	12.20	97.64
36	36 13C5-PFNA		$468.2>422.9$	55397.191	58314.438	0.852	1.000	3.85	13.94	111.4ε
37 , 相	37 13C8-PFOSA		$506.1>77.7$	6500.262	73602.336	0.098	1.000	3.86	11.24	89.90
38.	3813 C 8 -PFOS		$507>79.9$	10272.242	10242.656	0.936	1.000	3.91	13.40	107.18
39 -	39 13C2-PFDA		$515.1>469.9$	56205.117	70397.750	0.810	1.000	4.02	12.32	98.59
40 , \quad 2	40 13C2-8:2 FTS		$529.1>508.7$	5254.963	70397.750	0.086	1.000	4.02	10.90	87.23
41	41 d3-N-MeFOSAA		$573.3>419$	11971.411	73602.336	0.014	1.000	4.05	148.44	91.35
42	$42 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA		$589.3>419$	12068.997	73602.336	0.014	1.000	4.12	146.98	90.45
43	43 13C2-PFUnA		$565>519.8$	59926.145	73602.336	0.962	1.000	4.19	10.58	84.63
44	44 13C2-PFDoA		$615>569.7$	5849.101	73602.336	0.094	1.000	4.35	10.52	84.16
	45 d3-N-MeFOSA		$515.2>168.9$	26376.414	73602.336	0.034	1.000	4.43	130.17	86.78
46 .	46 13C2-PFTeDA		714.8 > 669.6	40951.586	73602.336	0.694	1.000	4.70	10.02	80.14
47	47 d5-N-ETFOSA		$531.1>168.9$	6321.303	73602.336	0.049	1.000	5.01	22.06	14.70
48	48 13C2-PFHxDA		$815>769.7$	19848.846	73602.336	0.843	1.000	5.07	4.00	79.97
49	$49 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}$		$623.1>58.9$	40883.168	73602.336	0.055	1.000	5.42	127.09	84.73
50	50 d9-N-EtFOSE		$639.2>58.8$	40456.262	73602.336	0.053	1.000	5.59	128.61	85.74
51	51 13C4-PFBA		$217>171.8$	14974.247	14974.247	1.000	1.000	1.55	12.50	100.00
52	52 13C5-PFHxA		318 > 272.9	38341.938	38341.938	1.000	1.000	3.22	5.00	100.00
53	53 13C3-PFHxS		$401.9>79.9$	7151.517	7151.517	1.000	1.000	3.55	12.50	100.00
	54 13C8-PFOA		$421.3>376$	55193.199	55193.199	1.000	1.000	3.68	12.50	100.00
55 -	55 13C9-PFNA		$472.2>426.9$	58314.438	58314.438	1.000	1.000	3.85	12.50	100.00
56	56 13C4-PFOS		$503>79.9$	10242.656	10242.656	1.000	1.000	3.91	12.50	100.00
57.	57 13C6-PFDA		$519.1>473.7$	70397.750	70397.750	1.000	1.000	4.02	12.50	100.00
58.8	58 13C7-PFUnA		$570.1>524.8$	73602.336	73602.336	1.000	1.000	4.19	12.50	100.00

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Method: U:IQ4.PRO\MethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-PFBA

Correlation coefficient: $\mathrm{r}=0.999344, \mathrm{r}^{\wedge} 2=0.998689$
Calibration curve: $1.18236 * x+0.171127$

Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-PFPeA

Correlation coefficient: $\mathrm{r}=0.999647, \mathrm{r}^{\wedge} 2=0.999293$
Calibration curve: 1.00022 * x +0.0979501
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-PFBS

Correlation coefficient: $\mathrm{r}=0.999611, \mathrm{r}^{\wedge} 2=0.999223$
Calibration curve: 1.85223 * x + 0.0753175
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

\%				RT Area AS Area Response				Conc. \%Dev Conc. Fla			CoD CoD Flag x excluded		
45	1 170724M1_3	Standard	0.250	3.00	116.281	3068.403	0.474	0.2	-14.0	NO	0.999	NO	bb
+	2 170724M1_4	Standard	0.500	3.00	214.986	3020.354	0.890	0.4	-12.1	NO	0.999	NO	MM
3.	3 170724M1_5	Standard	1.000	2.99	512.501	3001.774	2.134	1.1	11.2	NO	0.999	NO	bb
4.	4 170724M1_6	Standard	2.000	3.00	1085.602	3295.993	4.117	2.2	9.1	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	3.00	2583.207	3132.764	10.307	5.5	10.5	NO	0.999	NO	bb
6.3	6 170724M1_8	Standard	10.000	3.00	4677.829	3302.426	17.706	9.5	-4.8	NO	0.999	NO	bb
\%	7 170724M1_9	Standard	50.000	3.00	22355.119	2994.649	93.313	50.3	0.7	NO	0.999	NO	bb
8.	8 170724M1_10	Standard	100.000	3.00	43420.234	2946.134	184.225	99.4	-0.6	NO	0.999	NO	bb

Compound name: L-PFHxA

Correlation coefficient: $r=0.999652, r^{\wedge} 2=0.999303$
Calibration curve: 1.50961 * x + 0.157846
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
$1-4$.	1 170724M1_3	Standard	0.250	3.22	1086.304	11341.955	0.479	0.2	-14.9	NO	0.999	NO	db
2	2 170724M1_4	Standard	0.500	3.22	1906.946	10636.292	0.896	0.5	-2.1	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	3.22	3788.241	10865.864	1.743	1.1	5.0	NO	0.999	NO	bb
$4-{ }^{-1}$	4 170724M1_6	Standard	2.000	3.22	7912.540	12006.801	3.295	2.1	3.9	NO	0.999	NO	bb
5 5 ${ }^{4}$,	5 170724M1_7	Standard	5.000	3.22	18325.188	10585.094	8.656	5.6	12.6	NO	0.999	NO	bb
6.	6 170724M1_8	Standard	10.000	3.22	34348.887	11649.966	14.742	9.7	-3.4	NO	0.999	NO	bb
7×3	7 170724M1_9	Standard	50.000	3.22	154915.125	10379.170	74.628	49.3	-1.3	NO	0.999	NO	bb
8-2cm	8 170724M1_10	Standard	100.000	3.22	320392.531	10569.161	151.570	100.3	0.3	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-PFHpA

Correlation coefficient: $\mathrm{r}=0.999802, \mathrm{r}^{\wedge} 2=0.999604$
Calibration curve: 1.25293 * x + 0.085568
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Mum,	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	$\%$ Dev	Conc. F	CoD	CoDF	$x=$ excluded
1.3	1 170724M1_3	Standard	0.250	3.47	835.892	29540.787	0.354	0.2	-14.4	NO	1.000	NO	bb
2 2- ${ }^{2}$	2 170724M1_4	Standard	0.500	3.48	1737.110	28831.211	0.753	0.5	6.6	NO	1.000	NO	dd
3	3 170724M1_5	Standard	1.000	3.48	3129.354	29995.297	1.304	1.0	-2.7	NO	1.000	NO	bb
4	4 170724M1_6	Standard	2.000	3.48	6923.302	31499.152	2.747	2.1	6.2	NO	1.000	NO	bb
5	5 170724M1_7	Standard	5.000	3.48	17221.189	31478.633	6.838	5.4	7.8	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	3.48	31977.643	32505.703	12.297	9.7	-2.5	NO	1.000	NO	bb
$7 . W^{\text {P }}$	7170724 M 1.9	Standard	50.000	3.48	148752.578	30043.684	61.890	49.3	-1.3	NO	1.000	NO	bb
8 -	8 170724M1_10	Standard	100.000	3.48	294885.219	29270.332	125.932	100.4	0.4	NO	1.000	NO	bb

Compound name: L-PFHxS

Correlation coefficient: $r=0.999641, r^{\wedge} 2=0.999282$
Calibration curve: 1.58457 * x + 0.244547
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name.	Type	Std. Conc	RT	Area	IS Area	Response	Conc:	\%Dev	Conc. Flag	COD	D Flag	$x=$ excluded
	1 170724M1_3	Standard	0.250	3.56	73.733	2948.661	0.313	0.0	-82.8	NO	0.999	NO	MMX
2	2 170724M1_4	Standard	0.500	3.55	233.030	2945.944	0.989	0.5	-6.1	NO	0.999	NO	bb
3	$3170724 \mathrm{M1} 1.5$	Standard	1.000	3.55	387.605	2882.763	1.681	0.9	-9.4	NO	0.999	NO	bb
4 - ${ }^{\text {a }}$,	4 170724M1_6	Standard	2.000	3.55	883.679	3069.216	3.599	2.1	5.8	NO	0.999	NO	bb
5	$5170724 \mathrm{M1} 1$ 7	Standard	5.000	3.55	2121.650	3078.477	8.615	5.3	5.6	NO	0.999	NO	MM
$6{ }^{+3+2}$	6 170724M1_8	Standard	10.000	3.55	3756.667	2827.577	16.607	10.3	3.3	NO	0.999	No	MM
H3t	7 170724M1_9	Standard	50.000	3.55	19497.047	2990.466	81.497	51.3	2.6	NO	0.999	NO	MM
$8-1$	8 170724M1_10	Standard	100.000	3.55	36940.883	2965.238	155.725	98.1	-1.9	NO	0.999	NO	bb

Vista Analytical Laboratory

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed
Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997533$
Calibration curve: $-0.00313053^{*} x^{\wedge} 2+1.07473$ * $x+0.134469$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	* RT	Area	IS Area	Response ${ }^{\text {a }}$. Conc.		\%Dev Conc. Flag CoD			CoD Flag $\mathrm{x}=$ excluded	
1	1 170724M1_3	Standard	0.250	3.67	204.440	7589.777	0.337	0.2	-24.7	NO	0.998	NO	bb
2 2 $\quad 4.4$	2 170724M1_4	Standard	0.500	3.67	400.907	7687.979	0.652	0.5	-3.6	NO	0.998	NO	bb
3 3 ${ }^{2}$,	3 170724M1_5	Standard	1.000	3.67	747.740	7427.477	1.258	1.0	4.9	NO	0.998	NO	bb
	4 170724M1_6	Standard	2.000	3.66	1573.173	7868.375	2.499	2.2	10.7	NO	0.998	NO	bb
5	5 170724M1_7	Standard	5.000	3.66	3802.596	7544.070	6.301	5.8	16.7	NO	0.998	NO	bb
6 W, +	6 170724M1_8	Standard	10.000	3.67	6777.476	8079.142	10.486	9.9	-0.8	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.67	31001.344	8775.410	44.159	47.5	-4.9	NO	0.998	NO	bb
$8 \quad 3$	8 170724M1_10	Standard	100.000	3.66	59887.281	9696.150	77.205	102.0	2.0	NO	0.998	NO	bb

Compound name: L-PFOA

Correlation coefficient: $\mathrm{r}=0.999233, \mathrm{r}^{\wedge} 2=0.998466$
Calibration curve: $0.970801^{*} x+0.199778$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name Type		Std. Conc ${ }^{\text {a }}$	RT	Area	IS Area	Response	Conc. \%Der		Conc.Flag CoD CoD Flag x =excluded			
1. ${ }^{\text {a }}$	1 170724M1_3	Standard	0.250	3.67	1654.212	55437.824	0.373	0.2	-28.6	NO	0.998	NO	bb
2.4	2 170724M1_4	Standard	0.500	3.67	2766.273	52853.566	0.654	0.5	-6.4	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.67	5264.665	53444.164	1.231	1.1	6.3	NO	0.998	NO	bb
4.	4 170724M1_6	Standard	2.000	3.68	10233.177	55652.324	2.298	2.2	8.1	NO	0.998	NO	bb
$5 \times \pm$	5 170724M1_7	Standard	5.000	3.68	26080.451	55510.707	5.873	5.8	16.9	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.68	45105.969	54392.293	10.366	10.5	4.7	NO	0.998	NO	bb
	7 170724M1_9	Standard	50.000	3.67	220048.344	55876.563	49.226	50.5	1.0	NO	0.998	NO	bb
8 8.3.	8 170724M1_10	Standard	100.000	3.68	421252.813	55196.383	95.399	98.1	-1.9	NO	0.998	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:29 Pacific Daylight Time

Compound name: L-PFHpS

Correlation coefficient: $\mathrm{r}=0.999150, \mathrm{r}^{\wedge} 2=0.998301$
Calibration curve: 0.0887442 * $x+0.014645$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc ${ }^{\text {R }}$ T		- Area	IS Area	Response	Conc.	\%Dev Conc, Flag CoD			CoD Flag $x=e x$ cluded	
1.	1 170724M1_3	Standard	0.250	3.74	113.671	55437.824	0.026	0.1	-50.5	NO	0.998	NO	bbX
2.	2 170724M1_4	Standard	0.500	3.74	222.089	52853.566	0.053	0.4	-14.6	NO	0.998	NO	bb
	3 170724M1_5	Standard	1.000	3.73	522.454	53444.164	0.122	1.2	21.2	NO	0.998	NO	bb
4 - ${ }^{\text {a }}$	4 170724M1_6	Standard	2.000	3.74	936.558	55652.324	0.210	2.2	10.3	NO	0.998	NO	bb
5 wut	5 170724M1_7	Standard	5.000	3.73	2346.630	55510.707	0.528	5.8	15.8	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.74	4004.412	54392.293	0.920	10.2	2.0	NO	0.998	NO	bb
7	7 170724M1_9	Standard	50.000	3.74	19773.092	55876.563	4.423	49.7	-0.6	NO	0.998	NO	bb
$84 \times$	8 170724M1_10	Standard	100.000	3.74	38852.836	55196.383	8.799	99.0	-1.0	NO	0.998	NO	bb

Compound name: L-PFNA

Correlation coefficient: $r=0.998636, r^{\wedge} 2=0.997274$
Calibration curve: $1.0977{ }^{*} \times+0.147355$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

5	\# Name	Type	Std. Conc	RT	4 Area	15 Area	Response	Conc:	\%Dev	Conc. Flag	COD	CoD Flag	x excluded
1.	1 170724M1_3	Standard	0.250	3.85	1504.301	55001.828	0.342	0.2	-29.1	NO	0.997	NO	MM
2 -	2 170724M1_4	Standard	0.500	3.85	2694.965	54762.438	0.615	0.4	-14.8	NO	0.997	NO	bb
3 -	3 170724M1_5	Standard	1.000	3.85	5691.902	55321.512	1.286	1.0	3.7	NO	0.997	NO	bb
4	4 170724M1_6	Standard	2.000	3.85	12559.827	59225.996	2.651	2.3	14.0	NO	0.997	NO	bb
5	5 170724M1_7	Standard	5.000	3.85	29286.219	53341.520	6.863	6.1	22.4	NO	0.997	NO	bb
6.	6 170724M1_8	Standard	10.000	3.85	53683.984	56161.168	11.949	10.8	7.5	NO	0.997	NO	bb
	7 170724M1_9	Standard	50.000	3.85	235981.688	55495.742	53.153	48.3	-3.4	NO	0.997	NO	bb
$8 \times$	8 170724M1_10	Standard	100.000	3.85	475993.000	54308.789	109.557	99.7	-0.3	NO	0.997	NO	bb

Dataset
U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time

Method: U:IQ4.PROMMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-PFOSA

Correlation coefficient: $\mathrm{r}=0.998808, \mathrm{r}^{\wedge} 2=0.997616$
Calibration curve: 1.0493 * x + 0.0489398
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

S 4.	\#Name Type		Std. Conc	RT	$\mathrm{F}^{\text {+ }}$ Area	IS Area	Response	Conc.	\%Dev	C. F	Cob	CoD Flag	$x=e x c l u d e d$
14.2	1 170724M1_3	Standard	0.250	3.86	163.860	6633.945	0.309	0.2	-1.0	NO	0.998	NO	bb
2 2 ${ }^{2}$	2 170724M1_4	Standard	0.500	3.85	301.866	6613.513	0.571	0.5	-0.6	NO	0.998	NO	bb
3.2	3 170724M1_5	Standard	1.000	3.85	477.914	6491.109	0.920	0.8	-17.0	NO	0.998	NO	bb
4 Wris	4 170724M1_6	Standard	2.000	3.86	1315.264	7021.902	2.341	2.2	9.2	NO	0.998	NO	bb
5\%4.5]	5 170724M1_7	Standard	5.000	3.86	2927.381	6519.732	5.613	5.3	6.0	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	3.86	5570.263	6576.866	10.587	10.0	0.4	NO	0.998	NO	bb
7.2.	7 170724M1_9	Standard	50.000	3.86	26459.754	5926.425	55.809	53.1	6.3	NO	0.998	NO	bb
8 \%	8 170724M1_10	Standard	100.000	3.86	50171.699	6190.267	101.312	96.5	-3.5	NO	0.998	NO	bb

Compound name: L-PFOS

Coefficient of Determination: $\mathbf{R}^{\wedge} 2=0.999053$
Calibration curve: $-0.00141568{ }^{*} x^{\wedge} 2+1.19711^{*} x+0.0153867$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name		Ex	Std. Conc	, RT	Area	IS Area	Response Conc. \%Dev, Conc. Flag CoD					CoDFlag $x=$ excluded	
	1 170724M1_3	Standard		0.250	3.90	300.610	10711.932	0.351	0.3	12.1	NO	0.999	NO	MM
2	2 170724M1_4	Standard		0.500	3.90	466.042	10010.674	0.582	0.5	-5.3	NO	0.999	NO	bb
3	3 170724M1_5	Standard		1.000	3.90	1032.631	10207.536	1.265	1.0	4.5	NO	0.999	NO	MM
4	4 170724M1_6	Standard		2.000	3.90	1981.837	10715.066	2.312	1.9	-3.9	NO	0.999	NO	MM
5	5 170724M1_7	Standard		5.000	3.90	5099.578	10217.659	6.239	5.2	4.6	NO	0.999	NO	bb
6	$6170724 \mathrm{M1}$ _8	Standard		10.000	3.90	8336.075	9647.514	10.801	9.1	-8.9	NO	0.999	NO	bb
7 7.	7 170724M1_9	Standard		50.000	3.91	43091.355	9325.974	57.757	51.4	2.7	NO	0.999	NO	bb
8 B	8170724 M 1 _10	Standard		100.000	3.90	78910.156	9398.647	104.949	99.3	-0.7	NO	0.999	NO	bb

```
Quantify Compound Summary Report
```


Vista Analytical Laboratory

```
Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time
```


Compound name: L-PFDA

Correlation coefficient: $\mathrm{r}=0.999397, \mathrm{r}^{\wedge} 2=0.998794$
Calibration curve: 1.29731 * $x+0.12788$
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996879$
Calibration curve: $-0.004017122^{*} x^{\wedge} 2+1.47948$ * $x+0.229305$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc	RT	Area	IS Area Response . Conc. \%Dev Conc. Flag CoD						F	exclu
	1 170724M1_3	Standard	0.250	4.01	116.059	5712.626	0.254	0.0	-93.3	NO	0.997	NO	bbX
2.WU?	2 170724M1_4	Standard	0.500	4.02	436.336	5926.817	0.920	0.5	-6.5	NO	0.997	NO	bb
3.	3 170724M1_5	Standard	1.000	4.01	704.575	5605.082	1.571	0.9	-9.1	NO	0.997	NO	bb
4	4 170724M1_6	Standard	2.000	4.01	1476.953	6044.566	3.054	1.9	-4.0	NO	0.997	NO	db
5. ${ }^{\text {a }}$	5 170724M1_7	Standard	5.000	4.02	3942.699	5463.454	9.021	6.0	20.8	NO	0.997	NO	bb
6.	6 170724M1_8	Standard	10.000	4.02	6715.274	5614.961	14.950	10.2	2.3	NO	0.997	NO	$b b$
7. 7, 1 a	7 170724M1_9	Standard	50.000	4.02	29821.402	6078.795	61.323	47.4	-5.2	NO	0.997	NO	bb
8 8	8170724 M 1 _10	Standard	100.000	4.02	56335.957	6441.568	109.321	102.0	2.0	NO	0.997	NO	$b b$

Dataset:
U:IQ4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time

Compound name: L-N-MeFOSAA

Correlation coefficient: $\mathrm{r}=0.999780, \mathrm{r}^{\wedge} 2=0.999560$
Calibration curve: 1.47015 * $x+0.088336$
Response type: Internal Std (Ref 68), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	aser	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	x -excluded
1.4	1 170724M1_3	Standard		0.250	4.05	448.925	12099.400	0.464	0.3	2.2	NO	1.000	NO	bb
2 C	2 170724M1_4	Standard		0.500	4.05	716.809	11504.973	0.779	0.5	-6.1	NO	1.000	NO	bb
3-3	3 170724M1_5	Standard		1.000	4.06	1261.768	11265.637	1.400	0.9	-10.8	NO	1.000	NO	bb
4 4,	4 170724M1_6	Standard		2.000	4.05	3173.830	12505.027	3.173	2.1	4.9	NO	1.000	NO	bb
5	5 170724M1_7	Standard		5.000	4.05	7648.363	12072.939	7.919	5.3	6.5	NO	1.000	NO	bb
6	6 170724M1_8	Standard		10.000	4.05	14431.390	11803.941	15.282	10.3	3.4	NO	1.000	NO	bb
7 mbra	7 170724M1_9	Standard		50.000	4.05	69860.063	11737.307	74.400	50.5	1.1	NO	1.000	NO	bb
8. ${ }^{\text {a }}$	8 170724M1_10	Standard		100.000	4.05	130379.672	11210.404	145.378	98.8	-1.2	NO	1.000	NO	bb

Compound name: L-N-EtFOSAA

Correlation coefficient: $\mathrm{r}=0.999919, \mathrm{\wedge} 2=0.999838$
Calibration curve: $1.21714^{*} \mathrm{x}+0.0255867$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:17:44 Pacific Daylight Time

Compound name: L-PFUnA

Coefficient of Determination: $R^{\wedge} 2=0.998430$
Calibration curve: $-0.0020331^{*} x^{\wedge} 2+0.901478$ * $x+0.00751751$
Response type: Internal Std (Ref 70), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

4-memer	1 170724M1_3	Standard	0.250	4.18	1408.556	65735.461	0.268	0.3	15.6	NO	0.998	NO	bb
2.	2 170724M1_4	Standard	0.500	4.19	2456.148	63870.914	0.481	0.5	5.1	NO	0.998	NO	bb
3.	3 170724M1_5	Standard	1.000	4.19	4367.807	64348.984	0.848	0.9	-6.5	NO	0.998	NO	bb
4	4 170724M1_6	Standard	2.000	4.19	9271.418	67160.539	1.726	1.9	-4.3	NO	0.998	NO	bb
5 Mres	5 170724M1_7	Standard	5.000	4.19	22206.646	66089.180	4.200	4.7	-6.0	NO	0.998	NO	bb
6	6 170724M1_8	Standard	10.000	4.19	40104.945	61335.543	8.173	9.3	-7.5	NO	0.998	NO	bb
7 y	7 170724M1_9	Standard	50.000	4.19	187190.781	55960.629	41.813	52.6	5.2	NO	0.998	NO	bb
8 -	8 170724M1_10	Standard	100.000	4.19	357250.000	64722.215	68.997	98.3	-1.7	NO	0.998	NO	bb

Compound name: L-PFDS

Coefficient of Determination: $R^{\wedge} 2=0.998893$
Calibration curve: -0.00022062 * $x^{\wedge} 2+0.0913899 * x+-0.00210506$
Response type: Internal Std (Ref 70), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

$1{ }^{4}$	1 170724M1_3	Standard	0.250	4.24	125.500	65735.461	0.024	0.3	13.7	NO	0.999	NO	bb
2 2,	2 170724M1_4	Standard	0.500	4.24	217.016	63870.914	0.042	0.5	-2.3	NO	0.999	NO	MM
3 3.	3 170724M1_5	Standard	1.000	4.23	432.153	64348.984	0.084	0.9	-5.6	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	4.24	998.163	67160.539	0.186	2.1	3.3	NO	0.999	NO	bb
5.4	5 170724M1_7	Standard	5.000	4.23	2251.549	66089.180	0.426	4.7	-5.3	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	4.23	4080.028	61335.543	0.831	9.3	-6.7	NO	0.999	NO	bb
7 , , Meme	7 170724M1_9	Standard	50.000	4.24	18621.564	55960.629	4.160	52.1	4.2	NO	0.999	NO	bb
8	8 170724M1_10	Standard	100.000	4.23	35549.465	64722.215	6.866	98.6	-1.4	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROiresults\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-PFDOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999677$
Calibration curve: $-0.000480882^{*} x^{\wedge} 2+0.928226$ * $x+0.197542$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

			Std Conc RT Mrea			"IS Area	Response	Conc. 0.2	\%Dev Conc Flag = CoD CoD Flag x=excluded				
1	1 170724M1_3	Standard	0.250	4.34	212.884	6396.985	0.416		-5.9	NO	1.000	NO	MM
2	2 170724M1_4	Standard	0.500	4.35	275.894	5619.458	0.614	0.4	-10.3	NO	1.000	NO	bb
$3=4$	3 170724M1_5	Standard	1.000	4.35	576.941	5998.723	1.202	1.1	8.3	NO	1.000	NO	bb
4	4 170724M1_6	Standard	2.000	4.35	1144.260	6584.378	2.172	2.1	6.5	NO	1.000	NO	bb
5 5 mix	5 170724M1_7	Standard	5.000	4.35	2601.126	6419.244	5.065	5.3	5.2	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.35	4871.013	6690.135	9.101	9.6	-3.6	NO	1.000	NO	bb
7	7 170724M1_9	Standard	50.000	4.35	21850.346	6031.607	45.283	49.9	-0.3	NO	1.000	NO	bb
$8+2$	8 170724M1_10	Standard	100.000	4.35	43781.789	6198.479	88.291	100.1	0.1	NO	1.000	NO	bb

Compound name: L-N-MeFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999627$
Calibration curve: -0.00044986 * $x^{\wedge} 2+0.466744$ * $x+0.00081322$
Response type: Internal Std (Ref 72), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name		Std. Conc	RT	Area	IS Area	Response Conc.		\%Dev Conc. Flag		COD	oD Flag $x=$ excluded	
	1 170724M1_3	Standard	0.250	4.39	226.279	27834.387	0.102	0.2	-13.6	NO	1.000	NO	bb
	2 170724M1_4	Standard	0.500	4.39	521.665	26795.877	0.243	0.5	4.0	NO	1.000	NO	db
	3 170724M1_5	Standard	1.000	4.39	1023.477	27001.328	0.474	1.0	1.4	NO	1.000	NO	bb
	4 170724M1_6	Standard	2.000	4.39	2223.965	28178.129	0.987	2.1	5.8	NO	1.000	NO	db
	5 170724M1_7	Standard	5.000	4.39	5367.556	27075.477	2.478	5.3	6.7	NO	1.000	NO	bb
	6 170724M1_8	Standard	10.000	4.39	9714.126	27395.363	4.432	9.6	-4.2	NO	1.000	NO	db
	7 170724M1_9	Standard	50.000	4.39	46919.371	26470.068	22.157	49.9	-0.3	NO	1.000	NO	bb
	8 170724M1_10	Standard	100.000	4.39	92806.148	27480.182	42.215	100.1	0.1	NO	1.000	NO	bb

Dataset: U:IQ4.PROlresults\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Compound name: L-PFTrDA

Correlation coefficient: $\mathrm{r}=0.999380, \mathrm{r}^{\wedge} 2=0.998761$
Calibration curve: 10.9107 * x + 1.81788
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999027$
Calibration curve: -0.000821655 * $x^{\wedge} 2+1.15082$ * $x+0.0988466$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory
Dataset: U:IQ4.PRO|results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Compound name: L-N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999522$
Calibration curve: $-0.000124307{ }^{*} x^{\wedge} 2+0.388553 * x+0.0202947$
Response type: Internal Std (Ref 74), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. F	Cob	D F	xcluded
1.	1 170724M1_3	Standard	0.250	4.96	337.684	39336.785	0.107	0.2	-10.4	NO	1.000	NO	bb
2 c	2 170724M1_4	Standard	0.500	4.97	613.630	37178.340	0.206	0.5	-4.2	NO	1.000	NO	bb
3 m	3 170724M1_5	Standard	1.000	4.97	1267.991	36953.465	0.429	1.1	5.2	NO	1.000	NO	bb
4×2	4 170724M1_6	Standard	2.000	4.96	2697.465	39886.242	0.845	2.1	6.2	NO	1.000	NO	bb
$5 \sim$	5 170724M1_7	Standard	5.000	4.97	6431.737	37896.902	2.121	5.4	8.3	NO	1.000	NO	bb
6	6 170724M1_8	Standard	10.000	4.97	11778.675	39747.004	3.704	9.5	-4.9	NO	1.000	NO	MM
7	7 170724M1_9	Standard	50.000	4.96	57443.004	37648.063	19.072	49.8	-0.3	NO	1.000	NO	db
8 -	8 170724M1_10	Standard	100.000	4.97	116042.914	38501.617	37.675	100.1	0.1	NO	1.000	NO	db

Compound name: L-PFHxDA

Coefficient of Determination: $R^{\wedge} 2=0.999355$
Calibration curve: -0.000723556 * $x^{\wedge} 2+1.34849$ * $x+0.265371$
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std, Conc	RT Area IS Area			Response	Conc, \%Dev Conc. Flag				- CoD Flag $x=$ excluded	
1.4.	1 170724M1_3	Standard	0.250	5.07	2816.818	25428.396	0.554	0.2	-14.4	NO	0.999	NO	bb
2	2 170724M1_4	Standard	0.500	5.07	3873.513	21542.566	0.899	0.5	-6.0	NO	0.999	NO	bb
3	3 170724M1_5	Standard	1.000	5.07	7123.665	21611.141	1.648	1.0	2.6	NO	0.999	NO	db
4.4×4	4 170724M1_6	Standard	2.000	5.07	14417.972	22044.896	3.270	2.2	11.5	NO	0.999	NO	bb
5.	$5170724 \mathrm{M} 1 _7$	Standard	5.000	5.07	33676.410	22327.822	7.541	5.4	8.2	NO	0.999	NO	bb
6.	6 170724M1_8	Standard	10.000	5.07	61569.332	22552.494	13.650	10.0	-0.2	NO	0.999	NO	bb
7.	7 170724M1_9	Standard	50.000	5.07	276231.906	21452.613	64.382	48.8	-2.3	NO	0.999	NO	bb
8 -	8 170724M1_10	Standard	100.000	5.07	545977.438	21228.160	128.597	100.6	0.6	NO	0.999	NO	bb

Dataset:
U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:35 Pacific Daylight Time

Compound name: L-PFODA

Correlation coefficient: $\mathrm{r}=0.999510, \mathrm{r}^{\wedge} 2=0.999020$
Calibration curve: 1.27272 * x + 0.164132
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	anc.	\%Dev	c.	CoD	F	cluded
1: $=$ W	1 170724M1_3	Standard	0.250	5.43	1979.263	25428.396	0.389	0.2	-29.3	NO	0.999	NO	db
2	2 170724M1_4	Standard	0.500	5.44	3335.536	21542.566	0.774	0.5	-4.1	NO	0.999	NO	bb
3 3 \% W	3 170724M1_5	Standard	1.000	5.44	6573.281	21611.141	1.521	1.1	6.6	NO	0.999	NO	bb
4	4 170724M1_6	Standard	2.000	5.44	13511.143	22044.896	3.064	2.3	13.9	NO	0.999	NO	bb
5 -	5 170724M1_7	Standard	5.000	5.44	32601.881	22327.822	7.301	5.6	12.1	NO	0.999	NO	bb
6 , ${ }^{\text {a }}$,	6 170724M1_8	Standard	10.000	5.44	59011.938	22552.494	13.083	10.2	1.5	NO	0.999	NO	bb
$7 \mathrm{H}, \mathrm{y}$,	7 170724M1_9	Standard	50.000	5.43	274924.375	21452.613	64.077	50.2	0.4	NO	0.999	NO	bb
8 -	8 170724M1_10	Standard	100.000	5.44	534414.688	21228.160	125.874	98.8	-1.2	NO	0.999	NO	bb

Compound name: L-N-MeFOSE

Coefficient of Determination: $R^{\wedge} 2=0.999231$
Calibration curve: $-0.0002267^{*} x^{\wedge} 2+0.440935^{*} x+0.0253969$
Response type: Internal Std (Ref 76), Area * (IS Conc. /IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Method: U:IQ4.PROIMethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Compound name: L-N-EtFOSE

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999487$
Calibration curve: -0.000178806 * $x^{\wedge} 2+0.499525{ }^{*} x+0.0314909$
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT Area IS Area			Response Conc. \%Dev Conc. Flag CoD CoD Flag x=excluded						
1.	1 170724M1_3	Standard	0.250	5.60	493.408	44922.563	0.137	0.2	-15.3	NO	0.999	NO	bb
$2 \times$	2 170724M1_4	Standard	0.500	5.61	913.176	40989.961	0.278	0.5	-1.1	NO	0.999	NO	bb
3 - ${ }^{3}$	3 170724M1_5	Standard	1.000	5.61	1793.908	40752.352	0.550	1.0	3.9	NO	0.999	NO	bb
4.4	4 170724M1_6	Standard	2.000	5.60	3804.083	43177.285	1.101	2.1	7.2	NO	0.999	NO	bb
5	5 170724M1_7	Standard	5.000	5.61	9310.704	42231.566	2.756	5.5	9.3	NO	0.999	NO	bb
6	6 170724M1_8	Standard	10.000	5.61	16671.494	42902.656	4.857	9.7	-3.1	NO	0.999	NO	bb
	7 170724M1_9	Standard	50.000	5.60	80642.430	41552.719	24.259	49.4	-1.3	NO	0.999	NO	bb
8.	8 170724M1_10	Standard	100.000	5.61	163300.031	42219.305	48.349	100.3	0.3	NO	0.999	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.820565
RRF SD: 0.00859343, Relative SD: 1.04726
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

- 7. Name Type \quad T	7. Name Type wrw		Std. Conc	RT	Area	IS Area	Response	onc	\%Dev	c. F	CoD F	$x=e x c l u d e d$
1.4.ters	1 170724M1_3	Standard	12.500	1.54	12468.349	15228.836	10.234	12.5	-0.2	NO	NO	bb
2.4	2 170724M1_4	Standard	12.500	1.55	12306.770	15122.477	10.173	12.4	-0.8	NO	NO	bb
3.14 ,	3 170724M1_5	Standard	12.500	1.54	12270.478	15004.507	10.222	12.5	-0.3	NO	NO	bb
$4 . \square$	4 170724M1_6	Standard	12.500	1.55	12997.952	15657.887	10.377	12.6	1.2	NO	NO	bb
5	5 170724M1_7	Standard	12.500	1.55	12360.005	15236.371	10.140	12.4	-1.1	NO	NO	bb
6 \% $2+4$	6 170724M1_8	Standard	12.500	1.55	13099.017	15723.977	10.413	12.7	1.5	NO	NO	bb
	7 170724M1_9	Standard	12.500	1.55	12396.041	14974.953	10.347	12.6	0.9	NO	NO	bb
8 crems	$8170724 \mathrm{M1} 10$	Standard	12.500	1.56	12273.032	15114.404	10.150	12.4	-1.0	NO	NO	bb

Dataset: U:IQ4.PRO\results|170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 1.61743
RRF SD: 0.0173613, Relative SD: 1.07339
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	onc	RT	Area	IS Area	Response	Conc.	\%Dev		F1	x=excluded
1.1.4.	1 170724M1_3	Standard	12.500	2.80	24685.725	15228.836	20.262	12.5	0.2	NO	NO	bb
$2.4 x^{*}$	2 170724M1_4	Standard	12.500	2.80	24374.584	15122.477	20.148	12.5	-0.3	NO	NO	bb
3. ${ }^{\text {a }}$	3 170724M1_5	Standard	12.500	2.80	24321.555	15004.507	20.262	12.5	0.2	NO	NO	bb
4. ${ }^{\text {a }}$ +	4 170724M1_6	Standard	12.500	2.80	25826.396	15657.887	20.618	12.7	2.0	NO	NO	bb
5	5 170724M1_7	Standard	12.500	2.80	24387.125	15236.371	20.007	12.4	-1.0	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	2.81	25621.486	15723.977	20.368	12.6	0.7	NO	NO	bb
7	7 170724M1_9	Standard	12.500	2.80	23859.781	14974.953	19.916	12.3	-1.5	NO	NO	bb
8-30	8 170724M1_10	Standard	12.500	2.81	24378.607	15114.404	20.162	12.5	-0.3	NO	NO	bb

Compound name: 13C3-PFBS

Response Factor: 0.202788
RRF SD: 0.00545259 , Relative SD: 2.68881
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFHxA
Response Factor: 0.27639
RRF SD: 0.00850433, Relative SD: 3.07693
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFHpA

Response Factor: 0.305533

RRF SD: 0.0101511, Relative SD: 3.32243
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area IS Area Response Conc. \% Mev. Conc. Fla						CoD CoDFlag x=excluded	
	1 170724M1_3	Standard	12.500	3.48	29540.787	40367.738	3.659	12.0	-4.2	NO	NO	bb
2	2 170724M1_4	Standard	12.500	3.48	28831.211	38823.406	3.713	12.2	-2.8	NO	NO	bb
3,4	3 170724M1_5	Standard	12.500	3.48	29995.297	37967.629	3.950	12.9	3.4	NO	NO	bb
	4 170724M1_6	Standard	12.500	3.48	31499.152	42133.270	3.738	12.2	-2.1	NO	NO	bb
5.	$5170724 \mathrm{M1} 1$ 7	Standard	12.500	3.48	31478.633	39088.754	4.027	13.2	5.4	NO	NO	bb
6.5	$6170724 \mathrm{M1}$-8	Standard	12.500	3.48	32505.703	41725.730	3.895	12.7	2.0	NO	NO	bb
7.4	7 170724M1_9	Standard	12.500	3.48	30043.684	39920.477	3.763	12.3	-1.5	NO	NO	bb
8.48	8 170724M1_10	Standard	12.500	3.48	29270.332	38428.922	3.808	12.5	-0.3	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld

Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 1802-PFHxS

Response Factor: 0.392856
RRF SD: 0.017909, Relative SD: 4.55867
Response type: Internal Std (Ref 80), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	ponse	onc	Dev			D	cl
1 1. k	1 170724M1_3	Standard	12.500	3.55	2948.661	7582.089	4.861	12.4	-1.0	NO		NO	bb
2	2 170724M1_4	Standard	12.500	3.55	2945.944	7302.217	5.043	12.8	2.7	NO		NO	bb
3.4	3 170724M1_5	Standard	12.500	3.55	2882.763	7346.485	4.905	12.5	-0.1	NO		NO	bb
4.4	4 170724M1_6	Standard	12.500	3.55	3069.216	7556.806	5.077	12.9	3.4	NO	...	NO	bb
5.	5 170724M1_7	Standard	12.500	3.55	3078.477	7669.834	5.017	12.8	2.2	NO		NO	bb
6	$6170724 \mathrm{M1}$-8	Standard	12.500	3.55	2827.577	8056.833	4.387	11.2	-10.7	NO		NO	bb
7 .	7 170724M1_9	Standard	12.500	3.55	2990.466	7531.759	4.963	12.6	1.1	NO		NO	bb
$8{ }^{4}+4$	8 170724M1_10	Standard	12.500	3.55	2965.238	7365.456	5.032	12.8	2.5	NO		NO	bb

Compound name: 13C2-6:2 FTS

Response Factor: 0.147485
RRF SD: 0.0133447, Relative SD: 9.04815
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: RF

$4{ }^{3}$	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Cone, Flag	CoD CoDFlag	$\mathrm{x}=$ excluded
1-5ix	1 170724M1_3	Standard	12.500	3.66	7589.777	55437.824	1.711	11.6	-7.2	NO	NO	bb
2 2	2 170724M1_4	Standard	12.500	3.66	7687.979	52853.566	1.818	12.3	-1.4	NO	NO	bb
$3 \leq 40$	3 170724M1_5	Standard	12.500	3.66	7427.477	53444.164	1.737	11.8	-5.8	NO	NO	bb
4	4 170724M1_6	Standard	12.500	3.67	7868.375	55652.324	1.767	12.0	-4.1	NO	No	bb
5	5 170724M1_7	Standard	12.500	3.66	7544.070	55510.707	1.699	11.5	-7.9	NO	NO	bb
$6{ }^{4}+4$	6 170724M1_8	Standard	12.500	3.67	8079.142	54392.293	1.857	12.6	0.7	NO	NO	bb
$7 \times$	7 170724M1_9	Standard	12.500	3.67	8775.410	55876.563	1.963	13.3	6.5	NO	NO	bb
8.	8 170724M1_10	Standard	12.500	3.67	9696.150	55196.383	2.196	14.9	19.1	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PROIresults $1170724 \mathrm{M} 11170724 \mathrm{M1} 1-\mathrm{CRV}$ _LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:
Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 1.0675
RRF SD: 0.0457168, Relative SD: 4.28261
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT	Area	IS Area	Response Conc \% Dev Conc. Flag				CoDFlag $x=$ excluded	
4xTlu	1 170724M1_3	Standard	12.500	3.67	55437.824	50417.762	13.745	12.9	3.0	NO	NO	bb
2 2, ${ }^{2}$	2 170724M1_4	Standard	12.500	3.67	52853.566	52862.527	12.498	11.7	-6.3	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.67	53444.164	49459.691	13.507	12.7	1.2	NO	NO	bb
4	4.170724M1_6	Standard	12.500	3.67	55652.324	51986.957	13.381	12.5	0.3	NO	NO	- bb
5 , ${ }^{\text {a }}$	5 170724M1_7	Standard	12.500	3.67	55510.707	54009.070	12.848	12.0	-3.7	NO	NO	bb
$6:-2$	6 170724M1_8	Standard	12.500	3.68	54392.293	53144.688	12.793	12.0	-4.1	NO	NO	bb
	7 170724M1_9	Standard	12.500	3.67	55876.563	49946.758	13.984	13.1	4.8	NO	NO	bb
8 - ${ }^{4}$	8 170724M1_10	Standard	12.500	3.67	55196.383	49303.969	13.994	13.1	4.9	NO	NO	bb

Compound name: 13C5-PFNA

Response Factor: 0.852128
RRF SD: 0.0623325, Relative SD: 7.31492
Response type: Internal Std (Ref 82), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C8-PFOSA

Response Factor: 0.0982354
RRF SD: 0.00607611, Relative SD: 6.18526
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

4	\# Name		Std Conc RT Area			IS Area	Response	Conc.	\%Dev	ne. F	CoD Fl	$x=$ excluded
$1.4 \times$	1 170724M1_3	Standard	12.500	3.86	6633.945	66110.742	1.254	12.8	2.1	NO	NO	bb
2	2 170724M1_4	Standard	12.500	3.85	6613.513	63178.059	1.309	13.3	6.6	NO	NO	bb
3×1	3 170724M1_5	Standard	12.500	3.86	6491.109	65533.590	1.238	12.6	0.8	NO	NO	bb
4	4 170724M1_6	Standard	12.500	3.86	7021.902	74336.992	1.181	12.0	-3.8	NO	NO	bb
5.	5 170724M1_7	Standard	12.500	3.86	6519.732	73722.414	1.105	11.3	-10.0	NO	NO	bb
6 . ${ }^{\text {a }}$	6 170724M1_8	Standard	12.500	3.86	6576.866	61426.844	1.338	13.6	9.0	NO	NO	bb
7	7 170724M1_9	Standard	12.500	3.86	5926.425	63456.004	1.167	11.9	-4.9	NO	NO	bb
8 , ke	8 170724M1_10	Standard	12.500	3.86	6190.267	62878.969	1.231	12.5	0.2	NO	NO	bb

Compound name: 13C8-PFOS

Response Factor: 0.937247
RRF SD: 0:0310241, Relative SD: 3.31013
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: RF

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960

Vista Analytical Laboratory
Dataset:
U:\Q4.PRO\results\170724M1\170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 0.809787
RRF SD: 0.0475325, Relative SD: 5.86975
Response type: Internal Std (Ref 84), Area * (IS Conc. / IS Area)
Curve type: RF

,	\# Name ${ }^{\text {andex }}$ Type		Std. Conc	RT	Area	IS Area	Response	Conc.	Dev	nc. F	F	cluded
	1 170724M1_3	Standard	12.500	4.02	55156.438	71538.672	9.638	11.9	-4.8	NO	NO	bb
2 m	2 170724M1_4	Standard	12.500	4.02	49449.902	67518.039	9.155	11.3	-9.6	NO	NO	bb
$3-12$	3 170724M1_5	Standard	12.500	4.02	59736.465	67946.188	10.990	13.6	8.6	NO	NO	bb
4.	4 170724M1_6	Standard	12.500	4.02	61862.684	75237.898	10.278	12.7	1.5	NO	NO	bb
5 .	5 170724M1_7	Standard	12.500	4.02	53915.461	68309.617	9.866	12.2	-2.5	NO	NO	bb
6.	6 170724M1_8	Standard	12.500	4.02	58734.430	69500.219	10.564	13.0	4.4	NO	NO	bb
7	7 170724M1_9	Standard	12.500	4.03	57610.250	72719.445	9.903	12.2	-2.2	NO	NO	bb
8 8-	8 170724M1_10	Standard	12.500	4.02	49628.984	58601.402	10.586	13.1	4.6	NO	NO	bb

Compound name: 13C2-8:2 FTS

Response Factor: 0.105901
RRF SD: 0.0125981, Relative SD: 11.8961
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: RF

what wim	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc,	\%Dev Conc. Flag CoD CoD Flag x=excluded			
$1 \times$	1 170724M1_3	Standard	12.500	4.01	5712.626	55156.438	1.295	12.2	-2.2	NO	NO	bb
2	2 170724M1_4	Standard	12.500	4.02	5926.817	49449.902	1.498	14.1	13.2	NO	NO	bb
$3-\mathrm{c}$	3 170724M1_5	Standard	12.500	4.01	5605.082	59736.465	1.173	11.1	-11.4	NO	NO	bb
$4 \leq \square$	4 170724M1_6	Standard	12.500	4.01	6044.566	61862.684	1.221	11.5	-7.7	NO	NO	bb
$5 \times$	5 170724M1_7	Standard	12.500	4.02	5463.454	53915.461	1.267	12.0	-4.3	No	NO	bb
	6 170724M1_8	Standard	12.500	4.02	5614.961	58734.430	1.195	11.3	-9.7	NO	NO	bb
7	7 170724M1_9	Standard	12.500	4.02	6078.795	57610.250	1.319	12.5	-0.4	No	NO	bb
8	$8170724 \mathrm{M1} 1$ _10	Standard	12.500	4.02	6441.568	49628.984	1.622	15.3	22.6	NO	NO	bb

Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.178053
RRF SD: 0.00946183 , Relative SD: 5.31404
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: d5-N-EtFOSAA

Response Factor: 0.181401

RRF SD: 0.0108902, Relative SD: 6.0034
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset: U:IQ4.PRO|results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C2-PFUnA

Response Factor: 0.962105
RRF SD: 0.058365, Relative SD: 6.06639
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDoA

Response Factor: 0.0944293
RRF SD: 0.00716752 , Relative SD: 7.59035
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name - \quad Type		\cdots	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	nc. Flag	D Fl	xcluded
+	1 170724M1_3	Standard		12.500	4.34	6396.985	66110.742	1.210	12.8	2.5	NO	NO	bb
$2 \mathrm{~L}-\mathrm{L}$	2 170724M1_4	Standard		12.500	4.35	5619.458	63178.059	1.112	11.8	-5.8	NO	NO	bb
3.2	3 170724M1_5	Standard		12.500	4.35	5998.723	65533.590	1.144	12.1	-3.1	NO	NO	bb
	4 170724M1_6	Standard		12.500	4.35	6584.378	74336.992	1.107	11.7	-6.2	NO	NO	bb
5	5 170724M1_7	Standard		12.500	4.35	6419.244	73722.414	1.088	11.5	-7.8	NO	NO	bb
	6 170724M1_8	Standard		12.500	4.35	6690.135	61426.844	1.361	14.4	15.3	NO	NO	bb
7	7 170724M1_9	Standard		12.500	4.35	6031.607	63456.004	1.188	12.6	0.7	NO	NO	bb
8 -	8 170724M1_10	Standard		12.500	4.35	6198.479	62878.969	1.232	13.0	4.4	NO	NO	bd

Quantify Compound Summary Report
 Vista Analytical Laboratory

Dataset:
U:IQ4.PROIresults $1170724 \mathrm{M} 11170724 \mathrm{M} 1-C R V _L B T$. qld
Last Altered:
Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: d3-N-MeFOSA

Response Factor: 0.412958

RRF SD: 0.0270339 , Relative SD: 6.54642
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

	4 Name		Std. Conc	RT	Area	IS Area	Response Conc. \%Dev Conc. Flag					
1.4	1 170724M1_3	Standard	12.500	4.42	27834.387	66110.742	5.263	12.7	2.0	NO	NO	bb
2 2	2 170724M1_4	Standard	12.500	4.42	26795.877	63178.059	5.302	12.8	2.7	NO	NO	bb
	3 170724M1_5	Standard	12.500	4.42	27001.328	65533.590	5.150	12.5	-0.2	NO	NO	bb
4 . 4.	4 170724M1_6:	Standard	12.500	4.42	28178.129	74336.992	4.738	11.5	-8.2	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.42	27075.477	73722.414	4.591	11.1	-11.1	NO	NO	bb
	6 170724M1_8	Standard	12.500	4.43	27395.363	61426.844	5.575	13.5	8.0	NO	NO	bb
7. T^{4} \%	7 170724M1_9	Standard	12.500	4.42	26470.068	63456.004	5.214	12.6	1.0	NO	NO	bb
8.	8 170724M1_10	Standard	12.500	4.43	27480.182	62878.969	5.463	13.2	5.8	NO	NO	bb

Compound name: 13C2-PFTeDA

Response Factor: 0.694311
RRF SD: 0.0655535 , Relative SD: 9.44152
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: d5-N-EtFOSA

Response Factor: 0.581331
RRF SD: 0.0422535, Relative SD: 7.26841
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFHxDA

Response Factor: 0.843007
RRF SD: 0.0734853, Relative SD: 8.71705
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: d7-N-MeFOSE

Response Factor: 0.655572
RRF SD: 0.0471708, Relative SD: 7.19536
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	$\begin{gathered} \mathrm{RT} \\ 5.42 \end{gathered}$	Area45355.609	IS Area Response Conc. \%Dev Conc. Flag					COD CODFlag . x -excluded	
1. ${ }^{\text {a }}$. ${ }^{\text {a }}$	1 170724M1_3	Standard	12.500			66110.742	8.576	13.1	4.6	NO	NO	bb
2 L	2 170724M1_4	Standard	12.500	5.42	42298.965	63178.059	8.369	12.8	2.1	NO	NO	bb
3.	3 170724M1_5	Standard	12.500	5.42	42181.715	65533.590	8.046	12.3	-1.8	NO	NO	bb
4.4 W	4 170724M1_6	Standard	12.500	5.42	44882.496	74336.992	7.547	11.5	-7.9	NO	NO	bb
5	5 170724M1_7	Standard	12.500	5.42	42480.406	73722.414	7.203	11.0	-12.1	NO	NO	bb
6	6 170724M1_8	Standard	12.500	5.42	44502.430	61426.844	9.056	13.8	10.5	NO	NO	bb
7 \% ex	7 170724M1_9	Standard	12.500	5.42	42011.336	63456.004	8.276	12.6	1.0	NO	NO	bb
8 ,	8 170724M1_10	Standard	12.500	5.42	42682.813	62878.969	8.485	12.9	3.5	NO	NO	bb

Compound name: d9-N-EtFOSE

Response Factor: 0.641067
RRF SD: 0.0456565, Relative SD: 7.12196
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

$\sqrt{5}$	\# Name = Type		Std Conc	RT	- Area	IS Area	Response ${ }^{\text {a }}$ Conc.		\%Der Conc. Flag CoD		CoD Flag x-excluded	
1 ,	1 170724M1_3	Standard	12.500	5.59	44922.563	66110.742	8.494	13.2	6.0	NO	NO	bb
2 -	$2170724 \mathrm{M1} 14$	Standard	12.500	5.59	40989.961	63178.059	8.110	12.7	1.2	No	NO	bb
3 Were	$3170724 \mathrm{M1} 1{ }^{5}$	Standard	12.500	5.59	40752.352	65533.590	7.773	12.1	-3.0	NO	NO	bb
4.	$4170724 \mathrm{M1} 1$ 6	Standard	12.500	5.59	43177.285	74336.992	7.260	11.3	-9.4	NO	NO	bb
	$5170724 \mathrm{M1} 17$	Standard	12.500	5.59	42231.566	73722.414	7.161	11.2	-10.6	NO	NO	bb
6	$6170724 \mathrm{M1} 18$	Standard	12.500	5.59	42902.656	61426.844	8.730	13.6	8.9	NO	NO	bb
7 - ${ }^{\text {a }}$	7 170724M1_9	Standard	12.500	5.59	41552.719	63456.004	8.185	12.8	2.1	NO	NO	bb
8.45	8 170724M1_10	Standard	12.500	5.59	42219.305	62878.969	8.393	13.1	4.7	NO	NO	bb

Quantify Compound Summary Report	MassLynx MassLynx V4.1
Vista Analytical Laboratory	
Dataset:	U:IQ4.PROIresults1170724M11170724M1-CRV_LBT.qld
Last Altered:	Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 1.11022e-016, Relative SD: 1.11022e-014
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	W IS Area	Response	Conc.	\%Dev	Conc. Flag $\overline{\text { CoD }}$	CoD Flag	$x=$ excluded
14.4	1 170724M1_3	Standard	5.000	3.22	40367.738	40367.738	5.000	5.0	0.0	NO	NO	bb
2 2- ${ }^{2}$	2 170724M1_4	Standard	5.000	3.22	38823.406	38823.406	5.000	5.0	0.0	NO	NO	bb
3	3 170724M1_5	Standard	5.000	3.22	37967.629	37967.629	5.000	5.0	0.0	NO	NO	bb
4.42	4 170724M1_6	Standard	5.000	3.22	42133.270	42133.270	5.000	5.0	0.0	NO	NO	bb
5.4	5 170724M1_7	Standard	5.000	3.22	39088.754	39088.754	5.000	5.0	0.0	NO	NO	bb
6.5	6 170724M1_8	Standard	5.000	3.22	41725.730	41725.730	5.000	5.0	0.0	NO	NO	bb
7	7 170724M1_9	Standard	5.000	3.23	39920.477	39920.477	5.000	5.0	0.0	NO	NO	bb
8.	8 170724M1_10	Standard	5.000	3.22	38428.922	38428.922	5.000	5.0	0.0	NO	NO	bb

Vista Analytical Laboratory
Dataset: U:IQ4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 8.3925e-017, Relative SD: 8.3925e-015
Response type: Internal Std (Ref 80), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	nc. F	Flag	$x=e x c l u d e d ~$
1.2	1 170724M1_3	Standard	12.500	3.55	7582.089	7582.089	12.500	12.5	0.0	NO	NO	bb
2	2 170724M1_4	Standard	12.500	3.55	7302.217	7302.217	12.500	12.5	0.0	NO	No	bb
3 -	3 170724M1_5	Standard	12.500	3.55	7346.485	7346.485	12.500	12.5	0.0	NO	NO	bb
4×5	4 170724M1_6	Standard	12.500	3.55	7556.806	7556.806	12.500	12.5	0.0	NO	NO	bb
5 +	5 170724M1_7	Standard	12.500	3.55	7669.834	7669.834	12.500	12.5	0.0	NO	No	bb
6	6 170724M1_8	Standard	12.500	3.55	8056.833	8056.833	12.500	12.5	0.0	NO	NO	bb
7 mex	7 170724M1_9	Standard	12.500	3.55	7531.759	7531.759	12.500	12.5	0.0	NO	NO	bb
$8-5$	8170724 M 1 _10	Standard	12.500	3.55	7365.456	7365.456	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 9.3831e-017, Relative SD: $9.3831 \mathrm{e}-015$
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT Area IS Area Response				Conc. $\% \mathrm{Dev}$		Conc. Flag CoD CoDFlag x =excluded		
1.4	1 170724M1_3	Standard	12.500	3.67	50417.762	50417.762	12.500	12.5	0.0	NO	NO	bb
$2 \sim 4$.	2 170724M1_4	Standard	12.500	3.67	52862.527	52862.527	12.500	12.5	0.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.67	49459.691	49459.691	12.500	12.5	0.0	NO	NO	bb
$43^{3} \times{ }^{\text {a }}$	4 170724M1_6	Standard	12.500	3.67	51986.957	51986.957	12.500	12.5	0.0	NO	NO	bb
5	5 170724M1_7	Standard	12.500	3.68	54009.070	54009.070	12.500	12.5	0.0	NO	NO	bb
6	6 170724M1_8	Standard	12.500	3.68	53144.688	53144.688	12.500	12.5	0.0	NO	NO	bb
7	7 170724M1_9	Standard	12.500	3.67	49946.758	49946.758	12.500	12.5	0.0	NO	NO	bb
8	8 170724M1_10	Standard	12.500	3.67	49303.969	49303.969	12.500	12.5	0.0	NO	NO	bb

Dataset: U:\Q4.PRO\results\170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 9.3831e-017, Relative SD: $9.3831 \mathrm{e}-015$
Response type: Internal Std (Ref 82), Area * (IS Conc. / IS Area)
Curve type: RF

,	\# Name		Std. Conc RT		Area	IS Area	Response Conc. \%Dev Conc. Flag CoD				CoD Flag $x=$ excluded	
P-4	1 170724M1_3	Standard	12.500	3.85	63362.148	63362.148	12.500	12.5	0.0	NO	NO	bb
2 L	2 170724M1_4	Standard	12.500	3.85	66233.305	66233.305	12.500	12.5	0.0	NO	NO	bb
$3-2$	3 170724M1_5	Standard	12.500	3.85	62897.914	62897.914	12.500	12.5	0.0	NO	NO	bb
	4 170724M1_6	Standard	12.500	3.85	73098.813	73098.813	12.500	12.5	0.0	NO	NO	bb
5 - ${ }^{2}$	$5170724 \mathrm{M1} 1$ 7	Standard	12.500	3.85	71059.133	71059.133	12.500	12.5	0.0	NO	NO	bb
6.4	6 170724M1_8	Standard	12.500	3.85	60050.086	60050.086	12.500	12.5	0.0	NO	NO	bb
7 .	7 170724M1_9	Standard	12.500	3.86	67689.273	67689.273	12.500	12.5	0.0	NO	NO	bb
8 8,	8 170724M1_10	Standard	12.500	3.85	58608.688	58608.688	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name		Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD CODFl	xcluded
1. ${ }^{\text {a }}$	1 170724M1_3	Standard	12.500	3.90	10984.350	10984.350	12.500	12.5	0.0	NO	NO	bb
2 2.	2 170724M1_4	Standard	12.500	3.90	10756.134	10756.134	12.500	12.5	0.0	NO	NO	bb
3	3 170724M1_5	Standard	12.500	3.90	10707.182	10707.182	12.500	12.5	0.0	NO	NO	bb
4×1	4 170724M1_6	Standard	12.500	3.90	11395.518	11395.518	12.500	12.5	0.0	NO	NO	bb
5 \%	5 170724M1_7	Standard	12.500	3.90	10582.909	10582.909	12.500	12.5	0.0	NO	NO	bb
$6 \mathrm{mex}=1$	6 170724M1_8	Standard	12.500	3.90	10701.979	10701.979	12.500	12.5	0.0	NO	NO	bb
7×2	7 170724M1_9	Standard	12.500	3.91	10546.740	10546.740	12.500	12.5	0.0	NO	NO	bb
$8 \times$	8 170724M1_10	Standard	12.500	3.90	9922.027	9922.027	12.500	12.5	0.0	NO	NO	bb

Dataset:
U:IQ4.PRO\resultsl170724M11170724M1-CRV_LBT.qld
Last Altered: Tuesday, July 25, 2017 09:59:38 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:19:52 Pacific Daylight Time

Campound name: 13C6-PFDA

Response Factor: 1
RRF SD: 1.25887e-016, Relative SD: 1.25887e-014
Response type: Internal Std (Ref 84), Area * (IS Conc. / IS Area)
Curve type: RF

Ca	\# Name	Type	Std. Conc	RT Area IS Area			Response	Conc. \%Dev Conc. Flag CoD CoD Flag				$x=$ excluded
1	1 170724M1_3	Standard	12.500	4.02	71538.672	71538.672	12.500	12.5	0.0	NO	NO	bb
2 2,	2 170724M1_4	Standard	12.500	4.02	67518.039	67518.039	12.500	12.5	0.0	NO	NO	bb
3 What	3 170724M1_5	Standard	12.500	4.02	67946.188	67946.188	12.500	12.5	0.0	NO	NO	bb
4 -	4 170724M1_6	Standard	12.500	4.02	75237.898	75237.898	12.500	12.5	0.0	NO	NO	bb
5	5 170724M1_7	Standard	12.500	4.02	68309.617	68309.617	12.500	12.5	0.0	NO	NO	bb
6	6 170724M1_8	Standard	12.500	4.02	69500.219	69500.219	12.500	12.5	0.0	NO	NO	bb
Y,	7 170724M1_9	Standard	12.500	4.03	72719.445	72719.445	12.500	12.5	0.0	NO	NO	bb
8 ,	8 170724M1_10	Standard	12.500	4.02	58601.402	58601.402	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C7-PFUnA

Response Factor: 1
RRF SD: 1.45362e-016, Relative SD: $1.45362 \mathrm{e}-014$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Typemsts:	Std Conc	RT	- Area	IS Area	Response	Conc.	\%Dev	Conc.Flag	Cocod Flag	$x=$ excluded
1 (3) Wry	1 170724M1_3	Standard	12.500	4.18	66110.742	66110.742	12.500	12.5	0.0	NO	NO	bb
2 .	2 170724M1_4	Standard	12.500	4.19	63178.059	63178.059	12.500	12.5	0.0	NO	NO	bb
3 l	3 170724M1_5	Standard	12.500	4.18	65533.590	65533.590	12.500	12.5	0.0	NO	NO	bb
4 , $=$ \%	4 170724M1_6	Standard	12.500	4.19	74336.992	74336.992	12.500	12.5	0.0	NO	NO	bb
5.	5 170724M1_7	Standard	12.500	4.19	73722.414	73722.414	12.500	12.5	0.0	NO	NO	bb
6	$6170724 \mathrm{M1} 8$	Standard	12.500	4.19	61426.844	61426.844	12.500	12.5	0.0	NO	NO	bb
7	7 170724M1_9	Standard	12.500	4.18	63456.004	63456.004	12.500	12.5	0.0	NO	NO	bb
8 ,	8 170724M1_10	Standard	12.500	4.19	62878.969	62878.969	12.500	12.5	0.0	NO	NO	bb

Vista Analytical Laboratory

Dataset:	Untitled
Last Altered:	Tuesday, July 25, 2017 10:21:43 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:22:48 Pacific Daylight Time

Method: U:IQ4.PROWethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PRO\CurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Compound name: L-PFBA

Name	D , wim	Acq.Date	Acq. Time
1^. ${ }^{\text {and }} 170724 \mathrm{M1}$ _2	IPA	24-Jul-17	13:40:23
2 170724M1_3	ST170724M1-1 PFC CS-2 17G2422	24-Jul-17	13:51:04
3. 3 $^{\text {a }}$ 170724M1_4	ST170724M1-2 PFC CS-1 17G2119	24-Jul-17	14:01:50
4 -	ST170724M1-3 PFC CS0 17G2423	24-Jul-17	14:12:36
5 : $=$ \% $170724 \mathrm{M} 1 _6$	ST170724M1-4 PFC CS1 17G2424	24-Jul-17	14:23:23
6.	ST170724M1-5 PFC CS2 17G2425	24-Jul-17	14:34:02
\#\#	ST170724M1-6 PFC CS3 17G2118	24-Jul-17	14:44:48
	ST170724M1-7 PFC CS4 17G2426	24-Jul-17	14:55:34
	ST170724M1-8 PFC CS5 17G2427	24-Jul-17	15:06:35
10 (IPA	24-Jul-17	15:17:30
11 [1	SS170724M4-1 PFC SSS 17G2421	24-Jul-17	15:28:15
12. 170724M1_13	IPA	24-Jul-17	15:39:01

Dataset:	U:IQ4.PROlresults\170724M1\170724M1-12_LBT.qld
Last Altered:	Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:29:57 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17 G2421

Dataset: U:IQ4.PRO\results\170724M11170724M1-12_LBT.qld

Last Altered:	Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:30:17 Pacific Daylight Time

Method: U:IQ4.PROIMethDB\PFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41
Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38
Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

	\# Name	4,	Trace	We Area	IS Resp	RRF	Wt Nol	RT	Conc.	\%Rec	
1 1	21 L-PFOSA		$498.1>77.8$	5708.063	6500.262		1.000	3.86	10.41	104.14	70-130
2	23 L-PFOS		$499>79.9$	8177.322	10272.242		1.000	3.90	8.38	83.83	
3×4	25 L-PFDA		$513>468.8$	54158.824	56205.117		1.000	4.02	9.19	91.86	
4.	27 L-8:2 FTS		$527>506.9$	6486.744	5254.963		1.000	4.02	10.58	105.78	
5	29 L-N-MeFOSAA		$570.1>419$	14470.231	11971.411		1.000	4.06	10.22	102.17	
6	31 L-N-EtFOSAA		$584.2>419$	12443.312	12068.997		1.000	4.12	10.57	105.67	
7	33 L-PFUnA		$562.9>518.9$	37650.797	59926.145		1.000	4.19	8.88	88.81	
8 -	35 L-PFDS		$598.9>98.7$	3869.410	59926.145		1.000	4.24	9.05	90.52	V

Dataset: U:IQ4.PRO\results1170724M11170724M1-12_LBT.qld

Last Altered: Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed: \quad Tuesday, July 25, 2017 10:30:36 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS Full 7-24-17 LBT.mdb 25 Jul 2017 09:46:41

Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

	\# Name	Trace	Area	IS Resp	RRF Wt Nol	RT	Conc.	\%Re\%	
1.2\%	37 L-PFDoA	$612.9>318.8$	4450.692	5849.101	1.000	4.35	10.09	100.87	$70-130$
2	39 L-N-MeFOSA	$512.1>168.9$		26376.414	1.000			(ब)	
3 3 \%	41 L-PFTrDA	$662.9>618.9$	52553.016	5849.101	1.000	4.52	10.13	101.27	$70-130$
4.4.	43 L-PFTeDA	$712.9>668.8$	38350.820	40951.586	1.000	4.70	10.16	101.60	\downarrow
5	$45 \mathrm{~L}-\mathrm{N}-\mathrm{EtFOSA}$	$526.1>168.9$	12.455	37573.375	1.000	4.97		()	
6	47 L-PFHxDA	$812.8>768.9$	608.407	19865.295	1.000	5.07			
17	49 L-PFODA	$912.8>868.8$	230.613	19865.295	1.000	5.44		,	
8.3m	51 L-N-MeFOSE	$616.1>58.9$	26.252	40883.168	1.000	5.45			

Dataset::	U:IQ4.PROlresults1170724M11170724M1-12_LBT.qld
Last Altered:	Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed:	Tuesday, July 25, 2017 10:30:43 Pacific Daylight Time

Method: U:IQ4.PROIMethDBIPFAS_Full_7-24-17_LBT.mdb 25 Jul 2017 09:46:41 Calibration: U:IQ4.PROICurveDBIC18_VAL-PFAS_Q4_7-24-17-FULL_LBT.cdb 25 Jul 2017 09:59:38

$$
\begin{aligned}
& \text { (A) Not included in } \\
& \text { SS. } \\
& \text { AC } 7 / 25 / 17
\end{aligned}
$$

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

Vista Analytical Laboratory

Dataset: U:IQ4.PRO\results\170724M11170724M1-12_LBT.qld
Last Altered: Tuesday, July 25, 2017 10:29:00 Pacific Daylight Time
Printed: Tuesday, July 25, 2017 10:30:43 Pacific Daylight Time

Name: 170724M1_12, Date: 24-Jul-2017, Time: 15:28:15, ID: SS170724M4-1 PFC SSS 17G2421, Description: PFC SSS 17G2421

OODCMD_ID	llat	Sb	AME	AME	AME	ESC	COORD_X	COORD_Y	CONTRACT_ID	O_NUMBER	CONTR_NAME	SAMPLE	MPLE_MATRIX_DESC	SAMPLE_TYPE_DESC	COLLECT_DATE	ANALYTICAL_METHOD	ANALYTICAL_METHOD_GRP_DESC
MID_ATLANTIC	TRENTON_NAWC	1700906	EBS PHASE2	EBS PHASE2	50BR	Monitoring well	406167.76	30.4	N624701609008	WE08	TETRA TECH,	MW-50BR-20170717	Ground water	Normal (Regular)	${ }^{17-\mathrm{Jul}-17}$	537	Perfluoroalkyl Compounds
MID_ATLANTIC	trenton nawc	1700906							N6247016D9008	WE08	TETRA TECH, INC.	RB-04-20170717	Water for ac samples	Equipment blank	17-Jul-17	537	Perfluoroalkyl Compounds
MID_ATLANTIC	TRENTON_NAWC	00906	EBS PHASE2	EBS PHASE2	028R	Monitoring well	405927.69	523469.79	N6247016D9008	wE08	TETRA TECH, INC.	MW-02BR-20170718	Ground water	Normal (Regular)	18-Jul-17	537	Perfluoroakyl Compounds
MID_ATLANTIC	Renton_NaWC	1700906							N624701609008	WE08	TETRA TECH, INC.	RB-05-20170718	Water for QC samples	Equipment blank	18-Jul-17	537	Perfluoroaklkl Compounds
MID_ATLANTIC	Trenton_NAWC	1700906	EBS PHASE2	EBS PHASE2	12 ER	Monitoring well	405890.9	523700.65	N624701609008	WE08	TETRA TECH, INC.	MW-12BR-20170718	Ground water	Normal (Regular)	18-Jul-17	537	Perfluoroaklkl Compounds
MID																	

[^0]: *Bottle Preservative Type: $\square \mathrm{T}=$ Thiosulfate,

[^1]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^2]: *Bottle Preservative Type: $\square \mathrm{T}=$ Thiosulfate,

